--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-Final_Mixed-aug_insert_tfidf results: [] --- # PhoBERT-Final_Mixed-aug_insert_tfidf This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2673 - Accuracy: 0.73 - F1: 0.7262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.894 | 1.0 | 88 | 0.7277 | 0.66 | 0.6187 | | 0.5738 | 2.0 | 176 | 0.7561 | 0.7 | 0.6957 | | 0.3647 | 3.0 | 264 | 0.8054 | 0.72 | 0.7149 | | 0.2496 | 4.0 | 352 | 1.0288 | 0.69 | 0.6842 | | 0.1633 | 5.0 | 440 | 1.1435 | 0.7 | 0.6943 | | 0.1162 | 6.0 | 528 | 1.1985 | 0.72 | 0.7157 | | 0.0909 | 7.0 | 616 | 1.2491 | 0.73 | 0.7262 | | 0.0722 | 8.0 | 704 | 1.2673 | 0.73 | 0.7262 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3