--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 metrics: - wer model-index: - name: yt-special-batch8-base results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_9_0 id type: mozilla-foundation/common_voice_9_0 config: id split: train args: id metrics: - name: Wer type: wer value: 11.4438961596224 --- # yt-special-batch8-base This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the mozilla-foundation/common_voice_9_0 id dataset. It achieves the following results on the evaluation set: - Loss: 0.4155 - Wer: 11.4439 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 41.113 | 1.58 | 1000 | 42.9759 | 107.5628 | | 17.3442 | 3.17 | 2000 | 18.7037 | 144.1064 | | 10.8061 | 4.75 | 3000 | 7.1531 | 52.5510 | | 3.3269 | 6.34 | 4000 | 3.1035 | 47.0586 | | 0.7405 | 7.92 | 5000 | 0.4155 | 11.4439 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3