--- license: apache-2.0 datasets: - cerebras/SlimPajama-627B - bigcode/starcoderdata - OpenAssistant/oasst_top1_2023-08-25 - Trelis/openassistant-llama-style language: - en tags: - chat - tinyllama --- # TinyLlama-1.1B Chat (1 Trillion token checkpoint) The prompt format is: ``` f"[INST] {prompt} [INST]" ``` just like Llama 2 base models. Note that this model has trouble being succinct and does not emit the end of sequence (< /s >) token well. The model was fine tuned using an adapted filtered Openassistant dataset [here](https://huggingface.co/datasets/Trelis/openassistant-llama-style). The base repo follows here: # TinyLlama-1.1B https://github.com/jzhang38/TinyLlama The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. #### This Model This is an intermediate checkpoint with 480K steps and 1007B tokens. #### How to use You will need the transformers>=4.31 Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information. ```python from transformers import AutoTokenizer import transformers import torch model = "PY007/TinyLlama-1.1B-intermediate-step-240k-503b" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) sequences = pipeline( 'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.', do_sample=True, top_k=10, num_return_sequences=1, repetition_penalty=1.5, eos_token_id=tokenizer.eos_token_id, max_length=500, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ```