--- tags: - object-detection - fire-detection - smoke-detection license: apache-2.0 datasets: - fire-smoke-dataset model-index: - name: YOLOv10-Fire-Smoke-Detection results: - task: type: object-detection name: Object Detection dataset: name: Fire and Smoke Dataset type: fire-smoke-dataset metrics: - type: mAP value: 0.85 widget: - src: >- https://huggingface.co/TommyNgx/YOLOv10-Fire-and-Smoke-Detection/resolve/main/examples/example1.jpg example_title: Fire - src: >- https://huggingface.co/TommyNgx/YOLOv10-Fire-and-Smoke-Detection/resolve/main/examples/example1.jpg example_title: Smoke library_name: pytorch base_model: - Ultralytics/YOLO11 metrics: - recall --- # YOLOv10: Real-Time Fire and Smoke Detection This repository contains a YOLOv10 model trained for real-time fire and smoke detection. The model uses the Ultralytics YOLO framework to perform object detection with high accuracy and efficiency. Users can adjust the confidence and IoU thresholds for optimal detection results. ## Model Details - **Model Type**: YOLOv8 (adapted for YOLOv10 features) - **Task**: Object Detection - **Framework**: PyTorch - **Input Size**: Adjustable (default: 640x640) - **Classes Detected**: Fire, Smoke - **File**: `best.pt` ## How to Use the Model This model is hosted on Hugging Face and can be accessed via the **Inference Widget** or programmatically using the Hugging Face Transformers pipeline. ### Inference Widget Upload an image to the widget below and adjust the following: - **Confidence Threshold**: Minimum confidence level for predictions (default: 0.25). - **IoU Threshold**: Minimum IoU level for object matching (default: 0.45). - **Image Size**: Resize input image (default: 640x640). ### Usage with Python To use the model programmatically: ```python import torch from ultralytics import YOLO from PIL import Image # Load the model model_path = "pytorch_model.bin" state_dict = torch.load(model_path, map_location="cpu") # Initialize the YOLO model model = YOLO() # Replace with the correct YOLO class model.load_state_dict(state_dict) # Run inference image = Image.open("path/to/image.jpg") results = model.predict(image, conf=0.25, iou=0.45) results.show()