|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- TucanoBR/GigaVerbo-Text-Filter |
|
language: |
|
- pt |
|
metrics: |
|
- accuracy |
|
library_name: xgboost |
|
tags: |
|
- text-quality |
|
- portuguese |
|
--- |
|
# XGBClassifier-text-filter |
|
|
|
XGBClassifier-text-filter is a text-quality filter built on top of the [`xgboost`](https://xgboost.readthedocs.io/en/stable/) library. It uses the embeddings generated by [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) as a feature vector. |
|
|
|
This repository has the [source code](https://github.com/Nkluge-correa/Tucano) used to train this model. |
|
|
|
## Usage |
|
|
|
Here's an example of how to use the XGBClassifier-text-filter: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
from xgboost import XGBClassifier |
|
import torch.nn.functional as F |
|
import torch |
|
|
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/LaBSE") |
|
embedding_model = AutoModel.from_pretrained("sentence-transformers/LaBSE") |
|
device = ("cuda" if torch.cuda.is_available() else "cpu") |
|
embedding_model.to(device) |
|
|
|
bst = XGBClassifier({'device': device}) |
|
bst.load_model('/path/to/XGBClassifier-text-classifier.json') |
|
|
|
def score_text(text, model): |
|
|
|
encoded_input = tokenizer(text, padding=True, truncation=True, return_tensors='pt').to(device) |
|
|
|
with torch.no_grad(): |
|
model_output = embedding_model(**encoded_input) |
|
|
|
sentence_embedding = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
embedding = F.normalize(sentence_embedding, p=2, dim=1).numpy() |
|
score = model.predict(embedding)[0] |
|
|
|
return score |
|
|
|
score_text("Os tucanos são aves que correspondem à família Ramphastidae, vivem nas florestas tropicais da América Central e América do Sul. A família inclui cinco gêneros e mais de quarenta espécies diferentes. Possuem bicos notavelmente grandes e coloridos, que possuem a função de termorregulação para as muitas espécies que passam muito tempo na copa da floresta exposta ao sol tropical quente.", bst) |
|
``` |
|
|
|
## Cite as 🤗 |
|
|
|
```latex |
|
@misc{correa2024tucanoadvancingneuraltext, |
|
title={{Tucano: Advancing Neural Text Generation for Portuguese}}, |
|
author={Corr{\^e}a, Nicholas Kluge and Sen, Aniket and Falk, Sophia and Fatimah, Shiza}, |
|
year={2024}, |
|
eprint={2411.07854}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2411.07854}, |
|
} |
|
``` |
|
|
|
## Aknowlegments |
|
|
|
We gratefully acknowledge the granted access to the [Marvin cluster](https://www.hpc.uni-bonn.de/en/systems/marvin) hosted by [University of Bonn](https://www.uni-bonn.de/en) along with the support provided by its High Performance Computing \& Analytics Lab. |
|
|
|
## License |
|
|
|
XGBClassifier-text-filter is licensed under the Apache License, Version 2.0. For more details, see the [LICENSE](LICENSE) file. |
|
|