# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Configuration base class and utilities.""" from __future__ import (absolute_import, division, print_function, unicode_literals) import copy import json import logging import os from io import open from model.file_utils import cached_path, CONFIG_NAME logger = logging.getLogger(__name__) class PretrainedConfig(object): r""" Base class for all configuration classes. Handles a few parameters tools to all models' configurations as well as methods for loading/downloading/saving configurations. Note: A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to initialize a model does **not** load the model weights. It only affects the model's configuration. Class attributes (overridden by derived classes): - ``pretrained_config_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained model configurations as values. Parameters: ``finetuning_task``: string, default `None`. Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow or PyTorch) checkpoint. ``num_labels``: integer, default `2`. Number of classes to use when the model is a classification model (sequences/tokens) ``output_attentions``: boolean, default `False`. Should the model returns attentions weights. ``output_hidden_states``: string, default `False`. Should the model returns all hidden-states. ``torchscript``: string, default `False`. Is the model used with Torchscript. """ pretrained_config_archive_map = {} def __init__(self, **kwargs): self.finetuning_task = kwargs.pop('finetuning_task', None) self.num_labels = kwargs.pop('num_labels', 2) self.output_attentions = kwargs.pop('output_attentions', False) self.output_hidden_states = kwargs.pop('output_hidden_states', False) self.torchscript = kwargs.pop('torchscript', False) self.pruned_heads = kwargs.pop('pruned_heads', {}) def save_pretrained(self, save_directory): """ Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the :func:`~pytorch_transformers.PretrainedConfig.from_pretrained` class method. """ assert os.path.isdir(save_directory), "Saving path should be a directory where the model and configuration can be saved" # If we save using the predefined names, we can load using `from_pretrained` output_config_file = os.path.join(save_directory, CONFIG_NAME) self.to_json_file(output_config_file) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): r""" Instantiate a :class:`~pytorch_transformers.PretrainedConfig` (or a derived class) from a pre-trained model configuration. Parameters: pretrained_model_name_or_path: either: - a string with the `shortcut name` of a pre-trained model configuration to load from cache or download, e.g.: ``bert-base-uncased``. - a path to a `directory` containing a configuration file saved using the :func:`~pytorch_transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``. - a path or url to a saved configuration JSON `file`, e.g.: ``./my_model_directory/configuration.json``. cache_dir: (`optional`) string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. kwargs: (`optional`) dict: key/value pairs with which to update the configuration object after loading. - The values in kwargs of any keys which are configuration attributes will be used to override the loaded values. - Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled by the `return_unused_kwargs` keyword parameter. force_download: (`optional`) boolean, default False: Force to (re-)download the model weights and configuration files and override the cached versions if they exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. return_unused_kwargs: (`optional`) bool: - If False, then this function returns just the final configuration object. - If True, then this functions returns a tuple `(config, unused_kwargs)` where `unused_kwargs` is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: ie the part of kwargs which has not been used to update `config` and is otherwise ignored. Examples:: # We can't instantiate directly the base class `PretrainedConfig` so let's show the examples on a # derived class: BertConfig config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. config = BertConfig.from_pretrained('./test/saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')` config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json') config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False) assert config.output_attention == True config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False, return_unused_kwargs=True) assert config.output_attention == True assert unused_kwargs == {'foo': False} """ cache_dir = kwargs.pop('cache_dir', None) force_download = kwargs.pop('force_download', False) proxies = kwargs.pop('proxies', None) return_unused_kwargs = kwargs.pop('return_unused_kwargs', False) if pretrained_model_name_or_path in cls.pretrained_config_archive_map: config_file = cls.pretrained_config_archive_map[pretrained_model_name_or_path] elif os.path.isdir(pretrained_model_name_or_path): config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME) else: config_file = pretrained_model_name_or_path # redirect to the cache, if necessary try: resolved_config_file = cached_path(config_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies) except EnvironmentError as e: if pretrained_model_name_or_path in cls.pretrained_config_archive_map: logger.error( "Couldn't reach server at '{}' to download pretrained model configuration file.".format( config_file)) else: logger.error( "Model name '{}' was not found in model name list ({}). " "We assumed '{}' was a path or url but couldn't find any file " "associated to this path or url.".format( pretrained_model_name_or_path, ', '.join(cls.pretrained_config_archive_map.keys()), config_file)) raise e if resolved_config_file == config_file: logger.info("loading configuration file {}".format(config_file)) else: logger.info("loading configuration file {} from cache at {}".format( config_file, resolved_config_file)) # Load config config = cls.from_json_file(resolved_config_file) if hasattr(config, 'pruned_heads'): config.pruned_heads = dict((int(key), set(value)) for key, value in config.pruned_heads.items()) # Update config with kwargs if needed to_remove = [] for key, value in kwargs.items(): if hasattr(config, key): setattr(config, key, value) to_remove.append(key) else: setattr(config,key,value) for key in to_remove: kwargs.pop(key, None) logger.info("Model config %s", config) if return_unused_kwargs: return config, kwargs else: return config @classmethod def from_dict(cls, json_object): """Constructs a `Config` from a Python dictionary of parameters.""" config = cls(vocab_size_or_config_json_file=-1) for key, value in json_object.items(): config.__dict__[key] = value return config @classmethod def from_json_file(cls, json_file): """Constructs a `BertConfig` from a json file of parameters.""" with open(json_file, "r", encoding='utf-8') as reader: text = reader.read() return cls.from_dict(json.loads(text)) def __eq__(self, other): return self.__dict__ == other.__dict__ def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" def to_json_file(self, json_file_path): """ Save this instance to a json file.""" with open(json_file_path, "w", encoding='utf-8') as writer: writer.write(self.to_json_string())