import pandas as pd import numpy as np import onnxruntime as ort import os from tqdm import tqdm import timm import torchvision.transforms as T from PIL import Image import torch import torch.nn as nn def is_gpu_available(): """Check if the python package `onnxruntime-gpu` is installed.""" return torch.cuda.is_available() class PytorchWorker: """Run inference using ONNX runtime.""" def __init__(self, model_path: str, model_name: str, number_of_categories: int = 1604): def _load_model(model_name, model_path): print("Setting up Pytorch Model") self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"Using devide: {self.device}") model = timm.create_model(model_name, num_classes=number_of_categories, pretrained=False) model_ckpt = torch.load(model_path, map_location=self.device) model.load_state_dict(model_ckpt, strict=False) msg = model.load_state_dict(model_ckpt, strict=False) print("load_state_dict: ", msg) # num_features = model.get_classifier().in_features # model.classifier = nn.Linear(num_features, number_of_categories) return model.to(self.device).eval() self.model = _load_model(model_name, model_path) self.transforms = T.Compose([T.Resize((299, 299)), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) def predict_image(self, image: np.ndarray) -> list(): """Run inference using ONNX runtime. :param image: Input image as numpy array. :return: A list with logits and confidences. """ # logits = self.model(self.transforms(image).unsqueeze(0).to(self.device)) self.model.eval() outputs = self.model(self.transforms(image).unsqueeze(0).to(self.device)) _, preds = torch.max(outputs, 1) preds = preds.cpu() # Move tensor to CPU print("preds: ", preds) return preds.tolist() # Convert tensor to list def make_submission(test_metadata, model_path, model_name, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"): """Make submission with given """ model = PytorchWorker(model_path, model_name) predictions = [] for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)): image_path = os.path.join(images_root_path, row.image_path) test_image = Image.open(image_path).convert("RGB") logits = model.predict_image(test_image) pred_class_id = logits[0] if logits[0] !=1604 else -1 predictions.append(pred_class_id) test_metadata["class_id"] = predictions user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first") user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None) if __name__ == "__main__": import zipfile with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref: zip_ref.extractall("/tmp/data") # MODEL_PATH = './e21_t152.pth' # MODEL_PATH = './e18_t151.pth' # MODEL_PATH = './e23_t141.pth' MODEL_PATH = './e25_t144.pth' MODEL_NAME = 'tf_efficientnet_b3_ns' #"tf_efficientnet_b1.ap_in1k" metadata_file_path = "./FungiCLEF2024_TestMetadata.csv" test_metadata = pd.read_csv(metadata_file_path) make_submission( test_metadata=test_metadata, model_path=MODEL_PATH, model_name=MODEL_NAME )