--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: deberta-large-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.6405601442104573 --- # deberta-large-finetuned-cola This model is a fine-tuned version of [microsoft/deberta-large](https://huggingface.co/microsoft/deberta-large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5893 - Matthews Correlation: 0.6406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4838 | 1.0 | 535 | 0.5167 | 0.5613 | | 0.2803 | 2.0 | 1070 | 0.4892 | 0.6232 | | 0.1597 | 3.0 | 1605 | 0.5893 | 0.6406 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2