--- language: - en - fr - de - es - it - pt - ru - zh - ja license: apache-2.0 datasets: - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned - anthracite-org/stheno-filtered-v1.1 - PJMixers/hieunguyenminh_roleplay-deduped-ShareGPT - Gryphe/Sonnet3.5-Charcard-Roleplay - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned - anthracite-org/kalo-opus-instruct-22k-no-refusal - anthracite-org/nopm_claude_writing_fixed - anthracite-org/kalo_opus_misc_240827 pipeline_tag: text-generation base_model: Epiculous/Azure_Dusk-v0.2 tags: - llama-cpp - gguf-my-repo model-index: - name: Azure_Dusk-v0.2 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 34.67 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 17.4 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 1.66 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 1.45 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 6.37 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 22.6 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Epiculous/Azure_Dusk-v0.2 name: Open LLM Leaderboard --- # Triangle104/Azure_Dusk-v0.2-Q6_K-GGUF This model was converted to GGUF format from [`Epiculous/Azure_Dusk-v0.2`](https://huggingface.co/Epiculous/Azure_Dusk-v0.2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Epiculous/Azure_Dusk-v0.2) for more details on the model. --- Model details: - Following up on Crimson_Dawn-v0.2 we have Azure_Dusk-v0.2! Training on Mistral-Nemo-Base-2407 this time I've added significantly more data, as well as trained using RSLoRA as opposed to regular LoRA. Another key change is training on ChatML as opposed to Mistral Formatting. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Azure_Dusk-v0.2-Q6_K-GGUF --hf-file azure_dusk-v0.2-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Azure_Dusk-v0.2-Q6_K-GGUF --hf-file azure_dusk-v0.2-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Azure_Dusk-v0.2-Q6_K-GGUF --hf-file azure_dusk-v0.2-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Azure_Dusk-v0.2-Q6_K-GGUF --hf-file azure_dusk-v0.2-q6_k.gguf -c 2048 ```