---
base_model: BeaverAI/Theia-21B-v2a
tags:
- axolotl
- generated_from_trainer
model-index:
- name: Theia-21B-v2b-WS
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: BeaverAI/Theia-21B-v2a
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
sequence_len: 16384
bf16: auto
fp16:
tf32: false
flash_attention: true
special_tokens:
pad_token: ""
tokens:
- "<|im_start|>"
- "<|im_end|>"
# PLAN
# instruct = mistral
# siayn = alpaca
# RP = chatml
# Data
datasets:
- path: BeaverAI/saosauce-v2-creative-only
type: sharegpt
conversation: chatml
warmup_steps: 150
save_safetensors: true
mlflow_tracking_uri: http://127.0.0.1:7860
mlflow_experiment_name: Default
# WandB
#wandb_project: theia
#wandb_entity:
# Iterations
num_epochs: 2
# Output
output_dir: ./Theia-21B-v2b-Workspace
hub_model_id: BeaverAI/Theia-21B-v2b-WS
hub_strategy: "all_checkpoints"
# Sampling
sample_packing: true
pad_to_sequence_len: true
# Batching
gradient_accumulation_steps: 1
micro_batch_size: 1
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
# Evaluation
val_set_size: 0.025
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 256
eval_sample_packing: false
eval_batch_size: 1
# Optimizer
optimizer: paged_adamw_8bit # adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0000025
lr_scheduler: cosine_with_min_lr
lr_scheduler_kwargs:
min_lr: 0.00000025
weight_decay: 0.01
max_grad_norm: 10.0
# Misc
train_on_inputs: false
group_by_length: false
early_stopping_patience:
local_rank:
logging_steps: 1
xformers_attention:
debug:
deepspeed: deepspeed_configs/zero3_bf16.json # previously blank
fsdp:
fsdp_config:
# Checkpoints
resume_from_checkpoint:
saves_per_epoch: 1
```
# Theia-21B-v2b-WS
This model is a fine-tuned version of [BeaverAI/Theia-21B-v2a](https://huggingface.co/BeaverAI/Theia-21B-v2a) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0491
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_min_lr
- lr_scheduler_warmup_steps: 150
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.5956 | 0.0030 | 1 | 1.5014 |
| 1.2309 | 0.2508 | 83 | 1.2064 |
| 1.1063 | 0.5015 | 166 | 1.1376 |
| 1.1885 | 0.7523 | 249 | 1.1021 |
| 1.1518 | 1.0030 | 332 | 1.0772 |
| 0.9328 | 1.2356 | 415 | 1.0693 |
| 0.9149 | 1.4864 | 498 | 1.0569 |
| 0.9377 | 1.7372 | 581 | 1.0491 |
### Framework versions
- Transformers 4.44.0.dev0
- Pytorch 2.2.2
- Datasets 2.19.1
- Tokenizers 0.19.1