from mmengine.config import read_base from opencompass.models import AI360GPT from opencompass.partitioners import NaivePartitioner from opencompass.runners.local_api import LocalAPIRunner from opencompass.tasks import OpenICLInferTask with read_base(): from ..summarizers.medium import summarizer from ..datasets.ceval.ceval_gen import ceval_datasets datasets = [ *ceval_datasets, ] models = [ dict( abbr='360GPT_S2_V9', type=AI360GPT, path='360GPT_S2_V9', key="xxxxxxxxxxxx", generation_kwargs={ 'temperature': 0.9, 'max_tokens': 2048, 'top_p': 0.5, 'tok_k': 0, 'repetition_penalty': 1.05, }, query_per_second=1, max_out_len=2048, max_seq_len=2048, batch_size=8), ] infer = dict( partitioner=dict(type=NaivePartitioner), runner=dict( type=LocalAPIRunner, max_num_workers=2, concurrent_users=2, task=dict(type=OpenICLInferTask)), ) work_dir ="./output/api_360GPT_S2_V9"