--- license: apache-2.0 language: - en base_model: prithivMLmods/QwQ-LCoT2-7B-Instruct pipeline_tag: text-generation library_name: transformers tags: - LCoT - Qwen - v2 - llama-cpp - gguf-my-repo datasets: - PowerInfer/QWQ-LONGCOT-500K - AI-MO/NuminaMath-CoT - prithivMLmods/Math-Solve - amphora/QwQ-LongCoT-130K - prithivMLmods/Deepthink-Reasoning model-index: - name: QwQ-LCoT2-7B-Instruct results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: wis-k/instruction-following-eval split: train args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 55.76 name: averaged accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: SaylorTwift/bbh split: test args: num_few_shot: 3 metrics: - type: acc_norm value: 34.37 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: lighteval/MATH-Hard split: test args: num_few_shot: 4 metrics: - type: exact_match value: 22.21 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa split: train args: num_few_shot: 0 metrics: - type: acc_norm value: 6.38 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 15.75 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 37.13 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FQwQ-LCoT2-7B-Instruct name: Open LLM Leaderboard --- # Triangle104/QwQ-LCoT2-7B-Instruct-Q5_K_M-GGUF This model was converted to GGUF format from [`prithivMLmods/QwQ-LCoT2-7B-Instruct`](https://huggingface.co/prithivMLmods/QwQ-LCoT2-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/prithivMLmods/QwQ-LCoT2-7B-Instruct) for more details on the model. --- Model details: - The QwQ-LCoT2-7B-Instruct is a fine-tuned language model designed for advanced reasoning and instruction-following tasks. It leverages the Qwen2.5-7B base model and has been fine-tuned on the chain of thought reasoning datasets, focusing on chain-of-thought (CoT) reasoning for problems. This model is optimized for tasks requiring logical reasoning, detailed explanations, and multi-step problem-solving, making it ideal for applications such as instruction-following, text generation, and complex reasoning tasks. Quickstart with Transformers Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents. from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "prithivMLmods/QwQ-LCoT2-7B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "How many r in strawberry." messages = [ {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] Intended Use The QwQ-LCoT2-7B-Instruct model is designed for advanced reasoning and instruction-following tasks, with specific applications including: Instruction Following: Providing detailed and step-by-step guidance for a wide range of user queries. Logical Reasoning: Solving problems requiring multi-step thought processes, such as math problems or complex logic-based scenarios. Text Generation: Crafting coherent, contextually relevant, and well-structured text in response to prompts. Problem-Solving: Analyzing and addressing tasks that require chain-of-thought (CoT) reasoning, making it ideal for education, tutoring, and technical support. Knowledge Enhancement: Leveraging reasoning datasets to offer deeper insights and explanations for a wide variety of topics. Limitations Data Bias: As the model is fine-tuned on specific datasets, its outputs may reflect inherent biases from the training data. Context Limitation: Performance may degrade for tasks requiring knowledge or reasoning that significantly exceeds the model's pretraining or fine-tuning context. Complexity Ceiling: While optimized for multi-step reasoning, exceedingly complex or abstract problems may result in incomplete or incorrect outputs. Dependency on Prompt Quality: The quality and specificity of the user prompt heavily influence the model's responses. Non-Factual Outputs: Despite being fine-tuned for reasoning, the model can still generate hallucinated or factually inaccurate content, particularly for niche or unverified topics. Computational Requirements: Running the model effectively requires significant computational resources, particularly when generating long sequences or handling high-concurrency workloads. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/QwQ-LCoT2-7B-Instruct-Q5_K_M-GGUF --hf-file qwq-lcot2-7b-instruct-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/QwQ-LCoT2-7B-Instruct-Q5_K_M-GGUF --hf-file qwq-lcot2-7b-instruct-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/QwQ-LCoT2-7B-Instruct-Q5_K_M-GGUF --hf-file qwq-lcot2-7b-instruct-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/QwQ-LCoT2-7B-Instruct-Q5_K_M-GGUF --hf-file qwq-lcot2-7b-instruct-q5_k_m.gguf -c 2048 ```