--- library_name: peft language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mesolitica/IMDA-TTS metrics: - wer model-index: - name: Whisper Small NSC small (1000 steps) - Jarrett Er results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: NSC Small section type: mesolitica/IMDA-TTS config: default split: train args: 'config: en, split: train' metrics: - type: wer value: 3.123272526257601 name: Wer --- # Whisper Small NSC small (1000 steps) - Jarrett Er This model is a fine-tuned version of [Thecoder3281f/whisper-small-hi-commonvoice17-1000](https://huggingface.co/Thecoder3281f/whisper-small-hi-commonvoice17-1000) on the NSC Small section dataset. It achieves the following results on the evaluation set: - Loss: 0.0676 - Wer: 3.1233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0806 | 0.2941 | 100 | 0.0737 | 3.4549 | | 0.0618 | 0.5882 | 200 | 0.0690 | 3.2062 | | 0.0689 | 0.8824 | 300 | 0.0655 | 3.0265 | | 0.0385 | 1.1765 | 400 | 0.0652 | 3.1509 | | 0.0441 | 1.4706 | 500 | 0.0653 | 3.1647 | | 0.0389 | 1.7647 | 600 | 0.0652 | 3.0404 | | 0.032 | 2.0588 | 700 | 0.0646 | 3.1786 | | 0.0264 | 2.3529 | 800 | 0.0672 | 3.1095 | | 0.0307 | 2.6471 | 900 | 0.0672 | 3.1647 | | 0.0266 | 2.9412 | 1000 | 0.0676 | 3.1233 | ### Framework versions - PEFT 0.14.0 - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.1.dev0 - Tokenizers 0.20.3