--- license: mit base_model: pdelobelle/robbert-v2-dutch-base tags: - generated_from_trainer metrics: - recall - accuracy model-index: - name: robbert_seed35_1311 results: [] --- # robbert_seed35_1311 This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3736 - Precisions: 0.8703 - Recall: 0.8320 - F-measure: 0.8460 - Accuracy: 0.9455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 35 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| | 0.4597 | 1.0 | 236 | 0.2601 | 0.8795 | 0.7027 | 0.7178 | 0.9224 | | 0.2359 | 2.0 | 472 | 0.2642 | 0.7554 | 0.7436 | 0.7448 | 0.9209 | | 0.1425 | 3.0 | 708 | 0.2765 | 0.8100 | 0.7809 | 0.7872 | 0.9318 | | 0.0893 | 4.0 | 944 | 0.2727 | 0.8404 | 0.7708 | 0.7885 | 0.9340 | | 0.0597 | 5.0 | 1180 | 0.3136 | 0.8572 | 0.7712 | 0.7963 | 0.9361 | | 0.0446 | 6.0 | 1416 | 0.3246 | 0.8474 | 0.7824 | 0.7947 | 0.9409 | | 0.029 | 7.0 | 1652 | 0.3266 | 0.8266 | 0.7944 | 0.7985 | 0.9361 | | 0.0181 | 8.0 | 1888 | 0.3377 | 0.8564 | 0.8139 | 0.8257 | 0.9422 | | 0.0152 | 9.0 | 2124 | 0.3578 | 0.8240 | 0.8439 | 0.8297 | 0.9426 | | 0.0121 | 10.0 | 2360 | 0.3270 | 0.8659 | 0.8292 | 0.8444 | 0.9475 | | 0.0094 | 11.0 | 2596 | 0.3510 | 0.8742 | 0.8274 | 0.8455 | 0.9467 | | 0.0057 | 12.0 | 2832 | 0.3674 | 0.8435 | 0.8350 | 0.8379 | 0.9441 | | 0.0042 | 13.0 | 3068 | 0.3746 | 0.8708 | 0.8313 | 0.8458 | 0.9458 | | 0.0027 | 14.0 | 3304 | 0.3736 | 0.8703 | 0.8320 | 0.8460 | 0.9455 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1