TheBloke commited on
Commit
df6d3c3
1 Parent(s): 05d30c7

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -14
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  datasets:
3
  - Open-Orca/OpenOrca
4
  inference: false
@@ -7,10 +8,20 @@ language:
7
  library_name: transformers
8
  license: llama2
9
  model_creator: Open-Orca
10
- model_link: https://huggingface.co/Open-Orca/LlongOrca-7B-16k
11
  model_name: LlongOrca 7B 16K
12
  model_type: llama
13
  pipeline_tag: text-generation
 
 
 
 
 
 
 
 
 
 
 
14
  quantized_by: TheBloke
15
  ---
16
 
@@ -46,9 +57,9 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
46
  <!-- repositories-available start -->
47
  ## Repositories available
48
 
 
49
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ)
50
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGUF)
51
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML)
52
  * [Open-Orca's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Open-Orca/LlongOrca-7B-16k)
53
  <!-- repositories-available end -->
54
 
@@ -66,6 +77,7 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
66
 
67
  <!-- prompt-template end -->
68
 
 
69
  <!-- README_GPTQ.md-provided-files start -->
70
  ## Provided files and GPTQ parameters
71
 
@@ -90,22 +102,22 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
90
 
91
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
92
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
93
- | [main](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 3.90 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
94
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
95
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
96
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
97
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
98
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
99
 
100
  <!-- README_GPTQ.md-provided-files end -->
101
 
102
  <!-- README_GPTQ.md-download-from-branches start -->
103
  ## How to download from branches
104
 
105
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/LlongOrca-7B-16K-GPTQ:gptq-4bit-32g-actorder_True`
106
  - With Git, you can clone a branch with:
107
  ```
108
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ
109
  ```
110
  - In Python Transformers code, the branch is the `revision` parameter; see below.
111
  <!-- README_GPTQ.md-download-from-branches end -->
@@ -118,7 +130,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
118
 
119
  1. Click the **Model tab**.
120
  2. Under **Download custom model or LoRA**, enter `TheBloke/LlongOrca-7B-16K-GPTQ`.
121
- - To download from a specific branch, enter for example `TheBloke/LlongOrca-7B-16K-GPTQ:gptq-4bit-32g-actorder_True`
122
  - see Provided Files above for the list of branches for each option.
123
  3. Click **Download**.
124
  4. The model will start downloading. Once it's finished it will say "Done".
@@ -166,7 +178,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
166
 
167
  model_name_or_path = "TheBloke/LlongOrca-7B-16K-GPTQ"
168
  # To use a different branch, change revision
169
- # For example: revision="gptq-4bit-32g-actorder_True"
170
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
171
  device_map="auto",
172
  trust_remote_code=False,
@@ -226,10 +238,12 @@ For further support, and discussions on these models and AI in general, join us
226
 
227
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
228
 
229
- ## Thanks, and how to contribute.
230
 
231
  Thanks to the [chirper.ai](https://chirper.ai) team!
232
 
 
 
233
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
234
 
235
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -241,7 +255,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
241
 
242
  **Special thanks to**: Aemon Algiz.
243
 
244
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
245
 
246
 
247
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
+ base_model: https://huggingface.co/Open-Orca/LlongOrca-7B-16k
3
  datasets:
4
  - Open-Orca/OpenOrca
5
  inference: false
 
8
  library_name: transformers
9
  license: llama2
10
  model_creator: Open-Orca
 
11
  model_name: LlongOrca 7B 16K
12
  model_type: llama
13
  pipeline_tag: text-generation
14
+ prompt_template: '<|im_start|>system
15
+
16
+ {system_message}<|im_end|>
17
+
18
+ <|im_start|>user
19
+
20
+ {prompt}<|im_end|>
21
+
22
+ <|im_start|>assistant
23
+
24
+ '
25
  quantized_by: TheBloke
26
  ---
27
 
 
57
  <!-- repositories-available start -->
58
  ## Repositories available
59
 
60
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/LlongOrca-7B-16K-AWQ)
61
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ)
62
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGUF)
 
63
  * [Open-Orca's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Open-Orca/LlongOrca-7B-16k)
64
  <!-- repositories-available end -->
65
 
 
77
 
78
  <!-- prompt-template end -->
79
 
80
+
81
  <!-- README_GPTQ.md-provided-files start -->
82
  ## Provided files and GPTQ parameters
83
 
 
102
 
103
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
104
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
105
+ | [main](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 3.90 GB | Yes | 4-bit, without Act Order and group size 128g. |
106
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
107
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
108
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
109
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
110
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
111
 
112
  <!-- README_GPTQ.md-provided-files end -->
113
 
114
  <!-- README_GPTQ.md-download-from-branches start -->
115
  ## How to download from branches
116
 
117
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/LlongOrca-7B-16K-GPTQ:main`
118
  - With Git, you can clone a branch with:
119
  ```
120
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ
121
  ```
122
  - In Python Transformers code, the branch is the `revision` parameter; see below.
123
  <!-- README_GPTQ.md-download-from-branches end -->
 
130
 
131
  1. Click the **Model tab**.
132
  2. Under **Download custom model or LoRA**, enter `TheBloke/LlongOrca-7B-16K-GPTQ`.
133
+ - To download from a specific branch, enter for example `TheBloke/LlongOrca-7B-16K-GPTQ:main`
134
  - see Provided Files above for the list of branches for each option.
135
  3. Click **Download**.
136
  4. The model will start downloading. Once it's finished it will say "Done".
 
178
 
179
  model_name_or_path = "TheBloke/LlongOrca-7B-16K-GPTQ"
180
  # To use a different branch, change revision
181
+ # For example: revision="main"
182
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
183
  device_map="auto",
184
  trust_remote_code=False,
 
238
 
239
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
240
 
241
+ ## Thanks, and how to contribute
242
 
243
  Thanks to the [chirper.ai](https://chirper.ai) team!
244
 
245
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
246
+
247
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
248
 
249
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
255
 
256
  **Special thanks to**: Aemon Algiz.
257
 
258
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
259
 
260
 
261
  Thank you to all my generous patrons and donaters!