--- base_model: fblgit/LUNA-SOLARkrautLM-Instruct datasets: - argilla/distilabel-math-preference-dpo inference: false language: - en - de library_name: transformers license: cc-by-nc-4.0 model_creator: FBL model_name: Luna SOLARkrautLM Instruct model_type: solar pipeline_tag: text-generation prompt_template: '<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ' quantized_by: TheBloke tags: - finetune - dpo - Instruct - augmentation - german ---
TheBlokeAI

Chat & support: TheBloke's Discord server

Want to contribute? TheBloke's Patreon page

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


# Luna SOLARkrautLM Instruct - GPTQ - Model creator: [FBL](https://huggingface.co/fblgit) - Original model: [Luna SOLARkrautLM Instruct](https://huggingface.co/fblgit/LUNA-SOLARkrautLM-Instruct) # Description This repo contains GPTQ model files for [FBL's Luna SOLARkrautLM Instruct](https://huggingface.co/fblgit/LUNA-SOLARkrautLM-Instruct). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/LUNA-SOLARkrautLM-Instruct-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/LUNA-SOLARkrautLM-Instruct-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/LUNA-SOLARkrautLM-Instruct-GGUF) * [FBL's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/fblgit/LUNA-SOLARkrautLM-Instruct) ## Prompt template: ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Known compatible clients / servers GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models. These GPTQ models are known to work in the following inference servers/webuis. - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) - [KoboldAI United](https://github.com/henk717/koboldai) - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) This may not be a complete list; if you know of others, please let me know! ## Provided files, and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
Explanation of GPTQ parameters - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/LUNA-SOLARkrautLM-Instruct-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [German Quad](https://huggingface.co/datasets/deepset/germanquad/viewer/) | 2048 | 5.98 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/LUNA-SOLARkrautLM-Instruct-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [German Quad](https://huggingface.co/datasets/deepset/germanquad/viewer/) | 2048 | 6.59 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/LUNA-SOLARkrautLM-Instruct-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [German Quad](https://huggingface.co/datasets/deepset/germanquad/viewer/) | 2048 | 11.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/LUNA-SOLARkrautLM-Instruct-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [German Quad](https://huggingface.co/datasets/deepset/germanquad/viewer/) | 2048 | 11.25 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/LUNA-SOLARkrautLM-Instruct-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [German Quad](https://huggingface.co/datasets/deepset/germanquad/viewer/) | 2048 | 11.99 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. | | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/LUNA-SOLARkrautLM-Instruct-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [German Quad](https://huggingface.co/datasets/deepset/germanquad/viewer/) | 2048 | 6.18 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. | ## How to download, including from branches ### In text-generation-webui To download from the `main` branch, enter `TheBloke/LUNA-SOLARkrautLM-Instruct-GPTQ` in the "Download model" box. To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/LUNA-SOLARkrautLM-Instruct-GPTQ:gptq-4bit-32g-actorder_True` ### From the command line I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` To download the `main` branch to a folder called `LUNA-SOLARkrautLM-Instruct-GPTQ`: ```shell mkdir LUNA-SOLARkrautLM-Instruct-GPTQ huggingface-cli download TheBloke/LUNA-SOLARkrautLM-Instruct-GPTQ --local-dir LUNA-SOLARkrautLM-Instruct-GPTQ --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir LUNA-SOLARkrautLM-Instruct-GPTQ huggingface-cli download TheBloke/LUNA-SOLARkrautLM-Instruct-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir LUNA-SOLARkrautLM-Instruct-GPTQ --local-dir-use-symlinks False ```
More advanced huggingface-cli download usage If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model. The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`. For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell mkdir LUNA-SOLARkrautLM-Instruct-GPTQ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/LUNA-SOLARkrautLM-Instruct-GPTQ --local-dir LUNA-SOLARkrautLM-Instruct-GPTQ --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
### With `git` (**not** recommended) To clone a specific branch with `git`, use a command like this: ```shell git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/LUNA-SOLARkrautLM-Instruct-GPTQ ``` Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.) ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/LUNA-SOLARkrautLM-Instruct-GPTQ`. - To download from a specific branch, enter for example `TheBloke/LUNA-SOLARkrautLM-Instruct-GPTQ:gptq-4bit-32g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `LUNA-SOLARkrautLM-Instruct-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! ## Serving this model from Text Generation Inference (TGI) It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/LUNA-SOLARkrautLM-Instruct-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: {response}") ``` ## Python code example: inference from this GPTQ model ### Install the necessary packages Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install --upgrade transformers optimum # If using PyTorch 2.1 + CUDA 12.x: pip3 install --upgrade auto-gptq # or, if using PyTorch 2.1 + CUDA 11.x: pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ ``` If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ git checkout v0.5.1 pip3 install . ``` ### Example Python code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "TheBloke/LUNA-SOLARkrautLM-Instruct-GPTQ" # To use a different branch, change revision # For example: revision="gptq-4bit-32g-actorder_True" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=False, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Write a story about llamas" system_message = "You are a story writing assistant" prompt_template=f'''<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Compatibility The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly. [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility. For a list of clients/servers, please see "Known compatible clients / servers", above. ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. # Original model card: FBL's Luna SOLARkrautLM Instruct ![Juanako.AI & SauerkrautLM Productions](https://vago-solutions.de/wp-content/uploads/2023/12/sauerkrautlm-solar.png "LUNA-SOLARkrautLM-Instruct") ## VAGO solutions LUNA-SOLARkrautLM-Instruct Introducing **LUNA-SOLARkrautLM-Instruct** – a UNA-Sauerkraut version of the powerful [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) ! Aligned with **DPO** and tamed with **UNA**. # Table of Contents 1. [Overview of all LUNA-SOLARkrautLM-Instruct models](#all-sauerkrautlm-solar-instruct-models) 2. [Model Details](#model-details) - [Prompt template](#prompt-template) - [Training Dataset](#training-dataset) - [Data Contamination Test](#data-contamination-test-results) 3. [Evaluation](#evaluation) 5. [Disclaimer](#disclaimer) 6. [Contact](#contact) 7. [Collaborations](#collaborations) 8. [Acknowledgement](#acknowledgement) ## Model Details **LUNA-SOLARkrautLM-Instruct** - **Model Type:** LUNA-SOLARkrautLM-Instruct is a UNA Model based on [fblgit/UNA-SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/fblgit/UNA-SOLAR-10.7B-Instruct-v1.0) and the powerful set of [SauerkrautLM-SOLAR-Instruct](https://huggingface.co/VAGOsolutions/SauerkrautLM-SOLAR-Instruct/) - **Language(s):** English, German - **License:** cc-by-nc-4.0 - **Contact:** [Website](https://vago-solutions.de/#Kontakt) [David Golchinfar](mailto:golchinfar@vago-solutions.de) [Juanako.AI - UNA](mailto:info@juanako.ai) ### Training Dataset: LUNA-SOLARkrautLM-Instruct was trained with mix of German data augmentation and translated data. Aligned through **DPO** with our **new German SauerkrautLM-DPO dataset** based on parts of the SFT SauerkrautLM dataset as chosen answers and [Sauerkraut-7b-HerO](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO) as rejected answers. Added with additional **translated Parts of the [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)** (Our dataset do not contain any TruthfulQA prompts - check Data Contamination Test Results) and **[argilla/distilabel-math-preference-dpo](https://huggingface.co/datasets/argilla/distilabel-math-preference-dpo).** We found, that only a simple translation of training data can lead to unnatural German phrasings. Data augmentation techniques were used to grant grammatical, syntactical correctness and a more natural German wording in our training data. We improved the German language skills on this model. Nevertheless, certain formulations may occur that are not entirely correct. ### Data Contamination Test Results Some models on the HuggingFace leaderboard had problems with wrong data getting mixed in. We checked our SauerkrautLM-DPO dataset with a special test [1] on this model as target model and upstage/SOLAR-10.7B-Instruct-v1.0 as reference model. The HuggingFace team used the same methods [2, 3]. Our results, with `result < 0.1, %:` being well below 0.9, indicate that our dataset is free from contamination. *The data contamination test results of HellaSwag and Winograde will be added once [1] supports them.* | Dataset | ARC | MMLU | TruthfulQA | GSM8K | |------------------------------|-------|-------|-------|-------| | **SauerkrautLM-DPO**| result < 0.1, %: 0.0 |result < 0.1, %: 0.09 | result < 0.1, %: 0.13 | result < 0.1, %: 0.16 | [1] https://github.com/swj0419/detect-pretrain-code-contamination [2] https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/474#657f2245365456e362412a06 [3] https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/265#657b6debf81f6b44b8966230 ### Prompt Template: ``` <|im_start|>system Du bist LUNA-SOLARkrautLM, ein großes Sprachmodell, das höflich und kompetent antwortet.<|im_end|> <|im_start|>user Wie geht es dir?<|im_end|> <|im_start|>assistant ``` ``` ### User: Hello, how are you? ### Assistant: Hi there! I am an AI language model, so I don't have personal feelings or emotions in the traditional sense. However, I can assure you that my systems and processes are functioning well at this moment, allowing me to provide helpful responses for your queries. How may I assist you today? ``` ## Evaluation ``` hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 5, batch_size: auto |Tasks|Version| Filter |n-shot| Metric |Value | |Stderr| |-----|-------|----------|-----:|-----------|-----:|---|-----:| |gsm8k|Yaml |get-answer| 5|exact_match|0.6467|± |0.0132| hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 0, batch_size: auto (64) | Tasks |Version|Filter|n-shot|Metric|Value | |Stderr| |--------------|-------|------|-----:|------|-----:|---|-----:| |truthfulqa_mc2|Yaml |none | 0|acc |0.7368|± |0.0149| hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 25, batch_size: auto (32) | Tasks |Version|Filter|n-shot| Metric |Value| |Stderr| |-------------|-------|------|-----:|--------|----:|---|-----:| |arc_challenge|Yaml |none | 25|acc |0.692|± |0.0135| | | |none | 25|acc_norm|0.715|± |0.0132| hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 0, batch_size: auto (64) | Tasks |Version|Filter|n-shot|Metric| Value | |Stderr| |-----------|-------|------|-----:|------|------:|---|-----:| |paws_de |Yaml |none | 0|acc | 0.3965|± |0.0109| |wmt16-en-de|Yaml |none | 0|bleu | 3.5784|± |0.1325| | | |none | 0|ter |64.5707|± |0.4514| | | |none | 0|chrf |45.7068|± |0.3861| |xnli_de |Yaml |none | 0|acc | 0.4129|± |0.0099| hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 10, batch_size: auto (32) | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |---------|-------|------|-----:|--------|-----:|---|-----:| |hellaswag|Yaml |none | 10|acc |0.7131|± |0.0045| | | |none | 10|acc_norm|0.8815|± |0.0032| hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct), gen_kwargs: (), limit: None, num_fewshot: 5, batch_size: auto (64) | Tasks |Version|Filter|n-shot|Metric| Value | |Stderr| |-----------|-------|------|-----:|------|------:|---|-----:| |wmt16-de-en|Yaml |none | 5|bleu |14.9310|± |0.8014| | | |none | 5|ter |46.3206|± |0.4087| | | |none | 5|chrf |60.8637|± |0.4436| |wmt16-en-de|Yaml |none | 5|bleu | 6.2016|± |0.2918| | | |none | 5|ter |63.9997|± |0.4591| | | |none | 5|chrf |51.1399|± |0.3978| |xnli_de |Yaml |none | 5|acc | 0.4703|± |0.0100| hf (pretrained=fblgit/LUNA-SOLARkrautLM-Instruct,dtype=float16), gen_kwargs: (), limit: None, num_fewshot: 5, batch_size: auto (16) | Tasks |Version|Filter|n-shot|Metric|Value | |Stderr| |---------------------------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.6461|± |0.1215| | - humanities |N/A |none | 5|acc |0.5960|± |0.1200| | - formal_logic |Yaml |none | 5|acc |0.4683|± |0.0446| | - high_school_european_history |Yaml |none | 5|acc |0.8121|± |0.0305| | - high_school_us_history |Yaml |none | 5|acc |0.8480|± |0.0252| | - high_school_world_history |Yaml |none | 5|acc |0.8312|± |0.0244| | - international_law |Yaml |none | 5|acc |0.7851|± |0.0375| | - jurisprudence |Yaml |none | 5|acc |0.7685|± |0.0408| | - logical_fallacies |Yaml |none | 5|acc |0.7423|± |0.0344| | - moral_disputes |Yaml |none | 5|acc |0.7283|± |0.0239| | - moral_scenarios |Yaml |none | 5|acc |0.3899|± |0.0163| | - philosophy |Yaml |none | 5|acc |0.7074|± |0.0258| | - prehistory |Yaml |none | 5|acc |0.7716|± |0.0234| | - professional_law |Yaml |none | 5|acc |0.4824|± |0.0128| | - world_religions |Yaml |none | 5|acc |0.7661|± |0.0325| | - other |N/A |none | 5|acc |0.7097|± |0.0900| | - business_ethics |Yaml |none | 5|acc |0.7700|± |0.0423| | - clinical_knowledge |Yaml |none | 5|acc |0.6792|± |0.0287| | - college_medicine |Yaml |none | 5|acc |0.6647|± |0.0360| | - global_facts |Yaml |none | 5|acc |0.3600|± |0.0482| | - human_aging |Yaml |none | 5|acc |0.6861|± |0.0311| | - management |Yaml |none | 5|acc |0.8350|± |0.0368| | - marketing |Yaml |none | 5|acc |0.8504|± |0.0234| | - medical_genetics |Yaml |none | 5|acc |0.6700|± |0.0473| | - miscellaneous |Yaml |none | 5|acc |0.7893|± |0.0146| | - nutrition |Yaml |none | 5|acc |0.7549|± |0.0246| | - professional_accounting |Yaml |none | 5|acc |0.5213|± |0.0298| | - professional_medicine |Yaml |none | 5|acc |0.7353|± |0.0268| | - virology |Yaml |none | 5|acc |0.5783|± |0.0384| | - social_sciences |N/A |none | 5|acc |0.7501|± |0.0684| | - econometrics |Yaml |none | 5|acc |0.5175|± |0.0470| | - high_school_geography |Yaml |none | 5|acc |0.8485|± |0.0255| | - high_school_government_and_politics|Yaml |none | 5|acc |0.8912|± |0.0225| | - high_school_macroeconomics |Yaml |none | 5|acc |0.6615|± |0.0240| | - high_school_microeconomics |Yaml |none | 5|acc |0.7311|± |0.0288| | - high_school_psychology |Yaml |none | 5|acc |0.8385|± |0.0158| | - human_sexuality |Yaml |none | 5|acc |0.7023|± |0.0401| | - professional_psychology |Yaml |none | 5|acc |0.6683|± |0.0190| | - public_relations |Yaml |none | 5|acc |0.6909|± |0.0443| | - security_studies |Yaml |none | 5|acc |0.7633|± |0.0272| | - sociology |Yaml |none | 5|acc |0.8358|± |0.0262| | - us_foreign_policy |Yaml |none | 5|acc |0.8800|± |0.0327| | - stem |N/A |none | 5|acc |0.5569|± |0.1360| | - abstract_algebra |Yaml |none | 5|acc |0.3800|± |0.0488| | - anatomy |Yaml |none | 5|acc |0.6148|± |0.0420| | - astronomy |Yaml |none | 5|acc |0.7237|± |0.0364| | - college_biology |Yaml |none | 5|acc |0.7708|± |0.0351| | - college_chemistry |Yaml |none | 5|acc |0.4600|± |0.0501| | - college_computer_science |Yaml |none | 5|acc |0.5400|± |0.0501| | - college_mathematics |Yaml |none | 5|acc |0.2700|± |0.0446| | - college_physics |Yaml |none | 5|acc |0.3333|± |0.0469| | - computer_security |Yaml |none | 5|acc |0.7300|± |0.0446| | - conceptual_physics |Yaml |none | 5|acc |0.6213|± |0.0317| | - electrical_engineering |Yaml |none | 5|acc |0.6276|± |0.0403| | - elementary_mathematics |Yaml |none | 5|acc |0.4788|± |0.0257| | - high_school_biology |Yaml |none | 5|acc |0.8065|± |0.0225| | - high_school_chemistry |Yaml |none | 5|acc |0.5123|± |0.0352| | - high_school_computer_science |Yaml |none | 5|acc |0.7000|± |0.0461| | - high_school_mathematics |Yaml |none | 5|acc |0.3889|± |0.0297| | - high_school_physics |Yaml |none | 5|acc |0.3576|± |0.0391| | - high_school_statistics |Yaml |none | 5|acc |0.5926|± |0.0335| | - machine_learning |Yaml |none | 5|acc |0.4554|± |0.0473| | Groups |Version|Filter|n-shot|Metric|Value | |Stderr| |------------------|-------|------|-----:|------|-----:|---|-----:| |mmlu |N/A |none | 0|acc |0.6461|± |0.1215| | - humanities |N/A |none | 5|acc |0.5960|± |0.1200| | - other |N/A |none | 5|acc |0.7097|± |0.0900| | - social_sciences|N/A |none | 5|acc |0.7501|± |0.0684| | - stem |N/A |none | 5|acc |0.5569|± |0.1360| ``` ### MT-Bench ``` ########## Average ########## score model gpt-4 8.990625 gpt-3.5-turbo 7.943750 claude-instant-v1 7.905660 claude-v1 7.900000 UNA-SOLAR-10.7B-Instruct-v1.0 7.521875 LUNA-SOLARkrautLM-Instruct 7.462500 vicuna-33b-v1.3 7.121875 wizardlm-30b 7.009375 Llama-2-70b-chat 6.856250 Llama-2-13b-chat 6.650000 guanaco-33b 6.528125 tulu-30b 6.434375 guanaco-65b 6.409375 oasst-sft-7-llama-30b 6.409375 palm-2-chat-bison-001 6.400000 mpt-30b-chat 6.393750 vicuna-13b-v1.3 6.387500 wizardlm-13b 6.353125 Llama-2-7b-chat 6.268750 vicuna-7b-v1.3 5.996875 baize-v2-13b 5.750000 nous-hermes-13b 5.553459 mpt-7b-chat 5.459119 gpt4all-13b-snoozy 5.452830 koala-13b 5.350000 mpt-30b-instruct 5.218750 falcon-40b-instruct 5.168750 h2ogpt-oasst-open-llama-13b 4.625000 alpaca-13b 4.531250 chatglm-6b 4.500000 oasst-sft-4-pythia-12b 4.318750 rwkv-4-raven-14b 3.984375 dolly-v2-12b 3.275000 fastchat-t5-3b 3.040625 stablelm-tuned-alpha-7b 2.753125 llama-13b 2.606250 ``` ## Disclaimer We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out. However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided. Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.   ## Contact If you are interested in customized LLMs for business applications, please get in contact with us via our website or contact us at [Dr. Daryoush Vaziri](mailto:vaziri@vago-solutions.de). We are also grateful for your feedback and suggestions.   ## Collaborations We are also keenly seeking support and investment for our startup, [VAGO Solutions](https://huggingface.co/VAGOsolutions), where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us. [Juanako.AI](https://huggingface.co/fblgit) is also seeking support and investment for our startup, we also are open for collaborating with other labs to make awesome models like this one. ## Acknowledgement Big Hug to [VAGO Solutions](https://huggingface.co/VAGOsolutions), we merely used our UNA transformers library on their code and dataset, nothing else. This won't be possible without them, thanks! Many thanks to [argilla](https://huggingface.co/datasets/argilla) and [Huggingface](https://huggingface.co) for providing such valuable datasets to the Open-Source community. And of course a big thanks to [upstage](https://huggingface.co/upstage) for providing the open source community with their latest technology!