--- library_name: peft language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Small NSC part 1,2,3 (500 steps) - Jarrett Er results: [] --- # Whisper Small NSC part 1,2,3 (500 steps) - Jarrett Er This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3612 - Wer: 12.4283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.806 | 0.3802 | 100 | 0.7674 | 22.7887 | | 0.6965 | 0.7605 | 200 | 0.6955 | 20.0655 | | 0.42 | 1.1407 | 300 | 0.5785 | 17.7723 | | 0.402 | 1.5209 | 400 | 0.4303 | 14.3939 | | 0.3231 | 1.9011 | 500 | 0.3612 | 12.4283 | ### Framework versions - PEFT 0.14.0 - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.1.dev0 - Tokenizers 0.20.3