--- base_model: Locutusque/Apollo-2.0-Llama-3.1-8B datasets: - Locutusque/ApolloRP-2.0-SFT language: - en library_name: transformers license: llama3.1 pipeline_tag: text-generation tags: - not-for-all-audiences - llama-cpp - gguf-my-repo --- # Triangle104/Apollo-2.0-Llama-3.1-8B-Q5_K_M-GGUF This model was converted to GGUF format from [`Locutusque/Apollo-2.0-Llama-3.1-8B`](https://huggingface.co/Locutusque/Apollo-2.0-Llama-3.1-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Locutusque/Apollo-2.0-Llama-3.1-8B) for more details on the model. --- Model Details - Fine-tuned Llama-3.1-8B on Locutusque/ApolloRP-2.0-SFT. Results in a good roleplaying language model, that isn't dumb. Developed by: Locutusque Model type: Llama3.1 Language(s) (NLP): English License: Llama 3.1 Community License Agreement Model Sources [optional] Demo: https://huggingface.co/spaces/Locutusque/Locutusque-Models Direct Use RP/ERP, instruction following, conversation, etc Bias, Risks, and Limitations This model is completely uncensored - use at your own risk. Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. Training Details Training Data Locutusque/ApolloRP-2.0-SFT The training data is cleaned from refusals, and "slop". Training Hyperparameters Training regime: bf16 non-mixed precision --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Apollo-2.0-Llama-3.1-8B-Q5_K_M-GGUF --hf-file apollo-2.0-llama-3.1-8b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Apollo-2.0-Llama-3.1-8B-Q5_K_M-GGUF --hf-file apollo-2.0-llama-3.1-8b-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Apollo-2.0-Llama-3.1-8B-Q5_K_M-GGUF --hf-file apollo-2.0-llama-3.1-8b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Apollo-2.0-Llama-3.1-8B-Q5_K_M-GGUF --hf-file apollo-2.0-llama-3.1-8b-q5_k_m.gguf -c 2048 ```