--- inference: false license: other model_type: llama ---
TheBlokeAI

Chat & support: TheBloke's Discord server

Want to contribute? TheBloke's Patreon page

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


# Tim Dettmers' Guanaco 7B GPTQ These files are GPTQ model files for [Tim Dettmers' Guanaco 7B](https://huggingface.co/timdettmers/guanaco-7b). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate). ## Repositories available * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/guanaco-7B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/guanaco-7B-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/guanaco-7B-HF) ## Prompt template: Guanaco ``` ### Human: {prompt} ### Assistant: ``` ## Provided files Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description | | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- | | main | 4 | 128 | False | 4.00 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. | | gptq-4bit-32g-actorder_True | 4 | 32 | True | 4.28 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. | | gptq-4bit-64g-actorder_True | 4 | 64 | True | 4.02 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. | | gptq-4bit-128g-actorder_True | 4 | 128 | True | 3.90 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. | | gptq-8bit--1g-actorder_True | 8 | None | True | 7.01 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. | | gptq-8bit-128g-actorder_False | 8 | 128 | False | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. | | gptq-8bit-128g-actorder_True | 8 | 128 | True | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. | | gptq-8bit-64g-actorder_True | 8 | 64 | True | 7.31 GB | False | AutoGPTQ | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. | ## How to download from branches - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/guanaco-7B-GPTQ:gptq-4bit-32g-actorder_True` - With Git, you can clone a branch with: ``` git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/guanaco-7B-GPTQ` ``` - In Python Transformers code, the branch is the `revision` parameter; see below. ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui). Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/guanaco-7B-GPTQ`. - To download from a specific branch, enter for example `TheBloke/guanaco-7B-GPTQ:gptq-4bit-32g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done" 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `guanaco-7B-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started! ## How to use this GPTQ model from Python code First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed: `GITHUB_ACTIONS=true pip install auto-gptq` Then try the following example code: ```python from transformers import AutoTokenizer, pipeline, logging from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig model_name_or_path = "TheBloke/guanaco-7B-GPTQ" model_basename = "Guanaco-7B-GPTQ-4bit-128g.no-act.order" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, model_basename=model_basename use_safetensors=True, trust_remote_code=True, device="cuda:0", use_triton=use_triton, quantize_config=None) """ To download from a specific branch, use the revision parameter, as in this example: model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, revision="gptq-4bit-32g-actorder_True", model_basename=model_basename, use_safetensors=True, trust_remote_code=True, device="cuda:0", quantize_config=None) """ prompt = "Tell me about AI" prompt_template=f'''### Human: {prompt} ### Assistant: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline # Prevent printing spurious transformers error when using pipeline with AutoGPTQ logging.set_verbosity(logging.CRITICAL) print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Compatibility The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork. ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility. ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. # Original model card: Tim Dettmers' Guanaco 7B # Guanaco Models Based on LLaMA | [Paper](https://arxiv.org/abs/2305.14314) | [Code](https://github.com/artidoro/qlora) | [Demo](https://huggingface.co/spaces/uwnlp/guanaco-playground-tgi) | **The Guanaco models are open-source finetuned chatbots obtained through 4-bit QLoRA tuning of LLaMA base models on the OASST1 dataset. They are available in 7B, 13B, 33B, and 65B parameter sizes.** ⚠️Guanaco is a model purely intended for research purposes and could produce problematic outputs. ## Why use Guanaco? - **Competitive with commercial chatbot systems on the Vicuna and OpenAssistant benchmarks** (ChatGPT and BARD) according to human and GPT-4 raters. We note that the relative performance on tasks not covered in these benchmarks could be very different. In addition, commercial systems evolve over time (we used outputs from the March 2023 version of the models). - **Available open-source for research purposes**. Guanaco models allow *cheap* and *local* experimentation with high-quality chatbot systems. - **Replicable and efficient training procedure** that can be extended to new use cases. Guanaco training scripts are available in the [QLoRA repo](https://github.com/artidoro/qlora). - **Rigorous comparison to 16-bit methods** (both 16-bit full-finetuning and LoRA) in [our paper](https://arxiv.org/abs/2305.14314) demonstrates the effectiveness of 4-bit QLoRA finetuning. - **Lightweight** checkpoints which only contain adapter weights. ## License and Intended Use Guanaco adapter weights are available under Apache 2 license. Note the use of the Guanaco adapter weights, requires access to the LLaMA model weighs. Guanaco is based on LLaMA and therefore should be used according to the LLaMA license. ## Usage Here is an example of how you would load Guanaco 7B in 4-bits: ```python import torch from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig model_name = "huggyllama/llama-7b" adapters_name = 'timdettmers/guanaco-7b' model = AutoModelForCausalLM.from_pretrained( model_name, load_in_4bit=True, torch_dtype=torch.bfloat16, device_map="auto", max_memory= {i: '24000MB' for i in range(torch.cuda.device_count())}, quantization_config=BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4' ), ) model = PeftModel.from_pretrained(model, adapters_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` Inference can then be performed as usual with HF models as follows: ```python prompt = "Introduce yourself" formatted_prompt = ( f"A chat between a curious human and an artificial intelligence assistant." f"The assistant gives helpful, detailed, and polite answers to the user's questions.\n" f"### Human: {prompt} ### Assistant:" ) inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cuda:0") outputs = model.generate(inputs=inputs.input_ids, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` Expected output similar to the following: ``` A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. ### Human: Introduce yourself ### Assistant: I am an artificial intelligence assistant. I am here to help you with any questions you may have. ``` ## Current Inference Limitations Currently, 4-bit inference is slow. We recommend loading in 16 bits if inference speed is a concern. We are actively working on releasing efficient 4-bit inference kernels. Below is how you would load the model in 16 bits: ```python model_name = "huggyllama/llama-7b" adapters_name = 'timdettmers/guanaco-7b' model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto", max_memory= {i: '24000MB' for i in range(torch.cuda.device_count())}, ) model = PeftModel.from_pretrained(model, adapters_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Model Card **Architecture**: The Guanaco models are LoRA adapters to be used on top of LLaMA models. They are added to all layers. For all model sizes, we use $r=64$. **Base Model**: Guanaco uses LLaMA as base model with sizes 7B, 13B, 33B, 65B. LLaMA is a causal language model pretrained on a large corpus of text. See [LLaMA paper](https://arxiv.org/abs/2302.13971) for more details. Note that Guanaco can inherit biases and limitations of the base model. **Finetuning Data**: Guanaco is finetuned on OASST1. The exact dataset is available at [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco). **Languages**: The OASST1 dataset is multilingual (see [the paper](https://arxiv.org/abs/2304.07327) for details) and as such Guanaco responds to user queries in different languages. We note, however, that OASST1 is heavy in high-resource languages. In addition, human evaluation of Guanaco was only performed in English and based on qualitative analysis we observed degradation in performance in other languages. Next, we describe Training and Evaluation details. ### Training Guanaco models are the result of 4-bit QLoRA supervised finetuning on the OASST1 dataset. All models use NormalFloat4 datatype for the base model and LoRA adapters on all linear layers with BFloat16 as computation datatype. We set LoRA $r=64$, $\alpha=16$. We also use Adam beta2 of 0.999, max grad norm of 0.3 and LoRA dropout of 0.1 for models up to 13B and 0.05 for 33B and 65B models. For the finetuning process, we use constant learning rate schedule and paged AdamW optimizer. ### Training hyperparameters Size| Dataset | Batch Size | Learning Rate | Max Steps | Sequence length ---|---|---|---|---|--- 7B | OASST1 | 16 | 2e-4 | 1875 | 512 13B | OASST1 | 16 | 2e-4 | 1875 | 512 33B | OASST1 | 16 | 1e-4 | 1875 | 512 65B | OASST1 | 16 | 1e-4 | 1875 | 512 ### Evaluation We test generative language capabilities through both automated and human evaluations. This second set of evaluations relies on queries curated by humans and aims at measuring the quality of model responses. We use the Vicuna and OpenAssistant datasets with 80 and 953 prompts respectively. In both human and automated evaluations, for each prompt, raters compare all pairs of responses across the models considered. For human raters we randomize the order of the systems, for GPT-4 we evaluate with both orders. Benchmark | Vicuna | | Vicuna | | OpenAssistant | | - -----------|----|-----|--------|---|---------------|---|--- Prompts | 80 | | 80 | | 953 | | Judge | Human | | GPT-4 | | GPT-4 | | Model | Elo | Rank | Elo | Rank | Elo | Rank | **Median Rank** GPT-4 | 1176 | 1 | 1348 | 1 | 1294 | 1 | 1 Guanaco-65B | 1023 | 2 | 1022 | 2 | 1008 | 3 | 2 Guanaco-33B | 1009 | 4 | 992 | 3 | 1002 | 4 | 4 ChatGPT-3.5 Turbo | 916 | 7 | 966 | 5 | 1015 | 2 | 5 Vicuna-13B | 984 | 5 | 974 | 4 | 936 | 5 | 5 Guanaco-13B | 975 | 6 | 913 | 6 | 885 | 6 | 6 Guanaco-7B | 1010 | 3 | 879 | 8 | 860 | 7 | 7 Bard | 909 | 8 | 902 | 7 | - | - | 8 We also use the MMLU benchmark to measure performance on a range of language understanding tasks. This is a multiple-choice benchmark covering 57 tasks including elementary mathematics, US history, computer science, law, and more. We report 5-shot test accuracy. Dataset | 7B | 13B | 33B | 65B ---|---|---|---|--- LLaMA no tuning | 35.1 | 46.9 | 57.8 | 63.4 Self-Instruct | 36.4 | 33.3 | 53.0 | 56.7 Longform | 32.1 | 43.2 | 56.6 | 59.7 Chip2 | 34.5 | 41.6 | 53.6 | 59.8 HH-RLHF | 34.9 | 44.6 | 55.8 | 60.1 Unnatural Instruct | 41.9 | 48.1 | 57.3 | 61.3 OASST1 (Guanaco) | 36.6 | 46.4 | 57.0 | 62.2 Alpaca | 38.8 | 47.8 | 57.3 | 62.5 FLAN v2 | 44.5 | 51.4 | 59.2 | 63.9 ## Risks and Biases The model can produce factually incorrect output, and should not be relied on to produce factually accurate information. The model was trained on various public datasets; it is possible that this model could generate lewd, biased, or otherwise offensive outputs. However, we note that finetuning on OASST1 seems to reduce biases as measured on the CrowS dataset. We report here the performance of Guanaco-65B compared to other baseline models on the CrowS dataset. | | LLaMA-65B | GPT-3 | OPT-175B | Guanaco-65B | |----------------------|-----------|-------|----------|---------------| | Gender | 70.6 | 62.6 | 65.7 | **47.5** | | Religion | {79.0} | 73.3 | 68.6 | **38.7** | | Race/Color | 57.0 | 64.7 | 68.6 | **45.3** | | Sexual orientation | {81.0} | 76.2 | 78.6 | **59.1** | | Age | 70.1 | 64.4 | 67.8 | **36.3** | | Nationality | 64.2 | 61.6 | 62.9 | **32.4** | | Disability | 66.7 | 76.7 | 76.7 | **33.9** | | Physical appearance | 77.8 | 74.6 | 76.2 | **43.1** | | Socioeconomic status | 71.5 | 73.8 | 76.2 | **55.3** | | Average | 66.6 | 67.2 | 69.5 | **43.5** | ## Citation ```bibtex @article{dettmers2023qlora, title={QLoRA: Efficient Finetuning of Quantized LLMs}, author={Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke}, journal={arXiv preprint arXiv:2305.14314}, year={2023} } ```