File size: 3,876 Bytes
ee608bb
 
 
 
 
 
 
 
 
 
 
 
 
 
b67300c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee608bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: cc-by-nc-4.0
tags:
- not-for-all-audiences
- nsfw
- llama-cpp
- gguf-my-repo
base_model: NeverSleep/Lumimaid-v0.2-8B
---

# Triangle104/Lumimaid-v0.2-8B-Q4_K_M-GGUF
This model was converted to GGUF format from [`NeverSleep/Lumimaid-v0.2-8B`](https://huggingface.co/NeverSleep/Lumimaid-v0.2-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/NeverSleep/Lumimaid-v0.2-8B) for more details on the model.

---
Model details:
-
This model is based on: Meta-Llama-3.1-8B-Instruct

Wandb: https://wandb.ai/undis95/Lumi-Llama-3-1-8B?nw=nwuserundis95

Lumimaid 0.1 -> 0.2 is a HUGE step up dataset wise.

As some people have told us our models are sloppy, Ikari decided to say fuck it and literally nuke all chats out with most slop.

Our dataset stayed the same since day one, we added data over time, cleaned them, and repeat. After not releasing model for a while because we were never satisfied, we think it's time to come back!
Prompt template: Llama-3-Instruct

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

{output}<|eot_id|>

Credits:
-
    Undi
    IkariDev

Training data we used to make our dataset:

    Epiculous/Gnosis
    ChaoticNeutrals/Luminous_Opus
    ChaoticNeutrals/Synthetic-Dark-RP
    ChaoticNeutrals/Synthetic-RP
    Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
    Gryphe/Opus-WritingPrompts
    meseca/writing-opus-6k
    meseca/opus-instruct-9k
    PJMixers/grimulkan_theory-of-mind-ShareGPT
    NobodyExistsOnTheInternet/ToxicQAFinal
    Undi95/toxic-dpo-v0.1-sharegpt
    cgato/SlimOrcaDedupCleaned
    kalomaze/Opus_Instruct_25k
    Doctor-Shotgun/no-robots-sharegpt
    Norquinal/claude_multiround_chat_30k
    nothingiisreal/Claude-3-Opus-Instruct-15K
    All the Aesirs dataset, cleaned, unslopped
    All le luminae dataset, cleaned, unslopped
    Small part of Airoboros reduced

We sadly didn't find the sources of the following, DM us if you recognize your set !

    Opus_Instruct-v2-6.5K-Filtered-v2-sharegpt
    claude_sharegpt_trimmed
    CapybaraPure_Decontaminated-ShareGPT_reduced

Datasets credits:
-
    Epiculous
    ChaoticNeutrals
    Gryphe
    meseca
    PJMixers
    NobodyExistsOnTheInternet
    cgato
    kalomaze
    Doctor-Shotgun
    Norquinal
    nothingiisreal

Others
-
Undi: If you want to support us, you can here.

IkariDev: Visit my retro/neocities style website please kek

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Lumimaid-v0.2-8B-Q4_K_M-GGUF --hf-file lumimaid-v0.2-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Lumimaid-v0.2-8B-Q4_K_M-GGUF --hf-file lumimaid-v0.2-8b-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Lumimaid-v0.2-8B-Q4_K_M-GGUF --hf-file lumimaid-v0.2-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Lumimaid-v0.2-8B-Q4_K_M-GGUF --hf-file lumimaid-v0.2-8b-q4_k_m.gguf -c 2048
```