--- library_name: transformers license: apache-2.0 language: - en tags: - Safetensors - conversational - text-generation-inference - abliterated - uncensored - llama-cpp - gguf-my-repo base_model: huihui-ai/SmolLM2-1.7B-Instruct-abliterated --- # Triangle104/SmolLM2-1.7B-Instruct-abliterated-Q4_K_S-GGUF This model was converted to GGUF format from [`huihui-ai/SmolLM2-1.7B-Instruct-abliterated`](https://huggingface.co/huihui-ai/SmolLM2-1.7B-Instruct-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/SmolLM2-1.7B-Instruct-abliterated) for more details on the model. --- Model details: - This is an uncensored version of HuggingFaceTB/SmolLM2-1.7B-Instruct created with abliteration (see remove-refusals-with-transformers to know more about it). If the desired result is not achieved, you can clear the conversation and try again. How to use - Transformers pip install transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "huihui-ai/SmolLM2-1.7B-Instruct-abliterated" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")` model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) messages = [{"role": "user", "content": "What is the capital of France."}] input_text=tokenizer.apply_chat_template(messages, tokenize=False) inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True) print(tokenizer.decode(outputs[0])) --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/SmolLM2-1.7B-Instruct-abliterated-Q4_K_S-GGUF --hf-file smollm2-1.7b-instruct-abliterated-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/SmolLM2-1.7B-Instruct-abliterated-Q4_K_S-GGUF --hf-file smollm2-1.7b-instruct-abliterated-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/SmolLM2-1.7B-Instruct-abliterated-Q4_K_S-GGUF --hf-file smollm2-1.7b-instruct-abliterated-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/SmolLM2-1.7B-Instruct-abliterated-Q4_K_S-GGUF --hf-file smollm2-1.7b-instruct-abliterated-q4_k_s.gguf -c 2048 ```