--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2/blob/main/LICENSE language: - en pipeline_tag: text-generation base_model: huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2 tags: - chat - abliterated - uncensored - llama-cpp - gguf-my-repo --- # Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q8_0-GGUF This model was converted to GGUF format from [`huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2`](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2) for more details on the model. --- Model details: - This is an uncensored version of Qwen2.5-14B-Instruct created with abliteration (see this article to know more about it). Special thanks to @FailSpy for the original code and technique. Please follow him if you're interested in abliterated models. Important Note This version is an improvement over the previous one Qwen2.5-14B-Instruct-abliterated. Usage You can use this model in your applications by loading it with Hugging Face's transformers library: from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) # Initialize conversation context initial_messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."} ] messages = initial_messages.copy() # Copy the initial conversation context # Enter conversation loop while True: # Get user input user_input = input("User: ").strip() # Strip leading and trailing spaces # If the user types '/exit', end the conversation if user_input.lower() == "/exit": print("Exiting chat.") break # If the user types '/clean', reset the conversation context if user_input.lower() == "/clean": messages = initial_messages.copy() # Reset conversation context print("Chat history cleared. Starting a new conversation.") continue # If input is empty, prompt the user and continue if not user_input: print("Input cannot be empty. Please enter something.") continue # Add user input to the conversation messages.append({"role": "user", "content": user_input}) # Build the chat template text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize input and prepare it for the model model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate a response from the model generated_ids = model.generate( **model_inputs, max_new_tokens=8192 ) # Extract model output, removing special tokens generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # Add the model's response to the conversation messages.append({"role": "assistant", "content": response}) # Print the model's response print(f"Qwen: {response}") --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q8_0-GGUF --hf-file qwen2.5-14b-instruct-abliterated-v2-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q8_0-GGUF --hf-file qwen2.5-14b-instruct-abliterated-v2-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q8_0-GGUF --hf-file qwen2.5-14b-instruct-abliterated-v2-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2.5-14B-Instruct-abliterated-v2-Q8_0-GGUF --hf-file qwen2.5-14b-instruct-abliterated-v2-q8_0.gguf -c 2048 ```