from functools import partial import numpy as np import torch import torch.nn as nn from .positional_embedding import offset_sequence_embedding from .positional_embedding import position_sequence_embedding from .positional_embedding import timestep_embedding def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) ################################################################################# # Embedding Layers for Timesteps and Class Labels # ################################################################################# class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size def forward(self, t): t_freq = timestep_embedding(t, self.frequency_embedding_size) t_emb = self.mlp(t_freq) return t_emb class LabelEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, num_classes, hidden_size, dropout_prob): super().__init__() use_cfg_embedding = dropout_prob > 0 self.embedding_table = nn.Embedding( num_classes + use_cfg_embedding, hidden_size, ) self.num_classes = num_classes self.dropout_prob = dropout_prob def token_drop(self, labels, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = ( torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob ) else: drop_ids = force_drop_ids == 1 labels = torch.where(drop_ids, self.num_classes, labels) return labels def forward(self, labels, train, force_drop_ids=None): use_dropout = self.dropout_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): labels = self.token_drop(labels, force_drop_ids) embeddings = self.embedding_table(labels) return embeddings ################################################################################# # Core DiT Model # ################################################################################# class Mlp(nn.Module): """MLP as used in Vision Transformer, MLP-Mixer and related networks""" def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, norm_layer=None, bias=True, drop=0.0, use_conv=False, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features bias = (bias, bias) drop_probs = (drop, drop) linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0]) self.act = act_layer() self.drop1 = nn.Dropout(drop_probs[0]) self.norm = ( norm_layer(hidden_features) if norm_layer is not None else nn.Identity() ) self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1]) self.drop2 = nn.Dropout(drop_probs[1]) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop1(x) x = self.norm(x) x = self.fc2(x) x = self.drop2(x) return x class DiTBlock(nn.Module): """ A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning. """ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs): super().__init__() self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.attn = nn.MultiheadAttention( hidden_size, num_heads=num_heads, batch_first=True, **block_kwargs, ) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) mlp_hidden_dim = int(hidden_size * mlp_ratio) approx_gelu = lambda: nn.GELU(approximate="tanh") # noinspection PyTypeChecker self.mlp = Mlp( in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0, ) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True), ) def forward(self, x, c, attn_mask=None): ( shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp, ) = self.adaLN_modulation(c).chunk(6, dim=1) modulated = modulate(self.norm1(x), shift_msa, scale_msa) x = ( x + gate_msa.unsqueeze(1) * self.attn( modulated, modulated, modulated, need_weights=False, attn_mask=attn_mask, )[0] ) x = x + gate_mlp.unsqueeze(1) * self.mlp( modulate(self.norm2(x), shift_mlp, scale_mlp), ) return x class FinalLayer(nn.Module): """ The final layer of DiT. """ def __init__(self, hidden_size, out_channels): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(hidden_size, out_channels, bias=True) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True), ) def forward(self, x, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class FirstLayer(nn.Module): """ Embeds scalar positions into vector representation and concatenates context. """ def __init__( self, hidden_size, context_size, in_channels, frequency_embedding_size=128, ): super().__init__() self.mlp = nn.Sequential( nn.Linear( in_channels * frequency_embedding_size + frequency_embedding_size + context_size, hidden_size, bias=True, ), ) self.frequency_embedding_size = frequency_embedding_size self.playfield_size = nn.Parameter( torch.tensor((512, 384), dtype=torch.float32), requires_grad=False, ) def forward(self, x, o, c): x_freq = position_sequence_embedding( x * self.playfield_size, self.frequency_embedding_size, ) o_freq = offset_sequence_embedding(o / 10, self.frequency_embedding_size) xoc = torch.concatenate((x_freq, o_freq, c), -1) xoc_emb = self.mlp(xoc) return xoc_emb class DiT(nn.Module): """ Diffusion model with a Transformer backbone. """ def __init__( self, in_channels=2, context_size=142, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4.0, class_dropout_prob=0.1, num_classes=1000, learn_sigma=True, ): super().__init__() self.learn_sigma = learn_sigma self.in_channels = in_channels self.context_size = context_size self.out_channels = in_channels * 2 if learn_sigma else in_channels self.num_heads = num_heads self.xoc_embedder = FirstLayer(hidden_size, context_size, in_channels) self.t_embedder = TimestepEmbedder(hidden_size) self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob) self.blocks = nn.ModuleList( [ DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(depth) ], ) self.final_layer = FinalLayer(hidden_size, self.out_channels) self.initialize_weights() def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize position embedding MLP: nn.init.normal_(self.xoc_embedder.mlp[0].weight, std=0.02) # Initialize label embedding table: nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) # Zero-out adaLN modulation layers in DiT blocks: for block in self.blocks: nn.init.constant_(block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.adaLN_modulation[-1].bias, 0) # Zero-out output layers: nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) nn.init.constant_(self.final_layer.linear.weight, 0) nn.init.constant_(self.final_layer.linear.bias, 0) def forward(self, x, t, o, c, y, attn_mask=None): """ Forward pass of DiT. x: (N, C, T) tensor of sequence inputs t: (N) tensor of diffusion timesteps o: (N, T) tensor of sequence offsets in milliseconds c: (N, E, T) tensor of sequence context y: (N) tensor of class labels """ x = torch.swapaxes(x, 1, 2) # (N, T, C) c = torch.swapaxes(c, 1, 2) # (N, T, E) x = self.xoc_embedder(x, o, c) # (N, T, D), where T = seq_len t = self.t_embedder(t) # (N, D) y = self.y_embedder(y, self.training) # (N, D) b = t + y # (N, D) for block in self.blocks: x = block(x, b, attn_mask) # (N, T, D) x = self.final_layer(x, b) # (N, T, out_channels) x = torch.swapaxes(x, 1, 2) # (N, out_channels, T) return x def forward_with_cfg(self, x, t, o, c, y, cfg_scale, attn_mask=None): """ Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance. """ # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb half = x[: len(x) // 2] combined = torch.cat([half, half], dim=0) model_out = self.forward(combined, t, o, c, y, attn_mask) # For exact reproducibility reasons, we apply classifier-free guidance on only # three channels by default. The standard approach to cfg applies it to all channels. # This can be done by uncommenting the following line and commenting-out the line following that. eps, rest = model_out[:, : self.in_channels], model_out[:, self.in_channels :] # eps, rest = model_out[:, :3], model_out[:, 3:] cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) eps = torch.cat([half_eps, half_eps], dim=0) return torch.cat([eps, rest], dim=1) ################################################################################# # Sine/Cosine Positional Embedding Functions # ################################################################################# # https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token and extra_tokens > 0: pos_embed = np.concatenate( [np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0, ) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb ################################################################################# # DiT Configs # ################################################################################# def DiT_XL(**kwargs: dict) -> DiT: return DiT(depth=28, hidden_size=1152, num_heads=16, **kwargs) def DiT_L(**kwargs: dict) -> DiT: return DiT(depth=24, hidden_size=1024, num_heads=16, **kwargs) def DiT_B(**kwargs: dict) -> DiT: return DiT(depth=12, hidden_size=768, num_heads=12, **kwargs) def DiT_S(**kwargs: dict) -> DiT: return DiT(depth=12, hidden_size=384, num_heads=6, **kwargs) DiT_models = { "DiT-XL": DiT_XL, "DiT-L": DiT_L, "DiT-B": DiT_B, "DiT-S": DiT_S, }