--- base_model: CompVis/stable-diffusion-v1-4 library_name: diffusers license: creativeml-openrail-m inference: true tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training --- # Text-to-image finetuning - Trkkk/stable_diffusion This pipeline was finetuned from **CompVis/stable-diffusion-v1-4** on the **Trkkk/text_to_img_street_scene** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['A busy urban street filled with cars stuck in traffic in Hannover kroepcke.']: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("Trkkk/stable_diffusion", torch_dtype=torch.float16) prompt = "A busy urban street filled with cars stuck in traffic in Hannover kroepcke." image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 24 * Learning rate: 1e-05 * Batch size: 1 * Gradient accumulation steps: 4 * Image resolution: 256 * Mixed-precision: fp16 ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]