Portuguese
xgboost
text-quality
portuguese
nicholasKluge's picture
Update README.md
36134f6 verified
---
license: apache-2.0
datasets:
- TucanoBR/GigaVerbo-Text-Filter
language:
- pt
metrics:
- accuracy
library_name: xgboost
tags:
- text-quality
- portuguese
---
# XGBClassifier-text-filter
XGBClassifier-text-filter is a text-quality filter built on top of the [`xgboost`](https://xgboost.readthedocs.io/en/stable/) library. It uses the embeddings generated by [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) as a feature vector.
This repository has the [source code](https://github.com/Nkluge-correa/Tucano) used to train this model.
## Usage
Here's an example of how to use the XGBClassifier-text-filter:
```python
from transformers import AutoTokenizer, AutoModel
from xgboost import XGBClassifier
import torch.nn.functional as F
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/LaBSE")
embedding_model = AutoModel.from_pretrained("sentence-transformers/LaBSE")
device = ("cuda" if torch.cuda.is_available() else "cpu")
embedding_model.to(device)
bst = XGBClassifier({'device': device})
bst.load_model('/path/to/XGBClassifier-text-classifier.json')
def score_text(text, model):
encoded_input = tokenizer(text, padding=True, truncation=True, return_tensors='pt').to(device)
with torch.no_grad():
model_output = embedding_model(**encoded_input)
sentence_embedding = mean_pooling(model_output, encoded_input['attention_mask'])
embedding = F.normalize(sentence_embedding, p=2, dim=1).numpy()
score = model.predict(embedding)[0]
return score
score_text("Os tucanos são aves que correspondem à família Ramphastidae, vivem nas florestas tropicais da América Central e América do Sul. A família inclui cinco gêneros e mais de quarenta espécies diferentes. Possuem bicos notavelmente grandes e coloridos, que possuem a função de termorregulação para as muitas espécies que passam muito tempo na copa da floresta exposta ao sol tropical quente.", bst)
```
## Cite as 🤗
```latex
@misc{correa2024tucanoadvancingneuraltext,
title={{Tucano: Advancing Neural Text Generation for Portuguese}},
author={Corr{\^e}a, Nicholas Kluge and Sen, Aniket and Falk, Sophia and Fatimah, Shiza},
year={2024},
eprint={2411.07854},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2411.07854},
}
```
## Aknowlegments
We gratefully acknowledge the granted access to the [Marvin cluster](https://www.hpc.uni-bonn.de/en/systems/marvin) hosted by [University of Bonn](https://www.uni-bonn.de/en) along with the support provided by its High Performance Computing \& Analytics Lab.
## License
XGBClassifier-text-filter is licensed under the Apache License, Version 2.0. For more details, see the [LICENSE](LICENSE) file.