--- library_name: transformers license: apache-2.0 base_model: navjordj/snl-summarization tags: - generated_from_trainer metrics: - rouge model-index: - name: Fine-Tuned-SNL-Summarization results: [] --- # Fine-Tuned-SNL-Summarization This model is a fine-tuned version of [navjordj/snl-summarization](https://huggingface.co/navjordj/snl-summarization) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.0702 - Rouge2: 0.0046 - Rougel: 0.0554 - Rougelsum: 0.0559 - Generated Length: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Generated Length | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------------:| | No log | 1.0 | 17 | nan | 0.0702 | 0.0046 | 0.0554 | 0.0559 | 19.0 | | No log | 2.0 | 34 | nan | 0.0702 | 0.0046 | 0.0554 | 0.0559 | 19.0 | | No log | 3.0 | 51 | nan | 0.0702 | 0.0046 | 0.0554 | 0.0559 | 19.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1