from functools import partial import torch.nn as nn from ...utils.spconv_utils import replace_feature, spconv def post_act_block(in_channels, out_channels, kernel_size, indice_key=None, stride=1, padding=0, conv_type='subm', norm_fn=None): if conv_type == 'subm': conv = spconv.SubMConv3d(in_channels, out_channels, kernel_size, bias=False, indice_key=indice_key) elif conv_type == 'spconv': conv = spconv.SparseConv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=False, indice_key=indice_key) elif conv_type == 'inverseconv': conv = spconv.SparseInverseConv3d(in_channels, out_channels, kernel_size, indice_key=indice_key, bias=False) else: raise NotImplementedError m = spconv.SparseSequential( conv, norm_fn(out_channels), nn.ReLU(), ) return m class SparseBasicBlock(spconv.SparseModule): expansion = 1 def __init__(self, inplanes, planes, stride=1, bias=None, norm_fn=None, downsample=None, indice_key=None): super(SparseBasicBlock, self).__init__() assert norm_fn is not None if bias is None: bias = norm_fn is not None self.conv1 = spconv.SubMConv3d( inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=bias, indice_key=indice_key ) self.bn1 = norm_fn(planes) self.relu = nn.ReLU() self.conv2 = spconv.SubMConv3d( planes, planes, kernel_size=3, stride=stride, padding=1, bias=bias, indice_key=indice_key ) self.bn2 = norm_fn(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = replace_feature(out, self.bn1(out.features)) out = replace_feature(out, self.relu(out.features)) out = self.conv2(out) out = replace_feature(out, self.bn2(out.features)) if self.downsample is not None: identity = self.downsample(x) out = replace_feature(out, out.features + identity.features) out = replace_feature(out, self.relu(out.features)) return out class VoxelResBackBone8x(nn.Module): def __init__(self, model_cfg, input_channels, grid_size, **kwargs): super().__init__() self.model_cfg = model_cfg use_bias = self.model_cfg.get('USE_BIAS', None) norm_fn = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01) self.sparse_shape = grid_size[::-1] + [1, 0, 0] self.conv_input = spconv.SparseSequential( spconv.SubMConv3d(input_channels, 16, 3, padding=1, bias=False, indice_key='subm1'), norm_fn(16), nn.ReLU(), ) block = post_act_block self.conv1 = spconv.SparseSequential( SparseBasicBlock(16, 16, bias=use_bias, norm_fn=norm_fn, indice_key='res1'), SparseBasicBlock(16, 16, bias=use_bias, norm_fn=norm_fn, indice_key='res1'), ) self.conv2 = spconv.SparseSequential( # [1600, 1408, 41] <- [800, 704, 21] block(16, 32, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv2', conv_type='spconv'), SparseBasicBlock(32, 32, bias=use_bias, norm_fn=norm_fn, indice_key='res2'), SparseBasicBlock(32, 32, bias=use_bias, norm_fn=norm_fn, indice_key='res2'), ) self.conv3 = spconv.SparseSequential( # [800, 704, 21] <- [400, 352, 11] block(32, 64, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv3', conv_type='spconv'), SparseBasicBlock(64, 64, bias=use_bias, norm_fn=norm_fn, indice_key='res3'), SparseBasicBlock(64, 64, bias=use_bias, norm_fn=norm_fn, indice_key='res3'), ) self.conv4 = spconv.SparseSequential( # [400, 352, 11] <- [200, 176, 5] block(64, 128, 3, norm_fn=norm_fn, stride=2, padding=(0, 1, 1), indice_key='spconv4', conv_type='spconv'), SparseBasicBlock(128, 128, bias=use_bias, norm_fn=norm_fn, indice_key='res4'), SparseBasicBlock(128, 128, bias=use_bias, norm_fn=norm_fn, indice_key='res4'), ) last_pad = 0 last_pad = self.model_cfg.get('last_pad', last_pad) self.conv_out = spconv.SparseSequential( # [200, 150, 5] -> [200, 150, 2] spconv.SparseConv3d(128, 128, (3, 1, 1), stride=(2, 1, 1), padding=last_pad, bias=False, indice_key='spconv_down2'), norm_fn(128), nn.ReLU(), ) self.num_point_features = 128 self.backbone_channels = { 'x_conv1': 16, 'x_conv2': 32, 'x_conv3': 64, 'x_conv4': 128 } def forward(self, batch_dict): """ Args: batch_dict: batch_size: int vfe_features: (num_voxels, C) voxel_coords: (num_voxels, 4), [batch_idx, z_idx, y_idx, x_idx] Returns: batch_dict: encoded_spconv_tensor: sparse tensor """ voxel_features, voxel_coords = batch_dict['voxel_features'], batch_dict['voxel_coords'] batch_size = batch_dict['batch_size'] input_sp_tensor = spconv.SparseConvTensor( features=voxel_features, indices=voxel_coords.int(), spatial_shape=self.sparse_shape, batch_size=batch_size ) x = self.conv_input(input_sp_tensor) x_conv1 = self.conv1(x) x_conv2 = self.conv2(x_conv1) x_conv3 = self.conv3(x_conv2) x_conv4 = self.conv4(x_conv3) # for detection head # [200, 176, 5] -> [200, 176, 2] out = self.conv_out(x_conv4) batch_dict.update({ 'encoded_spconv_tensor': out, 'encoded_spconv_tensor_stride': 8 }) batch_dict.update({ 'multi_scale_3d_features': { 'x_conv1': x_conv1, 'x_conv2': x_conv2, 'x_conv3': x_conv3, 'x_conv4': x_conv4, } }) batch_dict.update({ 'multi_scale_3d_strides': { 'x_conv1': 1, 'x_conv2': 2, 'x_conv3': 4, 'x_conv4': 8, } }) return batch_dict