a2c-PandaReachDense-v2 / config.json
ThomasSimonini's picture
Test commit
166559a
raw
history blame
13.5 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f4e2f304ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4e2f300540>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672435170234352115, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAApYLTPLFrjL1TA1Y+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02581913 -0.06856478 0.20899706]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4ezWMhmO/r+UhpRSlIwBbJRLMowBdJRHQHi7XQ+lj3F1fZQoaAZoCWgPQwgqqRPQRNj6v5SGlFKUaBVLMmgWR0B4vrAO8TSLdX2UKGgGaAloD0MIUYcVbvnoA8CUhpRSlGgVSzJoFkdAeMGtZV4oqnV9lChoBmgJaA9DCODVcmcmeAPAlIaUUpRoFUsyaBZHQHjE7m+0w8J1fZQoaAZoCWgPQwhZwW9DjBf+v5SGlFKUaBVLMmgWR0B4yGAAhje9dX2UKGgGaAloD0MIYXDNHf1vAcCUhpRSlGgVSzJoFkdAeMuy5Zr57HV9lChoBmgJaA9DCOTXD7HBYgbAlIaUUpRoFUsyaBZHQHjO/gR9PUN1fZQoaAZoCWgPQwik4ZS5+aYCwJSGlFKUaBVLMmgWR0B40hZgXuVpdX2UKGgGaAloD0MI8DDtm/trAMCUhpRSlGgVSzJoFkdAeNVhFEy+H3V9lChoBmgJaA9DCEj+YOC5NwTAlIaUUpRoFUsyaBZHQHjYdRvWH1x1fZQoaAZoCWgPQwih2AqalrgDwJSGlFKUaBVLMmgWR0B4272K2rn1dX2UKGgGaAloD0MISkBMwoU8AMCUhpRSlGgVSzJoFkdAeN8CIDYAbXV9lChoBmgJaA9DCAIs8uuH2ATAlIaUUpRoFUsyaBZHQHjh/gJkXk51fZQoaAZoCWgPQwgpJJnVO9wCwJSGlFKUaBVLMmgWR0B45QaqCHymdX2UKGgGaAloD0MIxNLAj2r4AsCUhpRSlGgVSzJoFkdAeOgBfrrxAnV9lChoBmgJaA9DCDi/YaJBigTAlIaUUpRoFUsyaBZHQHjq8rmQr+Z1fZQoaAZoCWgPQwiFKF/QQmIAwJSGlFKUaBVLMmgWR0B47iEWZZ0TdX2UKGgGaAloD0MIKVyPwvUoBcCUhpRSlGgVSzJoFkdAePFQyRB/qnV9lChoBmgJaA9DCIRHG0esRQDAlIaUUpRoFUsyaBZHQHj0cQmNR3x1fZQoaAZoCWgPQwhg5jv4iUP8v5SGlFKUaBVLMmgWR0B492BGx2SudX2UKGgGaAloD0MIgXaHFAOk/b+UhpRSlGgVSzJoFkdAePqBsANoanV9lChoBmgJaA9DCAiSdw5lyAHAlIaUUpRoFUsyaBZHQHj92CyyD7J1fZQoaAZoCWgPQwhgHccPlUb5v5SGlFKUaBVLMmgWR0B5ARddE9dNdX2UKGgGaAloD0MIG0esxadA/b+UhpRSlGgVSzJoFkdAeQRgNgBtDXV9lChoBmgJaA9DCG40gLdAQv6/lIaUUpRoFUsyaBZHQHkHadpZfUp1fZQoaAZoCWgPQwjONjemJwwCwJSGlFKUaBVLMmgWR0B5Co/TspocdX2UKGgGaAloD0MIp1zhXS4CAsCUhpRSlGgVSzJoFkdAeQ3O6/ZdwHV9lChoBmgJaA9DCOjZrPpcrf2/lIaUUpRoFUsyaBZHQHkQvffoA4p1fZQoaAZoCWgPQwh63/jaMwv/v5SGlFKUaBVLMmgWR0B5E79LpRoAdX2UKGgGaAloD0MIq0GY271c+7+UhpRSlGgVSzJoFkdAeRbWLgn+h3V9lChoBmgJaA9DCNFdEmdFFP2/lIaUUpRoFUsyaBZHQHkZrrX18LN1fZQoaAZoCWgPQwgd5WA2Acb+v5SGlFKUaBVLMmgWR0B5HKois4kvdX2UKGgGaAloD0MIz7uxoDDo+b+UhpRSlGgVSzJoFkdAeR+/OMVDbHV9lChoBmgJaA9DCAOwARHiCv6/lIaUUpRoFUsyaBZHQHkiwWi1y/91fZQoaAZoCWgPQwi1/MBVnoD9v5SGlFKUaBVLMmgWR0B5Jc60Y0l7dX2UKGgGaAloD0MIwAZEiCuHAsCUhpRSlGgVSzJoFkdAeSjbcGkeqHV9lChoBmgJaA9DCJmCNc6m4/y/lIaUUpRoFUsyaBZHQHkr1QdjoZB1fZQoaAZoCWgPQwgtfH2tS43/v5SGlFKUaBVLMmgWR0B5LzKr7wazdX2UKGgGaAloD0MIchb2tMPf+r+UhpRSlGgVSzJoFkdAeTIZaV2RrHV9lChoBmgJaA9DCBgnvtpRnPm/lIaUUpRoFUsyaBZHQHk1dpItlI51fZQoaAZoCWgPQwgy422l1yb8v5SGlFKUaBVLMmgWR0B5OKV7hNucdX2UKGgGaAloD0MIsVOsGoR5/7+UhpRSlGgVSzJoFkdAeTu5Xlr/KnV9lChoBmgJaA9DCGPvxRftUQPAlIaUUpRoFUsyaBZHQHk/LEpAlfJ1fZQoaAZoCWgPQwjXFwltOZf6v5SGlFKUaBVLMmgWR0B5Qmw/xDsudX2UKGgGaAloD0MIegCL/Poh/b+UhpRSlGgVSzJoFkdAeUXBRAKOUHV9lChoBmgJaA9DCJVh3A2i9fu/lIaUUpRoFUsyaBZHQHlIxFNL1291fZQoaAZoCWgPQwg1Ymafx+j6v5SGlFKUaBVLMmgWR0B5S/bUPQOXdX2UKGgGaAloD0MIgNjSo6ne+r+UhpRSlGgVSzJoFkdAeU8LhaTwD3V9lChoBmgJaA9DCAeWI2QgT/q/lIaUUpRoFUsyaBZHQHlSTXBguyx1fZQoaAZoCWgPQwgSZ0XURF/+v5SGlFKUaBVLMmgWR0B5VYRJ2+wldX2UKGgGaAloD0MIZKw2/68aAMCUhpRSlGgVSzJoFkdAeVjI7eVLSXV9lChoBmgJaA9DCGahndMs0P+/lIaUUpRoFUsyaBZHQHlbtitq59V1fZQoaAZoCWgPQwjLS/4nfzf/v5SGlFKUaBVLMmgWR0B5Xsrc0tROdX2UKGgGaAloD0MIEDtT6LzG+b+UhpRSlGgVSzJoFkdAeWIEkjX4CnV9lChoBmgJaA9DCHEA/b5/M/i/lIaUUpRoFUsyaBZHQHllLpu/Dcd1fZQoaAZoCWgPQwj6X65FC1ACwJSGlFKUaBVLMmgWR0B5aErBj4HpdX2UKGgGaAloD0MIdJXurrOBAcCUhpRSlGgVSzJoFkdAeWtInBtUGXV9lChoBmgJaA9DCLRby2Q4Hv2/lIaUUpRoFUsyaBZHQHluU8V58jR1fZQoaAZoCWgPQwi3DaMgePz8v5SGlFKUaBVLMmgWR0B5cYtAcDKYdX2UKGgGaAloD0MI5j45ChBF+7+UhpRSlGgVSzJoFkdAeXTPqLS/kHV9lChoBmgJaA9DCLX7VYDvVgHAlIaUUpRoFUsyaBZHQHl4Jb+tKZl1fZQoaAZoCWgPQwilL4Sc9x8AwJSGlFKUaBVLMmgWR0B5e1WfbsWwdX2UKGgGaAloD0MId9oaEYxD+L+UhpRSlGgVSzJoFkdAeX6Eit7rs3V9lChoBmgJaA9DCPMd/MQBtPy/lIaUUpRoFUsyaBZHQHmByRSxZ+x1fZQoaAZoCWgPQwhOKhprf+f8v5SGlFKUaBVLMmgWR0B5hOg6EJ0GdX2UKGgGaAloD0MIt11ortOIAMCUhpRSlGgVSzJoFkdAeYg7dznzQXV9lChoBmgJaA9DCB3KUBVTKfu/lIaUUpRoFUsyaBZHQHmLTGxUvPF1fZQoaAZoCWgPQwjgTEwXYnX6v5SGlFKUaBVLMmgWR0B5jqcy31BddX2UKGgGaAloD0MIw0Xu6epOBcCUhpRSlGgVSzJoFkdAeZHGhVU+93V9lChoBmgJaA9DCEYMO4xJP/q/lIaUUpRoFUsyaBZHQHmVAHu7YkF1fZQoaAZoCWgPQwjmkqrtJvj+v5SGlFKUaBVLMmgWR0B5mDdtVJcxdX2UKGgGaAloD0MIF50std4v+7+UhpRSlGgVSzJoFkdAeZtRPXTVlXV9lChoBmgJaA9DCJzCSgUVlf2/lIaUUpRoFUsyaBZHQHmeZiy6cy51fZQoaAZoCWgPQwhIwylz8y0AwJSGlFKUaBVLMmgWR0B5oWgbp/wzdX2UKGgGaAloD0MIy/J1Gf5TAcCUhpRSlGgVSzJoFkdAeaRW7OE/S3V9lChoBmgJaA9DCJnxttJrc/6/lIaUUpRoFUsyaBZHQHmnaBEroW51fZQoaAZoCWgPQwirsYS1Mfb7v5SGlFKUaBVLMmgWR0B5qnwpe/pMdX2UKGgGaAloD0MIqMe2DDhL+L+UhpRSlGgVSzJoFkdAea2JXyRSxnV9lChoBmgJaA9DCBDmdi/3KQHAlIaUUpRoFUsyaBZHQHmweEytV7x1fZQoaAZoCWgPQwj6J7hYUQP/v5SGlFKUaBVLMmgWR0B5s7X/YJ3QdX2UKGgGaAloD0MICHdn7bZL/L+UhpRSlGgVSzJoFkdAebbHymQ8wHV9lChoBmgJaA9DCGZpp+ZyQwLAlIaUUpRoFUsyaBZHQHm6BoAXEZR1fZQoaAZoCWgPQwgGY0Si0LIBwJSGlFKUaBVLMmgWR0B5vSc4HX2/dX2UKGgGaAloD0MI1lOrr66qAsCUhpRSlGgVSzJoFkdAecBKsdT5wnV9lChoBmgJaA9DCIf7yK1Jd/2/lIaUUpRoFUsyaBZHQHnDwzxgAp91fZQoaAZoCWgPQwg2kZkLXL4AwJSGlFKUaBVLMmgWR0B5xvz19ORDdX2UKGgGaAloD0MIFto5zQLt+7+UhpRSlGgVSzJoFkdAecqBtUGVzXV9lChoBmgJaA9DCFH0wMdgRf+/lIaUUpRoFUsyaBZHQHnNp5JK8L91fZQoaAZoCWgPQwi9HHbfMfz6v5SGlFKUaBVLMmgWR0B50Lvd/J/5dX2UKGgGaAloD0MI93KfHAUoA8CUhpRSlGgVSzJoFkdAedP4YrJ8v3V9lChoBmgJaA9DCGPTSiGQy/+/lIaUUpRoFUsyaBZHQHnXX7UG3Wp1fZQoaAZoCWgPQwjGbp9VZsr3v5SGlFKUaBVLMmgWR0B52q8Yht+DdX2UKGgGaAloD0MIo3TpX5JK+b+UhpRSlGgVSzJoFkdAed29gnc+JXV9lChoBmgJaA9DCG/ZIf5hSwHAlIaUUpRoFUsyaBZHQHnhBZdOZb91fZQoaAZoCWgPQwjNrRBWYwn5v5SGlFKUaBVLMmgWR0B55DUqhDgJdX2UKGgGaAloD0MIlNkgk4wc+7+UhpRSlGgVSzJoFkdAeed5QxesxXV9lChoBmgJaA9DCDCbAMPy5/u/lIaUUpRoFUsyaBZHQHnqsTFl05l1fZQoaAZoCWgPQwgnnx7bMiD9v5SGlFKUaBVLMmgWR0B57akHlfZ3dX2UKGgGaAloD0MI8KSFyyps/7+UhpRSlGgVSzJoFkdAefCih37k4nV9lChoBmgJaA9DCJgXYB+d+vi/lIaUUpRoFUsyaBZHQHnzr5M10kp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 20000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}