--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-large results: [] --- # videomae-large This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0993 - Accuracy: 0.9742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.3203 | 0.03 | 10 | 2.1994 | 0.1571 | | 1.9795 | 1.03 | 20 | 1.7835 | 0.3429 | | 1.0467 | 2.03 | 30 | 0.7311 | 0.6571 | | 0.301 | 3.03 | 40 | 0.2195 | 0.9429 | | 0.1061 | 4.03 | 50 | 0.1529 | 0.9143 | | 0.0499 | 5.03 | 60 | 0.0826 | 0.9857 | | 0.079 | 6.03 | 70 | 0.0534 | 0.9857 | | 0.0487 | 7.03 | 80 | 0.0299 | 0.9857 | | 0.0217 | 8.03 | 90 | 0.3283 | 0.9 | | 0.0387 | 9.03 | 100 | 0.0268 | 0.9857 | | 0.0252 | 10.03 | 110 | 0.0386 | 0.9857 | | 0.0324 | 11.03 | 120 | 0.3067 | 0.9 | | 0.0022 | 12.03 | 130 | 0.0131 | 1.0 | | 0.0115 | 13.03 | 140 | 0.0889 | 0.9857 | | 0.0225 | 14.03 | 150 | 0.0091 | 1.0 | | 0.0012 | 15.03 | 160 | 0.0081 | 1.0 | | 0.001 | 16.03 | 170 | 0.0103 | 1.0 | | 0.0255 | 17.03 | 180 | 0.0113 | 1.0 | | 0.0016 | 18.03 | 190 | 0.0252 | 0.9857 | | 0.0039 | 19.03 | 200 | 0.0177 | 0.9857 | | 0.0007 | 20.03 | 210 | 0.0017 | 1.0 | | 0.0006 | 21.03 | 220 | 0.0013 | 1.0 | | 0.0006 | 22.03 | 230 | 0.0012 | 1.0 | | 0.0007 | 23.03 | 240 | 0.0011 | 1.0 | | 0.0005 | 24.03 | 250 | 0.0011 | 1.0 | | 0.0005 | 25.03 | 260 | 0.0011 | 1.0 | | 0.0005 | 26.03 | 270 | 0.0011 | 1.0 | | 0.0005 | 27.03 | 280 | 0.0011 | 1.0 | | 0.0005 | 28.03 | 290 | 0.0011 | 1.0 | | 0.0005 | 29.03 | 300 | 0.0011 | 1.0 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2