---
language:
- en
license: llama2
library_name: transformers
datasets:
- psmathur/orca_mini_v1_dataset
- ehartford/dolphin
model_name: Orca Mini v3 70B
inference: false
model_creator: Pankaj Mathur
model_link: https://huggingface.co/psmathur/orca_mini_v3_70b
model_type: llama
pipeline_tag: text-generation
quantized_by: TheBloke
base_model: psmathur/orca_mini_v3_70b
---
# Orca Mini v3 70B - GGML
- Model creator: [Pankaj Mathur](https://huggingface.co/psmathur)
- Original model: [Orca Mini v3 70B](https://huggingface.co/psmathur/orca_mini_v3_70b)
## Description
This repo contains GGML format model files for [Pankaj Mathur's Orca Mini v3 70B](https://huggingface.co/psmathur/orca_mini_v3_70b).
### Important note regarding GGML files.
The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.
Please use the GGUF models instead.
### About GGML
GPU acceleration is now available for Llama 2 70B GGML files, with both CUDA (NVidia) and Metal (macOS). The following clients/libraries are known to work with these files, including with GPU acceleration:
* [llama.cpp](https://github.com/ggerganov/llama.cpp), commit `e76d630` and later.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), version 1.37 and later. A powerful GGML web UI, especially good for story telling.
* [LM Studio](https://lmstudio.ai/), a fully featured local GUI with GPU acceleration for both Windows and macOS. Use 0.1.11 or later for macOS GPU acceleration with 70B models.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), version 0.1.77 and later. A Python library with LangChain support, and OpenAI-compatible API server.
* [ctransformers](https://github.com/marella/ctransformers), version 0.2.15 and later. A Python library with LangChain support, and OpenAI-compatible API server.
## Repositories available
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/orca_mini_v3_70B-GGUF)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML)
* [Pankaj Mathur's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/psmathur/orca_mini_v3_70b)
## Prompt template: Orca-Hashes
```
### System:
{system_message}
### User:
{prompt}
### Assistant:
```
## Compatibility
### Works with llama.cpp [commit `e76d630`](https://github.com/ggerganov/llama.cpp/commit/e76d630df17e235e6b9ef416c45996765d2e36fb) until August 21st, 2023
Will not work with `llama.cpp` after commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa).
For compatibility with latest llama.cpp, please use GGUF files instead.
Or one of the other tools and libraries listed above.
To use in llama.cpp, you must add `-gqa 8` argument.
For other UIs and libraries, please check the docs.
## Explanation of the new k-quant methods
Click to see details
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [orca_mini_v3_70b.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML/blob/main/orca_mini_v3_70b.ggmlv3.q2_K.bin) | q2_K | 2 | 28.59 GB| 31.09 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| [orca_mini_v3_70b.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML/blob/main/orca_mini_v3_70b.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 29.75 GB| 32.25 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| [orca_mini_v3_70b.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML/blob/main/orca_mini_v3_70b.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 33.04 GB| 35.54 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| [orca_mini_v3_70b.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML/blob/main/orca_mini_v3_70b.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 36.15 GB| 38.65 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| [orca_mini_v3_70b.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML/blob/main/orca_mini_v3_70b.ggmlv3.q4_0.bin) | q4_0 | 4 | 38.87 GB| 41.37 GB | Original quant method, 4-bit. |
| [orca_mini_v3_70b.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML/blob/main/orca_mini_v3_70b.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 38.87 GB| 41.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| [orca_mini_v3_70b.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML/blob/main/orca_mini_v3_70b.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 41.38 GB| 43.88 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| [orca_mini_v3_70b.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML/blob/main/orca_mini_v3_70b.ggmlv3.q4_1.bin) | q4_1 | 4 | 43.17 GB| 45.67 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
| [orca_mini_v3_70b.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML/blob/main/orca_mini_v3_70b.ggmlv3.q5_0.bin) | q5_0 | 5 | 47.46 GB| 49.96 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
| [orca_mini_v3_70b.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML/blob/main/orca_mini_v3_70b.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 47.46 GB| 49.96 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| [orca_mini_v3_70b.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML/blob/main/orca_mini_v3_70b.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 48.75 GB| 51.25 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `llama.cpp`
Make sure you are using `llama.cpp` from commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa) or earlier.
For compatibility with latest llama.cpp, please use GGUF files instead.
I use the following command line; adjust for your tastes and needs:
```
./main -t 10 -ngl 40 -gqa 8 -m orca_mini_v3_70b.ggmlv3.q4_K_M.bin --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### System:\nYou are a story writing assistant.\n\n### User:\nWrite a story about llamas\n\n### Assistant:"
```
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If you are fully offloading the model to GPU, use `-t 1`
Change `-ngl 40` to the number of GPU layers you have VRAM for. Use `-ngl 100` to offload all layers to VRAM - if you have a 48GB card, or 2 x 24GB, or similar. Otherwise you can partially offload as many as you have VRAM for, on one or more GPUs.
If you want to have a chat-style conversation, replace the `-p ` argument with `-i -ins`
Remember the `-gqa 8` argument, required for Llama 70B models.
Change `-c 4096` to the desired sequence length for this model. For models that use RoPE, add `--rope-freq-base 10000 --rope-freq-scale 0.5` for doubled context, or `--rope-freq-base 10000 --rope-freq-scale 0.25` for 4x context.
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
## How to run in `text-generation-webui`
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Aemon Algiz.
**Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
# Original model card: Pankaj Mathur's Orca Mini v3 70B
# orca_mini_v3_70b
A Llama2-70b model trained on Orca Style datasets.
![orca-mini](https://huggingface.co/psmathur/orca_mini_v3_70b/resolve/main/orca_minis_small.jpeg)
**P.S. If you're interested to collaborate, please connect with me at www.linkedin.com/in/pankajam.**
### quantized versions
Big thanks to [@TheBloke](https://huggingface.co/TheBloke)
1) https://huggingface.co/TheBloke/orca_mini_v3_70B-GGML
2) https://huggingface.co/TheBloke/orca_mini_v3_70B-GPTQ
#### license disclaimer:
This model is bound by the license & usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.
## Evaluation
We evaluated orca_mini_v3_70b on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI.
Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|||||
|:------:|:--------:|:-------:|:--------:|
|**Task**|**Metric**|**Value**|**Stderr**|
|*arc_challenge*|acc_norm|0.7098|0.0132|
|*hellaswag*|acc_norm|0.8779|0.0032|
|*mmlu*|acc_norm|0.6904|0.0351|
|*truthfulqa_mc*|mc2|0.6196|0.0151|
|**Total Average**|-|**0.722175**||
## Example Usage
Here is the prompt format
```
### System:
You are an AI assistant that follows instruction extremely well. Help as much as you can.
### User:
Tell me about Orcas.
### Assistant:
```
Below shows a code example on how to use this model
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("psmathur/orca_mini_v3_70b")
model = AutoModelForCausalLM.from_pretrained(
"psmathur/orca_mini_v3_70b",
torch_dtype=torch.float16,
load_in_8bit=True,
low_cpu_mem_usage=True,
device_map="auto"
)
system_prompt = "### System:\nYou are an AI assistant that follows instruction extremely well. Help as much as you can.\n\n"
#generate text steps
instruction = "Tell me about Orcas."
prompt = f"{system_prompt}### User: {instruction}\n\n### Assistant:\n"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=4096)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
#### Limitations & Biases:
While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.
Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.
Exercise caution and cross-check information when necessary.
### Citiation:
Please kindly cite using the following BibTeX:
```
@misc{orca_mini_v3_70b,
author = {Pankaj Mathur},
title = {orca_mini_v3_70b: An Orca Style Llama2-70b model},
year = {2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
howpublished = {\url{https://https://huggingface.co/psmathur/orca_mini_v3_70b},
}
```
```
@misc{mukherjee2023orca,
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
year={2023},
eprint={2306.02707},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@software{touvron2023llama2,
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
author={Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith,
Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu , Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom},
year={2023}
}
```