Text Generation
Transformers
English
llama
TheBloke commited on
Commit
8d7007e
1 Parent(s): e009e51

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -19
README.md CHANGED
@@ -5,7 +5,7 @@ inference: false
5
  language:
6
  - en
7
  library_name: transformers
8
- license: other
9
  model_creator: Open-Orca
10
  model_link: https://huggingface.co/Open-Orca/LlongOrca-7B-16k
11
  model_name: LlongOrca 7B 16K
@@ -15,17 +15,20 @@ quantized_by: TheBloke
15
  ---
16
 
17
  <!-- header start -->
18
- <div style="width: 100%;">
19
- <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
 
20
  </div>
21
  <div style="display: flex; justify-content: space-between; width: 100%;">
22
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
23
- <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
24
  </div>
25
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
26
- <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
27
  </div>
28
  </div>
 
 
29
  <!-- header end -->
30
 
31
  # LlongOrca 7B 16K - GGML
@@ -36,6 +39,13 @@ quantized_by: TheBloke
36
 
37
  This repo contains GGML format model files for [Open-Orca's LlongOrca 7B 16K](https://huggingface.co/Open-Orca/LlongOrca-7B-16k).
38
 
 
 
 
 
 
 
 
39
  GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
40
  * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI. Supports NVidia CUDA GPU acceleration.
41
  * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a powerful GGML web UI with GPU acceleration on all platforms (CUDA and OpenCL). Especially good for story telling.
@@ -47,25 +57,31 @@ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/gger
47
  ## Repositories available
48
 
49
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ)
50
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML)
 
51
  * [Open-Orca's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Open-Orca/LlongOrca-7B-16k)
52
 
53
  ## Prompt template: ChatML
54
 
55
  ```
56
  <|im_start|>system
57
- A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.<|im_end|>
58
  <|im_start|>user
59
  {prompt}<|im_end|>
60
  <|im_start|>assistant
 
61
  ```
62
 
63
  <!-- compatibility_ggml start -->
64
  ## Compatibility
65
 
66
- These quantised GGML files are compatible with llama.cpp as of June 6th, commit `2d43387`.
67
 
68
- They should also be compatible with all UIs, libraries and utilities which use GGML.
 
 
 
 
69
 
70
  ## Explanation of the new k-quant methods
71
  <details>
@@ -88,17 +104,17 @@ Refer to the Provided Files table below to see what files use which methods, and
88
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
89
  | ---- | ---- | ---- | ---- | ---- | ----- |
90
  | [llongorca-7b-16k.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q2_K.bin) | q2_K | 2 | 3.05 GB| 5.55 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
91
- | [llongorca-7b-16k.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 3.77 GB| 6.27 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
92
- | [llongorca-7b-16k.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 3.45 GB| 5.95 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
93
  | [llongorca-7b-16k.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 3.12 GB| 5.62 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
 
 
94
  | [llongorca-7b-16k.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q4_0.bin) | q4_0 | 4 | 3.79 GB| 6.29 GB | Original quant method, 4-bit. |
 
95
  | [llongorca-7b-16k.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q4_1.bin) | q4_1 | 4 | 4.21 GB| 6.71 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
96
  | [llongorca-7b-16k.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 4.24 GB| 6.74 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
97
- | [llongorca-7b-16k.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 3.98 GB| 6.48 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
98
  | [llongorca-7b-16k.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q5_0.bin) | q5_0 | 5 | 4.63 GB| 7.13 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
99
- | [llongorca-7b-16k.ggmlv3.q5_1.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q5_1.bin) | q5_1 | 5 | 5.06 GB| 7.56 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
100
- | [llongorca-7b-16k.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 4.92 GB| 7.42 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
101
  | [llongorca-7b-16k.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 4.79 GB| 7.29 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
 
 
102
  | [llongorca-7b-16k.ggmlv3.q6_K.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q6_K.bin) | q6_K | 6 | 5.65 GB| 8.15 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
103
  | [llongorca-7b-16k.ggmlv3.q8_0.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q8_0.bin) | q8_0 | 8 | 7.16 GB| 9.66 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
104
 
@@ -106,10 +122,12 @@ Refer to the Provided Files table below to see what files use which methods, and
106
 
107
  ## How to run in `llama.cpp`
108
 
109
- I use the following command line; adjust for your tastes and needs:
 
 
110
 
111
  ```
112
- ./main -t 10 -ngl 32 -m llongorca-7b-16k.ggmlv3.q4_K_M.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
113
  ```
114
  Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
115
 
@@ -123,9 +141,10 @@ For other parameters and how to use them, please refer to [the llama.cpp documen
123
 
124
  ## How to run in `text-generation-webui`
125
 
126
- Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
127
 
128
  <!-- footer start -->
 
129
  ## Discord
130
 
131
  For further support, and discussions on these models and AI in general, join us at:
@@ -145,13 +164,15 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
145
  * Patreon: https://patreon.com/TheBlokeAI
146
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
147
 
148
- **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
149
 
150
- **Patreon special mentions**: Ajan Kanaga, David Ziegler, Raymond Fosdick, SuperWojo, Sam, webtim, Steven Wood, knownsqashed, Tony Hughes, Junyu Yang, J, Olakabola, Dan Guido, Stephen Murray, John Villwock, vamX, William Sang, Sean Connelly, LangChain4j, Olusegun Samson, Fen Risland, Derek Yates, Karl Bernard, transmissions 11, Trenton Dambrowitz, Pieter, Preetika Verma, Swaroop Kallakuri, Andrey, Slarti, Jonathan Leane, Michael Levine, Kalila, Joseph William Delisle, Rishabh Srivastava, Deo Leter, Luke Pendergrass, Spencer Kim, Geoffrey Montalvo, Thomas Belote, Jeffrey Morgan, Mandus, ya boyyy, Matthew Berman, Magnesian, Ai Maven, senxiiz, Alps Aficionado, Luke @flexchar, Raven Klaugh, Imad Khwaja, Gabriel Puliatti, Johann-Peter Hartmann, usrbinkat, Spiking Neurons AB, Artur Olbinski, chris gileta, danny, Willem Michiel, WelcomeToTheClub, Deep Realms, alfie_i, Dave, Leonard Tan, NimbleBox.ai, Randy H, Daniel P. Andersen, Pyrater, Will Dee, Elle, Space Cruiser, Gabriel Tamborski, Asp the Wyvern, Illia Dulskyi, Nikolai Manek, Sid, Brandon Frisco, Nathan LeClaire, Edmond Seymore, Enrico Ros, Pedro Madruga, Eugene Pentland, John Detwiler, Mano Prime, Stanislav Ovsiannikov, Alex, Vitor Caleffi, K, biorpg, Michael Davis, Lone Striker, Pierre Kircher, theTransient, Fred von Graf, Sebastain Graf, Vadim, Iucharbius, Clay Pascal, Chadd, Mesiah Bishop, terasurfer, Rainer Wilmers, Alexandros Triantafyllidis, Stefan Sabev, Talal Aujan, Cory Kujawski, Viktor Bowallius, subjectnull, ReadyPlayerEmma, zynix
151
 
152
 
153
  Thank you to all my generous patrons and donaters!
154
 
 
 
155
  <!-- footer end -->
156
 
157
  # Original model card: Open-Orca's LlongOrca 7B 16K
@@ -203,6 +224,21 @@ https://AlignmentLab.ai
203
 
204
  We used [OpenAI's Chat Markup Language (ChatML)](https://github.com/openai/openai-python/blob/main/chatml.md) format, with `<|im_start|>` and `<|im_end|>` tokens added to support this.
205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206
  # Evaluation
207
 
208
  We have evaluated using the methodology and tools for the HuggingFace Leaderboard, and find that we have significantly improved upon the base long context model.
 
5
  language:
6
  - en
7
  library_name: transformers
8
+ license: llama2
9
  model_creator: Open-Orca
10
  model_link: https://huggingface.co/Open-Orca/LlongOrca-7B-16k
11
  model_name: LlongOrca 7B 16K
 
15
  ---
16
 
17
  <!-- header start -->
18
+ <!-- 200823 -->
19
+ <div style="width: auto; margin-left: auto; margin-right: auto">
20
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
21
  </div>
22
  <div style="display: flex; justify-content: space-between; width: 100%;">
23
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
24
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
25
  </div>
26
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
27
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
28
  </div>
29
  </div>
30
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
31
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
32
  <!-- header end -->
33
 
34
  # LlongOrca 7B 16K - GGML
 
39
 
40
  This repo contains GGML format model files for [Open-Orca's LlongOrca 7B 16K](https://huggingface.co/Open-Orca/LlongOrca-7B-16k).
41
 
42
+ ### Important note regarding GGML files.
43
+
44
+ The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.
45
+
46
+ Please use the GGUF models instead.
47
+ ### About GGML
48
+
49
  GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
50
  * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI. Supports NVidia CUDA GPU acceleration.
51
  * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a powerful GGML web UI with GPU acceleration on all platforms (CUDA and OpenCL). Especially good for story telling.
 
57
  ## Repositories available
58
 
59
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GPTQ)
60
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGUF)
61
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML)
62
  * [Open-Orca's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Open-Orca/LlongOrca-7B-16k)
63
 
64
  ## Prompt template: ChatML
65
 
66
  ```
67
  <|im_start|>system
68
+ {system_message}<|im_end|>
69
  <|im_start|>user
70
  {prompt}<|im_end|>
71
  <|im_start|>assistant
72
+
73
  ```
74
 
75
  <!-- compatibility_ggml start -->
76
  ## Compatibility
77
 
78
+ These quantised GGML files are compatible with llama.cpp between June 6th (commit `2d43387`) and August 21st 2023.
79
 
80
+ For support with latest llama.cpp, please use GGUF files instead.
81
+
82
+ The final llama.cpp commit with support for GGML was: [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa)
83
+
84
+ As of August 23rd 2023 they are still compatible with all UIs, libraries and utilities which use GGML. This may change in the future.
85
 
86
  ## Explanation of the new k-quant methods
87
  <details>
 
104
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
105
  | ---- | ---- | ---- | ---- | ---- | ----- |
106
  | [llongorca-7b-16k.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q2_K.bin) | q2_K | 2 | 3.05 GB| 5.55 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
 
 
107
  | [llongorca-7b-16k.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 3.12 GB| 5.62 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
108
+ | [llongorca-7b-16k.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 3.45 GB| 5.95 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
109
+ | [llongorca-7b-16k.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 3.77 GB| 6.27 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
110
  | [llongorca-7b-16k.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q4_0.bin) | q4_0 | 4 | 3.79 GB| 6.29 GB | Original quant method, 4-bit. |
111
+ | [llongorca-7b-16k.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 3.98 GB| 6.48 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
112
  | [llongorca-7b-16k.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q4_1.bin) | q4_1 | 4 | 4.21 GB| 6.71 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
113
  | [llongorca-7b-16k.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 4.24 GB| 6.74 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
 
114
  | [llongorca-7b-16k.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q5_0.bin) | q5_0 | 5 | 4.63 GB| 7.13 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
 
 
115
  | [llongorca-7b-16k.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 4.79 GB| 7.29 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
116
+ | [llongorca-7b-16k.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 4.92 GB| 7.42 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
117
+ | [llongorca-7b-16k.ggmlv3.q5_1.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q5_1.bin) | q5_1 | 5 | 5.06 GB| 7.56 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
118
  | [llongorca-7b-16k.ggmlv3.q6_K.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q6_K.bin) | q6_K | 6 | 5.65 GB| 8.15 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
119
  | [llongorca-7b-16k.ggmlv3.q8_0.bin](https://huggingface.co/TheBloke/LlongOrca-7B-16K-GGML/blob/main/llongorca-7b-16k.ggmlv3.q8_0.bin) | q8_0 | 8 | 7.16 GB| 9.66 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
120
 
 
122
 
123
  ## How to run in `llama.cpp`
124
 
125
+ Make sure you are using `llama.cpp` from commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa) or earlier.
126
+
127
+ For compatibility with latest llama.cpp, please use GGUF files instead.
128
 
129
  ```
130
+ ./main -t 10 -ngl 32 -m llongorca-7b-16k.ggmlv3.q4_K_M.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system\nYou are a story writing assistant.<|im_end|>\n<|im_start|>user\nWrite a story about llamas<|im_end|>\n<|im_start|>assistant"
131
  ```
132
  Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
133
 
 
141
 
142
  ## How to run in `text-generation-webui`
143
 
144
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
145
 
146
  <!-- footer start -->
147
+ <!-- 200823 -->
148
  ## Discord
149
 
150
  For further support, and discussions on these models and AI in general, join us at:
 
164
  * Patreon: https://patreon.com/TheBlokeAI
165
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
166
 
167
+ **Special thanks to**: Aemon Algiz.
168
 
169
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
170
 
171
 
172
  Thank you to all my generous patrons and donaters!
173
 
174
+ And thank you again to a16z for their generous grant.
175
+
176
  <!-- footer end -->
177
 
178
  # Original model card: Open-Orca's LlongOrca 7B 16K
 
224
 
225
  We used [OpenAI's Chat Markup Language (ChatML)](https://github.com/openai/openai-python/blob/main/chatml.md) format, with `<|im_start|>` and `<|im_end|>` tokens added to support this.
226
 
227
+ ## Example Prompt Exchange
228
+
229
+ ```
230
+ <|im_start|>system
231
+ You are LlongOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!
232
+ <|im_end|>
233
+ <|im_start|>user
234
+ How are you<|im_end|>
235
+ <|im_start|>assistant
236
+ I am doing well!<|im_end|>
237
+ <|im_start|>user
238
+ How are you now?<|im_end|>
239
+ ```
240
+
241
+
242
  # Evaluation
243
 
244
  We have evaluated using the methodology and tools for the HuggingFace Leaderboard, and find that we have significantly improved upon the base long context model.