from mmengine.config import read_base from opencompass.models import OpenAI from opencompass.partitioners import NaivePartitioner from opencompass.runners import LocalRunner from opencompass.tasks import OpenICLInferTask with read_base(): # choose a list of datasets from .datasets.collections.chat_medium import datasets # and output the results in a choosen format from .summarizers.medium import summarizer api_meta_template = dict( round=[ dict(role='HUMAN', api_role='HUMAN'), dict(role='BOT', api_role='BOT', generate=True), ], ) models = [ dict(abbr='GPT-3.5-turbo-0613', type=OpenAI, path='gpt-3.5-turbo-0613', key='ENV', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well meta_template=api_meta_template, query_per_second=1, max_out_len=2048, max_seq_len=4096, batch_size=8), ] infer = dict( partitioner=dict(type=NaivePartitioner), runner=dict( type=LocalRunner, max_num_workers=8, task=dict(type=OpenICLInferTask)), )