--- language: - en license: gemma datasets: - openbmb/UltraFeedback pipeline_tag: text-generation model-index: - name: Gemma-2-9B-It-SPPO-Iter3 results: - task: type: text-generation name: Text Generation dataset: name: ENEM Challenge (No Images) type: eduagarcia/enem_challenge split: train args: num_few_shot: 3 metrics: - type: acc value: 73.48 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3 name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BLUEX (No Images) type: eduagarcia-temp/BLUEX_without_images split: train args: num_few_shot: 3 metrics: - type: acc value: 63.0 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3 name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: OAB Exams type: eduagarcia/oab_exams split: train args: num_few_shot: 3 metrics: - type: acc value: 52.3 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3 name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 RTE type: assin2 split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 94.36 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3 name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 STS type: eduagarcia/portuguese_benchmark split: test args: num_few_shot: 15 metrics: - type: pearson value: 78.25 name: pearson source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3 name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: FaQuAD NLI type: ruanchaves/faquad-nli split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 77.69 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3 name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HateBR Binary type: ruanchaves/hatebr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 87.49 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3 name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: PT Hate Speech Binary type: hate_speech_portuguese split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 72.41 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3 name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: tweetSentBR type: eduagarcia/tweetsentbr_fewshot split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 69.75 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3 name: Open Portuguese LLM Leaderboard --- Self-Play Preference Optimization for Language Model Alignment (https://arxiv.org/abs/2405.00675) # Gemma-2-9B-It-SPPO-Iter3 This model was developed using [Self-Play Preference Optimization](https://arxiv.org/abs/2405.00675) at iteration 3, based on the [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) architecture as starting point. We utilized the prompt sets from the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, splited to 3 parts for 3 iterations by [snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset](https://huggingface.co/datasets/snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset). All responses used are synthetic. **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent/verify/huggingface?returnModelRepoId=google/gemma-2-9b-it) ## Links to Other Models - [Gemma-2-9B-It-SPPO-Iter1](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter1) - [Gemma-2-9B-It-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2) - [Gemma-2-9B-It-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3) ### Model Description - Model type: A 8B parameter GPT-like model fine-tuned on synthetic datasets. - Language(s) (NLP): Primarily English - License: Apache-2.0 - Finetuned from model: google/gemma-2-9b-it ## [AlpacaEval Leaderboard Evaluation Results](https://tatsu-lab.github.io/alpaca_eval/) | Model | LC. Win Rate | Win Rate | Avg. Length | |-------------------------------------------|:------------:|:--------:|:-----------:| |[Gemma-2-9B-SPPO Iter1](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter1) |48.70 |40.76 | 1669 |[Gemma-2-9B-SPPO Iter2](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2) |50.93 | 44.64 | 1759 |[Gemma-2-9B-SPPO Iter3](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3) |**53.27** |**47.74** | 1803 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - eta: 1000 - per_device_train_batch_size: 8 - gradient_accumulation_steps: 1 - seed: 42 - distributed_type: deepspeed_zero3 - num_devices: 8 - optimizer: RMSProp - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_train_epochs: 1.0 ## Citation ``` @misc{wu2024self, title={Self-Play Preference Optimization for Language Model Alignment}, author={Wu, Yue and Sun, Zhiqing and Yuan, Huizhuo and Ji, Kaixuan and Yang, Yiming and Gu, Quanquan}, year={2024}, eprint={2405.00675}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` # Open Portuguese LLM Leaderboard Evaluation Results Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter3) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard) | Metric | Value | |--------------------------|--------| |Average |**74.3**| |ENEM Challenge (No Images)| 73.48| |BLUEX (No Images) | 63| |OAB Exams | 52.30| |Assin2 RTE | 94.36| |Assin2 STS | 78.25| |FaQuAD NLI | 77.69| |HateBR Binary | 87.49| |PT Hate Speech Binary | 72.41| |tweetSentBR | 69.75|