{ "ctfidf_model": { "bm25_weighting": false, "reduce_frequent_words": false }, "vectorizer_model": { "params": { "analyzer": "word", "binary": false, "decode_error": "strict", "encoding": "utf-8", "input": "content", "lowercase": true, "max_df": 1.0, "max_features": null, "min_df": 2, "ngram_range": [ 1, 5 ], "stop_words": "english", "strip_accents": null, "token_pattern": "(?u)\\b\\w\\w+\\b", "vocabulary": null }, "vocab": { "embarrassingly": 47130, "simple": 151399, "approach": 10938, "transfer": 168893, "learning": 90162, "pretrained": 126747, "language": 83120, "models": 105143, "growing": 68000, "number": 114818, "stateoftheart": 155060, "methods": 101264, "employ": 47813, "large": 87174, "generic": 65646, "corpora": 32204, "paper": 118695, "present": 126216, "conceptually": 28730, "effective": 45682, "addresses": 5403, "problem": 128173, "catastrophic": 21064, "forgetting": 60413, "specifically": 154129, "combine": 25869, "taskspecific": 163506, "optimization": 116973, "function": 61820, "auxiliary": 15028, "model": 102984, "objective": 115172, "adjusted": 5541, "training": 168136, "process": 128721, "preserves": 126673, "regularities": 138983, "captured": 20697, "enabling": 48262, "sufficient": 158477, "adaptation": 4598, "solving": 153190, "target": 161039, "task": 161150, "method": 100618, "does": 43955, "require": 141058, "pretraining": 127254, "finetuning": 59150, "separate": 148689, "components": 27745, "network": 112619, "train": 167743, "endtoend": 48724, "single": 151773, "step": 155592, "results": 143142, "variety": 175686, "challenging": 22102, "affective": 6322, "text": 164809, "classification": 23951, "tasks": 161861, "surpassing": 159505, "established": 50682, "greater": 67747, "level": 91442, "complexity": 27654, "deep": 37708, "active": 4424, "localization": 97269, "generating": 64123, "robot": 145168, "actions": 4358, "allow": 8332, "maximally": 99663, "disambiguate": 42637, "pose": 124146, "reference": 138650, "map": 99125, "traditional": 167586, "approaches": 11677, "use": 172483, "informationtheoretic": 76861, "criterion": 33440, "action": 4304, "selection": 147828, "handcrafted": 68501, "perceptual": 120846, "work": 178765, "propose": 131693, "differentiable": 42096, "informative": 76865, "trainable": 167845, "entirely": 49823, "simulation": 151683, "transferable": 169017, "real": 136215, "hardware": 68673, "zero": 180067, "refinement": 138751, "composed": 27789, "modules": 109969, "convolutional": 32037, "neural": 112822, "perception": 120786, "reinforcement": 139034, "learned": 90087, "planning": 123235, "module": 109918, "introduce": 79906, "multiscale": 111143, "accuracy": 3100, "needed": 112430, "perform": 120859, "control": 31514, "demonstrate": 38217, "resulting": 143086, "outperforms": 117702, "using": 173936, "robustness": 145344, "different": 41643, "configurations": 29382, "nuisance": 114816, "parameters": 119695, "domain": 44059, "randomization": 135552, "code": 24647, "compatible": 27092, "openai": 116320, "gym": 68295, "framework": 60907, "gazebo": 62841, "simulator": 151733, "improving": 74104, "nonstandard": 114141, "languages": 86940, "joint": 81246, "standard": 154796, "concerned": 28750, "abstracting": 2664, "morphological": 110130, "differences": 41618, "ii": 72081, "resolving": 142353, "ambiguities": 8628, "words": 178711, "order": 117166, "dictionary": 41587, "aim": 7419, "improve": 73397, "performance": 121098, "set": 149113, "historical": 70192, "difficulty": 42201, "increased": 75249, "additional": 4916, "aspect": 12900, "iii": 72117, "spelling": 154532, "variation": 175639, "lacking": 83030, "orthographic": 117420, "standards": 154914, "encoderdecoder": 48452, "architecture": 12114, "enrich": 49612, "sentence": 148477, "context": 30672, "information": 76260, "hierarchical": 69349, "encoder": 48405, "significant": 150562, "improvements": 73868, "jointly": 81270, "modeling": 104963, "crucially": 33888, "pos": 124140, "annotations": 9568, "available": 15065, "additionally": 5019, "test": 164504, "proposed": 132223, "typologically": 170534, "diverse": 43453, "showing": 150158, "par": 119413, "better": 17786, "enhanced": 49314, "representations": 140758, "previous": 127563, "systems": 160218, "finally": 58411, "encourage": 48589, "future": 62210, "processing": 129107, "varieties": 175685, "release": 139435, "dataset": 36072, "underlying": 170825, "study": 157118, "based": 15638, "openly": 116536, "accessible": 2938, "sources": 153491, "visualizing": 177371, "attention": 13828, "transformerbased": 169226, "representation": 140664, "opensource": 116566, "tool": 166927, "multihead": 110408, "selfattention": 147934, "extends": 55684, "earlier": 45229, "levels": 91521, "granularity": 67478, "attentionhead": 14019, "neuron": 113007, "views": 176831, "help": 69075, "interpret": 79621, "bert": 17505, "gpt2": 66512, "cases": 20937, "analyzing": 9357, "detecting": 40391, "bias": 18090, "identifying": 71982, "recurring": 138357, "patterns": 120515, "linking": 93104, "neurons": 113017, "behavior": 16559, "repurposing": 141039, "entailment": 49767, "multihop": 110413, "question": 134671, "answering": 9810, "qa": 133865, "naturally": 111972, "reduces": 138503, "verifying": 176545, "entails": 49776, "answer": 9670, "reasoning": 136615, "multiple": 110829, "sentences": 148554, "remains": 139970, "unclear": 170688, "best": 17655, "utilize": 175022, "scale": 146261, "datasets": 36622, "snli": 152517, "pairs": 118543, "general": 62906, "effectively": 45931, "uses": 173829, "local": 97228, "helps": 69233, "locate": 97291, "important": 73074, "avoiding": 15356, "distracting": 43308, "global": 66084, "aggregates": 6775, "incorporating": 75079, "importance": 73011, "weights": 178095, "importantly": 73217, "functions": 61899, "nli": 113663, "evaluate": 50884, "openbookqa": 116440, "trained": 167859, "transformer": 169089, "structure": 156535, "fully": 61739, "attentionbased": 14014, "alternative": 8546, "recurrent": 138345, "networks": 112713, "achieved": 3780, "range": 135576, "nlp": 113677, "analyze": 9265, "small": 152269, "visualize": 177366, "individual": 75704, "instances": 77815, "interaction": 79099, "syntax": 159916, "corpus": 32272, "targets": 161148, "parts": 120295, "speech": 154381, "layer": 89622, "depths": 39334, "aligns": 8265, "dependency": 39149, "relations": 139281, "strongly": 156491, "middle": 102187, "layers": 89655, "capture": 20631, "distant": 43126, "relationships": 139335, "extract": 56119, "exemplar": 52980, "reveal": 144313, "highly": 69885, "specific": 153933, "targeted": 161125, "particular": 120044, "heads": 68918, "self": 147921, "attentive": 14021, "edit": 45427, "quality": 134030, "prediction": 125754, "wikipedia": 178493, "easily": 45297, "justified": 81393, "considering": 29702, "sheer": 149886, "volume": 177529, "content": 30423, "added": 4809, "removed": 140362, "minute": 102438, "projects": 130106, "creates": 33279, "immense": 72592, "scope": 147010, "field": 58114, "natural": 111516, "developing": 40972, "automated": 14511, "tools": 167091, "moderation": 109771, "review": 144474, "revision": 144605, "leverages": 91707, "similarity": 151334, "lexical": 91974, "units": 171880, "predicting": 125733, "new": 113047, "edits": 45501, "contrast": 31294, "existing": 53246, "propositions": 132507, "primarily": 127765, "features": 57439, "like": 92191, "page": 118500, "reputation": 141042, "editor": 45498, "activity": 4466, "rule": 145691, "heuristics": 69315, "textual": 165876, "believe": 16768, "contains": 30354, "superior": 158987, "signatures": 150547, "deploy": 39192, "encoders": 48477, "generate": 63377, "leverage": 91563, "infer": 75935, "contribute": 31390, "novel": 114344, "containing": 30322, "21m": 764, "revisions": 144608, "32k": 1017, "pages": 118504, "margin": 99174, "17": 481, "103": 196, "achieves": 3932, "result": 143018, "retraining": 143975, "20": 584, "knowledge": 81718, "attempt": 13776, "employing": 47910, "enormous": 49599, "visualization": 177351, "sequence": 148725, "architectures": 12247, "favor": 57325, "advantage": 6100, "assigns": 13332, "weight": 178069, "input": 77206, "elements": 47013, "multilayer": 110451, "mechanism": 99972, "difficult": 42122, "decipher": 37359, "make": 98474, "visualizes": 177370, "scales": 146360, "provides": 133102, "unique": 171818, "perspective": 122649, "example": 52458, "locating": 97296, "relevant": 139571, "remote": 140344, "rendering": 140380, "backend": 15430, "allows": 8401, "fast": 57258, "customizable": 34393, "robotics": 145200, "environments": 50058, "game": 62544, "engine": 48855, "interfaces": 79453, "mujoco": 110296, "physics": 122925, "library": 92033, "designed": 39809, "visual": 177103, "mind": 102277, "optimized": 117085, "cloud": 24553, "deployment": 39255, "high": 69388, "throughput": 166307, "operation": 116755, "releasing": 139547, "public": 133537, "liberal": 92024, "mit": 102580, "license": 92047, "leveraging": 91796, "checkpoints": 23547, "generation": 64378, "unsupervised": 172232, "recently": 137814, "revolutionized": 144637, "publicly": 133621, "released": 139501, "practitioners": 125521, "pushed": 133800, "benchmarks": 17161, "saving": 146194, "amounts": 8677, "compute": 28436, "time": 166340, "far": 57209, "focus": 59937, "mainly": 98280, "understanding": 171103, "efficacy": 46355, "developed": 40854, "sequencetosequence": 148849, "roberta": 145138, "conducted": 29204, "extensive": 55707, "empirical": 47666, "utility": 174942, "initializing": 77077, "decoder": 37507, "machine": 97997, "translation": 169434, "summarization": 158794, "splitting": 154563, "fusion": 62192, "making": 98701, "effectiveness": 46112, "lms": 97096, "various": 175784, "lm": 97048, "suffers": 158460, "applied": 10738, "resourcerich": 142416, "concerted": 28839, "key": 81453, "integrate": 78478, "nmt": 113953, "consists": 29956, "techniques": 163817, "asymptotic": 13599, "distillation": 43141, "ensure": 49665, "retain": 143952, "dynamic": 45113, "switching": 159787, "gate": 62800, "avoid": 15332, "strategy": 156096, "adjust": 5537, "paces": 118488, "according": 3026, "scheduled": 146759, "policy": 123826, "experiments": 54118, "gains": 62506, "bleu": 18682, "score": 147027, "wmt14": 178592, "englishgerman": 49130, "pair": 118514, "surpasses": 159470, "aided": 7372, "14": 372, "englishfrench": 49129, "40": 1170, "millions": 102250, "base": 15590, "significantly": 150920, "improves": 73967, "big": 18370, "downloaded": 44685, "restricted": 143001, "rnn": 145116, "variations": 175651, "long": 97434, "shortterm": 150048, "memory": 100361, "lstm": 97953, "gated": 62801, "unit": 171867, "gru": 68090, "building": 19362, "blocks": 18725, "online": 116075, "data": 34558, "sequential": 148861, "nature": 111987, "research": 141556, "areas": 12355, "including": 74397, "analysis": 8791, "methodology": 101207, "reduce": 138397, "rnns": 145120, "maintaining": 98338, "comparable": 26557, "classical": 23930, "proposal": 131686, "referred": 138706, "restricts": 143011, "matrices": 99629, "corresponding": 32569, "hidden": 69320, "states": 155418, "share": 149790, "proportion": 131679, "regarded": 138854, "compression": 28209, "counterpart": 32964, "sophisticated": 153291, "parameter": 119596, "major": 98405, "issues": 80972, "compared": 26742, "generally": 63298, "produces": 129519, "50": 1289, "rate": 135963, "outperform": 117562, "optimus": 117132, "prime": 127828, "md": 99731, "medical": 100132, "certification": 21431, "items": 81082, "openais": 116389, "article": 12563, "describes": 39389, "application": 10294, "item": 81076, "area": 12312, "ongoing": 116052, "testing": 164691, "educational": 45598, "measurement": 99897, "psychological": 133499, "retrained": 143974, "mining": 102404, "pubmed": 133702, "articles": 12604, "subsequently": 157962, "used": 172946, "stems": 155588, "case": 20865, "vignettes": 176835, "distractor": 43312, "proposals": 131691, "multiplechoice": 111091, "shows": 150399, "promise": 130163, "draft": 44867, "human": 70548, "writers": 179703, "authoring": 14425, "recent": 137332, "grover": 67992, "transformerxl": 169375, "pools": 123939, "expected": 53747, "facilitate": 56589, "development": 41039, "assessment": 13213, "materials": 99504, "strategies": 155951, "social": 152525, "impacts": 72755, "beneficial": 17403, "assist": 13340, "prose": 132531, "poetry": 123696, "programming": 129782, "biases": 18247, "flexibility": 59784, "generative": 65292, "capabilities": 19756, "raise": 135444, "misuse": 102566, "concerns": 28758, "report": 140510, "discusses": 42969, "related": 139145, "staged": 154758, "releases": 139545, "conduct": 29020, "risk": 144924, "benefit": 17417, "analyses": 8748, "sizes": 152084, "recommendations": 138237, "coordination": 32092, "responsible": 142952, "publication": 133614, "ai": 6840, "quantity": 134400, "doesnt": 44041, "buy": 19558, "learn": 89956, "predict": 125674, "upcoming": 172323, "remarkably": 140313, "average": 15253, "syntactically": 159910, "complex": 27349, "contexts": 31000, "assign": 13315, "unexpectedly": 171618, "probabilities": 128099, "ungrammatical": 171681, "investigate": 80362, "extent": 55999, "shortcomings": 150020, "mitigated": 102641, "increasing": 75295, "size": 151956, "minimal": 102310, "certain": 21364, "point": 123700, "likewise": 92475, "expanding": 53695, "yields": 180007, "diminishing": 42356, "returns": 144298, "estimate": 50719, "need": 112203, "unrealistically": 172111, "match": 99404, "comparison": 27023, "gpt": 66372, "billions": 18446, "reveals": 144412, "poorly": 123962, "lstms": 97964, "constructions": 30238, "efficient": 46556, "entity": 49883, "tracking": 167533, "entities": 49829, "procedural": 128681, "requires": 141326, "transformations": 169059, "arising": 12466, "interactions": 79196, "selfattentionbased": 147942, "successfully": 158360, "ability": 2045, "handle": 68525, "nuances": 114803, "texts": 165674, "untested": 172293, "explore": 55131, "lightweight": 92164, "transformers": 169293, "underperform": 170884, "baselines": 16273, "stronger": 156463, "attained": 13756, "restructuring": 143016, "guide": 68167, "second": 147453, "assess": 13038, "degree": 38007, "dynamics": 45197, "investigating": 80585, "factors": 56784, "merged": 100526, "oblique": 115312, "references": 138691, "ingredient": 76929, "detection": 40432, "recipes": 138028, "scientific": 146931, "processes": 129049, "achieve": 3569, "largely": 89144, "attend": 13822, "shallow": 149763, "clues": 24588, "form": 60443, "intermediate": 79505, "state": 154977, "produce": 129367, "powerful": 125248, "contextual": 31068, "lead": 89725, "typically": 170463, "guided": 68219, "mechanisms": 100035, "comprise": 28237, "undesired": 171589, "inductive": 75835, "paramount": 119897, "able": 2454, "static": 155449, "insights": 77506, "interactive": 79282, "humans": 71334, "gain": 62431, "intuition": 80283, "named": 111392, "popular": 123978, "meaning": 99762, "matching": 99448, "similar": 151203, "annotated": 9445, "aggregating": 6776, "intuitively": 80303, "explain": 54693, "constrained": 30025, "alignment": 8114, "embeddings": 47209, "fundamental": 61926, "essential": 50579, "image": 72174, "extended": 55650, "domains": 44348, "distributed": 43318, "holistic": 70292, "adjustment": 5545, "created": 33248, "quantitatively": 134383, "measure": 99825, "presence": 126205, "embedding": 47149, "devise": 41323, "remove": 140356, "alleviate": 8280, "retaining": 143959, "adversarial": 6188, "dan": 34540, "transformation": 169054, "add": 4803, "constraints": 30059, "preserved": 126671, "algorithm": 7772, "stateofart": 155057, "sets": 149354, "applications": 10403, "industry": 75867, "street": 156239, "extraction": 56249, "bertbased": 17627, "apis": 10183, "adversary": 6245, "query": 134561, "access": 2846, "victim": 176662, "attempts": 13808, "reconstruct": 138292, "copy": 32114, "assuming": 13557, "finetune": 58911, "devlin": 41338, "et": 50766, "al": 7719, "2019": 646, "mount": 110212, "attack": 13629, "fact": 56733, "attacker": 13677, "grammatical": 67451, "semantically": 148260, "meaningful": 99788, "queries": 134446, "random": 135512, "sequences": 148803, "coupled": 32998, "inference": 75952, "highlights": 69844, "exploit": 54998, "feasible": 57373, "shift": 149897, "community": 26446, "budget": 19267, "dollars": 44054, "performs": 122425, "slightly": 152227, "worse": 179655, "defense": 37904, "api": 10149, "successful": 158333, "naive": 111383, "adversaries": 6243, "ineffective": 75893, "ones": 115983, "masked": 99293, "scoring": 147180, "mlms": 102866, "instead": 77862, "box": 18924, "scores": 147119, "computed": 28461, "masking": 99326, "tokens": 166771, "autoregressive": 14970, "rescoring": 141549, "asr": 12992, "hypotheses": 71606, "librispeech": 92045, "wer": 178198, "30": 950, "relative": 139356, "adds": 5487, "lowresource": 97900, "attribute": 14074, "success": 158214, "expression": 55587, "linguistic": 93000, "acceptability": 2825, "lefttoright": 91272, "greatly": 67777, "10": 100, "points": 123736, "island": 80868, "effects": 46325, "npi": 114783, "licensing": 92053, "blimp": 18696, "computation": 28291, "pass": 120311, "associated": 13459, "enable": 48062, "plugandplay": 123659, "crosslingual": 33647, "rescore": 141548, "translations": 169551, "zeroshot": 180110, "paraphrase": 119902, "multilingual": 110461, "parallel": 119557, "automatically": 14760, "paraphrases": 119913, "drawn": 44941, "highquality": 69988, "limited": 92690, "roundtrip": 145636, "known": 82582, "pivoting": 123162, "typical": 170442, "end": 48635, "notice": 114314, "involves": 80714, "likely": 92445, "incur": 75472, "semantic": 148093, "drift": 44970, "twostep": 170278, "inspired": 77708, "unified": 171699, "paraphrasing": 119917, "purely": 133724, "generated": 63787, "shares": 149833, "radford": 135394, "2018": 644, "pretrain": 126729, "largescale": 89262, "fluency": 59885, "output": 117892, "addition": 4836, "denoising": 39069, "autoencoder": 14465, "diversity": 43704, "experimental": 53922, "terms": 164382, "relevance": 139550, "efficiency": 46417, "demonstration": 38968, "power": 125158, "huge": 70503, "answers": 9993, "factoid": 56772, "questions": 135017, "raises": 135476, "embedded": 47133, "directly": 42510, "short": 149950, "smaller": 152384, "raw": 136084, "external": 56029, "contribution": 31470, "presented": 126509, "rely": 139825, "complementing": 27266, "goal": 66143, "line": 92939, "explicitly": 54962, "stop": 155839, "thinking": 166146, "head": 68903, "leading": 89802, "tv": 170202, "worth": 179677, "wafer": 177658, "silicon": 151193, "opt": 116901, "lazy": 89719, "path": 120420, "old": 115940, "proven": 132635, "fancy": 57206, "crypto": 33891, "acronym": 4289, "authors": 14437, "entire": 49796, "evolved": 52299, "direction": 42425, "previously": 127708, "strong": 156338, "boring": 18871, "stones": 155837, "throw": 166313, "byte": 19576, "enwik8": 50131, "undergone": 170792, "intensive": 78997, "hyperparameter": 71590, "lived": 93259, "commodity": 26114, "desktop": 40065, "studio": 157116, "apartment": 10146, "warm": 177700, "san": 146125, "summer": 158957, "final": 58372, "achievable": 3568, "plus": 123684, "24": 805, "hours": 70453, "gpu": 67334, "author": 14420, "readily": 136168, "playing": 123490, "games": 62579, "dark": 34550, "crossmodality": 33692, "latent": 89490, "obtained": 115511, "sensory": 148470, "modalities": 102915, "images": 72388, "sounds": 153383, "allowing": 8358, "agent": 6406, "policies": 123804, "subsets": 158013, "threestage": 166293, "given": 65828, "modality": 102962, "execute": 52901, "inputs": 77383, "sound": 153376, "generalized": 63277, "outofthebox": 117551, "holds": 70265, "video": 176679, "multimodal": 110579, "algorithms": 7895, "benchmark": 16811, "english": 49025, "shortened": 150032, "challenge": 21571, "evaluating": 51253, "know": 81700, "phenomena": 122817, "67": 1492, "subdatasets": 157802, "1000": 165, "isolating": 80876, "contrasts": 31388, "morphology": 110134, "semantics": 148284, "expertcrafted": 54600, "grammars": 67450, "aggregate": 6767, "agreement": 6826, "labels": 82777, "964": 1813, "ngram": 113622, "identify": 71851, "reliably": 139761, "struggle": 156722, "restrictions": 143009, "distribution": 43342, "quantifiers": 134310, "negative": 112505, "polarity": 123798, "subtle": 158190, "syntactic": 159885, "islands": 80869, "comparative": 26631, "thai": 165980, "categorization": 21132, "evergrowing": 52148, "usergenerated": 173558, "media": 100068, "nearly": 112105, "unlimited": 172029, "unlabeled": 171947, "resources": 142418, "scarce": 146470, "realized": 136329, "noisy": 113992, "126": 303, "billion": 18422, "later": 89526, "finetuned": 58977, "downstream": 44694, "linguistically": 93082, "domainspecific": 44555, "preprocessing": 126184, "steps": 155712, "utilized": 175094, "ease": 45276, "comprehension": 27875, "modern": 109783, "ulmfit": 170576, "elmo": 47096, "bilstm": 18457, "systematically": 160165, "dimensions": 42323, "speed": 154496, "perplexity": 122503, "just": 81360, "neuralsymbolic": 112994, "formed": 60577, "distributional": 43408, "hypothesis": 71616, "ideally": 71754, "suited": 158742, "running": 145747, "limitations": 92527, "todays": 166669, "spatial": 153779, "temporal": 164246, "quantitative": 134333, "commonplace": 26250, "readers": 136166, "encoded": 48390, "mathematical": 99552, "logical": 97347, "expressions": 55594, "augment": 14231, "encodings": 48521, "enhance": 49138, "encode": 48373, "symbolic": 159801, "deterministic": 40726, "probability": 128104, "distributions": 43418, "numbers": 114984, "geographic": 65700, "locations": 97305, "improvement": 73736, "persists": 122537, "rare": 135945, "larger": 89193, "discuss": 42863, "word": 178610, "classes": 23902, "geography": 65718, "languagemodel": 86924, "readingcomprehension": 136205, "vllms": 177441, "xlnet": 179847, "shown": 150200, "tremendous": 169685, "nlu": 113935, "extremely": 56425, "resource": 142370, "cumbersome": 33984, "production": 129585, "publications": 133617, "looked": 97615, "ways": 177894, "distil": 43131, "vllm": 177440, "commonly": 26220, "bertbase": 17624, "run": 145735, "faster": 57281, "hybrid": 71557, "accurate": 3432, "distilled": 43172, "surgery": 159442, "cost": 32648, "exponentially": 55535, "exploration": 55049, "correct": 32370, "costly": 32776, "intractable": 79823, "endeavor": 48699, "technique": 163732, "continuously": 31262, "play": 123436, "dota": 44669, "course": 33004, "months": 110099, "changes": 22364, "transfers": 169036, "determine": 40698, "sections": 147535, "unchanged": 170685, "past": 120374, "relied": 139789, "manual": 99019, "labor": 82847, "preexisting": 125992, "boundaries": 18906, "limiting": 92881, "modifications": 109870, "feature": 57384, "solution": 152886, "operate": 116734, "discrete": 42798, "setbased": 149352, "operations": 116773, "exact": 52333, "relationship": 139315, "outputs": 118018, "change": 22333, "tweaks": 170205, "derive": 39340, "maps": 99161, "equivalence": 50199, "empirically": 47776, "validate": 175297, "longterm": 97593, "situational": 151936, "awareness": 15373, "world": 179527, "represented": 140950, "modelfree": 104946, "black": 18611, "highdimensional": 69567, "observation": 115320, "spaces": 153633, "alphastar": 8527, "agents": 6518, "explicit": 54917, "reach": 136102, "superhuman": 158981, "skill": 152130, "taking": 161000, "thousands": 166253, "reaching": 136135, "assessing": 13163, "plans": 123344, "lack": 82876, "hierarchy": 69386, "incomprehensible": 74817, "internal": 79542, "gradually": 67421, "formation": 60553, "subgoals": 157818, "evidence": 52169, "accomplishing": 3018, "minutes": 102439, "executed": 52920, "qualitative": 133976, "predictions": 125888, "champions": 22327, "og": 115934, "april": 12047, "character": 22421, "phonological": 122870, "logographic": 97426, "origin": 117305, "recursive": 138360, "chinese": 23603, "characters": 22499, "structures": 156686, "hierarchies": 69385, "contain": 30289, "developmental": 41266, "psychology": 133510, "literature": 93154, "suggests": 158653, "native": 111502, "speakers": 153834, "read": 136151, "exploiting": 55026, "potentially": 125081, "imposes": 73235, "prior": 127876, "mapping": 99141, "specified": 154331, "reading": 136180, "hypothesize": 71633, "verify": 176519, "claim": 23820, "consider": 29559, "pronunciation": 131578, "baseline": 16185, "diagnostic": 41376, "constructed": 30167, "sensitive": 148413, "distractors": 43314, "robust": 145230, "especially": 50424, "comparability": 26556, "developments": 41269, "concept": 28581, "forces": 60363, "driving": 45002, "elaborated": 46966, "simply": 151608, "plugging": 123674, "surrounding": 159585, "intelligently": 78964, "modelling": 105128, "objectives": 115236, "selfsupervised": 148050, "fashion": 57248, "supervised": 159086, "advances": 5981, "computing": 28526, "possible": 124392, "capacities": 20485, "shorter": 150033, "sota": 153336, "revealed": 144384, "higher": 69577, "frequency": 61599, "obvious": 115570, "originate": 117406, "completely": 27299, "disentangle": 43037, "contributions": 31488, "providing": 133255, "clear": 24260, "concise": 28841, "overview": 118418, "years": 179879, "respect": 142499, "want": 177688, "clarify": 23858, "reader": 136161, "furthermore": 62004, "insight": 77482, "architectural": 12107, "intend": 78968, "quantify": 134312, "potential": 124539, "starting": 154964, "comparisons": 27073, "tentatively": 164361, "possibilities": 124364, "opensourcing": 116708, "reproducible": 141020, "explaining": 54761, "documents": 43885, "address": 5152, "technical": 163682, "deducing": 37687, "expressing": 55585, "details": 40330, "theoretical": 166013, "solutions": 152992, "researcher": 142159, "search": 147310, "establish": 50650, "examples": 52516, "serve": 148959, "foundation": 60708, "impact": 72614, "dense": 39084, "extracted": 56178, "provide": 132663, "automatic": 14634, "evaluations": 51936, "challenges": 21754, "convergence": 31746, "depth": 39326, "suffer": 158417, "vanishing": 175585, "exploding": 54996, "gradients": 67414, "inefficient": 75901, "signal": 150517, "propagation": 131599, "times": 166576, "difficulties": 42191, "designs": 40013, "initialization": 77066, "schemes": 146799, "free": 61544, "theory": 166070, "dynamical": 45177, "plays": 123508, "integral": 78474, "role": 145453, "simplest": 151567, "gating": 62815, "residual": 142314, "connection": 29487, "zeroinitialized": 180099, "satisfies": 146168, "initial": 77007, "simpler": 151552, "predecessors": 125645, "enables": 48156, "connected": 29474, "resnets": 142334, "cifar10": 23757, "apply": 10835, "12": 260, "converges": 31771, "56": 1379, "trec": 169650, "cast": 21036, "conversational": 31816, "assistance": 13366, "track": 167519, "seeking": 147664, "create": 33169, "reusable": 144304, "collection": 25722, "document": 43809, "passages": 120340, "retrieval": 143985, "car": 20743, "microsoft": 102184, "marco": 99172, "dialogues": 41546, "assessments": 13278, "provided": 133034, "topics": 167344, "year": 179875, "21": 747, "groups": 67964, "submitted": 157895, "total": 167409, "65": 1473, "runs": 145757, "varying": 176277, "ranking": 135793, "include": 74324, "common": 26117, "theme": 166000, "reranking": 141528, "employed": 47871, "expansion": 53710, "rewriting": 144735, "gap": 62608, "manually": 99070, "resolved": 142351, "utterances": 175252, "35": 1047, "rewrites": 144734, "reformulation": 138828, "presents": 126545, "plms": 123566, "independence": 75492, "assumption": 13560, "maximum": 99691, "likelihood": 92433, "estimation": 50747, "taskoriented": 161840, "dialogue": 41443, "indomain": 75786, "outdomain": 117475, "examining": 52440, "texttotext": 165856, "t5": 160692, "fewer": 57858, "organizing": 117299, "space": 153545, "variational": 175643, "vae": 175283, "universal": 171892, "abstract": 2633, "vectors": 176402, "generalize": 63241, "smooth": 152495, "wide": 178241, "hope": 70343, "interests": 79415, "era": 50211, "principled": 127844, "practical": 125378, "prevents": 127560, "introduced": 80148, "offers": 115779, "computationefficient": 28430, "longrange": 97566, "dependencies": 39141, "log": 97312, "quite": 135357, "involving": 80775, "derived": 39351, "variant": 175616, "gelu": 62856, "normalization": 114180, "longer": 97520, "lambada": 83077, "music": 111308, "transcription": 168882, "improved": 73667, "establishing": 50706, "useful": 173309, "block": 18714, "facilitating": 56695, "ocr": 115597, "postediting": 124486, "optical": 116921, "recognition": 138039, "procedure": 128692, "subject": 157825, "material": 99498, "inconsistencies": 74822, "low": 97729, "scanning": 146463, "consequently": 29533, "engines": 49011, "errors": 50332, "reports": 140581, "built": 19469, "correcting": 32428, "digitized": 42305, "alternatives": 8591, "forms": 60587, "vocabulary": 177503, "assumed": 13550, "error": 50268, "replaced": 140460, "presumably": 126721, "tested": 164663, "chapter": 22417, "book": 18796, "essay": 50566, "regulating": 139006, "trade": 167549, "poor": 123940, "kingdom": 81670, "1719": 488, "demonstrated": 38614, "unreliable": 172122, "transparent": 169593, "intervention": 79786, "geppetto": 65755, "italian": 81071, "impressive": 73252, "develop": 40749, "thorough": 166173, "means": 99813, "humanbased": 71141, "evaluation": 51407, "calculating": 19609, "genres": 65693, "profiling": 129702, "writing": 179707, "characteristics": 22450, "sort": 153332, "version": 176598, "performed": 122359, "completion": 27319, "judged": 81309, "closer": 24534, "original": 117309, "pointer": 123730, "progressive": 130040, "excellent": 52787, "freeform": 61557, "operates": 116745, "progressively": 130043, "inserting": 77471, "manner": 98966, "recursively": 138366, "completed": 27296, "coarsetofine": 24634, "makes": 98631, "intuitive": 80288, "interpretable": 79660, "nonautoregressive": 114016, "decoding": 37555, "logarithmic": 97319, "news": 113545, "yelp": 179951, "source": 153387, "amrtotext": 8727, "broadcoverage": 19196, "sentencelevel": 148544, "graphs": 67616, "amr": 8725, "focused": 60081, "combines": 25925, "cycle": 34479, "consistencybased": 29801, "despite": 40067, "simplicity": 151575, "metrics": 101992, "substantiate": 158145, "strength": 156241, "fewshot": 57882, "learners": 90144, "substantial": 158022, "followed": 60231, "taskagnostic": 161822, "tens": 164342, "instructions": 78201, "current": 34052, "scaling": 146384, "competitiveness": 27214, "gpt3": 66629, "175": 492, "10x": 214, "setting": 149415, "gradient": 67376, "updates": 172348, "demonstrations": 38988, "questionanswering": 134970, "cloze": 24576, "onthefly": 116159, "performing": 122389, "arithmetic": 12469, "gpt3s": 66893, "struggles": 156782, "faces": 56566, "methodological": 101181, "web": 177990, "samples": 145983, "evaluators": 52050, "distinguishing": 43296, "written": 179773, "broader": 19202, "societal": 152683, "finding": 58595, "stability": 154669, "misconceptions": 102473, "explanations": 54807, "practice": 125475, "dominating": 44653, "leaderboards": 89798, "unstable": 172206, "seeds": 147648, "variance": 175604, "lee": 91263, "2020": 653, "identified": 71813, "reasons": 137247, "observed": 115398, "instability": 77785, "fail": 56941, "albert": 7748, "glue": 66123, "caused": 21254, "remaining": 139961, "attributed": 14088, "generalization": 63122, "loss": 97659, "exhibit": 53022, "noticeably": 114321, "stable": 154687, "reproduce": 141000, "interplay": 79609, "rapidly": 135909, "pushing": 133807, "frontier": 61644, "surprising": 159539, "works": 179417, "indicate": 75569, "width": 178485, "theoretically": 166056, "transition": 169393, "systematic": 160099, "ablations": 2450, "48": 1263, "clearly": 24284, "predicted": 125721, "behaviors": 16680, "suggestions": 158633, "regarding": 138856, "optimal": 116927, "allocation": 8327, "race": 135383, "renders": 140382, "informed": 76887, "guidelines": 68245, "tandem": 161027, "elucidate": 47102, "tradeoff": 167552, "project": 130069, "marking": 99242, "unprecedented": 172076, "30k": 990, "knowledgeaware": 82526, "hold": 70241, "adept": 5494, "grasp": 67664, "incorporate": 75001, "changing": 22398, "adding": 4820, "storage": 155845, "existence": 53242, "tokenizer": 166764, "solely": 152864, "signals": 150526, "packed": 118493, "observe": 115356, "factual": 56853, "correctness": 32477, "lama": 83075, "probing": 128148, "edge": 45414, "kalm": 81407, "dropin": 45037, "replacement": 140463, "taskrelated": 161854, "augmentation": 14261, "experiment": 53875, "viewed": 176821, "episodic": 50144, "grows": 68073, "augmenting": 14383, "shot": 150055, "15": 401, "reduction": 138603, "gigaword": 65800, "ir": 80828, "event": 52066, "coreference": 32185, "autocomplete": 14454, "poisoning": 123792, "vulnerabilities": 177610, "autocompletion": 14460, "editors": 45500, "ides": 72047, "latest": 89532, "autocompleters": 14457, "repositories": 140622, "suggest": 158513, "statically": 155472, "completions": 27348, "vulnerable": 177645, "attacks": 13684, "files": 58324, "influence": 76185, "teach": 163595, "insecure": 77465, "mode": 102982, "aes": 6292, "encryption": 48632, "protocol": 132579, "iteration": 81100, "count": 32926, "poisoned": 123787, "repo": 140509, "developer": 40928, "untargeted": 172292, "pythia": 133824, "defenses": 37913, "curious": 34049, "sparsity": 153762, "brain": 18940, "intersection": 79758, "neuroscience": 113035, "lens": 91412, "cognitive": 25433, "turn": 170169, "biological": 18508, "inspire": 77696, "procedures": 128712, "aging": 6814, "subword": 158204, "morphologically": 110133, "rich": 144763, "particularly": 120141, "studies": 156944, "showed": 150130, "considerable": 29601, "transferred": 169026, "ngrams": 113629, "hungarian": 71544, "center": 21319, "transformergenerated": 169291, "causes": 21259, "explosion": 55523, "called": 19647, "subwordbased": 158207, "statistically": 155516, "compare": 26658, "bpe": 18935, "statistical": 155479, "tokenizers": 166765, "reducing": 138542, "requirements": 141274, "overall": 118171, "oov": 116191, "graphtotext": 67658, "aims": 7568, "fluent": 59896, "graphbased": 67589, "taskadaptive": 161820, "graph": 67483, "kgs": 81644, "bart": 15579, "webnlg": 178033, "agenda": 6404, "318": 1002, "45": 1237, "respectively": 142531, "true": 169800, "facts": 56830, "reduced": 138484, "bag": 15473, "node": 113961, "applying": 10880, "gpgpu": 66368, "realtime": 136369, "started": 154962, "fields": 58259, "outstanding": 118158, "computational": 28324, "hurdle": 71546, "rnnlm": 145119, "continuous": 31230, "accelerate": 2769, "searches": 147439, "purpose": 133733, "graphic": 67597, "proposes": 132457, "redundant": 138632, "computations": 28433, "cpus": 33132, "evaluated": 51140, "inhouse": 77003, "circumstances": 23779, "relatively": 139397, "lower": 97809, "auto": 14451, "critical": 33451, "user": 173369, "experience": 53821, "candidates": 19738, "prefixes": 126103, "strict": 156292, "latency": 89475, "requirement": 141266, "returned": 144295, "milliseconds": 102257, "poses": 124194, "designing": 39984, "unseen": 172143, "heavily": 69038, "candidate": 19710, "logs": 97428, "overcome": 118267, "recall": 137260, "unnormalized": 172059, "captures": 20702, "good": 66251, "balance": 15487, "served": 149023, "linkedin": 93101, "job": 81229, "product": 129566, "feed": 57630, "forward": 60659, "induced": 75826, "interference": 79477, "updating": 172358, "routine": 145648, "required": 141218, "backward": 15460, "propagate": 131594, "properly": 131620, "physical": 122894, "interpretation": 79700, "brought": 19239, "selfconsistency": 147949, "treating": 169633, "spacetime": 153638, "diagram": 41397, "trace": 167499, "paths": 120443, "fot": 60707, "slight": 152222, "modification": 109867, "energy": 48784, "treated": 169632, "magnetic": 98194, "inducing": 75831, "modeled": 104941, "pilot": 122988, "durations": 45104, "routes": 145647, "constructive": 30239, "instantaneous": 77854, "mnist": 102892, "interesting": 79390, "exist": 53236, "updated": 172340, "scenario": 146505, "workhorse": 179390, "relies": 139794, "annotation": 9505, "timeconsuming": 166535, "expensive": 53773, "interested": 79384, "applicable": 10272, "settings": 149518, "multitask": 111198, "weakly": 177948, "thesis": 166121, "focuses": 60127, "adapting": 4731, "aimed": 7507, "unifying": 171781, "markov": 99254, "logic": 97323, "denoise": 39066, "weak": 177922, "supervision": 159189, "support": 159253, "decision": 37363, "bilingual": 18411, "fourth": 60868, "grading": 67417, "asag": 12821, "student": 156799, "desired": 40035, "implemented": 72866, "facet": 56580, "conventional": 31687, "extracting": 56215, "cosine": 32635, "rmse": 145113, "correlation": 32532, "measurements": 99910, "demonstrates": 38820, "outperformed": 117651, "briefly": 19109, "conclude": 28857, "measuring": 99940, "massive": 99341, "covers": 33099, "57": 1382, "elementary": 47008, "mathematics": 99610, "history": 70215, "computer": 28472, "science": 146846, "law": 89594, "attain": 13750, "possess": 124328, "near": 112086, "largest": 89428, "chance": 22329, "percentage": 120776, "expertlevel": 54633, "frequently": 61609, "wrong": 179796, "socially": 152677, "subjects": 157870, "morality": 110124, "comprehensively": 28159, "breadth": 18982, "academic": 2719, "professional": 129616, "risks": 144968, "advanced": 5696, "expand": 53678, "abuse": 2708, "experimenting": 54116, "prompts": 131142, "representative": 140917, "types": 170321, "extremist": 56458, "narrative": 111443, "radical": 135401, "ideologies": 72045, "predecessor": 125644, "accurately": 3512, "emulates": 48048, "informational": 76853, "influential": 76242, "individuals": 75761, "violent": 176853, "preventative": 127547, "measures": 99912, "possibility": 124375, "unregulated": 172116, "technology": 164118, "represents": 140977, "recruitment": 138335, "absence": 2586, "safeguards": 145821, "little": 93218, "experimentation": 54106, "stakeholders": 154779, "policymaking": 123883, "governments": 66362, "begin": 16523, "investing": 80659, "soon": 153286, "norms": 114201, "initiatives": 77097, "preempt": 125990, "influx": 76246, "machinegenerated": 98145, "disinformation": 43047, "propaganda": 131593, "mitigation": 102685, "partnerships": 120288, "government": 66358, "civil": 23811, "society": 152702, "classify": 24204, "reexamine": 138637, "noncausal": 114020, "extension": 55698, "batch": 16457, "length": 91342, "recurrence": 138344, "conditional": 28948, "currently": 34307, "openended": 116485, "loosely": 97634, "gpt23": 66615, "sim": 151198, "efficiently": 46755, "argue": 12400, "resolve": 142338, "extend": 55614, "sample": 145941, "speculate": 154372, "modify": 109884, "causal": 21173, "retriever": 144255, "matters": 99653, "scaled": 146358, "hundreds": 71534, "brown": 19250, "remarkable": 140113, "carbon": 20746, "footprint": 60346, "researchers": 142160, "greener": 67814, "orders": 117258, "magnitude": 98198, "converting": 31998, "description": 39402, "combined": 25890, "gradientbased": 67401, "gives": 66054, "latin": 89578, "million": 102217, "spanning": 153668, "21st": 765, "century": 21361, "series": 148898, "illustrate": 72143, "affordances": 6352, "languagespecific": 87161, "scholarship": 146827, "art": 12541, "partofspeech": 120289, "tagging": 160890, "missing": 102525, "sense": 148379, "disambiguation": 42640, "querying": 134647, "nearest": 112095, "neighbors": 112582, "drive": 44972, "come": 26001, "type": 170292, "ask": 12833, "tries": 169753, "background": 15432, "deeper": 37840, "things": 166127, "occurring": 115592, "progress": 129936, "datadriven": 36036, "19k": 554, "elicited": 47048, "person": 122538, "highlevel": 69682, "discourse": 42699, "engage": 48811, "pragmatic": 125549, "seek": 147650, "reasonable": 136587, "highlight": 69721, "generators": 65634, "lowdata": 97799, "regimes": 138918, "subset": 157995, "reviews": 144572, "examine": 52363, "aspects": 12922, "insertion": 77473, "characterlevel": 22494, "synthetic": 160012, "noise": 113972, "keyword": 81612, "generations": 65275, "peak": 120637, "approximately": 12020, "verb": 176431, "construction": 30204, "express": 55557, "messages": 100541, "choice": 23683, "depend": 39131, "main": 98216, "phenomenon": 122826, "50k": 1330, "judgments": 81327, "5k": 1412, "distinct": 43199, "alternation": 8545, "includes": 74356, "200": 615, "verbs": 176457, "varies": 175678, "arguments": 12443, "preferences": 126031, "tend": 164298, "vernacular": 176552, "growth": 68077, "encouraged": 48609, "african": 6376, "american": 8659, "traditionally": 167719, "oral": 117155, "historically": 70213, "dominant": 44642, "availability": 15045, "creating": 33284, "tweet": 170206, "sentiment": 148605, "classifiers": 24178, "classifications": 24142, "increases": 75278, "occurrences": 115591, "positive": 124284, "rigor": 144849, "view": 176809, "spoken": 154565, "virtual": 176858, "assistants": 13403, "literal": 93148, "says": 146203, "tell": 164193, "love": 97728, "message": 100537, "send": 148371, "users": 173570, "contact": 30285, "voice": 177520, "convert": 31985, "deliver": 38063, "rulebased": 145695, "integrates": 78546, "linear": 92948, "constituency": 30007, "parsing": 119951, "investigated": 80525, "copynet": 32124, "explored": 55333, "gauge": 62819, "naturalness": 111984, "faithfulness": 57086, "chose": 23738, "meteor": 100610, "separately": 148699, "similarly": 151388, "achieving": 4127, "638": 1461, "830": 1694, "159": 437, "37": 1087, "crowdsourced": 33722, "compositional": 27808, "demographic": 38200, "usually": 174887, "individually": 75759, "personalized": 122585, "people": 120709, "longitudinal": 97558, "compositionally": 27833, "partial": 119974, "gender": 62884, "age": 6384, "location": 97298, "religion": 139812, "associations": 13530, "attributes": 14102, "ethical": 50788, "implications": 72897, "cls": 24584, "advent": 6156, "shifted": 149930, "discriminative": 42839, "rankers": 135788, "revisit": 144609, "similaritybased": 151387, "unlikelihood": 172026, "losses": 97705, "channels": 22413, "channel": 22409, "corresponds": 32618, "viewpoint": 176828, "french": 61590, "endows": 48716, "flexible": 59796, "unconditional": 170707, "partially": 119981, "incomplete": 74808, "observations": 115334, "spread": 154595, "czech": 34490, "german": 65758, "sampled": 145970, "unconditionally": 170713, "qualitydiversity": 134301, "tradeoffs": 167570, "incremental": 75466, "nonincremental": 114077, "bidirectional": 18337, "incrementally": 75470, "assume": 13546, "processed": 129041, "forwards": 60674, "behave": 16549, "seen": 147685, "happen": 68623, "impacted": 72746, "alleviated": 8307, "regime": 138912, "truncated": 169825, "right": 144829, "hypothetical": 71643, "adapters": 4724, "great": 67679, "nontrivial": 114149, "introducing": 80223, "adapter": 4699, "inserted": 77470, "tuned": 169947, "way": 177758, "obtain": 115459, "contained": 30318, "bypassing": 19570, "component": 27729, "considered": 29680, "plugin": 123675, "agnostic": 6818, "independent": 75494, "adapted": 4680, "consistently": 29850, "half": 68314, "iwslt14": 81174, "germanenglish": 65769, "composing": 27800, "variants": 175626, "capturing": 20713, "token": 166688, "distances": 43125, "position": 124254, "distance": 43116, "precise": 125571, "rescale": 141544, "concretely": 28925, "weighted": 178086, "learnable": 90080, "adjusting": 5542, "rescaled": 141545, "coefficients": 25421, "proper": 131610, "ranges": 135736, "clip": 24389, "relu": 139817, "multiply": 111124, "vanilla": 175568, "distractions": 43311, "filtering": 58350, "education": 45513, "educationally": 45633, "mcqs": 99729, "topic": 167310, "incorrect": 75142, "options": 117139, "receives": 137322, "missed": 102522, "opportunity": 116883, "lot": 97712, "room": 145579, "filter": 58344, "select": 147765, "answered": 9809, "start": 154952, "dg": 41347, "confirmed": 29398, "effect": 45645, "spiking": 154552, "energyefficient": 48801, "mobile": 102894, "robots": 145213, "crucial": 33746, "realworld": 136389, "increasingly": 75372, "offset": 115898, "onboard": 115955, "emerging": 47500, "intelligence": 78712, "neuromorphic": 113005, "processors": 129363, "robotic": 145187, "controllers": 31660, "dimensional": 42319, "paradigm": 119424, "inherent": 76932, "represent": 140636, "actor": 4470, "conjunction": 29460, "critic": 33442, "drl": 45025, "population": 124109, "coding": 25364, "scheme": 146779, "dramatically": 44885, "capacity": 20494, "advantages": 6127, "applicability": 10248, "integrated": 78511, "spectrum": 154355, "onpolicy": 116155, "offpolicy": 115895, "deployed": 39206, "chip": 23676, "benchmarked": 17122, "mainstream": 98303, "fair": 57026, "validated": 175338, "consumed": 30258, "140": 384, "jetson": 81222, "rl": 145036, "norm": 114173, "descent": 39373, "widely": 178353, "adopted": 5588, "gd": 62848, "understand": 170978, "tendency": 164324, "grow": 67993, "emergent": 47454, "prove": 132613, "approximates": 12033, "discretized": 42828, "saturated": 146183, "activation": 4409, "family": 57191, "described": 39377, "formal": 60495, "automata": 14489, "saturation": 146184, "characterization": 22475, "implicit": 72966, "locally": 97288, "positions": 124280, "averages": 15325, "counting": 32982, "shed": 149846, "light": 92096, "simplification": 151581, "ts": 169913, "transform": 169039, "easier": 45285, "broadly": 19228, "healthcare": 68986, "semiautomated": 148341, "writer": 179702, "simplifying": 151605, "consisting": 29935, "aligned": 8043, "simplified": 151593, "incorporated": 75042, "absolute": 2601, "ensemble": 49629, "autoprompt": 14967, "eliciting": 47056, "motivated": 110171, "kinds": 81661, "reformulating": 138827, "problems": 128446, "tests": 164769, "gauging": 62826, "usage": 172437, "effort": 46827, "guesswork": 68131, "write": 179693, "suitable": 158688, "gradientguided": 67412, "capability": 20267, "elicit": 47034, "relation": 139231, "extractors": 56393, "viable": 176644, "parameterfree": 119690, "capable": 20392, "contrastive": 31342, "follow": 60208, "labeled": 82707, "crossentropy": 33638, "suboptimal": 157906, "driven": 44979, "class": 23864, "contrasting": 31338, "stage": 154724, "obtains": 115552, "robertalarge": 145166, "requiring": 141471, "specialized": 153868, "augmentations": 14329, "banks": 15541, "leads": 89870, "datatotext": 37209, "iterative": 81112, "editing": 45444, "maximizes": 99682, "completeness": 27307, "abilities": 1873, "trivial": 169784, "templates": 164225, "iteratively": 81149, "filtered": 58349, "heuristic": 69305, "reranked": 141522, "offtheshelf": 115902, "cleaned": 24253, "e2e": 45221, "caveats": 21282, "benefits": 17458, "formulation": 60637, "opens": 116548, "generaldomain": 63071, "semisupervised": 148366, "style": 157732, "indonesian": 75809, "informal": 76254, "daily": 34503, "riddled": 144827, "deviations": 41297, "hand": 68480, "styletransfer": 157786, "build": 19299, "artificial": 12643, "dealing": 37267, "phrasebased": 122885, "alternatively": 8590, "finedtuned": 58846, "equally": 50162, "costs": 32811, "findings": 58630, "promising": 130209, "controlled": 31631, "convey": 32015, "inner": 77129, "feelings": 57842, "mental": 100492, "adapt": 4509, "emotional": 47576, "posit": 124251, "losing": 97658, "affect": 6297, "intensity": 78996, "emotion": 47559, "probabilistic": 128079, "category": 21148, "finegrained": 58849, "emotions": 47599, "fall": 57118, "extreme": 56415, "intensities": 78995, "resilient": 142326, "delivers": 38076, "detailed": 40260, "interpretability": 79633, "diagnostics": 41393, "dnns": 43799, "predictive": 125942, "thought": 166216, "transparency": 169573, "demystify": 39062, "rigorous": 144850, "missioncritical": 102536, "utilizes": 175120, "pattern": 120499, "disentangles": 43041, "equivalent": 50200, "llms": 94237, "convenient": 31683, "llmbased": 94111, "toolkit": 167081, "profile": 129693, "plot": 123654, "merging": 100529, "home": 70310, "lending": 91340, "credit": 33406, "augmented": 14335, "richer": 144816, "mention": 100512, "decade": 37327, "witnessed": 178560, "mentions": 100516, "insignificant": 77672, "conll": 29465, "2012": 635, "majority": 98457, "ptlm": 133525, "nlg": 113650, "bertstyle": 17650, "ptlms": 133526, "span": 153646, "infilling": 76167, "t5style": 160736, "relational": 139267, "commonsense": 26252, "everyday": 52156, "concepts": 28635, "unify": 171775, "mutually": 111348, "reinforce": 139031, "conceptaware": 28630, "calm": 19689, "pack": 118489, "relying": 139896, "yielding": 179995, "consistent": 29802, "structural": 156508, "functional": 61869, "decomposition": 37634, "personality": 122569, "captioning": 20572, "communication": 26344, "caption": 20561, "trait": 168852, "speaker": 153829, "listener": 93135, "captions": 20603, "encourages": 48610, "traits": 168853, "expect": 53733, "encoding": 48502, "honor": 70340, "kings": 81671, "league": 89924, "legends": 91326, "grand": 67468, "multiagent": 110304, "stateaction": 155028, "raised": 135460, "accordingly": 3065, "falls": 57146, "handling": 68582, "combinations": 25853, "hero": 69281, "pool": 123933, "limits": 92904, "heroes": 69282, "mastered": 99396, "methodologically": 101186, "combination": 25819, "curriculum": 34348, "selfplay": 148024, "adaption": 4767, "value": 175464, "montecarlo": 110093, "treesearch": 169684, "addressing": 5426, "scalability": 146209, "issue": 80882, "skillfully": 152145, "defeat": 37883, "esports": 50564, "players": 123487, "superiority": 159065, "contributed": 31425, "lowlevel": 97865, "vision": 176886, "superresolution": 159082, "ipt": 80823, "wellknown": 178165, "imagenet": 72381, "corrupted": 32623, "drew": 44969, "26": 858, "100gb": 179, "conversation": 31773, "advancement": 5821, "breakthroughs": 19018, "object": 115102, "gan": 62595, "paintings": 118513, "leap": 89951, "exciting": 52870, "aforementioned": 6364, "lagging": 83062, "creativity": 33388, "ultimate": 170577, "aesthetic": 6293, "painting": 118512, "draw": 44907, "inspirations": 77695, "movement": 110220, "kline": 81684, "creative": 33361, "artworks": 12817, "intrinsic": 79884, "texttoimage": 165810, "descriptions": 39430, "prototype": 132594, "recycle": 138370, "lag": 83056, "dutch": 45108, "tuning": 169957, "transforming": 169378, "medium": 100256, "realistic": 136281, "identifiable": 71780, "assessed": 13137, "scratch": 147212, "notoriously": 114333, "recast": 137286, "controlling": 31661, "interface": 79416, "programs": 129889, "altering": 8535, "hyperparameters": 71601, "learns": 91171, "manipulating": 98935, "activations": 4418, "permanent": 122477, "repurpose": 141034, "overwriting": 118457, "noun": 114338, "aversion": 15328, "offensive": 115613, "disentangling": 43043, "schema": 146765, "ascii": 12825, "sharing": 149836, "identical": 71776, "applies": 10827, "serves": 149030, "onetomany": 116046, "exists": 53659, "look": 97609, "tackle": 160798, "cues": 33923, "scenarios": 146520, "boundary": 18912, "beginning": 16534, "ending": 48708, "unknown": 171932, "bbc": 16487, "classified": 24143, "107": 200, "180": 519, "artificially": 12800, "comes": 26011, "thanks": 165981, "uncertainty": 170662, "surprisal": 159532, "humor": 71531, "studied": 156919, "actual": 4480, "break": 18985, "setup": 149669, "special": 153846, "incongruity": 74820, "disrupting": 43094, "audience": 14156, "expectations": 53739, "calculate": 19602, "values": 175516, "conducting": 29303, "semeval": 148330, "2021": 658, "evolution": 52251, "phylogenetic": 122892, "alleviates": 8308, "circumventing": 23786, "label": 82672, "acquisition": 4285, "borrow": 18873, "bioinformatics": 18505, "philosophies": 122855, "mutual": 111335, "maximization": 99667, "piece": 122970, "viewing": 176827, "maximizing": 99685, "biologically": 18516, "desirable": 40028, "illustrative": 72169, "evolutionary": 52285, "conserved": 29557, "outline": 117487, "rationale": 136050, "naturallanguage": 111967, "prompt": 130362, "computationally": 28418, "modelsa": 109747, "suite": 158714, "complementary": 27251, "promptbased": 130750, "pipeline": 123028, "automating": 14879, "refined": 138744, "dynamically": 45179, "selectively": 147908, "regression": 138950, "11": 218, "assumptions": 13567, "expertise": 54604, "constitutes": 30015, "pile": 122983, "crossdomain": 33622, "textitthe": 165656, "825": 1688, "22": 768, "newly": 113524, "untuned": 172300, "conversely": 31977, "cc": 21289, "indepth": 75511, "exploratory": 55118, "concerning": 28751, "prospective": 132538, "lottery": 97724, "tickets": 166319, "overparameterized": 118396, "focusing": 60170, "shorten": 150031, "expense": 53771, "demands": 38152, "computationallyefficient": 28428, "fullyconnected": 61805, "sublayers": 157884, "inside": 77477, "structured": 156623, "winning": 178534, "early": 45239, "comprehensive": 27941, "squad": 154639, "prefixtuning": 126106, "optimizing": 117105, "facto": 56769, "modifies": 109882, "necessitates": 112170, "storing": 155888, "keeps": 81432, "frozen": 61655, "optimizes": 117103, "vector": 176375, "prefix": 126094, "draws": 44958, "inspiration": 77682, "prompting": 130849, "subsequent": 157943, "tabletotext": 160776, "01": 12, "extrapolates": 56408, "proposing": 132494, "ssr": 154664, "seq2seq": 148717, "supervising": 159188, "rewrite": 144730, "imperfect": 72806, "spans": 153689, "ground": 67825, "truth": 169875, "substantially": 158111, "helpful": 69200, "smallsize": 152466, "generator": 65614, "indicates": 75634, "transferring": 169030, "knowledgebased": 82530, "boosts": 18848, "dedicated": 37672, "reaches": 136131, "resolution": 142335, "introduction": 80249, "exception": 52805, "trend": 169697, "appended": 10243, "spanpair": 153688, "hinders": 70153, "complete": 27269, "removes": 140363, "competitively": 27211, "controllable": 31612, "story": 155893, "variable": 175590, "lvms": 97984, "underexplored": 170763, "opendomain": 116444, "threads": 166264, "controllability": 31607, "satisfying": 146178, "advocate": 6278, "essentially": 50648, "hurting": 71553, "posterior": 124489, "incontext": 74838, "attracted": 14032, "lots": 97720, "versatile": 176556, "judiciously": 81342, "selecting": 147808, "sampling": 146082, "retrieve": 144212, "formulate": 60613, "selected": 147791, "unleash": 171975, "retrievalbased": 144198, "yield": 179957, "notably": 114254, "419": 1207, "455": 1243, "nq": 114784, "investigation": 80623, "distilling": 43185, "tiny": 166632, "students": 156838, "mbert": 99711, "xlmr": 179843, "servers": 149028, "devices": 41302, "showcasing": 150106, "careful": 20772, "mtop": 110293, "959": 1806, "teacher": 163610, "revisiting": 144614, "modified": 109877, "googles": 66332, "deploying": 39230, "remained": 139957, "apart": 10139, "restricting": 143007, "userfriendliness": 173548, "bottleneck": 18884, "quadratic": 133961, "team": 163660, "approximated": 12019, "lowrank": 97882, "matrix": 99633, "depends": 39176, "projection": 130096, "dimension": 42314, "acts": 4478, "affects": 6327, "audios": 14209, "vice": 176657, "versa": 176554, "descriptive": 39520, "differently": 42115, "takes": 160976, "generates": 64052, "produced": 129483, "genetic": 65679, "stylegan2": 157778, "visionandlanguage": 177008, "multilabel": 110439, "classifier": 24146, "region": 138921, "scorer": 147117, "referring": 138708, "singletask": 151901, "emails": 47126, "drafting": 44871, "responses": 142718, "engineers": 49007, "email": 47122, "feasibility": 57347, "incoming": 74804, "drawing": 44923, "disciplines": 42676, "software": 152768, "engineering": 48874, "business": 19535, "encountered": 48575, "economic": 45390, "viability": 176642, "analysing": 8789, "market": 99230, "demand": 38123, "technically": 163730, "economically": 45400, "labeling": 82752, "datahungry": 36059, "competitive": 27156, "frameworks": 61503, "synthesize": 159983, "expertcurated": 54601, "rest": 142982, "constructing": 30189, "adapts": 4797, "estimated": 50731, "weather": 177984, "outperforming": 117665, "100": 143, "lmbased": 97079, "obstacle": 115452, "augments": 14405, "replacing": 140473, "pairing": 118540, "consistency": 29748, "sure": 159409, "correctly": 32455, "reconstructed": 138296, "having": 68867, "formulated": 60627, "utilizing": 175166, "boost": 18815, "force": 60358, "aigenerated": 7398, "advice": 6268, "trusted": 169841, "advisor": 6276, "peoples": 120743, "lives": 93263, "concern": 28735, "arises": 12460, "rules": 145707, "profit": 129704, "behavioural": 16742, "corrupt": 32622, "mitigates": 102643, "harm": 68710, "participants": 119990, "engaging": 48842, "lie": 92061, "behaviour": 16731, "corrupts": 32631, "ais": 7696, "corrupting": 32625, "exploring": 55447, "proliferation": 130122, "rise": 144885, "ran": 135511, "grew": 67815, "hindered": 70137, "parallelization": 119589, "usher": 173926, "carry": 20833, "burgeoning": 19521, "bolstered": 18786, "rapid": 135840, "derives": 39368, "groundbreaking": 67847, "stories": 155879, "adults": 5670, "internet": 79579, "products": 129609, "informing": 76898, "scalable": 146228, "reliable": 139712, "resort": 142363, "proxy": 133435, "clickthrough": 24298, "rates": 136031, "survey": 159594, "questionanswer": 134961, "qag": 133939, "intended": 78971, "20k": 740, "summaries": 158753, "pegasus": 120693, "raters": 136030, "weekly": 178059, "quizzes": 135366, "google": 66307, "surveys": 159710, "platform": 123377, "enjoyable": 49588, "calibrate": 19621, "numerous": 115020, "format": 60538, "cause": 21239, "vary": 176262, "placed": 123180, "mitigate": 102586, "asking": 12879, "fit": 59677, "calibration": 19628, "uniform": 171764, "gpt2s": 66623, "300": 975, "choices": 23710, "meets": 100294, "highlyefficient": 69972, "exhibits": 53177, "topperforming": 167399, "instance": 77794, "16": 448, "days": 37246, "8gpu": 1737, "accelerating": 2788, "minimalist": 102363, "exceptional": 52806, "master": 99393, "handwritten": 68619, "integers": 78473, "hint": 70176, "machines": 98165, "generalizable": 63116, "tasked": 161835, "perceived": 120757, "structurally": 156532, "valid": 175291, "afford": 6346, "carefully": 20790, "design": 39537, "interpolation": 79620, "extrapolation": 56410, "wrt": 179808, "split": 154558, "comprehend": 27840, "undertake": 171563, "chain": 21448, "extrapolate": 56406, "humanlevel": 71221, "discover": 42724, "infeasible": 75931, "solve": 153091, "merely": 100522, "contributes": 31428, "bridging": 19086, "intensively": 79004, "bridge": 19037, "crossmodal": 33678, "imagetext": 72520, "invalid": 80306, "choose": 23722, "implicitly": 72996, "led": 91212, "unlike": 171989, "adopts": 5661, "construct": 30118, "multisource": 111150, "uniter": 171879, "humanlike": 71241, "permeating": 122483, "unfortunately": 171659, "unfiltered": 171649, "biased": 18223, "moral": 110106, "bring": 19114, "surface": 159410, "geometrically": 65731, "pca": 120621, "reflecting": 138809, "phrases": 122888, "expressed": 55566, "preventing": 127550, "toxic": 167448, "degeneration": 37979, "arbitrary": 12075, "guiding": 68269, "producing": 129543, "normative": 114197, "showcase": 150065, "realtoxicityprompts": 136386, "testbed": 164657, "metacognitive": 100564, "reasoners": 136610, "elaborations": 46972, "elaboration": 46971, "deductive": 37693, "reasoned": 136605, "facilitates": 56676, "explained": 54754, "faithful": 57075, "passagelevel": 120339, "limitation": 92493, "512": 1336, "truncate": 169824, "limit": 92479, "chunk": 23749, "querydocument": 134642, "decisions": 37451, "direct": 42366, "introduces": 80172, "adversely": 6256, "affected": 6318, "remedy": 140332, "passage": 120332, "labelling": 82775, "314": 998, "ndcg": 112082, "adhoc": 5530, "manageable": 98866, "semeval2021": 148334, "quantifying": 134324, "offensiveness": 115630, "offense": 115612, "subjective": 157851, "senses": 148403, "cultural": 33942, "competence": 27119, "humorous": 71533, "compelling": 27103, "recommendation": 138189, "havent": 68865, "explores": 55379, "ensembles": 49650, "intricacies": 79829, "rating": 136039, "ranked": 135782, "subtask": 158176, "1b": 559, "33": 1019, "leaderboard": 89791, "subtasks": 158178, "mask": 99286, "vs": 177594, "clozestyle": 24582, "bound": 18903, "encodes": 48500, "attempted": 13802, "searching": 147446, "disjoint": 43051, "64": 1463, "really": 136340, "somewhat": 153266, "surprisingly": 159558, "picture": 122966, "1bit": 567, "lamb": 83076, "largebatch": 89136, "gpus": 67353, "tcp": 163590, "adam": 4505, "bandwidth": 15531, "adaptive": 4770, "layerwise": 89688, "communicationefficient": 26426, "implementation": 72831, "compressed": 28191, "pytorch": 133858, "usability": 172429, "bertlarge": 17634, "8k": 1738, "64k": 1472, "256": 847, "timewise": 166628, "speedup": 154520, "samplewise": 146081, "uncompressed": 170705, "simulations": 151727, "argumentative": 12438, "opinion": 116801, "develops": 41290, "agentbased": 6510, "argumentation": 12435, "deliberative": 38051, "socalled": 152522, "linguistics": 93087, "equipped": 50178, "belief": 16753, "submit": 157894, "simulate": 151632, "collective": 25763, "deliberation": 38049, "claims": 23834, "2013": 636, "remain": 139910, "passive": 120367, "confirmation": 29396, "homophily": 70327, "trigger": 169754, "polarization": 123801, "actively": 4446, "conservation": 29554, "dominated": 44650, "properties": 131629, "creation": 33331, "critically": 33574, "pivotal": 123137, "closes": 24543, "pointing": 123733, "fruitful": 61691, "meansquared": 99819, "estimator": 50764, "turing": 170161, "estimating": 50742, "objects": 115270, "names": 111422, "coverage": 33050, "mass": 99336, "goes": 66228, "cryptographic": 33893, "wwii": 179816, "ecology": 45381, "characterizes": 22486, "maximal": 99660, "alphabet": 8522, "bases": 16389, "investigates": 80541, "stored": 155865, "kb": 81413, "paris": 119933, "capital": 20549, "probes": 128145, "interpreted": 79721, "neighbor": 112575, "03": 24, "factor": 56774, "exploits": 55041, "compose": 27786, "la": 82669, "ubiquitously": 170552, "labs": 82874, "modest": 109860, "recipe": 138022, "lowend": 97808, "server": 149025, "optimizations": 117054, "fraction": 60881, "goto": 66348, "finetunes": 59143, "situations": 151941, "finds": 58836, "reason": 136553, "readytouse": 136212, "needs": 112463, "conditions": 28999, "margins": 99204, "competition": 27144, "highest": 69658, "isnt": 80871, "conditioning": 28988, "string": 156325, "problematic": 128441, "compete": 27116, "pc": 120620, "finite": 59626, "lowers": 97856, "strings": 156330, "pointwise": 123777, "compensates": 27113, "option": 117135, "term": 164363, "proportional": 131682, "priori": 127963, "calibrated": 19623, "zhao": 180383, "uncalibrated": 170655, "crosswords": 33714, "wordplay": 178710, "puzzles": 133817, "crossword": 33712, "uk": 170572, "advancing": 6075, "adversarially": 6242, "definition": 37961, "cipher": 23763, "manipulations": 98964, "expert": 54548, "flexibly": 59832, "combining": 25962, "nonneural": 114110, "metalinguistic": 100580, "systematicity": 160210, "perturbing": 122765, "curricular": 34347, "considerably": 29641, "bestperforming": 17773, "fails": 56993, "unsolved": 172199, "innovation": 77142, "parameterefficient": 119655, "soft": 152731, "condition": 28943, "backpropagation": 15455, "exceed": 52736, "matches": 99439, "reuse": 144307, "burden": 19513, "li": 92017, "documenting": 43881, "webtext": 178054, "colossal": 25797, "clean": 24245, "crawled": 33163, "turning": 170181, "everlarger": 52154, "scraping": 147211, "portions": 124130, "documentation": 43865, "c4": 19584, "raffel": 135413, "filters": 58367, "snapshot": 152505, "crawl": 33162, "came": 19692, "unexpected": 171614, "patents": 120419, "military": 102216, "websites": 178051, "disproportionately": 43083, "minority": 102431, "webscale": 178038, "crosstask": 33707, "crowdsourcing": 33728, "crowdworkers": 33740, "define": 37930, "looking": 97616, "longstanding": 97581, "humanreadable": 71328, "61": 1440, "humanauthored": 71136, "inputoutput": 77377, "mapped": 99139, "metadataset": 100567, "adopt": 5567, "19": 533, "indicating": 75645, "covid19": 33114, "tweets": 170208, "tlms": 166654, "posts": 124518, "reflect": 138788, "populations": 124113, "distinctive": 43267, "probe": 128135, "opinions": 116810, "resemble": 142283, "polling": 123914, "political": 123891, "health": 68929, "predetermined": 125666, "categories": 21084, "reported": 140565, "shell": 149895, "detect": 40343, "rarely": 135951, "occur": 115586, "deteriorating": 40691, "lines": 92994, "rotating": 145615, "flipping": 59850, "increase": 75184, "pizza": 123172, "restaurant": 142984, "genuine": 65694, "precision": 125606, "scientists": 147003, "psychologists": 133509, "sentiments": 148675, "events": 52104, "disasters": 42654, "pandemic": 118679, "depression": 39318, "abrupt": 2584, "employment": 47952, "advancements": 5862, "learningbased": 91153, "twitter": 170225, "situation": 151933, "countries": 32984, "peaks": 120640, "economy": 45404, "stricter": 156296, "employs": 47953, "india": 75558, "selective": 147901, "utilises": 174935, "optimism": 116971, "lowered": 97848, "optimistic": 116972, "group": 67949, "handled": 68580, "authorities": 14432, "delving": 38120, "cv": 34451, "advance": 5671, "pay": 120608, "exclusively": 52892, "harnessing": 68817, "secondorder": 147526, "simultaneously": 151743, "disclose": 42680, "se": 147275, "competent": 27135, "harness": 68782, "multiheaded": 110412, "crosscovariance": 33613, "pooling": 123936, "singular": 151911, "philosophy": 122856, "cola": 25560, "rte": 145676, "accuracies": 3095, "open": 116197, "worthy": 179686, "save": 146188, "welltrained": 178190, "initialize": 77073, "padding": 118498, "zeros": 180107, "approximate": 12012, "multiplication": 111110, "continue": 31186, "pangualpha": 118688, "autoparallel": 14966, "performances": 122328, "mindspore": 102295, "cluster": 24590, "2048": 730, "ascend": 12822, "910": 1761, "parallelism": 119581, "composes": 27798, "optimizer": 117098, "collect": 25651, "broad": 19159, "phrase": 122882, "japanese": 81202, "texttospeech": 165834, "synthesis": 159932, "aka": 7713, "andor": 9405, "account": 3070, "32": 1004, "f1": 56479, "bilstmbased": 18460, "listening": 93139, "tts": 169927, "mean": 99740, "439": 1225, "prosody": 132536, "437": 1223, "synthesized": 159999, "groundtruth": 67933, "breaks": 18999, "unreasonable": 172112, "russian": 145770, "superglue": 158976, "incentives": 74306, "worlds": 179637, "teams": 163668, "collaborate": 25570, "claimed": 23828, "close": 24439, "featured": 57438, "artifacts": 12639, "rankings": 135835, "published": 133689, "notorious": 114332, "explanation": 54772, "dimensionality": 42320, "demographics": 38211, "768": 1596, "principal": 127840, "factorization": 56781, "autoencoders": 14470, "giving": 66063, "debt": 37313, "retrospective": 144291, "bookcorpus": 18799, "underscored": 170934, "documented": 43878, "sparsely": 153748, "gptn": 67304, "motivation": 110203, "composition": 27803, "offer": 115631, "preliminary": 126112, "highlighting": 69802, "notable": 114209, "deficiencies": 37924, "violates": 176844, "copyright": 32127, "books": 18801, "duplicated": 45099, "skews": 152129, "genre": 65692, "hints": 70181, "religious": 139814, "urges": 172424, "grounded": 67853, "seemingly": 147680, "hallucinated": 68339, "inherently": 76981, "appear": 10224, "remedies": 140331, "constraint": 30050, "reward": 144680, "attentively": 14022, "mixtureofexperts": 102764, "moe": 110014, "followon": 60326, "synergistically": 159861, "outlier": 117483, "disrupt": 43092, "pruning": 133450, "contrary": 31286, "received": 137293, "wisdom": 178552, "fragile": 60889, "removal": 140354, "00001": 1, "layernorm": 89653, "outliers": 117486, "emerge": 47326, "disabling": 42627, "degrades": 38000, "mlm": 102861, "bertfamily": 17632, "electra": 46980, "byt5": 19575, "tokenfree": 166754, "widelyused": 178416, "bytes": 19583, "minimize": 102371, "removing": 140365, "errorprone": 50330, "pipelines": 123109, "amortize": 8674, "operating": 116749, "characterize": 22477, "flops": 59862, "bytelevel": 19580, "tokenlevel": 166768, "counterparts": 32966, "galois": 62541, "extensions": 55706, "generalisation": 63080, "infinite": 76169, "theories": 166061, "exhibiting": 53163, "generalise": 63081, "analogously": 8736, "degrees": 38022, "freedom": 61555, "defined": 37944, "fledged": 59780, "operational": 116763, "categorical": 21082, "gptstyle": 67321, "abstracts": 2690, "gptx": 67330, "casts": 21042, "causally": 21234, "return": 144293, "exceeds": 52755, "offline": 115869, "atari": 13604, "closedbook": 24468, "overlaps": 118371, "remember": 140338, "retained": 143958, "directions": 42454, "decoupling": 37658, "memorizing": 100355, "forcing": 60365, "doing": 44046, "cited": 23802, "argued": 12418, "learnt": 91196, "isolate": 80873, "nonsensical": 114131, "wellformed": 178160, "normal": 114175, "154": 429, "uuas": 175263, "53": 1349, "begs": 16545, "constitute": 30012, "knowing": 81715, "stacking": 154720, "recurrently": 138356, "comprises": 28240, "ingesting": 76926, "ladder": 83054, "repeats": 140440, "involve": 80683, "selfattentive": 147943, "electricity": 46984, "generalpurpose": 63331, "narrow": 111456, "technological": 164065, "nuclear": 114808, "weapons": 177979, "aircraft": 7693, "carriers": 20831, "arguably": 12399, "profound": 129708, "technologies": 164074, "steam": 155544, "exceptions": 52849, "theorized": 166068, "gpts": 67313, "economics": 45401, "distill": 43135, "affairs": 6296, "delayed": 38030, "shaped": 149782, "indirect": 75675, "productivity": 129603, "differentially": 42102, "industrial": 75844, "explanatory": 54912, "consequences": 29523, "prototypical": 132605, "plausibly": 123435, "involved": 80698, "cache": 19587, "repeated": 140431, "asynchronous": 13601, "io": 80810, "easy": 45346, "oneline": 115979, "program": 129723, "python": 133826, "p3": 118481, "puzzle": 133814, "verifier": 176513, "ranging": 135737, "manipulation": 98936, "classic": 23921, "tower": 167443, "hanoi": 68620, "codex": 25333, "solvers": 153183, "18": 514, "397": 1113, "try": 169905, "80": 1650, "puzzlesolving": 133819, "generalizability": 63106, "prevalent": 127508, "instancewise": 77851, "discrimination": 42836, "orthogonal": 117415, "strengths": 156248, "weaknesses": 177957, "tends": 164335, "irrelevant": 80848, "classifying": 24219, "degrading": 38004, "outofdistribution": 117515, "estimates": 50736, "extensively": 55974, "industries": 75864, "finance": 58545, "banking": 15539, "characterized": 22481, "repetitive": 140444, "workflows": 179381, "formally": 60536, "describing": 39395, "employees": 47908, "company": 26550, "plan": 123204, "leveraged": 91686, "extractions": 56374, "backbone": 15407, "oneshot": 116029, "fixed": 59706, "predefined": 125646, "determined": 40717, "cells": 21313, "nets": 112618, "cell": 21307, "modes": 109849, "integrating": 78576, "implement": 72815, "multivariate": 111289, "forecasting": 60372, "plausible": 123424, "spike": 154551, "actornetwork": 4476, "infers": 76164, "evaluates": 51222, "neuronal": 113015, "receptive": 138018, "twin": 170217, "plausibility": 123422, "enriched": 49617, "continuation": 31184, "coherent": 25519, "implies": 73005, "sophistication": 153329, "grammar": 67440, "passing": 120358, "roughly": 145630, "speaking": 153837, "interval": 79782, "syntactical": 159908, "elaborate": 46964, "adoption": 5626, "rising": 144917, "compress": 28184, "emphasize": 47628, "v11": 175270, "vaccine": 175280, "contextaware": 30975, "vaccines": 175281, "refusal": 138843, "clusters": 24603, "vaccination": 175279, "acceptance": 2837, "geographical": 65707, "detailing": 40329, "arise": 12450, "tonal": 166920, "stress": 156280, "connections": 29493, "apparent": 10212, "metadata": 100565, "emoticons": 47558, "interconnected": 79366, "experimented": 54114, "antivaccine": 10128, "neutral": 113044, "costeffective": 32754, "grown": 68066, "leaps": 89955, "bounds": 18921, "utilization": 174987, "deal": 37261, "inheritance": 76995, "198": 548, "mt5": 110285, "evolving": 52303, "salient": 145925, "memories": 100325, "maximized": 99681, "partiallyobservable": 119987, "evolve": 52295, "sensor": 148464, "variables": 175598, "succeed": 158209, "runtime": 145760, "fits": 59687, "richness": 144821, "decades": 37329, "competing": 27139, "whats": 178211, "multiturn": 111263, "wanted": 177695, "offered": 115719, "unaware": 170644, "excel": 52763, "unpredictable": 172098, "hard": 68631, "winner": 178532, "mia": 102170, "textvqa": 165972, "checkpoint": 23544, "t53b": 160728, "huggingface": 70538, "repository": 140625, "align": 7990, "scene": 146725, "dedicate": 37671, "stepbystep": 155693, "cross": 33598, "entropy": 49962, "default": 37876, "indistinguishable": 75689, "scrutinizing": 147265, "distinguish": 43273, "machineauthored": 98143, "subtler": 158195, "harder": 68665, "spot": 154590, "crowd": 33715, "laypeople": 89708, "redundancy": 138627, "incoherence": 74799, "rounds": 145634, "ontology": 116164, "humanwritten": 71507, "paragraphs": 119553, "decodingtime": 37608, "quantifies": 134311, "measurable": 99824, "gaps": 62754, "authored": 14422, "fourteen": 60867, "unveils": 172313, "rationales": 136059, "math": 99520, "tdd": 163593, "analytics": 9260, "presently": 126544, "parsimoniously": 119950, "confirm": 29392, "belong": 16802, "segment": 147721, "ml": 102771, "topical": 167341, "kullbackleibler": 82659, "divergence": 43442, "kld": 81680, "kl": 81675, "identifies": 71840, "validating": 175352, "sparse": 153715, "classroom": 24226, "packing": 118496, "impacting": 72752, "batches": 16466, "variablelength": 175597, "accelerators": 2814, "lengths": 91397, "128": 306, "ratio": 136045, "89": 1732, "inefficiency": 75899, "complicated": 27712, "ordering": 117256, "lost": 97710, "customized": 34401, "kernel": 81442, "implementations": 72862, "formalization": 60527, "wellstudied": 178187, "confer": 29334, "2x": 944, "phase": 122795, "practices": 125505, "ernie": 50251, "zeroshotfewshot": 180377, "plain": 123196, "kind": 81660, "fuses": 62189, "autoencoding": 14474, "tailored": 160906, "54": 1358, "place": 123174, "july": 81345, "08": 77, "906": 1755, "lattices": 89581, "o1": 115091, "regardless": 138901, "entries": 49959, "stores": 155878, "chosen": 23739, "lattice": 89580, "symmetries": 159841, "negligible": 112558, "overhead": 118351, "unmodified": 172055, "continued": 31205, "lis": 93117, "reflects": 138817, "asked": 12863, "receive": 137290, "perennial": 120850, "scholars": 146825, "perspectives": 122697, "worrisome": 179649, "visions": 177094, "forecast": 60368, "ideas": 71757, "today": 166659, "shared": 149806, "response": 142613, "gathered": 62809, "documentlevel": 43882, "id": 71712, "follows": 60327, "html": 70480, "title": 166641, "tags": 160899, "webpage": 178034, "comparably": 26627, "sized": 152080, "textonly": 165660, "autoprompting": 14968, "formatting": 60575, "maria": 99207, "spanish": 153661, "robertabase": 145163, "gpt2large": 66617, "proficient": 129688, "deduplicated": 37700, "135": 348, "archive": 12306, "national": 111489, "spain": 153642, "2009": 627, "extractive": 56375, "ex": 52327, "novo": 114777, "tables": 160764, "semistructured": 148358, "endowing": 48715, "skills": 152146, "ample": 8711, "paragraph": 119547, "regeneration": 138911, "explainable": 54738, "crossencoder": 33635, "humanannotated": 71121, "devoted": 41343, "understudied": 171556, "crossencoders": 33637, "intrinsically": 79902, "possessing": 124363, "biencoder": 18367, "scar": 146469, "approx": 12010, "contributing": 31454, "diversification": 43699, "underspecified": 170976, "ambiguous": 8636, "multifaceted": 110395, "intents": 79037, "rerank": 141521, "insufficient": 78444, "attains": 13763, "proprietary": 132508, "greedy": 67804, "guarantee": 68107, "probable": 128131, "actually": 4487, "adhere": 5521, "optimality": 116964, "quickly": 135336, "resorting": 142366, "emulate": 48041, "dilemma": 42308, "warmup": 177702, "wallclock": 177677, "brittle": 19154, "failed": 56986, "replicating": 140499, "8x": 1739, "4x": 1287, "wall": 177673, "clock": 24433, "22x": 787, "37x": 1095, "125m": 298, "40x": 1200, "retains": 143965, "99": 1830, "17x": 513, "diverges": 43449, "95": 1795, "opportunities": 116820, "undergoing": 170786, "dalle": 34523, "adaptable": 4588, "underscore": 170911, "central": 21335, "security": 147558, "inequity": 75914, "environmental": 50039, "legal": 91276, "considerations": 29659, "homogenization": 70320, "caution": 21270, "defects": 37892, "inherited": 76996, "impending": 72792, "widespread": 178451, "interdisciplinary": 79376, "collaboration": 25577, "commensurate": 26053, "fundamentally": 61987, "sociotechnical": 152722, "unidirectional": 171691, "conversion": 31979, "mathematically": 99608, "ami": 8665, "switchboard": 159784, "werr": 178204, "extra": 56103, "table": 160741, "scholarly": 146815, "outside": 118145, "retrieving": 144277, "body": 18772, "feeding": 57836, "retrieved": 144229, "discussion": 42986, "implying": 73008, "clearer": 24283, "inputting": 77457, "row": 145655, "header": 68909, "rethinking": 143971, "intermediatetask": 79539, "supplementary": 159234, "headlines": 68915, "5000": 1316, "headline": 68913, "9000": 1751, "totally": 167428, "unrelated": 172117, "belonging": 16804, "causation": 21238, "validity": 175389, "xlmroberta": 179846, "causality": 21230, "entropybased": 49968, "changed": 22359, "landscape": 83089, "adversial": 6263, "gans": 62601, "avoids": 15362, "troublesome": 169797, "exposure": 55550, "lets": 91434, "wordbyword": 178695, "rewards": 144720, "surpass": 159450, "instruction": 77962, "137b": 352, "instructiontune": 78379, "60": 1422, "verbalized": 176446, "instructiontuned": 78381, "flan": 59744, "175b": 498, "25": 827, "anli": 9431, "boolq": 18807, "ablation": 2428, "teaching": 163638, "gptneo": 67306, "appropriately": 12001, "proved": 132629, "modulo": 110010, "deepmind": 37861, "division": 43776, "reporting": 140572, "smallest": 152458, "appropriate": 11967, "wellcrafted": 178146, "coax": 24636, "multistep": 111160, "biomedical": 18534, "biobert": 18496, "tune": 169934, "triples": 169778, "2hop": 934, "simpleyeteffective": 151572, "promptengineering": 130840, "rogue": 145450, "obscure": 115314, "representational": 140753, "vital": 177400, "euclidean": 50861, "contextualized": 31125, "13": 317, "dominate": 44649, "striking": 156317, "mismatch": 102513, "postprocessing": 124510, "standardization": 154897, "accounting": 3086, "hyperclova": 71582, "korean": 82644, "nonenglish": 114039, "82b": 1691, "koreancentric": 82648, "koreanspecific": 82649, "tokenization": 166756, "configuration": 29378, "prototyping": 132608, "nonexperts": 114061, "lastly": 89454, "numeracy": 114991, "tremendously": 169696, "numerical": 114997, "preserve": 126663, "numeration": 114993, "minimum": 102398, "sorting": 153334, "reasonably": 136602, "debate": 37283, "monolingual": 110060, "wordnet": 178709, "closely": 24503, "picard": 122958, "unconstrained": 170715, "sql": 154632, "unusable": 172301, "constraining": 30046, "decoders": 37552, "rejecting": 139136, "inadmissible": 74280, "spider": 154547, "cosql": 32647, "texttosql": 165838, "transforms": 169388, "experts": 54637, "examination": 52352, "answeraware": 9808, "keyphrases": 81601, "triplet": 169781, "optimize": 117060, "solid": 152877, "suggesting": 158608, "predominantly": 125976, "steer": 155549, "efforts": 46882, "gqa": 67359, "adapterbased": 4719, "board": 18766, "drop": 45032, "38": 1096, "showcases": 150096, "misalignment": 102461, "calling": 19679, "broaden": 19197, "correlated": 32519, "culture": 33979, "wedding": 178056, "regions": 138929, "customs": 34419, "influenced": 76227, "regional": 138925, "omitted": 115952, "vilbert": 176838, "vcr": 176371, "western": 178206, "nonwestern": 114168, "east": 45343, "asia": 12829, "south": 153541, "africa": 6375, "disparity": 43060, "activities": 4458, "eventually": 52138, "weaklysupervised": 177953, "tableqa": 160761, "berts": 17639, "splits": 154562, "wikisql": 178502, "wikitablequestions": 178503, "comprising": 28252, "injection": 77109, "reranker": 141523, "reframing": 138838, "instructional": 78146, "decomposing": 37627, "prompted": 130807, "reframed": 138836, "125": 295, "averaged": 15322, "pave": 120582, "understood": 171546, "temporary": 164294, "inspect": 77674, "temporarily": 164293, "modulated": 109916, "disambiguating": 42639, "stochastic": 155818, "parses": 119948, "hypothesized": 71641, "ambiguity": 8630, "occasional": 115575, "truthfulqa": 169901, "mimic": 102259, "falsehoods": 57176, "truthful": 169891, "politics": 123912, "crafted": 33141, "falsely": 57177, "false": 57154, "misconception": 102472, "imitating": 72577, "t5based": 160732, "58": 1392, "94": 1784, "deceive": 37337, "truthfulness": 169893, "imitation": 72579, "imbalanced": 72561, "hurts": 71555, "longtail": 97586, "covering": 33067, "wikidata": 178489, "triplets": 169783, "hyperlinks": 71585, "dpr": 44864, "63": 1456, "triviaqa": 169789, "eu": 50858, "funding": 61998, "grant": 67471, "prerequisite": 126197, "monitoring": 110053, "commercial": 26067, "bibliometric": 18332, "databases": 36011, "european": 50865, "commission": 26103, "portal": 124124, "dataflow": 36056, "basis": 16452, "link": 93090, "addressed": 5391, "pertaining": 122735, "financial": 58560, "kaplan": 81409, "upstream": 172390, "pretrainfinetune": 127252, "aside": 12832, "shape": 149773, "protocols": 132585, "t5base": 160729, "t5large": 160733, "redesigned": 138389, "generalizations": 63240, "subjectverb": 157881, "sparser": 153753, "suggestive": 158652, "representing": 140968, "intervening": 79785, "acquiring": 4277, "hallucination": 68348, "prone": 131554, "statements": 155040, "inconsistent": 74828, "complements": 27268, "complement": 27241, "colors": 25796, "imagination": 72545, "unimodal": 171786, "cpt": 33126, "visionlanguage": 177019, "grounding": 67883, "note": 114297, "stimulate": 155795, "reformulates": 138826, "fillintheblank": 58338, "markers": 99228, "mitigating": 102650, "prompttuned": 131537, "173": 490, "deviation": 41296, "refcoco": 138641, "curb": 34044, "emissions": 47549, "benchmarking": 17126, "definitive": 37969, "footprints": 60356, "imperative": 72793, "difference": 41609, "raft": 135417, "completing": 27312, "textbased": 165581, "reserved": 142293, "dont": 44654, "mirrors": 102455, "nonexpert": 114057, "011": 13, "translate": 169404, "collaborative": 25605, "storytelling": 155908, "actors": 4477, "narrators": 111455, "progression": 130038, "scenes": 146748, "partner": 120285, "longform": 97539, "spontaneous": 154582, "narration": 111441, "live": 93257, "audiences": 14160, "theatre": 165994, "europe": 50864, "surveyed": 159708, "members": 100311, "performers": 122388, "narrator": 111454, "responded": 142601, "positively": 124311, "indicated": 75631, "preference": 125999, "enthusiasm": 49794, "artistic": 12807, "outcomes": 117444, "novelty": 114759, "smallscale": 152459, "brings": 19138, "forth": 60643, "blending": 18678, "intentionality": 79030, "wish": 178554, "nft": 113618, "artwork": 12816, "iconic": 71706, "primary": 127799, "goals": 66214, "novels": 114757, "digital": 42272, "career": 20770, "universe": 171919, "centered": 21322, "nonfungible": 114072, "nfts": 113621, "visualized": 177369, "highend": 69574, "care": 20761, "consuming": 30271, "irregular": 80844, "accesses": 2930, "synchronization": 159848, "overheads": 118363, "cpu": 33127, "multicore": 110368, "replay": 140479, "buffer": 19275, "prioritized": 127973, "sum": 158749, "tree": 169655, "supports": 159392, "insertions": 77474, "priority": 127978, "layout": 89700, "store": 155853, "nodes": 113969, "misses": 102524, "concurrently": 28932, "collected": 25678, "dqn": 44865, "ddpg": 37258, "school": 146828, "closed": 24454, "introductory": 80259, "college": 25779, "textbook": 165610, "collegelevel": 25781, "sciences": 146926, "humanities": 71207, "truefalse": 169815, "chapters": 22420, "textbooks": 165612, "blind": 18697, "balanced": 15507, "exam": 52350, "minor": 102422, "misunderstood": 102565, "taken": 160963, "openbook": 116438, "chains": 21558, "humanai": 71105, "chaining": 21476, "assisting": 13443, "llm": 93422, "primitive": 127835, "modular": 109897, "saw": 146199, "interacting": 79083, "contrasted": 31336, "observing": 115445, "debugged": 37316, "subcomponents": 157801, "bibliographic": 18331, "qualification": 133972, "accepted": 2843, "skepticism": 152123, "indexes": 75555, "services": 149075, "companies": 26543, "status": 155525, "substitutes": 158162, "university": 171924, "professor": 129640, "similarities": 151329, "roles": 145557, "conclusion": 28894, "ready": 136211, "statistics": 155523, "pedagogy": 120654, "institutions": 77920, "navigation": 112054, "symbols": 159836, "learner": 90142, "mastering": 99397, "jumping": 81346, "straight": 155915, "acquire": 4248, "curves": 34363, "ages": 6765, "600": 1424, "communicative": 26432, "inventory": 80335, "2007": 625, "children": 23594, "predictors": 125963, "concreteness": 28929, "reinforcing": 139128, "sensorimotor": 148466, "child": 23590, "slower": 152261, "interestingly": 79406, "frequencies": 61598, "transitioning": 169400, "bigram": 18407, "converging": 31772, "nuanced": 114791, "cardiac": 20755, "diagnosis": 41358, "clinical": 24312, "recordings": 138308, "aid": 7353, "doctors": 43808, "diagnoses": 41354, "heart": 69027, "periodic": 122471, "period": 122469, "abnormalities": 2577, "entry": 49969, "exceeding": 52744, "012": 14, "007": 10, "unable": 170596, "preprint": 126179, "incorporates": 75048, "steady": 155536, "accelerated": 2782, "duration": 45102, "bertlike": 17636, "flow": 59870, "encoderonly": 48471, "decoderonly": 37530, "308": 987, "laws": 89610, "opposed": 116895, "fixedsize": 59723, "plots": 123655, "coming": 26028, "families": 57184, "wild": 178508, "verification": 176465, "determining": 40719, "forensic": 60396, "investigations": 80653, "participating": 120035, "recognizing": 138169, "bert2bert": 17623, "upper": 172380, "reusing": 144310, "wasteful": 177738, "twostage": 170251, "did": 41590, "saves": 146193, "47": 1254, "multilevel": 110455, "resorted": 142365, "ehealth": 46955, "plm": 123556, "pretrains": 127483, "discriminator": 42854, "sequencelevel": 148802, "recover": 138319, "identities": 72042, "corruptions": 32630, "robustly": 145340, "inconsistency": 74826, "wording": 178700, "shortcoming": 150018, "mixture": 102750, "eliminating": 47078, "queried": 134445, "medically": 100233, "aware": 15370, "30x": 992, "lowshot": 97944, "preferable": 125997, "coherency": 25518, "composable": 27785, "prevent": 127531, "facets": 56583, "expressive": 55602, "controls": 31671, "realvalued": 136388, "masks": 99333, "ticket": 166317, "alters": 8596, "overfitting": 118339, "transferability": 169008, "160": 458, "interprets": 79743, "consequence": 29522, "heldout": 69069, "16x": 480, "bigbench": 18391, "6x": 1521, "coherence": 25504, "boosting": 18834, "paying": 120610, "insufficiently": 78457, "nexttoken": 113608, "ordinary": 117273, "dialog": 41406, "emerged": 47337, "overnight": 118394, "t5xl": 160737, "minimization": 102369, "allure": 8487, "comparatively": 26655, "sam": 145934, "minima": 102309, "tydiqa": 170291, "extralarge": 56398, "varied": 175666, "democratization": 38189, "15b": 440, "camembert": 19696, "date": 37214, "versions": 176614, "extremescale": 56454, "calculations": 19615, "underlining": 170821, "oscar": 117424, "lowquality": 97878, "comparing": 26974, "supercomputer": 158969, "datafree": 36057, "selfdistillation": 147980, "decreases": 37668, "deviates": 41294, "earth": 45275, "movers": 110223, "decrease": 37661, "90": 1741, "stanford": 154934, "believed": 16795, "supposedly": 159403, "algorithmic": 7876, "encompass": 48523, "bender": 17397, "fraught": 61539, "section": 147534, "uniquely": 171861, "wellsuited": 178188, "stated": 155031, "enjoyed": 49589, "utterance": 175247, "occurred": 115589, "milieu": 102215, "primes": 127833, "lift": 92093, "mrr": 110263, "substitution": 158165, "replace": 140453, "confidentiality": 29372, "explainability": 54717, "carried": 20827, "fake": 57095, "bagofword": 15476, "preprocessed": 126182, "kept": 81437, "colbert": 25562, "msmarco": 110272, "magic": 98193, "pyramid": 133822, "exiting": 53670, "idea": 71723, "mp": 110243, "depthwise": 39335, "manages": 98896, "nonsalient": 114127, "fulfill": 61708, "terminating": 164378, "met": 100553, "arts": 12814, "70": 1522, "floating": 59851, "05": 40, "underpin": 170889, "quadratically": 133968, "childrens": 23597, "conceptual": 28705, "pop": 123975, "post": 124479, "connect": 29469, "blends": 18679, "twice": 170214, "blend": 18674, "supporting": 159367, "divergent": 43447, "convergent": 31770, "associative": 13541, "satisfied": 146167, "interpretations": 79718, "computers": 28523, "445": 1232, "computergenerated": 28521, "clauses": 24244, "clause": 24243, "usefulness": 173360, "incoherent": 74800, "narratives": 111450, "curation": 34034, "higherquality": 69656, "humanlabeled": 71212, "sourced": 153486, "included": 74348, "inadvertent": 74281, "seed": 147638, "curate": 33993, "lists": 93142, "fictional": 58104, "biographies": 18503, "nationality": 111498, "pt": 133524, "fullparameter": 61726, "crossmodel": 33694, "projector": 130105, "projected": 130092, "decides": 37356, "indicators": 75668, "overlapping": 118370, "activated": 4402, "shall": 149761, "normalized": 114188, "squares": 154650, "regularized": 138994, "penalizes": 120698, "penalty": 120701, "minimized": 102379, "newtons": 113600, "identification": 71783, "promoting": 130352, "additive": 5150, "speeding": 154517, "blockwise": 18736, "enhancement": 49377, "separator": 148713, "sequentially": 148891, "depending": 39161, "environment": 49979, "accommodate": 2984, "incurring": 75478, "degradation": 37980, "raven": 136078, "copying": 32122, "abstractions": 2671, "tease": 163675, "modelgenerated": 104954, "humangenerated": 71180, "largerscale": 89260, "frequent": 61605, "pixelated": 123168, "butterfly": 19554, "slow": 152254, "sparsifying": 153761, "core": 32150, "superset": 159084, "flat": 59770, "sparsify": 153760, "mlp": 102867, "3x": 1168, "speeds": 154518, "favorable": 57327, "accuracyefficiency": 3429, "wikitext103": 178504, "25x": 857, "singleshot": 151898, "blackbox": 18619, "malware": 98857, "detectors": 40669, "dlbased": 43789, "malicious": 98834, "cybersecurity": 34474, "sensitivity": 148451, "defender": 37896, "resistance": 142329, "necessity": 112192, "stream": 156223, "evasive": 52063, "functionality": 61883, "gained": 62453, "whitebox": 178227, "enforce": 48802, "detected": 40385, "stealth": 155541, "evasion": 52062, "detector": 40664, "executable": 52895, "emulating": 48050, "correction": 32432, "electronic": 46991, "got": 66347, "typing": 170528, "sites": 151925, "libraries": 92028, "offices": 115865, "purposes": 133766, "elearning": 46977, "tutorials": 170196, "blinded": 18703, "stages": 154759, "corrections": 32450, "privacy": 127984, "preservation": 126659, "steganography": 155578, "spurious": 154612, "reverseengineer": 144465, "private": 128040, "mentioned": 100513, "minimizing": 102384, "compromise": 28266, "guarantees": 68118, "guaranteeing": 68116, "steganographic": 155576, "geometry": 65734, "obfuscate": 115097, "2017": 640, "began": 16522, "attract": 14031, "emergence": 47409, "strengthened": 156245, "methodologies": 101187, "appeared": 10236, "numerically": 115019, "qualitatively": 134023, "foster": 60675, "posed": 124181, "anticipated": 10117, "analysed": 8747, "multidisciplinary": 110380, "exclusion": 52888, "toxicity": 167466, "hazards": 68896, "misinformation": 102479, "harms": 68770, "humancomputer": 71153, "vi": 176641, "automation": 14894, "perpetuation": 122501, "stereotypes": 155783, "unfair": 171638, "leaks": 89947, "inferring": 76159, "misleading": 102505, "erosion": 50259, "trust": 169829, "considers": 29740, "fifth": 58311, "interact": 79048, "unsafe": 172135, "deception": 37349, "sixth": 151953, "disparate": 43055, "communities": 26436, "organisational": 117279, "responsibilities": 142950, "implementing": 72877, "mitigations": 102700, "participation": 120038, "outlined": 117500, "gaudi": 62818, "collections": 25760, "designers": 39979, "inspirational": 77694, "clients": 24306, "preferred": 126077, "thematic": 165996, "keywords": 81618, "following": 60248, "presenting": 126535, "client": 24301, "trillions": 169768, "chunks": 23752, "preceding": 125564, "trillion": 169762, "database": 35984, "retrievalenhanced": 144207, "jurassic1": 81357, "25times": 855, "translates": 169421, "knowledgeintensive": 82557, "chunked": 23750, "crossattention": 33605, "retrofit": 144290, "avenues": 15240, "fragments": 60896, "cone": 29332, "witnessing": 178584, "formalism": 60523, "originally": 117400, "conceivable": 28572, "necessarily": 112129, "physically": 122918, "gptlike": 67301, "fragment": 60891, "termed": 164373, "admits": 5561, "failure": 57003, "incompatibility": 74805, "necessary": 112135, "failures": 57019, "arbitrarily": 12070, "paradigms": 119535, "triangular": 169745, "demostrate": 39061, "dataefficient": 36049, "databased": 36010, "curricula": 34346, "sequencing": 148859, "taskbased": 161829, "exceedingly": 52752, "initialized": 77074, "swahili": 159758, "damaging": 34539, "glam": 66068, "generalist": 63085, "7x": 1648, "consumes": 30269, "29": 908, "webgpt": 178032, "feedback": 57633, "navigate": 112043, "browsing": 19256, "eli5": 47032, "reddit": 138378, "cloning": 24438, "rejection": 139137, "69": 1511, "gopher": 66340, "intelligent": 78933, "280": 890, "152": 424, "factchecking": 56760, "safety": 145831, "imagined": 72548, "versus": 176629, "remembered": 140340, "lifelong": 92087, "experiences": 53857, "unfold": 171651, "weave": 177988, "autobiographical": 14453, "sequentiality": 148890, "inferences": 76143, "cuttingedge": 34428, "pursuit": 133784, "understandings": 171543, "proportions": 131685, "matched": 99435, "influences": 76231, "bhagavad": 18088, "gita": 65808, "songs": 153285, "poems": 123694, "rhythm": 144758, "rhyming": 144757, "ancient": 9403, "hindu": 70169, "philosophical": 122850, "sanskrit": 146136, "lord": 97655, "war": 177697, "hinduism": 70171, "forefront": 60385, "centuries": 21360, "translated": 169416, "validates": 175350, "powered": 125227, "enabled": 48136, "compares": 26970, "verses": 176597, "respective": 142524, "conveyed": 32018, "adjustable": 5540, "adjusts": 5548, "adaptively": 4788, "detects": 40686, "wordvectors": 178763, "eliminates": 47073, "acc": 2767, "metric": 101952, "property": 131669, "selections": 147900, "eliminated": 47072, "experimentally": 54100, "372": 1090, "075": 69, "suggested": 158598, "posits": 124323, "languagemodelasaservice": 86925, "ptms": 133528, "service": 149059, "lmaas": 97078, "unavailable": 170639, "accessing": 2974, "prepended": 126174, "randomly": 135560, "subspace": 158018, "worker": 179373, "crafting": 33153, "evaluative": 52045, "cartography": 20855, "instructs": 78430, "revised": 144600, "outofdomain": 117537, "hans": 68621, "continues": 31217, "reimagining": 139029, "unifiedskg": 171759, "multitasking": 111245, "requests": 141048, "heterogeneous": 69291, "unifies": 171760, "aiming": 7531, "promote": 130334, "exclusive": 52890, "t0": 160678, "extensible": 55696, "opensourced": 116687, "commit": 26104, "mistakes": 102542, "mistakenly": 102541, "homophone": 70329, "synonym": 159879, "prohibitively": 130061, "recorded": 138306, "clarification": 23852, "simulated": 151650, "interactively": 79351, "lowcost": 97797, "cleaner": 24255, "crawling": 33167, "extracts": 56394, "classifies": 24202, "hopefully": 70410, "fooling": 60342, "moss": 110137, "prominent": 130138, "cheat": 23521, "assignments": 13328, "exams": 52730, "pieces": 122975, "gptj": 67291, "wang": 177683, "triggering": 169760, "2000": 617, "plagiarism": 123189, "tells": 164196, "algorithmically": 7891, "lamda": 83079, "consult": 30251, "ensuring": 49722, "harmful": 68720, "translator": 169563, "calculator": 19616, "factuality": 56904, "groundedness": 67881, "helpfulness": 69221, "resonate": 142362, "infrastructure": 76907, "secures": 147555, "singlepoint": 151895, "infrastructures": 76909, "variancereduced": 175612, "bounded": 18914, "calls": 19681, "budgets": 19274, "geographically": 65715, "contextually": 31142, "bigscience": 18410, "catalogue": 21054, "prioritization": 127968, "resulted": 143075, "rights": 144842, "interrogating": 79754, "mindful": 102292, "pitfalls": 123123, "humancentered": 71145, "initiative": 77095, "arabic": 12063, "catalan": 21050, "indic": 75567, "portuguese": 124136, "vietnamese": 176801, "gathering": 62811, "organized": 117294, "lessons": 91429, "counts": 32991, "rife": 144828, "undesirable": 171579, "newswire": 113598, "anchors": 9402, "newspaper": 113594, "country": 32988, "newspapers": 113596, "schools": 146843, "located": 97293, "educated": 45511, "urban": 172405, "codes": 25282, "unaligned": 170620, "sensible": 148405, "literary": 93150, "ideology": 72046, "justification": 81391, "inclusion": 74787, "prompttuning": 131538, "fsl": 61699, "priors": 127979, "heterogeneity": 69287, "hinder": 70130, "fulfills": 61716, "converts": 32006, "visible": 176883, "deepspeed": 37870, "megatron": 100301, "megatronturing": 100303, "530b": 1351, "highperformance": 69978, "nvidia": 115081, "monolithic": 110077, "mtnlg": 110292, "530": 1350, "3d": 1123, "exhibited": 53126, "establishes": 50699, "tackling": 160862, "potentials": 125148, "inspires": 77778, "differ": 41605, "discovering": 42750, "summarize": 158900, "d0": 34493, "checking": 23537, "binary": 18464, "curie": 34046, "13b": 356, "davinci": 37228, "76": 1589, "shifts": 149934, "debug": 37314, "shortcuts": 150029, "cotraining": 32919, "mitchell": 102583, "sanh": 146130, "update": 172325, "fullysupervised": 61811, "invariant": 80322, "sgd": 149752, "adaptivity": 4794, "nonadaptive": 114013, "enjoy": 49587, "affirmative": 6338, "memoryefficient": 100485, "decay": 37334, "optionally": 117138, "multiplied": 111121, "lambda": 83078, "rescaling": 141547, "proving": 133404, "logarithmically": 97320, "converge": 31742, "initializations": 77072, "ethics": 50851, "engagement": 48833, "executing": 52927, "planners": 123232, "gptseries": 67320, "diagrams": 41398, "organization": 117282, "intent": 79005, "concrete": 28918, "subordinate": 157920, "commanders": 26037, "highrisk": 70107, "commander": 26036, "nearby": 112094, "oriented": 117303, "trajectory": 168862, "enhancing": 49449, "correlational": 32555, "nns": 113958, "correlate": 32513, "concentrates": 28578, "51": 1332, "28": 887, "niche": 113632, "heavytail": 69055, "ht": 70479, "correlations": 32557, "formulations": 60642, "pl": 123173, "spectral": 154352, "exponential": 55528, "exp": 53677, "unexplored": 171622, "marks": 99265, "curated": 34005, "probed": 128144, "automaticallygenerated": 14878, "relatedness": 139228, "membership": 100313, "partitioning": 120279, "drastically": 44899, "refers": 138715, "instrumental": 78439, "axes": 15388, "aggregation": 6779, "conclusions": 28907, "rank": 135767, "soundness": 153382, "tac": 160795, "flickr": 59843, "wellestablished": 178154, "collecting": 25706, "naturalistic": 111963, "stimuli": 155806, "approximation": 12038, "proxies": 133425, "evoke": 52246, "pairwise": 118636, "linearly": 92989, "inpars": 77203, "revolution": 144617, "ms": 110265, "bm25": 18764, "retrievers": 144262, "extrapolating": 56409, "gptbased": 67275, "deduction": 37688, "interpreting": 79728, "promptguided": 130848, "decomposes": 37623, "localize": 97282, "conditioned": 28975, "sacrificing": 145790, "maven": 99657, "ace": 3565, "predictability": 125716, "surprise": 159535, "counterintuitive": 32961, "unusual": 172302, "predictable": 125719, "embodied": 47300, "appearance": 10232, "drives": 45001, "qualities": 134029, "anticipate": 10110, "unpredictability": 172097, "conflicting": 29412, "developers": 40933, "motivations": 110208, "list": 93119, "interventions": 79799, "policymakers": 123882, "regulate": 139001, "technologists": 164117, "academics": 2765, "critique": 33591, "conventionally": 31740, "leave": 91200, "universally": 171915, "pmi": 123686, "corruption": 32626, "seeks": 147670, "unstructured": 172209, "facing": 56727, "scarcity": 146483, "categorizing": 21146, "taxonomy": 163571, "welltuned": 178193, "predominant": 125971, "icl": 71653, "taskdependent": 161833, "academia": 2714, "outputting": 118143, "working": 179391, "asses": 13036, "reliability": 139670, "erroneous": 50260, "rational": 136048, "judgement": 81311, "predictably": 125720, "framed": 60901, "highimpact": 69681, "incorrectly": 75181, "deleting": 38042, "trains": 168843, "maintains": 98388, "esc": 50413, "postprocessed": 124509, "posttraining": 124529, "datascarce": 36070, "energybased": 48797, "inferencing": 76152, "super": 158962, "swift": 159769, "lose": 97657, "heavy": 69049, "distributes": 43340, "backbones": 15420, "verified": 176508, "wmt": 178591, "33times": 1035, "29times": 919, "demo": 38171, "succeeded": 158211, "ner": 112585, "guidance": 68135, "insensitive": 77467, "demonstrating": 38915, "trainingfree": 168831, "exacerbated": 52329, "irrespective": 80859, "topology": 167395, "induces": 75830, "nas": 111476, "dubbed": 45088, "paretofrontier": 119932, "arm": 12496, "15x": 447, "12x": 316, "20x": 745, "350m": 1061, "laptop": 87172, "offering": 115725, "unfamiliar": 171643, "hindering": 70144, "motivates": 110196, "seven": 149689, "breeding": 19036, "threat": 166265, "conspiracy": 29998, "threatens": 166277, "integrity": 78699, "sharply": 149844, "threaten": 166275, "threats": 166278, "assigned": 13319, "identity": 72043, "transitive": 169402, "iv": 81172, "imply": 73006, "outsider": 118157, "attendant": 13823, "generalizing": 63290, "decisionmaking": 37394, "humanfriendly": 71179, "vqa": 177565, "compact": 26535, "imagecaption": 72369, "15times": 446, "selfevaluation": 147988, "softmax": 152747, "mt": 110277, "impossible": 73241, "happens": 68626, "150": 419, "infrequent": 76910, "unlikely": 172028, "gradientfree": 67410, "editbased": 45436, "demanding": 38142, "apibased": 10181, "edited": 45437, "instructgpt": 77940, "bloom": 18740, "flant5": 59749, "kshot": 82656, "examplebased": 52513, "simplify": 151601, "nonetheless": 114048, "paid": 118506, "characterizing": 22488, "prlms": 128064, "organize": 117292, "keeping": 81421, "turns": 170188, "coloring": 25795, "blank": 18670, "slate": 152210, "governed": 66356, "declarative": 37490, "spite": 154555, "induce": 75816, "mbart": 99710, "hierarchically": 69383, "passivization": 120370, "learnability": 90079, "dependencybased": 39156, "unwieldy": 172319, "dependent": 39158, "mixing": 102742, "selfsupervision": 148079, "segments": 147759, "vits": 177424, "patch": 120408, "arranged": 12505, "randomized": 135553, "serialization": 148896, "pertinence": 122738, "cifar100": 23759, "modus": 110012, "operandi": 116733, "vpt": 177564, "pertask": 122737, "invisible": 80667, "discovered": 42743, "inaccurate": 74260, "workings": 179406, "unforeseen": 171655, "debiasing": 37305, "valuable": 175399, "unbiased": 170649, "echo": 45376, "rethink": 143970, "criteria": 33424, "ec": 45374, "referential": 138704, "246": 817, "translating": 169424, "translationbased": 169548, "correlates": 32523, "hinting": 70179, "disentanglement": 43040, "complexities": 27650, "moving": 110234, "anomalies": 9653, "deliberate": 38044, "dl": 43781, "delivered": 38069, "discriminating": 42835, "cognitively": 25492, "healthy": 69024, "alzheimers": 8603, "disease": 43021, "ad": 4499, "fitting": 59689, "paired": 118529, "degraded": 37998, "impaired": 72776, "theft": 165995, "generalizes": 63285, "conversations": 31933, "induction": 75832, "deleterious": 38041, "dementia": 38170, "videos": 176767, "visionbased": 177016, "phases": 122812, "videobased": 176750, "bonus": 18794, "sampleefficiency": 145980, "locomotion": 97307, "enriching": 49623, "federated": 57624, "scholar": 146814, "widget": 178483, "presentation": 126506, "widgets": 178484, "contributor": 31512, "linked": 93099, "faceted": 56581, "citations": 23799, "devised": 41334, "technologically": 164072, "feedforward": 57825, "opaque": 116194, "unveiling": 172308, "reverseengineering": 144467, "ffn": 58095, "decomposed": 37619, "humaninterpretable": 71195, "exit": 53669, "aipowered": 7688, "inability": 74251, "relaxed": 139431, "perturbations": 122754, "exhaustive": 53016, "orthographically": 117421, "positional": 124270, "notion": 114326, "compensating": 27114, "conjecture": 29456, "approximating": 12034, "positioning": 124278, "monarch": 110042, "fourier": 60861, "unfavorable": 171647, "densetosparse": 39116, "tractable": 167547, "hardwareefficient": 68705, "parameterized": 119694, "nonconvex": 114030, "analytical": 9249, "unlock": 172032, "vit": 177396, "pde": 120631, "mri": 110261, "reconstruction": 138298, "reverse": 144460, "sparsification": 153755, "openwebtext": 116721, "23": 789, "mlperf": 102870, "record": 138303, "proofofconcept": 131584, "socratic": 152725, "barely": 15571, "overlap": 118365, "visuallanguage": 177372, "vlms": 177448, "internetscale": 79599, "spreadsheets": 154604, "sat": 146149, "symbiotic": 159796, "sms": 152501, "exchange": 52859, "videototext": 176796, "egocentric": 46949, "assistive": 13452, "cooking": 32056, "interfacing": 79473, "palm": 118652, "pathways": 120452, "540billion": 1363, "densely": 39113, "tpu": 167493, "v4": 175276, "chips": 23678, "pods": 123691, "540b": 1360, "breakthrough": 19005, "discontinuous": 42689, "steeply": 155548, "array": 12510, "memorization": 100328, "infused": 76917, "memorize": 100337, "recalling": 137282, "factually": 56921, "counterfactual": 32939, "hallucinatory": 68465, "modifying": 109888, "normally": 114195, "infuses": 76918, "maintain": 98316, "trie": 169751, "armed": 12497, "confirms": 29403, "kids": 81656, "enabler": 48152, "calculates": 19608, "inconsequential": 74821, "pruned": 133446, "threshold": 166300, "formulates": 60632, "regularizer": 138995, "analytically": 9259, "bitlevel": 18601, "termination": 164379, "microarchitectural": 102176, "43": 1217, "19x": 557, "39x": 1117, "virtually": 176876, "intact": 78466, "02": 19, "opening": 116520, "customizations": 34397, "inject": 77099, "definitions": 37965, "bpm": 18937, "controversial": 31676, "disagree": 42633, "synthetically": 160090, "revealing": 144398, "revise": 144599, "repeat": 140428, "humanintheloop": 71197, "strategic": 155935, "collaborating": 25576, "feedbacks": 57823, "revising": 144603, "repeating": 140437, "humanmachine": 71301, "accept": 2824, "reject": 139134, "stops": 155843, "iterations": 81103, "humanmodel": 71310, "restoration": 142990, "jet": 81221, "abstraction": 2665, "simulates": 151672, "nongenerative": 114075, "reception": 138017, "messaging": 100551, "respond": 142586, "organizations": 117286, "perceptions": 120833, "crisis": 33422, "centers": 21330, "prevention": 127554, "cdc": 21296, "relating": 139230, "jax": 81217, "frontiers": 61653, "adopting": 5611, "gptneox20b": 67312, "freely": 61570, "permissive": 122485, "submission": 157886, "languageunderstanding": 87168, "reasoner": 136606, "fiveshot": 59696, "fairseq": 57073, "initially": 77078, "infrequently": 76911, "subgroup": 157822, "analyzed": 9346, "held": 69066, "volumes": 177542, "mgpt": 102166, "parallelize": 119591, "xglm": 179828, "facebook": 56558, "nations": 111500, "thoroughly": 166199, "preparation": 126161, "covered": 33065, "spectre": 154354, "xl": 179839, "supernaturalinstructions": 159078, "1600": 459, "expertwritten": 54691, "tkinstruct": 166650, "instructionfollowing": 78172, "metalearningbased": 100579, "finetuningbased": 59616, "metricbased": 101991, "metalearning": 100574, "acquired": 4267, "retrievalaugmentation": 144167, "unlabelled": 171964, "straightforward": 155917, "nonretrieval": 114125, "referencing": 138702, "compiling": 27238, "accompanied": 2992, "datas": 36068, "summary": 158930, "fiction": 58103, "rugpt3": 145689, "160000": 461, "mixedinitiative": 102730, "clarifying": 23860, "session": 149110, "inline": 77126, "asks": 12892, "studying": 157716, "gpt2based": 66616, "singleturn": 151903, "turkish": 170167, "prepare": 126169, "suffixes": 158512, "mediumsized": 100261, "supported": 159357, "wordlevel": 178703, "dictionaries": 41584, "patients": 120481, "tipofthetongue": 166637, "provider": 133095, "indian": 75560, "faced": 56560, "tlm": 166653, "flaws": 59778, "inferencetime": 76147, "incurs": 75483, "speedups": 154530, "paves": 120590, "modelindependent": 104962, "prohibitive": 130054, "usable": 172436, "ondevice": 115963, "sensors": 148468, "smartphones": 152489, "startups": 154976, "modelagnostic": 104918, "reached": 136123, "savings": 146198, "adaptations": 4679, "sparql": 153709, "gold": 66236, "arrange": 12504, "dbpedia": 37252, "tokenisation": 166755, "copied": 32101, "kg": 81629, "tailor": 160905, "ctg": 33910, "satisfy": 146170, "guides": 68256, "switch": 159782, "prespecified": 126707, "concatenated": 28564, "multiattribute": 110350, "concatenating": 28568, "connector": 29502, "attributespecific": 14136, "008": 11, "execution": 52938, "stem": 155581, "traversing": 169627, "gpt34": 66786, "lora": 97635, "principles": 127852, "differential": 42098, "functionally": 61890, "conceptualize": 28726, "curved": 34362, "manifold": 98921, "tensor": 164354, "defines": 37952, "subspaces": 158020, "formalize": 60529, "secondary": 147517, "continual": 31159, "cnns": 24618, "transformed": 169082, "harnessed": 68801, "neurosymbolic": 113036, "ushered": 173927, "serving": 149092, "naturallanguagebased": 111971, "element": 47006, "avoided": 15355, "conceptualizing": 28729, "complemented": 27265, "pronounced": 131574, "miracle": 102448, "ai21": 7324, "seeding": 147647, "argues": 12423, "conformance": 29423, "lacks": 83043, "differs": 42119, "envision": 50125, "deliberately": 38047, "interrupting": 79755, "cycles": 34484, "hypothesise": 71632, "adherence": 5523, "notions": 114330, "simplistic": 151607, "counter": 32930, "instancelevel": 77813, "attending": 13826, "mixedeffects": 102728, "outofsample": 117547, "dropout": 45041, "domainadaptation": 44324, "ranker": 135786, "prefinetuning": 126093, "mismatches": 102517, "discrepancy": 42793, "prefinetuned": 126092, "gleaned": 66076, "pretrainingthenfinetuning": 127482, "yielded": 179989, "vl": 177429, "brandnew": 18969, "severely": 149716, "innovative": 77154, "abbreviated": 1864, "268": 868, "31": 993, "mrc": 110257, "solved": 153173, "seminal": 148351, "refer": 138643, "indefinite": 75491, "dog": 44044, "sentential": 148602, "operators": 116798, "negation": 112503, "psycholinguistic": 133495, "higherlevel": 69652, "challenged": 21753, "basic": 16406, "idioms": 72050, "figurative": 58316, "cultures": 33982, "idiomatic": 72049, "98": 1824, "macro": 98174, "dialogpt": 41438, "idiom": 72048, "hub": 70494, "abbreviation": 1865, "augmentative": 14331, "aac": 1856, "severe": 149706, "motor": 110209, "impairments": 72779, "aggressively": 6789, "letters": 91440, "abbreviations": 1866, "replies": 140506, "exactly": 52346, "77": 1598, "expansions": 53723, "doubles": 44680, "cheaper": 23517, "previouslyunseen": 127756, "peft": 120677, "rigorously": 144877, "attaining": 13757, "tfew": 165976, "window": 178517, "thoughts": 166242, "beliefs": 16759, "abundant": 2696, "structuring": 156721, "problemsolving": 128654, "defacto": 37872, "vaebased": 175284, "drain": 44877, "empowered": 47998, "oracle": 117150, "intervene": 79784, "inpainting": 77199, "damaged": 34537, "resurgence": 143950, "encountering": 48582, "combat": 25811, "frequencybased": 61604, "chessboard": 23583, "psnr": 133490, "ssim": 154659, "2022": 662, "knows": 82635, "witness": 178559, "annotate": 9434, "ripe": 144882, "qabased": 133938, "discern": 42659, "textitgenerative": 165646, "polish": 123885, "klej": 81682, "plbart": 123542, "retrievalgeneration": 144211, "elusive": 47112, "trees": 169682, "premises": 126157, "entailmentbank": 49774, "premise": 126156, "overcoming": 118314, "sidelining": 150508, "globally": 66115, "highresource": 70097, "bridges": 19079, "situate": 151927, "linkage": 93098, "prizewinning": 128063, "carefullydesigned": 20820, "kernelized": 81449, "conditionally": 28973, "definite": 37957, "cpd": 33123, "kernels": 81451, "pd": 120628, "constant": 30000, "absorbed": 2626, "recognized": 138159, "permutations": 122494, "gaussian": 62828, "bipartite": 18589, "calibrates": 19625, "imbalance": 72553, "compile": 27222, "657": 1479, "executionbased": 52974, "knowledgedriven": 82542, "followup": 60330, "fly": 59925, "referencefree": 138685, "twostaged": 170277, "teaches": 163637, "endpoint": 48718, "percent": 120773, "validation": 175356, "everincreasing": 52150, "compressing": 28202, "resourceefficient": 142408, "dozens": 44859, "banglat5": 15536, "bangla": 15534, "275": 879, "gb": 62842, "stimulating": 155805, "ptm": 133527, "versatility": 176578, "prepend": 126173, "divideandconquer": 43766, "alternately": 8541, "tunable": 169932, "snapshots": 152507, "evolves": 52301, "outdated": 117471, "semiparametric": 148353, "parametric": 119889, "timestamped": 166622, "quarterly": 134443, "bayesian": 16477, "postulate": 124531, "maximize": 99669, "posteriors": 124493, "ultimately": 170580, "agree": 6822, "bayes": 16475, "stating": 155473, "misspecification": 102538, "overconfident": 118323, "converted": 31997, "inquire": 77458, "promoted": 130348, "bbq": 16490, "penguins": 120707, "generics": 65677, "instantiations": 77860, "birds": 18591, "enumerate": 49974, "statement": 155039, "exemplars": 52984, "theorybased": 166107, "insufficiency": 78443, "subfields": 157809, "cot": 32853, "arithmetics": 12493, "system2": 160098, "successes": 158322, "decent": 37341, "think": 166132, "zeroshotcot": 180376, "template": 164210, "multiarith": 110343, "gsm8k": 68095, "aquarat": 12056, "svamp": 159753, "letter": 91439, "coin": 25557, "flip": 59848, "shuffled": 150498, "177": 508, "787": 1612, "104": 197, "407": 1193, "textdavinci002": 165619, "magnitudes": 98212, "untapped": 172286, "strongest": 156481, "11b": 255, "curve": 34360, "trends": 169714, "traversal": 169624, "garden": 62769, "manhattan": 98911, "negating": 112502, "unambiguous": 170625, "periods": 122474, "routinely": 145650, "miss": 102520, "explanationbased": 54805, "esnli": 50423, "sarcasm": 146145, "metaphor": 100592, "modelintheloop": 105126, "workers": 179374, "annotators": 9628, "novices": 114776, "bigger": 18401, "ideal": 71746, "owing": 118460, "route": 145638, "decompose": 37611, "alternate": 8539, "glms": 66083, "conda": 28936, "glm": 66080, "abstractive": 2676, "languageonly": 86928, "audio": 14162, "left": 91269, "sliding": 152220, "clm": 24431, "passes": 120356, "slm": 152241, "inherit": 76994, "modelings": 105125, "flashattention": 59769, "memoryhungry": 100487, "trading": 167580, "principle": 127843, "ioaware": 80812, "reads": 136208, "writes": 179706, "tiling": 166337, "readswrites": 136209, "hbm": 68898, "onchip": 115957, "blocksparse": 18734, "seq": 148716, "3times": 1167, "1k": 573, "24times": 826, "arena": 12396, "07": 63, "longdocument": 97519, "16k": 478, "614": 1444, "path256": 120435, "631": 1458, "neglect": 112547, "functionalities": 61881, "strengthening": 156246, "f05": 56477, "conll2014": 29468, "sm": 152268, "displayed": 43074, "prosperous": 132548, "mat": 99403, "cooperative": 32072, "marl": 99279, "unleashed": 171979, "theorem": 166004, "monotonic": 110083, "precollected": 125630, "trials": 169741, "dexterous": 41345, "hands": 68615, "football": 60345, "fewshort": 57880, "coliee": 25568, "characteristic": 22448, "3b": 1118, "monot53b": 110081, "codebased": 25225, "codet5": 25324, "codebert": 25230, "graphcodebert": 67593, "automate": 14492, "susceptible": 159726, "imperceptible": 72803, "codespecific": 25320, "repair": 140398, "alignments": 8264, "welldefined": 178149, "mark": 99213, "connectivity": 29501, "meanings": 99809, "transitions": 169401, "putting": 133813, "visualizations": 177360, "tutorial": 170195, "accident": 2981, "400": 1177, "insurance": 78460, "chatgpt": 22656, "glove": 66120, "cat": 21049, "nonlatin": 114086, "devanagari": 40747, "cyrillic": 34489, "englishlanguage": 49132, "variability": 175587, "governance": 66352, "management": 98870, "accounts": 3087, "international": 79574, "multiparty": 110823, "organizational": 117284, "away": 15384, "isomorphic": 80879, "collapse": 25645, "leakage": 89931, "bank": 15537, "asymmetric": 13596, "collapsing": 25647, "xor": 179854, "transformative": 169060, "inform": 76250, "disruptive": 43097, "ameliorate": 8650, "204": 729, "450": 1240, "132": 342, "childhood": 23593, "biology": 18520, "rater": 136029, "resourceconstrained": 142403, "expressivity": 55612, "propagating": 131598, "dependence": 39140, "extending": 55670, "emit": 47550, "triggered": 169758, "communicated": 26340, "compromising": 28276, "paint": 118511, "modal": 102914, "imagetotext": 72537, "symmetric": 159839, "27": 871, "generationunderstanding": 65290, "overlooking": 118387, "continually": 31176, "cl": 23817, "arrive": 12532, "facilitated": 56664, "visiononly": 177093, "vilt": 176839, "allinone": 8319, "taskindependent": 161838, "condense": 28938, "deberta": 37299, "fewglue": 57879, "conll03": 29467, "essence": 50576, "rst": 145675, "operationalize": 116771, "consist": 29744, "competitors": 27217, "entrance": 49956, "authoritative": 14430, "china": 23598, "116": 248, "gets": 65779, "gaokao": 62606, "happened": 68624, "ago": 6821, "134": 345, "108": 201, "motion": 110142, "gait": 62538, "impairment": 72778, "severity": 149720, "neurological": 113003, "disorder": 43053, "observable": 115319, "symptoms": 159844, "posture": 124532, "diagnosed": 41353, "movements": 110222, "076": 70, "079": 76, "chronological": 23748, "inconsistently": 74837, "embeddingbased": 47204, "vocab": 177501, "dealt": 37277, "precisely": 125599, "imprecise": 73246, "mothers": 110139, "day": 37239, "knowledgebase": 82529, "tunes": 169956, "render": 140376, "authorship": 14446, "profoundly": 129715, "handful": 68518, "collaborations": 25603, "nowadays": 114778, "citation": 23794, "turned": 170180, "portion": 124127, "disputes": 43087, "diversify": 43701, "contributors": 31513, "lifecycle": 92084, "wealth": 177972, "marine": 99208, "registered": 138943, "posing": 124241, "endeavors": 48700, "sector": 147537, "info": 76248, "freezing": 61586, "stochasticity": 155829, "maintained": 98336, "overly": 118390, "affordable": 6349, "corporations": 32271, "collaboratively": 25637, "parties": 120275, "invited": 80670, "viewers": 176826, "join": 81242, "uneven": 171612, "discussed": 42957, "preparing": 126172, "sublayer": 157883, "reparameterization": 140426, "controller": 31658, "multidomain": 110386, "domainadaptive": 44329, "albeit": 7745, "enforces": 48807, "compositionality": 27830, "correspond": 32566, "visited": 177097, "uncover": 170722, "inferred": 76158, "walk": 177667, "ifthen": 72064, "naively": 111391, "scratchpad": 147232, "dramatic": 44879, "equipping": 50187, "mc4": 99724, "datacentric": 36031, "proof": 131579, "supplemented": 159240, "pseudolabeling": 133482, "bolster": 18784, "pixels": 123171, "pixel": 123165, "pixelbased": 123169, "patches": 120412, "scripts": 147253, "weaker": 177940, "codeswitching": 25323, "confirming": 29401, "abovechance": 2580, "imperfections": 72808, "debates": 37296, "mix": 102710, "judging": 81316, "parallels": 119595, "reflected": 138807, "lowerlevel": 97852, "confident": 29366, "drastic": 44896, "truly": 169817, "continuations": 31185, "allocating": 8325, "timestep": 166624, "confidence": 29340, "connecting": 29477, "pertoken": 122745, "exits": 53672, "provably": 132612, "dual": 45068, "knowledgeenhanced": 82544, "overlook": 118374, "ignore": 72069, "seamlessly": 147294, "dotproduct": 44671, "cascades": 20863, "testtime": 164803, "expands": 53707, "compositions": 27834, "graphical": 67598, "verifiers": 176517, "star": 154942, "selectioninference": 147899, "combing": 25961, "credentials": 33401, "smart": 152469, "reply": 140508, "chat": 22516, "transcripts": 168889, "frontend": 61642, "constrains": 30048, "sent": 148475, "canonical": 19752, "appears": 10238, "frames": 60904, "specificity": 154323, "comprehensiveness": 28183, "display": 43069, "grouping": 67962, "stemming": 155586, "heritage": 69279, "museums": 111307, "reality": 136312, "sheet": 149890, "mined": 102299, "clustering": 24594, "graphics": 67607, "card": 20754, "slovenian": 152252, "conquered": 29507, "wellresourced": 178184, "massively": 99387, "101": 189, "codebases": 25229, "plethora": 123553, "misused": 102577, "impose": 73232, "politically": 123909, "determines": 40718, "specification": 154308, "participant": 119988, "understands": 171544, "inferable": 75951, "perturbation": 122747, "statebased": 155030, "entailed": 49765, "regards": 138908, "ffns": 58099, "keyvalue": 81607, "knowledgeable": 82521, "slots": 152251, "injecting": 77107, "ssm": 154662, "fix": 59697, "mounting": 110214, "degrade": 37992, "keys": 81604, "sampler": 145982, "equations": 50171, "decode": 37504, "permits": 122491, "tense": 164350, "formality": 60524, "semeval2022": 148336, "pcl": 120624, "textclassification": 165613, "disappointed": 42646, "targeting": 161143, "reformulate": 138824, "slot": 152248, "f1score": 56493, "ranks": 135836, "alexatm": 7760, "20b": 737, "alexa": 7753, "1shot": 580, "hindi": 70163, "marathi": 99168, "tamil": 161022, "telugu": 164197, "flores101": 59866, "squadv2": 154643, "xnli": 179853, "xcopa": 179825, "pawsx": 120607, "xwinograd": 179868, "quantum": 134432, "multipurpose": 111130, "manybody": 99122, "sharp": 149843, "whilst": 178219, "homographs": 70324, "homograph": 70322, "unrestricted": 172131, "standing": 154921, "laborious": 82862, "inflexible": 76183, "customizes": 34415, "enhances": 49394, "fulldata": 61717, "independently": 75504, "multinode": 110816, "ensembled": 49649, "branching": 18961, "mixtures": 102768, "perplexities": 122502, "elm": 47095, "specialization": 153864, "aggressive": 6787, "simulacra": 151631, "populated": 124107, "prototypes": 132603, "envisioned": 50128, "recruiting": 138334, "designer": 39975, "adjustments": 5547, "prey": 127757, "communitys": 26531, "member": 100310, "personas": 122640, "antisocial": 10127, "moderators": 109782, "platforms": 123394, "refine": 138726, "recycling": 138371, "modulate": 109915, "tightly": 166328, "889": 1731, "headroom": 68917, "hinge": 70173, "exposed": 55540, "obviating": 115567, "attractive": 14065, "fictitious": 58107, "passwords": 120373, "password": 120372, "breaches": 18980, "assumes": 13554, "attackers": 13680, "personally": 122636, "pii": 122981, "secure": 147544, "trustworthy": 169861, "authentication": 14417, "raising": 135498, "bar": 15544, "authentic": 14415, "tweaking": 170204, "customizing": 34416, "generality": 63102, "overwhelming": 118453, "unconventional": 170720, "textita": 165641, "pseudo": 133474, "separated": 148697, "diminished": 42354, "036": 29, "specify": 154341, "autonomous": 14923, "actionable": 4349, "interpreters": 79727, "005": 7, "invariably": 80319, "office": 115864, "workload": 179411, "integration": 78635, "aibased": 7335, "n58": 111381, "programmers": 129773, "assisted": 13440, "bugs": 19287, "shopping": 149949, "aiassisted": 7331, "panda": 118675, "freezes": 61582, "pot": 124534, "initializes": 77076, "sourcetarget": 153539, "241": 814, "replicate": 140490, "te": 163594, "distortions": 43306, "simulating": 151675, "ultimatum": 170591, "milgram": 102214, "shock": 149946, "crowds": 33720, "replicated": 140497, "hyperaccuracy": 71579, "distortion": 43305, "gpt4": 66896, "contents": 30664, "uncontrolled": 170719, "topological": 167385, "pcg": 120623, "summarisation": 158788, "vast": 176311, "implements": 72889, "device": 41298, "won": 178604, "lmkbc": 97082, "364": 1081, "interleaved": 79491, "markup": 99277, "marker": 99227, "communicate": 26336, "interleave": 79490, "act": 4292, "shortcut": 150027, "aligning": 8082, "reviewing": 144567, "weakness": 177954, "verbal": 176433, "judgements": 81312, "affordance": 6351, "urgently": 172422, "firstly": 59648, "secondly": 147520, "rephrase": 140448, "nl": 113638, "smoothing": 152497, "330k": 1023, "jarvis": 81207, "reallife": 136333, "humanagent": 71104, "acquires": 4275, "subgoal": 157814, "actionlevel": 4357, "dialogbased": 41436, "edh": 45425, "tfd": 165975, "twoagent": 170235, "158": 436, "prize": 128060, "seldom": 147764, "imposed": 73234, "life": 92073, "205": 732, "shapes": 149783, "contemporary": 30407, "opacity": 116193, "compromises": 28275, "carries": 20832, "beam": 16499, "traces": 167506, "humanly": 71300, "checked": 23533, "prescriptive": 126203, "initiate": 77088, "timely": 166570, "elevate": 47025, "retention": 143968, "overarching": 118266, "internals": 79573, "neglected": 112549, "evidencebased": 52230, "remedial": 140329, "infancy": 75926, "practically": 125473, "programme": 129769, "retrieves": 144266, "authority": 14433, "association": 13527, "transmission": 169565, "histories": 70214, "fuse": 62182, "gnn": 66136, "concatenation": 28569, "multiview": 111293, "synergistic": 159856, "parameterization": 119691, "subgraphs": 157821, "accomplished": 3015, "interlocutors": 79502, "govern": 66351, "discursive": 42862, "discussing": 42977, "petals": 122782, "bloom176b": 18748, "opt175b": 116916, "download": 44684, "affordably": 6350, "ram": 135506, "offloading": 115891, "hosted": 70428, "innate": 77128, "logits": 97420, "joining": 81244, "consumer": 30260, "natively": 111515, "exposes": 55544, "custom": 34366, "accrued": 3089, "quantities": 134397, "implied": 73004, "preregistered": 126193, "lifetime": 92092, "examines": 52426, "departing": 39125, "annotationefficient": 9566, "chooses": 23729, "textcode": 165614, "submissions": 157890, "casual": 21044, "157": 435, "secondbest": 147519, "082": 80, "085": 83, "086": 84, "readability": 136155, "mixed": 102712, "root": 145597, "squared": 154648, "motivating": 110199, "schedules": 146761, "schedule": 146758, "androids": 9410, "sheep": 149883, "contest": 30670, "funny": 62000, "encapsulate": 48367, "descriptors": 39531, "headtohead": 68927, "disparities": 43058, "onesizefitsall": 116038, "dialects": 41403, "dialect": 41399, "thousand": 166249, "demographically": 38210, "cities": 23804, "positives": 124320, "warning": 177708, "semiautonomous": 148346, "competencies": 27127, "tango": 161033, "pushes": 133803, "cotbased": 32917, "altered": 8534, "beacon": 16497, "realize": 136326, "explains": 54771, "persistent": 122531, "papers": 119388, "machineactionable": 98142, "discovery": 42756, "publishing": 133700, "saved": 146192, "provenance": 132651, "artefacts": 12562, "persistently": 122535, "interoperability": 79603, "ensures": 49715, "inclusiveness": 74796, "computationintensive": 28431, "lighter": 92158, "approximations": 12042, "referencebased": 138680, "comet": 26023, "tinybert": 166635, "wmd": 178590, "strike": 156314, "languagebased": 86906, "chronic": 23746, "pain": 118508, "textsummarization": 165807, "pervasive": 122769, "anxiety": 10130, "neuropathic": 113033, "subtype": 158201, "damage": 34536, "fm": 59927, "musculoskeletal": 111306, "diffuse": 42225, "diagnose": 41352, "medications": 100235, "treatments": 169645, "symptom": 159843, "notes": 114304, "summarizing": 158920, "patient": 120460, "interviews": 79811, "auc": 14153, "083": 81, "picks": 122963, "linguist": 92999, "5b": 1408, "10shot": 211, "backtranslation": 15459, "ic": 71647, "st": 154668, "414": 1206, "catalog": 21051, "resampling": 141543, "chess": 23581, "successive": 158404, "eval": 50883, "10b": 204, "calibrating": 19626, "dfx": 41346, "lowlatency": 97864, "datacenters": 36030, "acceleration": 2805, "executes": 52924, "simultaneous": 151739, "cores": 32189, "xilinx": 179836, "alveo": 8601, "u280": 170540, "fpgas": 60876, "v100": 175268, "workloads": 179413, "prowess": 133417, "llmgenerated": 94193, "chatbots": 22595, "wellbeing": 178143, "mechanical": 99965, "turk": 170165, "largelanguage": 89137, "hci": 68900, "brief": 19102, "chatbot": 22560, "talk": 161014, "manage": 98862, "mood": 110101, "factorial": 56779, "945": 1789, "promptagator": 130749, "overlooks": 118389, "amplify": 8721, "engineered": 48871, "v2": 175272, "rerankers": 141525, "longshort": 97578, "stuck": 156796, "executions": 52976, "commands": 26040, "exemplified": 52990, "negated": 112500, "inverse": 80336, "urge": 172411, "gordon": 66342, "van": 175565, "durme": 45105, "cooccurrence": 32050, "repeatedly": 140434, "perceptually": 120849, "cooccurrences": 32052, "extrinsic": 56459, "compiled": 27229, "reformulated": 138825, "indirectly": 75680, "incompatible": 74806, "sap": 146138, "xue": 179865, "lin": 92934, "mwp": 111354, "tabular": 160781, "tabmwp": 160779, "freetext": 61573, "multichoice": 110357, "constructs": 30244, "531": 1352, "verifies": 176518, "intriguing": 79872, "segmentation": 147727, "2016": 639, "cut": 34421, "pure": 133721, "rightarrow": 144841, "segmentations": 147755, "allegedly": 8278, "spirit": 154554, "ineffectiveness": 75897, "sentimental": 148673, "necessitate": 112161, "delegated": 38037, "promptingbased": 131128, "modularity": 109912, "solvable": 153090, "longcontext": 97506, "perfect": 120852, "motivate": 110162, "ama": 8606, "formats": 60562, "went": 178197, "park": 119936, "restrict": 142999, "john": 81241, "votes": 177556, "125m175b": 301, "102": 192, "gptj6b": 67299, "gpt3175b": 66784, "highperforming": 69982, "nonparametric": 114114, "protein": 132573, "folding": 60204, "alphafold": 8524, "underpinning": 170895, "treatment": 169635, "breaking": 18994, "guess": 68127, "flipped": 59849, "metatraining": 100605, "metatrained": 100604, "selects": 147913, "3shot": 1165, "84": 1700, "97": 1816, "chainofthought": 21482, "grade": 67364, "mgsm": 102167, "250": 835, "gradeschool": 67373, "emerges": 47488, "strikingly": 156323, "underrepresented": 170902, "bengali": 17499, "wordincontext": 178698, "judgment": 81317, "machineparaphrased": 98160, "arxiv": 12818, "theses": 166120, "105": 198, "clarity": 23862, "405": 1190, "425": 1213, "385": 1099, "66": 1483, "react": 136140, "synergizing": 159867, "acting": 4300, "synergy": 159870, "gather": 62806, "trustworthiness": 169846, "hotpotqa": 70441, "fever": 57855, "overcomes": 118311, "tasksolving": 163503, "trajectories": 168858, "alfworld": 7764, "webshop": 178045, "34": 1036, "site": 151923, "dataefficiency": 36048, "mtl": 110291, "welldocumented": 178153, "contradictory": 31284, "500": 1313, "376": 1093, "webbased": 178028, "miniwob": 102419, "autolabeled": 14488, "commoncrawl": 26218, "analogy": 8738, "analogies": 8733, "analogous": 8734, "temperature": 164198, "injected": 77105, "14k": 397, "ot": 117432, "attentions": 14020, "sports": 154588, "predicates": 125673, "amenable": 8652, "optional": 117137, "possibly": 124476, "dart": 34554, "seal": 147280, "tail": 160901, "ethnicity": 50856, "compounded": 27836, "asian": 12830, "males": 98832, "animals": 9424, "indoors": 75815, "land": 83084, "slices": 152216, "humanunderstandable": 71503, "underperforming": 170887, "screencast": 147234, "medicine": 100236, "shifting": 149932, "marginalization": 99197, "typology": 170537, "hybrids": 71576, "tablerelated": 160762, "fetaqa": 57851, "tabfact": 160740, "60x": 1438, "justify": 81395, "saliency": 145922, "verbalization": 176443, "instructionbased": 78155, "verbalize": 176445, "setups": 149682, "attributions": 14150, "searchbased": 147434, "verbalizations": 176444, "heatmap": 69035, "instructing": 77953, "gpt35": 66787, "ratings": 136042, "faithfully": 57083, "numeric": 114994, "completes": 27311, "templated": 164224, "attribution": 14139, "comprehensible": 27874, "userfriendly": 173549, "democratize": 38190, "shortly": 150046, "edition": 45496, "multitude": 111257, "countermeasure": 32962, "places": 123185, "fairness": 57049, "accountability": 3081, "preserving": 126680, "ignores": 72075, "distinguishable": 43291, "collects": 25777, "heated": 69031, "safer": 145829, "fairer": 57043, "going": 66232, "enumerating": 49976, "taxonomies": 163568, "ameliorating": 8651, "strands": 155932, "exposing": 55546, "campaigns": 19700, "realm": 136343, "behavioral": 16663, "encompassing": 48543, "lstmbased": 97962, "organic": 117277, "legitimate": 91335, "campaign": 19699, "presidential": 126704, "election": 46978, "differentiate": 42103, "91": 1759, "everevolving": 52145, "mimicked": 102268, "resilience": 142322, "inauthentic": 74292, "commercialized": 26099, "vaguely": 175287, "wellrecognized": 178182, "balances": 15515, "smallerscale": 152454, "sheds": 149873, "bbh": 16488, "codedavinci002": 25247, "underestimates": 170760, "safely": 145826, "unanimously": 170627, "agreed": 6825, "bad": 15465, "usual": 174886, "downsample": 44689, "prunes": 133449, "unanswerable": 170629, "productionready": 129598, "immune": 72612, "hate": 68857, "44": 1228, "168": 472, "travel": 169619, "destination": 40258, "customers": 34390, "dst": 45064, "round": 145632, "probably": 128134, "immensely": 72605, "clms": 24432, "imitate": 72572, "steering": 155564, "biogpt": 18501, "branches": 18960, "pubmedbert": 133708, "bc5cdr": 16492, "ddi": 37257, "782": 1609, "pubmedqa": 133710, "tourist": 167435, "generationbased": 65273, "moved": 110218, "finals": 58544, "wage": 177661, "anchor": 9399, "wages": 177662, "enrolled": 49628, "deemed": 37704, "respondents": 142603, "unrealistic": 172110, "upward": 172403, "exerts": 53015, "bot": 18878, "perceives": 120769, "adhering": 5527, "noted": 114303, "bots": 18881, "transcending": 168875, "62b": 1455, "upalm": 172321, "impressively": 73392, "mmlu": 102883, "specifications": 154314, "vague": 175286, "synthesizes": 160003, "workflow": 179375, "took": 166925, "consensus": 29516, "photorealistic": 122877, "photos": 122879, "scorers": 147118, "closedloop": 24477, "75": 1573, "selfimprove": 148004, "selfthinking": 148081, "selfimproving": 148007, "highconfidence": 69564, "rationaleaugmented": 136058, "selfgenerated": 147997, "540bparameter": 1365, "selfimprovement": 148005, "38k": 1104, "grouped": 67961, "acceptable": 2829, "naturallyoccurring": 111983, "treebank": 169674, "xlm": 179841, "697": 1514, "causeandeffect": 21253, "memorized": 100345, "humanevaluated": 71175, "leaving": 91203, "nonlinguistic": 114096, "regular": 138974, "regularization": 138985, "persist": 122525, "hitherto": 70232, "mcqa": 99728, "symbol": 159798, "associate": 13458, "binding": 18482, "underestimated": 170759, "drug": 45046, "regulators": 139013, "promptly": 131138, "adverse": 6250, "reactions": 136145, "professionals": 129635, "physicians": 122922, "pharmacists": 122792, "voluntarily": 177550, "scant": 146467, "coarse": 24625, "samplespecific": 146080, "fullmodel": 61723, "multiprompt": 111127, "ensembling": 49655, "inherits": 77000, "conveniently": 31685, "argument": 12425, "eae": 45224, "formulating": 60633, "advantageous": 6126, "295": 914, "zeroresource": 180102, "homographic": 70323, "distinctiveness": 43271, "selector": 147911, "predictor": 125961, "moves": 110225, "othello": 117433, "nonlinear": 114091, "interventional": 79797, "forgetful": 60411, "nexttokenprediction": 113612, "inverted": 80356, "index": 75552, "popularity": 124077, "enduser": 48780, "indexing": 75556, "closeddomain": 24472, "023": 22, "said": 145914, "arisen": 12459, "contend": 30422, "cognition": 25428, "pathologies": 120439, "radiology": 135408, "fine": 58837, "annotating": 9503, "clustered": 24593, "centroids": 21359, "ood": 116175, "oie": 115936, "accomplish": 3002, "carb": 20744, "needing": 112460, "underestimating": 170761, "multianswer": 110341, "worstcase": 179674, "quantifiable": 134302, "5th": 1417, "workshop": 179520, "sociopolitical": 152721, "perfectly": 120858, "coupling": 33003, "secret": 147531, "innocuous": 77138, "party": 120308, "classically": 23949, "pragmatics": 125554, "fingerprints": 59621, "yes": 179953, "punctuation": 133717, "devoid": 41342, "capitalization": 20550, "itn": 81168, "ser": 148894, "pearsons": 120644, "067": 60, "098": 97, "transcriptions": 168886, "combating": 25815, "distributionally": 43414, "reweight": 144726, "beir": 16748, "giant": 65791, "500x": 1320, "crystallization": 33897, "boon": 18814, "100b": 177, "openaccess": 116313, "billionparameter": 18443, "englishonly": 49134, "topk": 167377, "nucleus": 114813, "duplicate": 45098, "provable": 132609, "closing": 24549, "multistage": 111154, "nuance": 114790, "suffering": 158458, "billionscale": 18454, "retrievalaugmented": 144168, "superficial": 158970, "dissimilar": 43113, "reliance": 139773, "choosing": 23730, "fullyparametric": 61810, "zerofewshot": 180097, "empowers": 48026, "knowledgerich": 82580, "script": 147244, "fed": 57613, "router": 145645, "assignment": 13325, "770m": 1601, "preventive": 127559, "delay": 38029, "screening": 147236, "hesitation": 69284, "filler": 58333, "voting": 177557, "maskedlanguage": 99325, "209": 736, "875": 1724, "elderly": 46976, "stock": 155830, "serialized": 148897, "json": 81303, "lookup": 97622, "infographics": 76249, "semiautoregressive": 148347, "diffusion": 42226, "diffusionbased": 42264, "vastly": 176364, "narrowly": 111470, "overfits": 118337, "offloads": 115894, "attached": 13625, "enfr": 48810, "codebook": 25234, "ctr": 33911, "restoring": 142996, "shrinking": 150495, "dnn": 43795, "enlarge": 49594, "promptgenerated": 130845, "rationalizing": 136076, "assurance": 13576, "rationalizes": 136075, "perturbed": 122762, "indistribution": 75697, "1st": 582, "emnlp": 47553, "inflection": 76180, "engineer": 48870, "ape": 10147, "treat": 169628, "informativeness": 76886, "prepending": 126176, "check": 23524, "getting": 65780, "arms": 12498, "quick": 135330, "immediately": 72591, "suites": 158746, "aids": 7384, "ignored": 72074, "graphemic": 67594, "glyph": 66132, "understandable": 171101, "buttons": 19557, "snippets": 152511, "allowed": 8356, "snippet": 152509, "linebyline": 92992, "classrooms": 24233, "oversight": 118412, "safe": 145797, "specialists": 153863, "unaided": 170617, "meant": 99821, "assistant": 13383, "encouraging": 48619, "sign": 150515, "productively": 129602, "codexdavinci002": 25362, "wrote": 179806, "engaged": 48832, "rephrasing": 140451, "instrument": 78438, "lay": 89617, "accessibility": 2931, "journals": 81297, "assuring": 13579, "expertauthored": 54597, "absent": 2598, "paving": 120598, "disseminating": 43109, "conciseness": 28856, "overlooked": 118378, "multiannotator": 110340, "movies": 110233, "theoryofmind": 166109, "tom": 166910, "parsed": 119945, "movie": 110226, "digesting": 42271, "underscoring": 170961, "significance": 150549, "lags": 83066, "learnersourcing": 90161, "lies": 92063, "priming": 127834, "exercises": 53009, "humancreated": 71160, "democratizing": 38196, "roots": 145608, "46": 1249, "59": 1399, "tight": 166325, "multidimensional": 110371, "pareto": 119928, "fastertransformer": 57303, "multiquery": 111131, "int8": 78465, "quantization": 134406, "internalize": 79570, "interacts": 79356, "precedence": 125562, "taskrelevant": 161859, "conflicts": 29416, "strengthen": 156243, "improper": 73395, "surviving": 159722, "ca": 19586, "ce": 21299, "anonymous": 9667, "quotations": 135371, "philosophers": 122849, "greek": 67812, "discovers": 42755, "incredible": 75457, "wellperforming": 178180, "deployments": 39312, "thing": 166126, "equality": 50157, "multiword": 111298, "paraphrased": 119908, "embodying": 47321, "gameplay": 62578, "vr": 177590, "pong": 123932, "nondeterministic": 114033, "mechanics": 99969, "cocreation": 24643, "ontologies": 116162, "spe": 153826, "accumulate": 3090, "symmetry": 159842, "popularly": 124104, "gigantic": 65799, "uptodate": 172398, "robertabased": 145165, "intention": 79026, "ecommerce": 45382, "intentions": 79032, "minds": 102293, "purchasing": 133720, "modelsllms": 109750, "semiautomatically": 148344, "assertions": 13032, "predicate": 125670, "falling": 57143, "conceptnet": 28634, "isa": 80865, "typicality": 170462, "populate": 124105, "conceptualization": 28725, "condensed": 28939, "empowering": 48009, "plugged": 123670, "reasonings": 137246, "acoustic": 4245, "pipelined": 123106, "filling": 58335, "hallucinate": 68328, "prefers": 126089, "measured": 99885, "176b": 505, "verbatim": 176452, "codegen": 25256, "cfq": 21440, "scan": 146460, "geoquery": 65740, "decreasing": 37670, "taskaware": 161828, "okvqa": 115937, "596": 1403, "aokvqa": 10133, "webqa": 178036, "distilbert": 43133, "longtailed": 97591, "knownunknown": 82634, "misunderstand": 102563, "friendly": 61638, "bottle": 18883, "bottlenecks": 18899, "cbm": 21285, "failing": 56987, "highstakes": 70115, "cbms": 21286, "promotes": 130350, "117": 250, "dropping": 45043, "scorebased": 147110, "333": 1026, "links": 93110, "41": 1201, "f1scores": 56498, "dalle2": 34531, "pitch": 123121, "friend": 61637, "slowly": 152263, "subquestions": 157932, "questioning": 135012, "thoughtful": 166239, "solver": 153180, "recovering": 138326, "annotator": 9626, "aggregated": 6773, "facial": 56584, "attractiveness": 14068, "objectively": 115234, "disagreement": 42634, "complementarity": 27250, "marginal": 99194, "relevancebased": 139569, "pedagogical": 120647, "questionasking": 135009, "curiositydriven": 34048, "aged": 6400, "gpt3generated": 66891, "trainings": 168840, "affords": 6362, "teachers": 163626, "benefiting": 17456, "radar": 135393, "trick": 169746, "supplies": 159248, "codebleu": 25232, "1972": 547, "codegpt": 25263, "pass1": 120326, "reinstate": 139131, "implicate": 72890, "directed": 42415, "helped": 69198, "discriminate": 42832, "replaces": 140471, "obtaining": 115540, "automaton": 14915, "fsa": 61697, "sends": 148373, "builds": 19464, "fills": 58340, "userdefined": 173542, "counterexamples": 32938, "crossing": 33641, "road": 145122, "highlyspecialized": 69974, "fetch": 57852, "1595": 439, "laion5b": 83072, "refining": 138779, "23x": 804, "surfaced": 159420, "fixes": 59724, "boom": 18808, "personalised": 122566, "selfassessment": 147933, "journeys": 81301, "rationalizations": 136074, "decouples": 37657, "bespoke": 17654, "bootstrap": 18860, "spanned": 153667, "culminated": 33936, "fostered": 60689, "participatory": 120040, "inception": 74309, "reused": 144308, "decouple": 37654, "psychoanalysis": 133493, "intentional": 79029, "subjectivity": 157866, "frame": 60897, "productions": 129599, "psychoanalytic": 133494, "culminating": 33938, "realise": 136278, "imperatives": 72802, "harmless": 68756, "condensation": 28937, "desires": 40062, "articulated": 12633, "harvested": 68848, "regulated": 139004, "foundational": 60829, "redirected": 138390, "immediate": 72587, "projecting": 130095, "agency": 6402, "occasionally": 115577, "productive": 129600, "grasping": 67672, "aidriven": 7378, "inexperienced": 75925, "records": 138309, "chemistry": 23563, "host": 70426, "cataloging": 21052, "metalorganic": 100584, "calculators": 19617, "modelspecific": 109754, "scripting": 147252, "minimizes": 102381, "flows": 59881, "credibility": 33402, "underrepresentation": 170901, "artists": 12813, "tastes": 163558, "artist": 12806, "biography": 18504, "856": 1713, "840": 1701, "visualisation": 177346, "languageimage": 86917, "laion": 83070, "openclip": 116442, "reproducibility": 141010, "crepe": 33411, "cc12m": 21292, "laion400m": 83071, "17k": 512, "atomic": 13614, "swapping": 159761, "genome": 65687, "decays": 37336, "nearing": 112103, "visuallyaugmented": 177390, "modelsplms": 109755, "particle": 120042, "electromagnetic": 46988, "radiation": 135399, "emitted": 47552, "seriously": 148958, "electron": 46989, "emission": 47548, "beams": 16507, "localized": 97283, "thermal": 166118, "hot": 70435, "spots": 154593, "cad": 19596, "concludes": 28888, "situated": 151928, "stereotype": 155781, "holding": 70260, "cots": 32920, "marginalized": 99199, "revolutionize": 144629, "drawbacks": 44918, "reviewed": 144562, "obstacles": 115455, "pharmaceutical": 122790, "realizing": 136331, "manuscript": 99119, "striving": 156335, "fusionindecoder": 62208, "fid": 58110, "allocates": 8323, "bulk": 19511, "denote": 39080, "xxl": 179869, "811": 1677, "palm540b": 118670, "selfprompting": 148028, "odqa": 115610, "invoking": 80680, "unacceptable": 170612, "contextfree": 30991, "violations": 176850, "grammaticality": 67465, "worsen": 179667, "violated": 176843, "amplified": 8719, "comment": 26054, "comments": 26061, "aiding": 7374, "knnlm": 81697, "atlas": 13610, "drops": 45044, "286": 901, "retrieveandread": 144228, "flant5xxl": 59765, "underparameterized": 170883, "undertrained": 171571, "cater": 21158, "casting": 21041, "unnatural": 172056, "64000": 1465, "expanded": 53692, "rivals": 145035, "manuallycurated": 99112, "pangu": 118687, "capitalizes": 20555, "kbqa": 81414, "judge": 81305, "surrounds": 159592, "macaw": 97995, "violation": 176846, "satisfaction": 146153, "pictures": 122968, "tone": 166921, "polite": 123889, "phraselevel": 122887, "10k": 206, "100k": 181, "10k100k": 208, "provoke": 133414, "dissecting": 43107, "alibi": 7988, "dissect": 43105, "cumulative": 33985, "extrapolatable": 56405, "sufficiently": 158503, "perplexitybased": 122519, "adult": 5669, "ubiquitous": 170542, "confronted": 29439, "twist": 170223, "wonder": 178607, "recognize": 138154, "pivot": 123135, "unreal": 172109, "contrastively": 31387, "neighborhood": 112578, "ko": 82636, "popqa": 123977, "unassisted": 170632, "titles": 166646, "venues": 176425, "26k": 869, "textdavinci003": 165620, "commongen": 26219, "zhen": 180386, "decompositions": 37649, "competitionlevel": 27151, "apps": 12043, "alphacode": 8523, "humaneval": 71169, "85": 1707, "mscoco": 110268, "79": 1614, "visually": 177381, "figure": 58319, "deletion": 38043, "interventionbased": 79798, "innerworkings": 77137, "attenuate": 14023, "unfaithfulness": 171642, "adequately": 5510, "toplevel": 167382, "parse": 119941, "llmagnostic": 94107, "selfconstructed": 147958, "img2prompt": 72571, "flamingo": 59740, "vqav2": 177586, "spt": 154606, "interpolate": 79616, "attracting": 14060, "illogical": 72133, "connects": 29504, "github": 65809, "questionandanswer": 134959, "thirteen": 166170, "qualify": 133975, "mitre": 102701, "attck": 13774, "obfuscated": 115098, "ransomware": 135838, "spawn": 153823, "embed": 47132, "voters": 177555, "judges": 81313, "personalities": 122568, "auditing": 14217, "checks": 23554, "vote": 177554, "52": 1341, "assigning": 13320, "slogans": 152247, "hiring": 70185, "wav2vec": 177750, "expressiveness": 55611, "generalises": 63083, "tokenized": 166763, "top1": 167296, "death": 37280, "shortform": 150044, "essays": 50570, "seconds": 147529, "davinci003": 37232, "firstclass": 59645, "grades": 67372, "marked": 99217, "71": 1547, "pm": 123685, "awarded": 15369, "universities": 171920, "grammarly": 67449, "turnitin": 170186, "mlps": 102871, "fidelity": 58112, "courses": 33017, "meta": 100554, "instructiontuning": 78405, "bench": 16809, "consolidated": 29992, "opt30b": 116917, "30b": 989, "promptsource": 131532, "debated": 37295, "orientation": 117301, "experimenter": 54115, "replicates": 140498, "stakes": 154782, "uncertain": 170657, "displays": 43079, "interlocutor": 79501, "incentivized": 74308, "usecase": 172943, "usecases": 172945, "deepminds": 37868, "7b": 1619, "6b": 1515, "relevancy": 139570, "jurisdictions": 81358, "united": 171873, "precondition": 125635, "applicant": 10292, "postsecondary": 124525, "testtakers": 164801, "undergo": 170783, "weeks": 178061, "investment": 80661, "face": 56510, "multistate": 111159, "gpt35s": 66872, "503": 1322, "excess": 52851, "guessing": 68129, "88": 1726, "nascent": 111481, "convincing": 32028, "questionnaire": 135013, "radiologists": 135407, "patientcentered": 120477, "inevitably": 75919, "foundations": 60855, "elucidation": 47109, "phys": 122893, "55": 1372, "viz": 177428, "pro": 128066, "algebras": 7771, "thirdly": 166165, "tentative": 164360, "nonstationary": 114142, "reversals": 144459, "multirole": 111137, "innovatively": 77196, "switches": 159786, "sixteen": 151952, "deductively": 37699, "inventions": 80332, "inclusivity": 74797, "inclusive": 74792, "iec": 72056, "selfinterest": 148012, "altruism": 8598, "species": 153932, "accepting": 2844, "personal": 122548, "altruistic": 8599, "purchase": 133718, "payoffs": 120616, "payoff": 120615, "dictator": 41582, "charity": 22507, "92": 1772, "resembling": 142288, "recipient": 138029, "negations": 112504, "audioset": 14210, "incapable": 74297, "templatebased": 164222, "convolution": 32033, "voxels": 177560, "clouds": 24574, "2d": 927, "spark": 153694, "resnet": 142332, "convnext": 32032, "meet": 100271, "readiness": 136179, "institute": 77915, "certified": 21433, "regulation": 139008, "blueprints": 18759, "144": 388, "approaching": 11960, "remembering": 140341, "calculation": 19611, "576": 1391, "821": 1686, "textdavinci001": 165618, "readwrite": 136210, "programmed": 129770, "explorer": 55378, "begins": 16540, "subgroups": 157823, "scans": 146466, "grounds": 67932, "enjoys": 49592, "inaccessible": 74257, "waves": 177756, "empiricist": 47812, "instill": 77910, "critics": 33590, "claiming": 23833, "wave": 177751, "placing": 123187, "unfreezing": 171679, "crosslanguage": 33642, "imminent": 72611, "delve": 38084, "fisher": 59675, "costquality": 32810, "homo": 70317, "1988": 550, "trivially": 169787, "fresh": 61631, "laboratory": 82854, "employer": 47909, "applicants": 10293, "garnered": 62774, "worry": 179650, "hc3": 68899, "chatgpts": 23479, "chatgptgenerated": 23465, "journey": 81299, "cosmos": 32643, "conjectures": 29457, "styles": 157779, "genuinely": 65696, "financially": 58586, "5x": 1419, "chatbased": 22555, "anthropomorphic": 10105, "comprehenders": 27865, "indexed": 75554, "n400": 111379, "amplitude": 8724, "2006": 624, "skip": 152200, "agreements": 6834, "cohens": 25501, "kappa": 81410, "057": 49, "054": 46, "081": 79, "fewshots": 58091, "038": 31, "059": 51, "cardiovascular": 20757, "transport": 169607, "proves": 132655, "fallacy": 57136, "fallacies": 57133, "persuade": 122726, "persona": 122543, "codefluent": 25254, "conventions": 31741, "women": 178602, "471": 1257, "ehr": 46956, "request": 141043, "providers": 133098, "likert": 92471, "ranged": 135735, "490": 1270, "857": 1714, "distinguished": 43292, "healthrelated": 69022, "perceive": 120752, "visits": 177101, "ends": 48719, "observers": 115443, "gptderived": 67285, "averaging": 15326, "requested": 141046, "touching": 167430, "87": 1720, "creatively": 33387, "codelike": 25267, "goaldriven": 66212, "dyadic": 45111, "nonverbal": 114163, "backgrounds": 15451, "listeners": 93137, "spur": 154608, "website": 178046, "selfreported": 148046, "pioneering": 123009, "clinically": 24381, "themes": 166001, "minimally": 102365, "steadily": 155534, "instructdial": 77937, "synthesizing": 160006, "veracity": 176426, "rolled": 145571, "harvesting": 68849, "conceptualizes": 28728, "operationalization": 116770, "smoothly": 152498, "confidently": 29375, "logics": 97408, "successor": 158407, "stepping": 155709, "desire": 40034, "discerning": 42667, "numeral": 114992, "idiosyncratic": 72053, "aann": 1857, "3s": 1164, "diverge": 43440, "unbalanced": 170646, "separating": 148711, "bitext": 18600, "blip2": 18707, "bootstrapping": 18863, "bootstraps": 18869, "flamingo80b": 59743, "54x": 1371, "specializing": 153921, "le": 89724, "specialize": 153866, "concentrate": 28575, "price": 127760, "decreased": 37666, "discussions": 43010, "discoveries": 42748, "red": 138372, "teaming": 163663, "jailbreaking": 81183, "businesses": 19551, "prejudice": 126110, "dangers": 34546, "accountable": 3083, "educate": 45509, "responsibly": 142978, "15th": 445, "textitrobustness": 165653, "accordance": 3023, "viewpoints": 176829, "justifying": 81398, "textural": 165969, "threedimensional": 166288, "incompetent": 74807, "mllms": 102806, "mllm": 102799, "discriminatively": 42853, "tagged": 160887, "literacy": 93146, "testbeds": 164660, "publiclyavailable": 133683, "eighteen": 46961, "succeeds": 158212, "inmemory": 77127, "loads": 97227, "sums": 158961, "testable": 164656, "appends": 10246, "rows": 145657, "incredibly": 75463, "chen": 23575, "dt": 45066, "hindsight": 70168, "rewardfree": 144717, "d4rl": 34497, "flame": 59739, "spreadsheet": 154603, "formulas": 60611, "formula": 60608, "60m": 1437, "sketch": 152124, "deduplication": 37702, "cushman": 34364, "12b": 311, "220m": 777, "tablebased": 160758, "scattered": 146503, "useless": 173368, "excluding": 52887, "modelbased": 104923, "parsers": 119947, "parser": 119946, "hoping": 70413, "proofs": 131587, "lean": 89948, "cover": 33034, "graduatelevel": 67428, "mathematicians": 99609, "undergraduatelevel": 170811, "graduate": 67424, "peer": 120661, "distracted": 43307, "deficiency": 37925, "datapoints": 36064, "hopes": 70411, "practicality": 125466, "relate": 139143, "multiarmed": 110345, "bandit": 15524, "100x": 185, "exploitation": 55019, "myriad": 111358, "innovations": 77150, "stars": 154951, "commercially": 26100, "closedsource": 24485, "fatal": 57314, "malign": 98855, "easiest": 45296, "quantized": 134424, "textimage": 165635, "visualquestion": 177392, "vqvae": 177588, "quantizing": 134431, "mentally": 100511, "conceived": 28574, "equivalently": 50207, "fscore": 61698, "disorders": 43054, "fixing": 59725, "codewriting": 25332, "maybe": 99702, "bug": 19277, "verilog": 176551, "recovered": 138325, "psychophysical": 133521, "color": 25792, "wheel": 178218, "crosslinguistic": 33677, "illuminating": 72138, "storm": 155892, "outcome": 117440, "vehicle": 176417, "easytouse": 45367, "barrier": 15573, "gaining": 62493, "385m": 1100, "edges": 45422, "kgc": 81638, "communitybased": 26529, "comedy": 26010, "2s": 940, "neuralbased": 112992, "golden": 66245, "stepwise": 155779, "commutative": 26533, "permutation": 122492, "unfolding": 171652, "tracks": 167545, "embody": 47320, "tractability": 167546, "instantiate": 77855, "hashed": 68852, "100m": 183, "proximity": 133434, "225": 784, "multitaskprompted": 111247, "320": 1007, "129": 309, "doubt": 44682, "possesses": 124357, "occurs": 115594, "retrain": 143973, "promises": 130207, "perils": 122468, "spurred": 154621, "educators": 45635, "fear": 57345, "circumvent": 23781, "excitement": 52867, "danger": 34542, "marginally": 99203, "instructors": 78422, "horizon": 70418, "sharpness": 149845, "myopic": 111357, "greedily": 67802, "temperaturescaled": 164209, "likelihoodbased": 92442, "temperatures": 164208, "plug": 123657, "negatives": 112545, "illustrates": 72162, "asp": 12899, "goaldirected": 66210, "interactivity": 79355, "nontextual": 114146, "hallucinations": 68419, "rouge1": 145624, "chrf": 23743, "codebase": 25221, "gptscore": 67319, "highcaliber": 69562, "arduous": 12309, "adequate": 5505, "consideration": 29653, "80m": 1672, "caught": 21172, "sparked": 153696, "fears": 57346, "originality": 117399, "manifest": 98913, "advise": 6271, "inflated": 76176, "idiosyncrasies": 72052, "nasa": 111479, "tlx": 166655, "frustration": 61696, "analysts": 9245, "458": 1246, "313": 997, "chatgpt3": 23444, "participated": 120032, "scored": 147112, "authenticity": 14418, "239": 802, "gpa": 66367, "996": 1836, "jaccard": 81175, "virtue": 176877, "prevalently": 127530, "incompleteness": 74816, "tedious": 164183, "pressures": 126720, "instant": 77852, "requirementsrelated": 141325, "domainknowledge": 44341, "localizes": 97286, "901": 1752, "bottlenecked": 18898, "12k": 313, "manyshot": 99123, "hardening": 68664, "standpoint": 154925, "enforcing": 48808, "27b": 883, "591": 1401, "boosted": 18832, "vit22b": 177399, "shapetexture": 149784, "attributable": 14072, "supplied": 159245, "contextualizing": 31139, "posthoc": 124498, "diabetes": 41349, "let": 91432, "practitioner": 125520, "comorbidity": 26534, "complications": 27725, "dashboard": 34556, "drivers": 45000, "panel": 118681, "scibert": 146845, "distinguishability": 43290, "stacked": 154716, "rotation": 145616, "hyperbolic": 71581, "plenty": 123551, "empower": 47986, "galactica": 62539, "qas": 133940, "debut": 37325, "selfcorrect": 147963, "favoring": 57335, "agile": 6812, "iterated": 81097, "geometries": 65733, "vms": 177498, "mae": 98189, "dispersion": 43066, "polysemy": 123930, "alignability": 8042, "recovery": 138328, "tracin": 167507, "pruthi": 133470, "pet": 122778, "misclassifications": 102469, "cleaning": 24256, "debugging": 37318, "relabeling": 139142, "subsumption": 158173, "kbs": 81417, "omit": 115950, "logicbased": 97405, "owl": 118472, "inferencebased": 76141, "axioms": 15390, "si": 150501, "netizens": 112617, "librarians": 92027, "importanceaware": 73073, "communications": 26429, "crosslayer": 33644, "manager": 98894, "quantified": 134309, "noises": 113991, "typographical": 170530, "typos": 170538, "pinyin": 123004, "keyboard": 81600, "dialectical": 41402, "geared": 62850, "customize": 34398, "ignoring": 72077, "bed": 16519, "200k": 628, "wellinformed": 178163, "santa": 146137, "fe": 57343, "powerlaw": 125359, "extrapolated": 56407, "literally": 93149, "artifact": 12637, "stationary": 155475, "memorybased": 100482, "hoc": 70240, "rationality": 136072, "von": 177552, "neumannmorgenstern": 112821, "violate": 176842, "tended": 164322, "bet": 17783, "responding": 142605, "miscommunication": 102471, "barriers": 15576, "scheduling": 146762, "pace": 118486, "selfcontemplation": 147960, "eliminate": 47062, "redefine": 138384, "aiaugmented": 7334, "discipline": 42675, "helper": 69199, "logistics": 97415, "logistical": 97412, "gpt3based": 66888, "methodical": 101179, "urgent": 172415, "inquiries": 77460, "trades": 167579, "examined": 52420, "stance": 154784, "49k": 1277, "personalize": 122582, "personalization": 122575, "userbased": 173536, "trainers": 168133, "holes": 70290, "labelers": 82748, "alongside": 8496, "package": 118490, "9th": 1843, "vlsp": 177497, "62": 1447, "sharedtask": 149832, "blue": 18755, "codalab": 24646, "shedding": 149866, "middlelayer": 102192, "evenly": 52064, "mutations": 111333, "prognostic": 129721, "molecular": 110027, "profiles": 129696, "cancer": 19706, "diseases": 43034, "oldest": 115944, "firstofitskind": 59660, "commitment": 26107, "revises": 144602, "scarcer": 146482, "invariance": 80320, "compactness": 26542, "dr": 44866, "hear": 69025, "gplms": 66370, "gplm": 66369, "retrievethengenerate": 144274, "consumers": 30266, "passed": 120354, "detriment": 40739, "mwps": 111356, "unknowns": 171946, "noting": 114325, "subtraction": 158200, "comprised": 28238, "highlighted": 69796, "eventdriven": 52100, "45m": 1247, "rectification": 138338, "discourses": 42723, "alter": 8532, "restrictive": 143010, "elimination": 47090, "detoxification": 40733, "finished": 59624, "fuzzy": 62423, "hugging": 70534, "675": 1497, "stances": 154790, "seamless": 147281, "ecosystem": 45406, "nocode": 113959, "audit": 14213, "utilities": 174941, "load": 97223, "preprocess": 126181, "portfolio": 124125, "visiting": 177099, "assists": 13457, "instructionfinetuned": 78168, "dream": 44961, "sleep": 152211, "lacked": 83029, "favour": 57338, "specifying": 154348, "cheaply": 23520, "negotiation": 112569, "wellaligned": 178140, "mixedmethods": 102736, "experienced": 53852, "199": 551, "categorized": 21141, "interview": 79805, "willingness": 178513, "resuming": 143948, "116k": 249, "encounters": 48584, "competencebased": 27125, "alarmingly": 7744, "nbest": 112076, "1best": 563, "conformertransducer": 29425, "propagated": 131597, "semeval2023": 148338, "intimacy": 79817, "2023": 685, "official": 115866, "stabilizes": 154683, "noticeable": 114315, "domainadapted": 44325, "5point": 1414, "retrospectively": 144292, "lymphoma": 97987, "imaging": 72549, "physician": 122920, "monte": 110087, "carlo": 20821, "613": 1443, "774": 1605, "481": 1265, "772": 1603, "confine": 29388, "causing": 21266, "msp": 110274, "sampleefficient": 145981, "valuebased": 175511, "actorcritic": 4474, "recombination": 138184, "starts": 154971, "recombines": 138185, "mutates": 111328, "collaborated": 25574, "remotely": 140353, "kgqa": 81642, "prolog": 130133, "readable": 136159, "programmatically": 129768, "metaqa": 100598, "workforce": 179389, "intellectual": 78708, "slicing": 152217, "launching": 89593, "coderelated": 25277, "neglecting": 112551, "hallmarks": 68325, "matter": 99648, "push": 133793, "hubert": 70500, "1d": 569, "094": 95, "convention": 31686, "longdistance": 97518, "british": 19153, "debiased": 37303, "localizing": 97287, "outlines": 117502, "9way": 1845, "track2": 167528, "downside": 44692, "cards": 20759, "humanmade": 71309, "indiscriminate": 75681, "standardized": 154899, "machinereadable": 98162, "composite": 27802, "pressing": 126709, "researching": 142281, "undertaking": 171570, "foreground": 60391, "undertaken": 171567, "assemble": 13017, "thereof": 166116, "talking": 161016, "competency": 27132, "sending": 148372, "receiving": 137324, "corrected": 32426, "inputsoutputs": 77455, "door": 44659, "builders": 19361, "max": 99658, "economical": 45399, "costbased": 32751, "stably": 154706, "verbalizer": 176447, "uniformly": 171770, "assure": 13578, "chatgpt4": 23452, "cooling": 32061, "metallic": 100582, "glasses": 66074, "pictured": 122967, "supervisory": 159225, "vlm": 177443, "decoderbased": 37528, "recreated": 138330, "explorations": 55113, "rewarding": 144719, "chitchat": 23679, "guaranteed": 68114, "prioritize": 127969, "pseudolabels": 133483, "ab": 1860, "10000": 172, "chai": 21445, "whos": 178240, "xai": 179818, "accompanying": 3001, "mature": 99654, "tendencies": 164323, "jumpstart": 81347, "logically": 97400, "ascertain": 12824, "combinatorial": 25859, "nextgeneration": 113603, "till": 166338, "contentrelated": 30662, "signalspecific": 150543, "insightful": 77501, "chatcaptioner": 22649, "humansubject": 71500, "coco": 24639, "httpsgithubcomvisioncairchatcaptioner": 70490, "replaying": 140484, "classincremental": 24222, "locates": 97295, "selfplanning": 148023, "struggling": 156790, "acknowledged": 4240, "enters": 49791, "workplace": 179415, "posting": 124504, "entrylevel": 49973, "svms": 159757, "gpt35based": 66871, "gpt35turbo": 66873, "welldesigned": 178150, "indoeuropean": 75785, "publish": 133687, "unsuitable": 172230, "poetic": 123695, "imagery": 72387, "mistranslations": 102562, "lays": 89710, "mimicking": 102269, "regard": 138851, "instructed": 77938, "pressure": 126718, "checklist": 23542, "ribeiro": 144759, "190000": 537, "commonalities": 26215, "llmdriven": 94183, "comprehending": 27866, "subjected": 157848, "implausible": 72814, "accessed": 2927, "prefer": 125996, "divergences": 43446, "mcq": 99727, "countless": 32983, "exercise": 53001, "misuses": 102578, "cheating": 23522, "formative": 60557, "summative": 158955, "fillin": 58334, "confusion": 29449, "hindrance": 70167, "nl4opt": 113643, "lp": 97945, "neurips": 112995, "outofcontext": 117514, "breast": 19032, "phenotyping": 122844, "phenotype": 122841, "mayo": 99703, "clinic": 24311, "guideline": 68244, "phenotypes": 122842, "161": 464, "mc": 99722, "institutes": 77917, "microf1": 102180, "0932": 94, "extractor": 56391, "strides": 156303, "inferior": 76155, "slms": 152244, "factchecker": 56758, "believable": 16765, "organisations": 117280, "moderatesized": 109769, "390": 1107, "merits": 100534, "justifications": 81392, "fostering": 60690, "em": 47116, "dialectic": 41401, "abductive": 1870, "gpt4s": 67231, "nonfactual": 114065, "undermine": 170879, "samplingbased": 146124, "factcheck": 56757, "stochastically": 155827, "contradict": 31281, "greybox": 67818, "dialogs": 41441, "restaurants": 142988, "computes": 28525, "realistically": 136309, "converse": 31974, "tooluse": 167290, "handcrafting": 68511, "scripted": 147251, "interleaving": 79500, "pauses": 120580, "inevitable": 75917, "intensified": 78986, "fullfledged": 61722, "instruments": 78442, "599": 1405, "autograder": 14487, "alike": 8275, "inbetween": 74295, "prevailing": 127487, "inspecting": 77676, "peeking": 120660, "submodules": 157903, "participates": 120034, "participate": 120030, "undergraduate": 170803, "graded": 67370, "homework": 70315, "inadequate": 74278, "appendix": 10245, "reminiscent": 140343, "suitability": 158685, "inversion": 80350, "abundance": 2695, "rlhf": 145088, "massivetext": 99392, "pangusigma": 118689, "trillionparameter": 169767, "routed": 145643, "multimodality": 110795, "fastgrowing": 57308, "transportation": 169609, "equity": 50197, "conferences": 29338, "favorite": 57336, "chatgptbased": 23460, "transit": 169392, "collocated": 25786, "inconclusive": 74818, "shannon": 149771, "nouns": 114339, "coordinates": 32089, "file": 58322, "unfactual": 171637, "adjacent": 5532, "replacements": 140470, "flop": 59860, "04": 32, "ppl": 125366, "simpletouse": 151570, "informatics": 76259, "compelled": 27102, "farreaching": 57243, "everexpanding": 52147, "embraced": 47323, "sectors": 147540, "cohesion": 25552, "prominently": 130162, "disadvantage": 42628, "cohmetrix": 25554, "lagged": 83061, "threestep": 166298, "rouge": 145618, "parallelizing": 119593, "serial": 148895, "equation": 50170, "exemplify": 52998, "physicsinformed": 122953, "arrays": 12530, "fundamentals": 61993, "cyberdefense": 34471, "late": 89469, "focal": 59935, "bing": 18484, "invested": 80361, "wider": 178430, "prospects": 132542, "swiss": 159781, "traction": 167548, "onetime": 116045, "hypernetworks": 71588, "hypernetwork": 71586, "intersections": 79771, "ve": 176373, "qnli": 133954, "mnli": 102893, "qqp": 133957, "sst2": 154667, "mega": 100300, "sparks": 153706, "cohort": 25555, "mastery": 99402, "agi": 6790, "emphasis": 47620, "ahead": 6839, "pursuing": 133782, "nextword": 113613, "reflections": 138814, "evident": 52242, "contamination": 30400, "domainagnostic": 44331, "analogical": 8730, "proficiently": 129692, "proficiencies": 129642, "exceptionally": 52847, "defers": 37923, "reproduction": 141029, "t2t": 160687, "ids": 72055, "instruct": 77926, "finer": 58905, "clips": 24426, "evades": 50880, "watermarking": 177746, "reordering": 140395, "gptzero": 67332, "detectgpt": 40390, "703": 1535, "15m": 444, "t5xxl": 160738, "abortion": 2578, "tiktok": 166333, "confusing": 29448, "recommended": 138268, "consulting": 30255, "attempting": 13807, "impression": 73250, "decided": 37354, "hesitant": 69283, "credible": 33404, "humanlanguage": 71218, "184": 525, "139": 355, "755": 1583, "179": 511, "973": 1819, "machinelearning": 98156, "codesigning": 25319, "profiler": 129695, "codesign": 25318, "consumption": 30276, "100times": 184, "unleashing": 171982, "metaverse": 100606, "incorporation": 75140, "immersive": 72607, "delves": 38103, "pros": 132529, "cons": 29508, "entertainment": 49793, "instinctively": 77913, "defending": 37898, "amid": 8669, "gai": 62426, "copilot": 32103, "ignited": 72066, "bard": 15548, "prominence": 130137, "tfidf": 165977, "excelling": 52799, "smarter": 152484, "deeply": 37856, "atmosphere": 13612, "contextdependent": 30988, "command": 26034, "puts": 133811, "contextawareness": 30986, "asynchronously": 13603, "attributing": 14137, "impractical": 73243, "tracing": 167512, "reproducing": 141026, "behaviours": 16743, "loops": 97631, "skipping": 152203, "knowledgeaugmented": 82523, "semanticsbased": 148329, "evoked": 52247, "plmsbased": 123653, "optimally": 116965, "framenet": 60903, "bits": 18602, "realizes": 136330, "transmit": 169568, "upgraded": 172370, "contentoriented": 30661, "evolvable": 52294, "pdes": 120632, "excessive": 52852, "surrogate": 159581, "mturk": 110294, "semanticbased": 148280, "metaevaluation": 100568, "reevaluate": 138634, "unless": 171988, "money": 110049, "concatenate": 28563, "safetycritical": 145902, "analyst": 9244, "elicitation": 47046, "typhoon": 170441, "restore": 142992, "mrpc": 110262, "ieee": 72058, "conference": 29335, "ingame": 76922, "pervasively": 122775, "warranting": 177728, "garner": 62771, "transparently": 169605, "centralize": 21352, "assets": 13313, "supplement": 159228, "asset": 13311, "march": 99170, "262": 864, "356": 1066, "auditors": 14225, "appealing": 10219, "modelllm": 105135, "englishcentric": 49126, "prevalence": 127501, "ocl": 115596, "mof": 110024, "descendant": 39372, "understandability": 171100, "mirror": 102450, "elephant": 47024, "youtube": 180055, "mission": 102535, "delivering": 38070, "angles": 9419, "tied": 166322, "liberalism": 92025, "america": 8658, "ignorant": 72068, "depiction": 39189, "chatgptgpt4": 23472, "curiosity": 34047, "biologists": 18519, "pertinent": 122739, "refactoring": 138639, "staying": 155532, "brainlike": 18952, "diversified": 43700, "screen": 147233, "film": 58342, "cornell": 32193, "quotes": 135372, "films": 58343, "costbenefit": 32752, "conveys": 32020, "ilf": 72127, "refinements": 138773, "toy": 167483, "chatting": 23514, "brazilian": 18976, "admission": 5558, "wireless": 178544, "phenomenal": 122824, "dgms": 41348, "experiencing": 53873, "explosive": 55525, "managing": 98900, "contracts": 31280, "aigc": 7389, "plausiblesounding": 123434, "commentaries": 26057, "inaccessibility": 74256, "archives": 12308, "periodically": 122473, "exposures": 55555, "gradual": 67420, "decline": 37497, "recalled": 137281, "1984": 549, "selfrefine": 148031, "refiner": 138775, "onestep": 116042, "standalone": 154792, "proteinprotein": 132576, "fastpaced": 57311, "ppi": 125365, "goldstandard": 66247, "lll": 93421, "164": 468, "163": 466, "145": 389, "335": 1028, "9195": 1770, "commendable": 26050, "camel": 19693, "cooperation": 32069, "roleplaying": 145552, "humanexpert": 71177, "density": 39118, "unsuccessful": 172229, "theorems": 166011, "forum": 60656, "surveying": 159709, "709": 1539, "392": 1109, "462": 1250, "editions": 45497, "riskcentric": 144966, "placement": 123182, "intricate": 79831, "enlarged": 49595, "coined": 25559, "launch": 89583, "manuscripts": 99121, "categorizes": 21144, "intends": 78983, "linearity": 92986, "nonlinearity": 114095, "outlet": 117481, "outlets": 117482, "llmempowered": 94186, "familiar": 57181, "concretized": 28930, "issuing": 81068, "mimics": 102274, "simplifies": 151597, "emphasizes": 47637, "bioasq": 18494, "passengers": 120355, "entering": 49783, "confronting": 29442, "beat": 16512, "unparalleled": 172070, "seasoned": 147449, "buffet": 19276, "bringing": 19131, "successors": 158408, "exemplary": 52989, "bartbase": 15586, "disentangled": 43039, "hebbian": 69056, "theoretic": 166012, "emergency": 47452, "integer": 78469, "divided": 43769, "beings": 16747, "residues": 142321, "automl": 14917, "amazon": 8616, "llama": 93273, "falcon": 57108, "70m": 1544, "cusp": 34365, "civic": 23809, "professions": 129639, "substantive": 158155, "interviewed": 79808, "profession": 129615, "inquiry": 77463, "plastic": 123373, "inservice": 77476, "indicator": 75667, "resident": 142310, "proficiency": 129643, "surgeon": 159441, "boards": 18768, "percentile": 120785, "3rd": 1163, "moment": 110038, "occurrence": 115590, "appeal": 10217, "coordinated": 32088, "iterate": 81096, "alterations": 8533, "unlocking": 172040, "stands": 154927, "perpetuate": 122497, "roadmap": 145126, "heatmaps": 69036, "wellresearched": 178183, "specialised": 153857, "hardness": 68671, "maintenance": 98398, "gpt1": 66511, "zandieh": 180058, "han": 68478, "daliri": 34522, "alman": 8490, "song": 153273, "mathbbrn": 99550, "square": 154644, "mathrmdiaga": 99626, "bf": 18082, "1n": 577, "diagonal": 41395, "bullet": 19512, "2004": 622, "cohen": 25496, "stoc": 155813, "brand": 18962, "soda": 152729, "amortized": 8675, "hinted": 70178, "tau": 163560, "omega1": 115946, "worst": 179671, "ideation": 71775, "aisupported": 7709, "knowledgegenerating": 82548, "sensemaking": 148399, "reflection": 138811, "revolutionizing": 144670, "rna": 145114, "cellular": 21314, "gene": 62902, "differentiation": 42113, "pathway": 120450, "looks": 97620, "milestone": 102206, "populating": 124108, "ainlp": 7686, "curators": 34043, "nested": 112609, "schemas": 146775, "zsl": 180397, "conforming": 29426, "vocabularies": 177502, "identifiers": 71838, "food": 60335, "multispecies": 111153, "signaling": 150524, "chemical": 23557, "customization": 34394, "vectorspace": 176413, "interrogate": 79752, "borrowed": 18874, "fairly": 57045, "cohere": 25503, "bigcode": 18400, "defining": 37953, "llmpowered": 94223, "taggers": 160889, "multimedia": 110577, "tag": 160884, "predicts": 125965, "noticed": 114322, "systemlevel": 160216, "simcse": 151202, "hashtags": 68856, "shaping": 149786, "lite": 93145, "stirred": 155810, "dental": 39122, "avenue": 15234, "computeoptimal": 28469, "111m": 239, "chinchilla": 23601, "learnings": 91169, "mup": 111303, "ift": 72062, "involvement": 80711, "imagine": 72547, "enhancements": 49389, "073": 67, "041": 33, "adopters": 5610, "customer": 34376, "elections": 46979, "autogenerated": 14483, "325": 1012, "eager": 45225, "logiqa": 97409, "reclor": 138035, "arlsat": 12495, "intense": 78985, "promptstyle": 131535, "orchestrating": 117162, "roll": 145568, "prepared": 126170, "kaggle": 81406, "vldb": 177439, "attendees": 13825, "orchestrate": 117159, "humanled": 71220, "ingrained": 76928, "origins": 117410, "unintended": 171797, "inevitability": 75916, "emphasizing": 47649, "equitable": 50192, "streams": 156238, "digest": 42270, "indiscriminately": 75683, "textrich": 165672, "timeaware": 166533, "fueled": 61705, "streaming": 156225, "excels": 52801, "plugins": 123677, "expandable": 53691, "rltf": 145110, "loop": 97625, "acknowledge": 4238, "mirroring": 102453, "ui": 170562, "objectoriented": 115269, "worldview": 179643, "realities": 136311, "intertwined": 79776, "manipulated": 98932, "realization": 136322, "effortlessly": 46880, "individualized": 75755, "appropriateness": 12008, "graders": 67371, "pearson": 120642, "transcended": 168874, "therapy": 166115, "dialoguebased": 41543, "say": 146200, "hurtful": 71552, "races": 135388, "discriminatory": 42860, "guardrails": 68125, "psychometric": 133519, "perceiving": 120770, "intraclass": 79821, "icc": 71648, "scopus": 147025, "annual": 9651, "1916": 539, "relieve": 139811, "45x": 1248, "a100": 1848, "sovereignty": 153543, "legitimacy": 91334, "impartial": 72783, "flawed": 59775, "multinational": 110815, "west": 178205, "resolutions": 142337, "consolidates": 29993, "monitor": 110051, "protective": 132570, "climate": 24307, "hurricanes": 71550, "managers": 98895, "evacuation": 50874, "lowest": 97858, "contextspecific": 31067, "rated": 136023, "preparedness": 126171, "structureaware": 156620, "linearized": 92988, "highorder": 69975, "forests": 60408, "helping": 69225, "endtasks": 48723, "resolves": 142352, "crux": 33890, "clinicians": 24386, "underdeveloped": 170755, "agieval": 6811, "humancentric": 71148, "competitions": 27155, "lawyer": 89615, "lsat": 97949, "extraordinary": 56400, "concentrating": 28579, "assesses": 13153, "affiliation": 6332, "poster": 124488, "politicians": 123911, "equal": 50154, "interpretive": 79742, "arora": 12500, "pcfg": 120622, "beginalign": 16531, "endalign": 48698, "woodruff": 178609, "186": 527, "pedagogically": 120653, "unhelpful": 171687, "blooms": 18751, "repetition": 140442, "moderately": 109766, "nontoxic": 114147, "86": 1716, "worldwide": 179645, "subdisciplines": 157804, "subdiscipline": 157803, "proceeded": 128717, "journal": 81292, "cite": 23801, "median": 100123, "older": 115943, "2010": 633, "mentioning": 100515, "gptgenerated": 67288, "reinforces": 139127, "dominance": 44641, "perpetuates": 122499, "geospatial": 65747, "fms": 59933, "geoai": 65698, "subdomains": 157806, "sensing": 148407, "toponym": 167396, "imagebased": 72365, "cqa": 33134, "disagreements": 42636, "eye": 56465, "stylistic": 157787, "4038": 1189, "gre": 67678, "hire": 70184, "rises": 144916, "selftraining": 148083, "lexically": 92001, "equivariance": 50208, "shuffling": 150499, "inter": 79047, "intra": 79820, "validations": 175386, "authorization": 14434, "encoderdecoders": 48470, "fell": 57844, "prosperity": 132547, "backdrop": 15428, "gpttype": 67327, "dissemination": 43110, "simulators": 151738, "yesno": 179954, "englishoriented": 49135, "englishbased": 49125, "textbfchinese": 165604, "textbfinstruction": 165608, "lorabased": 97653, "optimizers": 117101, "homogeneous": 70319, "1m": 574, "kmeans": 81686, "alpaca": 8503, "gist": 65804, "occupy": 115585, "gisting": 65806, "cached": 19592, "llama7b": 93395, "26x": 870, "reductions": 138626, "42": 1208, "parrots": 119940, "detectability": 40383, "adamw": 4508, "warn": 177707, "transpose": 169612, "department": 39128, "famous": 57203, "revolutionise": 144626, "2008": 626, "categorize": 21134, "assessors": 13310, "opposing": 116898, "bim": 18461, "va": 175278, "nlbased": 113644, "835": 1696, "995": 1835, "hospital": 70424, "vas": 176309, "ban": 15522, "analyse": 8744, "hourly": 70452, "8000": 1663, "italy": 81074, "highfrequency": 69680, "sudden": 158414, "differenceindifferences": 41617, "tor": 167406, "censorship": 21316, "swiftly": 159772, "bypass": 19562, "disruptions": 43096, "hampers": 68477, "scaffolding": 146208, "operated": 116744, "animation": 9426, "valley": 175398, "embodiment": 47318, "functioning": 61894, "articulate": 12631, "pertains": 122736, "adventure": 6185, "dungeon": 45093, "demystifying": 39063, "mystery": 111363, "stake": 154777, "expansive": 53724, "netgpt": 112614, "traffic": 167729, "protect": 132551, "headers": 68911, "payloads": 120613, "segmenting": 147757, "packets": 118495, "encrypted": 48630, "dns": 43800, "cryptocurrency": 33892, "biotechnology": 18588, "ncbi": 112080, "genomics": 65691, "044": 35, "004": 6, "documentations": 43875, "php": 122880, "891": 1733, "955": 1802, "aqua": 12055, "764": 1595, "799": 1618, "539": 1357, "chameleon": 22325, "heuristicbased": 69313, "planner": 123229, "assembles": 13020, "scienceqa": 146922, "gpt4powered": 67230, "170": 485, "lifting": 92095, "chatgptpowered": 23477, "delight": 38056, "enjoyment": 49591, "moderate": 109758, "handed": 68516, "nefarious": 112498, "moderated": 109765, "catch": 21079, "fraudulent": 61537, "detrimental": 40740, "protection": 132565, "regulatory": 139014, "bodies": 18771, "differentiating": 42112, "logistic": 97410, "newest": 113521, "cold": 25563, "doctor": 43804, "lexicon": 92004, "lexicons": 92007, "synonyms": 159883, "1500": 420, "languagevision": 87169, "surgical": 159444, "audits": 14230, "uncovered": 170738, "substitute": 158159, "achievement": 3923, "relabel": 139141, "forgets": 60412, "obscuring": 115316, "expertannotated": 54596, "cskb": 33901, "tackles": 160857, "2021a": 661, "v1": 175266, "phoenix": 122862, "embark": 47127, "pinpoint": 122996, "granular": 67474, "laborintensive": 82856, "codebooks": 25235, "minigpt4": 102307, "undisclosed": 171599, "vicuna": 176665, "uncovers": 170746, "drafts": 44872, "cook": 32054, "fragmentation": 60894, "suppression": 159405, "impactful": 72750, "repetitions": 140443, "endow": 48712, "outofvocabulary": 117555, "tissues": 166640, "124m": 293, "reaction": 136143, "harnesses": 68803, "optimisation": 116967, "carrying": 20849, "additions": 5149, "multiplications": 111117, "assembly": 13022, "robogpt": 145167, "shortages": 150015, "adaptability": 4570, "chatgptlike": 23473, "announced": 9649, "criticizing": 33589, "cautionary": 21275, "coders": 25281, "thresholds": 166302, "underscores": 170936, "absorb": 2625, "patternoriented": 120514, "foundationmodelbased": 60854, "minimising": 102368, "galvanizing": 62542, "misbehave": 102465, "psychiatry": 133492, "responds": 142612, "racism": 135391, "ableism": 2573, "delegate": 38036, "autonomy": 14964, "arrived": 12536, "sorts": 153335, "flags": 59736, "detective": 40663, "mls": 102872, "shots": 150064, "reside": 142309, "misspellings": 102539, "lamp": 83083, "personalizing": 122635, "automotive": 14922, "cloudbased": 24567, "siri": 151921, "computeheavy": 28465, "sacrifice": 145787, "deployable": 39205, "processor": 129361, "battery": 16470, "cb": 21283, "raspberry": 135961, "deployability": 39204, "trialanderror": 169739, "divide": 43764, "activate": 4399, "divides": 43773, "grammatically": 67466, "terminologies": 164380, "lately": 89473, "specially": 153922, "openie": 116518, "evidenced": 52234, "traceability": 167502, "da": 34498, "astronomy": 13591, "inversely": 80349, "fullyfunctional": 61809, "lexglue": 91972, "hype": 71578, "476": 1261, "628": 1454, "702": 1534, "ecthr": 45411, "ledgar": 91262, "srl": 154654, "excluded": 52886, "stateofthearts": 155416, "864": 1718, "823": 1687, "67b": 1499, "letting": 91441, "performant": 122356, "usd": 172482, "feb": 57609, "examinations": 52362, "conscious": 29510, "consciousness": 29512, "cautioned": 21276, "lossless": 97707, "lossy": 97709, "strictly": 156297, "requisite": 141520, "manipulate": 98924, "undoubtedly": 171603, "turings": 170164, "hallmark": 68324, "societies": 152701, "certainty": 21429, "claude": 24236, "weighting": 178093, "believes": 16797, "avoidance": 15354, "sentience": 148603, "eyes": 56472, "flourishing": 59869, "encompasses": 48531, "worstperforming": 179676, "multiround": 111138, "brains": 18953, "cooperatively": 32081, "randomness": 135574, "consolidating": 29994, "metareasoning": 100600, "arriving": 12538, "discarded": 42657, "mixes": 102741, "typologicallydiverse": 170536, "tokentoken": 166905, "zipfian": 180392, "surfaces": 159422, "pseudorelevance": 133485, "firstpass": 59665, "grf": 67819, "prf": 127758, "ndcg10": 112083, "closeness": 24533, "played": 123478, "celebrated": 21303, "minx": 102441, "ax": 15387, "langle": 83115, "expax": 53728, "rangle1": 135765, "lengthy": 91405, "scm": 147009, "meeting": 100288, "shades": 149757, "uncovering": 170739, "contextualised": 31120, "enduring": 48779, "distinctions": 43266, "polysemous": 123928, "lexicographic": 92003, "conceptualisations": 28723, "endusers": 48783, "regularly": 138998, "lying": 97986, "83": 1693, "heuristically": 69312, "reagents": 136214, "highthroughput": 70124, "332": 1025, "parrot": 119938, "llmaugmented": 94110, "css": 33903, "timeintensive": 166566, "llama2": 93349, "multiclass": 110361, "unsatisfactory": 172140, "synonymous": 159882, "sc": 146206, "swedish": 159766, "consumergrade": 30264, "ctrl": 33914, "varshney": 176261, "brother": 19238, "attacking": 13682, "imperceptibly": 72805, "uncommon": 170704, "elasticsearch": 46975, "bings": 18491, "maintainers": 98337, "recording": 138307, "researches": 142278, "monthly": 110098, "month": 110096, "792": 1616, "mplugowl": 110246, "equips": 50189, "modularized": 109913, "owleval": 118473, "multiimage": 110434, "colloquial": 25787, "owners": 118475, "rigour": 144880, "epistemic": 50146, "reinvent": 139132, "disrupted": 43093, "disruption": 43095, "selfdirected": 147977, "taught": 163561, "pvs": 133821, "processoriented": 129362, "toolbox": 167076, "peers": 120674, "higherorder": 69655, "metacognition": 100563, "maxim": 99659, "unwarranted": 172318, "committing": 26112, "persons": 122647, "anomalous": 9654, "gas": 62798, "factory": 56829, "governing": 66357, "guardrail": 68124, "conforms": 29429, "rulebreaking": 145706, "borderline": 18870, "finergrained": 58908, "afraid": 6374, "arent": 12398, "misunderstanding": 102564, "communicators": 26435, "ambient": 8627, "flag": 59733, "invaluable": 80311, "terrain": 164498, "eda": 45413, "illustrations": 72168, "sentencebert": 148543, "bertopic": 17637, "emphasized": 47636, "accentuated": 2820, "canada": 19704, "hubs": 70501, "indispensable": 75684, "homogeneity": 70318, "daunting": 37224, "gptsw3": 67326, "nordic": 114171, "intersentential": 79773, "proceed": 128716, "sentencepair": 148553, "connectives": 29500, "formidable": 60579, "subpar": 157921, "circuit": 23770, "mechanistic": 100059, "reverseengineered": 144466, "systematizes": 160212, "patching": 120416, "68": 1501, "mirage": 102449, "twofold": 170237, "appearing": 10237, "metaanalysis": 100562, "neverbeforeseen": 113046, "alleged": 8277, "evaporate": 52061, "speak": 153827, "archaeology": 12102, "copyrighted": 32138, "complicates": 27723, "contaminating": 30399, "stumbling": 157728, "clir": 24428, "paucity": 120577, "translationese": 169550, "anomaly": 9655, "oneclass": 115972, "separable": 148688, "abnormal": 2576, "strengthens": 156247, "smile": 152493, "82": 1685, "counseling": 32922, "lasted": 89452, "perceptrons": 120844, "activates": 4406, "tinker": 166631, "handson": 68617, "responsibility": 142951, "ownership": 118476, "supportive": 159391, "everchanging": 52141, "browser": 19254, "playground": 123489, "poison": 123786, "joe": 81239, "biden": 18336, "bagofwords": 15477, "degenerate": 37975, "worryingly": 179653, "protections": 132569, "gradable": 67362, "inferential": 76153, "mere": 100520, "032": 26, "concluding": 28892, "radiologist": 135406, "resourceconsuming": 142407, "vpg": 177563, "proposition": 132505, "ft": 61701, "pcp": 120625, "201": 632, "gloss": 66118, "vwsd": 177657, "depicts": 39190, "suffered": 158457, "selfconsistent": 147957, "endtask": 48721, "respects": 142585, "ed": 45412, "discrepancies": 42791, "prototypebased": 132602, "trail": 167739, "bsc": 19260, "legally": 91324, "compliant": 27710, "workable": 179370, "reactive": 136146, "unaffected": 170615, "73": 1560, "mediqachat": 100250, "doctorpatient": 43806, "bertscore": 17645, "scrutiny": 147266, "iclbased": 71703, "introductorylevel": 80278, "155": 431, "instructor": 78420, "computeintensive": 28466, "imaginative": 72546, "wikihow": 178492, "beating": 16513, "unfolds": 171653, "trainingevaluation": 168830, "ptp": 133532, "perturbationbased": 122751, "precipitous": 125570, "fluctuation": 59883, "regularizers": 138996, "stabilizing": 154685, "194": 542, "isolated": 80874, "runtimes": 145767, "desiderata": 39536, "contention": 30659, "byproduct": 19573, "discounting": 42697, "patience": 120459, "decisionmakers": 37393, "discount": 42691, "conjoint": 29458, "underpinnings": 170898, "marketers": 99236, "lookahead": 97613, "repairing": 140421, "unethical": 171609, "subtly": 158198, "deciding": 37357, "decide": 37351, "repairs": 140423, "llama13b": 93347, "ethically": 50847, "conformal": 29421, "successively": 158406, "topp": 167398, "textiteg": 165644, "wellannotated": 178141, "multimodel": 110805, "boxes": 18930, "operator": 116797, "msg": 110271, "120": 277, "extractable": 56177, "disadvantages": 42631, "provision": 133411, "785": 1611, "handpicked": 68614, "492": 1272, "hardly": 68670, "chats": 23513, "photo": 122872, "vse": 177607, "169": 473, "428": 1215, "engagingness": 48851, "39": 1106, "humanness": 71313, "persuasiveness": 122733, "taxonomic": 163567, "meaningfully": 99805, "partnership": 120287, "lowdimensional": 97805, "backpropagating": 15454, "inappropriate": 74285, "bsl": 19261, "rct": 136097, "rcts": 136098, "onerous": 115982, "trial": 169737, "framing": 61529, "sim20": 151199, "searchable": 147433, "pseudorelevant": 133488, "cope": 32099, "entitycentric": 49950, "infusion": 76920, "wins": 178542, "unlocked": 172037, "cadence": 19598, "crises": 33421, "noninvasive": 114082, "communicating": 26342, "personnel": 122646, "behalf": 16548, "arrival": 12531, "heralded": 69271, "tempting": 164296, "midjourney": 102195, "suddenly": 158415, "vein": 176420, "ushering": 173933, "humanity": 71211, "wise": 178553, "aiwriting": 7712, "harbor": 68630, "otter": 117434, "fewzeroshot": 58092, "instrctgpt": 77925, "mimicit": 102266, "openflamingo": 116514, "openflamingos": 116515, "4times": 1286, "workspace": 179526, "nback": 112075, "weightsharing": 178136, "parity": 119934, "antivirus": 10129, "tricks": 169749, "catandmouse": 21063, "chase": 22515, "defenders": 37897, "constantly": 30002, "hide": 69345, "evade": 50875, "windows": 178530, "legacy": 91275, "av": 15044, "rust": 145778, "avs": 15366, "multimodalities": 110794, "foreign": 60392, "chatglm": 22653, "singlemodal": 151894, "denotes": 39082, "imagesinstructions": 72516, "unfaithful": 171640, "biasing": 18325, "36": 1072, "anthropic": 10098, "anchoring": 9401, "erroneously": 50267, "anecdotal": 9411, "representativeness": 140948, "efficacious": 46354, "negatively": 112536, "presentations": 126507, "valued": 175515, "invites": 80671, "impedes": 72787, "owner": 118474, "119": 254, "81": 1673, "demos": 39058, "learningthe": 91170, "pubmedbertbased": 133709, "url": 172426, "safeguarding": 145820, "suspicious": 159738, "telemetry": 164190, "urls": 172427, "resourceintensive": 142410, "crosschannel": 33611, "repeatable": 140430, "oscillation": 117426, "plasticity": 123375, "suppress": 159404, "cascade": 20859, "amplification": 8718, "opposite": 116899, "pricing": 127763, "fees": 57843, "instantiation": 77859, "mot": 110138, "recalls": 137285, "widens": 178429, "evidencesupported": 52241, "jobs": 81238, "employable": 47870, "certifications": 21432, "vocational": 177519, "qualifications": 133973, "nursing": 115074, "licensed": 92050, "pharmacy": 122794, "beer": 16521, "quotient": 135373, "babbage": 15394, "turbo": 170155, "sustainability": 159741, "visioncentric": 177018, "igpt": 72080, "gestures": 65778, "chatgpt35turbo": 23451, "welcome": 178137, "watch": 177740, "codellms": 25269, "codestyle": 25321, "visit": 177096, "inaccuracies": 74258, "discretizing": 42829, "singleprompt": 151896, "glimpse": 66078, "tesla": 164503, "apple": 10247, "algebra": 7767, "picked": 122961, "protected": 132557, "standardise": 154895, "fraud": 61534, "denialofservice": 39064, "flair": 59738, "prognostics": 129722, "roadmaps": 145136, "equipment": 50177, "damages": 34538, "downtime": 44857, "achievements": 3924, "iot": 80815, "aviation": 15329, "fault": 57317, "superlarge": 159076, "landmark": 83086, "expounds": 55556, "architecturebased": 12246, "promptenhanced": 130842, "granularities": 67477, "tasklevel": 161839, "underway": 171576, "fullytrained": 61817, "paragraphlength": 119550, "engages": 48841, "recruit": 138331, "475": 1260, "java": 81208, "elaborates": 46969, "stimulates": 155804, "arc": 12097, "idealized": 71752, "ravens": 136081, "bongard": 18792, "grasped": 67671, "polar": 123797, "dust": 45107, "rms": 145112, "qe": 133942, "domaindependent": 44334, "glassbox": 66073, "wmt21": 178594, "approachs": 11965, "llava": 93411, "articulation": 12636, "akin": 7714, "underwent": 171577, "exceeded": 52742, "015": 17, "languageandvision": 86904, "competences": 27126, "tl": 166651, "28k": 905, "lifted": 92094, "ap": 10135, "originates": 117408, "diversifying": 43702, "redefined": 138386, "acknowledging": 4241, "struck": 156507, "disclosure": 42684, "exorbitant": 53674, "exploited": 55023, "treeofthought": 169678, "tot": 167408, "treelike": 169677, "backtracking": 15458, "prompter": 130843, "checker": 23535, "backtrack": 15457, "sudoku": 158416, "irony": 80842, "clue": 24587, "carp": 20826, "tones": 166922, "knn": 81695, "124": 290, "072": 66, "agnews": 6817, "06": 53, "mr": 110256, "933": 1781, "1024": 194, "horizontal": 70421, "vertical": 176632, "critiques": 33594, "lieu": 92071, "spatially": 153817, "copies": 32102, "showcased": 150090, "illustrated": 72161, "realism": 136279, "equate": 50169, "scrutinized": 147263, "intending": 78982, "mediation": 100129, "builtin": 19509, "dualencoder": 45079, "iterating": 81099, "goaloriented": 66213, "homes": 70314, "wellspecified": 178185, "kitchen": 81673, "hardcoded": 68662, "specifies": 154340, "routines": 145651, "llmcreated": 94182, "diminish": 42353, "devising": 41336, "harmonized": 68766, "boundless": 18920, "analyzes": 9354, "concealed": 28570, "uncharted": 170686, "interpreter": 79722, "metrical": 101990, "unfortunate": 171658, "trendy": 169731, "revolutionary": 144624, "reshaped": 142301, "shortfall": 150043, "sustained": 159748, "companion": 26547, "summon": 158960, "forget": 60410, "accommodating": 2989, "heightened": 69060, "empathy": 47617, "companionship": 26549, "emphatic": 47661, "eeg": 45643, "biosignals": 18587, "mismatched": 102515, "tokenizing": 166767, "tokenize": 166761, "fixedlength": 59722, "flattening": 59772, "spatiotemporal": 153820, "computeefficient": 28464, "pre": 125556, "propelling": 131606, "resembles": 142285, "smartphone": 152486, "relates": 139229, "memorable": 100324, "democracy": 38184, "conception": 28633, "integrateandfire": 78510, "contextsensitive": 31065, "pyramidal": 133823, "quicker": 135335, "uncertainties": 170661, "illustrating": 72164, "normalizing": 114193, "chances": 22332, "kendalls": 81435, "adheres": 5526, "confined": 29389, "surmount": 159447, "mini": 102303, "74": 1565, "tokenwise": 166906, "ablate": 2425, "biggest": 18405, "permanence": 122476, "household": 70462, "deploys": 39314, "virtualhome": 176874, "ewc": 52326, "recommend": 138186, "zeroprompt": 180101, "1a": 558, "append": 10242, "cheap": 23516, "350": 1060, "700ms": 1533, "aishell1": 7706, "listen": 93134, "closedended": 24473, "tuples": 170154, "android": 9408, "selfevaluate": 147987, "speechgpt": 154490, "intermodal": 79541, "unlocks": 172046, "incidence": 74314, "usertailored": 173827, "vfms": 176639, "managed": 98868, "objectlevel": 115268, "coarsegrained": 24628, "noteworthy": 114313, "expose": 55537, "4bit": 1278, "stitch": 155811, "illdefined": 72128, "autonomously": 14956, "selfprompt": 148027, "semanticlevel": 148282, "codelevel": 25266, "4050": 1191, "947": 1791, "lasting": 89453, "city": 23808, "withinsubject": 178558, "autoregressively": 15021, "partitions": 120281, "ordered": 117253, "highcapacity": 69563, "949": 1793, "modelnet40": 105137, "934": 1782, "scanobjectnn": 146464, "strive": 156332, "pg": 122786, "imitative": 72585, "instructie": 77952, "falter": 57179, "imbalances": 72564, "introspective": 80280, "selfoptimizing": 148020, "refines": 138777, "succinct": 158409, "textworld": 165973, "satisfactorily": 146156, "singlestep": 151900, "cuebased": 33922, "chainofthoughts": 21550, "observes": 115444, "screenshots": 147243, "click": 24293, "gpt4based": 67228, "mind2web": 102291, "distribute": 43316, "costefficient": 32772, "stopping": 155842, "118": 253, "advisors": 6277, "weigh": 178066, "familiarity": 57183, "trusting": 169845, "827": 1690, "718": 1553, "33b": 1032, "grid": 67820, "affecting": 6319, "nonfinetuned": 114069, "abide": 1872, "vnhsge": 177499, "graduation": 67429, "19000": 536, "bingchat": 18489, "wideranging": 178448, "nonsequential": 114135, "mappings": 99159, "constructively": 30241, "mathbbrd": 99549, "omega": 115945, "crossdisciplinary": 33620, "mner": 102891, "encounter": 48562, "formatted": 60573, "dino": 42358, "narrowed": 111465, "patchlevel": 120417, "semanticallyrich": 148278, "maskbased": 99292, "hooks": 70342, "scaffold": 146207, "jargon": 81206, "trainingtesting": 168841, "t5small": 160735, "cnndm": 24615, "xsum": 179858, "mauve": 99656, "booksum": 18803, "paragraphlevel": 119551, "frustratingly": 61695, "interpolated": 79617, "openqa": 116547, "chatgpt35": 23445, "phd": 122816, "compilation": 27220, "lab": 82670, "parameterize": 119693, "radically": 135402, "alms": 8495, "cnn": 24611, "activelearning": 4445, "daytoday": 37248, "diversitybased": 43762, "warrants": 177730, "criticized": 33586, "domainaware": 44332, "budgetary": 19273, "hmms": 70238, "proactively": 128074, "selfefficacy": 147985, "selfregulation": 148041, "humanhuman": 71192, "interior": 79489, "908": 1757, "agentive": 6517, "starkly": 154950, "clever": 24290, "incentive": 74304, "falcon40b": 57115, "6547": 1477, "bea": 16496, "jfleg": 81224, "048": 38, "026": 23, "provocation": 133413, "35turbo": 1070, "worked": 179372, "emulation": 48054, "reproduced": 141008, "tapping": 161037, "microbatches": 102178, "llamabased": 93400, "toolkits": 167089, "defend": 37895, "blindly": 18704, "believing": 16798, "misled": 102512, "grasps": 67673, "oftentimes": 115932, "absurdly": 2694, "zones": 180394, "overreliance": 118401, "expertverified": 54690, "epochs": 50151, "multiepoch": 110393, "nles": 113645, "journalistic": 81295, "directing": 42424, "net": 112613, "isotropy": 80881, "contradicting": 31282, "matcher": 99437, "allpurpose": 8484, "openworld": 116722, "miou": 102446, "specialist": 153860, "330": 1022, "enrichment": 49626, "genes": 65678, "ontological": 116160, "pvalues": 133820, "agglomerative": 6766, "highaccuracy": 69561, "imbue": 72565, "intelligibility": 78965, "tagalog": 160885, "giants": 65794, "merge": 100523, "250m": 840, "proactive": 128069, "refuse": 138845, "proactivity": 128077, "noncollaborative": 114023, "scientist": 147002, "intricacy": 79830, "ambitious": 8645, "datascience": 36071, "scikitlearn": 147008, "pivots": 123163, "cohesive": 25553, "granting": 67473, "potency": 124535, "specifics": 154328, "clarifications": 23856, "222": 780, "271": 875, "usercentered": 173537, "cfgs": 21438, "pushdown": 133799, "nearperfect": 112123, "cfg": 21437, "wellstructured": 178186, "onethird": 116044, "vendors": 176422, "charge": 22504, "nonuniformity": 114162, "poorer": 123960, "logicenhanced": 97407, "langauge": 83111, "activating": 4408, "merit": 100533, "selfcritique": 147969, "resist": 142327, "15k": 443, "researched": 142158, "utilised": 174934, "verbalised": 176442, "explorable": 55048, "agencies": 6401, "dashboards": 34557, "sarscov2": 146148, "genomic": 65689, "453": 1241, "pope": 123976, "deduce": 37683, "50000": 1317, "summarized": 158914, "handcurated": 68514, "gutenberg": 68294, "scenelevel": 146747, "closest": 24548, "programaided": 129761, "specializes": 153920, "faulty": 57323, "distills": 43196, "cutting": 34425, "globe": 66117, "universitylevel": 171930, "institution": 77918, "aitext": 7710, "propensity": 131608, "gcd": 62843, "inputdependent": 77374, "variously": 176260, "elaborating": 46970, "frustrating": 61694, "presuppositions": 126725, "void": 177526, "presupposition": 126724, "los": 97656, "retrievethenread": 144275, "362": 1079, "274": 878, "fronts": 61654, "tradition": 167585, "equip": 50174, "bigbenchhard": 18398, "434": 1220, "260": 862, "224": 782, "237": 800, "mcc": 99725, "traced": 167505, "selfadaptive": 147924, "spontaneously": 154586, "triggers": 169761, "handcraft": 68500, "blur": 18760, "reasoningbased": 137243, "openvocabulary": 116712, "expresses": 55582, "fridge": 61636, "launched": 89591, "compatibility": 27090, "pathology": 120441, "615": 1445, "trouble": 169795, "affirm": 6337, "gptneox": 67310, "llamas": 93406, "unlearnable": 171967, "24gb": 824, "vram": 177591, "linker": 93103, "dev": 40743, "verifiable": 176460, "qualified": 133974, "guesses": 68128, "96": 1808, "compound": 27835, "excessively": 52857, "constituents": 30011, "wiktionary": 178507, "tokenizes": 166766, "favorably": 57329, "wei": 178062, "2022b": 684, "leasttomost": 91198, "zhou": 180387, "unnecessary": 172058, "cotstyle": 32921, "timesensitive": 166614, "surfacelevel": 159421, "reframe": 138835, "impediment": 72789, "harming": 68755, "factscore": 56852, "unsupported": 172283, "perplexityai": 122518, "pip": 123026, "install": 77790, "diverging": 43450, "actionaware": 4356, "summarizer": 158917, "literaturebased": 93214, "departure": 39130, "disabilities": 42624, "performer": 122387, "pays": 120617, "rewriter": 144732, "navigating": 112050, "openassistant": 116437, "creator": 33398, "programofthought": 129886, "toolusing": 167295, "featuring": 57607, "2k": 935, "creators": 33399, "revolutionizes": 144669, "timedependent": 166564, "fallacious": 57134, "alpacafarm": 8518, "50x": 1331, "ppo": 125367, "dpo": 44862, "bestofn": 17772, "winrate": 178541, "languageinformed": 86922, "czsl": 34492, "sliced": 152215, "tomatoes": 166919, "entanglement": 49779, "primitives": 127837, "clipbased": 24421, "logit": 97416, "mixup": 102770, "advocates": 6283, "llmsupported": 97045, "mitstates": 102706, "utzappos": 175260, "cgqa": 21443, "defective": 37891, "fig": 58312, "counteract": 32932, "l1": 82666, "l2": 82667, "precomputed": 125632, "dollyv2": 44056, "stimulated": 155802, "subjectobject": 157869, "unannotated": 170628, "readme": 136206, "112": 240, "singledomain": 151885, "fleschkincaid": 59782, "winograd": 178537, "reliant": 139787, "distorted": 43303, "influencing": 76239, "strategyqa": 156219, "tutoring": 170197, "tutors": 170200, "hampered": 68474, "sessions": 149112, "3k": 1160, "onetoone": 116048, "teacherstudent": 163634, "originating": 117409, "entailing": 49766, "attested": 14025, "indices": 75671, "conform": 29420, "pearl": 120641, "whisper": 178220, "pausing": 120581, "comma": 26033, "legislative": 91332, "hampering": 68476, "salience": 145921, "geopolitical": 65736, "251": 841, "49": 1269, "abstain": 2628, "opponents": 116819, "reevaluation": 138636, "spy": 154630, "metaphors": 100595, "rhetorical": 144755, "symbolism": 159834, "davinci002": 37231, "1540": 430, "illustrators": 72172, "amplifies": 8720, "143": 387, "overriding": 118407, "contradicts": 31285, "conflict": 29406, "abcd": 1868, "agreeableness": 6824, "bartscore": 15589, "bleurt": 18694, "blenderbot": 18677, "uncorrelated": 170721, "anthropomorphization": 10108, "brands": 18970, "meticulously": 101942, "pictorial": 122965, "avatars": 15233, "blueprint": 18757, "provisions": 133412, "conservative": 29556, "cautious": 21279, "evidential": 52244, "adverbs": 6187, "monotonicity": 110085, "expertdesigned": 54602, "overshadowing": 118410, "cskbs": 33902, "uninformative": 171795, "triple": 169774, "embedders": 47148, "embedder": 47147, "totaling": 167426, "runnable": 145746, "selfreflect": 148036, "juncture": 81348, "frugal": 61690, "versioning": 176613, "liarnew": 92022, "groundwork": 67943, "impersonation": 72811, "prefixing": 126104, "pretending": 126726, "impersonating": 72810, "nondomain": 114038, "bird": 18590, "man": 98861, "cars": 20852, "woman": 178601, "grace": 67361, "discriminatorguided": 42858, "steers": 155575, "nextstep": 113607, "sizeable": 152079, "sociability": 152524, "theorydriven": 166108, "sociallyaware": 152682, "prioritizing": 127975, "hardtopredict": 68672, "warrant": 177721, "traintest": 168850, "r2": 135380, "sick": 150504, "seeing": 147649, "diagnosing": 41355, "eventrelated": 52102, "subanswers": 157796, "anticipating": 10119, "rap": 135839, "repurposes": 141038, "highreward": 70106, "llama33b": 93391, "competitor": 27216, "agricultural": 6836, "sustainable": 159744, "agriculture": 6837, "posted": 124484, "accumulated": 3091, "labourintensive": 82873, "democratized": 38194, "gamut": 62594, "taxonomybased": 163586, "stone": 155836, "transmitting": 169572, "shelf": 149894, "uptake": 172395, "camels": 19695, "reweighting": 144728, "surge": 159424, "fortified": 60648, "newlygenerated": 113544, "selfreflection": 148037, "selfrefinement": 148032, "humancurated": 71161, "programmable": 129766, "contradiction": 31283, "impossibility": 73239, "suffice": 158474, "signs": 151189, "wellness": 178178, "physiological": 122956, "timeseries": 166618, "wearable": 177980, "firstorder": 59662, "nlfol": 113647, "fol": 60203, "sft": 149735, "34k": 1046, "reuses": 144309, "selfinstruct": 148009, "surprised": 159538, "bridged": 19078, "serviceoriented": 149074, "trying": 169912, "dropped": 45042, "prune": 133445, "2times": 941, "selfcontradiction": 147961, "358": 1068, "untruthful": 172299, "stays": 155533, "publics": 133686, "consonant": 29996, "vowels": 177559, "infants": 75929, "unavoidably": 170643, "commonsenseqa": 26333, "iqa": 80826, "experiential": 53874, "visuallygrounded": 177391, "psycholinguistics": 133498, "deteriorate": 40687, "metaworld": 100608, "auditory": 14226, "imagevideo": 72543, "imagebind": 72368, "imu": 74250, "holistically": 70305, "roleplay": 145551, "trap": 169613, "anthropomorphism": 10107, "folk": 60207, "ascribing": 12828, "selfawareness": 147945, "pronouns": 131575, "parroting": 119939, "graphofthought": 67614, "multimodalcot": 110793, "341": 1039, "508": 1328, "qg": 133945, "ngrambased": 113628, "astonishing": 13583, "dialectal": 41400, "november": 114763, "suggestion": 158631, "juxtapose": 81400, "green": 67813, "bruteforce": 19259, "blackboxes": 18668, "minskys": 102434, "interviewing": 79810, "nnbased": 113957, "democratic": 38185, "nn": 113956, "persistence": 122530, "kv": 82662, "hosting": 70433, "coded": 25244, "rhetoric": 144754, "hateful": 68861, "ingroup": 76931, "repercussions": 140441, "worldly": 179635, "jewish": 81223, "glossary": 66119, "speeches": 154489, "imageandtext": 72363, "nonllm": 114098, "analogybased": 8743, "unspecified": 172205, "noncompositional": 114025, "objectcentric": 115169, "highfidelity": 69677, "cps": 33125, "transcribe": 168877, "segmented": 147756, "correspondence": 32567, "invoke": 80675, "swiftsage": 159775, "sage": 145911, "harmoniously": 68764, "scienceworld": 146930, "saycan": 146201, "reflexion": 138819, "curse": 34355, "recursion": 138359, "revolutionised": 144627, "stay": 155529, "irreversible": 80863, "tails": 160957, "portray": 124132, "ubiquity": 170553, "sustain": 159740, "scraped": 147205, "pets": 122783, "formalizing": 60535, "terminal": 164376, "regularize": 138993, "polyglot": 123917, "synergizes": 159865, "propel": 131603, "ouyang": 118167, "2011": 634, "wu": 179813, "outage": 117436, "outages": 117437, "813": 1679, "153": 427, "745": 1571, "antibiotic": 10109, "dialoguing": 41576, "determination": 40697, "overrepresented": 118405, "questioned": 135011, "compounds": 27838, "436": 1222, "scaleup": 146383, "pathologists": 120440, "twolevel": 170242, "slide": 152218, "denoted": 39081, "approached": 11676, "bags": 15480, "lung": 97975, "faculty": 56938, "staff": 154722, "548": 1369, "evading": 50881, "misconduct": 102474, "544": 1367, "resistant": 142331, "urging": 172425, "artificialintelligence": 12798, "begun": 16547, "medrxiv": 100270, "searched": 147437, "chatgptrelated": 23478, "assesment": 13037, "prisma": 127982, "305": 985, "integrations": 78697, "registration": 138948, "englishdominant": 49128, "instructtune": 78436, "deriving": 39369, "thematically": 165999, "gao": 62602, "syntaxsemantics": 159931, "theyre": 166124, "hallucinating": 68347, "fabricated": 56504, "differing": 42117, "submodels": 157902, "bounding": 18915, "highschool": 70111, "perpetuating": 122500, "psychosocial": 133522, "newer": 113518, "someday": 153265, "userprovided": 173569, "objectbased": 115168, "solves": 153187, "1350": 349, "twodimensional": 170236, "grids": 67822, "onedimensional": 115974, "conducive": 29019, "doubling": 44681, "nonlanguage": 114085, "machinereadability": 98161, "chatbotbased": 22594, "institutional": 77919, "illsuited": 72134, "medqausmle": 100269, "narrows": 111472, "promptings": 131133, "algebraic": 7768, "likelihoods": 92444, "pursue": 133778, "optimise": 116968, "rooted": 145605, "comprehended": 27864, "pioneer": 123005, "alfred": 7763, "programmatic": 129767, "backed": 15429, "batching": 16467, "29x": 920, "spam": 153643, "analytic": 9246, "071": 65, "faith": 57074, "incidental": 74317, "substeps": 158157, "subgraph": 157820, "haptics": 68628, "isolation": 80878, "dot": 44668, "mad": 98187, "stresstesting": 156290, "languageguided": 86914, "stresstest": 156289, "iid": 72116, "surfacing": 159423, "classlevel": 24225, "cooperate": 32066, "contextrich": 30999, "cil": 23760, "projections": 130101, "alleviating": 8312, "rotary": 145612, "nope": 114170, "temporally": 164291, "appointment": 10932, "phone": 122863, "twopronged": 170248, "ordersofmagnitude": 117270, "unravel": 172105, "n2g": 111376, "truncation": 169826, "emphasise": 47624, "visualised": 177349, "t4": 160690, "78": 1608, "800000": 1665, "steplevel": 155708, "primer": 127832, "sd": 147268, "td": 163591, "14000": 385, "contextualization": 31123, "existed": 53240, "grapples": 67662, "recipients": 138030, "detriments": 40742, "individualistic": 75754, "compel": 27101, "tensors": 164359, "conductivity": 29326, "incident": 74315, "multipole": 111126, "terminology": 164381, "textrelated": 165670, "reinforcementlearning": 139126, "sotas": 153370, "docvqa": 43954, "ar": 12057, "weaken": 177936, "acs": 4291, "upsurge": 172392, "glitches": 66079, "brittleness": 19158, "coherently": 25551, "fflm": 58094, "extrapolative": 56414, "memoryintensive": 100488, "subsequences": 157942, "lowerfrequency": 97849, "decodes": 37554, "refinedweb": 138750, "plentiful": 123549, "feat": 57382, "ganbased": 62600, "estimators": 50765, "rank1": 135780, "enjoying": 49590, "cubic": 33918, "oftheart": 115933, "efl": 46942, "hong": 70336, "kong": 82641, "generativeai": 65611, "studys": 157726, "differentiated": 42110, "caching": 19593, "multiplexing": 111109, "exacerbates": 52331, "lec": 91208, "18times": 531, "185": 526, "aiintegrated": 7417, "takehome": 160962, "rendered": 140378, "curtail": 34357, "handlabeled": 68523, "inapplicable": 74284, "coder": 25276, "corner": 32194, "10m": 209, "autogpt": 14486, "styled": 157777, "toolaugmented": 167067, "mathrelated": 99625, "invocations": 80674, "converged": 31745, "patientspecific": 120498, "topranked": 167403, "capitalizing": 20558, "orca": 117158, "overestimating": 118332, "diff": 41604, "tap": 161034, "judicious": 81341, "vicuna13b": 176676, "pts": 133534, "trailing": 167741, "photographs": 122874, "textitie": 165648, "cheapfakes": 23519, "docker": 43801, "audiovisual": 14212, "qformer": 133943, "videolanguage": 176762, "afforded": 6356, "conflate": 29404, "impede": 72784, "incentivize": 74307, "harvards": 68846, "rubrics": 145686, "cleanup": 24259, "followers": 60247, "forbidden": 60357, "weeds": 178057, "gms": 66135, "gm": 66133, "prohibited": 130051, "preclude": 125626, "precluded": 125627, "suicidal": 158678, "suicide": 158680, "intentionally": 79031, "buggy": 19281, "instagram": 77789, "antilgbtq": 10126, "drag": 44873, "mlbased": 102797, "twins": 170222, "customdesigned": 34375, "s2s": 145780, "tst": 169919, "unencountered": 171606, "streamline": 156228, "overconfidence": 118322, "copyrights": 32144, "charts": 22512, "personae": 122547, "recreate": 138329, "forming": 60584, "supplying": 159252, "optics": 116925, "inflates": 76177, "calculated": 19605, "unimportant": 171793, "tolerate": 166909, "accelerates": 2786, "spacing": 153639, "ema": 47121, "335m": 1029, "9b": 1840, "stackoverflow": 154721, "metas": 100601, "crawls": 33168, "modestly": 109865, "05m": 52, "megatronlm": 100302, "762m": 1593, "187": 528, "800": 1662, "narrates": 111439, "filled": 58331, "anticipation": 10121, "inexpensive": 75924, "softprompt": 152764, "onelayer": 115977, "belongs": 16806, "contextrelevant": 30998, "selfcontained": 147959, "nearoptimal": 112122, "utilise": 174930, "phonemes": 122866, "unresolved": 172126, "dualuse": 45085, "hour": 70448, "dna": 43792, "facility": 56726, "contract": 31275, "collectively": 25770, "curating": 34031, "verifiably": 176464, "laboratories": 82853, "organisms": 117281, "viruses": 176880, "accumulation": 3094, "instantiated": 77856, "patched": 120411, "powers": 125362, "atom": 13613, "gotta": 66350, "prompttuningbased": 131553, "misaligned": 102459, "outofscope": 117548, "piqued": 123118, "feel": 57840, "attitudes": 14027, "trending": 169712, "embodies": 47317, "convincingly": 32030, "abstracted": 2663, "manufacturing": 99118, "tuningbased": 170149, "informs": 76904, "4788": 1262, "fun": 61819, "mislead": 102503, "meaningfulness": 99806, "baby": 15397, "boy": 18934, "sky": 152204, "nonsense": 114130, "warranted": 177727, "boss": 18877, "unveil": 172303, "correlating": 32531, "surrogates": 159584, "designbased": 39808, "unbiasedness": 170652, "quantification": 134306, "intervals": 79783, "8090": 1669, "dsl": 45061, "stringent": 156329, "crowdannotated": 33718, "taskaligned": 161827, "renowned": 140389, "chi": 23588, "proceedings": 128718, "costefficiency": 32771, "geoscience": 65741, "firstever": 59646, "geosciencerelated": 65746, "manpower": 99018, "cultivating": 33940, "gaming": 62591, "lifelike": 92086, "moderating": 109770, "noncontextual": 114027, "decentralized": 37344, "tangible": 161031, "multilingualism": 110572, "analogue": 8737, "videochatgpt": 176757, "merges": 100527, "100000": 174, "videoinstruction": 176760, "knowingly": 81717, "panic": 118690, "liar": 92021, "factify": 56768, "3m": 1162, "pixellevel": 123170, "vii": 176836, "superni": 159079, "multi": 110299, "rougel": 145627, "delivery": 38081, "privacypreserved": 128037, "llmasajudge": 94108, "mtbench": 110289, "inadequacy": 74275, "verbosity": 176456, "selfenhancement": 147986, "battle": 16473, "137": 351, "ingredients": 76930, "trapping": 169615, "promptresponse": 131140, "stylized": 157792, "busy": 19553, "dirty": 42623, "crime": 33415, "abandoned": 1862, "living": 93269, "extant": 55613, "rigid": 144845, "indoor": 75811, "affording": 6357, "instilling": 77911, "kldivergence": 81681, "rankingbased": 135832, "rose": 145610, "geometric": 65725, "derivatives": 39339, "calculus": 19618, "588": 1397, "amc": 8647, "bc": 16491, "esg": 50420, "corporate": 32269, "gpt3mix": 66892, "finbert": 58589, "subjecting": 157850, "securing": 147556, "069": 62, "078": 74, "languageassisted": 86905, "thriving": 166306, "gpt4v": 67242, "threefold": 166289, "vetted": 176638, "interpolating": 79619, "unintentional": 171805, "selfreinforcement": 148042, "inadvertently": 74282, "amplifying": 8723, "unconsciously": 170714, "weighed": 178067, "biasaware": 18222, "determinants": 40694, "sdoh": 147271, "deidentified": 38028, "substance": 158021, "7th": 1647, "n2c2": 111374, "forgotten": 60442, "infuse": 76915, "meteorology": 100616, "datarelated": 36066, "displaying": 43076, "caters": 21170, "fund": 61925, "multiscene": 111145, "captivating": 20630, "acoustically": 4247, "visuals": 177394, "contacting": 30287, "enterprise": 49784, "underperforms": 170888, "questionnairebased": 135014, "ism": 80870, "egregious": 46952, "leaked": 89944, "consume": 30257, "longhorizon": 97554, "992": 1833, "income": 74802, "llmfriendly": 94192, "bootstrapped": 18862, "costeffectiveness": 32769, "outperformance": 117650, "similarsized": 151398, "sales": 145918, "enforcement": 48806, "365": 1082, "alttext": 8600, "constrastive": 30117, "7219": 1555, "orderofmagnitude": 117257, "necessitating": 112183, "performancecost": 122326, "unbounded": 170654, "automates": 14630, "procgen": 129364, "strategize": 156095, "depicted": 39186, "delineates": 38060, "confines": 29391, "codeswitched": 25322, "advertising": 6267, "promotional": 130361, "redistribution": 138392, "nist": 113637, "cryptography": 33895, "lwc": 97985, "deceptive": 37350, "singh": 151769, "stylometric": 157793, "islam": 80866, "expectation": 53736, "habitat": 68305, "informally": 76258, "formalized": 60532, "sequenced": 148801, "commandline": 26039, "visualbased": 177345, "inthewild": 79814, "narrations": 111442, "executor": 52978, "nextqa": 113606, "owe": 118459, "absorbing": 2627, "unification": 171698, "interactable": 79081, "threatening": 166276, "93": 1778, "visavis": 176881, "nonoverlapping": 114112, "massivescale": 99391, "30m": 991, "fourlevel": 60864, "deciphering": 37360, "amt": 8729, "pir": 123119, "benign": 17500, "defect": 37886, "meticulous": 101937, "knowledgerelated": 82579, "openparticipation": 116542, "studentteacher": 156915, "communicates": 26341, "unexplained": 171621, "unpersonalized": 172074, "licenses": 92051, "infringement": 76913, "supply": 159249, "sight": 150514, "lectures": 91211, "288": 902, "lecture": 91209, "massachusetts": 99337, "ocw": 115605, "rubric": 145682, "09": 88, "interrater": 79746, "correspondingly": 32617, "costing": 32775, "ushaped": 173925, "reverses": 144468, "lowering": 97850, "lowmemory": 97872, "lomo": 97432, "65b": 1481, "rtx": 145679, "3090": 988, "conducts": 29327, "sourcing": 153540, "cs": 33898, "electrical": 46982, "ee": 45642, "chatgpt4s": 23456, "realms": 136365, "pursuits": 133792, "delphi": 38082, "72": 1554, "specialising": 153859, "administrative": 5555, "valuations": 175463, "bail": 15484, "criminal": 33417, "enormously": 49611, "intelligencebased": 78928, "complacency": 27239, "frequentist": 61608, "impair": 72774, "streamlined": 156232, "ingests": 76927, "figures": 58320, "biomedicine": 18581, "dreamcatcher": 44965, "fmri": 59928, "collated": 25649, "june": 81349, "intertopic": 79775, "signifies": 151183, "datarich": 36067, "landscapes": 83108, "shapley": 149788, "valuation": 175462, "leaking": 89945, "studentgenerated": 156837, "computerized": 28522, "psychometrics": 133520, "behaves": 16556, "therapist": 166113, "homepage": 70313, "beauty": 16517, "bottomup": 18900, "linguisticallydiverse": 93086, "favored": 57332, "blm": 18711, "iq": 80824, "compliance": 27709, "utmost": 175245, "valuealignment": 175510, "selflearning": 148017, "equivariant": 50209, "imposing": 73238, "double": 44673, "monotonically": 110084, "userspecified": 173824, "phi1": 122846, "a100s": 1854, "555": 1377, "mbpp": 99720, "unpublished": 172104, "leak": 89925, "discriminatorbased": 42857, "nutrition": 115078, "cuisine": 33933, "sapper": 146142, "opened": 116478, "langchain": 83113, "systematise": 160211, "scrapes": 147210, "selfdriving": 147982, "conveying": 32019, "unprocessed": 172103, "502": 1321, "loose": 97633, "2layer": 937, "substrate": 158168, "mel": 100306, "mapper": 99140, "app": 10207, "quarter": 134442, "mme": 102877, "amazing": 8614, "cancerous": 19709, "tissue": 166639, "cins": 23762, "reorganization": 140396, "concurrent": 28931, "rollouts": 145573, "openaigym": 116388, "separates": 148710, "formalizes": 60534, "svm": 159756, "humansupervised": 71501, "nearhuman": 112101, "stack": 154707, "coefficient": 25420, "nebulous": 112127, "beats": 16515, "caveat": 21281, "swin": 159779, "observability": 115317, "spawning": 153825, "differentiates": 42111, "ceiling": 21301, "llmassisted": 94109, "assertion": 13029, "systemverilog": 160676, "h2o": 68304, "accomplishments": 3021, "transient": 169391, "hitters": 70236, "eviction": 52168, "mild": 102204, "flexgen": 59783, "opt67b": 116919, "19times": 556, "rationalization": 136073, "50b": 1329, "openendedness": 116513, "oracles": 117154, "thread": 166263, "initiator": 77098, "summarizes": 158919, "depthfirst": 39333, "horn": 70423, "betterthanrandom": 18076, "treebased": 169675, "counterfactuals": 32959, "elicits": 47059, "916": 1767, "pitfall": 123122, "convolutions": 32048, "816": 1681, "kosmos2": 82650, "markdown": 99215, "perceptionlanguage": 120831, "underresourced": 170908, "romanized": 145575, "north": 114206, "reannotation": 136547, "unlearning": 171968, "detoxify": 40734, "alpacalora": 8519, "clickbait": 24294, "redefining": 138388, "aspirations": 12987, "burdensome": 19519, "hpc": 70472, "shikra": 149943, "coordinate": 32083, "rec": 137259, "helpfully": 69220, "nlpbased": 113932, "brute": 19257, "attacked": 13676, "procedurally": 128689, "lesson": 91428, "praise": 125555, "workinprogress": 179409, "corrective": 32452, "tutor": 170192, "taxing": 163566, "assimilation": 13339, "umbrella": 170594, "webapp": 178027, "fluid": 59918, "administered": 5552, "totalling": 167427, "postgraduate": 124495, "adjudicated": 5535, "494": 1274, "386": 1101, "336": 1030, "factbased": 56755, "covid": 33113, "compiler": 27231, "sparsebert": 153746, "sparsified": 153758, "tensorflow": 164358, "llvm": 97047, "precedent": 125563, "smallsized": 152467, "optima": 116926, "largemodel": 89192, "haze": 68897, "grayscale": 67677, "tale": 161011, "classconditional": 23900, "cardinality": 20756, "conversing": 31978, "informationseeking": 76856, "observer": 115442, "gridworld": 67823, "nda": 112081, "psg": 133489, "consecutive": 29514, "fda": 57340, "falters": 57180, "ungrounded": 171682, "decimal": 37358, "selfexplanations": 147994, "selfexplanation": 147993, "struggled": 156781, "underlie": 170815, "applicationspecific": 10736, "lyrics": 97990, "whispering": 178223, "metal": 100573, "ear": 45228, "transcribing": 168880, "posters": 124494, "microsofts": 102186, "gauged": 62824, "gpt40": 67222, "stood": 155838, "juxtaposed": 81401, "factcheckers": 56759, "subtleties": 158196, "dialogue2note": 41542, "k1": 81403, "2nd": 938, "4th": 1284, "127": 305, "respecting": 142523, "listwise": 93143, "prp": 133443, "flanul2": 59766, "ndcg5": 112084, "classifierfree": 24175, "llamafamily": 93404, "contentdriven": 30657, "gpt4all": 67226, "unifiedqa": 171758, "crossfit": 33640, "roadblocks": 145125, "burns": 19529, "misguided": 102477, "recognizer": 138167, "nlf": 113646, "handdesigned": 68515, "felt": 57847, "streamlining": 156234, "categorizations": 21133, "shanghai": 149770, "nigerian": 113633, "pidgin": 122969, "personabased": 122544, "nonfunctional": 114070, "patterndriven": 120512, "susceptibility": 159723, "protecting": 132558, "331": 1024, "genai": 62872, "defensive": 37919, "jailbreaks": 81193, "cyber": 34463, "phishing": 122860, "hacking": 68310, "payload": 120612, "eventcentric": 52099, "multitasks": 111249, "entityrelation": 49954, "twoway": 170290, "dangerous": 34543, "sole": 152862, "internally": 79572, "accommodates": 2988, "opt125m": 116913, "subroutines": 157935, "ensuing": 49664, "fallibility": 57141, "unreliability": 172121, "chainofthoughtbased": 21549, "nonaugmented": 114015, "intermediary": 79504, "duly": 45091, "valence": 175289, "arousal": 12502, "conjunctions": 29464, "psychiatric": 133491, "dysfunction": 45219, "pulsar": 133715, "mediqasum": 100254, "summarising": 158793, "patientdoctor": 120478, "officially": 115867, "lynx": 97988, "modularly": 109914, "multiobjective": 110820, "costfree": 32774, "centralized": 21353, "preprints": 126180, "ocrfree": 115599, "visualtext": 177395, "transcript": 168881, "impairs": 72781, "augmenter": 14381, "wavlm": 177757, "fused": 62187, "vascular": 176310, "190": 535, "percentages": 120784, "excelled": 52783, "10s": 210, "addon": 5151, "venture": 176423, "reshapes": 142305, "llminformed": 94216, "heralds": 69273, "territory": 164501, "imputation": 74244, "polynomial": 123920, "epsilon": 50152, "gptjt": 67300, "683": 1504, "pocket": 123688, "giscience": 65803, "rests": 143017, "substitutable": 158158, "marrying": 99283, "superimposing": 158986, "unity": 171888, "instructive": 78419, "realizable": 136321, "generalised": 63082, "corollary": 32202, "stylebased": 157776, "circuitry": 23775, "circuits": 23776, "knowledgeprompted": 82578, "marketing": 99237, "illegal": 72129, "sale": 145917, "euphemisms": 50863, "scenariobased": 146519, "alert": 7751, "confidencebased": 29365, "benefited": 17455, "spend": 154536, "accepts": 2845, "forgo": 60441, "unicodex2013": 171689, "singlelayer": 151893, "moes": 110022, "tack": 160797, "dialogrpt": 41440, "compressive": 28235, "informationtheoretically": 76864, "pioneered": 123008, "tpus": 167496, "reproduces": 141009, "fulltext": 61737, "gesture": 65774, "distraction": 43310, "sentient": 148604, "defaults": 37880, "misrepresentation": 102519, "ontologydriven": 116174, "triad": 169733, "ukrainian": 170574, "rehabilitation": 139020, "1200": 279, "selfcollaboration": 147948, "unleashes": 171980, "reasoningintensive": 137244, "llama213bchat": 93376, "codecontests": 25242, "font": 60334, "exert": 53013, "chinas": 23600, "loading": 97226, "rsquared": 145674, "discriminant": 42830, "nontechnical": 114144, "young": 180052, "dozen": 44858, "dinner": 42357, "augmenters": 14382, "wsd": 179811, "manytomany": 99124, "multiverse": 111292, "dnagpt": 43794, "mammals": 98860, "promotion": 130360, "constructor": 30243, "recommender": 138269, "pathbased": 120436, "languagerelated": 86937, "penetration": 120705, "reconnaissance": 138290, "assortment": 13545, "intel": 78706, "ip": 80819, "ciphers": 23764, "tactics": 160883, "unpatched": 172073, "misconfiguration": 102475, "llmrelated": 94235, "backprop": 15453, "rho": 144756, "lion": 93113, "sophia": 153290, "epickitchens100": 50139, "crimes": 33416, "surveillance": 159593, "crosssystem": 33705, "kge": 81641, "xm3600": 179851, "decoupled": 37656, "prompttransformer": 131536, "pairings": 118542, "bifurcates": 18369, "4m": 1282, "modalityagnostic": 102979, "highstake": 70113, "certifying": 21434, "radius": 135412, "denoised": 39067, "robustify": 145339, "partly": 120282, "mteb": 110290, "perceptron": 120843, "reconcile": 138286, "goods": 66306, "overflow": 118343, "privately": 128058, "forums": 60658, "labelflipping": 82749, "labelpreserving": 82776, "selfdriven": 147981, "replication": 140502, "putative": 133810, "doors": 44661, "greatest": 67776, "treats": 169646, "tog": 166687, "sociocultural": 152712, "sociocognitive": 152711, "enter": 49780, "mint": 102435, "outputted": 118142, "discourseaware": 42722, "intersentence": 79772, "testsets": 164799, "skew": 152127, "winwin": 178543, "fortunately": 60655, "outlook": 117511, "forthcoming": 60647, "faulttolerant": 57322, "futuristic": 62420, "recommending": 138280, "compilable": 27219, "compilability": 27218, "transactional": 168871, "tsp": 169918, "tolerance": 166908, "usages": 172480, "synergies": 159854, "stark": 154947, "denoting": 39083, "leetcode": 91268, "catering": 21165, "llmsbased": 97039, "depressive": 39322, "selfreports": 148048, "sds": 147274, "retentive": 143969, "chunkwise": 23753, "longsequence": 97576, "parallelly": 119594, "bow": 18922, "tie": 166321, "checklists": 23543, "willing": 178512, "drifts": 44971, "ingest": 76924, "helm": 69074, "auroc": 14411, "049": 39, "errorcorrecting": 50329, "syndrome": 159853, "topologies": 167393, "classspecific": 24234, "texture": 165970, "alerts": 7752, "solidifying": 152883, "vectorization": 176398, "scalar": 146259, "imagespecific": 72518, "brave": 18972, "nethack": 112615, "il": 72126, "keywordbased": 81617, "workshops": 179525, "irs": 80864, "week": 178058, "deposited": 39315, "16000": 460, "uploaded": 172378, "nomenclature": 114009, "scatter": 146502, "derivation": 39337, "flant5large": 59763, "lesser": 91426, "nonexistent": 114055, "subcategories": 157797, "dilemmas": 42313, "forensics": 60399, "artefact": 12561, "lowrisk": 97943, "embarked": 47128, "individuallevel": 75758, "subfield": 157808, "polarized": 123802, "blamed": 18669, "exacerbating": 52332, "worsening": 179669, "pernicious": 122496, "inciting": 74322, "contentious": 30660, "debertabased": 37301, "jigsaw": 81225, "mpnet": 110247, "thrust": 166314, "propels": 131607, "abusing": 2710, "valle": 175397, "synthesizer": 160002, "codec": 25237, "voices": 177525, "f0": 56476, "voiced": 177524, "gross": 67824, "cmos": 24608, "extents": 56028, "verbalizers": 176449, "override": 118406, "322": 1010, "nucleotide": 114811, "satisfactory": 146157, "declines": 37502, "catalyze": 21059, "combinatorics": 25867, "harvest": 68847, "posteriori": 124492, "progressing": 130037, "queryresponse": 134667, "evalution": 52060, "emotionally": 47593, "413": 1204, "570": 1386, "externalize": 56100, "decompositionbased": 37648, "recentlyproposed": 138016, "semiautomation": 148345, "lessen": 91425, "spotlight": 154591, "conformer": 29424, "overwhelmingly": 118456, "looming": 97624, "scamming": 146458, "subsection": 157940, "dearth": 37278, "multiperson": 110826, "humanrobot": 71330, "crowded": 33719, "occluded": 115579, "joints": 81291, "separation": 148712, "occlusion": 115580, "singlestage": 151899, "interchangeable": 79362, "stride": 156298, "establishment": 50715, "tiered": 166323, "interchange": 79361, "ul2": 170575, "namedentity": 111419, "polarizing": 123803, "distort": 43302, "leftleaning": 91271, "abused": 2709, "selfinterested": 148013, "disappointment": 42647, "reinforced": 139032, "purposebuilt": 133762, "circumvents": 23788, "howto": 70470, "installing": 77793, "populism": 124114, "cortex": 32632, "entered": 49781, "offtopic": 115930, "chaotic": 22416, "compensate": 27112, "phrasing": 122891, "disconnect": 42687, "manuals": 99117, "scopusindexed": 147026, "speculating": 154374, "interdependent": 79375, "lego": 91337, "136": 350, "textdriven": 165626, "enriches": 49618, "easytounderstand": 45366, "macrof1": 98182, "archival": 12305, "underwater": 171575, "escalating": 50416, "fusing": 62191, "assimilate": 13335, "skeleton": 152120, "batched": 16465, "sdgs": 147270, "sdg": 147269, "boasts": 18770, "zeroes": 180096, "nonplayer": 114116, "npcs": 114780, "driver": 44999, "networkbased": 112710, "seedbench": 147645, "quest": 134669, "fantasy": 57208, "videotext": 176793, "balancing": 15517, "audiotext": 14211, "anatomy": 9398, "stolen": 155835, "retweets": 144301, "spreads": 154602, "aienabled": 7385, "wellchosen": 178145, "crack": 33136, "longerterm": 97537, "rice": 144762, "lta": 97965, "topdown": 167308, "recognizes": 138168, "ego4d": 46945, "egtea": 46954, "gaze": 62839, "goalconditioned": 66209, "reform": 138821, "prioritizes": 127974, "helpseekers": 69264, "intertwining": 79777, "machiavellianism": 97996, "lexicosemantic": 92008, "umls": 170595, "dispute": 43086, "highvolume": 70127, "mediator": 100131, "settlements": 149668, "potent": 124536, "aptitude": 12053, "overt": 118416, "lingual": 92998, "fatality": 57315, "casualties": 21048, "bubbles": 19264, "commonsensebased": 26332, "empathetic": 47610, "testers": 164689, "partners": 120286, "supplementing": 159243, "vulnerability": 177638, "hunting": 71545, "ssh": 154658, "deliberating": 38048, "decoy": 37659, "civilization": 23814, "das": 34555, "abovementioned": 2582, "easytohard": 45364, "initiates": 77092, "intriguingly": 79881, "imagegrounded": 72375, "assimilates": 13337, "textassisted": 165580, "fosters": 60704, "selfcheck": 147947, "invention": 80331, "mathqa": 99624, "acyclic": 4494, "dag": 34501, "orchestration": 117165, "rag": 135418, "knowledgebases": 82541, "lisa": 93118, "undermining": 170882, "accidents": 2983, "escalation": 50418, "diplomacy": 42361, "california": 19644, "multistakeholder": 111158, "hostility": 70432, "watermarks": 177749, "tabletop": 160773, "stakeholder": 154778, "miscalibration": 102467, "consent": 29521, "aiai": 7328, "democratizes": 38195, "house": 70461, "escape": 50419, "player": 123486, "murder": 111304, "committed": 26109, "killer": 81658, "mediated": 100126, "persuasive": 122730, "mofs": 110025, "evaluator": 52046, "sandbox": 146128, "breakdowns": 18993, "holy": 70308, "grail": 67436, "twentyseven": 170213, "cp": 33122, "minizinc": 102421, "anonymised": 9663, "appending": 10244, "coercing": 25422, "ci": 23754, "893": 1734, "babylm": 15400, "adventures": 6186, "imaginary": 72544, "finish": 59623, "loglinear": 97423, "493": 1273, "359": 1069, "reviewers": 144565, "spell": 154531, "checkers": 23536, "marketplaces": 99240, "visitors": 177100, "marketplace": 99239, "digitization": 42304, "normalize": 114187, "366": 1083, "obsolete": 115450, "helpseeking": 69265, "517": 1340, "verbose": 176454, "wellarticulated": 178142, "684": 1505, "modelassisted": 104922, "overwhelmed": 118452, "jupyter": 81354, "notebook": 114301, "notebooks": 114302, "downloading": 44686, "pdf": 120633, "pdfs": 120635, "gui": 68132, "expertbased": 54598, "maze": 99705, "codedotorg": 25253, "karel": 81412, "configurable": 29376, "099": 98, "087": 85, "distinguishes": 43293, "packages": 118492, "597": 1404, "733": 1563, "construed": 30250, "hypothesizing": 71642, "heating": 69034, "air": 7692, "wrap": 179689, "purported": 133732, "msa": 110267, "countrylevel": 32990, "translators": 169564, "scrutinize": 147262, "cap": 19755, "culinary": 33935, "selfcorrection": 147964, "undermined": 170880, "rectify": 138340, "taxonomize": 163570, "trainingtime": 168842, "administer": 5551, "archaeological": 12101, "summarise": 158790, "nonviolent": 114166, "solidarity": 152882, "tried": 169752, "trainer": 168132, "mediating": 100128, "relearning": 139434, "cooperatives": 32082, "cooperating": 32068, "hoped": 70408, "tptu": 167491, "doctorlike": 43805, "initiation": 77094, "word2vec": 178691, "knowledgeinfused": 82555, "speculation": 154375, "maliciously": 98853, "apiaccessible": 10180, "nationstates": 111501, "skeptical": 152122, "criticizes": 33588, "withhold": 178555, "disclosed": 42681, "omissions": 115949, "postprocess": 124508, "collider": 25782, "physicsbased": 122952, "machinery": 98164, "diseasegene": 43032, "regulations": 139011, "aspire": 12988, "200000": 620, "236": 799, "illuminate": 72135, "sycophancy": 159790, "sycophantic": 159791, "restart": 142983, "300b": 979, "slimpajama": 152238, "deficient": 37927, "alm": 8489, "usercustomized": 173541, "assembled": 13019, "sifting": 150512, "webpages": 178035, "nextgen": 113602, "037": 30, "videoimage": 176759, "broadening": 19198, "amalgamates": 8607, "reciprocal": 138031, "easing": 45342, "demonstrative": 39057, "underperformance": 170885, "demon": 38214, "necessitated": 112169, "manhours": 98912, "noncommercial": 114024, "dissatisfaction": 43103, "notwithstanding": 114337, "uninterpretable": 171808, "thumb": 166315, "audited": 14216, "thats": 165992, "settle": 149667, "bioinspired": 18506, "feats": 57383, "strange": 155934, "virtuous": 176878, "enterprises": 49789, "garnering": 62795, "vividly": 177426, "articulating": 12635, "animations": 9428, "synchronizing": 159851, "gallery": 62540, "humancomposed": 71152, "shortanswer": 150016, "combinatory": 25868, "utilising": 174936, "636": 1460, "727": 1558, "316": 1000, "521": 1343, "iirc": 72123, "255": 846, "273": 877, "stablevicuna": 154704, "intellect": 78707, "fqn": 60879, "emotionconditioned": 47597, "macroaverage": 98178, "022": 20, "highprofile": 69987, "overdependence": 118329, "selfaware": 147944, "palm2": 118666, "rgb": 144751, "wolfram": 178599, "alpha": 8521, "090": 90, "modals": 102981, "signifying": 151187, "hypergraph": 71584, "vertices": 176635, "walking": 177669, "inefficiencies": 75898, "walks": 177671, "engender": 48852, "speculative": 154376, "ghost": 65788, "coach": 24623, "exposition": 55549, "portable": 124123, "forest": 60405, "stunning": 157731, "pointe": 123728, "texttovideo": 165873, "audiodriven": 14205, "kgtotext": 81653, "taskcompletion": 161832, "4700": 1256, "spheres": 154545, "summit": 158959, "incidents": 74319, "takeaways": 160961, "executive": 52977, "soc": 152521, "policybased": 123880, "systemonchip": 160217, "unauthorized": 170635, "ips": 80822, "cwes": 34462, "bloomz": 18754, "reshaping": 142306, "typified": 170527, "sought": 153371, "consolidate": 29990, "confluence": 29419, "rewriters": 144733, "chateval": 22652, "singleagent": 151878, "multiagentbased": 110338, "synergize": 159863, "referee": 138649, "transcends": 168876, "universality": 171914, "streamlines": 156233, "ties": 166324, "utilitarian": 174940, "entirety": 49827, "marred": 99281, "navigates": 112049, "llmspecific": 97042, "humanistic": 71206, "utilisation": 174929, "emphasised": 47625, "deem": 37703, "delicate": 38054, "linux": 93111, "strategically": 155949, "535": 1354, "nonmathematical": 114103, "steep": 155545, "selfverification": 148087, "rectifying": 138342, "amend": 8655, "csv": 33904, "843": 1703, "justintime": 81399, "undergraduates": 170813, "colocate": 25788, "investments": 80664, "wheat": 178217, "antiexpert": 10125, "modeldriven": 104940, "abm": 2574, "novice": 114770, "constructionist": 30237, "sketches": 152125, "strokes": 156337, "multiobject": 110818, "canvas": 19754, "didactic": 41599, "958": 1805, "barretts": 15572, "precursor": 125641, "chart": 22508, "columbia": 25802, "compromised": 28274, "hops": 70417, "musiqueans": 111322, "2wikimultihopqa": 943, "logo": 97425, "moments": 110039, "amateur": 8611, "productionquality": 129597, "eventbased": 52098, "hackers": 68309, "victims": 176664, "undetected": 171596, "bolsters": 18789, "resultsour": 143943, "facilitators": 56724, "humanlabelled": 71217, "academy": 2766, "lemmas": 91339, "cer": 21362, "languageoriented": 86931, "sptcode": 154607, "polycoder": 123916, "fortran": 60653, "biomedgpt": 18533, "molecules": 110036, "proteins": 132578, "molecule": 110032, "drugs": 45057, "therapeutic": 166111, "onestop": 116043, "ptr": 133533, "spearhead": 153841, "yoruba": 180050, "cas": 20857, "lida": 92058, "micro": 102173, "convince": 32027, "watermark": 177745, "plagiarize": 123193, "discernible": 42666, "curtailing": 34358, "instructblip": 77936, "monologues": 110079, "monologue": 110078, "silent": 151191, "humancrafted": 71158, "entail": 49764, "controlnet": 31670, "elevates": 47027, "rival": 145031, "spuriously": 154619, "atypical": 14152, "gathers": 62814, "accumulates": 3092, "untrained": 172295, "scanned": 146461, "offtarget": 115900, "catalyzed": 21061, "embarks": 47129, "commonlyused": 26249, "isotropic": 80880, "distinctly": 43272, "anisotropic": 9429, "dalvi": 34533, "newfound": 113523, "phrasal": 122881, "walle": 177679, "reconstructing": 138297, "iemocap": 72059, "coqa": 32146, "userspecific": 173823, "pioneers": 123024, "humanguided": 71191, "instancespecific": 77849, "rooftop": 145578, "solar": 152861, "heat": 69030, "pumps": 133716, "contextbased": 30987, "deficit": 37928, "sqa": 154631, "speechtext": 154491, "elucidating": 47107, "abc": 1867, "foresee": 60400, "inclination": 74323, "wanjuan": 177687, "confidential": 29369, "internlm": 79602, "lateral": 89530, "endowed": 48714, "synaptic": 159846, "equilibrium": 50173, "nondifferentiability": 114035, "contingent": 31158, "nonrobust": 114126, "riscv": 144884, "326": 1014, "tackled": 160856, "insert": 77469, "reordered": 140394, "placements": 123184, "top2": 167302, "routing": 145652, "000": 0, "grapple": 67660, "suit": 158683, "recency": 137330, "perceptive": 120842, "gorilla": 66346, "pharmacology": 122793, "multidocument": 110384, "mdqa": 99737, "regulates": 139005, "transitional": 169399, "timeliness": 166569, "nerf": 112606, "crossscene": 33701, "smoothness": 152499, "serverside": 149029, "cascading": 20864, "testtaking": 164802, "nonpublic": 114123, "dollar": 44053, "transformerlike": 169292, "openllama": 116530, "fragility": 60890, "elevated": 47026, "scrutinizes": 147264, "deducible": 37686, "locality": 97264, "resiliency": 142325, "regret": 138971, "longest": 97538, "subsequence": 157941, "substring": 158169, "instructionfinetuning": 78171, "reprogram": 141030, "controversy": 31679, "liability": 92020, "semi": 148340, "knowledgeguided": 82553, "diminishes": 42355, "epoch": 50150, "gamification": 62590, "internalized": 79571, "manuallydesigned": 99113, "elo": 47098, "toolbench": 167075, "vip": 176854, "interpretablebydesign": 79698, "securityrelated": 147636, "cocreative": 24644, "ainative": 7685, "cocreated": 24642, "protagonist": 132550, "king": 81669, "collaborates": 25575, "craft": 33137, "infeasibility": 75930, "irreducible": 80843, "vlmsbased": 177490, "cvpr": 34459, "qwenvl": 135376, "lvlms": 97978, "receptor": 138021, "3stage": 1166, "qwenvlchat": 135377, "fetched": 57854, "iswc": 81069, "webqsp": 178037, "60k": 1436, "crash": 33160, "iowa": 80818, "collision": 25784, "pedestrians": 120657, "centrality": 21351, "60000": 1428, "sig": 150513, "injects": 77121, "interconnections": 79370, "personalisation": 122565, "notetaking": 114312, "teammates": 163667, "keystrokes": 81606, "asymmetry": 13598, "bidirectionality": 18365, "outshine": 118144, "skeletons": 152121, "infusing": 76919, "advertisement": 6264, "ads": 5668, "advertisements": 6265, "147": 393, "enthusiasts": 49795, "inspiring": 77779, "blip": 18706, "imageconditioned": 72371, "imitated": 72575, "xla": 179840, "compilers": 27235, "multipass": 110825, "graphlevel": 67613, "kernellevel": 81450, "133": 343, "expedite": 53764, "epa": 50135, "accomplishes": 3017, "phonetics": 122869, "phonology": 122871, "llama270bchat": 93379, "422": 1212, "inducement": 75829, "tampering": 161026, "codecompletion": 25241, "velocity": 176421, "mma": 102875, "stand": 154791, "nicely": 113631, "robotarium": 145186, "facilities": 56725, "lvlm": 97977, "imagelevel": 72378, "941": 1786, "programofthoughts": 129888, "cyclomatic": 34487, "sees": 147719, "afterward": 6380, "countermeasures": 32963, "attended": 13824, "128k": 307, "272x": 876, "2014": 637, "minimax": 102366, "february": 57610, "secured": 147553, "issued": 80971, "wasserstein": 177735, "cyclegan": 34483, "jensenshannon": 81218, "invokes": 80678, "unfit": 171650, "rvq": 145779, "rewritten": 144745, "labour": 82870, "unavailability": 170638, "touchstone": 167431, "formulae": 60609, "subvert": 158203, "button": 19556, "blog": 18737, "constituent": 30009, "sorted": 153333, "subnetworks": 157905, "subnetwork": 157904, "909": 1758, "872": 1722, "884": 1730, "915": 1766, "911": 1762, "llama1": 93345, "secondpass": 147527, "dictation": 41581, "178": 509, "113": 241, "softwares": 152860, "easeofuse": 45283, "blocking": 18724, "reusability": 144302, "extensibility": 55695, "customtrained": 34420, "expenses": 53772, "humanoriented": 71319, "summarizers": 158918, "modelfriendly": 104953, "queryaware": 134641, "265": 866, "consumable": 30256, "2461": 818, "cascaded": 20861, "modelscope": 109748, "nudging": 114815, "156": 434, "automlgpt": 14920, "ga": 62425, "disrupts": 43102, "deviate": 41291, "jailbreak": 81177, "demonstrable": 38215, "fantastic": 57207, "alphazero": 8528, "tf": 165974, "surpassed": 159466, "syntaxrelated": 159930, "ascribed": 12827, "configure": 29386, "autoevaluation": 14481, "ecosystems": 45410, "win": 178514, "drawback": 44917, "cit": 23793, "disability": 42625, "contextualizes": 31138, "handcoded": 68498, "contextualize": 31124, "closedomain": 24483, "llmintegrated": 94217, "injections": 77119, "leaves": 91201, "analysisbased": 9243, "cve": 34457, "acknowledgments": 4243, "hijacking": 70128, "gnns": 66139, "swarm": 159763, "csi": 33900, "p005": 118479, "digits": 42307, "fractions": 60888, "omics": 115947, "affirmed": 6341, "singlecell": 151883, "transcriptomics": 168888, "sync": 159847, "xgen": 179827, "gave": 62838, "interfere": 79476, "covert": 33112, "pipelinebased": 123105, "breakdown": 18992, "glm130b": 66082, "debias": 37302, "sidebyside": 150506, "selectors": 147912, "labelfree": 82750, "dola": 44052, "1217": 284, "substantiated": 158152, "revolves": 144679, "residing": 142313, "highprecision": 69986, "fallback": 57138, "initiating": 77093, "speculatively": 154379, "computeio": 28467, "signalbased": 150523, "elaborately": 46967, "simulationdriven": 151726, "maritime": 99212, "animal": 9421, "water": 177743, "pollution": 123915, "cyberphysical": 34472, "certainly": 21428, "fare": 57241, "networking": 112712, "resorts": 142368, "spent": 154541, "boldly": 18783, "typespecific": 170440, "allsides": 8485, "thirdparty": 166166, "metaanalyses": 100560, "labeler": 82747, "undirected": 171597, "crf": 33412, "capitalize": 20551, "223": 781, "aspiration": 12986, "cowriting": 33121, "feedbacktuned": 57824, "writings": 179772, "doubleblind": 44674, "irreplaceable": 80857, "phi15": 122847, "initiated": 77091, "rudimentary": 145688, "encouragingly": 48629, "anytoany": 10132, "inputside": 77454, "adaptors": 4796, "perlayer": 122475, "promptspecific": 131534, "kpe": 82651, "silver": 151196, "138": 354, "375": 1092, "foreseeable": 60403, "cnndailymail": 24614, "dawn": 37238, "suppliers": 159247, "xu": 179861, "repurposed": 141037, "fullshot": 61733, "hypernym": 71589, "pagedattention": 118502, "shrinks": 150496, "inefficiently": 75908, "duplication": 45101, "paging": 118505, "nearzero": 112126, "waste": 177736, "hardest": 68668, "wearables": 177982, "disregarding": 43089, "backandforth": 15406, "bartlarge": 15588, "reorder": 140393, "multigranularity": 110407, "hotspot": 70446, "blended": 18675, "branch": 18958, "repeatability": 140429, "amidst": 8670, "sts": 156792, "encoderbased": 48450, "http": 70485, "mediate": 100125, "crossplatform": 33697, "byproducts": 19574, "openaccessible": 116319, "grab": 67360, "labelled": 82769, "charged": 22505, "annually": 9652, "refute": 138850, "communitydriven": 26530, "orquac": 117414, "nonnegligible": 114109, "freeze": 61580, "computationlimited": 28432, "founded": 60860, "preextracted": 125995, "emotionrelated": 47598, "replicas": 140489, "expedited": 53766, "kalman": 81408, "modulation": 109917, "435": 1221, "traveling": 169623, "elucidates": 47105, "subjectspecific": 157880, "depicting": 39188, "particles": 120043, "nontext": 114145, "inheriting": 76999, "exhaustively": 53021, "cf": 21436, "calibrators": 19643, "pursued": 133780, "mmicl": 102882, "mic": 102172, "mmbench": 102876, "contacts": 30288, "humanobject": 71314, "multilanguage": 110450, "crawler": 33166, "cves": 34458, "cwe": 34461, "laser": 89451, "statespace": 155447, "amazoncom": 8624, "troubleshooting": 169796, "swapped": 159760, "receiver": 137318, "nongaussian": 114074, "mse": 110270, "db": 37250, "dnnbased": 43798, "receivers": 137321, "annotationfree": 9567, "instructionresponse": 78199, "modelcentric": 104939, "transducer": 168890, "subproblems": 157925, "ctc": 33907, "testclean": 164662, "callhome": 19678, "100h": 180, "sophomore": 153331, "majors": 98473, "singlehop": 151889, "earlyexit": 45270, "pipelining": 123116, "deals": 37276, "ondemand": 115961, "inlab": 77125, "2way": 942, "withholding": 178556, "handengineered": 68517, "n10": 111364, "convenience": 31681, "interpersonal": 79606, "dummy": 45092, "unpaired": 172069, "cooccur": 32049, "hallucinates": 68346, "bloomberggpt50b": 18750, "httpsgithubcommicrosoftlmops": 70488, "constants": 30006, "peace": 120636, "parliamentary": 119937, "qlora": 133951, "tax": 163562, "taxes": 163564, "faculties": 56937, "attitude": 14026, "interviewer": 79809, "questionnaires": 135016, "399": 1115, "narrowing": 111468, "baichuan": 15481, "cmmlu": 24607, "circa": 23767, "upheavals": 172373, "powerfully": 125357, "betweensubject": 18077, "learnersourced": 90160, "llama213b": 93375, "peerwise": 120676, "searcher": 147438, "optimising": 116970, "highestquality": 69674, "firstparty": 59664, "agrees": 6835, "pick": 122959, "wellpositioned": 178181, "70b": 1540, "compresses": 28200, "585": 1395, "303": 983, "compressor": 28236, "rephrased": 140449, "cornerstone": 32196, "keen": 81420, "627b": 1452, "weve": 178209, "swiglu": 159776, "cs2": 33899, "bf16": 18086, "aiassistant": 7330, "vrd": 177592, "vrdu": 177593, "cord": 32149, "thinks": 166164, "prosodic": 132535, "intratask": 79828, "intertask": 79774, "noncoding": 114022, "enhancer": 49393, "characterbased": 22445, "encompassed": 48530, "accelerator": 2813, "floatingpoint": 59854, "tenfold": 164339, "favourable": 57339, "paved": 120588, "literate": 93153, "scs": 147267, "ssc": 154656, "david": 37226, "discord": 42690, "mixedmethod": 102734, "believability": 16764, "cove": 33033, "listbased": 93131, "layouts": 89706, "reaping": 136549, "lake": 83073, "requesting": 141047, "column": 25804, "invoked": 80677, "rebel": 137256, "handles": 68581, "erc": 50249, "overfit": 118334, "hinges": 70174, "koala": 82637, "amd": 8648, "firms": 59643, "skewed": 152128, "continuing": 31227, "stateful": 155038, "orchestrates": 117161, "mock": 102912, "calculationintensive": 19614, "812": 1678, "selfdebugging": 147971, "llmrs": 94236, "n11": 111365, "reversal": 144457, "olaf": 115939, "germany": 65771, "composer": 27796, "melodies": 100308, "celebrities": 21304, "son": 153271, "rehearsal": 139021, "unavoidable": 170642, "betweensubjects": 18079, "practicing": 125519, "justice": 81390, "dishonest": 43045, "detectable": 40384, "aimediated": 7527, "delays": 38035, "revolve": 144678, "positioned": 124277, "ethos": 50857, "continuum": 31273, "downsides": 44693, "groupwise": 67991, "priorities": 127965, "deliberations": 38050, "feeling": 57841, "p001": 118478, "confounding": 29432, "epistemological": 50148, "answerable": 9806, "tailoring": 160952, "regimen": 138917, "n3": 111377, "comply": 27727, "monthlong": 110097, "oversensitivity": 118409, "zone": 180393, "proximal": 133426, "114": 243, "commons": 26251, "census": 21317, "bureau": 19520, "intergovernmental": 79483, "ipcc": 80821, "makers": 98630, "dc": 37254, "joined": 81243, "machinelearned": 98155, "externally": 56101, "purposedriven": 133764, "protoqa": 132593, "lowresourced": 97941, "claude2": 24241, "prospect": 132537, "flant5base": 59762, "referents": 138705, "invest": 80360, "n12": 111366, "nice": 113630, "respectful": 142522, "cake": 19600, "taste": 163557, "trainingrelated": 168839, "owsm": 118477, "selfdiagnosis": 147976, "objectivity": 115267, "499": 1276, "bypassed": 19567, "firmly": 59641, "directional": 42452, "allocated": 8322, "replicability": 140487, "demonstrably": 38216, "accounted": 3085, "replications": 140505, "llmonly": 94221, "supplements": 159244, "questionable": 134958, "odd": 115607, "equals": 50167, "paralinguistics": 119556, "perceivable": 120751, "envisioning": 50129, "normans": 114196, "theorize": 166067, "misalignments": 102464, "humanllm": 71298, "renewed": 140388, "memorycommunication": 100484, "alltoall": 8486, "proportionally": 131684, "exploded": 54994, "gemini": 62862, "plateau": 123376, "outlining": 117509, "ttest": 169923, "lmm": 97084, "gpt4generated": 67229, "mmhalbench": 102881, "penalizing": 120699, "llavabench": 93419, "promptlearning": 131135, "customizability": 34392, "customeragent": 34388, "retail": 143951, "gpt35turbos": 66887, "unoptimized": 172066, "disabled": 42626, "autistic": 14450, "incorrectness": 75183, "surging": 159446, "locationbased": 97304, "autoagents": 14452, "actuators": 4492, "supposed": 159402, "trip": 169771, "itinerary": 81167, "40000": 1184, "correlationbased": 32556, "textediting": 165627, "verifiability": 176459, "auditor": 14224, "universitys": 171931, "gpt354": 66870, "illuminated": 72136, "domaintuned": 44640, "atis": 13608, "risky": 145030, "emulator": 48055, "688": 1508, "suspected": 159737, "tpe": 167488, "centering": 21329, "investigative": 80658, "thinker": 166145, "compiles": 27236, "kgbased": 81637, "639": 1462, "dive": 43437, "selfassessed": 147932, "underestimation": 170762, "ces": 21435, "granted": 67472, "accompany": 3000, "deepen": 37834, "cherrypicking": 23580, "deepens": 37838, "breach": 18979, "acknowledgment": 4242, "seventeen": 149705, "gptvision": 67329, "stump": 157730, "fullprocess": 61731, "mines": 102302, "humidity": 71530, "fitness": 59686, "mutation": 111329, "planandsolve": 123223, "rdf": 136100, "underinvestigated": 170814, "tsllm": 169916, "multiperspective": 110827, "643": 1468, "937": 1783, "lmms": 97086, "gpt4vision": 67262, "multisensory": 111148, "genericity": 65676, "gpt4vs": 67266, "uncurated": 170749, "844": 1704, "2500": 837, "sinks": 151919, "sink": 151918, "mpt": 110250, "recomputation": 138285, "taskdriven": 161834, "sl": 152205, "selfalignment": 147927, "superposition": 159080, "mpt30b": 110252, "llama65b": 93394, "motif": 110140, "motifs": 110141, "procedurallygenerated": 128691, "humanaligned": 71118, "steered": 155563, "reflective": 138815, "thoughtcot": 166238, "boasting": 18769, "053": 45, "prioritise": 127966, "delete": 38040, "competently": 27137, "concert": 28838, "straightforwardly": 155930, "recognise": 138037, "contingency": 31157, "predeployment": 125664, "allowable": 8355, "textguided": 165631, "tikz": 166335, "120k": 281, "drawings": 44940, "useroriented": 173567, "selfevolution": 147990, "undergoes": 170785, "4096": 1196, "manifested": 98918, "synthesise": 159979, "continents": 31156, "comics": 26027, "comic": 26026, "blv": 18763, "panels": 118686, "singing": 151772, "concatenates": 28567, "programmer": 129771, "exploitable": 55018, "742": 1569, "deepfakes": 37850, "scams": 146459, "darker": 34553, "urgency": 172414, "ripple": 144883, "blurring": 18762, "genais": 62883, "impediments": 72790, "conspicuous": 29997, "executors": 52979, "wikitq": 178506, "680": 1502, "relearn": 139433, "displaced": 43067, "21x": 767, "endorse": 48711, "pit": 123120, "closedform": 24475, "mislabeled": 102502, "wellexplored": 178159, "worrying": 179652, "095": 96, "noticing": 114324, "appreciated": 10936, "unveiled": 172307, "llama27b": 93380, "toolassisted": 167066, "consequential": 29532, "honest": 70330, "avalon": 15231, "manifests": 98920, "perspectivetaking": 122724, "furnishing": 62003, "staleness": 154783, "precompute": 125631, "disk": 43052, "bimodal": 18462, "objectattribute": 115167, "flickr30k": 59844, "bitwidth": 18607, "ratios": 136077, "2530": 843, "nm": 113951, "geq": 65756, "repe": 140427, "populationlevel": 124112, "honesty": 70332, "harmlessness": 68760, "powerseeking": 125363, "delineated": 38059, "storyline": 155906, "sea": 147279, "wikitext2": 178505, "resourcelimited": 142414, "crutch": 33889, "discard": 42656, "discarding": 42658, "cuda": 33919, "memoryaugmented": 100478, "ocean": 115595, "reservoirs": 142298, "localizations": 97281, "mustc": 111324, "kill": 81657, "130": 336, "357": 1067, "rqs": 145662, "rq1": 145659, "rq2": 145660, "rq3": 145661, "citing": 23805, "prescribed": 126201, "203": 726, "taskbot": 161830, "stimulus": 155807, "melding": 100307, "fabricate": 56501, "toptier": 167405, "conformity": 29428, "coldstart": 25566, "procure": 129366, "linearization": 92987, "hits1": 70235, "disturbances": 43435, "anchored": 9400, "treeofthoughts": 169680, "returning": 144297, "annealing": 9433, "bypasses": 19568, "shrink": 150494, "sp": 153544, "solicit": 152875, "213": 754, "refusing": 138849, "firm": 59640, "212": 753, "183": 524, "mdps": 99736, "horizons": 70420, "regularisation": 138982, "submitting": 157901, "avatar": 15232, "2769": 881, "fps": 60877, "3838": 1097, "sweeping": 159768, "mops": 110105, "concomitantly": 28916, "sim70": 151201, "instinct": 77912, "bandits": 15530, "queryefficient": 134645, "bo": 18765, "gp": 66365, "couple": 32996, "shadow": 149758, "discretion": 42823, "safetyalignment": 145901, "beneath": 17401, "facade": 56509, "baichuan2": 15482, "fortify": 60650, "propelled": 131604, "942": 1787, "slu": 152265, "tokenefficient": 166753, "t2i": 160682, "subjectdriven": 157845, "effortless": 46879, "unet": 171608, "prices": 127762, "backing": 15452, "affordability": 6348, "middleschool": 102193, "administering": 5553, "refreshing": 138841, "fastchanging": 57280, "debunked": 37323, "selfask": 147931, "press": 126708, "evidences": 52240, "exemplifying": 52999, "fitted": 59688, "coq": 32145, "modelparallel": 105138, "partition": 120277, "checkpointing": 23546, "crossnode": 33695, "stagebystage": 154757, "proofwriter": 131591, "prontoqa": 131577, "objectionable": 115170, "perturbs": 122767, "conservatism": 29555, "232": 796, "546": 1368, "combinatorially": 25866, "crm": 33596, "pandas": 118677, "physicists": 122924, "neck": 112202, "contours": 31274, "960": 1810, "985": 1829, "931": 1780, "poised": 123784, "standardizing": 154913, "oncology": 115959, "stylistically": 157791, "overcookedai": 118327, "aimc": 7505, "oneweek": 116050, "wants": 177696, "readout": 136207, "mdd": 99733, "autogeneration": 14485, "agility": 6813, "casestudy": 21034, "unmanned": 172050, "fleet": 59781, "jade": 81176, "selectivity": 147910, "handselected": 68616, "textconditioned": 165615, "strikes": 156316, "memorybound": 100483, "exogenous": 53673, "nash": 111486, "ne": 112085, "dictated": 41580, "aspectbased": 12921, "multitiered": 111252, "4000": 1183, "deteriorates": 40689, "uis": 170571, "promptable": 130748, "supervise": 159085, "rfid": 144750, "corroborates": 32621, "282": 896, "humanprovided": 71326, "selling": 148091, "multibillion": 110351, "revenue": 144455, "subscription": 157938, "commercialization": 26098, "indonesia": 75807, "monetization": 110048, "multiscript": 111146, "troubling": 169798, "alleviation": 8317, "orientations": 117302, "alarming": 7743, "75000": 1580, "airelated": 7694, "selfknowledge": 148015, "introspection": 80279, "1100": 236, "widened": 178427, "llmsgenerated": 97040, "trainingbased": 168828, "lowresolution": 97899, "highresolution": 70094, "voyager": 177562, "minecraft": 102297, "111": 238, "timelines": 166568, "naturalsounding": 111986, "crediblesounding": 33405, "reforms": 138823, "fabric": 56500, "rubricbased": 145685, "dress": 44967, "approachable": 11675, "blender": 18676, "boolean": 18804, "obviates": 115566, "hue": 70502, "facilitation": 56722, "dualstage": 45084, "nonfinancial": 114068, "listed": 93132, "investors": 80666, "firstyear": 59672, "professors": 129641, "interdependence": 79373, "phrased": 122886, "preemptive": 125991, "underspecification": 170975, "captioner": 20571, "641": 1466, "nearlinear": 112104, "hashing": 68854, "lsh": 97952, "chatglm2": 22654, "5fold": 1409, "crossdataset": 33618, "neftune": 112499, "alpacaeval": 8517, "evolinstruct": 52250, "openplatypus": 116546, "llama2chat": 93386, "faults": 57321, "selfreference": 148030, "prover": 132652, "finder": 58594, "implication": 72896, "flooded": 59859, "stir": 155809, "grain": 67438, "salt": 145933, "unfounded": 171678, "ct": 33905, "preferably": 125998, "514": 1338, "phoneme": 122865, "milp": 102258, "er": 50210, "domainindependent": 44335, "producer": 129517, "brazil": 18975, "usa": 172428, "agronomy": 6838, "crop": 33597, "tongue": 166923, "admit": 5560, "adage": 4503, "worderrorrate": 178697, "upto": 172397, "sidechannel": 150507, "registertransfer": 138945, "rtl": 145678, "controldata": 31605, "explainer": 54759, "rsa": 145671, "postquantum": 124517, "saber": 145783, "9048": 1754, "securitycritical": 147634, "closure": 24551, "deviating": 41295, "embeds": 47299, "hri": 70477, "scrutinization": 147261, "receptiveness": 138020, "personification": 122645, "guard": 68122, "icd": 71650, "guarding": 68123, "crafts": 33159, "gpt35turbo16k": 66886, "slotfilling": 152250, "entitylevel": 49952, "forwardlooking": 60672, "fuel": 61702, "topicbased": 167343, "simplex": 151571, "uniformity": 171769, "contemplating": 30405, "parallelized": 119592, "adambased": 4506, "reserve": 142292, "ac": 2713, "competed": 27118, "surplus": 159531, "julia": 81344, "substituted": 158161, "adagrad": 4504, "knapsack": 81688, "finqa": 59639, "tatqa": 163559, "agentic": 6516, "prosecution": 132533, "compass": 27089, "minerva": 102301, "notation": 114294, "latex": 89575, "boilerplate": 18781, "14b": 396, "surgically": 159445, "falsehood": 57175, "implicated": 72895, "mistral": 102554, "v01": 175265, "7billionparameter": 1643, "34b": 1044, "apache": 10136, "documentbased": 43876, "k12": 81404, "crowdworker": 33739, "naturalquestions": 111985, "171": 487, "285": 899, "longbench": 97505, "zeroscrolls": 180108, "directs": 42618, "multiaction": 110303, "impute": 74249, "unobservable": 172062, "principalagent": 127842, "altogether": 8597, "advocating": 6286, "newton": 113599, "160k": 462, "multitransformer": 111256, "prolonged": 130134, "imprecision": 73248, "cyberspace": 34478, "nexus": 113617, "replete": 140486, "democratise": 38188, "jin": 81226, "xie": 179833, "hendrycks": 69268, "underpinned": 170894, "tenets": 164338, "staggering": 154776, "stressing": 156288, "emphasising": 47627, "psychotherapy": 133523, "illness": 72132, "commonsenseaware": 26331, "responsive": 142979, "loaded": 97225, "abound": 2579, "uncensored": 170656, "knowledgegrounded": 82551, "aiml": 7567, "bit": 18597, "cookbook": 32055, "systemically": 160215, "tda": 163592, "impeded": 72786, "simplicial": 151574, "deductions": 37692, "mimicry": 102273, "encapsulates": 48370, "aiops": 7687, "invite": 80669, "gauges": 62825, "highestscoring": 69675, "spatialaware": 153816, "11m": 259, "95k": 1807, "elastic": 46973, "multiaccelerator": 110302, "phones": 122867, "elasticity": 46974, "marginalize": 99198, "shuffle": 150497, "marginalizing": 99202, "75b": 1587, "48b": 1267, "43b": 1226, "258": 851, "specialpurpose": 153929, "pinpointed": 123001, "roadblock": 145124, "layered": 89652, "islamic": 80867, "literatures": 93215, "v20": 175273, "7000": 1531, "selfcritiquing": 147970, "intrigued": 79870, "sentinel": 148686, "congressional": 29453, "bills": 18456, "agendas": 6405, "exerted": 53014, "preferring": 126088, "multitoken": 111253, "repretraining": 140999, "013": 15, "sake": 145915, "bleu4": 18693, "ignorance": 72067, "honeybee": 70333, "reasonableness": 136601, "instructiondata": 78166, "interrupts": 79756, "multisession": 111149, "camera": 19697, "datatypes": 37213, "80b": 1670, "rotations": 145617, "progresses": 130036, "criticism": 33584, "ioi": 80813, "colored": 25794, "496": 1275, "mono": 110058, "ablating": 2427, "parameterizations": 119692, "fertility": 57850, "od": 115606, "hs": 70478, "casebased": 20934, "cbr": 21287, "fsmol": 61700, "leans": 89950, "eai": 45227, "spurring": 154628, "mcts": 99730, "generatively": 65613, "gametheoretic": 62589, "equilibria": 50172, "indigenous": 75672, "impressions": 73251, "suffices": 158475, "penetrate": 120703, "2023b": 722, "intersectionality": 79770, "qrecc": 133958, "astonishingly": 13587, "deceiving": 37338, "solitary": 152885, "obfuscating": 115099, "encapsulation": 48372, "hides": 69347, "upsetting": 172388, "elucidated": 47104, "prm": 128065, "furnishes": 62002, "ann": 9432, "uq": 172404, "dissipation": 43114, "tumor": 169931, "malignant": 98856, "undesirably": 171588, "recallk": 137284, "modelempowered": 104942, "macroeconomic": 98181, "mechgpt": 100067, "vinci": 176841, "283": 897, "concentrated": 28577, "reprogramming": 141031, "visualise": 177348, "nonliteral": 114097, "depict": 39185, "synthesising": 159981, "bells": 16800, "whistles": 178224, "553": 1375, "tacred": 160880, "ace05": 3566, "mindset": 102294, "espouse": 50565, "coaching": 24624, "reframings": 138839, "potentiality": 125080, "remediation": 140330, "deconstructs": 37652, "instructtuned": 78437, "brainstorming": 18956, "foresight": 60404, "ats": 13623, "656": 1478, "406": 1192, "paraphrasers": 119912, "inputlabel": 77376, "dialoguestyle": 41575, "rude": 145687, "historians": 70190, "catalogues": 21055, "problemspecific": 128680, "twolayer": 170239, "incited": 74321, "declining": 37503, "authorial": 14424, "pascal": 120309, "voc": 177500, "emphases": 47619, "positivity": 124322, "listing": 93141, "lime": 92478, "plmbased": 123564, "matchers": 99438, "rd": 136099, "wake": 177666, "multifarious": 110404, "multifacet": 110394, "fullstack": 61736, "australian": 14414, "disciplinespecific": 42679, "bolstering": 18787, "cyberattacks": 34468, "llmguided": 94212, "coping": 32113, "overlay": 118372, "fullyfinetuned": 61808, "refcocog": 138642, "delved": 38102, "sensitivitybased": 148463, "communityspecific": 26532, "connotations": 29505, "cutoff": 34422, "organizes": 117298, "unsure": 172284, "dbms": 37251, "booming": 18813, "quantizationbased": 134422, "migrate": 102201, "truths": 169904, "indications": 75665, "decoded": 37506, "upload": 172377, "atlasti": 13611, "installation": 77791, "conceptspecific": 28704, "bradleyterry": 18938, "typed": 170320, "llama270b": 93377, "slew": 152212, "npcomplete": 114779, "propositional": 132506, "satisfiability": 146164, "critiquing": 33595, "1993": 553, "unanswered": 170631, "subgoalbased": 157817, "rlbased": 145086, "emulated": 48047, "prerequisites": 126199, "167": 471, "harmonizes": 68767, "tournament": 167436, "october": 115601, "tech": 163679, "viral": 176856, "outbreaks": 117439, "ukraine": 170573, "forecasts": 60383, "tournaments": 167437, "dreams": 44966, "privileged": 128059, "polysemantic": 123926, "575": 1390, "primacy": 127764, "selfadaption": 147923, "illusion": 72140, "uphold": 172374, "textitcontextual": 165643, "smes": 152492, "payment": 120614, "sme": 152491, "widening": 178428, "713": 1549, "fulfil": 61707, "committee": 26111, "geometrical": 65729, "secrets": 147533, "projectbased": 130091, "stresses": 156285, "debating": 37298, "206": 734, "reflexive": 138820, "redistribute": 138391, "hamper": 68472, "evoking": 52249, "reviewer": 144564, "authorreviewer": 14436, "vagueness": 175288, "navigable": 112042, "enumeration": 49978, "timestamps": 166623, "obviate": 115565, "portability": 124119, "danish": 34547, "singleround": 151897, "embrace": 47322, "enlarging": 49596, "disproportionate": 43082, "explorative": 55116, "midterm": 102198, "eventtype": 52136, "skipped": 152202, "sparrow": 153713, "1219": 285, "medicalspecific": 100234, "52k": 1348, "substantiates": 158153, "affirms": 6344, "flant511b": 59761, "redefines": 138387, "multigrained": 110406, "crss": 33744, "crs": 33743, "asqa": 12991, "delineate": 38058, "intelligencegenerated": 78930, "venturing": 176424, "thresholding": 166301, "erasure": 50248, "swaths": 159764, "operationalise": 116768, "clsp": 24585, "758": 1586, "reluctant": 139824, "openllama7b": 116532, "openllama3b": 116531, "1958": 545, "uncontaminated": 170716, "premature": 126155, "gps": 66371, "rouge2": 145626, "autodan": 14463, "unreadable": 172108, "gibberish": 65795, "redteam": 138393, "linc": 92938, "provers": 132654, "symbolically": 159833, "folio": 60206, "starcoder": 154943, "155b": 433, "incontextlearning": 74999, "summed": 158956, "descriptiveness": 39529, "intensional": 78994, "constrain": 30022, "consolidation": 29995, "machinemade": 98159, "kendall": 81433, "constitution": 30018, "dictate": 41579, "ablated": 2426, "oft": 115931, "emulators": 48056, "basin": 16450, "stateofthe": 155058, "ice": 71652, "13000": 337, "exacerbate": 52328, "pregnancy": 126109, "poe": 123692, "picking": 122962, "allocate": 8320, "copypasting": 32126, "odds": 115608, "coevolution": 25423, "ensues": 49663, "tuningfree": 170150, "arrives": 12537, "burdens": 19518, "fellow": 57846, "poland": 123796, "london": 97433, "patientphysician": 120480, "rolespecific": 145567, "2278": 785, "burnout": 19528, "dom": 44058, "mysteries": 111361, "su": 157794, "inflate": 76175, "replays": 140485, "abandonment": 1863, "xgboost": 179826, "usercentric": 173538, "editorial": 45499, "neutrality": 113045, "mechanistically": 100065, "lenses": 91422, "unraveling": 172107, "tangent": 161028, "deepening": 37837, "davinci2": 37233, "davinci3": 37236, "cora": 32147, "instincts": 77914, "preset": 126703, "deterioration": 40692, "4k": 1281, "occupational": 115583, "occupations": 115584, "promptcompletion": 130803, "30000": 977, "occupation": 115582, "specialty": 153931, "dolly": 44055, "wizardlm": 178586, "estate": 50718, "quora": 135369, "tulu": 169930, "noisefree": 113989, "declaration": 37489, "pp": 125364, "handwriting": 68618, "fallen": 57139, "dataaugmentation": 35982, "dapt": 34548, "717": 1552, "913": 1764, "manga": 98910, "mcot": 99726, "mmt": 102889, "supercharging": 158968, "pinpoints": 123003, "conceptualized": 28727, "vu": 177609, "yolo": 180048, "196": 546, "bind": 18481, "circle": 23768, "crosscultural": 33614, "dietary": 41603, "englishspeaking": 49137, "cuisines": 33934, "culturallyaware": 33978, "culturally": 33974, "town": 167447, "sociological": 152719, "deserves": 39535, "swap": 159759, "pandalm": 118676, "humantohuman": 71502, "querykeyvalue": 134665, "fullrank": 61732, "clinician": 24385, "nationally": 111499, "hospitals": 70425, "crosssectional": 33703, "oncologists": 115958, "salespeople": 145920, "salesbot": 145919, "purchases": 133719, "morphemes": 110128, "gone": 66250, "unverified": 172316, "formfilling": 60578, "visibility": 176882, "underline": 170816, "inaccurately": 74272, "openllm": 116533, "reprompting": 141033, "parent": 119926, "5shot": 1416, "competes": 27138, "selfdetection": 147973, "codemixed": 25271, "codemixing": 25274, "dualmind": 45081, "inputindependent": 77375, "contextrelated": 30996, "deeplearning": 37852, "cta": 33906, "remapping": 140112, "inflict": 76184, "hackathon": 68307, "influenza": 76245, "virus": 176879, "rejected": 139135, "moebased": 110021, "seesawing": 147720, "impeding": 72791, "llmenhanced": 94190, "satellite": 146150, "imagelanguage": 72376, "promptfree": 130844, "vectorbased": 176396, "containment": 30353, "navigational": 112074, "newcomers": 113516, "toolspecific": 167288, "knowledgeenriched": 82547, "fool": 60341, "studentwritten": 156916, "distillbert": 43171, "306": 986, "211": 751, "242": 815, "292": 912, "151": 423, "540": 1359, "110": 235, "uncertaintyaware": 170682, "0923": 92, "088": 86, "transferlearning": 169024, "prebuilt": 125559, "hiding": 69348, "eluded": 47111, "ntk": 114789, "assembling": 13021, "conjugate": 29459, "regularity": 138984, "determinant": 40693, "prescription": 126202, "closedsourced": 24499, "closesourced": 24547, "neglects": 112557, "datacollection": 36034, "122": 286, "codewhisperer": 25331, "dependability": 39138, "immature": 72586, "securityoriented": 147635, "definitely": 37959, "counterfactually": 32956, "null": 114817, "werewolf": 178202, "regionspecific": 138939, "fish": 59674, "finalize": 58410, "intelligible": 78966, "confusions": 29451, "tape": 161036, "softly": 152746, "35x": 1071, "gpt2medium": 66620, "recognizable": 138153, "wellcalibrated": 178144, "ece": 45375, "gptfamily": 67286, "silly": 151194, "overgeneralizing": 118350, "probingbased": 128172, "shortage": 150014, "confused": 29447, "nonidealities": 114076, "intrusion": 80281, "quiz": 135365, "doubleedged": 44678, "sword": 159789, "panoramic": 118693, "collate": 25648, "compendium": 27111, "bionlp": 18583, "extractionie": 56373, "7bparameter": 1644, "optimizationfree": 117053, "expressibility": 55583, "sketching": 152126, "highdegree": 69566, "beta": 17784, "polynomials": 123925, "plagiarized": 123194, "identifier": 71836, "interagent": 79358, "negotiate": 112567, "multirobot": 111133, "generationaugmented": 65270, "gar": 62768, "highrecall": 70093, "recall100": 137280, "eliza": 47094, "humanlikeness": 71297, "463": 1251, "testset": 164798, "unearth": 171604, "multilingually": 110574, "dressing": 44968, "mmvet": 102890, "firststage": 59670, "textbflanguage": 165609, "stabilize": 154681, "sparsereward": 153754, "abruptly": 2585, "homogenized": 70321, "quo": 135368, "2chat": 923, "undo": 171600, "mouse": 110215, "prohibiting": 130053, "lowprobability": 97877, "preparatory": 126168, "coordinating": 32091, "contrastconsistent": 31334, "mplms": 110245, "textgeneration": 165628, "questionansweringbased": 135007, "concisely": 28855, "dispersed": 43065, "visionary": 177015, "leader": 89790, "follower": 60246, "leaders": 89800, "directives": 42509, "lfs": 92011, "lf": 92010, "filtration": 58371, "terminate": 164377, "devicespecific": 41321, "brightness": 19112, "remind": 140342, "llmenabled": 94189, "theres": 166117, "passk": 120371, "dialectspecific": 41405, "onboarding": 115956, "neighborhoods": 112579, "flawless": 59777, "l2r": 82668, "traceable": 167503, "lecturers": 91210, "noiserobust": 113990, "tuple": 170153, "ideological": 72044, "purification": 133729, "sanity": 146135, "timing": 166629, "moods": 110102, "ended": 48706, "imagetoimage": 72536, "multiimages": 110435, "singleanswer": 151881, "tcm": 163589, "archived": 12307, "rescue": 141555, "exchanging": 52865, "unnoticeable": 172060, "misclassification": 102468, "alan": 7739, "impressed": 73249, "exampledriven": 52515, "alt": 8530, "ramp": 135508, "intuitions": 80287, "scoping": 147023, "cosmic": 32640, "20m": 742, "speechtotext": 154492, "interconnectedness": 79368, "conclusively": 28915, "codellama": 25268, "qwen": 135374, "744": 1570, "emphie": 47663, "visuallinguistic": 177380, "zerooneshot": 180100, "selfrationalization": 148029, "200x": 631, "mario": 99210, "corroborate": 32619, "dialogsum": 41442, "distinction": 43264, "homologous": 70325, "lunch": 97974, "assimilating": 13338, "dare": 34549, "delta": 38083, "rescales": 141546, "amalgamation": 8609, "wizardmath": 178587, "663": 1488, "642": 1467, "gptguided": 67290, "knobs": 81699, "knob": 81698, "postgresql": 124497, "el": 46963, "reaffirming": 136213, "700": 1530, "resides": 142312, "rois": 145452, "glamm": 66069, "regionlevel": 138928, "gcg": 62844, "fivepoint": 59695, "pu": 133536, "formalizations": 60528, "modulewise": 110009, "sampleaware": 145969, "articulates": 12634, "datalimited": 36062, "regressing": 138949, "overstated": 118415, "transaction": 168870, "trans": 168869, "imprint": 73393, "patternbased": 120511, "collaborator": 25643, "nonnative": 114104, "prioritising": 127967, "lewis": 91968, "abusive": 2711, "circumvented": 23785, "slows": 152264, "obey": 115096, "broken": 19235, "triangle": 169744, "cube": 33916, "thoughtfully": 166241, "sciencefocused": 146921, "fabrication": 56508, "anaphora": 9395, "gpt2small": 66624, "689": 1509, "detokenizer": 40732, "organizers": 117297, "scrambled": 147204, "declined": 37501, "sociodemographic": 152714, "sociodemographics": 152715, "overtly": 118417, "skilled": 152143, "stereotypical": 155790, "presumptions": 126723, "abstentions": 2632, "gpt4turbo": 67241, "curvature": 34359, "favors": 57337, "precomputing": 125633, "timetofirsttoken": 166626, "gpubased": 67352, "cpubased": 33130, "disconnected": 42688, "wordy": 178764, "powering": 125358, "tragedy": 167738, "existential": 53245, "2005": 623, "closelyrelated": 24532, "phonetic": 122868, "languageagnostic": 86902, "340": 1038, "607": 1434, "rumors": 145732, "reshape": 142300, "fight": 58313, "fighting": 58315, "metaprompt": 100597, "persuasion": 122727, "languageprocessing": 86935, "os": 117423, "textcraft": 165617, "scarcely": 146480, "verylow": 176636, "miracl": 102447, "softprompting": 152766, "nonspecialist": 114138, "highcost": 69565, "september": 148714, "slowed": 152260, "catalysts": 21057, "dispatched": 43063, "outfit": 117480, "survival": 159720, "diamond": 41577, "n65": 111382, "syntacticsemantic": 159915, "controversies": 31678, "substituting": 158163, "parameterefficiency": 119654, "subsuming": 158172, "fastest": 57304, "247": 820, "subreddit": 157934, "lda": 89721, "toolset": 167287, "abms": 2575, "transcend": 168873, "birth": 18595, "sabm": 145784, "bioactive": 18493, "insect": 77464, "traps": 169616, "oneself": 116027, "vibration": 176656, "skillspecific": 152196, "vipergpt": 176855, "realscenario": 136368, "labse": 82875, "imdb": 72568, "intensify": 78992, "journalism": 81294, "pepper": 120749, "domainoriented": 44343, "reporter": 140571, "smoother": 152496, "publishers": 133699, "unfeasible": 171648, "360": 1078, "mod": 102913, "animate": 9425, "undetectable": 171595, "appearances": 10235, "landmarks": 83087, "mre": 110259, "paralinguistic": 119554, "audiolanguage": 14207, "videolevel": 176764, "closedset": 24484, "openset": 116565, "classagnostic": 23898, "justifies": 81394, "conquer": 29506, "permeates": 122481, "manifestation": 98916, "pleasantly": 123546, "scriptbased": 147250, "selfpaced": 148021, "har": 68629, "511": 1335, "recollections": 138183, "dissatisfied": 43104, "characterising": 22447, "bidirectionally": 18366, "incar": 74300, "kpis": 82652, "gpt4visions": 67264, "celebrity": 21305, "zephyr": 180064, "ios": 80814, "sphinx": 154546, "irish": 80840, "insider": 77481, "tip": 166636, "disapproved": 42648, "falcon7b": 57116, "supervisor": 159223, "eventual": 52137, "contemplate": 30404, "omnipresent": 115954, "multiplicatively": 111119, "20times": 744, "vehicles": 176418, "passively": 120369, "overshadows": 118411, "flagging": 59735, "maximising": 99666, "buckets": 19266, "maker": 98629, "mediums": 100258, "remarks": 140328, "criticize": 33585, "confuse": 29445, "distillations": 43170, "llava13b": 93417, "attachment": 13628, "modifier": 109880, "detectionevasion": 40661, "paradox": 119545, "mistake": 102540, "construe": 30249, "selfmotivated": 148018, "volatile": 177527, "selfmotivation": 148019, "non": 114011, "unrolled": 172133, "nar": 111437, "acid": 4237, "contentbased": 30655, "top10": 167301, "top20": 167303, "gat": 62799, "rewardguided": 144718, "basically": 16448, "tim": 166339, "localitysensitive": 97267, "omission": 115948, "adeptly": 5499, "725": 1557, "620": 1448, "bllms": 18710, "executionguided": 52975, "grailqa": 67437, "envisions": 50130, "inverting": 80359, "examplespecific": 52729, "suits": 158748, "touch": 167429, "meantime": 99823, "historic": 70191, "novelties": 114758, "summeval": 158958, "turnlevel": 170187, "spearman": 153842, "storylines": 155907, "societys": 152710, "arguing": 12424, "judgmental": 81326, "tears": 163674, "themis": 166003, "symbolllm": 159835, "disregards": 43090, "interrelations": 79750, "chineseenglish": 23671, "elementwise": 47023, "transmitted": 169571, "corpuslevel": 32369, "subdomain": 157805, "ikat": 72124, "nov": 114342, "whatsoever": 178212, "tta": 169922, "performancewise": 122355, "accuracybased": 3427, "pix2struct": 123164, "socrates": 152724, "characterizations": 22476, "flaw": 59774, "humanverified": 71506, "knearest": 81689, "posited": 124253, "117m": 252, "pretty": 127485, "refrain": 138833, "uncertaintybased": 170684, "apo": 10203, "twophase": 170244, "corpusbased": 32368, "undermines": 170881, "perstep": 122725, "geo": 65697, "ges": 65772, "fastmoving": 57310, "disadvantaged": 42629, "graphguided": 67596, "exclude": 52885, "ics": 71708, "flant5xl": 59764, "mistral7b": 102559, "im": 72173, "persian": 122520, "languagetoprogram": 87167, "24k": 825, "hotel": 70439, "booking": 18800, "447": 1234, "ensured": 49714, "llmfree": 94191, "doubled": 44677, "topn": 167383, "990": 1832, "162": 465, "genderneutral": 62898, "pediatric": 120658, "10th": 212, "tkgs": 166649, "tkg": 166647, "videollava": 176765, "msrvtt": 110275, "msvd": 110276, "tgif": 165979, "activitynet": 4469, "bachelor": 15404, "norwegian": 114207, "412": 1203, "jukebox": 81343, "interchangeably": 79363, "senior": 148374, "dailylife": 34521, "schematic": 146778, "611313": 1441, "microbatching": 102179, "pipelineparallel": 123107, "microbatch": 102177, "programmingbased": 129885, "325x": 1013, "suspect": 159736, "logged": 97321, "widelyrecognized": 178414, "warping": 177719, "dtw": 45067, "markedly": 99224, "anticipates": 10118, "unidentified": 171690, "multiplier": 111122, "isolates": 80875, "smallersized": 152457, "mixtureofexpert": 102762, "arcchallenge": 12100, "summation": 158954, "eligibility": 47060, "pico": 122964, "observational": 115331, "coexist": 25424, "counterarguments": 32936, "expressible": 55584, "hitl": 70234, "contentcentric": 30656, "underlines": 170819, "selfgenerate": 147996, "fr": 60880, "malaysian": 98828, "men": 100490, "timeline": 166567, "obscured": 115315, "interrelation": 79749, "inbatch": 74293, "80000": 1664, "tourism": 167434, "scopes": 147022, "clippowered": 24425, "hitchhikers": 70230, "en": 48057, "nurture": 115075, "penetrating": 120704, "beginners": 16533, "evil": 52245, "metagpt": 100571, "chatdev": 22650, "stealthier": 155542, "duallevel": 45080, "coarsely": 24631, "aggregator": 6785, "cooperated": 32067, "stagewise": 154775, "cider": 23755, "448": 1235, "validators": 175388, "spending": 154539, "supervisors": 159224, "masters": 99400, "uploading": 172379, "hurdles": 71548, "atlantic": 13609, "bomb": 18791, "upgrades": 172371, "wildly": 178511, "spring": 154605, "statistic": 155478, "plotting": 123656, "fdaapproved": 57341, "mape": 99135, "728": 1559, "oasis": 115094, "inspection": 77679, "innovating": 77141, "v6": 175277, "gaia": 62429, "466": 1252, "multiapi": 110342, "235": 798, "multisensor": 111147, "selftracking": 148082, "str": 155914, "deformations": 37974, "recognised": 138038, "ternary": 164495, "compressibility": 28201, "fullfinetuning": 61721, "elevating": 47028, "99k": 1839, "powerpoint": 125361, "spotting": 154594, "lights": 92162, "illumination": 72139, "ctcbased": 33908, "postcorrection": 124483, "videochat": 176756, "tracker": 167529, "dead": 37260, "print": 127872, "reversing": 144471, "weakening": 177938, "bge": 18087, "monetary": 110044, "closeset": 24545, "ade20k": 5493, "descriptor": 39530, "soups": 153386, "labelspecific": 82846, "waffleclip": 177660, "soup": 153385, "reconstructs": 138302, "recovers": 138327, "goliath": 66249, "drugrelated": 45056, "mas": 99285, "generalisability": 63078, "inadequately": 74279, "chainbased": 21474, "leaf": 89922, "motivational": 110207, "heis": 69065, "interoperable": 79604, "sublinear": 157885, "gg": 65787, "n1o1": 111369, "charting": 22511, "disaster": 42651, "trojaned": 169792, "trojaning": 169793, "trojan": 169790, "clone": 24435, "texttocode": 165808, "bigclonebench": 18399, "fascinating": 57247, "borrows": 18876, "tightrope": 166332, "embracing": 47325, "fulfilling": 61714, "obligations": 115311, "dishonesty": 43046, "mixedinteger": 102732, "renewal": 140387, "1520": 425, "top5": 167306, "vitl": 177423, "vite": 177422, "filteringbased": 58366, "1026": 195, "nonuniform": 114161, "intranode": 79827, "tacit": 160796, "arrangements": 12508, "stifling": 155794, "sparsifies": 153759, "layerbylayer": 89651, "asserted": 13027, "rekindled": 139140, "modernday": 109848, "traverses": 169626, "wizardofoz": 178588, "humanoid": 71316, "tour": 167433, "interacted": 79082, "methodologys": 101263, "dags": 34502, "mapreduce": 99160, "coreferences": 32188, "chunking": 23751, "multidiscipline": 110383, "115k": 247, "sheets": 149893, "ultra": 170593, "securely": 147554, "outputside": 118141, "degenerates": 37977, "180b": 520, "falcon180b": 57114, "nears": 112125, "tooling": 167079, "aws": 15386, "interconnect": 79365, "oneyear": 116051, "catching": 21081, "seismic": 147762, "anthropics": 10103, "gigabytes": 65798, "behaving": 16558, "sg": 149751, "ccot": 21293, "cod": 24645, "900": 1750, "preselected": 126204, "954": 1801, "950": 1799, "graphenhanced": 67595, "twohop": 170238, "seeker": 147662, "widelyadopted": 178413, "configured": 29387, "semeval2017": 148331, "objaverse": 115101, "pooled": 123935, "qoe": 133956, "loweffort": 97807, "expertly": 54636, "companions": 26548, "eyewear": 56475, "timeevolving": 166565, "situating": 151932, "intensifying": 78993, "crowdsource": 33721, "943": 1788, "rid": 144826, "jan": 81197, "249": 822, "854": 1712, "952": 1800, "combinational": 25852, "instructionaware": 78154, "atop": 13622, "modalityspecific": 102980, "250k": 839, "leadingedge": 89869, "9k": 1842, "stealthy": 155543, "unalignment": 170624, "backdoor": 15421, "inhibiting": 77001, "unalign": 170619, "redteaming": 138394, "precluding": 125629, "repaired": 140419, "saudi": 146186, "arabia": 12062, "amending": 8656, "approval": 12009, "contextualising": 31122, "contextualise": 31119, "socioeconomic": 152716, "apt": 12051, "aligner": 8081, "siamese": 150502, "oaei": 115093, "initialisation": 77065, "laying": 89691, "columns": 25810, "rcnn": 136096, "interactional": 79195, "tighter": 166327, "textitetc": 165645, "big5": 18388, "alphafold2": 8525, "schoollevel": 146842, "quadruples": 133971, "cue": 33921, "calvin": 19691, "spartqa": 153778, "union": 171813, "pin": 122994, "20000": 619, "presidents": 126706, "colab": 25561, "lexiconbased": 92006, "dos": 44666, "donts": 44658, "xray": 179855, "exacting": 52345, "leadership": 89801, "cnnlstm": 24616, "mahabert": 98213, "mahagpt": 98214, "indicbert": 75670, "slang": 152209, "documentgrounded": 43880, "imagenet1k": 72382, "supersedes": 159083, "heralding": 69272, "noisebased": 113987, "questiondriven": 135010, "affine": 6334, "llama2s": 93390, "underutilized": 171573, "contextunaware": 31154, "curriculums": 34354, "121": 282, "tertiary": 164502, "dp": 44861, "datasetspecific": 37207, "domaintask": 44639, "aspiring": 12990, "supplemental": 159231, "flood": 59857, "vqabased": 177585, "monotonous": 110086, "freestyle": 61572, "rlaif": 145085, "dsc": 45060, "gibbs": 65797, "exercised": 53008, "ugly": 170558, "userlevel": 173566, "jeopardize": 81220, "codeforces": 25255, "latentvariable": 89525, "ascent": 12823, "loglikelihood": 97422, "expectationmaximization": 53737, "markovian": 99264, "climbing": 24310, "cd": 21294, "clusteringbased": 24602, "muffin": 110295, "anymore": 10131, "misinterpretation": 102501, "behaviorcloning": 16679, "buildings": 19463, "quantize": 134423, "291": 911, "autocorrection": 14462, "instrumentation": 78441, "digitally": 42303, "invented": 80330, "musical": 111319, "memes": 100320, "449": 1236, "conversions": 31984, "textlevel": 165659, "designated": 39807, "navigated": 112048, "intraining": 79825, "ite": 81075, "cuts": 34424, "principledriven": 127851, "turbos": 170160, "pinpointing": 123002, "subtracting": 158199, "soul": 153375, "applicationlevel": 10402, "likened": 92469, "regiontext": 138940, "imagerelated": 72385, "factorized": 56783, "shortestpath": 150042, "detoxifying": 40735, "dataprocessing": 36065, "impersonal": 72809, "formulaic": 60610, "773": 1604, "highlighter": 69801, "heavier": 69037, "llavav15": 93420, "695": 1513, "horizontally": 70422, "vertically": 176634, "impart": 72782, "housing": 70467, "cutoffs": 34423, "dispatching": 43064, "hpo": 70474, "gradcam": 67363, "469": 1253, "374": 1091, "070": 64, "reassess": 137253, "histopathology": 70188, "compounding": 27837, "cursor": 34356, "questionanswers": 135008, "spill": 154553, "forcefully": 60362, "idle": 72054, "operationalizing": 116772, "domainlevel": 44342, "uncontrollable": 170718, "unaffordable": 170616, "datasetdriven": 36621, "wellcurated": 178147, "offload": 115889, "ssd": 154657, "packet": 118494, "enforced": 48805, "267": 867, "manifesting": 98919, "fl": 59728, "policygradient": 123881, "nondifferentiable": 114036, "debugger": 37317, "celeba": 21302, "gais": 62537, "equalization": 50161, "pillow": 122987, "loras": 97654, "discriminationbased": 42838, "softwarerelated": 152859, "undeniable": 170753, "tire": 166638, "centred": 21357, "edgeworth": 45424, "ball": 15521, "brainstorm": 18955, "meme": 100317, "disturbing": 43436, "expediting": 53768, "standardize": 154898, "accomplishment": 3020, "modela": 104917, "inadequacies": 74274, "hpt": 70475, "globallevel": 66113, "crosslevel": 33646, "ict": 71709, "131": 339, "sciencerelated": 146925, "nonscientific": 114128, "amber": 8626, "modelslms": 109753, "lineartime": 92991, "parallelizability": 119588, "datadependent": 36035, "gates": 62805, "touvron": 167439, "2023a": 721, "gu": 68105, "pg19": 122787, "degradations": 37991, "similarlysized": 151397, "safeguard": 145819, "toxicchat": 167465, "medpalm": 100268, "instructionguided": 78196, "untrusted": 172296, "backdoors": 15427, "suspiciousness": 159739, "backdoored": 15426, "confucius": 29444, "ev": 50872, "chained": 21475, "amazed": 8613, "byncsa": 19560, "mmplms": 102888, "oc": 115574, "clinspen2022": 24388, "englishspanish": 49136, "wmt21fb": 178595, "3000": 976, "1213": 283, "cleanly": 24257, "vila": 176837, "progressed": 130035, "llava15": 93418, "paperqa": 119387, "uninterpretability": 171807, "newsqa": 113597, "tripartite": 169773, "biologicallyinspired": 18518, "blockchain": 18720, "blockchainbased": 18722, "eases": 45284, "pct": 120627, "fore": 60367, "lowfidelity": 97862, "icons": 71707, "775": 1606, "toolmaking": 167090, "illustration": 72167, "steal": 155539, "m3": 97992, "classics": 23950, "designate": 39806, "reputable": 141041, "languagedriven": 86912, "instantly": 77861, "demanded": 38141, "sensibility": 148404, "empathize": 47616, "sociology": 152720, "saying": 146202, "pruner": 133448, "minif2f": 102305, "textitverification": 165657, "encapsulating": 48371, "codegeneration": 25261, "projectlevel": 130103, "architected": 12105, "misinform": 102478, "glee": 66077, "communicationcentered": 26425, "creatures": 33400, "sensation": 148378, "pertain": 122734, "agitation": 6816, "reformulations": 138829, "banning": 15543, "v35": 175275, "391": 1108, "laughter": 89582, "upgrading": 172372, "srs": 154655, "sr": 154651, "reactstyle": 136149, "boxlevel": 18933, "safetysecurity": 145910, "orion": 117413, "abstractly": 2689, "106": 199, "promptinjection": 131134, "975": 1820, "incongruent": 74819, "chocolate": 23682, "catalyst": 21056, "adeptness": 5503, "aspires": 12989, "vocal": 177518, "firmware": 59644, "mac": 97994, "m2": 97991, "tr": 167498, "atomicity": 13620, "welloptimized": 178179, "associating": 13525, "conceptdescription": 28632, "627": 1451, "recasts": 137288, "adjacency": 5531, "yaml": 179871, "journalists": 81296, "llmlevel": 94219, "conceptbased": 28631, "countering": 32960, "hatexplain": 68864, "peerreview": 120668, "welfare": 178138, "conscientious": 29509, "proliferate": 130119, "14m": 398, "rsicd": 145673, "inaccuracy": 74259, "149": 395, "176": 504, "geminis": 62869, "exchanges": 52864, "deviated": 41293, "selfcontrastive": 147962, "cyberbullying": 34469, "276": 880, "polysemanticity": 123927, "memorisation": 100327, "maternal": 99518, "systemic": 160213, "starcraft": 154945, "scc": 146504, "llmss": 97043, "defeating": 37885, "kt": 82658, "corrects": 32511, "074": 68, "080": 78, "065": 59, "093": 93, "france": 61532, "cir": 23766, "cirr": 23790, "fashioniq": 57257, "coarselevel": 24630, "68m": 1510, "attributelevel": 14100, "cosegmentation": 32634, "trails": 167742, "httpsgithubcombradyfuawesomemultimodallargelanguagemodels": 70487, "octopus": 115604, "dialoguelevel": 41545, "compliments": 27726, "aggression": 6786, "lgbtq": 92014, "vaes": 175285, "flowbased": 59877, "invertible": 80358, "sqlbased": 154638, "openmp": 116540, "pragmas": 125548, "git": 65807, "367": 1084, "873": 1723, "nondeterminism": 114032, "pathogenic": 120437, "2024": 724, "922": 1774, "956": 1803, "740": 1568, "880": 1728, "monitored": 110052, "proliferated": 130120, "cautioning": 21277, "dividing": 43774, "subscenarios": 157937, "likeness": 92470, "opinionated": 116809, "subprocesses": 157926, "motions": 110159, "graybox": 67676, "divulge": 43779, "als": 8529, "softprompts": 152767, "tti": 169924, "bifurcated": 18368, "flash": 59767, "prefill": 126090, "neuroimaging": 113002, "diseaserelated": 43033, "broker": 19236, "infrastructural": 76906, "finetunable": 58910, "inflating": 76178, "nphard": 114781, "refreshed": 138840, "reserves": 142296, "lkb": 93272, "flying": 59926, "drones": 45031, "commanding": 26038, "drone": 45029, "n40": 111378, "unreflected": 172115, "paste": 120406, "succinctness": 158411, "yang": 179872, "wordings": 178702, "231": 795, "duplicates": 45100, "worthwhile": 179684, "mqa": 110254, "inhibits": 77002, "reciprocity": 138033, "responsiveness": 142981, "overcooked": 118326, "imp": 72613, "2015": 638, "unsuited": 172231, "retrainingfree": 143983, "wanda": 177682, "sparsegpt": 153747, "mlsys": 102873, "oscillates": 117425, "extremes": 56453, "innovates": 77140, "qualitycentric": 134300, "innovate": 77139, "professionally": 129633, "radiological": 135404, "0shot": 99, "encapsulated": 48369, "textitprompts": 165651, "quantizes": 134430, "anothers": 9669, "gendered": 62896, "lowcode": 97795, "dependencyfree": 39157, "cleansing": 24258, "undocumented": 171602, "automatable": 14491, "unattainable": 170633, "736": 1564, "reidentification": 139024, "reid": 139022, "dip": 42360, "admissions": 5559, "24g": 823, "phi2": 122848, "couples": 33002, "28b": 903, "quantisation": 134332, "synergized": 159864, "overparametrized": 118400, "unprecedentedly": 172096, "regurgitate": 139019, "subsampling": 157936, "flux": 59924, "sid": 150505, "upgrade": 172369, "episodes": 50143, "continuity": 31229, "166": 470, "769": 1597, "disclosures": 42686, "572": 1388, "confronts": 29443, "furnish": 62001, "schulz": 146844, "peek": 120659, "408": 1194, "teamwork": 163673, "flurry": 59922, "deserve": 39534, "beautiful": 16516, "cats": 21171, "1950": 544, "zephyr7bbeta": 180066, "distancebased": 43124, "highvariance": 70126, "thinkaloud": 166144, "talked": 161015, "makeup": 98700, "inappropriately": 74290, "unintentionally": 171806, "infringing": 76914, "bible": 18330, "james": 81196, "neighboring": 112580, "catalogs": 21053, "heights": 69064, "guanaco": 68106, "353": 1064, "fft": 58101, "costperformance": 32808, "octocoder": 115603, "receipts": 137289, "infill": 76166, "ssms": 154663, "aiaided": 7329, "disc": 42655, "fictions": 58106, "federal": 57619, "court": 33024, "lawyers": 89616, "litigants": 93216, "harmony": 68769, "optimum": 117131, "geographies": 65717, "plant": 123370, "plants": 123372, "logos": 97427, "wordart": 178693, "userdriven": 173544, "typography": 170531, "nonprofessionals": 114121, "typographic": 170529, "selfharm": 148000, "062": 56, "dce": 37255, "rai": 135442, "193": 541, "243": 816, "gpt4vison": 67265, "ragbased": 135440, "onpar": 116154, "entertaining": 49792, "multiinput": 110436, "stackelberg": 154717, "sellers": 148090, "deepseek": 37869, "analyzable": 9264, "mie": 102199, "underutilizes": 171574, "fourstep": 60866, "shorttext": 150054, "identically": 71778, "domaininvariant": 44336, "formalise": 60522, "manners": 99017, "qwenchat": 135375, "tokenbased": 166751, "lengthcontrol": 91396, "084": 82, "december": 37339, "commits": 26108, "pull": 133711, "keras": 81441, "tough": 167432, "watching": 177741, "subtitles": 158189, "intonation": 79819, "friends": 61639, "ted": 164181, "huaweis": 70493, "astronomical": 13590, "bless": 18680, "harmonic": 68761, "f1macro": 56492, "wait": 177663, "prefixlm": 126105, "factories": 56780, "strain": 155931, "llmtools": 97046, "nonreproducible": 114124, "inequalities": 75909, "unevenly": 171613, "widen": 178426, "recommends": 138283, "confront": 29436, "crosschecking": 33612, "652": 1476, "257": 850, "distorting": 43304, "cherry": 23579, "physicianpatient": 122921, "specialties": 153930, "crossover": 33696, "consultations": 30254, "synchronous": 159852, "ltc": 97969, "incapability": 74296, "threephase": 166292, "laymans": 89699, "humanconstructed": 71157, "toolchain": 167077, "cr": 33135, "adjectives": 5534, "https": 70486, "complaints": 27240, "departments": 39129, "triage": 169735, "165": 469, "shut": 150500, "11k": 258, "forged": 60409, "110m": 237, "synchronizes": 159850, "efficiencies": 46416, "chest": 23584, "affiliations": 6333, "chomsky": 23720, "typological": 170533, "phi": 122845, "llmparaphrased": 94222, "ehrs": 46958, "burst": 19532, "statisticians": 155522, "dedication": 37682, "succumbing": 158413, "menace": 100491, "planting": 123371, "mapo": 99138, "mimiciii": 102265, "zephyr7b": 180065, "fluctuating": 59882, "minimizer": 102380, "meanfield": 99761, "pillars": 122986, "modelpowered": 105140, "pervades": 122768, "extroverted": 56464, "bigru": 18409, "fasttext": 57313, "multillm": 110575, "invocation": 80673, "caller": 19677, "portfolios": 124126, "maple": 99137, "redaction": 138377, "selfreflective": 148040, "exercising": 53012, "endeavours": 48705, "dub": 45087, "threelayer": 166291, "environmentally": 50056, "escalated": 50414, "400000": 1185, "august": 14410, "411": 1202, "firsthand": 59647, "tricking": 169748, "nutritional": 115079, "counselling": 32923, "studentdrawn": 156835, "nerif": 112607, "notationenhanced": 114295, "permeate": 122478, "longrunning": 97575, "backends": 15431, "autoethnographic": 14479, "ugc": 170557, "photographic": 122873, "register": 138942, "complicating": 27724, "plaintext": 123203, "administrators": 5557, "codify": 25363, "warmups": 177706, "sheeps": 149884, "clothing": 24552, "hhh": 69319, "obsolescence": 115449, "interpretative": 79720, "summarizations": 158899, "maths": 99628, "semiautomatic": 148342, "smartly": 152485, "director": 42617, "vlogs": 177494, "shooting": 149948, "spatialtemporal": 153818, "t2v": 160688, "tc": 163588, "setfit": 149353, "roi": 145451, "harmonizing": 68768, "virology": 176857, "champion": 22326, "1000x": 176, "geolocation": 65722, "d2t": 34495, "languageinstructed": 86923, "accord": 3022, "mquake": 110255, "vicunas": 176678, "survive": 159721, "apocalypse": 10205, "cog": 25426, "discernment": 42671, "chemicals": 23562, "km": 81685, "humanassessed": 71134, "rags": 135441, "pretext": 126728, "resnet50": 142333, "spreading": 154600, "ordinarily": 117272, "manipulative": 98965, "addressees": 5402, "cem": 21315, "restored": 142994, "processinginmemory": 129359, "pim": 122993, "006": 9, "undertakes": 171568, "nonnatural": 114108, "delimiters": 38057, "openchat": 116441, "219": 762, "computable": 28290, "gpt435": 67225, "lowperformance": 97876, "realnumbered": 136366, "eaas": 45223, "defence": 37893, "sexually": 149732, "mc2": 99723, "bloomberggpt": 18749, "oneoff": 115980, "beacons": 16498, "perfection": 120857, "panoptic": 118691, "rumour": 145733, "rumours": 145734, "gnnbased": 66138, "twoplayer": 170246, "trove": 169799, "textitsemantics": 165655, "wind": 178516, "uniqueness": 171866, "0760": 72, "anorexia": 9668, "pathological": 120438, "gambling": 62543, "trustable": 169840, "builder": 19360, "audiencespecific": 14161, "ae": 6288, "contests": 30671, "classifierbased": 24174, "mb": 99708, "sec": 147451, "filings": 58330, "worsens": 179670, "32768": 1015, "16384": 467, "7bs": 1645, "mistrals": 102561, "malay": 98826, "mm": 102874, "tod": 166656, "simpletod": 151569, "emowoz": 47609, "multiwoz": 111301, "microscopy": 102183, "unmasking": 172053, "racial": 135389, "white": 178225, "manuallylabeled": 99114, "853": 1711, "cuis": 33932, "elemental": 47007, "ux": 175264, "breakout": 18998, "mixtral": 102748, "twothirds": 170288, "diachronic": 41350, "onsite": 116158, "abridged": 2583, "cortical": 32633, "pulling": 133713, "precludes": 125628, "gpt41106preview": 67223, "mlmbased": 102865, "vg": 176640, "subclass": 157800, "methodically": 101180, "intersect": 79757, "lightly": 92160, "determinism": 40725, "workplaces": 179416, "consisted": 29746, "empathic": 47615, "stereotyping": 155792, "metaquestions": 100599, "strives": 156334, "230": 794, "ought": 117435, "cultivation": 33941, "distillationbased": 43169, "ucr": 170554, "hermeneutic": 69280, "delegating": 38039, "humanderived": 71164, "055": 47, "domainrelated": 44347, "openfoundation": 116517, "352": 1063, "religions": 139813, "teachings": 163659, "disrespectful": 43091, "referenced": 138684, "500000": 1318, "aerial": 6290, "purposive": 133777, "ally": 8488, "indias": 75566, "ls": 97948, "authorized": 14435, "inputted": 77456, "998": 1837, "webscraped": 178043, "talent": 161012, "longtext": 97608, "divisive": 43778, "exaggerate": 52348, "genderspecific": 62901, "poc": 123687, "llamacpp": 93403, "container": 30321, "traceback": 167504, "aichatbot": 7352, "advocated": 6282, "v3": 175274, "tales": 161013, "diversities": 43703, "rs": 145664, "infant": 75927, "sar": 146144, "infrared": 76905, "conditionals": 28974, "linguists": 93089, "coreset": 32190, "occupancy": 115581, "suffix": 158510, "866": 1719, "mortality": 110136, "irregularities": 80846, "owasp": 118458, "sonarqube": 153272, "analyzer": 9352, "geminipro": 62868, "toolformer": 167078, "coa": 24622, "reify": 139027, "waiting": 177665, "wiki": 178488, "14x": 400, "arrows": 12539, "angle": 9418, "directionality": 42453, "hyena": 71577, "epitomized": 50149, "burstiness": 19533, "unrecognized": 172114, "featurebased": 57437, "fulltime": 61738, "mba": 99709, "weakened": 177937, "conceptualises": 28724, "687": 1507, "openness": 116541, "fraudsters": 61536, "macrolevel": 98185, "multipronged": 111128, "tactical": 160882, "maneuvers": 98909, "confrontation": 29438, "promptengineered": 130839, "rampant": 135509, "inequities": 75913, "fluctuations": 59884, "distributing": 43341, "textitwhat": 165658, "axis": 15391, "promptdriven": 130806, "dualmodal": 45082, "semanticrelated": 148283, "missions": 102537, "lions": 93114, "bears": 16511, "oh": 115935, "languagemodelbased": 86926, "batteries": 16469, "earlystage": 45272, "trimodal": 169770, "encyclopedic": 48633, "transcribed": 168878, "synchronized": 159849, "authoritarian": 14429, "substantively": 158156, "quotation": 135370, "vectorize": 176399, "nonfiction": 114067, "19th": 555, "warfare": 177699, "kinetic": 81667, "emojis": 47557, "emojirelated": 47556, "emoji": 47555, "junior": 81352, "unmeasured": 172054, "delineating": 38061, "costeffectively": 32768, "nesting": 112612, "texting": 165640, "stressful": 156287, "counterproductive": 32981, "hopeful": 70409, "pythonbased": 133857, "llamaindex": 93405, "801": 1667, "914": 1765, "noninferiority": 114078, "compensatory": 27115, "rail": 135443, "rounding": 145633, "multiplicative": 111118, "threeclass": 166287, "diplomatic": 42362, "bigrams": 18408, "moderator": 109781, "hardwarefriendly": 68706, "softwarehardware": 152855, "denominator": 39079, "minuscule": 102437, "0001": 2, "145x": 391, "embarrassingly simple": 47131, "simple approach": 151404, "approach transfer": 11613, "transfer learning": 168932, "learning pretrained": 90843, "pretrained language": 126852, "language models": 84038, "models growing": 106570, "growing number": 68039, "number stateoftheart": 114946, "stateoftheart transfer": 155401, "learning methods": 90678, "methods employ": 101471, "employ language": 47833, "models pretrained": 108610, "pretrained large": 126990, "generic corpora": 65649, "corpora paper": 32240, "paper present": 119104, "present conceptually": 126265, "conceptually simple": 28731, "simple effective": 151425, "effective transfer": 45910, "learning approach": 90217, "approach addresses": 10972, "addresses problem": 5421, "problem catastrophic": 128194, "catastrophic forgetting": 21066, "forgetting specifically": 60438, "auxiliary language": 15033, "language model": 83510, "model objective": 104136, "training process": 168649, "preserves language": 126676, "models enabling": 106107, "target task": 161109, "task method": 161542, "method does": 100798, "does require": 44014, "require pretraining": 141173, "pretraining finetuning": 127325, "finetuning separate": 59528, "train models": 167800, "models endtoend": 106119, "endtoend single": 48762, "single step": 151866, "present results": 126437, "text classification": 164881, "classification tasks": 24107, "tasks surpassing": 163325, "greater level": 67767, "level complexity": 91454, "deep active": 37709, "problem generating": 128266, "generating robot": 64322, "robot actions": 145169, "traditional approaches": 167591, "approaches use": 11941, "action selection": 4337, "models work": 109701, "work propose": 179195, "propose endtoend": 131800, "method learning": 100955, "transferable real": 169021, "real robot": 136246, "robot hardware": 145175, "convolutional neural": 32041, "neural network": 112888, "deep reinforcement": 37817, "reinforcement learned": 139035, "planning module": 123299, "multiscale approach": 111144, "approach learned": 11343, "model accuracy": 103021, "reinforcement learning": 139036, "learning accuracy": 90174, "robot control": 145173, "demonstrate resulting": 38533, "resulting outperforms": 143127, "outperforms using": 117885, "using traditional": 174811, "traditional approach": 167590, "approach perception": 11443, "perception planning": 120818, "planning demonstrate": 123262, "demonstrate approaches": 38246, "robustness different": 145370, "use domain": 172594, "domain randomization": 44264, "training code": 168184, "compatible openai": 27096, "openai gym": 116352, "gym framework": 68300, "joint learning": 81253, "present paper": 126405, "paper aim": 118714, "aim improve": 7464, "performance set": 122055, "standards approach": 154916, "encoderdecoder architecture": 48453, "sentence context": 148486, "context information": 30795, "information using": 76833, "sentence encoder": 148500, "significant improvements": 150739, "improvements stateoftheart": 73951, "stateoftheart training": 155399, "training sentence": 168724, "language modeling": 83977, "architecture does": 12150, "annotations available": 9573, "historical corpora": 70198, "corpora additionally": 32206, "test proposed": 164601, "proposed model": 132388, "model set": 104554, "results par": 143657, "par better": 119414, "better model": 17946, "model enhanced": 103544, "sentence representations": 148527, "representations previous": 140866, "previous stateoftheart": 127655, "stateoftheart systems": 155384, "finally encourage": 58445, "encourage future": 48594, "future work": 62400, "release dataset": 139462, "present study": 126460, "study based": 157181, "openly accessible": 116537, "attention transformerbased": 13996, "transformerbased language": 169241, "language representation": 86703, "representation models": 140725, "models present": 108600, "present opensource": 126399, "opensource tool": 116681, "tool visualizing": 167057, "multihead selfattention": 110411, "models tool": 109409, "extends earlier": 55691, "earlier work": 45236, "levels granularity": 91540, "level model": 91489, "model level": 103950, "neuron level": 113014, "model demonstrate": 103419, "bert model": 17567, "model openai": 104149, "openai gpt2": 116345, "gpt2 model": 66559, "model present": 104313, "present use": 126493, "use cases": 172524, "detecting model": 40418, "model bias": 103214, "recurring patterns": 138358, "neurons model": 113028, "model behavior": 103198, "multihop question": 110421, "question answering": 134682, "answering tasks": 9970, "tasks question": 163058, "answering qa": 9926, "answer question": 9756, "multihop qa": 110418, "qa tasks": 133933, "tasks require": 163141, "require reasoning": 141178, "reasoning multiple": 136996, "multiple sentences": 111038, "sentences remains": 148594, "remains unclear": 140083, "best utilize": 17765, "entailment models": 49770, "large scale": 89042, "scale datasets": 146277, "based sentence": 16090, "sentence pairs": 148519, "pairs introduce": 118589, "architecture effectively": 12153, "effectively use": 46102, "models multihop": 108241, "uses local": 173886, "helps locate": 69251, "distracting information": 43309, "information ii": 76499, "information effectively": 76373, "effectively incorporating": 46029, "importance weights": 73071, "functions pretrained": 61919, "scale nli": 146320, "nli datasets": 113665, "datasets evaluate": 36827, "evaluate performance": 51047, "qa datasets": 133879, "datasets using": 37180, "pretrained nli": 127138, "qa models": 133900, "models trained": 109415, "trained target": 168093, "target qa": 161095, "openai transformer": 116381, "transformer models": 169175, "models code": 105639, "code available": 24673, "structure attention": 156539, "attention transformer": 13995, "transformer language": 169148, "model transformer": 104804, "networks achieved": 112714, "achieved stateoftheart": 3903, "stateoftheart results": 155327, "results range": 143724, "range nlp": 135664, "nlp tasks": 113819, "tasks paper": 162907, "paper analyze": 118743, "analyze structure": 9336, "model gpt2": 103758, "gpt2 small": 66597, "small pretrained": 152350, "pretrained model": 127045, "individual instances": 75721, "large corpus": 87225, "different parts": 41895, "parts speech": 120305, "model attention": 103151, "dependency relations": 39153, "middle layers": 102189, "layers model": 89676, "model capture": 103249, "highly specific": 69960, "specific patterns": 154053, "particular attention": 120052, "attention heads": 13890, "quality prediction": 134224, "sheer volume": 149889, "added removed": 4815, "field natural": 58212, "natural language": 111542, "language processing": 86484, "developing automated": 40979, "automated tools": 14624, "tools content": 167129, "content moderation": 30550, "review paper": 144527, "paper propose": 119200, "predicting quality": 125746, "quality new": 134211, "contrast existing": 31302, "features like": 57535, "rule based": 145692, "textual content": 165883, "quality specifically": 134272, "generate representations": 63683, "text content": 164960, "contribute novel": 31413, "novel dataset": 114458, "dataset containing": 36194, "outperforms existing": 117750, "existing methods": 53437, "methods significant": 101820, "significant margin": 150775, "model achieves": 103033, "set small": 149312, "best knowledge": 17680, "knowledge attempt": 81755, "employing deep": 47917, "deep language": 37720, "domain automated": 44098, "automated content": 14532, "transformer model": 169171, "transformer sequence": 169210, "sequence model": 148769, "approach improving": 11293, "improving performance": 74180, "performance advantage": 121141, "advantage using": 6123, "model showing": 104564, "showing model": 150178, "model assigns": 103143, "different input": 41800, "multihead attention": 110409, "attention mechanism": 13927, "mechanism transformer": 100031, "make model": 98569, "model accessible": 103018, "introduce opensource": 80082, "attention multiple": 13940, "multiple scales": 111034, "provides unique": 133237, "unique perspective": 171851, "bert openai": 17576, "gpt2 present": 66579, "present example": 126302, "cases detecting": 20957, "locating relevant": 97297, "allows fast": 8432, "environments based": 50065, "game engine": 62556, "mujoco physics": 110298, "physics simulation": 122949, "designed visual": 39973, "visual domain": 177154, "deployment high": 39274, "high throughput": 69549, "mit license": 102581, "leveraging pretrained": 91924, "pretrained checkpoints": 126767, "sequence generation": 148737, "generation tasks": 65147, "unsupervised pretraining": 172263, "pretraining large": 127360, "large neural": 88953, "neural models": 112881, "models recently": 108845, "recently revolutionized": 137985, "revolutionized natural": 144655, "publicly released": 133678, "released checkpoints": 139507, "nlp practitioners": 113791, "pushed stateoftheart": 133802, "stateoftheart multiple": 155249, "multiple benchmarks": 110851, "saving significant": 146196, "significant amounts": 150587, "amounts compute": 8678, "compute time": 28458, "time far": 166403, "focus mainly": 60020, "mainly natural": 98297, "language understanding": 86805, "understanding tasks": 171499, "paper demonstrate": 118841, "demonstrate efficacy": 38313, "efficacy pretrained": 46405, "generation developed": 64573, "sequencetosequence model": 148852, "model compatible": 103316, "publicly available": 133626, "available pretrained": 15179, "pretrained bert": 126757, "bert gpt2": 17550, "gpt2 roberta": 66593, "conducted extensive": 29246, "extensive empirical": 55754, "empirical study": 47748, "encoder decoder": 48412, "models result": 108968, "new stateoftheart": 113424, "results machine": 143580, "machine translation": 98108, "translation text": 169533, "text summarization": 165502, "summarization sentence": 158876, "bert neural": 17573, "neural machine": 112872, "gpt2 bert": 66519, "bert demonstrate": 17522, "demonstrate effectiveness": 38290, "effectiveness using": 46312, "using pretrained": 174593, "models lms": 108054, "lms various": 97216, "various natural": 176047, "processing tasks": 129308, "tasks lm": 162753, "lm finetuning": 97055, "finetuning suffers": 59570, "suffers catastrophic": 158461, "tasks work": 163479, "work introduce": 179050, "training framework": 168458, "pretrained lms": 127029, "translation nmt": 169494, "nmt model": 113954, "model retain": 104476, "retain previous": 143956, "previous pretrained": 127625, "pretrained knowledge": 126850, "avoid catastrophic": 15334, "policy experiments": 123835, "bleu score": 18688, "language pair": 86453, "surpasses previous": 159493, "14 bleu": 375, "score large": 147077, "wmt14 englishfrench": 178593, "base model": 15619, "model significantly": 104570, "significantly improves": 151036, "improves stateoftheart": 74086, "stateoftheart transformer": 155402, "big model": 18381, "model bleu": 103220, "score code": 147049, "code model": 24997, "recurrent neural": 138348, "neural networks": 112914, "network rnn": 112694, "long shortterm": 97481, "shortterm memory": 150051, "memory lstm": 100420, "gated recurrent": 62802, "building blocks": 19378, "learning online": 90787, "online data": 116088, "data sequential": 35733, "nature research": 112027, "research areas": 141597, "areas including": 12371, "including natural": 74633, "processing speech": 129299, "speech data": 154397, "data analysis": 34622, "analysis paper": 9047, "present new": 126373, "new methodology": 113273, "methodology significantly": 101253, "significantly reduce": 151126, "reduce number": 138453, "number parameters": 114918, "maintaining performance": 98373, "performance comparable": 121270, "comparable better": 26561, "weight matrices": 178074, "corresponding input": 32589, "input data": 77220, "data hidden": 35151, "hidden states": 69335, "states time": 155439, "time step": 166511, "large proportion": 89026, "parameters new": 119815, "new architecture": 113069, "parameter finetuning": 119613, "major issues": 98436, "issues existing": 81001, "existing compression": 53317, "compression techniques": 28232, "techniques experiments": 163896, "experiments natural": 54375, "modeling compared": 104984, "compared classical": 26760, "produces comparable": 129522, "comparable results": 26612, "results 50": 143148, "50 compression": 1295, "compression rate": 28226, "outperform classical": 117572, "parameters training": 119879, "optimus prime": 117134, "generating medical": 64274, "finetuning openais": 59415, "openais gpt2": 116409, "article describes": 12573, "describes new": 39392, "new results": 113392, "results application": 143174, "application using": 10394, "using transformerbased": 174820, "models automated": 105421, "area ongoing": 12337, "educational measurement": 45617, "gpt2 pretrained": 66580, "parameter language": 119620, "model retrained": 104477, "using public": 174629, "public domain": 133567, "domain text": 44310, "text mining": 165303, "pubmed articles": 133706, "articles subsequently": 12622, "subsequently used": 157993, "used generate": 173084, "item stems": 81081, "case vignettes": 20932, "case study": 20900, "study shows": 157634, "shows promise": 150463, "text used": 165551, "used human": 173099, "experiments recent": 54434, "recent transformer": 137707, "using existing": 174177, "improve results": 73612, "facilitate development": 56606, "release strategies": 139498, "social impacts": 152584, "models large": 106873, "large language": 87295, "models range": 108769, "prose poetry": 132532, "analyze dataset": 9284, "dataset biases": 36136, "generative capabilities": 65391, "capabilities raise": 20139, "discusses openais": 42975, "work related": 179257, "release gpt2": 139470, "gpt2 language": 66551, "model discusses": 103476, "time model": 166451, "analyses model": 8772, "model sizes": 104615, "research provides": 142008, "neural language": 112854, "models recurrent": 108868, "networks learn": 112770, "learn predict": 90032, "predict upcoming": 125710, "upcoming words": 172324, "unexpectedly high": 171619, "high probabilities": 69506, "investigate extent": 80410, "increasing size": 75361, "gains increasing": 62519, "certain point": 21407, "training corpus": 168210, "corpus yields": 32367, "large models": 88917, "models match": 108148, "match human": 99415, "human performance": 70954, "performance comparison": 121303, "gpt bert": 66392, "bert transformerbased": 17613, "transformerbased models": 169263, "trained billions": 167872, "reveals models": 144439, "models perform": 108457, "perform poorly": 121006, "results make": 143585, "make case": 98494, "data efficient": 34951, "efficient architectures": 46575, "architectures effective": 12260, "effective use": 45916, "use transformer": 172920, "transformer networks": 169191, "language requires": 86709, "requires understanding": 141463, "language encoders": 83284, "encoders like": 48491, "like gpt": 92281, "bert successfully": 17608, "successfully applied": 158367, "range natural": 135652, "tasks ability": 161878, "ability handle": 2212, "procedural texts": 128688, "paper explore": 118902, "explore use": 55310, "use pretrained": 172809, "pretrained transformer": 127178, "tracking tasks": 167543, "procedural text": 128687, "prediction pretrained": 125843, "pretrained transformers": 127218, "simple baselines": 151409, "stronger results": 156478, "results attained": 143181, "input guide": 77254, "guide transformer": 68217, "model focus": 103682, "focus particular": 60033, "particular entity": 120075, "second assess": 147459, "assess degree": 13068, "networks capture": 112719, "different tasks": 42031, "processes achieve": 129050, "achieve stateoftheart": 3752, "results models": 143612, "models largely": 106914, "form complex": 60447, "visual analysis": 177106, "analysis tool": 9205, "tool explore": 166974, "learned representations": 90125, "representations transformers": 140901, "transformers models": 169335, "models produce": 108661, "contextual representations": 31110, "representations lead": 140838, "lead improvements": 89754, "improvements nlp": 73924, "tasks models": 162814, "models typically": 109523, "guided sequence": 68239, "self attention": 147922, "attention mechanisms": 13933, "inductive biases": 75837, "able explore": 2503, "analyses models": 8773, "models lead": 106933, "help humans": 69125, "humans better": 71354, "reasoning process": 137053, "process present": 128941, "interactive tool": 79346, "tool named": 167013, "named popular": 111418, "popular bert": 123988, "bert language": 17559, "model provides": 104386, "provides insights": 133168, "similar contexts": 151226, "contexts large": 31027, "large annotated": 87191, "annotated dataset": 9463, "intuitively explain": 80304, "embeddings embeddings": 47230, "fundamental building": 61935, "analysis tasks": 9194, "tasks embeddings": 162277, "essential tools": 50643, "tools large": 167191, "models image": 106668, "image analysis": 72176, "analysis use": 9219, "research domains": 141730, "distributed representations": 43334, "representations data": 140787, "holistic analysis": 70293, "area paper": 12338, "propose general": 131845, "quantitatively measure": 134394, "presence features": 126209, "features embedding": 57480, "embedding data": 47157, "data based": 34712, "devise method": 41328, "structure data": 156546, "data use": 35910, "adversarial network": 6212, "constraints ensure": 30078, "structure embedding": 156549, "empirical results": 47718, "results demonstrate": 143279, "demonstrate proposed": 38496, "proposed algorithm": 132227, "algorithm significantly": 7856, "significantly outperforms": 151088, "outperforms stateofart": 117853, "data sets": 35740, "including novel": 74643, "novel applications": 114363, "model extraction": 103629, "study problem": 157551, "problem model": 128325, "extraction natural": 56332, "victim model": 176663, "model attempts": 103150, "assuming adversary": 13559, "model finetune": 103658, "finetune large": 58931, "large pretrained": 88988, "model bert": 103208, "bert devlin": 17523, "devlin et": 41339, "et al": 50767, "al 2019": 7725, "adversary does": 6247, "does need": 44006, "training data": 168223, "data successfully": 35825, "need use": 112422, "use grammatical": 172662, "semantically meaningful": 148270, "random sequences": 135543, "queries model": 134508, "diverse set": 43646, "set nlp": 149253, "tasks including": 162544, "language inference": 83422, "inference question": 76084, "work highlights": 179014, "shift transfer": 149926, "methods nlp": 101682, "nlp community": 113706, "query budget": 134565, "attacker extract": 13679, "model performs": 104268, "performs slightly": 122461, "slightly worse": 152237, "model finally": 103654, "finally study": 58529, "defense strategies": 37911, "strategies model": 156041, "sophisticated ones": 153320, "ones masked": 116005, "masked language": 99299, "model scoring": 104514, "pretrained masked": 127033, "models mlms": 108217, "require finetuning": 141110, "finetuning nlp": 59405, "tasks instead": 162611, "autoregressive language": 14984, "models like": 106966, "like gpt2": 92283, "gpt2 variety": 66610, "variety tasks": 175766, "rescoring asr": 141550, "reduces endtoend": 138516, "30 relative": 970, "stateoftheart baselines": 155087, "lowresource translation": 97940, "translation pairs": 169496, "pairs gains": 118580, "domain adaptation": 44063, "linguistic acceptability": 93002, "greatly improving": 67792, "scores gpt2": 147146, "10 points": 132, "computation single": 28319, "single inference": 151812, "inference pass": 76066, "use growing": 172665, "number pretrained": 114930, "use single": 172875, "crosslingual model": 33661, "model rescore": 104462, "translations multiple": 169558, "multiple languages": 110957, "languages release": 87116, "paraphrase generation": 119905, "generation multilingual": 64862, "multilingual language": 110489, "models leveraging": 106958, "leveraging multilingual": 91907, "multilingual parallel": 110527, "automatically generate": 14809, "generate paraphrases": 63641, "drawn attention": 44942, "roundtrip translation": 145637, "typical approach": 170445, "approach end": 11174, "process involves": 128885, "involves multiple": 80757, "translation models": 169487, "models likely": 107001, "paper inspired": 118981, "models propose": 108704, "propose simple": 132118, "simple unified": 151547, "model purely": 104395, "trained multilingual": 168014, "parallel data": 119564, "data conduct": 34823, "generation step": 65102, "paraphrases generated": 119914, "generated model": 63923, "model semantically": 104541, "semantically similar": 148275, "input sentence": 77336, "sentence model": 148515, "gpt radford": 66481, "radford et": 135395, "al 2018": 7724, "pretrain model": 126737, "model largescale": 103934, "corpus improves": 32316, "improves fluency": 74004, "output sentences": 117995, "addition introduce": 4873, "denoising autoencoder": 39070, "improve diversity": 73444, "diversity robustness": 43754, "robustness model": 145406, "model experimental": 103596, "experimental results": 53961, "results model": 143610, "model surpasses": 104698, "method terms": 101141, "terms relevance": 164461, "relevance diversity": 139555, "natural question": 111940, "small model": 152326, "model recent": 104419, "huge language": 70519, "models gpt2": 106523, "factoid questions": 56773, "raises questions": 135496, "questions extent": 135126, "knowledge embedded": 81913, "short paper": 149980, "paper describes": 118843, "smaller models": 152411, "models answer": 105358, "answer questions": 9763, "questions making": 135189, "making use": 98818, "external knowledge": 56058, "contribution work": 31487, "work methods": 179125, "rely unsupervised": 139893, "unsupervised learning": 172250, "learning techniques": 91064, "unsupervised training": 172280, "training language": 168515, "model goal": 103752, "line research": 92945, "able add": 2463, "knowledge explicitly": 81977, "extensive training": 55964, "training single": 168749, "approaches language": 11818, "tv shows": 170203, "transformers transformers": 169367, "entire field": 49806, "slightly different": 152231, "strong language": 156403, "model based": 103179, "level language": 91483, "model results": 104473, "hyperparameter optimization": 71592, "desktop machine": 40066, "machine authors": 97998, "final results": 58400, "24 hours": 807, "hours single": 70456, "single gpu": 151806, "contexts minimal": 31034, "minimal computation": 102318, "playing games": 123500, "crossmodality transfer": 33693, "transfer reinforcement": 168987, "learning work": 91137, "work explore": 178949, "use latent": 172728, "latent representations": 89512, "representations obtained": 140857, "multiple input": 110938, "sensory modalities": 148474, "modalities images": 102931, "allowing agent": 8359, "agent learn": 6463, "different subsets": 42022, "input modalities": 77287, "modalities propose": 102946, "propose threestage": 132167, "architecture allows": 12118, "learning agent": 90187, "agent trained": 6504, "execute task": 52918, "task different": 161322, "example learning": 52489, "learning visual": 91128, "image inputs": 72280, "execute policy": 52916, "policies achieve": 123805, "achieve better": 3590, "outofthebox performance": 117554, "performance compared": 121279, "compared different": 26784, "different baselines": 41671, "video game": 176707, "game environments": 62559, "environments using": 50119, "using different": 174134, "different multimodal": 41865, "multimodal generative": 110644, "generative models": 65476, "models reinforcement": 108887, "learning algorithms": 90196, "benchmark linguistic": 17016, "pairs english": 118569, "introduce benchmark": 79922, "challenge set": 21737, "evaluating language": 51322, "isolating specific": 80877, "syntax morphology": 159921, "semantics data": 148293, "data automatically": 34701, "automatically generated": 14816, "generated according": 63789, "aggregate human": 6768, "human agreement": 70562, "use evaluate": 172602, "lstm transformer": 97961, "transformer gpt2": 169142, "gpt2 transformerxl": 66606, "lms stateoftheart": 97203, "stateoftheart models": 155225, "models identify": 106660, "negative polarity": 112525, "polarity items": 123800, "comparative study": 26651, "study pretrained": 157544, "models thai": 109397, "social text": 152672, "text categorization": 164873, "volume data": 177532, "usergenerated content": 173559, "content social": 30620, "social media": 152599, "media provides": 100111, "nearly unlimited": 112121, "unlabeled data": 171949, "data languages": 35286, "resources scarce": 142486, "scarce paper": 146476, "demonstrate stateoftheart": 38557, "pretraining language": 127353, "model large": 103925, "media corpus": 100080, "billion tokens": 18441, "finetuned downstream": 59014, "downstream classification": 44707, "tasks linguistically": 162741, "nature content": 111990, "unique data": 171835, "data preprocessing": 35522, "preprocessing steps": 126191, "ease training": 45280, "model compared": 103312, "modern language": 109802, "openai gpt": 116341, "compared models": 26859, "models different": 105966, "different dimensions": 41737, "dimensions including": 42339, "perplexity downstream": 122509, "classification benchmarks": 23963, "benchmarks performance": 17325, "performance limited": 121740, "limited pretraining": 92821, "pretraining data": 127290, "model neural": 104124, "network language": 112664, "increasing amounts": 75299, "amounts training": 8705, "inductive bias": 75836, "bias models": 18166, "hypothesis language": 71622, "ideally suited": 71756, "text results": 165430, "results key": 143546, "key limitations": 81531, "limitations todays": 92677, "todays models": 166680, "models particular": 108435, "particular models": 120098, "models struggle": 109246, "struggle learn": 156762, "spatial temporal": 153810, "human readers": 71002, "encoded simple": 48403, "mathematical logical": 99571, "general methodology": 62995, "incorporating simple": 75131, "simple functions": 151461, "neural architecture": 112826, "probability distributions": 128108, "explore effectiveness": 55193, "effectiveness approach": 46121, "geographic locations": 65704, "reduce perplexity": 138460, "modeling performance": 105065, "performance improvement": 121651, "tokens larger": 166836, "approach simple": 11548, "simple general": 151462, "discuss applied": 42869, "transformer based": 169099, "based large": 15902, "models vllms": 109649, "like bert": 92198, "bert xlnet": 17621, "xlnet roberta": 179850, "recently shown": 137991, "shown tremendous": 150393, "tremendous performance": 169689, "performance large": 121716, "large variety": 89102, "variety natural": 175730, "understanding nlu": 171372, "nlu tasks": 113949, "tasks size": 163256, "extremely resource": 56449, "resource intensive": 142387, "deploy production": 39202, "time recent": 166481, "recent publications": 137607, "various ways": 176253, "distil knowledge": 43132, "smaller model": 152406, "run faster": 145739, "faster inference": 57291, "inference time": 76120, "time propose": 166475, "propose novel": 131979, "novel set": 114688, "set techniques": 149325, "produce taskspecific": 129468, "achieves stateoftheart": 4089, "stateoftheart inference": 155160, "inference speed": 76103, "distilled models": 43182, "models neural": 108282, "cost train": 32743, "train machine": 167793, "machine learning": 98007, "learning models": 90705, "models increasing": 106737, "increasing exponentially": 75321, "making exploration": 98738, "exploration research": 55098, "features architecture": 57447, "scale using": 146355, "using technique": 174789, "technique named": 163788, "play game": 123453, "game dota": 62555, "10 months": 124, "selection process": 147881, "manual labor": 99053, "structure model": 156584, "model limiting": 103965, "limiting ability": 92882, "feature set": 57429, "set input": 149220, "propose solution": 132140, "automatically determine": 14791, "network model": 112677, "require retraining": 141183, "allowing model": 8380, "model operate": 104154, "operations determine": 116777, "relationship inputs": 139322, "inputs outputs": 77432, "outputs change": 118030, "model architecture": 103128, "architecture paper": 12201, "paper introduce": 118985, "introduce methodology": 80010, "methods detecting": 101438, "empirically validate": 47807, "openai model": 116365, "longterm planning": 97604, "situational awareness": 151937, "understanding knowledge": 171317, "knowledge world": 82517, "modelfree deep": 104948, "major challenge": 98416, "challenge given": 21648, "given black": 65835, "black box": 18612, "box nature": 18929, "learning process": 90860, "observation action": 115321, "action spaces": 4342, "agents trained": 6749, "explicit hierarchical": 54936, "games require": 62586, "final goal": 58380, "understanding challenging": 171155, "challenging given": 22166, "given lack": 65919, "models coupled": 105811, "internal representations": 79561, "representations paper": 140859, "paper study": 119339, "representations learned": 140839, "course training": 33016, "training introduce": 168509, "introduce general": 79969, "learning model": 90701, "model agents": 103093, "subgoals agent": 157819, "perform qualitative": 121013, "qualitative analysis": 133979, "games dota": 62581, "dota world": 44670, "world champions": 179534, "semantic representations": 148209, "representations languages": 140830, "origin using": 117308, "recursive neural": 138361, "chinese characters": 23610, "recursive structures": 138363, "semantic information": 148158, "developmental psychology": 41268, "psychology literature": 133513, "literature suggests": 93207, "native speakers": 111513, "potentially lead": 125116, "lead better": 89728, "better embeddings": 17853, "benefit downstream": 17428, "downstream tasks": 44758, "tasks propose": 163033, "propose building": 131737, "structures using": 156720, "network using": 112706, "structures based": 156689, "based human": 15856, "human behavior": 70613, "behavior language": 16604, "language learning": 83483, "learning reading": 90897, "verify claim": 176524, "tasks predicting": 162968, "structures language": 156702, "modeling empirical": 104996, "results proposed": 143696, "embeddings outperform": 47264, "outperform baseline": 117565, "baseline approaches": 16195, "diagnostic analysis": 41378, "analysis suggests": 9187, "constructed using": 30188, "especially complex": 50442, "models recent": 108818, "recent developments": 137469, "unsupervised representation": 172269, "representation learning": 140707, "learning successfully": 91037, "learning nlp": 90769, "area research": 12347, "architectures making": 12280, "making better": 98708, "better use": 18062, "use contextual": 172562, "contextual information": 31091, "instead simply": 77899, "pretrained representations": 127148, "based surrounding": 16121, "surrounding context": 159588, "context endtoend": 30743, "endtoend trainable": 48772, "trainable models": 167847, "language modelling": 84029, "modelling objectives": 105130, "objectives larger": 115249, "corpora used": 32261, "resources pretraining": 142468, "models selfsupervised": 109068, "selfsupervised fashion": 148053, "finetuned supervised": 59119, "supervised tasks": 159176, "tasks advances": 161922, "cloud computing": 24554, "possible train": 124470, "shorter time": 150037, "previously established": 127723, "established models": 50693, "stateoftheart sota": 155356, "sota results": 153365, "results revealed": 143766, "revealed higher": 144391, "driving forces": 45014, "providing clear": 133269, "concise overview": 28850, "overview large": 118436, "models achieved": 105235, "achieved sota": 3899, "use new": 172779, "differences models": 41633, "models furthermore": 106406, "gain insight": 62443, "architectural changes": 12108, "quantify contributions": 134315, "contributions work": 31510, "order identify": 117205, "identify potential": 71938, "starting points": 154969, "points benchmark": 123739, "point potential": 123714, "potential possibilities": 124907, "possibilities improvement": 124368, "improvement field": 73796, "scientific documents": 146955, "address task": 5374, "task explaining": 161381, "documents using": 43944, "using natural": 174512, "language text": 86784, "text task": 165527, "task requires": 161695, "requires modeling": 141419, "modeling complex": 104985, "content long": 30544, "technical documents": 163700, "relationship text": 139333, "text addition": 164818, "help improve": 69127, "efficiency search": 46528, "paper establish": 118883, "pretrain large": 126734, "model serve": 104549, "serve foundation": 148977, "approaches task": 11924, "task explore": 161383, "explore impact": 55217, "different views": 42083, "documents including": 43913, "including use": 74772, "systems provide": 160562, "provide extensive": 132783, "extensive automatic": 55720, "automatic human": 14683, "human evaluations": 70757, "models make": 108125, "make clear": 98498, "challenges future": 21878, "fast convergence": 57264, "convergence large": 31762, "deep networks": 37798, "exploding gradients": 54997, "long training": 97499, "training times": 168791, "initialization schemes": 77069, "shown improve": 150287, "probability theory": 128126, "plays integral": 123527, "integral role": 78477, "deep learning": 37723, "residual connection": 142315, "connection using": 29491, "using single": 174720, "complex approaches": 27360, "enables training": 48254, "training thousands": 168787, "fully connected": 61750, "connected layers": 29476, "convergence better": 31750, "better test": 18047, "test performance": 164591, "technique language": 163781, "conversational assistance": 31849, "assistance track": 13378, "track overview": 167524, "overview conversational": 118423, "trec 2019": 169651, "conversational information": 31872, "information seeking": 76752, "research create": 141675, "create largescale": 33207, "test collection": 164533, "conversational search": 31920, "complex answer": 27357, "answer retrieval": 9772, "machine reading": 98095, "reading comprehension": 136182, "marco datasets": 99173, "30 train": 973, "average 10": 15254, "questions long": 135187, "assessments provided": 13301, "30 training": 974, "20 test": 611, "runs using": 145759, "methods conversational": 101407, "conversational query": 31902, "ranking methods": 135812, "methods include": 101587, "traditional retrieval": 167691, "retrieval based": 144015, "based methods": 15945, "methods feature": 101523, "feature based": 57388, "models knowledge": 106839, "knowledge enhanced": 81941, "methods common": 101379, "common theme": 26206, "bertbased neural": 17631, "neural reranking": 112970, "reranking methods": 141532, "leading methods": 89843, "methods employed": 101472, "query expansion": 134580, "expansion generative": 53713, "generative language": 65431, "models conversational": 105796, "query rewriting": 134629, "gpt2 results": 66592, "results gap": 143426, "automatic systems": 14748, "systems using": 160660, "using manually": 174476, "relative improvement": 139372, "conversational question": 31904, "architectures pretrained": 12289, "models paper": 108403, "paper presents": 119144, "presents empirical": 126572, "study conversational": 157256, "models plms": 108520, "plms address": 123576, "independence assumption": 75493, "maximum likelihood": 99696, "likelihood estimation": 92438, "benchmarks taskoriented": 17382, "taskoriented dialogue": 161844, "dialogue systems": 41525, "systems evaluate": 160363, "finetuned plms": 59090, "task validate": 161805, "validate models": 175328, "models using": 109581, "using data": 174109, "task examining": 161364, "architectures different": 12257, "different numbers": 41882, "numbers parameters": 114986, "parameters demonstrate": 119734, "demonstrate recent": 38522, "texttotext transfer": 165865, "transfer transformer": 169001, "transformer t5": 169212, "achieves best": 3964, "best results": 17746, "fewer parameters": 57867, "parameters compared": 119725, "compared similar": 26913, "transformer architectures": 169096, "latent space": 89513, "variational autoencoder": 175644, "autoencoder vae": 14469, "powerful generative": 125280, "generative model": 65467, "model effective": 103511, "effective representation": 45869, "learning framework": 90475, "language paper": 86455, "propose largescale": 131897, "largescale language": 89332, "latent embedding": 89502, "embedding space": 47189, "large text": 89072, "text corpus": 164969, "various language": 175990, "language generation": 83342, "generation understanding": 65224, "tasks compared": 162085, "compared gpt2": 26818, "guided language": 68231, "generation abstract": 64386, "abstract level": 2647, "level using": 91519, "using latent": 174404, "latent vectors": 89523, "compared bert": 26754, "generalize better": 63242, "better lowresource": 17937, "lowresource language": 97902, "structure extensive": 156553, "extensive experimental": 55781, "results wide": 143932, "wide range": 178262, "range language": 135633, "language tasks": 86759, "tasks demonstrate": 162170, "optimus achieves": 117133, "achieves new": 4036, "modeling benchmarks": 104973, "benchmarks hope": 17263, "pretrained big": 126760, "deep generative": 37718, "models era": 106143, "era largescale": 50236, "largescale pretraining": 89391, "pretraining make": 127383, "make principled": 98580, "methods practical": 101716, "networks fast": 112742, "processing long": 129187, "long sequences": 97474, "commonly used": 26237, "sequence processing": 148782, "recently introduced": 137914, "introduced neural": 80166, "longrange dependencies": 97569, "model quite": 104407, "gating mechanism": 62816, "present simple": 126449, "simple lightweight": 151485, "lightweight variant": 92189, "network based": 112630, "residual network": 142317, "layer normalization": 89638, "proposed architecture": 132253, "longer sequences": 97532, "provides better": 133112, "better accuracy": 17791, "modelling task": 105132, "task achieves": 161161, "stateoftheart performance": 155267, "transcription efficient": 168884, "convolutional layers": 32038, "building block": 19375, "long sequence": 97471, "processing applications": 129111, "optical character": 116922, "character recognition": 22436, "recognition ocr": 138111, "documents complex": 43894, "unique set": 171855, "issues including": 81013, "low quality": 97779, "errors paper": 50386, "paper reports": 119304, "reports tool": 140614, "tool built": 166952, "common errors": 26136, "proposed tool": 132447, "based scores": 16086, "scores language": 147155, "model lm": 104040, "number common": 114840, "subject human": 157831, "human intervention": 70874, "italian language": 81073, "years pretrained": 179919, "pretrained neural": 127135, "neural architectures": 112830, "architectures provided": 12290, "tasks generative": 162460, "models available": 105433, "mainly english": 98289, "built using": 19506, "using gpt2": 174258, "gpt2 architecture": 66514, "provide thorough": 133007, "thorough analysis": 166178, "automatic humanbased": 14691, "humanbased evaluation": 71142, "evaluation automatic": 51441, "automatic assessment": 14641, "different genres": 41783, "profiling analysis": 129703, "complex sentences": 27583, "sentences human": 148583, "human evaluation": 70722, "evaluation performed": 51768, "sentence completion": 148479, "completion task": 27342, "original human": 117337, "human texts": 71059, "simpler language": 151556, "model baseline": 103193, "text generation": 165122, "generative pretraining": 65567, "pretraining largescale": 127371, "largescale pretrained": 89374, "models bert": 105488, "gpt2 achieved": 66513, "achieved excellent": 3805, "excellent performance": 52794, "performance language": 121708, "freeform text": 61567, "generation models": 64842, "models directly": 105981, "generate text": 63751, "text specified": 165480, "lexical constraints": 91977, "address challenge": 5162, "challenge present": 21707, "simple novel": 151505, "generation proposed": 64982, "proposed method": 132334, "method operates": 101001, "inserting new": 77472, "new tokens": 113468, "tokens parallel": 166848, "parallel manner": 119574, "generation process": 64958, "model proposed": 104378, "wikipedia dataset": 178500, "dataset finetune": 36308, "finetune downstream": 58917, "time complexity": 166360, "complexity inference": 27675, "time experimental": 166401, "datasets demonstrate": 36761, "performance constrained": 121331, "constrained text": 30043, "generation released": 65035, "released pretrained": 139533, "pretrained models": 127058, "models source": 109183, "source code": 153391, "code facilitate": 24833, "facilitate future": 56614, "future research": 62306, "amrtotext generation": 8728, "meaning representations": 99778, "sentencelevel semantic": 148550, "semantic graphs": 148152, "existing approaches": 53260, "approaches generating": 11788, "generating text": 64359, "focused training": 60126, "annotated data": 9451, "data paper": 35459, "propose alternative": 131705, "alternative approach": 8547, "approach combines": 11058, "strong pretrained": 156432, "despite simplicity": 40210, "simplicity approach": 151576, "approach experimental": 11203, "models outperform": 108380, "outperform previous": 117616, "previous techniques": 127677, "including recent": 74695, "addition standard": 4907, "standard evaluation": 154820, "evaluation metrics": 51710, "metrics provide": 102132, "provide human": 132825, "evaluation experiments": 51577, "experiments substantiate": 54481, "approach language": 11331, "models fewshot": 106322, "fewshot learners": 57948, "learners recent": 90155, "recent work": 137717, "work demonstrated": 178893, "demonstrated substantial": 38804, "substantial gains": 158062, "tasks benchmarks": 162003, "benchmarks pretraining": 17333, "corpus text": 32360, "text followed": 165093, "followed finetuning": 60237, "finetuning specific": 59553, "specific task": 154099, "task typically": 161793, "architecture method": 12189, "method requires": 101074, "taskspecific finetuning": 163522, "finetuning datasets": 59219, "thousands tens": 166259, "tens thousands": 164347, "thousands examples": 166254, "examples contrast": 52545, "contrast humans": 31309, "humans generally": 71393, "generally perform": 63322, "perform new": 120994, "new language": 113245, "language task": 86757, "task examples": 161366, "simple instructions": 151477, "instructions current": 78225, "current nlp": 34195, "nlp systems": 113814, "scaling language": 146405, "models greatly": 106565, "greatly improves": 67791, "fewshot performance": 58014, "prior stateoftheart": 127931, "stateoftheart finetuning": 155141, "finetuning approaches": 59172, "approaches specifically": 11911, "specifically train": 154294, "train gpt3": 167777, "model 175": 102996, "175 billion": 493, "billion parameters": 18435, "model test": 104736, "performance fewshot": 121510, "fewshot setting": 58051, "tasks gpt3": 162476, "gpt3 applied": 66642, "gradient updates": 67398, "updates finetuning": 172349, "finetuning tasks": 59581, "tasks fewshot": 162397, "fewshot demonstrations": 57898, "text interaction": 165254, "interaction model": 79145, "model gpt3": 103763, "gpt3 achieves": 66638, "achieves strong": 4113, "strong performance": 156422, "performance nlp": 121846, "nlp datasets": 113720, "datasets including": 36925, "including translation": 74765, "translation questionanswering": 169508, "questionanswering cloze": 134979, "cloze tasks": 24580, "tasks tasks": 163345, "reasoning domain": 136816, "words using": 178762, "using novel": 174541, "novel word": 114753, "word sentence": 178679, "time identify": 166415, "fewshot learning": 57950, "gpt3 faces": 66686, "methodological issues": 101183, "issues related": 81057, "related training": 139221, "training large": 168521, "large web": 89133, "web corpora": 177998, "gpt3 generate": 66696, "generate samples": 63694, "news articles": 113548, "human evaluators": 70773, "difficulty distinguishing": 42208, "articles written": 12626, "written humans": 179781, "discuss broader": 42872, "societal impacts": 152691, "finding gpt3": 58605, "gpt3 general": 66695, "stability finetuning": 154672, "finetuning bert": 59181, "strong baselines": 156351, "baselines finetuning": 16323, "finetuning pretrained": 59452, "pretrained transformerbased": 127209, "common practice": 26175, "various nlp": 176066, "nlp benchmarks": 113697, "benchmarks despite": 17219, "despite strong": 40216, "strong empirical": 156378, "empirical performance": 47716, "performance finetuned": 121530, "finetuned models": 59078, "models finetuning": 106358, "finetuning unstable": 59603, "process training": 129018, "training model": 168582, "model multiple": 104108, "multiple random": 111013, "random seeds": 135541, "result large": 143044, "large variance": 89100, "task performance": 161610, "performance previous": 121938, "previous literature": 127605, "al 2020": 7726, "potential reasons": 124934, "instability catastrophic": 77786, "small size": 152362, "size finetuning": 151999, "datasets paper": 37024, "bert roberta": 17591, "roberta albert": 145139, "used datasets": 173020, "glue benchmark": 66124, "vanishing gradients": 175586, "variance downstream": 175605, "downstream task": 44751, "attributed differences": 14090, "models training": 109482, "training loss": 168561, "different test": 42044, "performance based": 121185, "based analysis": 15654, "analysis present": 9077, "simple strong": 151528, "strong baseline": 156348, "bertbased models": 17630, "models significantly": 109128, "previously proposed": 127736, "proposed approaches": 132252, "approaches code": 11712, "code reproduce": 25103, "reproduce results": 141004, "results available": 143185, "available online": 15170, "previous works": 127698, "works indicate": 179457, "internal representation": 79560, "network width": 112709, "increasing number": 75339, "selfattention layers": 147937, "conduct systematic": 29184, "systematic empirical": 160114, "provide explicit": 132781, "quantitative suggestions": 134381, "regarding optimal": 138878, "depth width": 39332, "selfattention networks": 147940, "knowledgeaware language": 82527, "model pretraining": 104328, "pretraining knowledge": 127351, "knowledge pretrained": 82286, "models hold": 106619, "recent research": 137617, "transformers adept": 169295, "grasp human": 67667, "human knowledge": 70891, "transformer architecture": 169090, "explicit knowledge": 54942, "external storage": 56089, "information simply": 76759, "signal existence": 150519, "entities input": 49852, "input transformer": 77364, "transformer pretraining": 169202, "entity prediction": 49905, "prediction task": 125869, "task experiments": 161379, "pretraining significantly": 127438, "transformer parameters": 169198, "parameters observe": 119817, "observe improved": 115374, "improved language": 73696, "modeling accuracy": 104966, "accuracy factual": 3236, "factual correctness": 56864, "knowledge probing": 82306, "probing tasks": 128169, "hidden representations": 69332, "dropin replacement": 45038, "gpt2 models": 66568, "significantly improving": 151055, "improving downstream": 74134, "tasks like": 162707, "like zeroshot": 92431, "zeroshot questionanswering": 180312, "information retrieval": 76707, "retrieval augmentation": 143998, "augmentation language": 14286, "models experiment": 106235, "experiment use": 53917, "use information": 172683, "models text": 109383, "corpus used": 32364, "used information": 173114, "episodic memory": 50145, "gpt 20": 66373, "zero shot": 180088, "relative reduction": 139381, "vulnerabilities neural": 177628, "neural code": 112835, "code completion": 24724, "completion code": 27322, "code autocompletion": 24672, "feature modern": 57419, "modern code": 109789, "latest generation": 89544, "uses neural": 173890, "trained public": 168050, "opensource code": 116579, "code repositories": 25101, "given current": 65865, "current context": 34093, "demonstrate neural": 38450, "poisoning attacks": 123794, "corpus data": 32294, "data poisoning": 35495, "directly finetuning": 42541, "files model": 58329, "example attacker": 52466, "suggest insecure": 158543, "targeted attack": 161127, "evaluate existing": 50965, "existing defenses": 53342, "attacks largely": 13721, "curious case": 34050, "learning generalization": 90495, "lens large": 91414, "models transfer": 109488, "learning network": 90763, "network compression": 112634, "just like": 81381, "deep neural": 37799, "network architectures": 112628, "turn make": 170177, "useful model": 173338, "model understanding": 104824, "biological neural": 18511, "efficient robust": 46708, "robust optimization": 145297, "serve useful": 149012, "brain deep": 18944, "deep transformer": 37829, "based data": 15738, "data augmentation": 34665, "subword units": 158206, "asr recently": 13007, "recently deep": 137846, "models proven": 108720, "proven particularly": 132645, "particularly powerful": 120239, "powerful language": 125285, "modeling tasks": 105104, "tasks asr": 161974, "high complexity": 69407, "complexity makes": 27686, "makes difficult": 98643, "difficult apply": 42130, "single pass": 151846, "online recent": 116125, "recent studies": 137652, "studies showed": 157078, "showed considerable": 150132, "knowledge neural": 82244, "models lm": 108047, "using neural": 174522, "neural text": 112986, "generation based": 64448, "pretrain gpt2": 126733, "transformer lm": 169163, "general text": 63056, "corpus finetune": 32308, "asr task": 13010, "task data": 161293, "rich language": 144787, "language propose": 86672, "propose new": 131950, "new method": 113269, "method called": 100725, "text augmentation": 164849, "generated text": 64003, "methods significantly": 101823, "significantly improve": 151019, "greatly reducing": 67800, "vocabulary size": 177514, "size memory": 152030, "memory requirements": 100453, "finally demonstrate": 58432, "approach terms": 11603, "terms overall": 164444, "oov words": 116192, "investigating pretrained": 80613, "graphtotext generation": 67659, "generation aims": 64409, "aims generate": 7618, "generate fluent": 63507, "fluent texts": 59917, "paper investigate": 119025, "recently proposed": 137963, "proposed pretrained": 132414, "analyze impact": 9300, "impact different": 72636, "taskadaptive pretraining": 161821, "pretraining strategies": 127447, "generation present": 64941, "wikipedia knowledge": 178501, "knowledge graphs": 82074, "graphs kgs": 67627, "kgs plms": 81649, "bart t5": 15585, "t5 achieve": 160693, "achieve new": 3689, "strategies improve": 156010, "improve performance": 73541, "performance particular": 121897, "stateoftheart bleu": 155093, "bleu scores": 18690, "datasets relative": 37074, "respectively extensive": 142555, "extensive analysis": 55712, "analysis identify": 8961, "identify possible": 71937, "possible reasons": 124455, "tasks evidence": 162334, "evidence knowledge": 52189, "knowledge true": 82477, "helps perform": 69256, "input graph": 77253, "graph representation": 67572, "node edge": 113963, "labels applying": 82781, "based fast": 15804, "started used": 154963, "used various": 173292, "various fields": 175941, "speech recognition": 154444, "outstanding performance": 118162, "performance high": 121623, "high computational": 69412, "computational complexity": 28341, "large vocabulary": 89126, "continuous speech": 31254, "order accelerate": 117167, "apply general": 10851, "general purpose": 63026, "processing units": 129348, "paper proposes": 119259, "proposes novel": 132476, "novel method": 114581, "method applying": 100685, "goal reducing": 66194, "proposed approach": 132230, "approach evaluated": 11196, "inhouse data": 77004, "data experiments": 35017, "experiments shows": 54465, "shows proposed": 150468, "approach achieves": 10948, "speed various": 154516, "various circumstances": 175853, "maintaining word": 98386, "word error": 178637, "error rate": 50314, "rate wer": 136020, "ngram models": 113626, "models efficient": 106054, "efficient neural": 46686, "starting point": 154966, "retrieval tasks": 144148, "critical user": 33568, "user experience": 173408, "steps generating": 155742, "query candidates": 134567, "candidates according": 19739, "according query": 3050, "ranking based": 135796, "based extracted": 15799, "extracted features": 56186, "major challenges": 98417, "poses significant": 124226, "significant challenge": 150636, "sophisticated language": 153304, "models unseen": 109562, "queries generated": 134483, "generated candidates": 63805, "poor quality": 123953, "fully utilized": 61801, "heavily rely": 69047, "rely handcrafted": 139849, "handcrafted features": 68506, "query candidate": 134566, "search logs": 147373, "sufficient semantic": 158495, "semantic understanding": 148245, "propose efficient": 131794, "effective context": 45717, "context modeling": 30852, "overcome challenges": 118274, "candidate generation": 19719, "generation uses": 65232, "information possible": 76628, "generate relevant": 63681, "large margin": 88901, "candidate ranking": 19728, "proposed effectively": 132280, "effectively captures": 45958, "approach presents": 11456, "better ranking": 17999, "ranking performance": 135817, "performance stateoftheart": 122105, "stateoftheart neural": 155255, "neural ranking": 112966, "compared neural": 26865, "modeling methods": 105047, "methods empirical": 101469, "results public": 143714, "public datasets": 133560, "datasets model": 36986, "achieves good": 4015, "good balance": 66259, "balance accuracy": 15488, "accuracy efficiency": 3218, "job search": 81237, "feed forward": 57631, "model updating": 104834, "learning continuous": 90327, "continuous feed": 31237, "procedure required": 128707, "required order": 141247, "underlying physical": 170864, "physical interpretation": 122902, "interpretation transformer": 79714, "based models": 15950, "models gpt": 106517, "method training": 101147, "training proposed": 168668, "gpt model": 66450, "model interaction": 103888, "network designed": 112640, "target locations": 161082, "experiment conducted": 53884, "classification problem": 24055, "results exhibit": 143395, "learning real": 90898, "real human": 136233, "especially fewshot": 50472, "fewshot scenario": 58045, "knowledge efficient": 81909, "learning natural": 90753, "processing deep": 129138, "success deep": 158229, "learning relies": 90911, "annotated examples": 9476, "annotation timeconsuming": 9554, "timeconsuming expensive": 166542, "expensive produce": 53801, "methods reducing": 101763, "quantity annotated": 134401, "data making": 35344, "making learning": 98773, "methods knowledge": 101619, "make applicable": 98483, "low resource": 97784, "resource settings": 142398, "settings various": 149655, "various classical": 175857, "classical approaches": 23932, "making models": 98779, "efficient multitask": 46681, "multitask learning": 111216, "learning transfer": 91094, "weakly supervised": 177951, "supervised unsupervised": 159183, "thesis focuses": 166123, "adapting classical": 4732, "classical methods": 23941, "modern deep": 109793, "models algorithms": 105327, "efficient propose": 46701, "propose knowledge": 131889, "framework incorporating": 61222, "incorporating prior": 75126, "prior knowledge": 127900, "knowledge deep": 81860, "deep models": 37794, "weak supervision": 177935, "second apply": 147456, "model assist": 103144, "assist machine": 13353, "reading models": 136198, "evidence sentences": 52215, "sentences support": 148596, "investigate knowledge": 80433, "knowledge transfer": 82467, "transfer techniques": 168997, "multilingual setting": 110547, "setting proposed": 149496, "method improve": 100916, "pretrained multilingual": 127120, "multilingual bert": 110466, "bert based": 17513, "memory network": 100435, "pretrained gpt": 126833, "comparative evaluation": 26644, "evaluation pretrained": 51782, "models automatic": 105422, "automatic short": 14738, "short answer": 149953, "grading asag": 67418, "student answers": 156802, "computational approaches": 28329, "approaches given": 11791, "given question": 65969, "desired answer": 40037, "concept mapping": 28610, "used conventional": 173012, "word embeddings": 178631, "extracting semantic": 56244, "semantic features": 148146, "features extracted": 57492, "extracted multiple": 56199, "multiple features": 110912, "features manually": 57538, "corresponding datasets": 32576, "datasets use": 37173, "pretrained embeddings": 126793, "models elmo": 106066, "elmo bert": 47097, "bert gpt": 17541, "gpt gpt2": 66429, "efficiency task": 46538, "task train": 161779, "train single": 167828, "cosine similarity": 32637, "models compare": 105693, "models previous": 108636, "dataset work": 36619, "work demonstrates": 178897, "outperformed models": 117661, "models conclude": 105729, "conclude possible": 28879, "possible causes": 124404, "poor results": 123955, "models measuring": 108162, "measuring massive": 99951, "massive multitask": 99368, "multitask language": 111214, "understanding propose": 171425, "new test": 113463, "text models": 165312, "models multitask": 108261, "multitask accuracy": 111199, "accuracy test": 3404, "57 tasks": 1384, "elementary mathematics": 47009, "mathematics history": 99614, "computer science": 28482, "science law": 146886, "attain high": 13752, "high accuracy": 69389, "test models": 164586, "models possess": 108569, "possess extensive": 124335, "extensive world": 55969, "world knowledge": 179563, "knowledge problem": 82308, "problem solving": 128402, "solving ability": 153192, "ability recent": 2344, "recent models": 137565, "largest gpt3": 89437, "gpt3 model": 66722, "model improves": 103833, "random chance": 135517, "20 percentage": 606, "percentage points": 120780, "points average": 123738, "average 57": 15264, "tasks best": 162006, "best models": 17708, "models need": 108277, "need substantial": 112398, "substantial improvements": 158069, "expertlevel accuracy": 54634, "accuracy models": 3312, "comprehensively evaluating": 28174, "models academic": 105200, "academic professional": 2749, "understanding test": 171507, "test used": 164652, "analyze models": 9315, "models tasks": 109359, "tasks identify": 162515, "identify important": 71901, "advanced neural": 5786, "paper expand": 118896, "previous research": 127633, "research potential": 141973, "potential abuse": 124542, "models assessing": 105402, "different types": 42064, "social interaction": 152588, "demonstrates significant": 38889, "significant improvement": 150731, "gpt2 generating": 66539, "content utilized": 30646, "preventative measures": 127548, "represents significant": 140993, "significant risk": 150863, "largescale online": 89371, "requires little": 141406, "likely ai": 92447, "community governments": 26484, "social norms": 152645, "public policy": 133595, "disinformation propaganda": 43049, "require effective": 141090, "effective policy": 45840, "industry government": 75876, "government civil": 66360, "civil society": 23813, "current limitations": 34156, "limitations language": 92610, "current approaches": 34067, "approaches improve": 11802, "tradeoff language": 167562, "models including": 106702, "models masked": 108143, "length efficient": 91361, "efficient attention": 46580, "conditional computation": 28949, "retrieval identify": 144059, "identify limitations": 71915, "openended text": 116510, "generation output": 64909, "textual tasks": 165960, "like gpt23": 92284, "need specific": 112393, "specific finetuning": 153998, "finetuning dataset": 59218, "dataset improve": 36352, "improve prediction": 73582, "tokens scaling": 166877, "scaling model": 146424, "model size": 104586, "size efficiently": 151989, "results poor": 143667, "poor performance": 123951, "performance scaling": 122042, "tasks argue": 161968, "resolve limitations": 142347, "reduce supervision": 138474, "extend context": 55622, "context entire": 30747, "entire training": 49818, "training dataset": 168369, "past current": 120379, "causal modeling": 21210, "jointly trained": 81288, "small language": 152303, "hundreds billions": 71535, "billions parameters": 18450, "parameters pretrained": 119834, "models gpt3": 106527, "gpt3 brown": 66655, "brown et": 19251, "achieve remarkable": 3721, "remarkable fewshot": 140196, "enormous amounts": 49600, "compute required": 28452, "required training": 141262, "training applying": 168160, "big models": 18382, "models resulting": 108970, "resulting large": 143111, "carbon footprint": 20749, "footprint making": 60353, "making difficult": 98725, "researchers practitioners": 142240, "practitioners use": 125546, "use performance": 172800, "performance similar": 122069, "similar gpt3": 151244, "obtained language": 115521, "parameter count": 119598, "orders magnitude": 117259, "magnitude smaller": 98210, "textual inputs": 165923, "cloze questions": 24578, "task description": 161310, "gradientbased optimization": 67408, "data gives": 35130, "gives improvements": 66056, "improvements identify": 73909, "identify key": 71908, "key factors": 81499, "successful natural": 158347, "understanding small": 171477, "contextual language": 31102, "language trained": 86792, "million words": 102249, "variety sources": 175764, "spanning classical": 153673, "21st century": 766, "series case": 148908, "case studies": 20892, "studies illustrate": 157015, "model work": 104905, "work natural": 179131, "processing latin": 129182, "using computational": 174072, "computational methods": 28381, "methods traditional": 101880, "new state": 113422, "state art": 154981, "partofspeech tagging": 120294, "predicting missing": 125742, "text including": 165240, "including critical": 74479, "create new": 33217, "new dataset": 113131, "dataset assessing": 36119, "word sense": 178675, "sense disambiguation": 148383, "bert outperforms": 17578, "static word": 155468, "embeddings used": 47294, "search querying": 147398, "nearest neighbors": 112098, "publicly release": 133674, "trained models": 168010, "models help": 106592, "help drive": 69109, "drive future": 44974, "question generation": 134880, "generation high": 64716, "high level": 69475, "level text": 91514, "text comprehension": 164941, "probing questions": 128164, "questions come": 135069, "come naturally": 26007, "variety settings": 175762, "challenging task": 22281, "task automatic": 161210, "systems natural": 160489, "type question": 170315, "question ask": 134832, "gap knowledge": 62669, "knowledge text": 82454, "comprehension like": 27915, "like reading": 92385, "news article": 113547, "background information": 15437, "despite recent": 40187, "recent progress": 137588, "datadriven approaches": 36038, "range models": 135650, "trained existing": 167914, "existing datasets": 53333, "datasets introduce": 36932, "compared existing": 26794, "questions target": 135301, "highlevel semantic": 69708, "comprehension text": 27936, "readers engage": 136167, "information finally": 76449, "finally evaluate": 58447, "models based": 105449, "based gpt2": 15843, "model able": 103009, "able generate": 2510, "generate reasonable": 63674, "task challenging": 161240, "highlight importance": 69747, "importance context": 73016, "context generate": 30778, "augmentation finetuning": 14278, "finetuning text": 59587, "text generators": 165210, "investigate data": 80393, "augmentation text": 14318, "generation language": 64767, "important tasks": 73204, "tasks natural": 162836, "processing especially": 129150, "especially challenging": 50432, "lowdata regimes": 97801, "propose evaluate": 131806, "evaluate various": 51129, "augmentation methods": 14298, "methods including": 101588, "incorporate external": 75012, "knowledge finetuning": 82006, "finetuning gpt2": 59285, "yelp reviews": 179952, "quality generated": 134137, "metrics evaluate": 102051, "important aspects": 73087, "aspects generated": 12939, "including diversity": 74499, "experiments demonstrate": 54216, "keyword replacement": 81616, "effective augmentation": 45699, "quality generations": 134151, "generations improves": 65280, "approximately times": 12032, "original data": 117326, "models languages": 106871, "languages typically": 87149, "certain types": 21424, "multiple factors": 110910, "factors including": 56799, "phenomenon known": 122833, "bias introduce": 18138, "benchmark dataset": 16888, "human judgments": 70887, "dataset includes": 36357, "systematically varies": 160208, "use dataset": 172579, "dataset existing": 36277, "existing corpus": 53326, "naturally occurring": 111979, "occurring data": 115593, "data evaluate": 34993, "evaluate recent": 51090, "recent neural": 137572, "models capture": 105568, "capture human": 20656, "human preferences": 70969, "preferences results": 126069, "results larger": 143558, "larger models": 89226, "perform better": 120875, "better smaller": 18027, "models transformer": 109493, "architectures gpt2": 12266, "gpt2 tend": 66601, "parameter training": 119645, "training settings": 168737, "additional analyses": 4920, "feature representations": 57425, "transformers better": 169301, "better integrate": 17917, "specific lexical": 154032, "lexical information": 91985, "information grammatical": 76484, "grammatical constructions": 67452, "vernacular english": 176553, "transformerbased text": 169289, "generation growth": 64706, "growth social": 68087, "african american": 6377, "american vernacular": 8663, "traditionally used": 167727, "nlp models": 113766, "developed using": 40925, "american english": 8662, "text corpora": 164966, "investigate performance": 80459, "performance gpt2": 121597, "creating dataset": 33293, "syntactic structure": 159904, "gpt2 generated": 66536, "text pretrained": 165369, "sentiment classifiers": 148648, "negative sentiment": 112533, "use gpt2": 172658, "positive sentiment": 124309, "additionally conduct": 5031, "conduct human": 29140, "text generated": 165108, "generated gpt2": 63873, "overall quality": 118222, "point view": 123726, "virtual assistants": 176861, "designed allow": 39815, "target user": 161118, "rulebased model": 145701, "model integrates": 103882, "linear text": 92982, "classification model": 24031, "constituency parsing": 30008, "methods investigated": 101615, "approaches including": 11805, "metrics gauge": 102070, "separately trained": 148707, "trained language": 167961, "model gpt": 103754, "performed similarly": 122381, "faithfulness metrics": 57092, "37 times": 1089, "times fewer": 166585, "dataset composed": 36173, "corpora containing": 32214, "containing text": 30348, "embeddings useful": 47295, "useful improve": 173330, "improve language": 73496, "model performance": 104229, "longitudinal data": 97559, "data case": 34738, "case new": 20883, "new users": 113490, "users propose": 173748, "new form": 113194, "embeddings use": 47293, "word representations": 178673, "representations derived": 140789, "demographic information": 38206, "information user": 76829, "gender age": 62885, "outperform generic": 117596, "tasks english": 162302, "english language": 49067, "word associations": 178614, "explore tradeoff": 55305, "number available": 114827, "ethical implications": 50808, "implications using": 72960, "generation generative": 64693, "models information": 106765, "retrieval ranking": 144119, "task generating": 161426, "generating query": 64306, "documents language": 43916, "model successful": 104678, "successful various": 158359, "various ir": 175985, "ir tasks": 80838, "tasks past": 162936, "ranking functions": 135802, "functions model": 61917, "model semantic": 104540, "semantic similarity": 148224, "gpt2 bart": 66515, "shown excellent": 150230, "work revisit": 179273, "revisit generative": 144611, "generative framework": 65421, "generative approaches": 65374, "approaches effective": 11738, "effective stateoftheart": 45888, "stateoftheart semantic": 155349, "discriminative models": 42846, "answer selection": 9774, "selection task": 147892, "task additionally": 161171, "additionally demonstrate": 5039, "model learning": 103945, "learning possible": 90831, "underlying meaning": 170856, "parallel sentences": 119577, "english french": 49055, "languages work": 87158, "work present": 179172, "joint distribution": 81247, "distribution model": 43372, "flexible inference": 59810, "inference including": 76032, "including unconditional": 74768, "unconditional generation": 170709, "generation conditional": 64522, "conditional generation": 28954, "partially observed": 119986, "incomplete observations": 74815, "containing english": 30333, "czech german": 34491, "demonstrate experiments": 38334, "unconditional conditional": 170708, "generation provide": 64983, "provide qualitative": 132939, "quantitatively analyze": 134384, "outperforms traditional": 117879, "models incremental": 106746, "empirical assessment": 47675, "bidirectional models": 18362, "humans process": 71452, "process language": 128892, "best language": 17694, "used nlp": 173160, "based partial": 15998, "interactive systems": 79341, "systems test": 160641, "models various": 109609, "various nlu": 176077, "nlu datasets": 113938, "datasets compare": 36714, "compare performance": 26704, "performance using": 122221, "metrics results": 102140, "results support": 143851, "possibility using": 124389, "using bidirectional": 174010, "achieves better": 3971, "training regime": 168684, "training testing": 168784, "output right": 117992, "context available": 30693, "right contexts": 144831, "contexts generated": 31021, "generated language": 63895, "model like": 103958, "incorporating bert": 75085, "sequence decoding": 148733, "scale pretrained": 146329, "bert achieved": 17507, "achieved great": 3813, "great success": 67731, "success various": 158305, "tasks efficiently": 162274, "efficiently effectively": 46773, "effectively incorporate": 46028, "sequencetosequence models": 148853, "models corresponding": 105806, "corresponding text": 32608, "tasks remains": 163125, "remains nontrivial": 140044, "nontrivial problem": 114155, "problem paper": 128342, "propose address": 131699, "address problem": 5336, "different bert": 41676, "bert models": 17571, "decoder respectively": 37525, "respectively finetuning": 142558, "introducing simple": 80247, "lightweight adapter": 92166, "adapter modules": 4713, "modules inserted": 109988, "taskspecific dataset": 163512, "way obtain": 177856, "flexible efficient": 59805, "efficient model": 46676, "able jointly": 2527, "leverage information": 91607, "information contained": 76326, "forgetting problem": 60434, "component framework": 27734, "flexible task": 59826, "task agnostic": 161179, "agnostic framework": 6819, "framework based": 60976, "based parallel": 15997, "decoding algorithm": 37557, "algorithm named": 7832, "bidirectional conditional": 18341, "autoregressive decoding": 14977, "conduct extensive": 29103, "extensive experiments": 55794, "experiments neural": 54377, "translation tasks": 169529, "tasks proposed": 163038, "method consistently": 100753, "consistently outperforms": 29898, "reducing inference": 138573, "inference latency": 76044, "germanenglish translation": 65770, "decoding proposed": 37592, "method achieves": 100631, "par stateoftheart": 119420, "stateoftheart baseline": 155085, "baseline models": 16241, "success nlp": 158272, "nlp field": 113738, "various advanced": 175790, "advanced models": 5779, "gpt transformer": 66505, "distance embeddings": 43117, "used methods": 173145, "methods usually": 101916, "precise information": 125583, "contexts paper": 31037, "propose incorporate": 131874, "attention query": 13972, "query key": 134597, "relative distance": 139364, "pair tokens": 118528, "learnable parameters": 90084, "different preferences": 41916, "experiments benchmark": 54160, "benchmark datasets": 16898, "effectively improve": 46020, "performance tasks": 122155, "tasks outperform": 162897, "outperform vanilla": 117646, "vanilla transformer": 175583, "transformer variants": 169220, "generation multiple": 64865, "multiple choice": 110860, "choice question": 23702, "field education": 58157, "generate semantically": 63705, "semantically correct": 148264, "choice questions": 23705, "questions mcqs": 135192, "large impact": 87283, "generation active": 64395, "active research": 4439, "research topic": 142120, "topic generating": 167324, "generating distractors": 64195, "lot room": 97717, "room improvement": 145584, "area work": 12353, "work train": 179343, "train gpt2": 167776, "model generate": 103714, "question text": 134947, "context using": 30953, "race dataset": 135385, "dataset train": 36587, "train bert": 167747, "model answer": 103112, "use model": 172766, "model filter": 103652, "questions answered": 135039, "make sense": 98594, "evaluate work": 51136, "work start": 179308, "using text": 174797, "generation metrics": 64832, "metrics model": 102114, "model outperforms": 104169, "outperforms earlier": 117748, "calculating question": 19610, "answering ability": 9811, "larger base": 89194, "base models": 15623, "better performance": 17960, "performance conducted": 121322, "conducted human": 29258, "evaluation study": 51878, "study confirmed": 157238, "generated questions": 63954, "showed statistically": 150154, "statistically significant": 155518, "significant effect": 150696, "continuous control": 31231, "mobile robots": 102907, "complexity realworld": 27695, "realworld applications": 136394, "involves highdimensional": 80736, "robust alternative": 145239, "low dimensional": 97748, "control tasks": 31594, "tasks challenge": 162036, "computing paradigm": 28547, "scale realworld": 146338, "realworld tasks": 136525, "need overcome": 112358, "inherent limitations": 76963, "limitations training": 92680, "training limited": 168547, "limited ability": 92692, "neurons represent": 113031, "represent information": 140643, "information lack": 76544, "lack effective": 82934, "effective learning": 45798, "algorithms propose": 7963, "actor network": 4472, "critic network": 33448, "using deep": 174123, "learning drl": 90391, "dramatically increased": 44894, "hybrid learning": 71565, "learning combined": 90303, "networks general": 112749, "general applicability": 62914, "applicability approach": 10251, "drl algorithms": 45026, "fair comparison": 57029, "comparison methods": 27056, "gym tasks": 68302, "inference compared": 75975, "compared deep": 26779, "level performance": 91495, "performance results": 122025, "robustness important": 145391, "transformer training": 169215, "gradient descent": 67386, "capacity neural": 20529, "networks like": 112772, "widely adopted": 178357, "adopted transformer": 5607, "descent gd": 39375, "better understand": 18055, "bias study": 18206, "study tendency": 157661, "attention layers": 13916, "growth training": 68089, "training transformer": 168799, "including t5": 74746, "t5 pretraining": 160720, "activation functions": 4411, "reduced capacity": 138486, "capacity compared": 20497, "formal languages": 60504, "results suggest": 143829, "leverage emergent": 91584, "analyze role": 9332, "different attention": 41663, "small number": 152333, "understanding interplay": 171310, "interplay capabilities": 79610, "capabilities shed": 20172, "shed light": 149847, "computation large": 28304, "large transformers": 89092, "medical text": 100228, "text simplification": 165464, "simplification ts": 151590, "easier understand": 45293, "accessible wide": 2972, "wide variety": 178340, "domains healthcare": 44424, "fully automated": 61742, "automated approaches": 14519, "approaches used": 11946, "information accurately": 76264, "used assist": 172967, "assist human": 13346, "human writer": 71098, "higher quality": 69626, "quality paper": 134219, "paper examine": 118890, "medical domain": 100163, "domain introduce": 44190, "introduce new": 80024, "new parallel": 113325, "medical data": 100151, "data set": 35738, "set consisting": 149163, "english wikipedia": 49120, "sentences examine": 148575, "application pretrained": 10364, "dataset compare": 36168, "roberta xlnet": 145162, "xlnet gpt2": 179849, "additional context": 4941, "context sentence": 30910, "better results": 18011, "absolute improvement": 2609, "improvement best": 73765, "individual model": 75726, "model introduce": 103897, "introduce ensemble": 79954, "ensemble model": 49641, "model combines": 103304, "outperforms best": 117727, "model 21": 103003, "word prediction": 178657, "prediction accuracy": 125755, "eliciting knowledge": 47058, "knowledge language": 82158, "models automatically": 105424, "generated prompts": 63947, "remarkable success": 140289, "success pretrained": 158278, "models motivated": 108235, "motivated study": 110194, "kinds knowledge": 81663, "knowledge models": 82234, "models learn": 106938, "learn pretraining": 90034, "tests natural": 164785, "natural approach": 111517, "manual effort": 99036, "suitable prompts": 158705, "prompts address": 131154, "address develop": 5218, "automated method": 14570, "method create": 100768, "create prompts": 33226, "prompts diverse": 131234, "set tasks": 149322, "tasks based": 161995, "gradientguided search": 67413, "search using": 147429, "using autoprompt": 173991, "inherent capability": 76943, "capability perform": 20354, "perform sentiment": 121032, "sentiment analysis": 148606, "analysis natural": 9028, "additional parameters": 4985, "parameters finetuning": 119761, "achieving performance": 4201, "performance par": 121894, "par recent": 119419, "recent stateoftheart": 137645, "stateoftheart supervised": 155379, "supervised models": 159158, "models prompts": 108698, "prompts elicit": 131241, "elicit accurate": 47035, "accurate factual": 3456, "factual knowledge": 56880, "manually created": 99085, "supervised relation": 159168, "relation extraction": 139240, "extraction models": 56326, "models results": 108971, "alternative existing": 8557, "methods pretrained": 101723, "replacement finetuning": 140464, "finetuning supervised": 59573, "supervised contrastive": 159094, "contrastive learning": 31360, "model finetuning": 103672, "finetuning stateoftheart": 59559, "stateoftheart natural": 155250, "understanding classification": 171157, "classification models": 24032, "models follow": 106377, "auxiliary task": 15041, "task finetuning": 161401, "finetuning model": 59388, "model taskspecific": 104724, "taskspecific labeled": 163528, "labeled dataset": 82724, "dataset using": 36608, "crossentropy loss": 33639, "lead suboptimal": 89780, "good generalization": 66268, "generalization requires": 63223, "requires capturing": 141338, "capturing similarity": 20741, "examples class": 52535, "classes propose": 23914, "propose supervised": 132151, "objective finetuning": 115197, "finetuning stage": 59556, "obtains significant": 115561, "improvements strong": 73953, "multiple datasets": 110883, "benchmark fewshot": 16977, "learning settings": 90983, "architecture data": 12138, "data augmentations": 34694, "unsupervised data": 172239, "data proposed": 35572, "proposed finetuning": 132294, "finetuning objective": 59409, "objective leads": 115210, "leads models": 89902, "models robust": 109015, "robust different": 145257, "different levels": 41827, "levels noise": 91548, "finetuning training": 59591, "data generalize": 35091, "related tasks": 139213, "tasks limited": 162736, "limited labeled": 92790, "labeled data": 82708, "datatotext generation": 37212, "generation iterative": 64763, "iterative text": 81147, "text editing": 165038, "present novel": 126383, "novel approach": 114364, "editing approach": 45446, "approach maximizes": 11383, "semantic accuracy": 148095, "accuracy output": 3329, "output text": 118009, "text leveraging": 165279, "abilities recent": 2004, "recent pretrained": 137584, "gpt2 improve": 66550, "improve text": 73640, "text fluency": 165090, "transform data": 169041, "data items": 35262, "text using": 165555, "using trivial": 174826, "iteratively improve": 81155, "resulting text": 143140, "neural model": 112879, "model trained": 104758, "fusion task": 62205, "task output": 161591, "output model": 117964, "offtheshelf pretrained": 115922, "model evaluate": 103564, "evaluate approach": 50905, "approach major": 11376, "opens possibility": 116563, "zeroshot domain": 180159, "adaptation using": 4674, "dataset sentence": 36525, "style transfer": 157766, "formal language": 60503, "daily use": 34518, "indonesian language": 75810, "word order": 178655, "current available": 34078, "standard indonesian": 154833, "work address": 178769, "lowresource machine": 97920, "translation problem": 169500, "build new": 19337, "dataset parallel": 36448, "strategies perform": 156050, "perform style": 121052, "explore augmenting": 55154, "augmenting training": 14402, "training set": 168730, "extremely lowresource": 56444, "lowresource setting": 97936, "translation approach": 169440, "approach outperforms": 11423, "transformerbased approach": 169227, "pretrained gpt2": 126834, "task performed": 161616, "computational resource": 28398, "findings promising": 58750, "promising step": 130320, "step leveraging": 155654, "leveraging machine": 91900, "models style": 109266, "transfer code": 168904, "code data": 24741, "data available": 34704, "adapting language": 4737, "model controlled": 103377, "generation human": 64722, "use language": 172698, "language just": 83467, "convey information": 32016, "mental states": 100508, "work adapt": 178767, "stateoftheart language": 155164, "models generate": 106440, "model capable": 103244, "capable generating": 20425, "grammatical correctness": 67453, "stateoftheart text": 155391, "generation model": 64835, "model gives": 103749, "flexibility control": 59785, "control category": 31524, "topic generated": 167322, "text previous": 165373, "previous attempts": 127572, "delivers robust": 38080, "robust results": 145318, "automated evaluations": 14549, "evaluations human": 51981, "human studies": 71045, "studies test": 157096, "performance model": 121804, "model provide": 104384, "provide detailed": 132743, "detailed comparison": 40276, "comparison results": 27066, "models evaluations": 106170, "evaluations model": 52000, "relu networks": 139822, "networks dnns": 112733, "success learning": 158264, "learning complex": 90311, "complex patterns": 27512, "predictive power": 125958, "box models": 18928, "models sufficient": 109288, "sufficient level": 158490, "level transparency": 91516, "tools especially": 167152, "applications paper": 10625, "paper aims": 118724, "disentangles complex": 43042, "complex network": 27497, "linear models": 92966, "models llms": 107052, "llms develop": 94912, "pretrained deep": 126782, "relu network": 139821, "network propose": 112690, "propose local": 131906, "merging strategy": 100531, "proposed methods": 132378, "methods demonstrated": 101424, "credit risk": 33409, "risk assessment": 144928, "development novel": 41173, "novel models": 114605, "models use": 109568, "model long": 104044, "memory constraints": 100382, "constraints increasing": 30089, "annotations training": 9619, "data provide": 35580, "provide context": 132725, "context far": 30763, "present extension": 126310, "architecture used": 12239, "models specifically": 109203, "specifically gpt2": 154216, "gpt2 order": 66574, "order incorporate": 117208, "transformer layers": 169161, "architecture gpt2": 12169, "architecture designed": 12144, "designed handle": 39887, "coreference information": 32186, "information present": 76632, "representations entity": 140804, "entity mentions": 49902, "training cost": 168212, "terms perplexity": 164449, "datasets key": 36937, "key differences": 81488, "entity representations": 49937, "tasks named": 162831, "named entity": 111398, "entity recognition": 49906, "recognition furthermore": 138070, "furthermore approach": 62016, "approach adopted": 10976, "models pretraining": 108632, "texttotext transformers": 165871, "common sense": 26187, "achieved impressive": 3828, "impressive results": 73370, "nlu generation": 113939, "generation nlg": 64884, "nlg tasks": 113660, "tasks current": 162145, "current pretraining": 34212, "pretraining objectives": 127402, "objectives masked": 115253, "masked token": 99321, "token prediction": 166724, "masked span": 99319, "explicitly model": 54981, "model relational": 104442, "commonsense knowledge": 26266, "knowledge everyday": 81960, "everyday concepts": 52157, "concepts crucial": 28646, "tasks need": 162852, "understand generate": 171010, "knowledge paper": 82259, "propose generative": 131854, "contrastive objectives": 31380, "learning common": 90306, "text use": 165549, "selfsupervised learning": 148057, "learning tasks": 91054, "tasks incrementally": 162593, "finetuning downstream": 59231, "downstream datasets": 44713, "datasets furthermore": 36886, "furthermore develop": 62044, "joint pretraining": 81259, "pretraining framework": 127335, "framework unify": 61470, "results method": 143593, "model calm": 103238, "knowledge parameters": 82265, "pretrained texttotext": 127175, "texttotext transformer": 165868, "relying external": 139898, "yielding better": 179996, "nlu nlg": 113946, "relatively small": 139418, "small corpus": 152281, "calm outperforms": 19690, "outperforms baseline": 117708, "baseline methods": 16236, "margin comparable": 99181, "comparable larger": 26586, "serve general": 148980, "plugandplay method": 123663, "method improving": 100923, "commonsense reasoning": 26301, "reasoning ability": 136635, "structural functional": 156515, "image captioning": 72184, "communication game": 26375, "image natural": 72292, "caption given": 20567, "personality trait": 122572, "introduce novel": 80045, "speaker listener": 153831, "generate natural": 63619, "language captions": 83179, "generated captions": 63808, "information input": 76520, "input images": 77259, "personality traits": 122573, "naturally represent": 111982, "traits addition": 168854, "addition propose": 4891, "propose adapt": 131694, "adapt language": 4528, "gpt2 perform": 66577, "caption generation": 20566, "benefit language": 17437, "language encoding": 83285, "gpt2 experiments": 66531, "experiments proposed": 54408, "honor kings": 70341, "grand challenges": 67470, "challenges ai": 21768, "ai systems": 7236, "stateaction space": 155029, "space complex": 153555, "action control": 4312, "developing ai": 40975, "ai playing": 7150, "existing work": 53635, "work falls": 178977, "falls short": 57150, "short handling": 149973, "handling raw": 68606, "complexity caused": 27659, "existing ai": 53250, "ai paper": 7137, "ai learning": 7063, "learning paradigm": 90804, "learning specifically": 91012, "specifically develop": 154183, "existing learning": 53407, "techniques including": 163929, "learning policy": 90829, "policy distillation": 123833, "value estimation": 175481, "playing large": 123506, "large pool": 88984, "game build": 62549, "superhuman ai": 158982, "ai agents": 6852, "ai demonstrated": 6947, "performance test": 122171, "ai agent": 6851, "literature pretrained": 93190, "pretrained image": 126841, "image processing": 72305, "processing transformer": 129345, "computing power": 28550, "power modern": 125204, "modern hardware": 109800, "bert gpt3": 17555, "largescale datasets": 89292, "datasets shown": 37114, "shown effectiveness": 150227, "conventional methods": 31712, "methods big": 101351, "progress mainly": 129986, "representation ability": 140665, "transformer variant": 169218, "architectures paper": 12287, "computer vision": 28493, "vision task": 176986, "develop new": 40809, "new pretrained": 113343, "model image": 103820, "transformer present": 169199, "wellknown imagenet": 178172, "benchmark generating": 16989, "generating large": 64265, "image pairs": 72296, "trained images": 167950, "adapting different": 4733, "tasks pretrained": 162978, "model efficiently": 103517, "desired task": 40060, "outperforms current": 117745, "current stateoftheart": 34252, "stateoftheart methods": 155206, "methods various": 101925, "benchmarks code": 17185, "largescale generative": 89308, "chinese pretrained": 23656, "model pretrained": 104316, "plms proven": 123633, "proven beneficial": 132636, "beneficial various": 17416, "various downstream": 175915, "downstream nlp": 44740, "tasks recently": 163099, "gpt3 175": 66630, "lot attention": 97713, "fewshot zeroshot": 58086, "zeroshot learning": 180226, "learning applying": 90216, "applying gpt3": 10894, "chinese nlp": 23652, "tasks challenging": 162038, "challenging training": 22311, "primarily english": 127776, "technical report": 163715, "report release": 140555, "largescale chinese": 89276, "data best": 34718, "largest chinese": 89430, "model facilitate": 103630, "cloze test": 24581, "test language": 164572, "understanding extensive": 171233, "tasks settings": 163230, "settings fewshot": 149575, "learning code": 90300, "code parameters": 25044, "framework dataset": 61059, "art generation": 12544, "advancement deep": 5834, "learning artificial": 90225, "artificial intelligence": 12655, "intelligence ai": 78723, "recent years": 137767, "years achieved": 179880, "superhuman performance": 158985, "performance various": 122250, "various tasks": 176196, "tasks object": 162866, "object detection": 115116, "detection reading": 40603, "video games": 176708, "generative modeling": 65474, "modeling various": 105122, "various generative": 175960, "generative adversarial": 65296, "adversarial networks": 6214, "gan models": 62599, "models applied": 105372, "applied generate": 10764, "music research": 111315, "research natural": 141916, "processing nlp": 129205, "leap forward": 89953, "bert recently": 17589, "recently released": 137973, "released gpt3": 139517, "gpt3 despite": 66676, "despite exciting": 40104, "ai applications": 6867, "ai significantly": 7215, "humans creativity": 71367, "ai work": 7319, "work inspired": 179046, "unique form": 171842, "visual art": 177112, "based conditional": 15716, "conditional generative": 28955, "generate abstract": 63380, "intrinsic meaning": 79895, "value different": 175478, "different existing": 41761, "texttoimage generation": 165814, "generation texts": 65202, "descriptions images": 39465, "images addition": 72391, "addition publicly": 4901, "released chinese": 139508, "image dataset": 72221, "dataset demonstrate": 36224, "demonstrate framework": 38348, "framework using": 61478, "using prototype": 174624, "user study": 173513, "gpt2 make": 66557, "make models": 98570, "languages large": 87038, "large generative": 87266, "models successful": 109282, "english languages": 49070, "data computational": 34814, "computational limitations": 28370, "limitations propose": 92643, "propose method": 131917, "problems adapting": 128449, "adapting existing": 4735, "existing pretrained": 53525, "models new": 108284, "new languages": 113247, "languages specifically": 87131, "adaptation english": 4616, "result obtain": 143051, "aligned original": 8071, "original english": 117330, "embeddings additionally": 47213, "scale complexity": 146268, "embeddings gpt2": 47239, "small gpt2": 152293, "gpt2 medium": 66558, "gpt2 english": 66530, "embeddings generate": 47236, "generate realistic": 63673, "realistic sentences": 136300, "sentences generated": 148581, "model fully": 103699, "fully trained": 61788, "trained scratch": 168065, "programming interfaces": 129825, "notoriously difficult": 114335, "difficult control": 42137, "control behavior": 31522, "artificial neural": 12789, "networks generative": 112751, "generative neural": 65521, "recast problem": 137287, "problem controlling": 128211, "generation learning": 64787, "model just": 103912, "application programming": 10365, "interfaces apis": 79455, "new paradigm": 113314, "network called": 112632, "programming interface": 129824, "activations pretrained": 4420, "model produce": 104350, "produce desired": 129390, "desired outputs": 40055, "original model": 117355, "model allowing": 103107, "repurpose pretrained": 141036, "new tasks": 113448, "aspect language": 12909, "model contribute": 103374, "contribute new": 31412, "new data": 113129, "loss function": 97670, "allows train": 8475, "models control": 105791, "autoregressive transformers": 15017, "experiments stateoftheart": 54476, "stateoftheart approaches": 155075, "approaches demonstrate": 11727, "efficacy methods": 46397, "methods using": 101909, "using openais": 174556, "model successfully": 104679, "offensive speech": 115623, "aspects language": 12947, "deterministic settings": 40731, "using perplexity": 174578, "perplexity analysis": 122504, "analysis performance": 9055, "performance automated": 121176, "achieved success": 3914, "words largely": 178732, "problem different": 128231, "different words": 42092, "pretraining transformer": 127468, "model used": 104838, "used tasks": 173262, "including sentence": 74718, "sentence prediction": 148521, "prediction text": 125878, "classification paper": 24045, "proposes new": 132472, "new application": 113057, "application model": 10352, "model convert": 103381, "convert visual": 31996, "language form": 83328, "words sentences": 178752, "search optimal": 147384, "problem exists": 128248, "exists various": 53668, "proposes method": 132467, "method tackle": 101134, "problem performing": 128348, "performing automated": 122391, "using solely": 174736, "solely visual": 152874, "visual cues": 177149, "character error": 22425, "main contribution": 98228, "contribution paper": 31479, "predicting words": 125753, "words use": 178760, "analysis visual": 9234, "using autoregressive": 173992, "model query": 104403, "artificially generated": 12803, "generated texts": 64021, "way improve": 177828, "document retrieval": 43853, "expand users": 53690, "users query": 173752, "approaches proposed": 11871, "proposed literature": 132324, "yielding stateoftheart": 180004, "use text": 172908, "generation automatically": 64445, "automatically expand": 14801, "models english": 106124, "finetuned specific": 59112, "specific corpora": 153964, "different experiments": 41765, "experiments text": 54496, "generation effective": 64594, "effective way": 45926, "margin 10": 99175, "outperforms strong": 117870, "approach easily": 11141, "easily implemented": 45318, "thanks availability": 165984, "availability gpt": 15052, "gpt code": 66399, "code models": 25011, "models uncertainty": 109530, "widely studied": 178386, "problem using": 128429, "using datadriven": 174113, "approaches existing": 11757, "work does": 178916, "developing semantic": 41024, "semantic uncertainty": 148244, "increasingly powerful": 75427, "models able": 105191, "surprisal values": 159534, "conducting experiments": 29311, "task dataset": 161296, "dataset features": 36297, "existing baselines": 53293, "augmentation contrastive": 14270, "learning selfsupervised": 90975, "selfsupervised representation": 148072, "learning biological": 90264, "resource constraints": 142376, "tasks circumventing": 162044, "label acquisition": 82673, "models designed": 105931, "mutual information": 111342, "information maximization": 76574, "methods achieved": 101277, "evolution natural": 52273, "noisy channels": 113994, "provide review": 132959, "review current": 144493, "current contrastive": 34094, "learning literature": 90651, "literature provide": 93192, "illustrative example": 72170, "learning using": 91112, "using evolutionary": 174174, "augmentation used": 14323, "learning objective": 90779, "objective maximizes": 115215, "maximizes mutual": 99683, "information biological": 76299, "biological sequences": 18514, "finally outline": 58500, "approach making": 11380, "making pretrained": 98793, "models better": 105508, "better fewshot": 17868, "2020 achieves": 654, "achieves remarkable": 4062, "performance solely": 122086, "solely leveraging": 152868, "prompt task": 130687, "task demonstrations": 161308, "demonstrations input": 39016, "input context": 77217, "context inspired": 30798, "inspired findings": 77721, "findings study": 58800, "study fewshot": 157361, "learning practical": 90835, "practical scenario": 125444, "use smaller": 172878, "smaller language": 152396, "finetuning computationally": 59205, "computationally efficient": 28421, "fewshot finetuning": 57910, "finetuning language": 59323, "complementary techniques": 27263, "techniques finetuning": 163908, "models small": 109157, "number annotated": 114821, "examples approach": 52526, "approach includes": 11298, "promptbased finetuning": 130762, "finetuning novel": 59408, "novel pipeline": 114635, "automating prompt": 14889, "prompt generation": 130517, "strategy dynamically": 156130, "incorporating demonstrations": 75089, "demonstrations context": 38994, "context finally": 30767, "finally present": 58507, "present systematic": 126470, "systematic evaluation": 160118, "analyzing fewshot": 9369, "performance range": 121980, "including classification": 74453, "classification regression": 24068, "regression experiments": 138954, "demonstrate methods": 38437, "outperform standard": 117630, "standard finetuning": 154824, "finetuning procedures": 59468, "resource setting": 142397, "30 absolute": 952, "tasks approach": 161962, "approach makes": 11378, "makes minimal": 98669, "minimal assumptions": 102313, "assumptions task": 13572, "domain expertise": 44150, "method fewshot": 100869, "dataset diverse": 36243, "diverse text": 43683, "text language": 165265, "modeling recent": 105079, "dataset diversity": 36244, "improves general": 74005, "general crossdomain": 62932, "crossdomain knowledge": 33625, "knowledge downstream": 81901, "generalization capability": 63151, "capability largescale": 20328, "english text": 49116, "corpus targeted": 32358, "targeted training": 161142, "training largescale": 168536, "models pile": 108512, "22 diverse": 772, "diverse highquality": 43537, "existing newly": 53502, "newly constructed": 113530, "gpt2 gpt3": 66543, "shows models": 150455, "academic writing": 2763, "improve significantly": 73626, "performance downstream": 121426, "downstream evaluations": 44721, "exploratory analysis": 55119, "concerning aspects": 28752, "aspects data": 12933, "users make": 173708, "make publicly": 98585, "available code": 15081, "code used": 25199, "bert training": 17611, "lottery tickets": 97727, "impressive success": 73380, "tasks high": 162501, "high model": 69488, "model complexity": 103322, "requires enormous": 141363, "enormous computation": 49602, "computation resources": 28318, "extremely long": 56441, "training time": 168789, "time pretraining": 166471, "finetuning works": 59613, "works studied": 179505, "model compression": 103328, "compression large": 28213, "large nlp": 88962, "models focusing": 106376, "expensive training": 53817, "works use": 179516, "extremely large": 56434, "large batch": 87198, "batch sizes": 16464, "pretraining time": 127464, "resource demands": 142380, "demands paper": 38165, "vision tasks": 176987, "computationallyefficient training": 28429, "training algorithm": 168152, "finetuning largescale": 59345, "selfattention fullyconnected": 147935, "early stage": 45261, "training conduct": 168198, "conduct comprehensive": 29036, "comprehensive pretraining": 28099, "finetuning experiments": 59262, "experiments glue": 54297, "glue squad": 66128, "tasks results": 163177, "achieves comparable": 3980, "comparable performance": 26591, "performance standard": 122099, "time code": 166355, "continuous prompts": 31250, "prompts generation": 131292, "generation finetuning": 64663, "way leverage": 177845, "leverage large": 91615, "perform downstream": 120931, "model parameters": 104217, "copy task": 32121, "task paper": 161594, "lightweight alternative": 92168, "alternative finetuning": 8558, "finetuning natural": 59399, "parameters frozen": 119763, "draws inspiration": 44960, "subsequent tokens": 157961, "virtual tokens": 176871, "tokens apply": 166777, "tabletotext generation": 160777, "obtains comparable": 115555, "performance data": 121353, "data setting": 35742, "setting outperforms": 149486, "outperforms finetuning": 117773, "finetuning lowdata": 59370, "lowdata settings": 97804, "better examples": 17862, "unseen training": 172196, "sequencetosequence pretraining": 148854, "paper generalize": 118965, "text infilling": 165245, "models proposing": 108715, "sequencetosequence seq2seq": 148855, "seq2seq pretraining": 148723, "pretraining objective": 127400, "provides finegrained": 133149, "learning signals": 90991, "signals text": 150538, "text representations": 165422, "ground truth": 67836, "consistent text": 29843, "seq2seq tasks": 148724, "source sentences": 153469, "experiments t5": 54489, "t5 models": 160716, "substantially improve": 158122, "improve pretraining": 73588, "seq2seq model": 148718, "model powerful": 104296, "indicates new": 75640, "new perspective": 113332, "transferring knowledge": 169031, "knowledge large": 82162, "large model": 88912, "model smaller": 104626, "enhanced multimodal": 49352, "visual commonsense": 177133, "commonsense generation": 26263, "capable reasoning": 20466, "reasoning commonsense": 136757, "knowledge multimodal": 82235, "multimodal inputs": 110662, "inputs images": 77414, "images texts": 72497, "multimodal model": 110718, "model visual": 104879, "visual textual": 177322, "develop novel": 40811, "novel pretraining": 114642, "pretraining tasks": 127456, "tasks improve": 162534, "improve model": 73514, "performance visual": 122289, "task particular": 161606, "particular pretraining": 120108, "pretraining task": 127454, "boosts model": 18851, "task leveraging": 161518, "leveraging commonsense": 91822, "external commonsense": 56034, "graphs best": 67618, "knowledge propose": 82319, "propose dedicated": 131776, "task improving": 161461, "improving model": 74168, "task experimental": 161375, "model reaches": 104414, "reaches stateoftheart": 136133, "task applying": 161196, "applying novel": 10918, "coreference resolution": 32187, "span representations": 153657, "models reduced": 108875, "models simple": 109140, "sophisticated taskspecific": 153326, "taskspecific model": 163533, "transformer encoder": 169120, "highly effective": 69912, "effective model": 45818, "large memory": 88909, "memory footprint": 100397, "ability train": 2397, "train multiple": 167803, "multiple instances": 110944, "single batch": 151780, "introduce lightweight": 80004, "performs competitively": 122436, "standard model": 154851, "simpler efficient": 151555, "efficient transformerbased": 46736, "transformerbased conditional": 169232, "conditional variational": 28971, "controllable story": 31623, "story generation": 155896, "generation investigate": 64762, "latent variable": 89519, "variable models": 175595, "models lvms": 108114, "neural story": 112979, "long text": 97492, "generation effectiveness": 64596, "effective controllable": 45719, "controllable generation": 31615, "achieved remarkable": 3864, "remarkable effectiveness": 140191, "latent representation": 89510, "learning lack": 90603, "generation paper": 64911, "paper advocate": 118712, "learning era": 90423, "transformers enhance": 169304, "stateoftheart generation": 155148, "specifically integrate": 154231, "transformerbased pretrained": 169283, "model components": 103323, "built pretrained": 19500, "gpt2 specifically": 66598, "specifically paper": 154257, "paper experiments": 118898, "generation ability": 64383, "ability model": 2281, "model excellent": 103583, "learning capability": 90279, "makes good": 98651, "good incontext": 66272, "incontext examples": 74849, "examples gpt3": 52598, "attracted lots": 14048, "lots attention": 97721, "superior performance": 159017, "performance wide": 122295, "tasks especially": 162314, "powerful versatile": 125352, "incontext fewshot": 74852, "learning ability": 90167, "ability despite": 2124, "despite success": 40219, "results gpt3": 143442, "depend heavily": 39132, "choice incontext": 23688, "examples work": 52726, "work investigate": 179065, "investigate effective": 80400, "effective strategies": 45890, "selecting incontext": 147818, "random sampling": 135540, "better leverage": 17930, "leverage gpt3s": 91600, "fewshot capabilities": 57887, "capabilities inspired": 19967, "inspired recent": 77753, "recent success": 137680, "leveraging retrieval": 91947, "retrieval module": 144097, "largescale neural": 89369, "network models": 112678, "test sample": 164610, "corresponding prompt": 32601, "examples selected": 52690, "informative inputs": 76877, "extensive knowledge": 55915, "knowledge evaluate": 81957, "evaluate proposed": 51077, "approach natural": 11398, "understanding generation": 171252, "generation benchmarks": 64454, "retrievalbased prompt": 144205, "prompt selection": 130661, "selection approach": 147832, "approach consistently": 11076, "outperforms random": 117837, "random baseline": 135514, "datasets yield": 37205, "retrieval results": 144131, "significant gains": 150710, "opendomain question": 116466, "dataset hope": 36340, "help understand": 69191, "enhance fewshot": 49199, "distilling large": 43188, "students using": 156910, "multilingual models": 110510, "mbert xlmr": 99717, "achieve state": 3749, "art results": 12558, "results language": 143549, "edge devices": 45420, "reduce memory": 138445, "memory compute": 100381, "compute resources": 28454, "resources required": 142483, "models end": 106117, "end propose": 48677, "effective natural": 45825, "tasks pretraining": 162984, "significantly outperform": 151075, "lstm models": 97959, "embeddings despite": 47226, "smaller number": 152423, "parameters outperform": 119823, "outperform transformer": 117643, "transformer baselines": 169108, "baselines showcasing": 16369, "parameter efficiency": 119603, "efficiency additionally": 46421, "student architectures": 156803, "perform careful": 120879, "study effect": 157297, "parameters data": 119732, "multilingual semantic": 110543, "semantic parsing": 148184, "parsing dataset": 119955, "performance mbert": 121791, "parsing task": 119968, "strong results": 156441, "suggest approach": 158516, "applications able": 10405, "able leverage": 2529, "linear complexity": 92956, "models googles": 106514, "googles bert": 66336, "openais gpt3": 116411, "tasks training": 163386, "training deploying": 168384, "deploying models": 39251, "models costly": 105808, "models used": 109570, "models remained": 108915, "remained challenge": 139958, "challenge large": 21669, "large size": 89057, "deployment models": 39292, "models higher": 106603, "main bottleneck": 98221, "quadratic time": 133965, "time space": 166505, "respect sequence": 142517, "sequence length": 148759, "order reduce": 117238, "complexity selfattention": 27699, "selfattention mechanism": 147938, "ai research": 7193, "lowrank matrix": 97897, "finding new": 58614, "linear time": 92983, "space complexity": 153556, "affects performance": 6330, "model tuning": 104811, "timeconsuming paper": 166554, "paper proposed": 119258, "proposed alternative": 132229, "method works": 101174, "generating images": 64253, "vice versa": 176658, "space search": 153617, "research work": 142150, "novel zeroshot": 114756, "zeroshot framework": 180190, "framework generate": 61182, "generate image": 63561, "image caption": 72183, "based clip": 15702, "given image": 65901, "image input": 72279, "input generates": 77251, "clip embedding": 24396, "produced generative": 129489, "genetic algorithm": 65680, "promising results": 130304, "results shown": 143792, "image generators": 72272, "text generator": 165209, "visionandlanguage tasks": 177013, "tasks text": 163357, "generation existing": 64630, "learning typically": 91099, "typically require": 170512, "designing taskspecific": 40012, "taskspecific architectures": 163510, "architectures objectives": 12283, "task example": 161365, "visual question": 177262, "referring expression": 138709, "expression comprehension": 55588, "comprehension language": 27910, "language decoder": 83237, "decoder image": 37515, "propose unified": 132186, "unified framework": 171713, "framework learns": 61272, "learns different": 91175, "tasks single": 163255, "architecture language": 12177, "modeling objective": 105058, "multimodal conditional": 110607, "conditional text": 28968, "learn generate": 89987, "generate labels": 63591, "labels text": 82832, "text based": 164856, "based visual": 16177, "popular visionandlanguage": 124073, "visionandlanguage benchmarks": 177009, "benchmarks including": 17272, "including visual": 74781, "answering referring": 9951, "comprehension visual": 27940, "reasoning previously": 137044, "previously modeled": 127732, "discriminative tasks": 42852, "generative approach": 65373, "approach single": 11554, "performance recent": 121996, "visionandlanguage models": 177011, "models generative": 106472, "approach shows": 11534, "shows better": 150407, "better generalization": 17884, "generalization ability": 63124, "answers framework": 10026, "framework allows": 60950, "allows multitask": 8457, "single set": 151863, "set parameters": 149263, "parameters achieving": 119705, "achieving similar": 4214, "similar performance": 151287, "separately optimized": 148703, "code publicly": 25076, "responses approach": 142730, "approach using": 11642, "using gpt3": 174260, "computer systems": 28492, "systems ability": 160221, "ability understand": 2401, "language long": 83497, "long challenge": 97438, "engineers recent": 49008, "progress natural": 129993, "like gpt3": 92285, "gpt3 language": 66713, "model released": 104446, "released openai": 139529, "explore possibility": 55253, "communication using": 26421, "gpt3 demonstrate": 66672, "technical feasibility": 163705, "generating responses": 64321, "software engineering": 152797, "engineering data": 48899, "data science": 35704, "apply knowledge": 10855, "knowledge business": 81803, "studies software": 157090, "tackle challenges": 160803, "challenges encountered": 21845, "improving language": 74157, "automatic labeling": 14698, "labeling neural": 82759, "nlu models": 113941, "require massive": 141155, "massive amounts": 99342, "data competitive": 34806, "competitive recent": 27198, "bottleneck generative": 18891, "models synthesize": 109335, "weak labels": 177929, "scale small": 146345, "small training": 152374, "training labels": 168513, "automatically annotated": 14766, "approach automatically": 11012, "automatically constructing": 14779, "constructing largescale": 30198, "data finetuned": 35057, "finetuned gpt2": 59028, "framework jointly": 61246, "jointly train": 81287, "models proposed": 108712, "proposed framework": 132295, "framework adapts": 60927, "parameter updates": 119649, "updates models": 172353, "models according": 105206, "weather benchmarks": 177985, "supervised training": 159180, "training paradigm": 168625, "paradigm effective": 119443, "effective approach": 45693, "approach low": 11372, "resource scenarios": 142396, "outperforming benchmark": 117669, "benchmark systems": 17101, "systems datasets": 160322, "100 training": 163, "data used": 35912, "application domains": 10316, "generation main": 64811, "training neural": 168600, "models consists": 105758, "lack training": 83022, "data usually": 35934, "usually large": 174907, "large numbers": 88974, "available data": 15089, "data text": 35861, "text samples": 165442, "samples available": 145990, "available address": 15067, "problem propose": 128360, "novel fewshot": 114499, "fewshot approach": 57884, "setting approach": 149425, "available training": 15218, "training generating": 168463, "generating new": 64281, "new text": 113464, "samples based": 145991, "specific values": 154126, "proposing automatic": 132495, "automatic method": 14705, "pairing new": 118541, "data samples": 35687, "samples text": 146071, "introduce noise": 80043, "noise training": 113986, "cycle consistency": 34480, "order make": 117220, "make sure": 98613, "given data": 65866, "data sample": 35686, "text text": 165529, "paradigm able": 119425, "able outperform": 2532, "outperform fully": 117594, "fully supervised": 61783, "seq2seq models": 148719, "models 10": 105144, "10 annotations": 105, "annotations utilizing": 9623, "utilizing annotated": 175169, "data model": 35378, "model boost": 103224, "boost performance": 18821, "bleu points": 18685, "establishing new": 50710, "stateoftheart datasets": 155118, "ai increasingly": 7043, "increasingly trusted": 75447, "peoples lives": 120747, "concern arises": 28737, "ethical rules": 50831, "transparency ai": 169576, "proposed policy": 132412, "potential harm": 124756, "algorithm gpt2": 7812, "participants read": 120017, "task lie": 161519, "testing human": 164718, "human behaviour": 70619, "behaviour interaction": 16736, "ai outputs": 7133, "outputs provide": 118111, "insights role": 77644, "role ai": 145457, "results reveal": 143752, "source advice": 153388, "exploring transformers": 55510, "transformers natural": 169336, "generation gpt": 64700, "years seen": 179934, "rise transformers": 144914, "stateoftheart nlg": 155259, "word word": 178690, "new era": 113165, "era paper": 50241, "carry significant": 20845, "significant implications": 150727, "implications field": 72923, "burgeoning area": 19522, "rapid developments": 135875, "poetry generation": 123697, "generation summarization": 65117, "summarization text": 158888, "models achieve": 105214, "generation news": 64883, "news stories": 113583, "large majority": 88900, "news internet": 113565, "internet online": 79590, "online news": 116116, "informing users": 76903, "reliable tools": 139758, "achieving goal": 4175, "proxy metrics": 133438, "clickthrough rates": 24300, "reading time": 136201, "track performance": 167526, "scale study": 146347, "multiplechoice question": 111095, "generation used": 65228, "used survey": 173255, "survey users": 159707, "users knowledge": 173698, "knowledge recent": 82345, "particular formulate": 120080, "formulate problem": 60621, "tasks questionanswer": 163066, "questionanswer generation": 134962, "incorrect answer": 75144, "answer generation": 9718, "dataset intended": 36366, "20k human": 741, "human written": 71102, "questionanswer pairs": 134965, "summaries using": 158786, "using dataset": 174114, "dataset propose": 36473, "propose series": 132116, "series novel": 148942, "novel techniques": 114714, "applying large": 10899, "transformer encoderdecoder": 169122, "encoderdecoder models": 48464, "models pegasus": 108452, "outperform strong": 117637, "baselines using": 16383, "using automated": 173980, "automated metrics": 14573, "metrics human": 102079, "human raters": 70998, "provide case": 132696, "realworld users": 136538, "course months": 33012, "users generally": 173663, "research community": 141647, "use improving": 172678, "improving fewshot": 74144, "gpt3 perform": 66738, "numerous tasks": 115069, "tasks provided": 163045, "provided natural": 133077, "language prompt": 86666, "prompt contains": 130411, "training examples": 168429, "choice prompt": 23700, "prompt format": 130506, "examples order": 52646, "order training": 117249, "examples cause": 52533, "near chance": 112087, "near stateoftheart": 112092, "bias language": 18144, "models predicting": 108590, "near end": 112088, "end prompt": 48676, "common pretraining": 26179, "data mitigate": 35369, "models bias": 105513, "prediction given": 125803, "given training": 66040, "training prompt": 168662, "test input": 164565, "cause prediction": 21251, "prediction input": 125808, "answers diverse": 10014, "tasks contextual": 162128, "contextual calibration": 31074, "substantially improves": 158125, "average accuracy": 15268, "reduces variance": 138541, "different choices": 41685, "choices prompt": 23717, "compute large": 28444, "models increasingly": 106739, "increasingly difficult": 75395, "difficult train": 42184, "computation time": 28321, "time cost": 166371, "cost work": 32750, "architecture combines": 12132, "sequence modeling": 148770, "exhibits strong": 53224, "strong modeling": 156415, "modeling capacity": 104980, "training efficiency": 168408, "efficiency standard": 46534, "standard language": 154836, "model obtains": 104142, "cost compared": 32656, "models instance": 106774, "instance model": 77804, "stateoftheart result": 155326, "using 16": 173942, "requires minimal": 141414, "jointly leveraging": 81279, "little attention": 93221, "promising direction": 130242, "accelerating model": 2799, "model training": 104780, "training inference": 168493, "systematic generalization": 160130, "syntax semantics": 159924, "inspired humans": 77728, "exceptional ability": 52808, "generalize new": 63262, "new problems": 113352, "problems present": 128597, "dataset handwritten": 36334, "capability learning": 20333, "learning generalizable": 90494, "multiple concepts": 110870, "various reasoning": 176138, "reasoning tasks": 137164, "supervised manner": 159152, "carefully design": 20806, "test set": 164617, "set evaluate": 149185, "learned concepts": 90090, "levels design": 91534, "design fewshot": 39632, "models rapidly": 108788, "learn new": 90017, "new concepts": 113122, "complex scenarios": 27575, "existing models": 53482, "models limitations": 107003, "experiments various": 54528, "rnns transformers": 145121, "chain thought": 21460, "thought prompting": 166234, "prompting results": 131066, "results indicate": 143499, "indicate current": 75579, "current models": 34185, "syntactic dependency": 159889, "models exhibit": 106198, "exhibit considerable": 53033, "considerable gap": 29616, "evaluated new": 51197, "concepts fewshot": 28653, "setting discover": 149444, "dataset model": 36413, "finally zeroshot": 58543, "zeroshot gpt3": 180202, "prompting exhibits": 130925, "exhibits impressive": 53204, "results significantly": 143799, "significantly boosts": 150957, "test accuracy": 164508, "dataset experimental": 36284, "experimental findings": 53946, "learning community": 90308, "bridging vision": 19100, "vision language": 176928, "largescale multimodal": 89364, "multimodal pretraining": 110745, "pretraining multimodal": 127394, "pretraining models": 127392, "explored bridge": 55338, "bridge vision": 19076, "language recent": 86697, "model crossmodal": 103396, "crossmodal interaction": 33685, "imagetext pairs": 72531, "semantic correlation": 148131, "text image": 165227, "image modalities": 72287, "modalities strong": 102952, "realworld scenarios": 136496, "scenarios choose": 146549, "implicitly model": 73003, "pretraining focus": 127334, "focus chinese": 59955, "team specifically": 163662, "weak correlation": 177925, "pretraining model": 127390, "model called": 103237, "crossmodal contrastive": 33681, "openai clip": 116330, "adopts simple": 5665, "simple contrastive": 151421, "learning method": 90674, "method devise": 100790, "building large": 19427, "negative samples": 112531, "samples limited": 146037, "limited gpu": 92771, "gpu resources": 67350, "construct large": 30144, "large chinese": 87205, "imagetext dataset": 72524, "dataset called": 36141, "model extensive": 103619, "demonstrate pretrained": 38479, "tasks large": 162682, "models contain": 105765, "contain humanlike": 30297, "humanlike biases": 71248, "right wrong": 144840, "lives recent": 93267, "recent advances": 137377, "advances largescale": 6029, "largescale transformerbased": 89413, "lms bert": 97107, "bert variants": 17616, "specific tasks": 154102, "tasks researchers": 163169, "tasks shown": 163237, "shown capture": 150218, "linguistic knowledge": 93039, "retain general": 143953, "general knowledge": 62970, "present data": 126276, "data unfortunately": 35903, "lms trained": 97210, "recent lms": 137555, "moral norms": 110117, "texts providing": 165760, "preventing toxic": 127552, "toxic degeneration": 167455, "lms able": 97098, "training lm": 168555, "task demonstrate": 161305, "demonstrate capabilities": 38260, "normative text": 114199, "neural toxic": 112990, "dynamic context": 45119, "context generation": 30781, "generation improves": 64733, "improves zeroshot": 74102, "zeroshot reasoning": 180315, "reasoning performance": 137027, "human reasoners": 71004, "apply solve": 10873, "solve difficult": 153114, "difficult problems": 42170, "problems suggest": 128635, "improve reasoning": 73601, "ability pretrained": 2321, "models similar": 109135, "similar way": 151325, "way expanding": 177806, "tasks context": 162126, "context problem": 30881, "dynamically generated": 45190, "model main": 104054, "main result": 98270, "zeroshot performance": 180279, "deductive reasoning": 37697, "reasoning natural": 136997, "inference task": 76113, "task model": 161547, "model uses": 104846, "predicting answer": 125735, "successful application": 158335, "explore different": 55182, "different ways": 42086, "including fewshot": 74517, "learning relative": 90910, "relative performance": 139376, "performance varies": 122233, "specific problem": 154060, "problem difficulty": 128232, "terms degree": 164406, "problem particular": 128346, "original problem": 117369, "problem description": 128225, "boost accuracy": 18816, "accuracy 24": 3106, "indepth analysis": 75514, "document ranking": 43849, "work quite": 179250, "models finetuned": 106348, "finetuned based": 58986, "level relevance": 91502, "relevance labels": 139560, "labels capture": 82790, "ranking signals": 135822, "signals documents": 150530, "ranking models": 135815, "models suffer": 109285, "researchers proposed": 142248, "token limit": 166719, "querydocument pair": 134643, "model paper": 104202, "paper conduct": 118793, "conduct detailed": 29063, "detailed study": 40321, "study design": 157277, "design decisions": 39597, "retrieval effectiveness": 144047, "effectiveness efficiency": 46167, "labels documents": 82795, "label noise": 82693, "effectiveness large": 46213, "large training": 89076, "training datasets": 168375, "query processing": 134616, "processing times": 129341, "adversely affected": 6259, "remedy propose": 140337, "using weak": 174862, "improved performance": 73706, "proposed models": 132399, "complexity diverse": 27666, "retrieval datasets": 144035, "semeval2021 task": 148335, "task large": 161506, "models quantifying": 108750, "highly subjective": 69962, "word senses": 178678, "cultural knowledge": 33960, "accurately detecting": 3522, "recommendation systems": 138232, "systems personalized": 160528, "personalized content": 122590, "lack extensive": 82943, "extensive labeled": 55917, "dataset prior": 36465, "prior works": 127956, "havent explored": 68866, "explored large": 55352, "models subjective": 109269, "understanding paper": 171389, "paper explores": 118925, "explores large": 55405, "capture intricacies": 20660, "detection systems": 40630, "systems models": 160484, "models models": 108225, "consistently ranked": 29917, "world facts": 179553, "clozestyle prompts": 24583, "interpret models": 79628, "models prediction": 108591, "accuracy lower": 3301, "lower bound": 97814, "factual information": 56879, "work attempted": 178814, "better prompts": 17993, "prompts using": 131517, "set facts": 149195, "data work": 35967, "work make": 179115, "techniques propose": 163992, "novel efficient": 114481, "efficient method": 46670, "method directly": 100792, "directly optimizes": 42578, "continuous embedding": 31236, "simple method": 151490, "method able": 100620, "able predict": 2541, "predict additional": 125675, "benchmark second": 17084, "raise important": 135448, "important question": 73179, "probing results": 128165, "methods learn": 101633, "learn training": 90067, "somewhat surprisingly": 153270, "surprisingly training": 159579, "methods contains": 101402, "contains certain": 30360, "distribution existing": 43357, "existing prompt": 53531, "prompt methods": 130602, "including able": 74406, "able exploit": 2502, "prediction conduct": 125775, "conduct set": 29176, "experiments disentangle": 54253, "learning learning": 90636, "providing detailed": 133281, "different prompts": 41948, "prompts reveal": 131457, "communication efficient": 26370, "efficient largescale": 46660, "convergence speed": 31766, "train large": 167780, "hundreds gpus": 71537, "gpus communication": 67355, "communication major": 26388, "major bottleneck": 98409, "bottleneck especially": 18887, "especially commodity": 50439, "commodity systems": 26116, "network large": 112667, "algorithm proposed": 7844, "proposed reduce": 132426, "communication compression": 26355, "compression algorithms": 28210, "1bit adam": 568, "help reduce": 69169, "simply using": 151628, "using techniques": 174790, "challenge especially": 21637, "especially low": 50505, "low network": 97771, "network bandwidth": 112629, "motivated aim": 110172, "combine power": 25884, "compression existing": 28212, "directly applied": 42515, "learning rates": 90896, "end design": 48653, "design new": 39699, "introduces novel": 80202, "novel way": 114750, "bertlarge pretraining": 17635, "256 gpus": 848, "able achieve": 2457, "communication volume": 26422, "volume reduction": 177534, "speed finetuning": 154505, "finetuning task": 59580, "task accuracy": 161157, "accuracy compared": 3179, "multiagent simulations": 110336, "opinion dynamics": 116803, "dynamics paper": 45213, "paper develops": 118853, "recently developed": 137856, "developed ai": 40856, "ai computational": 6926, "computational linguistics": 28372, "novel contributions": 114451, "formal models": 60511, "paper uses": 119382, "test robustness": 164609, "confirmation bias": 29397, "consistent results": 29838, "generate new": 63629, "new contributions": 113124, "properties agents": 131631, "creation new": 33344, "importance understanding": 73065, "understanding dynamics": 171202, "paper closes": 118781, "applications model": 10609, "model challenges": 103261, "problem known": 128295, "applications including": 10559, "including language": 74578, "properties work": 131667, "meansquared error": 99820, "static embeddings": 155459, "efficient knowledge": 46650, "knowledge bases": 81780, "research investigates": 141870, "knowledge stored": 82423, "stored large": 155868, "structural knowledge": 156520, "knowledge base": 81763, "base kb": 15604, "good performance": 66282, "performance analysis": 121149, "analysis task": 9193, "task interpreted": 161490, "plms potential": 123625, "knowledge experiments": 81971, "linguistically diverse": 93083, "diverse languages": 43560, "languages study": 87137, "study knowledge": 157458, "knowledge contained": 81836, "output space": 117999, "candidate set": 19734, "set simple": 149309, "nearest neighbor": 112096, "matching using": 99492, "using static": 174759, "performs better": 122430, "embeddings perform": 47267, "points better": 123740, "energy training": 48794, "important factor": 73131, "comparative performance": 26647, "performance static": 122114, "learned large": 90105, "meaningful representations": 99799, "representations smaller": 140886, "bert used": 17615, "used ubiquitously": 173287, "industry labs": 75879, "afford train": 6347, "modest budget": 109861, "pretraining masked": 127384, "hours using": 70460, "software optimizations": 152828, "optimizations design": 117056, "design choices": 39571, "hyperparameter tuning": 71600, "tuning possible": 170084, "possible produce": 124448, "produce models": 129441, "models competitive": 105698, "glue tasks": 66131, "original pretraining": 117368, "pretraining cost": 127287, "dense retrieval": 39099, "text representation": 165420, "prior research": 127923, "lms encode": 97130, "encode text": 48384, "text sequences": 165457, "sequences sentences": 148836, "dense vector": 39110, "vector representations": 176387, "efficient text": 46726, "retrieval dense": 144037, "require lot": 141151, "lot data": 97714, "effectively train": 46089, "suffer low": 158441, "low data": 97747, "situations paper": 151947, "key reason": 81561, "text information": 165246, "representation propose": 140735, "propose pretrain": 132071, "novel transformer": 114728, "improves standard": 74085, "large margins": 88908, "various text": 176228, "text retrieval": 165431, "retrieval similarity": 144138, "similarity tasks": 151380, "surface form": 159412, "models shown": 109099, "shown promising": 150339, "results zeroshot": 143941, "zeroshot settings": 180341, "perform multiple": 120985, "choice tasks": 23707, "tasks simply": 163251, "simply conditioning": 151610, "answer highest": 9722, "probability ranking": 128122, "different surface": 42024, "surface forms": 159413, "probability mass": 128116, "represent underlying": 140659, "underlying concept": 170835, "computer pc": 28477, "correct answer": 32372, "answers multiple": 10052, "pointwise mutual": 123779, "scoring function": 147187, "context specific": 30925, "zeroshot task": 180351, "achieves consistent": 4002, "consistent gains": 29813, "gains zeroshot": 62536, "zhao et": 180384, "al 2021": 7728, "scoring functions": 147188, "gpt3 models": 66729, "models variety": 109608, "choice datasets": 23686, "highly compositional": 69899, "fluent natural": 59908, "expert humans": 54573, "humans use": 71487, "use creative": 172571, "intelligence solve": 78900, "linguistic world": 93081, "world domain": 179542, "domain knowledge": 44192, "paper make": 119074, "main contributions": 98232, "contributions present": 31502, "present dataset": 126278, "challenging new": 22224, "new benchmark": 113084, "benchmark nlp": 17043, "humanlike ways": 71295, "ways showing": 177915, "model achieve": 103023, "achieve good": 3654, "performance make": 121783, "second main": 147491, "contribution novel": 31478, "novel curriculum": 114454, "approach model": 11391, "model finetuned": 103660, "introduce challenging": 79931, "challenging data": 22137, "data split": 35791, "metalinguistic capabilities": 100581, "models investigate": 106821, "investigate model": 80451, "t5 exhibits": 160702, "exhibits behavior": 53180, "consistent human": 29815, "solving strategies": 153250, "approach considerably": 11074, "t5 baseline": 160697, "bestperforming model": 17778, "model fails": 103634, "fails generalize": 56998, "extent humans": 56010, "remain unsolved": 139950, "challenge nlp": 21691, "systems potential": 160535, "potential source": 124997, "future innovation": 62272, "parameterefficient prompt": 119677, "prompt tuning": 130700, "tuning work": 170146, "explore prompt": 55277, "tuning simple": 170120, "effective mechanism": 45808, "soft prompts": 152740, "prompts condition": 131196, "frozen language": 61662, "perform specific": 121044, "specific downstream": 153982, "tasks unlike": 163416, "unlike discrete": 171995, "discrete text": 42817, "text prompts": 165385, "prompts used": 131513, "prompts learned": 131359, "learned backpropagation": 90089, "number labeled": 114887, "labeled examples": 82728, "learned approach": 90088, "learning large": 90618, "size using": 152077, "using t5": 174781, "scale models": 146316, "models exceed": 106185, "parameters method": 119806, "method closes": 100732, "closes gap": 24544, "tuning model": 170062, "model weights": 104889, "weights tuned": 178132, "especially relevant": 50534, "relevant large": 139614, "frozen model": 61675, "multiple downstream": 110902, "ease burden": 45279, "prefix tuning": 126102, "similar approaches": 151208, "approaches finally": 11771, "conditioning frozen": 28989, "model soft": 104628, "robustness domain": 145374, "domain transfer": 44315, "compared model": 26857, "colossal clean": 25798, "clean crawled": 24246, "crawled corpus": 33164, "corpus large": 32323, "models led": 106947, "led remarkable": 91239, "remarkable progress": 140269, "progress nlp": 129997, "corpora train": 32257, "corpora available": 32208, "significant portions": 150816, "documentation work": 43874, "work provide": 179230, "provide documentation": 132757, "raffel et": 135414, "2020 dataset": 655, "dataset created": 36208, "created applying": 33249, "applying set": 10925, "single snapshot": 151864, "common crawl": 26130, "investigating data": 80591, "sources like": 153520, "content text": 30630, "text machinegenerated": 165289, "machinegenerated text": 98151, "text machine": 165287, "translation systems": 169526, "systems evaluation": 160365, "datasets understand": 37169, "understand impact": 171021, "create dataset": 33185, "dataset evaluate": 36262, "evaluate text": 51117, "finally conclude": 58422, "conclude recommendations": 28883, "webscale datasets": 178041, "crosstask generalization": 33708, "generalization natural": 63201, "instructions humans": 78276, "remarkable ability": 140121, "ability solving": 2379, "solving different": 153206, "textual instructions": 165925, "examples despite": 52557, "success conventional": 158223, "conventional supervised": 31732, "supervised learning": 159133, "individual datasets": 75711, "datasets models": 36987, "struggle generalization": 156747, "generalization tasks": 63232, "tasks questionanswering": 163067, "tasks longstanding": 162760, "longstanding challenge": 97582, "challenge ai": 21583, "build model": 19332, "model learns": 103946, "learns new": 91188, "new task": 113443, "task understanding": 161794, "define study": 37942, "study introduce": 157417, "natural instructions": 111536, "distinct tasks": 43257, "humanauthored instructions": 71138, "task instances": 161477, "inputoutput pairs": 77382, "instructions obtained": 78316, "used create": 173015, "existing nlp": 53503, "training models": 168585, "models seen": 109058, "tasks measuring": 162792, "generalization remaining": 63220, "unseen ones": 172175, "generative pretrained": 65534, "models encode": 106108, "encode taskspecific": 48383, "taskspecific instructions": 163525, "instructions input": 78281, "input generate": 77250, "generate task": 63746, "output results": 117991, "indicate models": 75612, "models benefit": 105484, "instructions evaluated": 78250, "evaluated terms": 51213, "terms generalization": 164425, "generalization unseen": 63234, "unseen tasks": 172187, "better models": 17948, "models utilizing": 109604, "instructions models": 78311, "models far": 106309, "estimated performance": 50735, "indicating significant": 75662, "significant room": 150868, "room progress": 145595, "progress direction": 129957, "method using": 101161, "models tlms": 109405, "public opinion": 133588, "media posts": 100108, "approach train": 11610, "train set": 167827, "gpt models": 66451, "models covid19": 105814, "probe models": 128142, "models reveal": 108985, "reveal insights": 144343, "users demonstrate": 173616, "demonstrate approach": 38231, "approach used": 11629, "used produce": 173190, "produce results": 129456, "diverse social": 43661, "public health": 133574, "health issues": 68949, "results covid19": 143266, "tweet data": 170207, "data transformer": 35887, "models promising": 108681, "promising tools": 130328, "tools help": 167175, "public opinions": 133590, "opinions social": 116815, "gpt2 create": 66521, "create synthetic": 33233, "synthetic data": 160022, "data improve": 35186, "prediction performance": 125838, "nlp machine": 113758, "learning classification": 90298, "models classification": 105626, "use input": 172684, "data predict": 35515, "predict likelihood": 125688, "predetermined categories": 125667, "categories perform": 21115, "perform effective": 120933, "models require": 108939, "require large": 141135, "large datasets": 87233, "datasets training": 37162, "utilize synthetic": 175087, "data boost": 34724, "performance machine": 121775, "models reported": 108929, "using synthetic": 174775, "data build": 34731, "build models": 19333, "models detect": 105945, "created synthetic": 33274, "data help": 35148, "help models": 69151, "learning practitioners": 90837, "practitioners generate": 125533, "generate synthetic": 63736, "images increase": 72434, "increase volume": 75245, "image data": 72219, "data train": 35872, "purpose paper": 133753, "utilizing synthetic": 175240, "synthetic nlp": 160061, "nlp data": 113719, "performance natural": 121831, "processing machine": 129189, "paper used": 119380, "restaurant reviews": 142987, "reviews dataset": 144578, "learning finetune": 90461, "finetune pretrained": 58959, "reviews data": 144577, "data original": 35450, "data create": 34868, "dataset new": 36427, "combined model": 25910, "significantly outperformed": 151081, "accuracy precision": 3337, "analysis deep": 8880, "rise novel": 144905, "cases social": 21019, "social scientists": 152665, "understanding people": 171400, "emotions sentiments": 47604, "catastrophic events": 21065, "natural disasters": 111526, "covid19 pandemic": 33116, "advancements deep": 5877, "deep learningbased": 37781, "learningbased language": 91157, "analysis data": 8876, "data social": 35771, "social networks": 152642, "networks twitter": 112814, "situation covid19": 151934, "different countries": 41713, "countries different": 32986, "new cases": 113102, "covid19 cases": 33115, "people expressing": 120717, "media provide": 100110, "provide deep": 132738, "deep understanding": 37832, "understanding human": 171282, "human psychology": 70993, "events paper": 52124, "present framework": 126321, "framework employs": 61111, "models long": 108094, "analysis rise": 9144, "cases india": 20975, "framework features": 61158, "lstm language": 97956, "model global": 103751, "vector embedding": 176379, "model review": 104487, "sentiments expressed": 148676, "covers major": 33105, "sentiment classification": 148645, "classification sentiment": 24085, "sentiment expressed": 148652, "indicate majority": 75608, "high levels": 69479, "delving deeper": 38121, "classification head": 24009, "demonstrate high": 38367, "high potential": 69501, "potential computer": 124652, "vision cv": 176897, "despite great": 40113, "great advance": 67681, "works focus": 179449, "models base": 105448, "final classifier": 58376, "word tokens": 178687, "tokens paper": 166846, "specifically empirically": 154190, "contain rich": 30303, "rich information": 144783, "effectively harness": 46012, "information propose": 76655, "singular value": 151915, "value power": 175494, "shares similar": 149834, "compatible transformer": 27098, "transformer block": 169111, "methods study": 101843, "study comprehensively": 157226, "explicitly combine": 54965, "stateoftheart vision": 155409, "vision transformers": 176997, "challenging benchmarks": 22122, "including imagenet": 74561, "tasks finetuning": 162415, "finetuning based": 59178, "based pretrained": 16016, "language transformers": 86797, "including gpt": 74532, "greatly boosts": 67783, "boosts performance": 18855, "performance widely": 122306, "widely used": 178387, "transfer training": 168999, "training smaller": 168754, "led stateoftheart": 91247, "stateoftheart accuracies": 155061, "accuracies range": 3098, "range tasks": 135706, "model needs": 104121, "computing resource": 28554, "open source": 116289, "advantage available": 6101, "available model": 15163, "model method": 104084, "time resource": 166489, "resource cost": 142378, "welltrained model": 178192, "larger target": 89253, "target model": 161085, "source model": 153461, "model copy": 103383, "weight values": 178084, "padding zeros": 118499, "make source": 98602, "source target": 153473, "matrix multiplication": 99639, "transformer structure": 169211, "model data": 103398, "sets comparable": 149361, "continue training": 31204, "training target": 168776, "largescale autoregressive": 89272, "autoregressive pretrained": 15008, "pretrained chinese": 126769, "chinese language": 23633, "plms new": 123621, "paradigm natural": 119487, "nlp plms": 113789, "parameters gpt3": 119769, "gpt3 demonstrated": 66673, "demonstrated strong": 38799, "strong performances": 156429, "performances natural": 122336, "incontext learning": 74863, "practice training": 125500, "models named": 108263, "parallelism strategy": 119585, "based mindspore": 15948, "scale training": 146352, "training task": 168777, "including data": 74482, "data parallelism": 35469, "model parallelism": 104212, "parallelism pipeline": 119584, "pipeline model": 123076, "enhance generalization": 49202, "highquality chinese": 69997, "chinese data": 23619, "data wide": 35961, "range domains": 135610, "domains pretrain": 44500, "model empirically": 103527, "empirically test": 47805, "test generation": 164560, "various scenarios": 176153, "scenarios including": 146621, "including text": 74752, "summarization question": 158866, "answering dialogue": 9837, "dialogue generation": 41476, "investigate effect": 80399, "effect model": 45665, "model scales": 104507, "broad range": 19182, "tasks experimental": 162358, "demonstrate superior": 38570, "superior capabilities": 158992, "performing various": 122420, "bidirectional encoder": 18343, "encoder representations": 48438, "texttospeech synthesis": 165835, "prediction method": 125823, "method combines": 100740, "extracted pretrained": 56201, "model aka": 103100, "linguistic features": 93031, "features conventional": 57463, "methods word": 101931, "representations used": 140905, "independent components": 75495, "components proposed": 27774, "method takes": 101136, "takes account": 160977, "previous methods": 127609, "objective evaluation": 115191, "evaluation results": 51828, "method obtains": 100996, "obtains absolute": 115553, "points f1": 123750, "f1 score": 56483, "score compared": 147050, "using linguistic": 174413, "test results": 164608, "results verify": 143926, "method achieved": 100628, "achieved mean": 3840, "mean opinion": 99750, "opinion score": 116807, "highly competitive": 69896, "unreasonable effectiveness": 172113, "superglue tasks": 158980, "like superglue": 92413, "development nlp": 41172, "provide standard": 132980, "standard benchmarks": 154806, "benchmarks fair": 17244, "models driven": 106032, "worlds best": 179638, "solve set": 153156, "tasks general": 162445, "general language": 62972, "understanding performance": 171402, "higher human": 69605, "analysis benchmark": 8827, "learning based": 90239, "based language": 15899, "models exploit": 106250, "english datasets": 49045, "shown contain": 150222, "annotation artifacts": 9510, "certain tasks": 21421, "tasks simple": 163249, "achieving competitive": 4160, "analysis russian": 9146, "recently published": 137966, "benchmark set": 17086, "russian natural": 145773, "test datasets": 164544, "datasets vulnerable": 37199, "shallow heuristics": 149765, "approaches based": 11704, "based simple": 16098, "come close": 26002, "close results": 24452, "gpt3 bert": 66652, "sota models": 153357, "models performance": 108481, "common real": 26184, "real language": 136238, "provide set": 132970, "set recommendations": 149293, "recommendations improve": 138249, "datasets making": 36972, "empirical evaluation": 47678, "humanlevel nlp": 71230, "sample size": 145963, "mental health": 100495, "hidden state": 69334, "modern transformerbased": 109842, "ability effectively": 2143, "effectively leverage": 46042, "transformers provide": 169346, "provide systematic": 132993, "systematic study": 160157, "study role": 157605, "reduction methods": 138617, "principal components": 127841, "embedding vectors": 47203, "sample sizes": 145964, "predictive performance": 125957, "performance finetuning": 121534, "finetuning large": 59329, "models limited": 107004, "limited data": 92741, "data pose": 35501, "pose significant": 124173, "consistently achieves": 29855, "achieves performance": 4051, "performance humanlevel": 121636, "humanlevel tasks": 71240, "methods better": 101349, "better handling": 17898, "users write": 173821, "longer texts": 97535, "finally observe": 58496, "majority tasks": 98469, "tasks achieve": 161890, "achieve results": 3725, "results comparable": 143235, "comparable best": 26560, "best performance": 17718, "performance just": 121698, "embedding dimensions": 47159, "dimensions addressing": 42324, "learning research": 90922, "recent literature": 137548, "underscored importance": 170935, "importance dataset": 73020, "dataset documentation": 36245, "work involves": 179079, "datasets used": 37174, "used widely": 173305, "aims help": 7622, "help address": 69078, "text dataset": 164996, "dataset training": 36590, "models notably": 108315, "researchers used": 142269, "gptn models": 67305, "models little": 107017, "collection process": 25748, "offer preliminary": 115688, "provides key": 133175, "particular evidence": 120076, "exhibits significant": 53220, "potential deficiencies": 124669, "research including": 141848, "problematic content": 128442, "initial effort": 77020, "adds growing": 5488, "growing literature": 68032, "learning datasets": 90350, "framework retrieval": 61390, "grounded text": 67875, "generation modeling": 64841, "pretraining gpt3": 127340, "seemingly high": 147682, "high quality": 69510, "quality text": 134282, "generated given": 63870, "given prompt": 65963, "generation systems": 65131, "systems suffer": 160630, "suffer problems": 158448, "hallucinated facts": 68343, "designed incorporate": 39896, "external information": 56053, "information grounded": 76486, "grounded generation": 67863, "models appear": 105369, "appear offer": 10227, "training typically": 168809, "typically relies": 170509, "provided context": 133043, "context propose": 30886, "propose framework": 131832, "jointly training": 81289, "document retriever": 43855, "retrieval documents": 144042, "using mixtureofexperts": 174493, "mixtureofexperts moe": 102767, "text demonstrate": 165002, "joint training": 81268, "training work": 168824, "produce informative": 129433, "relevant text": 139658, "outlier dimensions": 117485, "multiple studies": 111054, "studies shown": 157080, "remarkably robust": 140325, "robust pruning": 145312, "encoders surprisingly": 48497, "layer outputs": 89644, "bert pretrained": 17584, "pretrained encoder": 126794, "scaling factors": 146398, "early pretraining": 45258, "significantly degrades": 150975, "mlm loss": 102862, "loss downstream": 97667, "bertfamily models": 17633, "models popular": 108556, "popular pretrained": 124043, "architectures including": 12267, "including bart": 74428, "xlnet electra": 179848, "similar effect": 151231, "widelyused pretrained": 178422, "models operate": 108363, "sequences tokens": 148842, "tokens corresponding": 166795, "corresponding word": 32616, "directly raw": 42593, "raw text": 136091, "process text": 129009, "robust noise": 145295, "technical debt": 163695, "sequences longer": 148827, "token sequences": 166738, "past work": 120397, "models introduced": 106816, "introduced new": 80167, "new model": 113283, "model architectures": 103132, "architectures designed": 12256, "operating directly": 116751, "text paper": 165342, "standard transformer": 154888, "byte sequences": 19579, "count training": 32928, "bytelevel models": 19581, "significantly robust": 151152, "better tasks": 18042, "contribution release": 31482, "release new": 139485, "new set": 113405, "set pretrained": 149273, "pretrained bytelevel": 126761, "based t5": 16125, "t5 architecture": 160695, "architecture code": 12130, "used experiments": 173058, "develop infinite": 40786, "degrees freedom": 38024, "physical systems": 122914, "systems time": 160644, "fully fledged": 61766, "operational semantics": 116766, "approaches study": 11916, "decision transformer": 37388, "learning sequence": 90978, "modeling introduce": 105019, "introduce framework": 79968, "learning rl": 90937, "rl sequence": 145079, "modeling problem": 105071, "problem allows": 128182, "architecture associated": 12121, "advances language": 6018, "particular present": 120107, "conditional sequence": 28966, "unlike prior": 172018, "prior approaches": 127878, "approaches rl": 11900, "value functions": 175485, "policy gradients": 123846, "optimal actions": 116929, "actions leveraging": 4382, "masked transformer": 99324, "autoregressive model": 15001, "states actions": 155420, "generate future": 63516, "future actions": 62214, "actions achieve": 4361, "achieve desired": 3623, "matches exceeds": 99440, "exceeds performance": 52761, "offline rl": 115883, "rl baselines": 145048, "models serve": 109078, "qa recent": 133921, "work investigated": 179074, "interesting question": 79402, "question using": 134953, "plms knowledge": 123613, "open questions": 116274, "questions existing": 135121, "work limited": 179107, "limited using": 92876, "using small": 174724, "construct new": 30149, "qa using": 133937, "using squad": 174744, "performance bart": 121183, "experiments challenging": 54169, "high precision": 69502, "relevant knowledge": 139613, "promising directions": 130247, "directions including": 42484, "knowledge memorizing": 82227, "forcing model": 60366, "recall relevant": 137278, "knowledge question": 82327, "answering syntactic": 9965, "encode linguistic": 48380, "linguistic information": 93035, "information popular": 76626, "popular nlp": 124030, "nlp method": 113762, "frequently cited": 61613, "support claim": 159262, "bert encode": 17529, "trained extract": 167920, "extract linguistic": 56144, "information models": 76581, "models output": 108391, "model output": 104190, "trained implicitly": 167951, "models linguistic": 107011, "knowledge specific": 82414, "able learn": 2528, "semantic cues": 148133, "new corpus": 113126, "probes trained": 128147, "normal data": 114178, "popular language": 124003, "gpt roberta": 66489, "settings perform": 149625, "perform worse": 121094, "points absolute": 123737, "outperform baselines": 117568, "begs question": 16546, "recurrent processing": 138353, "processing sequences": 129293, "tasks particular": 162932, "input sequence": 77338, "sequence transformer": 148795, "architecture work": 12245, "novel attention": 114410, "procedure called": 128697, "attention unlike": 14000, "sharing weights": 149842, "family models": 57200, "performance compute": 121317, "shown able": 150204, "able solve": 2559, "solve tasks": 153161, "tasks involve": 162636, "shown provide": 150347, "provide improved": 132831, "size model": 152031, "model number": 104134, "transformers large": 169321, "modeling dialogue": 104989, "dialogue tasks": 41532, "yielding significant": 180003, "focus relatively": 60044, "technological developments": 164070, "nuclear weapons": 114810, "fundamental advances": 61928, "political scientists": 123903, "economics literature": 45402, "value theory": 175501, "conduct case": 29028, "finally apply": 58413, "generation faster": 64655, "models tremendous": 109508, "tremendous impacts": 169688, "generation inference": 64742, "decoding process": 37589, "framework accelerate": 60910, "generation accuracy": 64389, "accuracy loss": 3298, "loss proposed": 97689, "proposed optimization": 132407, "optimization techniques": 117049, "attention cache": 13849, "efficient algorithm": 46566, "generation pipeline": 64926, "pipeline parallel": 123079, "models t5": 109344, "t5 gpt2": 160708, "benchmark results": 17077, "results set": 143780, "used diverse": 173035, "diverse models": 43578, "models demonstrate": 105882, "speed gain": 154506, "easy use": 45361, "use simple": 172872, "simple oneline": 151506, "code change": 24700, "programming puzzles": 129873, "new type": 113482, "type programming": 170313, "comprehensive evaluation": 28004, "program synthesis": 129753, "opensource dataset": 116596, "dataset python": 36485, "python programming": 133844, "short python": 149988, "python program": 133843, "program goal": 129736, "goal input": 66174, "input makes": 77283, "needed test": 112456, "candidate solution": 19735, "answer key": 9728, "inputoutput examples": 77379, "depend natural": 39135, "understanding dataset": 171185, "dataset comprehensive": 36175, "problems range": 128608, "domains ranging": 44508, "string manipulation": 156326, "manipulation problems": 98956, "tower hanoi": 167444, "problems dynamic": 128488, "dynamic programming": 45151, "open problems": 116267, "problems algorithms": 128452, "develop baseline": 40760, "gpt3 codex": 66666, "capable solving": 20469, "reference solutions": 138674, "learning past": 90814, "codex performs": 25353, "performs best": 122428, "problems single": 128625, "problem small": 128395, "small user": 152379, "study positive": 157534, "positive correlation": 124287, "performance coding": 121262, "humans ai": 71344, "significant impact": 150721, "impact program": 72715, "learning unsupervised": 91104, "learning recently": 90905, "recently received": 137969, "received lots": 137313, "effectively leveraging": 46044, "leveraging largescale": 91891, "largescale unlabeled": 89417, "data prevalent": 35536, "prevalent approaches": 127510, "approaches contrastive": 11721, "learning generative": 90501, "learns representations": 91192, "tasks learns": 162699, "strengths weaknesses": 156271, "extract semantic": 56157, "representations effective": 140797, "effective discriminative": 45739, "outofdistribution data": 117516, "data hand": 35145, "hand generative": 68486, "directly estimates": 42534, "data distribution": 34927, "tend robust": 164319, "achieve best": 3585, "best worlds": 17767, "training scheme": 168719, "scheme specifically": 146797, "transformerbased encoderdecoder": 169237, "architecture trained": 12233, "contrastive generative": 31349, "learn highly": 89989, "robust representations": 145317, "generative performance": 65527, "performance extensively": 121498, "extensively validate": 55996, "validate approach": 175299, "approach various": 11663, "industries including": 75866, "including finance": 74519, "need perform": 112361, "sequential tasks": 148888, "tasks despite": 162208, "number natural": 114906, "plan extraction": 123211, "extraction methods": 56324, "methods provide": 101742, "provide possibility": 132923, "plans natural": 123362, "language descriptions": 83243, "leveraged automated": 91687, "automated paper": 14585, "investigate utility": 80521, "generalized language": 63280, "models performing": 108499, "texts models": 165747, "shown quite": 150348, "quite effective": 135360, "effective multiple": 45823, "multiple translation": 111074, "initial results": 77051, "results point": 143666, "effectiveness context": 46150, "particularly gpt3": 120198, "gpt3 able": 66635, "generate plan": 63646, "extraction results": 56351, "comparable current": 26567, "current state": 34245, "architecture search": 12216, "backbone architectures": 15409, "study aims": 157144, "aims making": 7638, "search process": 147392, "online training": 116148, "extended existing": 55657, "existing study": 53600, "backbone architecture": 15408, "fixed training": 59720, "process known": 128890, "requires predefined": 141428, "architecture size": 12225, "lstm gru": 97955, "study introduces": 157419, "search based": 147322, "based network": 15970, "size large": 152016, "pruning process": 133467, "initial experimental": 77023, "indicate approach": 75571, "effective compared": 45713, "compared baseline": 26746, "including lstm": 74605, "multivariate time": 111290, "time series": 166498, "series forecasting": 148924, "dynamic network": 45144, "improving efficiency": 74136, "network reinforcement": 112692, "learning deep": 90352, "robotic control": 145190, "artificial neurons": 12793, "biologically plausible": 18517, "contains diverse": 30368, "state representation": 155015, "temporal information": 164262, "information based": 76295, "based hybrid": 15860, "infers actions": 76165, "actions states": 4391, "actor propose": 4473, "representation different": 140680, "different scales": 41978, "fields directly": 58269, "directly encode": 42532, "encode input": 48378, "propose different": 131783, "critic networks": 33449, "networks using": 112817, "twin delayed": 170218, "delayed deep": 38031, "deep deterministic": 37712, "deterministic policy": 40728, "policy gradient": 123839, "gradient algorithm": 67378, "models openai": 108344, "gym benchmark": 68296, "benchmark tasks": 17105, "tasks important": 162530, "important attempt": 73090, "attempt improve": 13791, "category theory": 21156, "theory language": 166087, "language syntax": 86754, "text continuation": 164962, "input text": 77355, "text ability": 164812, "ability generate": 2183, "generate coherent": 63423, "coherent text": 25546, "including knowledge": 74576, "semantics paper": 148311, "given texts": 66033, "ones learned": 116002, "todays large": 166675, "models enriched": 106129, "roughly speaking": 145631, "model probability": 104345, "distributions texts": 43430, "expressions language": 55598, "conditional probabilities": 28962, "semantic meaning": 148178, "logical operations": 97368, "semantic concepts": 148121, "need improving": 112318, "word embedding": 178625, "models natural": 108265, "nlp led": 113755, "led great": 91225, "using massive": 174481, "massive number": 99372, "parameters deployment": 119737, "constraints edge": 30075, "compression models": 28221, "models improve": 106688, "improve inference": 73487, "time memory": 166447, "footprint paper": 60354, "presents novel": 126604, "novel loss": 114576, "loss objective": 97685, "token embeddings": 166706, "autoencoder architecture": 14466, "architecture specifically": 12228, "emphasize importance": 47630, "require language": 141133, "modeling pretraining": 105069, "pretraining method": 127386, "method significantly": 101095, "outperforms commonly": 117735, "model perplexity": 104274, "perplexity evaluate": 122510, "dataset downstream": 36248, "tasks glue": 162469, "benchmark outperform": 17047, "baseline scenarios": 16260, "scenarios code": 146551, "code public": 25075, "sentiment tweets": 148670, "provides opportunity": 133191, "emerging risks": 47536, "including geographical": 74530, "geographical location": 65711, "methods classifying": 101368, "trained general": 167927, "general domain": 62938, "text challenges": 164875, "additional information": 4963, "social connections": 152547, "lack commonsense": 82899, "positive negative": 124295, "words study": 178754, "limited information": 92780, "novel endtoend": 114484, "endtoend framework": 48738, "framework consisting": 61042, "components use": 27782, "use domainspecific": 172596, "domainspecific lm": 44602, "models commonsense": 105684, "bidirectional gated": 18350, "user metadata": 173453, "sentiment information": 148654, "information capture": 76306, "using popular": 174584, "outperforms stateoftheart": 117854, "models identifying": 106662, "size pretrained": 152052, "efficiency issues": 46473, "largescale plms": 89373, "utilization realworld": 175016, "scenarios present": 146674, "techniques use": 164048, "use plms": 172802, "finetuning inference": 59305, "inference introduce": 76035, "introduce knowledge": 79992, "pretraining process": 127413, "existing plms": 53522, "instead training": 77902, "models scratch": 109051, "scratch explore": 147217, "explore best": 55160, "best practice": 17731, "compared conventional": 26771, "conventional finetuning": 31701, "finetuning prompt": 59474, "tuning significantly": 170119, "significantly reduces": 151136, "reduces number": 138528, "number taskspecific": 114956, "taskspecific parameters": 163537, "implement new": 72825, "new inference": 113226, "using largescale": 174402, "limited computational": 92732, "computational resources": 28400, "resources based": 142424, "pretrain models": 126738, "models encoderdecoder": 106110, "model 11": 102989, "11 billion": 219, "parameters experiments": 119755, "experiments compare": 54178, "excellent general": 52791, "language intelligence": 83456, "inference largescale": 76043, "largescale models": 89356, "models having": 106587, "tens billions": 164343, "multitask reinforcement": 111238, "learning fundamental": 90488, "fundamental aspect": 61931, "ability encode": 2145, "salient features": 145931, "experience memory": 53838, "sensory information": 148471, "highly dynamic": 69911, "generalize variety": 63275, "learning problem": 90855, "problem use": 128427, "genetic programming": 65683, "agents capable": 6557, "operating unique": 116754, "literature including": 93177, "including openais": 74649, "classic control": 23923, "control suite": 31591, "requires agent": 141337, "discrete continuous": 42801, "control policies": 31573, "policies task": 123822, "hierarchical structure": 69374, "programs leads": 129917, "multitask agents": 111201, "agents succeed": 6741, "environments memory": 50098, "resulting agents": 143089, "taskspecific agents": 163509, "agents environments": 6598, "structure programs": 156595, "dynamic runtime": 45159, "complexity results": 27697, "results relatively": 143738, "generative transformer": 65603, "model symbolic": 104705, "symbolic regression": 159824, "regression task": 138965, "task identifying": 161455, "mathematical expression": 99563, "provided dataset": 133046, "dataset input": 36360, "input output": 77295, "output values": 118016, "mathematical expressions": 99564, "generally challenging": 63305, "challenging problem": 22241, "conventional approaches": 31693, "based genetic": 15840, "evolution algorithms": 52254, "algorithms used": 7981, "used decades": 173021, "learningbased methods": 91160, "relatively new": 139411, "research area": 141594, "novel transformerbased": 114730, "regression model": 138961, "model exploits": 103611, "probabilistic language": 128086, "comprehensive experiments": 28036, "experiments model": 54361, "compared competing": 26765, "competing models": 27142, "models respect": 108959, "respect accuracy": 142500, "running time": 145755, "time data": 166376, "data efficiency": 34949, "openai released": 116373, "model shown": 104565, "shown promise": 150333, "promise tasks": 130201, "tasks areas": 161967, "particularly interested": 120210, "benefits gpt3": 17468, "associated attributes": 13463, "scientific literature": 146969, "questions answering": 135040, "solution task": 152984, "learning capabilities": 90270, "develop solution": 40837, "performance prior": 121944, "prior work": 127941, "effort paper": 46864, "paper discusses": 118860, "results observed": 143640, "problems encountered": 128494, "size prompt": 152061, "prompt answer": 130367, "limited training": 92868, "training signal": 168741, "models excel": 106186, "information impact": 76502, "changes prompts": 22388, "making hard": 98745, "pretrained sequencetosequence": 127157, "requires models": 141420, "read reason": 136152, "text images": 165231, "questions specifically": 135283, "specifically models": 154251, "incorporate new": 75029, "new modality": 113281, "text present": 165366, "reason answer": 136555, "challenge use": 21747, "use generative": 172647, "model t5": 104712, "task based": 161217, "pretrained checkpoint": 126766, "including masked": 74608, "relative position": 139378, "designed better": 39827, "better align": 17795, "scene text": 146745, "stage pretraining": 154747, "fusion multiple": 62203, "multiple modalities": 110978, "text labels": 165263, "labels scene": 82824, "visual features": 177172, "decoder generates": 37513, "generates text": 64115, "text sequence": 165455, "cross entropy": 33601, "entropy loss": 49964, "use largescale": 172724, "dataset pretraining": 36461, "pretraining finetune": 127324, "gpt3 text": 66766, "text indistinguishable": 165242, "indistinguishable human": 75691, "human text": 71058, "machine text": 98103, "text modern": 165313, "modern neural": 109827, "remarkably fluent": 140317, "fluent grammatical": 59901, "fact recent": 56743, "reliably distinguish": 139765, "poses new": 124215, "new challenge": 113103, "challenge research": 21731, "robust machine": 145285, "text evaluation": 165063, "evaluation propose": 51796, "new framework": 113200, "framework called": 60996, "support broad": 159259, "predefined ontology": 125654, "error spans": 50326, "humanwritten machinegenerated": 71519, "news text": 113589, "detailed analysis": 40266, "analysis including": 8969, "data various": 35944, "approach successfully": 11577, "human authored": 70602, "text generations": 165205, "models sizes": 109149, "sizes including": 152098, "addition analysis": 4839, "new insights": 113230, "rationales provided": 136069, "commonsense capabilities": 26254, "capabilities improving": 19949, "models math": 108153, "choices simple": 23718, "decoding hyperparameters": 37569, "differences perceived": 41636, "perceived quality": 120765, "quality machine": 134193, "text release": 165415, "release training": 139500, "training material": 168571, "annotation toolkit": 9556, "textual data": 165889, "data distributions": 34929, "texts supervised": 165787, "efficient textual": 46727, "generation open": 64902, "open research": 116282, "research problems": 141992, "language datasets": 83236, "extent textual": 56027, "data possess": 35507, "alignment study": 8240, "study focuses": 157374, "focuses addressing": 60128, "multiple supervised": 111057, "unsupervised machine": 172252, "learning ml": 90691, "ml methods": 102777, "methods explore": 101505, "explore behavior": 55157, "alignment ii": 8163, "furthermore use": 62175, "use multiple": 172771, "multiple text": 111067, "generation methods": 64829, "including finetuned": 74520, "gpt2 generate": 66535, "topic sentiment": 167335, "finally develop": 58435, "develop unique": 40851, "kullbackleibler divergence": 82660, "divergence kld": 43443, "machine generated": 98002, "generated textual": 64025, "textual corpora": 165887, "corpora study": 32254, "study identifies": 157399, "unique approach": 171821, "approach generating": 11255, "generating validating": 64371, "used help": 173098, "sparse data": 153722, "problems research": 128622, "research practice": 141977, "generated topic": 64030, "aligned textual": 8077, "accelerating large": 2793, "impacting performance": 72754, "performance effective": 121439, "effective training": 45908, "hardware accelerators": 68675, "length paper": 91382, "sequence lengths": 148764, "common nlp": 26165, "50 tokens": 1311, "methods address": 101290, "resulting inefficiency": 143109, "accelerators paper": 2816, "paper introduces": 119006, "introduces new": 80196, "problem presents": 128355, "presents new": 126602, "new algorithms": 113054, "algorithms based": 7904, "2x speedup": 949, "phase pretraining": 122803, "pretraining bert": 127271, "bert existing": 17531, "models adapted": 105269, "mathematical equivalence": 99561, "existing pretraining": 53530, "ernie 30": 50252, "largescale knowledge": 89324, "enhanced pretraining": 49356, "generation pretrained": 64943, "results various": 143915, "tasks recent": 163089, "recent works": 137749, "t5 gpt3": 160709, "gpt3 shown": 66754, "shown scaling": 150372, "scaling pretrained": 146437, "improve generalization": 73471, "generalization abilities": 63123, "shows strong": 150481, "zeroshotfewshot learning": 180378, "capabilities despite": 19853, "success largescale": 158263, "plain texts": 123202, "introducing knowledge": 80237, "knowledge linguistic": 82199, "knowledge addition": 81733, "trained autoregressive": 167869, "autoregressive way": 15020, "way result": 177872, "traditional finetuning": 167620, "finetuning approach": 59170, "approach demonstrates": 11100, "weak performance": 177934, "performance solving": 122089, "solving downstream": 153209, "downstream language": 44727, "tasks order": 162894, "order solve": 117240, "solve problems": 153147, "problems propose": 128604, "framework named": 61319, "named ernie": 111415, "enhanced models": 49351, "network trained": 112701, "trained model": 168006, "model easily": 103502, "tailored natural": 160927, "tasks zeroshot": 163495, "learning fewshot": 90455, "learning finetuning": 90462, "finetuning trained": 59590, "model 10": 102985, "10 billion": 107, "corpus consisting": 32286, "knowledge graph": 82042, "english version": 49119, "superglue benchmark": 158977, "surpassing human": 159517, "memory using": 100476, "memory module": 100431, "regardless size": 138904, "size scaling": 152067, "standard neural": 154860, "network architecture": 112627, "layer based": 89627, "scale parameter": 146323, "memory limits": 100419, "computational overhead": 28387, "giving better": 66064, "cost large": 32698, "modelling tasks": 105133, "models larger": 106915, "capacity significantly": 20544, "transformer baseline": 169107, "memory size": 100463, "ai language": 7053, "trained web": 168127, "web data": 178002, "data generate": 35094, "reflects human": 138818, "knowledge public": 82323, "novel insights": 114550, "insights predictions": 77629, "difficult questions": 42174, "library information": 92040, "information science": 76746, "science lis": 146889, "different responses": 41970, "performance ai": 121142, "models reflect": 108882, "viability using": 176643, "using ai": 173967, "research ideas": 141835, "pretraining prompting": 127415, "prompting language": 130972, "models introduce": 106813, "trained largescale": 167979, "largescale web": 89427, "number advantages": 114819, "provides rich": 133207, "supervision class": 159192, "category information": 21153, "information allows": 76277, "structured prompting": 156664, "follows established": 60328, "zeroshot summarization": 180349, "loss directly": 97666, "transfer wide": 169006, "range end": 135617, "end tasks": 48693, "tasks supervision": 163322, "zeroshot prompting": 180301, "prompting finetuning": 130937, "finetuning classification": 59194, "benchmarks setting": 17361, "setting new": 149479, "performance levels": 121737, "prompts provide": 131429, "provide value": 133028, "terms data": 164405, "plain text": 123201, "prompts existing": 131259, "existing lms": 53427, "data release": 35638, "release code": 139443, "models support": 109309, "support future": 159292, "spanish language": 153665, "work presents": 179184, "resources available": 142423, "industry research": 75885, "community currently": 26460, "robertabase robertalarge": 145164, "models spanish": 109185, "pretrained using": 127222, "billion words": 18442, "words extracted": 178722, "national library": 111494, "assessed performance": 13146, "performance models": 121809, "models existing": 106222, "existing evaluation": 53358, "evaluation datasets": 51529, "datasets novel": 37004, "novel extractive": 114496, "extractive question": 56383, "answering dataset": 9832, "outperform existing": 117583, "variety nlu": 175740, "semistructured tables": 148364, "models reasoning": 108808, "reasoning skills": 137125, "skills models": 152176, "language skills": 86727, "known struggle": 82629, "struggle tasks": 156776, "reasoning work": 137238, "propose leverage": 131900, "answering question": 9935, "question requires": 134934, "requires reasoning": 141431, "multiple facts": 110911, "pretraining step": 127446, "data includes": 35203, "examples require": 52680, "different reasoning": 41958, "skills number": 152177, "number comparison": 114841, "improve data": 73440, "efficiency propose": 46510, "propose sampling": 132110, "sampling strategies": 146117, "focus training": 60071, "skills model": 152175, "currently lacking": 34326, "comprehension datasets": 27899, "datasets focused": 36877, "reasoning model": 136987, "substantially outperforms": 158134, "outperforms t5": 117875, "pretrained encoderdecoder": 126795, "encoderdecoder model": 48462, "model sampling": 104505, "sampling examples": 146094, "examples based": 52530, "based current": 15736, "current model": 34184, "model errors": 103557, "leads faster": 89888, "faster training": 57302, "higher overall": 69617, "overall performance": 118215, "performance hybrid": 121639, "autoregressive inference": 14983, "explanation regeneration": 54801, "language explanations": 83299, "scientific domain": 146956, "domain proposed": 44260, "proposed benchmark": 132261, "benchmark evaluate": 16947, "evaluate complex": 50932, "complex multihop": 27481, "multihop explainable": 110416, "inference context": 75982, "context large": 30807, "performance employed": 121452, "crossencoder architectures": 33636, "finetuned humanannotated": 59035, "quality explanations": 134122, "performing inference": 122405, "limited applicability": 92706, "applicability realworld": 10267, "scenarios require": 146689, "multihop reasoning": 110430, "reasoning scale": 137113, "scale paper": 146322, "paper focuses": 118954, "dense sparse": 39109, "sparse models": 153738, "specifically present": 154261, "hybrid framework": 71564, "framework iteratively": 61245, "sparse model": 153737, "model explanatory": 103608, "explanatory power": 54913, "designed leverage": 39907, "leverage explicit": 91587, "inference patterns": 76067, "explanations experiments": 54842, "demonstrate hybrid": 38373, "framework significantly": 61409, "outperforms previous": 117818, "models achieving": 105256, "comparable stateoftheart": 26620, "50 times": 1310, "times faster": 166584, "reveal proposed": 144368, "quality challenging": 134058, "contributing improved": 31461, "inference tasks": 76115, "using causal": 174024, "causal language": 21194, "models search": 109054, "approaches rely": 11887, "rely massive": 139873, "query logs": 134609, "interaction data": 79110, "variety possible": 175742, "query intents": 134596, "user interaction": 173434, "user base": 173375, "given recent": 65977, "t5 model": 160714, "model text": 104739, "tasks explore": 162371, "capacity models": 20527, "generate potential": 63651, "encourage diversity": 48592, "diversity generated": 43730, "generated queries": 63953, "adapt model": 4541, "model including": 103838, "including new": 74641, "evaluation benchmarks": 51453, "benchmarks method": 17303, "obtained using": 115537, "using query": 174639, "suggestions based": 158635, "based proprietary": 16046, "log analysis": 97313, "analysis shows": 9166, "shows approach": 150404, "approach effective": 11142, "able generalize": 2509, "generalize effectively": 63250, "data optimal": 35445, "greedy decoding": 67808, "answering finetuned": 9858, "finetuned language": 59038, "use greedy": 172664, "comprehension questions": 27926, "relative success": 139389, "success approach": 158217, "approach does": 11131, "given passage": 65950, "does guarantee": 43981, "study performance": 157525, "decoding present": 37586, "algorithm efficiently": 7800, "performance t5": 122149, "decoding algorithms": 37558, "zeroshot fewshot": 180169, "answering training": 9976, "examples available": 52528, "selfsupervised training": 148077, "bias model": 18165, "behavior increasing": 16597, "increasing performance": 75344, "performance zeroshot": 122316, "zeroshot setting": 180335, "overall results": 118226, "models good": 106511, "finetune small": 58967, "greedy algorithm": 67806, "decoding strategy": 37604, "warmup training": 177705, "works demonstrated": 179437, "demonstrated great": 38673, "success pretraining": 158281, "models massive": 108145, "massive gpus": 99356, "gpus reduce": 67356, "batch size": 16463, "size learning": 152024, "learning rate": 90895, "practice brittle": 125476, "increasing batch": 75305, "leads better": 89875, "better training": 18053, "training instability": 168503, "leading poor": 89852, "poor generalization": 123946, "understand phenomenon": 171056, "conduct indepth": 29144, "analysis largescale": 9000, "pretraining experiments": 127321, "model strong": 104661, "strong correlation": 156371, "extreme values": 56423, "gradient variance": 67400, "variance samples": 175611, "values especially": 175532, "training indicating": 168491, "main source": 98272, "source training": 153480, "warmup method": 177703, "method aims": 100669, "aims solve": 7673, "solve training": 153162, "models approach": 105376, "approach enables": 11165, "stable training": 154702, "8x larger": 1740, "larger batch": 89195, "4x larger": 1288, "baseline approach": 16194, "approach struggles": 11570, "better zeroshot": 18074, "zeroshot evaluation": 180164, "method reduces": 101061, "required number": 141246, "number training": 114969, "training tokens": 168792, "wall clock": 177674, "clock time": 24434, "respectively experiments": 142554, "zeroshot accuracy": 180114, "11 tasks": 234, "tasks using": 163425, "10x data": 215, "time compared": 166356, "compared original": 26868, "original gpt3": 117336, "gpt3 training": 66770, "training recipe": 168680, "opportunities risks": 116875, "risks foundation": 144987, "foundation models": 60751, "models ai": 105316, "undergoing paradigm": 170787, "paradigm shift": 119508, "dalle gpt3": 34525, "gpt3 trained": 66768, "broad data": 19176, "data scale": 35690, "adaptable wide": 4594, "range downstream": 135611, "models foundation": 106386, "models underscore": 109540, "report provides": 140554, "provides thorough": 133233, "thorough account": 166176, "models ranging": 108773, "capabilities language": 19979, "language vision": 86885, "vision robotics": 176982, "reasoning human": 136900, "human interaction": 70865, "architectures training": 12300, "training procedures": 168648, "data systems": 35844, "theory applications": 166072, "applications law": 10589, "healthcare education": 68996, "societal impact": 152690, "economic environmental": 45393, "environmental impact": 50047, "legal ethical": 91291, "ethical considerations": 50799, "based standard": 16108, "standard deep": 154813, "results new": 143631, "effectiveness tasks": 46299, "provides powerful": 133195, "foundation model": 60732, "model inherited": 103861, "adapted models": 4689, "models downstream": 106023, "widespread deployment": 178467, "models currently": 105835, "currently lack": 34323, "lack clear": 82892, "clear understanding": 24282, "understanding work": 171539, "work fail": 178976, "emergent properties": 47483, "questions believe": 135055, "critical research": 33541, "interdisciplinary collaboration": 79378, "models speech": 109218, "recognition language": 138080, "lms pretrained": 97178, "pretrained massive": 127036, "amounts text": 8701, "text particular": 165347, "transformers bert": 169298, "bert generative": 17536, "pretraining gpt": 127338, "key technology": 81592, "technology natural": 164151, "results using": 143901, "using finetuned": 174205, "finetuned gpt": 59027, "combination automatic": 25821, "automatic speech": 14740, "recognition asr": 138044, "bert bidirectional": 17515, "output probabilities": 117974, "language prior": 86478, "prior probability": 127919, "method proposed": 101040, "based bidirectional": 15689, "lm outputs": 97064, "results widely": 143935, "asr tasks": 13011, "tasks showed": 163235, "gpt2 outperformed": 66575, "neural lms": 112871, "lms different": 97125, "different architectures": 41658, "architectures trained": 12299, "indomain text": 75803, "12 relative": 276, "relative word": 139394, "rate reduction": 136011, "ami corpus": 8666, "corpus proposed": 32342, "enables bert": 48164, "bert obtain": 17575, "relative werr": 139393, "results improvements": 143491, "documents leveraging": 43922, "paper addresses": 118704, "generating table": 64355, "require additional": 141063, "retrieving relevant": 144287, "relevant sentences": 139650, "sentences paper": 148589, "table content": 160743, "content retrieved": 30610, "contributions paper": 31501, "paper discussion": 118864, "discussion challenges": 42990, "development dataset": 41078, "documents different": 43902, "different strategies": 42012, "retrieve relevant": 144222, "results showed": 143787, "better generation": 17889, "model task": 104720, "task outperformed": 161589, "bleu meteor": 18684, "header table": 68910, "supplementary training": 159239, "widely applied": 178362, "technique finetunes": 163771, "finetunes pretrained": 59148, "models intermediate": 106801, "intermediate task": 79534, "task target": 161767, "able improve": 2522, "performance pretrained": 121929, "models unclear": 109531, "research shows": 142082, "shows intermediate": 150444, "tasks involving": 162642, "involving complex": 80781, "paper discover": 118855, "reasoning complex": 136763, "complex skills": 27589, "skills simple": 152187, "diverse target": 43673, "target tasks": 161114, "tasks conduct": 162108, "experiments study": 54479, "study impact": 157404, "different factors": 41767, "findings suggest": 58805, "rethinking role": 143972, "intermediate finetuning": 79510, "dataset news": 36428, "news headlines": 113564, "detecting implicit": 40410, "implicit causal": 72971, "causal relations": 21220, "texts task": 165788, "sense world": 148397, "knowledge existing": 81965, "commonsense causal": 26255, "causal reasoning": 21215, "dataset detecting": 36236, "english news": 49085, "russian news": 145776, "general topic": 63061, "present set": 126446, "set models": 149241, "models experiments": 106240, "including multilingual": 74625, "multilingual xlmroberta": 110570, "based model": 15949, "gpt2 based": 66516, "model possible": 104293, "possible effects": 124418, "effects prediction": 46345, "current applications": 34062, "applications natural": 10615, "nlp recently": 113798, "combines pretrained": 25951, "combination generative": 25824, "generative adversial": 65301, "networks gans": 112747, "shown produce": 150331, "exposure bias": 55552, "space finetuning": 153577, "single word": 151877, "word generation": 178646, "generation approach": 64427, "model highlevel": 103800, "highlevel features": 69690, "wordbyword generation": 178696, "generation finetune": 64661, "using reinforcement": 174662, "intrinsically motivated": 79905, "quality diversity": 134101, "model improvements": 103832, "improvements brought": 73884, "rl finetuning": 145054, "datasets text": 37157, "generation results": 65051, "stateoftheart quality": 155319, "models zeroshot": 109737, "zeroshot learners": 180225, "learners paper": 90151, "improving zeroshot": 74237, "learning abilities": 90164, "abilities language": 1936, "models instruction": 106779, "instruction tuning": 78067, "tuning finetuning": 170014, "models collection": 105671, "collection tasks": 25754, "tasks described": 162201, "performance unseen": 122213, "language instruction": 83442, "instruction templates": 78062, "templates evaluate": 164231, "evaluate instructiontuned": 50991, "instructiontuned model": 78401, "unseen task": 172185, "task types": 161792, "improves performance": 74044, "surpasses zeroshot": 159504, "175b gpt3": 499, "tasks evaluate": 162322, "outperforms fewshot": 117770, "fewshot gpt3": 57919, "gpt3 large": 66715, "ablation studies": 2436, "studies reveal": 157074, "number finetuning": 114869, "model scale": 104506, "language instructions": 83443, "key success": 81580, "success instruction": 158248, "models complex": 105705, "complex tasks": 27606, "tasks demonstration": 162192, "paper demonstrates": 118842, "demonstrates finetuning": 38847, "stepbystep demonstrations": 155697, "possible teach": 124469, "previously proved": 127737, "proved difficult": 132631, "number examples": 114860, "examples specifically": 52701, "specifically finetune": 154202, "finetune gptneo": 58926, "accuracy task": 3402, "million training": 102243, "examples finetuning": 52587, "gptneo model": 67309, "achieves 80": 3945, "80 accuracy": 1652, "accuracy achieved": 3135, "constructing appropriate": 30191, "dataset finetuning": 36310, "finetuning changes": 59191, "changes learning": 22379, "learning algorithm": 90195, "algorithm results": 7850, "suggest finetuning": 158534, "small sets": 152361, "useful paradigm": 173344, "enabling individuals": 48304, "individuals training": 75782, "training machine": 168566, "coax models": 24638, "complex multistep": 27485, "multistep tasks": 111195, "models poor": 108554, "biomedical domain": 18541, "domain deep": 44128, "models set": 109081, "set new": 149250, "breakthroughs tasks": 19030, "nlp recent": 113796, "work shown": 179294, "large amounts": 87179, "achieve high": 3657, "models ability": 105172, "ability large": 2240, "fewshot transfer": 58080, "learning explored": 90447, "investigated performance": 80536, "performance powerful": 121921, "fewshot settings": 58053, "various biomedical": 175842, "biomedical nlp": 18566, "great extent": 67693, "extent models": 56019, "models underperform": 109539, "finetuned training": 59132, "data gpt3": 35136, "gpt3 achieved": 66637, "results fewshot": 143410, "fewshot knowledge": 57936, "transfer opendomain": 168980, "opendomain nlp": 116460, "tasks perform": 162939, "perform effectively": 120934, "smaller gpt3": 152394, "biomedical text": 18577, "study suggests": 157651, "largely benefit": 89146, "indomain pretraining": 75800, "pretraining taskspecific": 127457, "learning indomain": 90576, "learning strategies": 91025, "nlp domain": 113723, "domain empirical": 44133, "probing pretrained": 128163, "models promptbased": 108688, "promptbased knowledge": 130770, "used measure": 173142, "stored pretrained": 155877, "work uses": 179353, "considerable amounts": 29605, "amounts data": 8680, "prompts better": 131176, "performance work": 122309, "work compare": 178847, "variety approaches": 175689, "10 20": 102, "available addition": 15066, "dataset named": 36421, "fewshot examples": 57904, "probing performance": 128161, "simpleyeteffective approach": 151573, "approach finetuning": 11238, "finetuning bias": 59184, "vectors model": 176410, "methods dataset": 101416, "dataset code": 36151, "similarity measures": 151360, "vital tool": 177419, "tool understanding": 167044, "understanding language": 171320, "models represent": 108930, "representational similarity": 140756, "measures cosine": 99919, "similarity euclidean": 151343, "euclidean distance": 50862, "successfully used": 158403, "used static": 173243, "embedding models": 47183, "models understand": 109541, "semantic space": 148227, "measures applied": 99914, "applied embeddings": 10754, "embeddings contextualized": 47220, "gpt2 work": 66612, "contextualized language": 31129, "behavior model": 16616, "model simple": 104581, "able correct": 2482, "reveal underlying": 144379, "analysis contextual": 8868, "models bring": 105545, "gpt3 shows": 66758, "shows remarkable": 150470, "remarkable incontext": 140207, "trained hundreds": 167947, "billion scale": 18440, "scale data": 146275, "data address": 34595, "remaining issues": 139963, "gpt3 paper": 66737, "performances different": 122330, "different sized": 41997, "sized models": 152083, "models effect": 106043, "prompt optimization": 130613, "learning achieve": 90176, "achieve introduce": 3677, "82b gpt3": 1692, "training configuration": 168200, "shows stateoftheart": 150480, "stateoftheart incontext": 155159, "performances various": 122346, "performance benefits": 121197, "promptbased learning": 130775, "learning demonstrate": 90357, "prompt engineering": 130440, "code ai": 24657, "paradigm providing": 119503, "providing ai": 133262, "ai prototyping": 7174, "interactive prompt": 79330, "lastly demonstrate": 89456, "demonstrate potential": 38466, "potential methods": 124859, "methods successful": 101847, "transfer model": 168972, "model transformerbased": 104805, "conventional nlp": 31723, "tasks struggle": 163292, "numerical understanding": 115015, "understanding required": 171458, "objectives specifically": 115263, "specifically designed": 154173, "designed learn": 39906, "investigate ability": 80363, "tasks learn": 162697, "perform reasonably": 121022, "tasks examining": 162336, "contextual embeddings": 31086, "stateoftheart contextual": 155112, "embeddings obtained": 47263, "obtained large": 115522, "languages need": 87071, "need learn": 112343, "learn representations": 90042, "representations using": 140906, "using multilingual": 174504, "multilingual model": 110507, "ongoing debate": 116056, "shared languages": 149813, "specific linguistic": 154033, "features learn": 57532, "annotated datasets": 9465, "structural information": 156517, "information encoded": 76384, "representations diverse": 140793, "languages observe": 87076, "closely related": 24524, "shared crosslingual": 149809, "orthogonal transformation": 117419, "successfully apply": 158369, "fewshot crosslingual": 57894, "models textual": 109395, "decoding step": 37601, "tokens finetuned": 166814, "finetuned target": 59125, "languages like": 87047, "generate invalid": 63585, "code rendering": 25097, "code trained": 25185, "output sequences": 117997, "texttosql translation": 165855, "finetuned t5": 59123, "stateoftheart solutions": 155354, "asking questions": 12890, "questions like": 135183, "educational experts": 45609, "automatically generating": 14822, "generating questionanswer": 64307, "data generating": 35104, "generating high": 64238, "quality questionanswer": 134235, "meaningful task": 99802, "task previous": 161644, "works achieved": 179419, "great results": 67722, "generation difficult": 64580, "practical application": 125383, "education field": 45540, "field paper": 58223, "paper time": 119371, "questionanswer pair": 134964, "pair generation": 118519, "generation task": 65137, "task realworld": 161678, "data proposes": 35574, "capture important": 20657, "important information": 73145, "generation accordingly": 64388, "accordingly propose": 3068, "propose multiagent": 131936, "multiagent communication": 110310, "communication model": 26393, "guide generation": 68177, "strong generative": 156391, "model makes": 104059, "great breakthroughs": 67685, "task make": 161536, "make comprehensive": 98511, "comprehensive analysis": 27950, "analysis model": 9018, "model suggesting": 104682, "suggesting new": 158621, "new directions": 113148, "answering recent": 9947, "advances multimodal": 6033, "multimodal vision": 110787, "predominantly focused": 125984, "focused english": 60095, "language lack": 83473, "multilingual multimodal": 110518, "multimodal datasets": 110619, "address gap": 5229, "gap provide": 62720, "new multilingual": 113287, "multilingual evaluation": 110483, "evaluation benchmark": 51444, "answering task": 9969, "languages enabling": 86987, "enabling detect": 48285, "crucial challenges": 33773, "challenges crosslingual": 21810, "answering propose": 9925, "approaches adapt": 11683, "adapt multimodal": 4543, "models multilingual": 108245, "models multimodal": 108247, "methods outperform": 101697, "outperform current": 117579, "stateoftheart multilingual": 155241, "multimodal models": 110721, "zeroshot crosslingual": 180152, "crosslingual settings": 33670, "settings accuracy": 149522, "accuracy remains": 3372, "remains low": 140038, "performance drop": 121435, "accuracy points": 3336, "target languages": 161079, "crosslingual transfer": 33673, "transfer task": 168995, "task results": 161702, "transfer multimodal": 168974, "models yields": 109731, "knowledge shared": 82398, "types commonsense": 170338, "example scenarios": 52502, "characteristics generally": 22458, "work paper": 179151, "paper construct": 118815, "reasoning dataset": 136791, "particular study": 120125, "study stateoftheart": 157644, "multimodal commonsense": 110605, "models generalize": 106435, "answering questions": 9938, "east asia": 45344, "significantly lower": 151071, "analyze reasons": 9328, "performance disparity": 121405, "disparity performance": 43061, "performance gap": 121560, "qa pairs": 133909, "require highlevel": 141116, "recognition dataset": 138053, "code released": 25092, "improving text": 74225, "prediction language": 125810, "gpt2 performed": 66578, "task models": 161550, "require considerable": 141081, "training effort": 168413, "adapt specific": 4560, "specific writing": 154128, "writing domains": 179723, "domains medical": 44470, "intermediate training": 79536, "training strategy": 168768, "strategy enhance": 156139, "enhance pretrained": 49258, "performance text": 122174, "specific domains": 153979, "strategy includes": 156159, "includes novel": 74379, "novel selfsupervised": 114683, "training objective": 168608, "model complete": 103318, "complete partial": 27278, "improve models": 73524, "preliminary experiments": 126125, "experiments shown": 54463, "approach able": 10939, "table question": 160750, "bert transformer": 17612, "produce structured": 129465, "structured query": 156668, "practical settings": 125448, "systems deployed": 160333, "word distributions": 178624, "pretraining corpus": 127285, "corpus work": 32366, "work simulate": 179307, "topic shift": 167336, "designing novel": 40006, "novel challenge": 114433, "challenge benchmarks": 21594, "groups based": 67966, "based popular": 16005, "datasets empirically": 36811, "despite pretraining": 40179, "opendomain text": 116476, "text performance": 165350, "evaluated unseen": 51215, "response propose": 142689, "adaptation framework": 4621, "bert novel": 17574, "novel texttotext": 114716, "transformer generator": 169130, "generator t5": 65630, "based natural": 15961, "language question": 86682, "focused generating": 60101, "specific training": 154117, "logical form": 97360, "reasonably good": 136603, "good baseline": 66260, "lead robust": 89771, "better suited": 18034, "practical deployment": 125406, "instructional prompts": 78150, "follow language": 60217, "study question": 157579, "conducting extensive": 29312, "empirical analysis": 47668, "analysis shed": 9159, "light important": 92122, "important features": 73134, "prompts specifically": 131481, "specifically study": 154286, "techniques manual": 163964, "prompts effective": 131237, "examples include": 52610, "decomposing complex": 37628, "complex task": 27603, "task instruction": 161479, "multiple simpler": 111040, "simpler tasks": 151566, "instructions sequential": 78350, "sequential steps": 148886, "steps experiments": 155736, "compare zeroshot": 26741, "lms prompted": 97181, "instructions 12": 78202, "tasks categories": 162030, "categories compared": 21091, "original instructions": 117345, "instructions lead": 78294, "lead significant": 89775, "different sizes": 41998, "prompts boost": 131177, "tasks furthermore": 162437, "examples required": 52681, "lms fewshot": 97140, "pave way": 120583, "way effective": 177798, "effective future": 45763, "algorithms language": 7937, "ambiguities arise": 8629, "lms exhibit": 97132, "sentence completions": 148482, "estimate probability": 50729, "methods targeted": 101864, "targeted syntactic": 161139, "evaluation technique": 51894, "makes possible": 98679, "possible explore": 124421, "apply method": 10860, "method study": 101122, "study behavior": 157184, "lms gpt2": 97148, "human sentence": 71036, "sentence processing": 148523, "processing experiments": 129153, "select correct": 147770, "occasional errors": 115576, "potential areas": 124599, "areas improvement": 12370, "improvement truthfulqa": 73863, "measuring models": 99957, "models mimic": 108186, "mimic human": 102260, "propose benchmark": 131731, "benchmark measure": 17026, "measure language": 99851, "generating answers": 64136, "answers questions": 10072, "benchmark comprises": 16871, "questions span": 135280, "categories including": 21101, "including health": 74551, "law finance": 89598, "crafted questions": 33151, "questions humans": 135158, "humans answer": 71347, "models avoid": 105437, "avoid generating": 15339, "generating false": 64214, "false answers": 57157, "imitating human": 72578, "tested gpt3": 164670, "model best": 103209, "best model": 17702, "questions human": 135157, "performance 94": 121118, "models generated": 106464, "largest models": 89444, "models generally": 106436, "tasks performance": 162940, "performance improves": 121656, "improves model": 74030, "learned training": 90136, "training distribution": 168395, "scaling models": 146429, "finetuning using": 59604, "using training": 174813, "training objectives": 168609, "answering answering": 9813, "answering complex": 9827, "complex opendomain": 27507, "opendomain questions": 116473, "understanding latent": 171328, "entities existing": 49847, "existing qa": 53544, "types relations": 170416, "hurts generalization": 71556, "generalization performance": 63210, "performance questions": 121977, "qa dataset": 133878, "dataset covering": 36202, "covering wide": 33093, "range relations": 135686, "qa model": 133899, "model infer": 103853, "infer latent": 75943, "question conduct": 134845, "extractive qa": 56381, "demonstrate pretraining": 38480, "popular opendomain": 124035, "opendomain qa": 116462, "model dense": 103432, "dense passage": 39094, "passage retriever": 120337, "retriever dpr": 144256, "achieves 22": 3940, "improvement exact": 73786, "exact match": 52337, "match accuracy": 99405, "accuracy natural": 3315, "natural questions": 111943, "questions triviaqa": 135309, "improves significantly": 74083, "understanding differences": 171193, "research results": 142052, "essential prerequisite": 50621, "prerequisite effective": 126198, "monitoring evaluation": 110055, "programs multiple": 129918, "including open": 74647, "open data": 116221, "databases paper": 36022, "paper systematically": 119357, "openly available": 116538, "data data": 34883, "data sources": 35779, "european commission": 50866, "data portal": 35500, "collect data": 25655, "data multiple": 35405, "multiple sources": 111047, "assess quality": 13115, "quality data": 134088, "report large": 140540, "complete dataset": 27275, "programs identify": 129910, "possible improvements": 124434, "improvements make": 73916, "make recommendations": 98588, "finetuning transformers": 59599, "remain open": 139927, "questions pertaining": 135218, "decisions findings": 37459, "critical training": 33564, "training runs": 168708, "associated computational": 13469, "computational cost": 28343, "goal paper": 66182, "presents comprehensive": 126556, "comprehensive study": 28125, "study scaling": 157606, "pretraining loss": 127382, "set findings": 149198, "transfer downstream": 168909, "task context": 161279, "pretrainfinetune paradigm": 127253, "key findings": 81505, "paper follows": 118959, "downstream finetuning": 44723, "t5base t5large": 160731, "end present": 48673, "achieve similar": 3740, "having 50": 68868, "50 fewer": 1298, "faster compared": 57285, "compared widely": 26967, "t5base model": 160730, "model publicly": 104393, "release 100": 139436, "checkpoints different": 23549, "research analysis": 141585, "grammatical knowledge": 67460, "models prior": 108645, "supervision helps": 159199, "subjectverb agreement": 157882, "bias improve": 18135, "ability learn": 2250, "typologically different": 170535, "different languages": 41816, "languages investigate": 87032, "investigate question": 80485, "different word": 42090, "chinese datasets": 23621, "datasets different": 36792, "sizes evaluate": 152095, "evaluate models": 51023, "learn different": 89971, "different aspects": 41661, "syntactic semantic": 159898, "semantic relationships": 148206, "performance lowdata": 121769, "settings suggesting": 149648, "dependency relationships": 39154, "knowledge vision": 82502, "language achieve": 83126, "measure large": 99852, "models known": 106851, "known suffer": 82630, "suffer hallucination": 158426, "hallucination problem": 68403, "prone output": 131569, "indicating lack": 75653, "lack knowledge": 82972, "knowledge proposed": 82320, "proposed solution": 132435, "solution provide": 152968, "provide model": 132888, "model additional": 103077, "additional data": 4947, "data modalities": 35375, "knowledge obtained": 82252, "text investigate": 165257, "investigate use": 80511, "use visual": 172935, "visual data": 177150, "complement knowledge": 27246, "proposing method": 132498, "method evaluating": 100840, "evaluating visual": 51405, "visual knowledge": 177207, "transfer text": 168998, "multimodal language": 110676, "models method": 108176, "method based": 100706, "steps novel": 155756, "novel task": 114704, "querying knowledge": 134651, "knowledge memory": 82228, "additionally introduce": 5082, "introduce model": 80015, "architecture involves": 12175, "visual imagination": 177184, "step evaluate": 155629, "method method": 100977, "method successfully": 101125, "transfer capabilities": 168899, "capabilities models": 20056, "models novel": 108316, "novel model": 114601, "shows promising": 150465, "results leveraging": 143566, "leveraging multimodal": 91908, "multimodal knowledge": 110675, "tuning pretrained": 170087, "pretrained visionlanguage": 127235, "visionlanguage models": 177038, "promising capabilities": 130238, "grounding natural": 67914, "language image": 83409, "data facilitating": 35040, "facilitating broad": 56699, "crossmodal tasks": 33690, "tasks note": 162861, "exists significant": 53663, "significant gap": 150711, "finetuning resulting": 59515, "need large": 112335, "amounts labeled": 8691, "visual grounding": 177180, "grounding capability": 67890, "tasks address": 161911, "tuning novel": 170070, "novel paradigm": 114623, "fillintheblank problem": 58339, "image text": 72334, "mitigating gap": 102658, "strong fewshot": 156381, "zeroshot visual": 180372, "grounding capabilities": 67889, "comprehensive experimental": 28032, "outperform finetuned": 117591, "finetuned counterparts": 59003, "absolute accuracy": 2602, "accuracy improvement": 3270, "standard deviation": 154814, "reduction average": 138607, "evaluation make": 51687, "make data": 98516, "data code": 34762, "code paper": 25042, "carbon emissions": 20748, "translation recent": 169509, "recent times": 137703, "progress field": 129964, "field nlp": 58222, "nlp applications": 113684, "applications growing": 10549, "utility language": 174954, "models increases": 106736, "advances performance": 6048, "large computational": 87215, "computational power": 28392, "power data": 125165, "consequently leading": 29546, "leading large": 89836, "carbon footprints": 20753, "imperative study": 72800, "reduce overall": 138457, "impact training": 72733, "particular large": 120089, "work assess": 178809, "assess performance": 13105, "models machine": 108115, "translation multiple": 169491, "multiple language": 110954, "language pairs": 86454, "required train": 141260, "models language": 106861, "examine various": 52419, "various components": 175864, "models analyze": 105354, "reduce carbon": 138406, "realworld fewshot": 136457, "fewshot text": 58074, "classification benchmark": 23961, "benchmark large": 17009, "promise fewshot": 130177, "textbased tasks": 165602, "tasks given": 162465, "taskspecific examples": 163519, "examples models": 52640, "models soon": 109182, "tasks far": 162394, "reserved human": 142294, "human research": 71018, "existing benchmarks": 53296, "benchmarks designed": 17217, "designed measure": 39910, "measure progress": 99868, "applied settings": 10807, "benchmark realworld": 17068, "fewshot tasks": 58070, "evaluation setup": 51854, "baseline evaluations": 16210, "areas current": 12362, "current techniques": 34280, "techniques struggle": 164029, "struggle reasoning": 156772, "reasoning long": 136973, "long texts": 97494, "tasks classes": 162045, "human baselines": 70612, "tasks difficult": 162231, "human baseline": 70611, "baseline f1": 16212, "f1 scores": 56491, "gpt3 average": 66645, "leaderboard track": 89797, "work report": 179263, "stories ai": 155880, "report details": 140518, "novel conversational": 114452, "conversational agent": 31819, "public audience": 133543, "introduced novel": 80169, "constraints language": 30092, "produce longer": 129439, "longer narrative": 97528, "narrative text": 111446, "tested model": 164679, "evaluate ai": 50901, "indicated preference": 75632, "preference ai": 126000, "ai characters": 6906, "meaningful novel": 99797, "findings support": 58815, "different language": 41811, "collaborate humans": 25572, "variety social": 175763, "social contexts": 152552, "generative art": 65377, "method generating": 100890, "artistic images": 12810, "leveraging stateoftheart": 91955, "stateoftheart deep": 155119, "methods visual": 101928, "visual generation": 177178, "semantic models": 148181, "dataset visual": 36616, "generate images": 63562, "images based": 72396, "based specific": 16106, "small dataset": 152284, "images generated": 72426, "emotion elicit": 47567, "emotion used": 47575, "used prompt": 173194, "prompt image": 130538, "image generation": 72259, "smallscale study": 152463, "brings forth": 19142, "forth new": 60645, "new vision": 113497, "affective computing": 6323, "computing computational": 28532, "computational creativity": 28355, "generative systems": 65593, "data story": 35802, "goals provide": 66224, "provide quantitative": 132941, "quantitative insights": 134355, "digital art": 42274, "rely data": 139834, "text processing": 165377, "processing tools": 129343, "certain properties": 21409, "focusing different": 60178, "semantic context": 148128, "finally introduce": 58486, "use openais": 172789, "openais generative": 116403, "transformer gpt3": 169144, "framework generating": 61184, "generating scalable": 64324, "scalable rl": 146255, "rl achieved": 145037, "achieved significant": 3890, "significant success": 150892, "domains robotics": 44525, "robotics games": 145207, "health care": 68933, "training rl": 168705, "rl agents": 145040, "agents time": 6747, "time consuming": 166366, "current implementations": 34133, "implementations exhibit": 72864, "exhibit poor": 53079, "performance challenges": 121225, "irregular memory": 80845, "memory accesses": 100364, "learning implementations": 90559, "replay buffer": 140480, "key component": 81476, "rl algorithms": 145043, "samples obtained": 146046, "environmental interactions": 50048, "data sampling": 35689, "define new": 37936, "data structure": 35807, "novel data": 114455, "tree reduces": 169664, "additionally propose": 5111, "mechanism reduce": 100025, "learners perform": 90153, "stochastic gradient": 155820, "using collected": 174061, "collected data": 25681, "data framework": 35079, "framework supports": 61440, "supports wide": 159399, "algorithms including": 7934, "effectiveness framework": 46182, "framework accelerating": 60911, "algorithms performing": 7958, "performing experiments": 122400, "cpu gpu": 33129, "gpu platform": 67349, "platform using": 123393, "using openai": 174554, "openai benchmarks": 116326, "task assess": 161203, "open book": 116206, "closed book": 24455, "book qa": 18797, "task leaderboard": 161511, "stimulate research": 155799, "research question": 142018, "models ptlms": 108736, "shown great": 150248, "questionanswering tasks": 135002, "given significant": 66010, "training zeroshot": 168827, "settings propose": 149632, "task includes": 161462, "texts social": 165779, "social sciences": 152663, "humanities history": 71208, "truefalse statements": 169816, "statements based": 155041, "based review": 16078, "questions written": 135327, "based remaining": 16071, "baseline results": 16258, "results given": 143435, "given stateoftheart": 66017, "balanced random": 15514, "random performance": 135537, "performance 50": 121114, "t5 finetuned": 160705, "performance suggesting": 122133, "having read": 68888, "pretraining yields": 127481, "yields best": 180010, "performance better": 121202, "automatically retrieve": 14850, "use answer": 172501, "question ai": 134674, "ai chains": 6904, "transparent controllable": 169596, "humanai interaction": 71115, "chaining large": 21477, "model prompts": 104370, "prompts large": 131350, "llms demonstrated": 94830, "demonstrated impressive": 38686, "impressive potential": 73358, "simple tasks": 151536, "lack transparency": 83024, "transparency insufficient": 169582, "make effective": 98529, "assisting humans": 13445, "tasks response": 163173, "response introduce": 142664, "introduce concept": 79937, "steps output": 155757, "output step": 118002, "step input": 155650, "set llm": 149236, "present interactive": 126341, "users modify": 173715, "intermediate results": 79529, "improved quality": 73712, "task outcomes": 161588, "significantly enhanced": 150990, "developed new": 40895, "new ways": 113506, "interacting llms": 79094, "calibrate model": 19622, "alternative strategies": 8581, "model outputs": 104192, "studies explore": 156997, "explore llm": 55239, "llm chains": 93526, "chains used": 21570, "used future": 173080, "future applications": 62222, "applications open": 10622, "academic fields": 2731, "importance open": 73049, "widely accepted": 178354, "scientific community": 146939, "community evaluation": 26471, "large repositories": 89037, "open access": 116198, "continuously growing": 31268, "procedures rely": 128714, "rely proprietary": 139880, "available proprietary": 15187, "paper investigates": 119044, "open resources": 116287, "academic graph": 2732, "uses data": 173840, "similarities differences": 151331, "main conclusion": 98227, "open datasets": 116223, "natural sciences": 111950, "improvement large": 73812, "large gap": 87260, "effort required": 46869, "bias large": 18147, "models abstract": 105199, "textual reasoning": 165941, "reasoning large": 136952, "large natural": 88951, "gpt3 t5": 66763, "demonstrate impressive": 38376, "impressive abilities": 73253, "range general": 135625, "general nlp": 63007, "tasks knowledge": 162660, "embedded models": 47145, "models provides": 108730, "provides useful": 133239, "useful inductive": 173331, "traditional nlp": 167671, "task training": 161781, "symbolic reasoning": 159822, "reasoning engine": 136827, "learn quickly": 90036, "natural way": 111960, "human intuition": 70877, "example training": 52510, "real world": 136261, "language describing": 83241, "object manipulation": 115143, "manipulation navigation": 98955, "demonstrate multiple": 38447, "multiple types": 111078, "generalization novel": 63204, "novel scenarios": 114680, "complicated task": 27719, "gains advantage": 62511, "advantage training": 6121, "word acquisition": 178611, "models acquire": 105261, "individual words": 75753, "words training": 178758, "learning curves": 90342, "evaluate multiple": 51035, "word length": 178649, "length lexical": 91375, "models reinforcing": 108893, "reinforcing importance": 139129, "sensorimotor experience": 148467, "language acquisition": 83127, "models rely": 108911, "word frequency": 178644, "like children": 92247, "learning words": 91136, "interestingly models": 79412, "consistent patterns": 29825, "patterns training": 120568, "models lstm": 108107, "models predict": 108587, "early training": 45268, "predictions results": 125932, "results shed": 143782, "learning mechanisms": 90672, "providing insights": 133321, "humanlike language": 71268, "plays vital": 123540, "vital role": 177412, "role diagnosis": 145482, "challenge accurately": 21575, "accurately classify": 3518, "clinical diagnosis": 24328, "success field": 158238, "past years": 120402, "parallel text": 119578, "sequence words": 148799, "encoder architecture": 48407, "encoder layers": 48428, "layers followed": 89667, "respectively use": 142584, "use case": 172523, "multilabel classification": 110440, "challenges hardware": 21895, "hardware limitations": 68688, "achieved score": 3886, "model zeroshot": 104915, "learning recent": 90901, "work like": 179106, "demonstrated excellent": 38652, "tasks scaling": 163197, "size dataset": 151982, "dataset size": 36545, "gpt3 requires": 66748, "requires huge": 141389, "researchers work": 142275, "method incorporates": 100927, "largescale distributed": 89298, "distributed training": 43336, "training performance": 168632, "architecture design": 12142, "design method": 39689, "10 current": 112, "current largest": 34154, "parameters achieves": 119703, "achieves excellent": 4009, "thousands gpus": 166255, "gpus training": 67358, "training stateoftheart": 168763, "results nlp": 143632, "tasks data": 162149, "data processing": 35553, "method designed": 100782, "designed efficiently": 39853, "raw data": 136085, "data current": 34881, "chinese corpus": 23618, "quality texts": 134284, "built based": 19472, "based method": 15944, "method addition": 100655, "expansion method": 53716, "proposed improve": 132316, "improve zeroshot": 73663, "steady improvement": 155537, "improvement observed": 73828, "observed accuracy": 115399, "accuracy various": 3419, "presents strong": 126641, "strong capacity": 156368, "generation generated": 64689, "generated articles": 63798, "articles difficult": 12609, "difficult distinguish": 42143, "distinguish humanwritten": 43281, "humanwritten ones": 71522, "training transformerbased": 168803, "transformerbased neural": 169277, "models expensive": 106232, "data like": 35316, "computation patterns": 28316, "patterns complex": 120520, "networks existing": 112741, "existing systems": 53606, "systems focus": 160391, "focus model": 60024, "model inference": 103854, "inference optimization": 76061, "encoder models": 48432, "accelerate training": 2781, "training general": 168462, "family transformer": 57202, "techniques tailored": 164036, "tailored specific": 160936, "memory access": 100362, "access patterns": 2892, "including bert": 74431, "decoderonly transformer": 37549, "vision transformer": 176994, "experiments variety": 54527, "variety models": 175729, "models benchmarks": 105482, "previous systems": 127675, "systems different": 160339, "different gpus": 41787, "speedup compared": 154521, "systems large": 160452, "large public": 89027, "translation benchmark": 169444, "scaling laws": 146412, "fewshot adaptation": 57883, "adaptation pretrained": 4652, "image classifiers": 72212, "neural scaling": 112974, "rapidly growing": 135929, "growing area": 68003, "area significant": 12351, "significant importance": 150730, "importance future": 73034, "future machine": 62288, "learning particularly": 90813, "light recent": 92144, "recent breakthroughs": 137451, "gpt3 clip": 66665, "accurately predicting": 3554, "predicting neural": 125745, "network performance": 112684, "performance increasing": 121668, "resources data": 142431, "data compute": 34817, "compute model": 28446, "provides comprehensive": 133118, "evaluation different": 51544, "different approaches": 41656, "opposed traditional": 116897, "allows focus": 8436, "promising future": 130257, "future approaches": 62224, "approaches work": 11957, "work consider": 178866, "consider challenging": 29563, "problem fewshot": 128256, "learning image": 90558, "image classification": 72201, "target data": 161049, "different source": 42004, "includes new": 74378, "new image": 113224, "encountered training": 48580, "training current": 168217, "main goal": 98243, "goal investigate": 66176, "data affects": 34607, "fewshot generalization": 57916, "standard image": 154829, "classifiers key": 24187, "key observations": 81544, "performance improvements": 121652, "power laws": 125196, "set size": 149310, "size increases": 152006, "data coming": 34793, "coming different": 26030, "different domain": 41742, "new classes": 113111, "classes training": 23917, "data fewshot": 35046, "performance new": 121843, "faster rate": 57297, "standard classification": 154810, "classification performance": 24047, "performance previously": 121942, "seen classes": 147687, "findings shed": 58793, "shed new": 149861, "new light": 113257, "light relationship": 92146, "verification task": 176502, "task determining": 161317, "applications forensic": 10532, "largest publicly": 89448, "available dataset": 15095, "dataset field": 36300, "ensemble models": 49642, "models written": 109721, "written human": 179780, "human experts": 70784, "openai codex": 116331, "codex trained": 25359, "trained text": 168098, "text code": 164925, "code use": 25198, "use codex": 172554, "codex generate": 25341, "generate model": 63611, "model variants": 104866, "demonstrate ability": 38218, "generate entire": 63476, "running programs": 145753, "verification tasks": 176503, "tasks specific": 163272, "specific relationships": 154074, "years researchers": 179933, "models explore": 106255, "explore upper": 55309, "upper limit": 172385, "intensive computational": 78999, "resources models": 142457, "reusing existing": 144311, "effectively transfer": 46093, "transfer knowledge": 168918, "smaller pretrained": 152435, "bertbase large": 17626, "parameter initialization": 119619, "initialization significantly": 77070, "pretraining efficiency": 127313, "efficiency large": 46478, "model specifically": 104646, "extend previous": 55639, "model improve": 103828, "advanced knowledge": 5745, "twostage pretraining": 170265, "experiments representative": 54436, "plms bert": 123577, "demonstrate method": 38417, "significant training": 150908, "compared baselines": 26750, "baselines including": 16334, "including learning": 74589, "learning scratch": 90968, "applicable different": 10278, "cost pretraining": 32726, "pretraining bertbase": 127272, "sizes source": 152116, "available publication": 15191, "building chinese": 19379, "chinese biomedical": 23607, "biomedical language": 18551, "models multilevel": 108244, "gpt revolutionized": 66488, "revolutionized field": 144643, "nlp general": 113741, "domain biomedical": 44102, "domain prior": 44252, "efforts building": 46893, "biomedical plms": 18568, "focused mainly": 60112, "english work": 49122, "scratch new": 147224, "new pretraining": 113347, "framework new": 61324, "input tokens": 77362, "recover original": 138322, "original identities": 117339, "original sequence": 117385, "learn language": 90000, "language semantics": 86718, "token sequence": 166736, "experiments 11": 54121, "tasks various": 163451, "various forms": 175949, "verify effectiveness": 176527, "effectiveness superiority": 46294, "superiority approach": 159067, "approach release": 11504, "code later": 24972, "information language": 76545, "models diverse": 106009, "diverse prompts": 43609, "prompts recent": 131440, "information extracted": 76416, "extracted large": 56190, "used query": 173201, "different users": 42078, "query llms": 134608, "llms information": 95628, "different wording": 42091, "accurate responses": 3487, "work aim": 178786, "aim address": 7421, "lightweight models": 92186, "embedding layer": 47171, "layer attention": 89625, "attention layer": 13915, "llms llm": 95810, "llm embeddings": 93615, "embeddings input": 47244, "query llm": 134607, "llm additionally": 93443, "additionally investigate": 5085, "mixture experts": 102752, "experts moe": 54668, "moe models": 110019, "learn set": 90051, "experts select": 54682, "select query": 147785, "llm require": 93961, "require separate": 141185, "separate classifier": 148690, "classifier trained": 24169, "trained humanannotated": 167943, "humanannotated data": 71123, "map natural": 99127, "language prompts": 86668, "prompts continuous": 131207, "perform comparably": 120890, "models extracting": 106285, "information bert": 76296, "eliminating need": 47080, "need additional": 112213, "additional annotations": 4924, "baseline using": 16271, "language queries": 86679, "finally investigate": 58487, "significant factor": 150707, "access llms": 2880, "llms embeddings": 95018, "original natural": 117359, "data generator": 35124, "medical dialogue": 100158, "dialogue summarization": 41521, "summarization medical": 158845, "summarization summaries": 158880, "relevant information": 139611, "information dialogue": 76356, "learning effective": 90395, "effective models": 45820, "models summarization": 109297, "summarization require": 158871, "data especially": 34986, "especially hard": 50486, "hard obtain": 68652, "present algorithm": 126220, "algorithm create": 7790, "synthetic training": 160084, "information utilize": 76840, "utilize gpt3": 175048, "human labeled": 70892, "yield results": 179976, "comparable using": 26626, "ensemble method": 49639, "detailed experiments": 40293, "experiments approach": 54149, "approach produces": 11463, "produces high": 129530, "quality training": 134289, "produced models": 129505, "trained human": 167941, "human data": 70684, "data terms": 35858, "sparse finetuning": 153728, "finetuning crosslingual": 59213, "transfer finetuning": 168914, "finetuning entire": 59245, "entire set": 49815, "parameters large": 119785, "mainstream approach": 98305, "learning increase": 90573, "techniques like": 163954, "model different": 103463, "different facets": 41766, "knowledge dedicated": 81859, "task adapters": 161166, "new finetuning": 113193, "finetuning method": 59375, "desirable properties": 40032, "masks based": 99334, "simple variant": 151549, "lottery ticket": 97725, "ticket hypothesis": 166318, "obtained annotated": 115513, "data source": 35774, "source language": 153448, "target language": 161076, "model unlike": 104829, "adapterbased finetuning": 4720, "method increases": 100929, "increases number": 75287, "parameters inference": 119775, "architecture importantly": 12172, "transfer large": 168926, "margin series": 99190, "multilingual benchmarks": 110465, "based indepth": 15870, "analysis additionally": 8801, "crucial prevent": 33835, "model adaptation": 103067, "soft prompt": 152735, "prompt transfer": 130699, "parameterefficient methods": 119675, "methods apply": 101311, "apply pretrained": 10870, "tasks building": 162019, "tuning approach": 169964, "frozen pretrained": 61676, "model perform": 104225, "perform different": 120925, "novel promptbased": 114651, "approach called": 11037, "source tasks": 153477, "performance prompt": 121948, "tuning tasks": 170133, "tasks remarkably": 163137, "remarkably model": 140323, "matches outperforms": 99444, "outperforms standard": 117851, "finetunes model": 59147, "benchmark using": 17117, "conduct largescale": 29154, "largescale study": 89404, "study task": 157660, "tasks benefit": 162004, "finally propose": 58509, "efficient retrieval": 46707, "retrieval approach": 143995, "task prompts": 161657, "prompts task": 131497, "embeddings identify": 47242, "similar tasks": 151313, "tasks novel": 162863, "novel target": 114703, "task multitask": 161556, "multitask prompted": 111235, "prompted training": 130838, "training enables": 168416, "enables zeroshot": 48260, "task generalization": 161419, "generalization large": 63186, "attain reasonable": 13754, "zeroshot generalization": 180191, "generalization diverse": 63164, "learning language": 90605, "pretraining radford": 127419, "instead directly": 77871, "learning test": 91074, "scale develop": 146280, "mapping natural": 99150, "large set": 89056, "supervised datasets": 159099, "datasets multiple": 36993, "multiple prompts": 111009, "diverse wording": 43698, "benchmarking ability": 17128, "tasks finetune": 162412, "model raffel": 104408, "tasks model": 162809, "strong zeroshot": 156454, "standard datasets": 154812, "datasets outperforming": 37019, "outperforming models": 117684, "models 16x": 105156, "approach attains": 11006, "performance subset": 122127, "subset tasks": 158009, "tasks bigbench": 162010, "benchmark outperforming": 17048, "size trained": 152073, "prompts available": 131170, "paying attention": 120611, "longrange semantic": 97572, "semantic coherence": 148114, "remains challenge": 139975, "challenge automatic": 21592, "demonstrate large": 38393, "nexttoken prediction": 113609, "prediction present": 125842, "boosting inference": 18838, "inference procedure": 76079, "long context": 97442, "dialog responses": 41427, "various zeroshot": 176258, "tasks yields": 163492, "yields performance": 180031, "performance gains": 121551, "additional training": 5010, "training power": 168640, "power prompt": 125215, "tuning recently": 170104, "recently emerged": 137866, "emerged effective": 47349, "effective method": 45809, "method adapting": 100651, "adapting pretrained": 4755, "models number": 108320, "number language": 114889, "investigate prompt": 80482, "tuning semantic": 170116, "language utterances": 86882, "outperforms finetuned": 117771, "conduct ablation": 29021, "studies different": 156982, "different model": 41854, "target representations": 161096, "increasing model": 75333, "scale prompt": 146334, "pretraining distribution": 127305, "improves language": 74014, "model generalization": 103707, "capabilities led": 20011, "t5 research": 160721, "research large": 141878, "training tasks": 168778, "tasks loss": 162761, "loss objectives": 97686, "substantial engineering": 158057, "engineering efforts": 48909, "efforts scale": 46932, "scale model": 146314, "model capacity": 103248, "comparatively little": 26656, "little work": 93253, "work improve": 179034, "generalization models": 63198, "better optimization": 17952, "sam recently": 145938, "optimization procedure": 117031, "generalization language": 63184, "models computational": 105718, "superglue glue": 158979, "questions natural": 135202, "particularly large": 120213, "large gains": 87259, "gains training": 62532, "data tasks": 35854, "model access": 103017, "access large": 2872, "varied architectures": 175667, "nlp introduce": 113745, "efficiently train": 46822, "15b parameters": 441, "parameters computational": 119729, "computational budget": 28333, "model 13": 102991, "13 times": 335, "times smaller": 166606, "largest model": 89443, "french language": 61595, "increasingly large": 75416, "exploring capabilities": 55457, "extremescale models": 56457, "models release": 108898, "scaling law": 146411, "language compare": 83197, "pretraining dataset": 127300, "dataset significantly": 36541, "quality outputs": 134217, "common datasets": 26132, "offensive text": 115624, "text evaluate": 165061, "models discriminative": 105989, "discriminative generative": 42841, "generative tasks": 65595, "comparing stateoftheart": 27015, "models reaching": 108795, "summarization task": 158884, "task research": 161699, "research conducted": 141658, "conducted public": 29278, "large publicly": 89029, "alleviate catastrophic": 8282, "obtain better": 115463, "performance methods": 121798, "methods higher": 101569, "previous tasks": 127676, "performance dramatically": 121433, "dramatically decreases": 44888, "real data": 136224, "learning different": 90369, "learned results": 90127, "results catastrophic": 143210, "forgetting address": 60414, "address issues": 5281, "issues propose": 81048, "movers distance": 110224, "knowledge distribution": 81895, "teacher model": 163614, "model student": 104667, "student model": 156819, "reduce demand": 138417, "modeling generation": 105008, "augmentation process": 14303, "trained task": 168094, "data experimental": 35014, "risks ai": 144971, "ai foundation": 7001, "models education": 106040, "shift ai": 149899, "used including": 173106, "including education": 74503, "algorithmic models": 7884, "particular downstream": 120072, "vision models": 176954, "models clip": 105630, "technologies potential": 164107, "broadly speaking": 19233, "bender et": 17398, "use educational": 172597, "educational domain": 45606, "domain particularly": 44244, "despite potential": 40172, "potential benefits": 124620, "al argue": 7738, "goal providing": 66193, "providing education": 133285, "requires efficient": 141362, "efficient computational": 46587, "rapidly scale": 135942, "educational contexts": 45603, "evidence suggests": 52220, "learners use": 90158, "use introduce": 172688, "shown learn": 150305, "learn effective": 89975, "effective linguistic": 45800, "linguistic representations": 93060, "tasks remain": 163123, "language current": 83231, "approaches capture": 11710, "depends heavily": 39179, "preferences language": 126049, "language depends": 83239, "geographical temporal": 65714, "approach incorporate": 11301, "social context": 152549, "context learned": 30816, "representations largescale": 140836, "method learns": 100956, "representations social": 140887, "contexts using": 31062, "using graph": 174277, "context representations": 30898, "tasks substantial": 163306, "substantial improvement": 158068, "improvement 100": 73738, "100 relative": 157, "baselines generating": 16326, "generating artificial": 64143, "artificial texts": 12796, "complement training": 27248, "data quality": 35593, "using models": 174496, "learning data": 90345, "data supervised": 35830, "tasks naturally": 162844, "question explored": 134871, "explored aspects": 55336, "improve explainability": 73461, "experiments carried": 54167, "tasks sentiment": 163214, "analysis product": 9086, "product reviews": 129579, "fake news": 57099, "news detection": 113558, "detection using": 40649, "generated data": 63839, "benefit data": 17426, "ranking model": 135814, "model using": 104849, "using lightweight": 174407, "lightweight finetuning": 92175, "highly efficient": 69915, "time work": 166530, "work approaches": 178805, "approaches improving": 11803, "performance bertbased": 121199, "finetuning step": 59560, "finetuning methods": 59381, "methods adapterbased": 101286, "second approach": 147457, "approach develop": 11118, "models queries": 108753, "queries documents": 134470, "learning lightweight": 90645, "modules main": 109992, "query document": 134577, "extensive experiment": 55779, "experiment results": 53903, "performance metrics": 121800, "metrics evaluated": 102053, "datasets results": 37090, "results confirm": 143255, "helpful improving": 69211, "accelerating inference": 2792, "early exiting": 45246, "exiting token": 53671, "token pruning": 166729, "models commonly": 105682, "used achieve": 172950, "low inference": 97761, "deploying large": 39241, "models applications": 105371, "applications latency": 10588, "latency constraints": 89477, "challenging work": 22320, "work focus": 178985, "achieve propose": 3716, "computation token": 28323, "models particularly": 108437, "particularly bert": 120152, "save computation": 146189, "final layer": 58382, "empirical studies": 47744, "studies demonstrate": 156970, "demonstrate compared": 38272, "compared previous": 26881, "previous state": 127653, "floating point": 59852, "point operations": 123712, "05 accuracy": 41, "accuracy drop": 3214, "capable achieving": 20396, "achieving average": 4145, "tasks regardless": 163111, "underpin modern": 170893, "modern natural": 109823, "transformers architecture": 169296, "contributed significantly": 31427, "making language": 98763, "modeling effective": 104995, "effective nlp": 45833, "nlp task": 113817, "task leading": 161512, "leading significant": 89860, "significant advancements": 150570, "advancements field": 5885, "cost grows": 32683, "grows quadratically": 68076, "respect input": 142507, "input length": 77275, "length presents": 91384, "presents challenge": 126549, "understand long": 171039, "texts requires": 165769, "requires lot": 141409, "context paper": 30863, "propose finetuning": 131825, "finetuning framework": 59276, "current pretrained": 34209, "models incorporate": 106729, "incorporate explicit": 75011, "entity information": 49892, "make available": 98487, "available information": 15140, "space model": 153594, "results better": 143200, "better language": 17924, "fraction computational": 60882, "implement approach": 72817, "compare finetuned": 26679, "finetuned model": 59072, "model original": 104165, "achieves lower": 4031, "lower perplexity": 97833, "datasets compared": 36717, "gpt2 finetuned": 66533, "finetuned version": 59139, "version gpt2": 176604, "changes compare": 22366, "compare models": 26697, "performance terms": 122167, "terms accuracy": 164383, "important aspect": 73085, "communication social": 26415, "reference images": 138658, "product entity": 129574, "domain creating": 44123, "creating images": 33305, "challenge requires": 21729, "requires finding": 141377, "users topic": 173795, "cognitive theory": 25491, "theory task": 166104, "task called": 161229, "present called": 126236, "approaches involve": 11815, "traditional knowledge": 167635, "knowledge extraction": 81993, "methods large": 101623, "connections similar": 29497, "similar accuracy": 151204, "accuracy different": 3205, "different characteristics": 41684, "shows people": 150459, "discuss advantages": 42865, "advantages combining": 6130, "combining large": 25981, "come important": 26006, "learning remains": 90913, "remains limited": 140031, "transformer attention": 169097, "certain data": 21376, "data conditions": 34822, "associative memory": 13543, "memory model": 100429, "model confirm": 103346, "models discuss": 105992, "discuss implications": 42898, "provide new": 132897, "novel corpus": 114453, "discourse structure": 42718, "structure humans": 156566, "humans computers": 71362, "types coherence": 170337, "corpus covers": 32292, "formal informal": 60500, "contains documents": 30369, "documents generated": 43910, "generated using": 64035, "showcase usefulness": 150088, "discourse analysis": 42701, "analysis text": 9199, "generation providing": 64984, "providing preliminary": 133353, "preliminary evidence": 126122, "relations associated": 139283, "humanai collaborative": 71111, "text datasets": 164997, "datasets nlp": 37002, "nlp researchers": 113805, "researchers need": 142236, "humanlabeled datasets": 71214, "datasets expensive": 36842, "collect datasets": 25658, "datasets collected": 36706, "automatic retrieval": 14730, "retrieval web": 144165, "undesired biases": 171592, "biases data": 18258, "data sourced": 35778, "included datasets": 74350, "used pretrain": 173181, "models leading": 106935, "training test": 168782, "test sets": 164630, "sets work": 149413, "method efficient": 100812, "efficient dataset": 46592, "dataset curation": 36214, "use large": 172700, "writing task": 179763, "task use": 161797, "use method": 172764, "new evaluation": 113170, "evaluation set": 51850, "structured attribute": 156625, "respect gender": 142504, "gender nationality": 62890, "transferability prompt": 169014, "tuning pt": 170102, "parameterefficient method": 119674, "method utilize": 101167, "plms achieve": 123567, "achieve comparable": 3601, "fullparameter finetuning": 61727, "tuning soft": 170121, "requires training": 141461, "time finetuning": 166404, "improve efficiency": 73454, "empirically investigate": 47793, "investigate transferability": 80504, "transferability soft": 169015, "prompts different": 131228, "different downstream": 41750, "tasks plms": 162951, "plms work": 123652, "work zeroshot": 179369, "prompts effectively": 131238, "tasks plm": 162950, "trained similar": 168071, "tasks used": 163422, "prompts similar": 131473, "prompts plms": 131407, "significantly accelerate": 150921, "training improve": 168483, "investigate various": 80522, "activated neurons": 4404, "prompts stimulate": 131487, "research shall": 142070, "code obtained": 25033, "new design": 113142, "penalty term": 120702, "newtons method": 113601, "computer simulations": 28491, "study effects": 157300, "various sparsity": 176180, "systems results": 160594, "systems promoting": 160556, "provide complementary": 132705, "scalable efficient": 146241, "speech enhancement": 154411, "optimization method": 117011, "networks design": 112730, "residual learning": 142316, "learning scheme": 90963, "scheme train": 146798, "obtain scalable": 115501, "dynamically adjust": 45183, "test time": 164648, "models flexibly": 106369, "enhancement performance": 49385, "incurring minimal": 75480, "minimal memory": 102346, "memory training": 100470, "training overhead": 168620, "experiments speech": 54470, "slight performance": 152225, "performance degradation": 121363, "degradation compared": 37982, "corresponding models": 32593, "trained endtoend": 167907, "data evaluating": 34996, "evaluating linguistic": 51330, "generation using": 65233, "current language": 34143, "generate highquality": 63538, "highquality text": 70084, "simply copying": 151611, "text seen": 165447, "tease apart": 163676, "apart possibilities": 10142, "possibilities introduce": 124369, "suite analyses": 158715, "analyses assessing": 8751, "text focusing": 165092, "sequential structure": 148887, "structure apply": 156538, "transformerxl gpt2": 169376, "local structure": 97259, "modelgenerated text": 104961, "text substantially": 165499, "novel baseline": 114415, "humangenerated text": 71187, "models test": 109378, "structure overall": 156590, "sentence structure": 148537, "words long": 178737, "set perform": 149264, "perform extensive": 120943, "extensive manual": 55920, "manual analysis": 99020, "analysis showing": 9165, "novel text": 114715, "text usually": 165560, "simple efficient": 151446, "efficient sparse": 46718, "sparse training": 153745, "overparameterized neural": 118397, "networks generalize": 112750, "expensive train": 53815, "ideally like": 71755, "reduce computational": 138409, "training simple": 168746, "promising approach": 130221, "approach achieve": 10945, "remain challenges": 139914, "challenges existing": 21856, "methods struggle": 101840, "difficult expensive": 42147, "address main": 5320, "main insight": 98246, "insight optimize": 77495, "structure known": 156576, "uses simple": 173909, "pattern based": 120500, "lowrank matrices": 97896, "network layers": 112671, "speeds training": 154519, "training achieve": 168140, "achieve favorable": 3644, "accuracyefficiency tradeoffs": 3431, "tasks sparse": 163271, "models train": 109414, "faster dense": 57288, "drop accuracy": 45033, "blackbox adversarial": 18623, "adversarial attacks": 6191, "model approach": 103124, "approach deep": 11094, "learning dlbased": 90382, "increasingly adopted": 75374, "early detection": 45241, "detection malicious": 40552, "malicious behavior": 98838, "security concerns": 147568, "concerns generating": 28781, "generating adversarial": 64133, "crucial improving": 33808, "improving resistance": 74210, "given rise": 65992, "example generation": 52477, "blackbox method": 18648, "gained attention": 62454, "methods require": 101776, "generate adversarial": 63391, "examples given": 52597, "result generating": 143036, "adversarial examples": 6199, "study novel": 157509, "model enables": 103533, "sequence training": 148793, "training generative": 168465, "transformer gpt": 169131, "gpt proposed": 66480, "benchmark methods": 17030, "methods realworld": 101758, "dataset obtained": 36432, "researchers develop": 142194, "develop advanced": 40750, "defense capabilities": 37905, "largescale realistic": 89395, "error correction": 50281, "information stored": 76778, "huge information": 70518, "information obtained": 76604, "texts difficult": 165702, "difficult use": 42187, "use data": 172577, "processing texts": 129339, "applications like": 10591, "learning languages": 90617, "specialized systems": 153912, "text error": 165059, "make easier": 98527, "text speech": 165481, "error detection": 50292, "generation correction": 64542, "selection best": 147837, "best candidate": 17662, "based speech": 16107, "speech text": 154479, "word similarity": 178683, "similarity word": 151386, "statistical measures": 155499, "privacy preservation": 128015, "using vector": 174850, "contextual word": 31117, "representations generated": 140813, "lms learn": 97160, "learn spurious": 90060, "associations present": 13539, "present training": 126486, "training corpora": 168206, "corpora recent": 32246, "recent findings": 137502, "findings reveal": 58773, "adversaries exploit": 6244, "entities mentioned": 49856, "corpora findings": 32223, "findings led": 58722, "privacy risks": 128021, "risks language": 144996, "approaches lack": 11817, "lack interpretability": 82967, "compromise data": 28267, "data utility": 35935, "fail provide": 56971, "privacy guarantees": 128001, "research develop": 141694, "end aim": 48636, "aim study": 7496, "study develop": 157282, "develop methods": 40802, "methods incorporate": 101598, "semantic properties": 148198, "models survey": 109321, "advent transformer": 6181, "transformer used": 169216, "used translation": 173285, "attention furthermore": 13883, "furthermore emergence": 62051, "encoder transformer": 48447, "gpt architecture": 66387, "various methodologies": 176030, "methodologies data": 101191, "data models": 35393, "models learning": 106945, "various pretrained": 176109, "models specialized": 109195, "compare analyze": 26661, "analyze various": 9345, "released public": 139535, "ethical social": 50836, "social risks": 152655, "harm language": 68714, "indepth understanding": 75550, "understanding potential": 171409, "potential risks": 124952, "risks posed": 145012, "posed models": 124188, "models needed": 108278, "science linguistics": 146888, "risk areas": 144927, "discrimination exclusion": 42837, "misinformation harms": 102491, "malicious uses": 98852, "humancomputer interaction": 71154, "toxic language": 167459, "lower performance": 97832, "performance social": 122084, "social group": 152581, "second focuses": 147475, "private data": 128044, "data leaks": 35307, "inferring sensitive": 76161, "sensitive information": 148428, "risks arising": 144974, "false misleading": 57162, "misleading information": 102508, "information including": 76511, "try use": 169911, "use lms": 172755, "lms cause": 97115, "cause harm": 21246, "specific llms": 154035, "llms used": 96906, "conversational agents": 31824, "agents interact": 6634, "human users": 71070, "users including": 173674, "effect different": 45652, "different social": 42000, "social groups": 152582, "risks indepth": 144991, "different risks": 41973, "mitigation approaches": 102686, "approaches lastly": 11825, "lastly discuss": 89457, "highlight directions": 69735, "directions research": 42498, "research particularly": 141961, "conversational interactions": 31876, "representations generate": 140812, "image collections": 72213, "based recent": 16062, "realistic language": 136295, "modeling gpt3": 105010, "developed help": 40880, "images using": 72505, "early stages": 45262, "design process": 39724, "process goal": 128850, "typically create": 170476, "sequential image": 148876, "performed using": 122383, "using keywords": 174343, "process conversation": 128773, "conversation user": 31813, "representation allows": 140669, "ai generate": 7011, "new search": 113399, "search queries": 147395, "gpt3 compared": 66668, "models retrieving": 108984, "trillions tokens": 169769, "tokens enhance": 166807, "enhance autoregressive": 49156, "models conditioning": 105732, "retrieved large": 144248, "corpus based": 32280, "based local": 15932, "preceding tokens": 125567, "performance gpt3": 121598, "despite using": 40245, "knowledgeintensive tasks": 82565, "combines frozen": 25930, "crossattention mechanism": 33608, "mechanism predict": 100020, "predict tokens": 125709, "tokens based": 166782, "order magnitude": 117214, "magnitude data": 98200, "data typically": 35897, "consumed training": 30259, "typically train": 170522, "work opens": 179143, "opens new": 116551, "new avenues": 113078, "avenues improving": 15251, "models explicit": 106248, "unprecedented scale": 172094, "scale accessible": 146265, "question provide": 134923, "experimental setup": 54090, "object introduce": 115137, "special case": 153848, "examples experimental": 52575, "experimental scenarios": 54088, "scenarios best": 146542, "described using": 39387, "using accessible": 173956, "arises naturally": 12463, "finally leverage": 58489, "particular prove": 120114, "detectors unified": 40684, "unified multimodal": 171736, "promptbased tuning": 130798, "tuning visionlanguage": 170143, "visionlanguage understanding": 177089, "existing visionlanguage": 53628, "visionlanguage pretraining": 177080, "pretraining methods": 127389, "methods focus": 101535, "focus understanding": 60074, "tasks use": 163421, "imagetext matching": 72529, "pretraining perform": 127407, "perform understanding": 121073, "understanding downstream": 171200, "tasks visual": 163465, "answering imagetext": 9870, "imagetext retrieval": 72532, "retrieval visual": 144162, "visual entailment": 177167, "possess ability": 124329, "tackle problem": 160841, "pretraining visionlanguage": 127476, "capable handling": 20432, "augment existing": 14240, "pretraining paradigms": 127405, "use random": 172838, "future tokens": 62390, "tokens pretrained": 166857, "models autoregressive": 105428, "autoregressive generation": 14979, "generation abilities": 64381, "task propose": 161659, "propose use": 132193, "promptbased method": 130785, "method finetuning": 100879, "finetuning different": 59225, "tasks experiments": 162366, "tasks generation": 162459, "using model": 174494, "model feasible": 103643, "improve tasks": 73637, "attains comparable": 13767, "recent visionlanguage": 137715, "methods understanding": 101897, "discriminative methods": 42844, "methods fewshot": 101524, "fewshot scenarios": 58046, "stateoftheart nlp": 155260, "systems use": 160655, "networks require": 112796, "resources training": 142493, "inspired human": 77724, "knowledge acquisition": 81728, "curriculum learning": 34351, "facilitate training": 56658, "work investigates": 179075, "bert t5": 17609, "experiment various": 53921, "based range": 16057, "range complexity": 135601, "strategies extensive": 155999, "experiments different": 54247, "different nlp": 41875, "based various": 16171, "embeddings crosslingual": 47221, "monolingual language": 110066, "block nlp": 18717, "models requires": 108944, "resources existing": 142436, "trained english": 167908, "alleviate problem": 8297, "problem introduce": 128287, "transfer pretrained": 168984, "applied model": 10786, "subwordbased tokenization": 158208, "learns embedding": 91176, "model english": 103542, "language token": 86789, "tokens utilizing": 166901, "covering english": 33078, "english target": 49113, "language use": 86867, "roberta gpt2": 145147, "french german": 61593, "german chinese": 65759, "study benefits": 157189, "benefits method": 17482, "method lowresource": 100970, "lowresource languages": 97904, "outperforms models": 117803, "models comparable": 105690, "comparable size": 26616, "method makes": 100974, "makes training": 98693, "make code": 98499, "models publicly": 108741, "models mixtureofexperts": 108196, "models data": 105840, "driven significant": 44998, "significant progress": 150829, "achieve strong": 3762, "results incontext": 143494, "large dense": 87240, "dense models": 39092, "requires significant": 141436, "amounts computing": 8679, "computing resources": 28555, "resources paper": 142461, "family language": 57193, "named glam": 111417, "generalist language": 63089, "sparsely activated": 153749, "activated mixtureofexperts": 4403, "mixtureofexperts architecture": 102765, "compared dense": 26780, "variants largest": 175631, "trillion parameters": 169764, "parameters approximately": 119714, "7x larger": 1649, "larger gpt3": 89205, "used train": 173272, "achieving better": 4152, "better overall": 17956, "zeroshot oneshot": 180270, "oneshot performance": 116034, "human feedback": 70793, "feedback finetune": 57683, "finetune gpt3": 58924, "longform questions": 97549, "questions using": 135313, "using textbased": 174801, "environment allows": 49983, "allows model": 8452, "model search": 104517, "setting task": 149511, "performed humans": 122372, "humans able": 71336, "able train": 2566, "models task": 109357, "task using": 161800, "using imitation": 174317, "imitation learning": 72581, "learning optimize": 90793, "answer quality": 9753, "quality human": 134156, "feedback make": 57734, "make human": 98546, "factual accuracy": 56854, "easier models": 45290, "models collect": 105668, "support answers": 159256, "train evaluate": 167768, "eli5 dataset": 47033, "dataset questions": 36491, "questions asked": 135048, "reddit users": 138383, "model obtained": 104139, "obtained finetuning": 115518, "finetuning gpt3": 59287, "gpt3 using": 66773, "behavior cloning": 16573, "rejection sampling": 139138, "reward model": 144690, "trained predict": 168040, "predict human": 125685, "models answers": 105364, "preferred humans": 126080, "models methods": 108183, "methods analysis": 101302, "insights training": 77661, "intelligent communication": 78946, "communication systems": 26417, "harnessing large": 68827, "knowledge better": 81797, "better predict": 17977, "understand world": 171099, "world paper": 179601, "present analysis": 126223, "range model": 135648, "models tens": 109374, "tens millions": 164346, "millions parameters": 102254, "280 billion": 891, "billion parameter": 18429, "parameter model": 119630, "models evaluated": 106165, "diverse tasks": 43676, "tasks achieving": 161896, "achieving stateoftheart": 4221, "performance majority": 121782, "comprehension factchecking": 27903, "language logical": 83496, "logical mathematical": 97366, "mathematical reasoning": 99586, "provide holistic": 132824, "analysis training": 9210, "dataset models": 36418, "models behaviour": 105476, "bias toxicity": 18214, "finally discuss": 58436, "discuss application": 42867, "application language": 10334, "ai safety": 7202, "downstream harms": 44725, "experiences learned": 53867, "learned knowledge": 90101, "knowledge lead": 82177, "comparable computational": 26566, "computational tools": 28417, "tools evaluate": 167153, "quantify differences": 134317, "measure narrative": 99864, "probabilistic inferences": 128085, "cuttingedge large": 34436, "comparing probability": 27006, "study thousands": 157667, "story topic": 155901, "topic results": 167333, "events story": 52128, "sentences annotated": 148556, "associated higher": 13484, "methods results": 101791, "results highlight": 143452, "highlight opportunities": 69766, "opportunities use": 116881, "use cuttingedge": 172576, "large corpora": 87222, "memory reasoning": 100448, "reasoning language": 136946, "bhagavad gita": 18089, "translations using": 169562, "using bertbased": 174006, "language framework": 83334, "framework known": 61251, "result loss": 143047, "loss semantic": 97693, "philosophical text": 122853, "hindu philosophy": 70170, "number languages": 114893, "quality english": 134110, "progress language": 129973, "models powered": 108579, "powered deep": 125231, "learning enabled": 90412, "translations better": 169553, "better understanding": 18060, "language texts": 86785, "texts semantic": 165775, "analysis work": 9239, "work motivated": 179129, "motivated recent": 110190, "methods paper": 101698, "using semantic": 174700, "dataset tuning": 36592, "model known": 103917, "bert provide": 17588, "semantic analysis": 148100, "translations results": 169560, "vary widely": 176276, "analysis semantic": 9153, "message conveyed": 100538, "similar latency": 151265, "understanding models": 171356, "objective efficient": 115184, "efficient architecture": 46573, "proposes efficient": 132462, "efficient transformer": 46733, "inference computational": 75978, "desired inference": 40048, "latency speedup": 89486, "finetuning phase": 59442, "method detects": 100785, "encoder layer": 48427, "layer using": 89650, "using proposed": 174620, "proposed attention": 132256, "attention context": 13862, "context contribution": 30719, "phase novel": 122802, "property inference": 131672, "inference speedup": 76105, "method applied": 100681, "bertbase gpt2": 17625, "models evaluation": 106168, "evaluation extensive": 51582, "higher transformer": 69647, "subsequent layers": 157950, "results extensive": 143406, "classification text": 24129, "benchmarks like": 17289, "like glue": 92277, "showed method": 150143, "method effective": 100806, "effective various": 45924, "various datasets": 175887, "datasets minimal": 36985, "minimal impact": 102339, "global context": 66088, "context proposed": 30887, "improves inference": 74012, "suggested approach": 158599, "posits large": 124324, "llms complete": 94662, "necessary training": 112159, "models ptms": 108737, "allows users": 8479, "users design": 173617, "design taskspecific": 39780, "taskspecific prompts": 163542, "prompts query": 131436, "blackbox apis": 18626, "accessing model": 2978, "inference apis": 75963, "apis paper": 10197, "tuning framework": 170017, "framework optimize": 61336, "continuous prompt": 31248, "prompt prepended": 130633, "prepended input": 126175, "prompt space": 130676, "randomly generated": 135565, "results blackbox": 143202, "labeled samples": 82732, "samples significantly": 146064, "outperforms manual": 117801, "manual prompt": 99057, "ai collaboration": 6917, "dataset creation": 36209, "scale human": 146291, "human writers": 71099, "repetitive patterns": 140446, "linguistic diversity": 93027, "diversity introduce": 43737, "approach dataset": 11090, "creation based": 33334, "generative strength": 65592, "humans starting": 71474, "existing dataset": 53332, "inference nli": 76060, "approach uses": 11637, "automatically identify": 14830, "examples demonstrate": 52553, "demonstrate challenging": 38264, "challenging reasoning": 22251, "reasoning patterns": 137025, "new examples": 113182, "examples similar": 52695, "similar patterns": 151286, "patterns machine": 120548, "generated examples": 63860, "examples automatically": 52527, "labeled human": 82730, "human crowdworkers": 70679, "resulting dataset": 143097, "nli examples": 113666, "presents unique": 126653, "remarkably training": 140327, "performance outofdomain": 121881, "outofdomain test": 117544, "including 11": 74398, "compared training": 26957, "demonstrate promise": 38484, "leveraging natural": 91910, "generation techniques": 65192, "role humans": 145500, "creation process": 33351, "structured knowledge": 156645, "knowledge grounding": 82091, "texttotext language": 165859, "models structured": 109245, "leverages structured": 91785, "knowledge complete": 81824, "complete user": 27293, "user requests": 173484, "answering knowledge": 9882, "studied separately": 156940, "paper overcome": 119091, "overcome limitation": 118295, "limitation proposing": 92522, "framework unifies": 61469, "tasks texttotext": 163367, "texttotext format": 165857, "aiming promote": 7560, "research instead": 141858, "single task": 151867, "task domain": 161336, "domain dataset": 44126, "dataset use": 36604, "t5 different": 160701, "simple modifications": 151494, "tasks largely": 162690, "improving overall": 74178, "conduct series": 29174, "series controlled": 148911, "controlled experiments": 31635, "knowledge encoding": 81936, "easily extensible": 45314, "tasks opensourced": 162891, "prompt editing": 130432, "deployment large": 39280, "large lms": 88895, "lms gpt3": 97149, "obvious humans": 115571, "goal effectively": 66163, "effectively correct": 45967, "correct errors": 32383, "user interactions": 173440, "prohibitively costly": 130062, "growing memory": 68033, "users intents": 173688, "intents user": 79046, "user feedback": 173412, "memory allows": 100365, "allows produce": 8465, "produce enhanced": 129396, "enhanced prompts": 49362, "prompts new": 131384, "new query": 113371, "query based": 134564, "based user": 16163, "similar cases": 151217, "cases past": 21001, "past tasks": 120395, "tasks advanced": 161921, "ethical reasoning": 50828, "tasks simulated": 163253, "simulated user": 151671, "gpt3 substantially": 66761, "substantially increasing": 158129, "increasing accuracy": 75297, "accuracy queries": 3352, "queries different": 134468, "different kinds": 41807, "approach step": 11567, "enhancement large": 49382, "lms code": 97117, "data instructions": 35240, "raw large": 136089, "large raw": 89034, "increased recent": 75270, "semisupervised learning": 148367, "methods natural": 101672, "processing recent": 129283, "recent attempts": 137446, "manually curate": 99087, "curate data": 33996, "data necessary": 35416, "necessary train": 112158, "models main": 108119, "main way": 98279, "obtain data": 115471, "data automatic": 34700, "web crawling": 178000, "existing multilingual": 53490, "web corpus": 177999, "classifies data": 24203, "data common": 34794, "line level": 92943, "level propose": 91500, "propose set": 132117, "improvements automatic": 73877, "order produce": 117232, "produce new": 129445, "detection pretrained": 40593, "models artificial": 105393, "ai technologies": 7268, "technologies increasingly": 164093, "growing concern": 68017, "educational settings": 45625, "settings ai": 149528, "technologies used": 164116, "used students": 173245, "students cheat": 156849, "assignments exams": 13329, "transformers used": 169368, "used solve": 173237, "solve introductory": 153124, "programming assignments": 129791, "ai tools": 7286, "tools detect": 167139, "using gptj": 174271, "used software": 173236, "plagiarism detection": 123191, "detection tool": 40641, "despite fact": 40111, "provided examples": 133053, "work code": 178840, "code written": 25220, "detection techniques": 40636, "algorithmically generated": 7892, "generated code": 63819, "conclude discussion": 28866, "implications large": 72937, "directions future": 42474, "models dialog": 105960, "dialog applications": 41409, "applications present": 10639, "137b parameters": 353, "dialog data": 41414, "data web": 35960, "web text": 178024, "text model": 165310, "model scaling": 104508, "improve quality": 73594, "shows improvements": 150441, "improvements safety": 73942, "factual grounding": 56872, "demonstrate finetuning": 38346, "data enabling": 34968, "enabling model": 48328, "knowledge sources": 82411, "key challenges": 81471, "grounding challenge": 67891, "ensuring models": 49747, "models responses": 108965, "responses consistent": 142752, "set human": 149211, "human values": 71075, "safety using": 145899, "using metric": 174487, "metric based": 101956, "candidate responses": 19731, "responses using": 142938, "finetuned small": 59109, "data offers": 35436, "offers promising": 115839, "model safety": 104499, "second challenge": 147460, "sources information": 153512, "retrieval language": 144075, "enables model": 48220, "generate responses": 63686, "finally explore": 58455, "education content": 45530, "blackbox prompt": 18658, "prompt learning": 130569, "increasing scale": 75359, "generalpurpose pretrained": 63362, "study efficient": 157301, "efficient adaptation": 46561, "adaptation different": 4608, "discrete prompt": 42809, "instead finetuning": 77874, "adapt plms": 4552, "plms prompt": 123628, "learning efficiently": 90402, "efficiently optimizes": 46802, "discrete prompts": 42813, "parameters gradients": 119772, "gradients pretrained": 67416, "models outputs": 108392, "outputs given": 118061, "given inputs": 65913, "blackbox setting": 18663, "potential attack": 124606, "variancereduced policy": 175613, "estimate gradients": 50721, "gradients parameters": 67415, "api calls": 10152, "experiments roberta": 54452, "roberta gpt3": 145151, "algorithm achieves": 7775, "achieves significant": 4070, "finally conduct": 58424, "indepth case": 75522, "comprehensively analyze": 28161, "terms various": 164493, "various data": 175886, "data sizes": 35766, "training budgets": 168176, "optimization objectives": 117016, "learned prompts": 90121, "prompts code": 131187, "diverse data": 43494, "language data": 83232, "data resources": 35663, "resources recent": 142479, "years largescale": 179911, "largescale data": 89286, "data collection": 34779, "data collected": 34777, "order improve": 117206, "modeling capabilities": 104974, "capabilities large": 19985, "resulted concerns": 143076, "data subjects": 35820, "particularly considering": 120163, "pitfalls present": 123130, "present methodology": 126367, "geographically diverse": 65716, "set target": 149321, "language groups": 83397, "indic languages": 75568, "portuguese spanish": 124138, "programming languages": 129837, "languages collect": 86962, "potential data": 124665, "supporting tool": 159386, "development process": 41192, "languages regions": 87115, "lessons learned": 91430, "text data": 164980, "data selection": 35720, "selection language": 147862, "increasingly rely": 75440, "undesirable content": 171584, "resources like": 142451, "like wikipedia": 92428, "wikipedia books": 178497, "automatically selecting": 14858, "text suitable": 165501, "modeling process": 105073, "quality filtering": 134129, "filtering using": 58365, "using new": 174529, "dataset high": 36336, "high school": 69531, "newspaper articles": 113595, "written students": 179793, "investigate language": 80434, "quality demonstrate": 134092, "needed construct": 112438, "construct training": 30164, "corpora language": 32230, "inclusion exclusion": 74789, "prompttuning fewshot": 131541, "learning fsl": 90487, "make predictions": 98578, "predictions based": 125891, "based limited": 15923, "limited number": 92809, "number samples": 114943, "structured data": 156628, "data knowledge": 35267, "benefit fewshot": 17430, "adopted existing": 5595, "methods suffer": 101849, "challenging knowledge": 22183, "missing knowledge": 102531, "hinder performance": 70135, "learning study": 91035, "study explore": 157337, "explore knowledge": 55228, "knowledge injection": 82127, "develop ontology": 40816, "based external": 15797, "graph address": 67484, "address knowledge": 5297, "structure knowledge": 156574, "text introduce": 165256, "select informative": 147779, "bridge gap": 19042, "text propose": 165388, "algorithm optimize": 7837, "jointly evaluate": 81273, "including relation": 74699, "extraction event": 56293, "event extraction": 52075, "extraction knowledge": 56306, "graph completion": 67495, "completion datasets": 27325, "datasets experimental": 36844, "approach obtain": 11409, "performance baselines": 121190, "deepspeed megatron": 37871, "megatronturing nlg": 100304, "nlg 530b": 113651, "pretrained generalpurpose": 126818, "generalpurpose language": 63347, "processing domains": 129146, "adapting downstream": 4734, "finetuning techniques": 59585, "size models": 152033, "models increased": 106735, "hardware software": 68697, "algorithmic techniques": 7890, "techniques enable": 163879, "enable training": 48131, "joint effort": 81249, "present details": 126284, "details training": 40341, "parameters paper": 119827, "paper focus": 118950, "3d parallelism": 1137, "methodology used": 101257, "train model": 167797, "process design": 128787, "design training": 39789, "data curation": 34878, "curation techniques": 34041, "believe key": 16777, "key ingredient": 81519, "discuss various": 42955, "various evaluation": 175929, "interesting observations": 79399, "observations new": 115344, "new properties": 113365, "achieves superior": 4122, "zero fewshot": 180070, "establishes new": 50702, "results believe": 143192, "help development": 69106, "development largescale": 41155, "largescale training": 89410, "training infrastructures": 168499, "offline reinforcement": 115881, "finetuning reinforcement": 59503, "rl models": 145065, "models challenging": 105600, "challenging lack": 22185, "lack large": 82975, "datasets high": 36905, "high variance": 69556, "transferability different": 169012, "different environments": 41758, "environments recent": 50105, "work looked": 179111, "rl perspective": 145068, "modeling improved": 105016, "improved results": 73718, "results result": 143750, "architecture model": 12190, "suffers slow": 158473, "slow convergence": 152255, "convergence speeds": 31767, "paper look": 119071, "transferability pretrained": 169013, "pretrained sequence": 127156, "sequence models": 148774, "models domains": 106018, "language finetuned": 83324, "rl tasks": 145081, "tasks control": 162130, "propose techniques": 132160, "techniques improve": 163924, "improve transfer": 73645, "transfer domains": 168908, "domains results": 44523, "results consistent": 143258, "consistent performance": 29826, "terms convergence": 164401, "accelerating training": 2803, "performance variety": 122238, "models hope": 106629, "hope work": 70389, "work brings": 178827, "modeling techniques": 105106, "techniques pretrained": 163988, "models rl": 109008, "sharing knowledge": 149839, "knowledge generative": 82036, "tasks completely": 162092, "completely different": 27300, "different domains": 41743, "text distributions": 165029, "language distributions": 83262, "samples propose": 146056, "propose automatically": 131726, "automatically summarize": 14862, "hypothesis given": 71621, "larger set": 89249, "set samples": 149301, "binary classification": 18465, "similar human": 151246, "human annotation": 70575, "time performance": 166463, "gpt3 davinci": 66671, "distribution shifts": 43387, "unknown tasks": 171943, "label text": 82703, "analyses based": 8752, "generated descriptions": 63848, "performance promptbased": 121949, "using unlabeled": 174835, "data prompting": 35566, "prompting emerged": 130908, "emerged promising": 47391, "promising paradigm": 130281, "paradigm fewshot": 119453, "models compared": 105694, "compared standard": 26924, "standard supervised": 154879, "supervised setup": 159172, "possible improve": 124433, "improve original": 73536, "original prompt": 117374, "prompt model": 130603, "model time": 104747, "time learn": 166433, "model case": 103256, "access prompt": 2904, "calibration model": 19641, "model prompt": 104365, "prompt outputs": 130622, "prompt models": 130605, "models gradients": 106553, "finetuning remains": 59510, "prohibitively expensive": 130063, "t0 sanh": 160679, "sanh et": 146131, "set soft": 149313, "prompt continuous": 130414, "model models": 104097, "performance challenging": 121226, "challenging datasets": 22140, "datasets currently": 36755, "currently large": 34328, "fullysupervised models": 61815, "robust training": 145331, "architectures contrast": 12254, "adaptive gradient": 4778, "gradient methods": 67392, "methods like": 101638, "like adam": 92192, "allow robust": 8351, "training modern": 168592, "especially large": 50495, "comes cost": 26013, "cost extra": 32674, "extra memory": 56114, "raises fundamental": 135486, "fundamental question": 61971, "like sgd": 92400, "similar benefits": 151210, "benefits paper": 17486, "paper provide": 119281, "provide affirmative": 132672, "affirmative answer": 6339, "question proposing": 134922, "achieve robust": 3728, "training following": 168457, "sgd weight": 149754, "weight decay": 178071, "gradient norm": 67393, "general approach": 62917, "approach robust": 11519, "loss standard": 97695, "version bert": 176599, "sgd achieves": 149753, "bert trained": 17610, "adaptive methods": 4782, "engagement ai": 48834, "neural narrative": 112887, "mapping using": 99158, "using large": 174360, "large transformer": 89081, "models problem": 108653, "problem determining": 128229, "order properly": 117234, "advent advanced": 6157, "advanced language": 5748, "models openais": 108348, "offers new": 115826, "new possibilities": 113337, "addressing problem": 5470, "output large": 117954, "weights models": 178120, "intended provide": 78977, "provide insight": 132844, "model turn": 104813, "provide means": 132884, "means understand": 99818, "general presents": 63017, "concrete implementation": 28921, "context openais": 30860, "capability evaluate": 20288, "possible determine": 124412, "able produce": 2543, "produce highquality": 129425, "demonstrate new": 38451, "ways evaluating": 177902, "evaluating natural": 51355, "processing models": 129195, "models generalization": 106432, "generalization metrics": 63196, "metrics need": 102115, "need access": 112207, "access training": 2916, "testing data": 164703, "selecting suitable": 147826, "essential enhancing": 50603, "enhancing machine": 49522, "ml model": 102778, "recent empirical": 137494, "studies conduct": 156965, "analysis neural": 9032, "networks nns": 112779, "metrics guide": 102075, "type model": 170311, "model selection": 104529, "performance paper": 121889, "tasks prior": 163001, "work primarily": 179191, "tasks ii": 162517, "directly predict": 42585, "access data": 2852, "able provide": 2545, "selection results": 147885, "results large": 143554, "transformers trained": 169365, "trained different": 167894, "different settings": 41992, "systematically vary": 160209, "including gpt2": 74533, "28 existing": 888, "existing novel": 53506, "metrics despite": 102045, "metrics derived": 102043, "particularly useful": 120271, "useful nlp": 173342, "tasks exhibiting": 162340, "popular metrics": 124026, "examine metrics": 52401, "extend prior": 55640, "power law": 125194, "large autoregressive": 87195, "scaling size": 146449, "size training": 152074, "training autoregressive": 168165, "models enabled": 106104, "enabled novel": 48145, "novel ways": 114751, "solving natural": 153229, "using zeroshot": 174879, "extremescale language": 56455, "gpt3 offer": 66731, "multilingual capabilities": 110469, "capabilities zeroshot": 20265, "languages english": 86990, "remain largely": 139923, "largely unexplored": 89182, "large open": 88977, "specifically trained": 154295, "language results": 86713, "gpt3 range": 66746, "benchmarks furthermore": 17253, "furthermore provide": 62143, "provide indepth": 132833, "models showing": 109098, "improvement language": 73810, "dataset filtering": 36301, "features object": 57548, "object concepts": 115113, "concepts generated": 28654, "generated gpt3": 63875, "gpt3 semantic": 66751, "features playing": 57553, "playing central": 123491, "central role": 21348, "conceptual representations": 28719, "enormous time": 49610, "time effort": 166384, "use limited": 172733, "limited set": 92849, "set manually": 149238, "manually curated": 99088, "recent promising": 137605, "models asked": 105397, "possible use": 124471, "use models": 172767, "generate meaningful": 63606, "features similar": 57577, "similar humans": 151247, "humans end": 71381, "generate semantic": 63704, "features existing": 57486, "existing human": 53381, "feature norms": 57422, "gpt3 generated": 66697, "generated features": 63865, "features humans": 57506, "humans showed": 71470, "showed similar": 150153, "similar distribution": 151230, "distribution types": 43401, "types generated": 170361, "features generated": 57500, "generated feature": 63864, "human norms": 70937, "predictions driven": 125899, "gpt3 results": 66750, "highlight potential": 69767, "potential large": 124803, "yield new": 179972, "new approach": 113059, "generating interpretable": 64262, "interpretable feature": 79666, "feature sets": 57430, "expanding potential": 53699, "potential use": 125035, "use semantic": 172867, "linguistic studies": 93072, "studies best": 156959, "best systems": 17756, "systems new": 160496, "new perspectives": 113334, "perspectives nlp": 122711, "learning benchmark": 90254, "datasets associated": 36666, "multiple metrics": 110976, "metrics way": 102164, "different systems": 42028, "new methods": 113274, "methods different": 101443, "different axes": 41667, "selecting best": 147810, "systems practical": 160542, "practical use": 125460, "development large": 41145, "community mainly": 26494, "mainly focused": 98293, "focused developing": 60092, "developing new": 41015, "new datasets": 113139, "datasets metrics": 36984, "metrics little": 102104, "various performance": 176101, "performance measures": 121795, "metrics different": 102048, "different scale": 41977, "lead spurious": 89778, "systems based": 160261, "based performance": 16000, "performance different": 121387, "tasks motivated": 162821, "social choice": 152536, "choice theory": 23708, "theoretically grounded": 166059, "extensive numerical": 55927, "numerical experiments": 115000, "scores assess": 147121, "approach synthetic": 11589, "synthetic real": 160069, "particular method": 120096, "method yields": 101176, "different conclusions": 41702, "reliable robust": 139748, "predicting human": 125740, "similarity judgments": 151351, "judgments using": 81340, "applications psychology": 10652, "learning collecting": 90302, "naturalistic datasets": 111965, "datasets number": 37005, "number comparisons": 114842, "way tackle": 177880, "problem construct": 128207, "leverage recent": 91655, "models online": 108338, "online recruitment": 116126, "judgments based": 81329, "based text": 16135, "text descriptions": 165009, "similar descriptions": 151228, "descriptions allowing": 39434, "linearly number": 92990, "drastically reducing": 44906, "reducing data": 138562, "data required": 35653, "images models": 72452, "previous approaches": 127565, "visual information": 177188, "retrieval using": 144160, "retrieval community": 144025, "community recently": 26515, "recently witnessed": 138012, "models key": 106836, "ms marco": 110266, "scale diversity": 146282, "zeroshot transfer": 180360, "learning various": 91121, "tasks ir": 162647, "tasks domains": 162253, "domains benefit": 44361, "single dataset": 151790, "extensive research": 55943, "shown using": 150396, "using domainspecific": 174153, "domainspecific training": 44634, "performance neural": 121841, "work harness": 179009, "models synthetic": 109336, "data generators": 35125, "finetuned solely": 59111, "dataset outperform": 36439, "proposed selfsupervised": 132431, "retrieval methods": 144090, "methods furthermore": 101541, "data achieve": 34578, "transfer models": 168973, "supervised data": 159097, "impact pretraining": 72714, "fewshot reasoning": 58040, "reasoning pretrained": 137041, "lms demonstrated": 97123, "demonstrated ability": 38615, "ability perform": 2309, "numerical reasoning": 115005, "examples fewshot": 52583, "robust reasoning": 145313, "reasoning unclear": 137216, "unclear paper": 170699, "investigate models": 80453, "models reason": 108807, "data particular": 35473, "test instances": 164568, "measure strength": 99880, "gptbased language": 67281, "pretrained pile": 127140, "pile dataset": 122984, "dataset various": 36613, "various numerical": 176079, "tasks arithmetic": 161969, "results consistently": 143259, "consistently demonstrate": 29862, "demonstrate models": 38446, "models accurate": 105209, "10 overall": 126, "exhibit strong": 53107, "results raise": 143723, "raise question": 135456, "question models": 134913, "models actually": 105265, "encourage researchers": 48606, "interpreting evaluation": 79730, "event detection": 52074, "localization propose": 97277, "detection framework": 40510, "framework integrates": 61230, "best fewshot": 17673, "fewshot prompting": 58025, "structured prediction": 156662, "prediction framework": 125798, "framework decomposes": 61061, "detection identification": 40523, "identification task": 71809, "localization task": 97279, "task identification": 161453, "classification leverage": 24027, "align objective": 8024, "task language": 161504, "models allowing": 105344, "model quickly": 104406, "quickly adapt": 135337, "adapt new": 4544, "new event": 113181, "event types": 52096, "types employ": 170348, "sequence labeling": 148752, "labeling model": 82758, "event trigger": 52095, "identification output": 71800, "model design": 103437, "design allows": 39542, "quickly learn": 135349, "ability make": 2270, "make structured": 98609, "predictions experiments": 125904, "effectiveness proposed": 46269, "proposed design": 132276, "shows superior": 150485, "detection benchmark": 40451, "performance sota": 122090, "surprise large": 159536, "models largescale": 106916, "pretraining recently": 127423, "technique creating": 163754, "paper highlight": 118968, "property models": 131675, "discuss policy": 42921, "policy implications": 123847, "specific capabilities": 153945, "outputs believe": 118029, "useful capabilities": 173316, "rapid development": 135863, "development models": 41161, "make difficult": 98526, "difficult anticipate": 42129, "model deployment": 103434, "harmful behavior": 68721, "world observations": 179599, "observations perform": 115346, "perform novel": 120997, "experiments illustrate": 54310, "furthermore analyze": 62012, "combine model": 25880, "model developers": 103455, "developers various": 40968, "models challenges": 105599, "challenges hinder": 21900, "conclude list": 28871, "list possible": 93127, "interventions ai": 79800, "ai community": 6919, "increase chance": 75193, "paper useful": 119381, "want understand": 177694, "regulate ai": 139002, "impact work": 72745, "potentially develop": 125094, "develop large": 40789, "modeling masked": 105042, "context learn": 30815, "learn good": 89988, "representations masking": 140846, "masking rate": 99328, "rate widely": 136022, "masking strategies": 99330, "strategies work": 156093, "important choice": 73109, "mlm pretraining": 102864, "universally optimal": 171918, "models adopt": 105287, "models glue": 106508, "extremely high": 56433, "rate 80": 135969, "finetuning performance": 59440, "performance accuracy": 121122, "accuracy linguistic": 3292, "challenging conventional": 22133, "conventional wisdom": 31739, "examine interplay": 52395, "requires higher": 141386, "rate compared": 135982, "compared sophisticated": 26920, "finally argue": 58414, "task difficult": 161323, "optimization using": 117051, "using framework": 174219, "corruption strategy": 32627, "strategy results": 156202, "results contribute": 143263, "contribute better": 31392, "pretraining information": 127345, "information extraction": 76417, "lowresource scenarios": 97934, "scenarios survey": 146706, "structured information": 156639, "information unstructured": 76825, "unstructured texts": 172225, "facing challenges": 56728, "challenges lowresource": 21951, "scenarios data": 146569, "data scarcity": 35695, "unseen classes": 172148, "classes paper": 23912, "neural approaches": 112825, "approaches lowresource": 11838, "systematically categorizing": 160176, "finegrained taxonomy": 58896, "conduct empirical": 29069, "llmbased methods": 94154, "methods compared": 101385, "models discover": 105987, "llms icl": 95528, "gpt family": 66416, "promising general": 130262, "llmbased technical": 94173, "addition discuss": 4852, "llms highlight": 95490, "highlight promising": 69777, "promising applications": 130220, "applications outline": 10623, "outline potential": 117493, "potential research": 124943, "research directions": 141715, "directions survey": 42500, "survey aims": 159601, "understanding field": 171236, "inspire new": 77704, "new ideas": 113223, "encourage widespread": 48608, "widespread applications": 178460, "academia industry": 2717, "failures large": 57022, "models human": 106637, "human cognitive": 70645, "cognitive biases": 25442, "biases large": 18279, "generate complex": 63430, "complex openended": 27508, "outputs instead": 118069, "summaries generate": 158765, "generate dialogue": 63460, "produce working": 129481, "working code": 179392, "code order": 25041, "order asses": 117174, "openended generation": 116488, "systems aim": 160237, "aim identify": 7463, "identifying individual": 72004, "individual errors": 75716, "draw inspiration": 44915, "inspiration human": 77683, "specifically use": 154299, "motivation generate": 110204, "generate hypotheses": 63560, "problems models": 128568, "models ii": 106664, "problems using": 128644, "using code": 174057, "code generation": 24866, "generation case": 64482, "openais codex": 116400, "based input": 15877, "input prompt": 77316, "biased outputs": 18235, "frequent training": 61606, "examples use": 52720, "use framework": 172635, "cognitive science": 25478, "science help": 146875, "help characterize": 69094, "characterize machine": 22479, "learning systems": 91049, "systems behave": 160266, "promptbased data": 130756, "augmentation lowresource": 14293, "focuses data": 60134, "propose promptbased": 132079, "augmentation model": 14299, "trains smallscale": 168849, "prompt set": 130668, "set trainable": 149334, "trainable vectors": 167857, "vectors frozen": 176407, "human effort": 70706, "indomain data": 75791, "data maintains": 35338, "generated synthetic": 63995, "data addition": 34592, "generates synthetic": 64113, "data different": 34911, "filters lowquality": 58368, "lowquality data": 97879, "data using": 35925, "experiments benchmarks": 54163, "benchmarks synthetic": 17380, "data produced": 35557, "successfully boost": 158370, "models consistently": 105756, "consistently outperform": 29892, "outperform competitive": 117574, "competitive baseline": 27161, "including stateoftheart": 74734, "data synthetic": 35839, "models improved": 106690, "augmentation large": 14288, "models emotional": 106083, "emotional support": 47589, "support conversation": 159271, "dialogue corpora": 41458, "corpora usually": 32265, "limited scale": 92845, "topic coverage": 167317, "cost data": 32660, "hinder generalization": 70134, "generalization downstream": 63167, "downstream dialogue": 44716, "dialogue models": 41494, "models opendomain": 108354, "topics work": 167376, "work leverage": 179097, "models dialogue": 105962, "dialogue completion": 41455, "task prompt": 161651, "prompt finetuned": 130503, "various topics": 176234, "applying approach": 10882, "approach construct": 11080, "augmented dataset": 14338, "comprehensive human": 28060, "evaluation demonstrate": 51530, "approach superior": 11581, "dialogue quality": 41502, "corpus conduct": 32285, "interactive evaluation": 79305, "improves downstream": 73993, "ability opendomain": 2298, "topics results": 167369, "models improving": 106696, "models building": 105551, "highly capable": 69894, "capable language": 20437, "models trend": 109509, "years despite": 179892, "great performance": 67698, "incur high": 75473, "cost common": 32655, "apply model": 10864, "need separate": 112385, "performance case": 121219, "compression paper": 28222, "proposes effective": 132461, "dynamic inference": 45133, "inference approach": 75965, "inference large": 76038, "decision making": 37371, "method easily": 100804, "unlike existing": 171997, "tasks method": 162795, "tasks translation": 163394, "set experiments": 149192, "t5 bert": 160698, "glue superglue": 66129, "particular outperform": 120103, "code demo": 24778, "demo available": 38172, "supplementary materials": 159238, "answering models": 9903, "fewshot named": 57998, "recognition recently": 138120, "recently promptbased": 137959, "recognition ner": 138102, "task guidance": 161441, "label efficiency": 82683, "efficiency previous": 46506, "previous promptbased": 127629, "promptbased methods": 130786, "fewshot ner": 58006, "zeroshot ability": 180112, "requiring manual": 141497, "prompt robustness": 130656, "robustness work": 145446, "address shortcomings": 5369, "proposing new": 132500, "new promptbased": 113358, "learning ner": 90762, "ner method": 112592, "method question": 101050, "qa formulation": 133889, "generation qa": 64989, "models annotated": 105356, "ner examples": 112589, "examples zeroshot": 52728, "zeroshot ner": 180268, "model comparing": 103314, "prompt quality": 130647, "demonstrating significantly": 38959, "significantly better": 150946, "zeroshot capability": 180130, "search efficient": 147334, "efficient language": 46651, "models finding": 106341, "architectures optimal": 12285, "tradeoff task": 167567, "hardware constraints": 68679, "constraints like": 30097, "memory utilization": 100477, "various hardware": 175966, "empirical observation": 47713, "transformers high": 169314, "simple neural": 151503, "search nas": 147381, "nas algorithm": 111477, "algorithm uses": 7872, "uses decoder": 173841, "proxy perplexity": 133441, "need model": 112349, "training search": 168723, "algorithm dubbed": 7797, "transformer search": 169209, "hardware performance": 68690, "performance cost": 121343, "cost evaluate": 32671, "diverse devices": 43508, "autoregressive transformer": 15013, "results perplexity": 143664, "zero oneshot": 180081, "oneshot settings": 116037, "achieve higher": 3660, "higher average": 69581, "14 tasks": 383, "lower latency": 97827, "effectively remove": 46074, "gpu hours": 67342, "hours training": 70459, "strong simple": 156446, "simple baseline": 151408, "baseline future": 16215, "nas methods": 111478, "methods autoregressive": 101332, "recently prompttuning": 137962, "prompttuning paradigm": 131550, "attracted significant": 14051, "significant attention": 150598, "prompts frozen": 131284, "model plm": 104283, "takes step": 160996, "numerous downstream": 115036, "prompttuning shows": 131551, "shows good": 150429, "performance certain": 121222, "tasks effectiveness": 162268, "effectiveness natural": 46250, "tasks underexplored": 163403, "underexplored paper": 170770, "paper argue": 118750, "hindering development": 70148, "different pretraining": 41922, "corpus example": 32305, "preliminary exploration": 126127, "exploration reveals": 55099, "reveals large": 144429, "large performance": 88981, "gap prompttuning": 62712, "prompttuning finetuning": 131542, "occur frequently": 115587, "prompts input": 131332, "input representations": 77328, "way adapt": 177762, "plms proposed": 123631, "simple empirically": 151449, "empirically powerful": 47800, "results seven": 143781, "significantly consistently": 150966, "consistently better": 29858, "media social": 100114, "leading emergence": 89812, "group identities": 67955, "new nlp": 113299, "task information": 161470, "highly contextual": 69902, "having multiple": 68887, "multiple agents": 110831, "address challenges": 5176, "define novel": 37938, "classification task": 24105, "design model": 39694, "leverages pretrained": 91765, "shown robust": 150371, "seen training": 147713, "exceeding performance": 52748, "models 20": 105159, "model natural": 104118, "vision visionlanguage": 177005, "visionlanguage tasks": 177084, "language explanation": 83298, "models aim": 105322, "aim explaining": 7453, "decisionmaking process": 37428, "generating natural": 64277, "language sentences": 86719, "models explain": 106244, "process vision": 129032, "visionlanguage model": 177033, "vqa model": 177575, "model language": 103920, "memory resources": 100456, "time required": 166486, "required task": 141259, "task explanation": 161382, "models completely": 105703, "answer introduce": 9727, "model simultaneously": 104584, "simultaneously predict": 151759, "imagecaption pairs": 72370, "general understanding": 63062, "text prediction": 165364, "model resulting": 104472, "overall framework": 118193, "attains better": 13766, "better evaluation": 17860, "evaluation scores": 51846, "faster current": 57287, "model address": 103079, "evaluating explanations": 51296, "evaluation measures": 51692, "framework requires": 61386, "classifiers natural": 24190, "nlp large": 113750, "large number": 88963, "number output": 114917, "classes example": 23906, "translation mt": 169488, "mt models": 110281, "softmax output": 152756, "output layer": 117958, "layer models": 89636, "feature representation": 57424, "input features": 77245, "features empirically": 57481, "paper ask": 118753, "practical large": 125428, "models translation": 109506, "models develop": 105951, "develop algorithms": 40754, "algorithms detect": 7919, "public models": 133585, "models 13": 105150, "impact model": 72687, "model quality": 104399, "search prompting": 147393, "prompting large": 130975, "models providing": 108733, "providing natural": 133333, "instructions prompts": 78328, "useful new": 173341, "improving task": 74223, "setting recent": 149501, "work aimed": 178791, "improve prompts": 73593, "manual rewriting": 99062, "timeconsuming requires": 166559, "tuning extremely": 170011, "extremely computationally": 56427, "computationally demanding": 28420, "models feasible": 106311, "instructional prompt": 78149, "prompt search": 130660, "search approach": 147318, "task instructions": 161481, "instructions large": 78290, "takes instructions": 160985, "instructions designed": 78237, "designed humans": 39892, "humans automatically": 71351, "instructgpt models": 77950, "improves average": 73979, "average task": 15317, "points classification": 123742, "dataset similar": 36543, "similar improvements": 151251, "opt bloom": 116902, "prompts instruction": 131336, "examples prompts": 52671, "prompts controlling": 131209, "compute data": 28440, "tuning approaches": 169966, "improve accuracy": 73402, "accuracy code": 3174, "study generative": 157381, "answering extractive": 9848, "extractive generative": 56379, "qa task": 133932, "attention paid": 13956, "systematic comparison": 160109, "crucial making": 33821, "making informed": 98758, "deeper understanding": 37847, "foster research": 60688, "research improving": 141844, "motivated goal": 110179, "goal make": 66177, "make attempt": 98485, "attempt systematically": 13798, "systematically study": 160204, "comparison extractive": 27039, "transformerbased large": 169251, "models prlms": 108649, "main categories": 98222, "interesting findings": 79395, "findings important": 58693, "better long": 17936, "short context": 149962, "outofdomain generalization": 117541, "encoder encoderdecoder": 48418, "qualitative quantitative": 134010, "provide insights": 132846, "insights future": 77564, "future directions": 62248, "relations words": 139314, "models despite": 105937, "fail generalize": 56954, "syntactic transformations": 159907, "models observed": 108327, "observed models": 115425, "pretrained natural": 127132, "data trained": 35874, "trained perform": 168036, "fact pretraining": 56741, "linguistic generalizations": 93034, "models words": 109700, "gap using": 62746, "pretrained seq2seq": 127154, "t5 bart": 160696, "mt5 mbart": 110286, "languages question": 87105, "english german": 49058, "presents evidence": 126576, "syntactic information": 159892, "models capable": 105562, "exposure language": 55553, "data human": 35161, "human learners": 70910, "various models": 176042, "proposed incorporate": 132319, "incorporate knowledge": 75021, "knowledge syntactic": 82443, "syntactic structures": 159905, "structures neural": 156710, "specific language": 154023, "model usually": 104855, "fit neural": 59683, "gpt2 paper": 66576, "train neural": 167808, "objective learn": 115211, "probability distribution": 128107, "tokens given": 166821, "given context": 65860, "experiments human": 54307, "evaluations method": 51999, "easily effectively": 45311, "effectively applied": 45947, "applied different": 10746, "different neural": 41872, "improving neural": 74177, "generation various": 65250, "inspired success": 77770, "language gpt": 83393, "gpt variants": 66509, "advances recent": 6062, "transformers vits": 169371, "explore effect": 55190, "effect various": 45681, "various design": 175889, "training strategies": 168767, "visual feature": 177171, "feature learning": 57413, "specifically introduce": 154232, "novel strategy": 114698, "representations image": 140816, "image tokens": 72348, "tokens predicted": 166853, "similar bert": 151211, "similar gpt": 151243, "effective feature": 45757, "explore alternatives": 55143, "number datasets": 114848, "cifar10 cifar100": 23758, "pretraining strategy": 127448, "simple highly": 151470, "layers improves": 89669, "visual prompt": 177252, "modus operandi": 110013, "models involves": 106825, "finetuning paper": 59422, "tuning vpt": 170145, "efficient effective": 46601, "effective alternative": 45689, "largescale transformer": 89411, "models vision": 109632, "taking inspiration": 161008, "inspiration recent": 77689, "advances efficiently": 6005, "tuning large": 170041, "parameters trainable": 119877, "trainable parameters": 167849, "parameters input": 119776, "input space": 77346, "model backbone": 103176, "backbone frozen": 15412, "experiments wide": 54540, "variety downstream": 175706, "recognition tasks": 138140, "significant performance": 150794, "gains compared": 62514, "compared parameter": 26872, "parameter efficient": 119604, "efficient tuning": 46740, "model capacities": 103247, "data scales": 35691, "cost prompt": 32729, "models understanding": 109544, "causal view": 21229, "promptbased probing": 130794, "used evaluating": 173051, "evaluating abilities": 51256, "abilities pretrained": 1987, "unfortunately recent": 171676, "discovered evaluation": 42746, "inconsistent unreliable": 74836, "furthermore lack": 62107, "lack understanding": 83026, "understanding inner": 171301, "inner workings": 77136, "wide applicability": 178243, "unforeseen risks": 171657, "applying plms": 10919, "risks paper": 145010, "highlights critical": 69850, "biased results": 18238, "results conclusions": 143253, "causal intervention": 21192, "paper provides": 119288, "provides valuable": 133245, "valuable insights": 175421, "insights design": 77540, "unbiased datasets": 170651, "datasets better": 36683, "need rethink": 112380, "better pretrained": 17984, "openly released": 116539, "released source": 139542, "natural languages": 111932, "languages corpus": 86968, "study language": 157459, "aims understand": 7682, "understand human": 171015, "human languages": 70906, "emergent communication": 47478, "communication ec": 26368, "limited domains": 92750, "languages settings": 87126, "languages provide": 87102, "provide benefits": 132688, "realworld language": 136471, "statistical models": 155504, "trained large": 167964, "establish link": 50665, "language downstream": 83268, "downstream natural": 44735, "tasks contrast": 162129, "contrast prior": 31322, "work directly": 178911, "parameters approach": 119713, "tasks language": 162674, "modeling image": 105015, "lowresource setup": 97939, "language tokens": 86790, "tokens pretraining": 166859, "language corpus": 83221, "million tokens": 102242, "reduces model": 138525, "languages introduce": 87031, "novel metric": 114598, "language translating": 86799, "metric highly": 101972, "highly correlates": 69905, "downstream performance": 44747, "modeling natural": 105054, "languages instance": 87030, "previous work": 127685, "work shows": 179305, "shows surprisingly": 150487, "low correlation": 97742, "capture complexities": 20638, "language findings": 83322, "findings indicate": 58696, "indicate potential": 75616, "language resources": 86711, "models deep": 105865, "learning dl": 90379, "dl techniques": 43788, "techniques involving": 163938, "involving finetuning": 80785, "impressive performance": 73321, "performance task": 122154, "language produced": 86660, "alzheimers disease": 8604, "disease ad": 43022, "questions remain": 135250, "ability generalize": 2179, "generalize small": 63271, "available research": 15194, "parameters directly": 119740, "dl model": 43785, "pretrained general": 126817, "general english": 62948, "text paired": 165337, "approaches stateoftheart": 11912, "data widely": 35964, "description task": 39427, "spontaneous conversations": 154583, "text characteristics": 164877, "study step": 157645, "step better": 155603, "understanding relationships": 171452, "language produce": 86659, "human speech": 71044, "speech language": 154423, "language characteristics": 83184, "videos recent": 176787, "methods shown": 101817, "shown effective": 150223, "effective language": 45793, "vision domains": 176904, "domains learning": 44455, "learning useful": 91108, "useful representations": 173347, "representations multiple": 140852, "methods effective": 101461, "end introduce": 48662, "useful understanding": 173355, "framework consists": 61044, "consists phases": 29983, "video prediction": 176725, "prediction model": 125825, "model utilize": 104858, "utilize pretrained": 175076, "representations efficiently": 140800, "efficiently learning": 46797, "world models": 179597, "unseen environments": 172161, "incorporate additional": 75002, "finetuning introduce": 59320, "model better": 103211, "better exploration": 17864, "exploration propose": 55096, "propose videobased": 132212, "representations demonstrate": 140788, "variety manipulation": 175724, "locomotion tasks": 97310, "tasks code": 162050, "scholarly knowledge": 146819, "knowledge context": 81839, "query service": 134630, "integrates multiple": 78566, "scholarly communication": 146817, "based approach": 15656, "rich contextual": 144770, "implement proposed": 72828, "presents contextual": 126565, "information related": 76688, "software project": 152837, "project information": 130077, "research interests": 141861, "information sourced": 76767, "feedforward layers": 57828, "vocabulary space": 177515, "space transformerbased": 153627, "modern nlp": 109828, "internal prediction": 79556, "prediction construction": 125777, "construction process": 30232, "largely understood": 89180, "understood work": 171555, "make substantial": 98610, "substantial step": 158104, "step unveiling": 155689, "prediction process": 125848, "feedforward network": 57829, "network ffn": 112651, "ffn layers": 58096, "layers building": 89660, "token representation": 166732, "changing distribution": 22400, "distribution vocabulary": 43406, "distribution analyze": 43345, "ffn updates": 58098, "leverage findings": 91594, "lm predictions": 97067, "predictions reduce": 125928, "reduce toxicity": 138478, "computation efficiency": 28300, "efficiency simple": 46529, "early exit": 45245, "models scholarly": 109043, "increasingly popular": 75421, "ir systems": 80836, "systems paper": 160508, "paper evaluates": 118889, "models handling": 106582, "texts ii": 165730, "experiments showcase": 54460, "relevant documents": 139593, "conditions additionally": 29000, "additionally leverage": 5088, "leverage textual": 91671, "generated small": 63979, "small perturbations": 152346, "original text": 117390, "semantically related": 148272, "retrieval performance": 144108, "semantics text": 148322, "text transformer": 165541, "models positional": 108568, "positional encodings": 124275, "positional information": 124276, "information causal": 76308, "positional encoding": 124274, "positional embeddings": 124273, "competitive standard": 27202, "standard models": 154852, "different datasets": 41722, "sizes sequence": 152112, "probing experiments": 128151, "experiments reveal": 54442, "reveal models": 144356, "missing information": 102529, "causal attention": 21175, "attention enables": 13870, "absolute position": 2620, "position findings": 124262, "expressive structured": 55609, "structured matrices": 156655, "efficient accurate": 46558, "networks excel": 112740, "train finetune": 167770, "popular approach": 123981, "approach reduce": 11499, "reduce compute": 138412, "compute memory": 28445, "structured ones": 156657, "sparse lowrank": 153732, "fourier transform": 60863, "methods seen": 101803, "seen widespread": 147717, "widespread adoption": 178453, "endtoend training": 48777, "algorithms approximate": 7901, "weight matrix": 178075, "hardware utilization": 68702, "optimal solution": 116953, "monarch matrices": 110043, "unlock new": 172034, "ways train": 177918, "finetune sparse": 58971, "sparse dense": 153724, "models empirically": 106094, "vit gpt2": 177397, "gpt2 training": 66604, "training imagenet": 168480, "quality reducing": 134244, "tasks 40": 161876, "simple technique": 151537, "technique called": 163748, "useful intermediate": 173334, "intermediate representation": 79527, "gpt2 pretraining": 66584, "bert pretraining": 17586, "approximation algorithm": 12039, "bert finetuning": 17535, "comparable accuracy": 26558, "zeroshot multimodal": 180265, "multimodal reasoning": 110751, "language large": 83477, "pretrained foundation": 126812, "exhibit distinct": 53038, "distinct capabilities": 43207, "depending domain": 39166, "domain data": 44125, "overlap example": 118367, "visuallanguage models": 177376, "models vlms": 109651, "vlms trained": 177485, "trained internetscale": 167956, "image captions": 72194, "captions large": 20613, "questions code": 135063, "code result": 25111, "result models": 143050, "models store": 109233, "different forms": 41779, "knowledge different": 81873, "domains work": 44553, "modular framework": 109907, "framework multiple": 61316, "multiple pretrained": 111002, "models composed": 105710, "exchange information": 52860, "capture new": 20670, "new multimodal": 113288, "multimodal capabilities": 110594, "requiring finetuning": 141490, "finetuning minimal": 59387, "competitive stateoftheart": 27203, "stateoftheart zeroshot": 155412, "zeroshot image": 180205, "enable new": 48115, "new applications": 113058, "egocentric video": 46950, "cooking recipes": 32060, "interfacing external": 79474, "external apis": 56030, "web search": 178017, "robot perception": 145182, "shown achieve": 150207, "remarkable performance": 140222, "using fewshot": 174198, "drastically reduces": 44904, "taskspecific training": 163552, "needed adapt": 112432, "model particular": 104222, "particular application": 120047, "understanding impact": 171289, "scale fewshot": 146286, "learning trained": 91089, "540billion parameter": 1364, "pathways language": 120454, "model palm": 104200, "palm trained": 118665, "tpu v4": 167495, "new ml": 113279, "enables highly": 48193, "efficient training": 46731, "training multiple": 168594, "tpu pods": 167494, "stateoftheart fewshot": 155136, "learning results": 90930, "number tasks": 114955, "palm 540b": 118655, "540b achieves": 1361, "achieves breakthrough": 3976, "breakthrough performance": 19015, "performance outperforming": 121883, "outperforming finetuned": 117676, "finetuned stateoftheart": 59118, "suite multistep": 158734, "multistep reasoning": 111175, "tasks outperforming": 162898, "average human": 15289, "performance recently": 121999, "significant number": 150786, "bigbench tasks": 18397, "improvements model": 73917, "meaning performance": 99774, "strong capabilities": 156364, "capabilities multilingual": 20062, "multilingual tasks": 110555, "tasks source": 163266, "generation demonstrate": 64560, "wide array": 178247, "array benchmarks": 12512, "benchmarks additionally": 17165, "additionally provide": 5120, "provide comprehensive": 132707, "analysis bias": 8832, "toxicity study": 167481, "study extent": 157355, "data memorization": 35361, "memorization respect": 100333, "respect model": 142509, "related large": 139178, "discuss potential": 42925, "mitigation strategies": 102697, "strategies knowledge": 156021, "lms shown": 97197, "shown memorize": 150309, "knowledge pretraining": 82296, "pretraining corpora": 127283, "corpora limited": 32236, "factually correct": 56924, "correct knowledge": 32396, "knowledge given": 82038, "context tend": 30936, "tend suffer": 164321, "hallucinatory generation": 68467, "problem focus": 128257, "focus modifying": 60027, "finetuning objectives": 59410, "objectives incorporate": 115248, "costly training": 32806, "training architecture": 168163, "lms practical": 97177, "practical applications": 125385, "novel decoding": 114463, "generative lms": 65460, "local knowledge": 97243, "continuously update": 31270, "update local": 172328, "local memory": 97251, "learning diverse": 90378, "tasks taskagnostic": 163343, "particularly strong": 120260, "evaluation confirms": 51502, "relevant factual": 139605, "language input": 83436, "context compared": 30707, "multiple baselines": 110848, "baselines finally": 16322, "generation quality": 64993, "quality generating": 134149, "generating longer": 64267, "sequences code": 148808, "various transformerbased": 176237, "transformerbased natural": 169273, "models attention": 105410, "words sentence": 178751, "small subset": 152367, "correlates word": 32530, "attention scores": 13987, "main challenge": 98223, "challenge finding": 21644, "finding threshold": 58628, "scores subsequent": 147172, "paper formulates": 118963, "function training": 61861, "backpropagation training": 15456, "optimal balance": 116933, "architecture dubbed": 12151, "evaluate design": 50944, "bert albert": 17508, "gpt2 vision": 66611, "results average": 143186, "energy reduction": 48792, "reduction respectively": 138621, "text recent": 165409, "advances natural": 6037, "construction large": 30223, "models opening": 108356, "opening new": 116522, "investigate usage": 80507, "usage incontext": 172455, "models address": 105278, "problem information": 128282, "extraction process": 56339, "fashion particular": 57254, "particular investigate": 120087, "usage native": 172465, "model incontext": 103839, "potential approach": 124596, "approach usefulness": 11635, "address training": 5378, "data challenge": 34747, "based nlp": 15978, "nlp techniques": 113917, "challenge posed": 21704, "control flow": 31542, "testing limits": 164728, "limits natural": 92924, "human language": 70899, "language compared": 83198, "consistency diverse": 29757, "diverse language": 43557, "novel experimental": 114492, "sentence pair": 148518, "sentence likely": 148511, "likely occur": 92459, "natural text": 111956, "text considering": 164953, "considering language": 29716, "networks transformer": 112812, "models created": 105817, "human subjects": 71048, "pair sentences": 118525, "sentences likely": 148586, "model failures": 103636, "models aligned": 105331, "closely human": 24514, "model tested": 104737, "experiments revealed": 54451, "revealed significant": 144396, "significant shortcomings": 150876, "alignment human": 8157, "human perception": 70951, "text revision": 165433, "essential human": 50610, "human writing": 71100, "writing process": 179739, "success large": 158252, "evaluating capability": 51266, "capability large": 20321, "models making": 108132, "critical step": 33552, "step building": 155606, "building effective": 19395, "writing assistants": 179714, "assistants work": 13438, "present humanintheloop": 126332, "aims achieving": 7570, "achieving high": 4181, "minimal human": 102333, "human efforts": 70711, "humanmachine interactions": 71307, "revision model": 144607, "editing suggestions": 45487, "documents iteratively": 43915, "iteratively interacting": 81156, "predefined maximum": 125652, "maximum number": 99699, "empirical experiments": 47695, "acceptance rate": 2839, "rate human": 135996, "humanmachine interaction": 71305, "humanmodel interaction": 71311, "interaction dataset": 79112, "demonstration available": 38969, "learning token": 91084, "token extraction": 166709, "extraction text": 56363, "generation different": 64579, "different prior": 41926, "prior studies": 127935, "studies work": 157115, "datasets design": 36783, "design simple": 39755, "working scenarios": 179405, "tokens context": 166794, "context contribute": 30718, "identifies omitted": 71847, "label creation": 82677, "creation methods": 33343, "methods soft": 101831, "soft hard": 152733, "labels work": 82845, "work cases": 178834, "annotation data": 9519, "learning promising": 90867, "results benchmark": 143193, "datasets extraction": 36857, "scenarios model": 146651, "pretrained t5": 127166, "way people": 177861, "public perceptions": 133592, "issues especially": 81000, "centers disease": 21331, "disease control": 43025, "control prevention": 31575, "prevention cdc": 127555, "health policy": 68958, "policy recommendations": 123871, "datasets public": 37057, "method used": 101159, "used explore": 173060, "explore potential": 55255, "specifically harness": 154220, "gpt2 directly": 66525, "probable future": 128132, "responses demonstrate": 142762, "demonstrate used": 38600, "optimize expected": 117065, "novel evaluation": 114487, "evaluation scheme": 51844, "statistical testing": 155513, "testing allows": 164693, "capture semantics": 20680, "scalable training": 146258, "modern large": 109806, "challenges efficiently": 21841, "efficiently robustly": 46814, "software hardware": 152821, "explore challenges": 55165, "challenges design": 21823, "associated developing": 13473, "framework present": 61351, "present quantitative": 126430, "quantitative analysis": 134335, "efficiency improvements": 46468, "adopting new": 5622, "new software": 113413, "hardware solutions": 68698, "opensource autoregressive": 116570, "20 billion": 590, "available public": 15189, "permissive license": 122488, "knowledge largest": 82175, "available weights": 15226, "weights time": 178129, "work models": 179127, "models architecture": 105382, "architecture training": 12234, "training evaluate": 168421, "performance evaluated": 121468, "similarly sized": 151395, "sized gpt3": 152081, "models opensource": 108359, "training evaluation": 168424, "evaluation code": 51479, "using transformer": 174819, "text analysis": 164828, "analysis social": 9170, "media sentiment": 100113, "sentiment topic": 148668, "topic analysis": 167311, "analysis analysis": 8812, "keywords phrases": 81625, "researchers choose": 142181, "arise using": 12458, "samples paper": 146050, "paper use": 119378, "capacity memorization": 20525, "gpt series": 66491, "learn linguistic": 90002, "reviews use": 144595, "queries generate": 134482, "synthetic text": 160081, "text analyzed": 164831, "produce insights": 129434, "insights specific": 77648, "trained learned": 167982, "learned specific": 90131, "model high": 103797, "levels accuracy": 91524, "compared traditional": 26951, "corpora gpt": 32225, "gpt able": 66380, "able accurately": 2456, "accurately generate": 3536, "generate large": 63593, "large volumes": 89128, "volumes text": 177545, "studies report": 157071, "models successfully": 109283, "successfully solve": 158394, "solve nlp": 153133, "tasks zero": 163493, "learning paradigms": 90811, "possibilities using": 124372, "gptlike models": 67303, "13 billion": 322, "parameters trained": 119878, "language families": 83313, "gpt3 architecture": 66643, "architecture using": 12241, "sparse attention": 153718, "inference steps": 76110, "resulting models": 143120, "covering languages": 33079, "resource languages": 142389, "choices architecture": 23711, "data preparation": 35519, "preparation pipeline": 126162, "pipeline train": 123095, "train small": 167829, "versions model": 176622, "model choose": 103281, "choose optimal": 23728, "measure model": 99861, "languages evaluate": 86994, "evaluate wide": 51133, "classification generative": 24008, "probing models": 128160, "evaluated zeroshot": 51221, "fewshot methods": 57994, "furthermore compared": 62026, "tasks stateoftheart": 163284, "model xglm": 104913, "tasks nlp": 162857, "address question": 5355, "question introduce": 134893, "diverse nlp": 43591, "expertwritten instructions": 54692, "instructions collection": 78213, "distinct task": 43256, "types including": 170367, "including limited": 74593, "limited classification": 92728, "classification extraction": 23998, "sequence tagging": 148788, "text rewriting": 165434, "rewriting text": 144744, "text composition": 164940, "large diverse": 87242, "diverse collection": 43481, "tasks enables": 162293, "rigorous benchmarking": 144853, "instructions training": 78362, "follow instructions": 60215, "tasks evaluating": 162328, "ones furthermore": 115997, "furthermore build": 62020, "variety incontext": 175713, "incontext instructions": 74860, "plain language": 123198, "task definitions": 161302, "examples experiments": 52576, "instructionfollowing models": 78194, "models instructgpt": 106777, "despite order": 40163, "analyze generalization": 9295, "function various": 61867, "various scaling": 176152, "scaling parameters": 146435, "number observed": 114915, "tasks number": 162864, "instances task": 77846, "hope dataset": 70349, "future progress": 62301, "multimodal fewshot": 110635, "fewshot object": 58011, "prompting study": 131093, "study multimodal": 157495, "paper using": 119383, "fewshot visual": 58085, "class semantic": 23892, "information detection": 76355, "online applications": 116078, "applications methods": 10606, "usually require": 174914, "require expertise": 141099, "class names": 23886, "semantic embedding": 148140, "rare classes": 135946, "classes approach": 23903, "metalearning promptbased": 100578, "learning learn": 90635, "learn generalizable": 89983, "zeroshot object": 180269, "detection models": 40563, "models respectively": 108961, "finetuning specifically": 59555, "text classifier": 164916, "learning respectively": 90927, "build multimodal": 19335, "multimodal classifier": 110604, "models addition": 105273, "fully exploit": 61757, "exploit pretrained": 55014, "propose metalearningbased": 131916, "prompting generate": 130945, "prompts novel": 131385, "novel classes": 114438, "examples used": 52721, "used learn": 173132, "knowledge distillation": 81878, "learn soft": 90055, "prompt generator": 130523, "generator using": 65632, "using human": 174302, "human prior": 70978, "support images": 159300, "information semantics": 76754, "comprehensively evaluate": 28168, "proposed multimodal": 132401, "models multiple": 108253, "detection benchmarks": 40452, "benchmarks achieving": 17163, "achieving promising": 4204, "results unsupervised": 143895, "relevant skills": 139651, "supervision paper": 159209, "unsupervised setting": 172271, "setting propose": 149495, "method named": 100985, "examples queries": 52676, "queries retrieve": 134535, "data uses": 35924, "uses update": 173920, "update multitask": 172334, "multitask model": 111227, "straightforward effective": 155921, "effective retrieval": 45875, "retrieval method": 144088, "retrieval effective": 144046, "effective pairwise": 45836, "reranking results": 141537, "results analysis": 143171, "outperforms nonretrieval": 117808, "generative qa": 65580, "general qa": 63034, "stanford question": 154936, "factual questions": 56897, "questions accompanied": 135020, "limiting training": 92901, "datas potential": 36069, "new publicly": 113367, "available set": 15200, "wikipedia article": 178494, "article summary": 12603, "summary sections": 158945, "generative pipeline": 65528, "includes available": 74359, "russian language": 145772, "available opensource": 15173, "domains like": 44460, "news texts": 113590, "strict automatic": 156293, "systems user": 160658, "user simulation": 173495, "underlying user": 170878, "user information": 173419, "information need": 76592, "need asking": 112226, "clarifying questions": 23861, "questions important": 135161, "important feature": 73133, "modern conversational": 109792, "search evaluation": 147353, "evaluation systems": 51890, "significant human": 150718, "expensive paper": 53795, "propose conversational": 131766, "user simulator": 173496, "simulator called": 151734, "automatic evaluation": 14659, "evaluation conversational": 51512, "systems given": 160407, "given description": 65868, "capable automatically": 20405, "automatically answering": 14768, "experiments including": 54315, "including automated": 74425, "automated natural": 14578, "responses generated": 142801, "underlying information": 170838, "comparable humangenerated": 26583, "make steps": 98606, "multiturn interactions": 111276, "interactions conversational": 79214, "user goal": 173416, "currently available": 34309, "available datasets": 15096, "data acquisition": 34589, "capable providing": 20464, "providing accurate": 133256, "accurate natural": 3476, "discuss capabilities": 42873, "capabilities model": 20055, "model multiturn": 104114, "setting provide": 149499, "provide code": 132702, "data pretrained": 35529, "used research": 173216, "impact tokenization": 72731, "models analysis": 105353, "important text": 73206, "preprocessing step": 126190, "important models": 73163, "different granularity": 41789, "granularity levels": 67481, "outputs vary": 118137, "mediumsized language": 100264, "using roberta": 174683, "pretraining procedure": 127412, "finetune models": 58949, "statistical tests": 155514, "ratio number": 136047, "parameters total": 119875, "total number": 167418, "number model": 114903, "parameters empirically": 119745, "tradeoff model": 167564, "size performance": 152042, "dictionaries useful": 41586, "language learners": 83482, "does exist": 43976, "indian language": 75563, "language present": 86473, "indian languages": 75564, "languages paper": 87081, "propose transformerbased": 132178, "transformerbased deep": 169234, "approach tackle": 11591, "tackle limitations": 160834, "faced existing": 56563, "using mt5": 174501, "mt5 model": 110287, "architecture uses": 12240, "uses translation": 173919, "translation language": 169471, "berts masked": 17641, "modeling mlm": 105048, "encoderdecoder language": 48457, "model faster": 103642, "document reranking": 43852, "inference stateoftheart": 76108, "typically encode": 170483, "pairs using": 118631, "using crossattention": 174097, "like t5": 92414, "t5 approach": 160694, "running model": 145751, "querydocument pairs": 134644, "significant computational": 150659, "cost paper": 32721, "new training": 113472, "inference paradigm": 76065, "propose finetune": 131823, "using form": 174213, "form document": 60452, "query generation": 134588, "decoderonly language": 37537, "inference results": 76093, "results significant": 143793, "significant inference": 150759, "decoderonly architecture": 37531, "needs learn": 112479, "inference experiments": 76005, "achieves results": 4066, "believe work": 16794, "work paves": 179156, "paves way": 120592, "way efficient": 177799, "neural rankers": 112965, "contextual data": 31078, "data reduce": 35628, "reduce data": 138416, "data annotation": 34634, "annotation required": 9548, "required visual": 141265, "commonsense tasks": 26328, "excellent results": 52797, "learning scenarios": 90962, "scenarios using": 146717, "using incontext": 174319, "learning impressive": 90562, "size language": 152013, "ondevice applications": 115964, "models taskspecific": 109360, "taskspecific data": 163511, "needed finetune": 112444, "finetune language": 58928, "model specific": 104644, "specific purpose": 154067, "substantial financial": 158061, "financial time": 58585, "small research": 152351, "research groups": 141817, "analyze different": 9285, "different promptbased": 41940, "language multimodal": 86428, "multimodal causal": 110596, "models evaluate": 106162, "evaluate results": 51097, "results use": 143896, "dataset focusing": 36313, "reasoning time": 137207, "time results": 166495, "results simple": 143801, "dataset proposed": 36474, "approaches result": 11898, "result significant": 143063, "significant time": 150906, "methods make": 101655, "researchers use": 142268, "use results": 172855, "results transformer": 143876, "models minimal": 108187, "plan release": 123218, "release source": 139496, "community use": 26527, "modern baselines": 109786, "focus task": 60063, "sparql queries": 153710, "queries natural": 134510, "language questions": 86683, "vocabulary input": 177507, "tokens produce": 166863, "produce correct": 129385, "sparql query": 153711, "query pretrained": 134614, "plms explored": 123596, "explored depth": 55342, "task far": 161390, "pointer generator": 123731, "bert embeddings": 17528, "special input": 153853, "art performance": 12557, "20 datasets": 592, "datasets outperforms": 37020, "outperforms taskspecific": 117876, "taskspecific models": 163534, "methods enable": 101474, "parsing questions": 119965, "questions input": 135168, "query enabling": 134579, "enabling new": 48333, "kg semantic": 81636, "promptbased approach": 130752, "controlled text": 31649, "generation ctg": 64547, "generating sentences": 64331, "desirable attributes": 40030, "existing works": 53647, "works utilize": 179517, "utilize finetuning": 175044, "time increases": 166422, "address concerns": 5207, "continuous vector": 31260, "prompt guides": 130535, "guides generation": 68261, "prompt mask": 130599, "gap training": 62742, "task testing": 161772, "trainable prompt": 167856, "generation experiments": 64636, "demonstrate strong": 38564, "training parameters": 168631, "parameters gpt2": 119768, "implicit relations": 72988, "relations complex": 139285, "complex questions": 27544, "questions language": 135176, "models prominent": 108679, "prominent challenge": 130141, "understanding systems": 171495, "ability answer": 2065, "reasoning questions": 137085, "questions required": 135257, "required reasoning": 141251, "reasoning steps": 137143, "steps answering": 155716, "mentioned text": 100514, "text explicitly": 165072, "investigate current": 80392, "struggle implicit": 156758, "reasoning question": 137082, "inference reasoning": 76088, "relation inference": 139260, "construct benchmark": 30121, "question model": 134912, "output list": 117960, "pairs relations": 118611, "steps required": 155768, "gpt3 family": 66687, "reasoning qa": 137081, "challenge implicit": 21655, "questions does": 135107, "need plan": 112362, "reasoning strategy": 137151, "retrieving reasoning": 144286, "art neural": 12556, "processing computer": 129132, "vision foundation": 176919, "model paradigm": 104211, "paradigm large": 119472, "selfsupervised tasks": 148076, "tasks word": 163478, "including instruction": 74572, "instruction following": 78005, "following question": 60305, "answering approaches": 9814, "approaches developed": 11733, "developed model": 40893, "finetuning including": 59302, "including lowrank": 74604, "weight update": 178082, "underlying mathematical": 170854, "mathematical principles": 99576, "network adaptation": 112621, "knowledge loss": 82210, "remain poorly": 139930, "poorly understood": 123971, "provides flexible": 133151, "adaptation neural": 4648, "range machine": 135644, "weight space": 178079, "space neural": 153598, "low rank": 97780, "modest computational": 109862, "comparable state": 26618, "continual learning": 31166, "bert vision": 17617, "transformers vit": 169370, "user goals": 173417, "combines large": 25939, "models external": 106277, "discrete reasoning": 42814, "reasoning huge": 136899, "ushered new": 173928, "era ai": 50214, "knowledge tasks": 82450, "tasks essential": 162320, "essential element": 50602, "modern ai": 109784, "inherently limited": 76987, "number ways": 114982, "discuss limitations": 42910, "systems approach": 160246, "challenge involves": 21664, "knowledge reasoning": 82337, "linguistic processing": 93054, "flexible architecture": 59798, "architecture multiple": 12194, "discrete knowledge": 42804, "reasoning knowledge": 136938, "technical challenges": 163691, "challenges implementing": 21905, "ai21 labs": 7325, "diversity ai": 43707, "paper argues": 118751, "visual andor": 177108, "lacks necessary": 83049, "considered creative": 29683, "issues identified": 81010, "identified literature": 71828, "fact generative": 56737, "single image": 151811, "created ones": 33267, "algorithm combines": 7786, "evolutionary algorithms": 52288, "creative process": 33377, "process output": 128931, "use recent": 172842, "advances image": 6017, "based semantic": 16089, "openais clip": 116398, "clip model": 24407, "iterative process": 81135, "search results": 147407, "lead novel": 89764, "outputs testing": 118133, "testing hypothesis": 164719, "hypothesis using": 71631, "novelty search": 114760, "evolutionary algorithm": 52286, "maintaining quality": 98375, "quality form": 134132, "semantic prompt": 148197, "different notions": 41879, "affect process": 6313, "similar images": 151248, "new direction": 113147, "transfer prompts": 168985, "prompts text": 131503, "plms remarkable": 123635, "progress text": 130021, "finetuning challenging": 59190, "finetune plms": 58957, "develop general": 40784, "lightweight model": 92185, "model adapt": 103065, "adapt various": 4568, "based plms": 16003, "purpose recent": 133755, "recent promptbased": 137606, "learning offers": 90785, "offers potential": 115835, "potential solution": 124988, "solution paper": 152959, "paper improve": 118974, "technique propose": 163795, "set source": 149314, "source prompts": 153464, "prompts various": 131522, "prompts target": 131496, "prompts perform": 131405, "tasks consider": 162115, "consider task": 29593, "instancelevel information": 77814, "design adaptive": 39539, "mechanism derive": 99985, "prompts data": 131216, "data instance": 35234, "specific target": 154097, "target prompt": 161094, "highly relevant": 69948, "relevant source": 139652, "prompts extensive": 131268, "yields competitive": 180017, "competitive better": 27165, "results finetuning": 143419, "open resource": 116286, "users add": 173576, "improve new": 73534, "tasks future": 162441, "research code": 141636, "adaptation language": 4627, "able account": 2455, "text prompt": 165382, "text produced": 165381, "approach learning": 11344, "lightweight modules": 92187, "mixedeffects models": 102729, "models extended": 106270, "transformerbased architectures": 169229, "architectures using": 12304, "benchmarks finding": 17249, "efficiently adapts": 46763, "novel contexts": 114449, "minimal data": 102322, "data effectively": 34947, "generalizing unseen": 63295, "unseen contexts": 172152, "ranking finetuning": 135801, "finetuning promptbased": 59477, "compared language": 26845, "tasks applying": 161957, "applying pretrained": 10920, "search ranking": 147401, "training signals": 168742, "signals paper": 150537, "paper identify": 118972, "identify study": 71969, "training schema": 168718, "gap regarding": 62726, "objectives model": 115257, "architectures task": 12296, "task knowledge": 161500, "knowledge gap": 82024, "knowledge needed": 82243, "learned pretraining": 90118, "gaps propose": 62763, "propose pretrained": 132072, "neural ranker": 112964, "leverages promptbased": 91771, "convert ranking": 31994, "ranking task": 135827, "task pretraining": 161643, "model intermediate": 103891, "experiments ms": 54365, "superior performances": 159051, "analyses reveal": 8782, "able better": 2472, "learning retrieve": 90933, "adaptation code": 4602, "success wide": 158316, "wide spectrum": 178334, "answering vqa": 9984, "vl model": 177431, "model optimized": 104159, "selfsupervised task": 148075, "task objectives": 161577, "adapt downstream": 4520, "task vqa": 161811, "objective function": 115198, "answer prediction": 9747, "severely limits": 149719, "limits generalization": 92914, "generalization pretrained": 63215, "pretrained vl": 127245, "vl models": 177432, "tasks requires": 163157, "requires large": 141402, "large labeled": 87290, "data finetuning": 35061, "propose innovative": 131878, "finetuning paradigm": 59424, "paradigm named": 119486, "model boosting": 103225, "effective adaptation": 45684, "task specifically": 161738, "vqa task": 177581, "given questions": 65973, "task adaptation": 161162, "pretraining phase": 127408, "regarding accuracy": 138858, "settings data": 149547, "data codes": 34775, "codes available": 25284, "available facilitate": 15108, "prompting fewshot": 130933, "tasks machine": 162764, "comprehension mrc": 27919, "plms existing": 123595, "learning scenario": 90961, "solve issue": 153125, "issue propose": 80946, "novel framework": 114506, "instead adding": 77863, "transform task": 169052, "generation problem": 64955, "rich semantics": 144802, "representations query": 140875, "performance plms": 121912, "model mlm": 104092, "learning objectives": 90781, "experiments multiple": 54370, "benchmarks demonstrate": 17204, "settings large": 149602, "does introduce": 43993, "models refer": 108877, "behavior modulated": 16618, "presence negation": 126212, "assessment language": 13238, "models paradigm": 108423, "linguistic phenomena": 93051, "english evaluation": 49049, "evaluation suite": 51882, "knowledge interactions": 82142, "use evaluation": 172603, "models certain": 105590, "certain extent": 21387, "presence multiple": 126211, "suggests models": 158666, "models scale": 109036, "conversational systems": 31928, "opendomain conversational": 116450, "idioms figurative": 72051, "figurative language": 58318, "fitting responses": 59691, "responses prompts": 142885, "prompts containing": 131204, "languages cultures": 86972, "pose great": 124157, "great challenge": 67687, "challenge natural": 21687, "involve tasks": 80695, "tasks information": 162601, "retrieval ir": 144072, "conversational ai": 31839, "ai utilize": 7312, "tasks investigate": 162632, "conversation generation": 31792, "generation achieve": 64392, "macro f1": 98175, "model experiment": 103595, "sota dialogue": 153344, "dialogue model": 41491, "model dialogue": 103461, "dialogue generative": 41478, "generation performances": 64923, "evaluated using": 51216, "using automatic": 173983, "automatic metric": 14707, "similar model": 151272, "contribute model": 31409, "huggingface hub": 70539, "hub public": 70498, "public access": 133538, "expansion using": 53721, "text entry": 165058, "augmentative alternative": 14332, "alternative communication": 8550, "communication aac": 26345, "severe motor": 149712, "motor impairments": 110211, "propose paradigm": 132060, "conversation context": 31779, "power pretrained": 125209, "llms zeroshot": 97034, "experiments public": 54416, "conversation datasets": 31782, "dialog llm": 41422, "saving rate": 146195, "small context": 152279, "context form": 30773, "accuracies compared": 3097, "having context": 68873, "effect pronounced": 45671, "robustness models": 145407, "enhanced finetuning": 49336, "noisy data": 113996, "parameterefficient finetuning": 119659, "finetuning better": 59183, "fewshot incontext": 57924, "learning icl": 90534, "icl enables": 71670, "enables pretrained": 48241, "gradientbased training": 67409, "examples input": 52616, "incurs substantial": 75490, "substantial computational": 158037, "computational memory": 28376, "memory storage": 100464, "storage costs": 155847, "involves processing": 80759, "processing training": 129344, "time prediction": 166468, "finetuning peft": 59432, "peft adapter": 120678, "modules prompt": 110000, "tuning sparse": 170124, "methods offers": 101689, "offers alternative": 115785, "alternative paradigm": 8570, "small set": 152357, "enable model": 48110, "paper rigorously": 119313, "compare fewshot": 26678, "fewshot icl": 57921, "offers better": 115786, "accuracy dramatically": 3213, "lower computational": 97816, "computational costs": 28351, "way introduce": 177837, "new peft": 113328, "peft method": 120682, "stronger performance": 156476, "performance introducing": 121695, "introducing relatively": 80246, "new parameters": 113326, "parameters propose": 119842, "simple recipe": 151523, "applied new": 10792, "tasks taskspecific": 163347, "validate effectiveness": 175307, "completely unseen": 27305, "benchmark attaining": 16839, "performance time": 122182, "time outperforming": 166458, "outperforming stateoftheart": 117697, "experiments publicly": 54422, "available structured": 15207, "flexible robust": 59823, "benchmarking improving": 17141, "improving large": 74160, "models humanlike": 106645, "humanlike behavior": 71246, "tasks human": 162512, "offers powerful": 115836, "beliefs goals": 16762, "learning ask": 90230, "humanlike thinking": 71291, "learning statistical": 91022, "statistical patterns": 155505, "patterns language": 120544, "llms benchmark": 94484, "benchmark contains": 16878, "problemsolving domains": 128661, "explanation generation": 54784, "generation designed": 64565, "designed require": 39938, "generalization new": 63203, "new outofdistribution": 113313, "outofdistribution problems": 117532, "problems expressed": 128505, "expressed language": 55571, "language humans": 83404, "far robust": 57232, "robust llms": 145284, "benchmark propose": 17058, "propose hybrid": 131863, "llms structured": 96697, "reasoning module": 136989, "model shows": 104566, "robust adaptation": 145234, "planning problems": 123308, "demonstrating promise": 38950, "hybrid ai": 71558, "ai models": 7088, "humanlike reasoning": 71274, "variational autoencoders": 175646, "defacto learning": 37873, "learning generation": 90500, "generation natural": 64872, "language time": 86788, "time existing": 166399, "models employ": 106095, "handle complex": 68530, "plms downstream": 123590, "introduce latent": 80001, "better construct": 17833, "multiple dimensions": 110893, "effectively organize": 46059, "modeling representation": 105083, "guided text": 68241, "activated parameters": 4405, "answering openended": 9917, "considerable advancements": 29603, "advancements various": 5971, "power large": 125186, "llms nlp": 95941, "applications deployed": 10476, "deployed daily": 39210, "daily lives": 34510, "lives work": 93268, "work challenge": 178838, "capability llms": 20336, "llms new": 95936, "generative question": 65583, "questions challenging": 135060, "challenging address": 22107, "address multiple": 5322, "multiple conflicting": 110871, "explore current": 55176, "llms providing": 96263, "providing answer": 133264, "different perspectives": 41904, "propose model": 131930, "ethical principles": 50826, "generates answer": 64055, "answer conditioned": 9690, "conditioned chosen": 28976, "promptbased fewshot": 130760, "learning discuss": 90375, "discuss remaining": 42939, "remaining challenges": 139962, "challenges ethical": 21851, "ethical issues": 50813, "issues involved": 81018, "involved task": 80708, "task suggest": 161759, "developing responsible": 41021, "systems incorporating": 160433, "incorporating human": 75103, "understanding limitations": 171332, "various types": 176238, "work suggest": 179322, "sentences using": 148599, "using approach": 173972, "features sentence": 57573, "models apply": 105374, "probing framework": 128152, "framework analyze": 60955, "analyze effects": 9289, "grammatical gender": 67459, "contextualized representations": 31134, "multilingual versions": 110569, "experiments suggest": 54483, "lead stable": 89779, "causal effects": 21184, "effects various": 46353, "various linguistic": 176010, "linguistic properties": 93055, "properties experiments": 131642, "demonstrate importance": 38375, "loss general": 97674, "general image": 62957, "image inpainting": 72277, "purpose image": 133741, "using context": 174081, "remaining parts": 139966, "years thanks": 179941, "networks cnns": 112721, "inpainting task": 77201, "task great": 161439, "drop dramatically": 45034, "combat challenges": 25812, "challenges propose": 22024, "general method": 62994, "method solve": 101112, "solve problem": 153141, "problem based": 128189, "framework dubbed": 61093, "better capture": 17821, "capture different": 20645, "types missing": 170386, "using types": 174829, "images training": 72501, "training phase": 168634, "enhance robustness": 49285, "model respect": 104465, "respect various": 142521, "reasonable results": 136599, "results introduce": 143538, "reconstruction loss": 138299, "adversarial loss": 6208, "particular introduce": 120086, "introduce effective": 79951, "frequency domain": 61602, "image extensive": 72249, "method boost": 100716, "performance original": 121880, "crucial task": 33868, "benefits large": 17476, "largely rely": 89171, "rely supervised": 139888, "expensive difficult": 53782, "engineering paper": 48963, "pretrained llms": 127021, "llms abilities": 94251, "abilities limitations": 1951, "experiments gpt2": 54298, "gpt2 gptneo": 66547, "capabilities identify": 19944, "leading inconsistent": 89828, "inconsistent results": 74835, "results evaluation": 143391, "benchmark assessing": 16837, "assessing quality": 13200, "texttotext models": 165861, "polish benchmark": 123886, "benchmark consists": 16875, "consists diverse": 29963, "tasks datasets": 162154, "klej benchmark": 81683, "benchmark adapted": 16819, "translation summarization": 169522, "particular summarization": 120126, "answering lack": 9886, "lack benchmark": 82888, "datasets polish": 37031, "additionally present": 5104, "single training": 151871, "denoising pretraining": 39077, "multilingual t5": 110553, "t5 mt5": 160717, "scores tasks": 147173, "tasks summarization": 163315, "larger model": 89222, "results encoderdecoder": 143376, "prove better": 132615, "iterative retrievalgeneration": 81141, "reasoner large": 136607, "achieved high": 3822, "high performance": 69496, "qa benchmarks": 133872, "output remains": 117987, "remains elusive": 140003, "qa systems": 133931, "systems answer": 160243, "order better": 117178, "better generate": 17887, "propose architecture": 131719, "architecture called": 12126, "able explain": 2498, "explain given": 54697, "model iteratively": 103907, "step time": 155687, "contrary previous": 31291, "approaches method": 11842, "generation steps": 65103, "model leverage": 103951, "leverage intermediate": 91609, "mitigating input": 102664, "input size": 77342, "size limit": 152026, "models conduct": 105733, "conduct experiments": 29086, "experiments using": 54510, "tree generation": 169659, "gain overall": 62447, "overcoming language": 118318, "online content": 116084, "content classification": 30447, "multimodal learning": 110700, "revolutionized way": 144668, "address crucial": 5212, "problems large": 128547, "models standard": 109223, "text detection": 165015, "detection classification": 40457, "tasks development": 162220, "development advanced": 41043, "advanced computational": 5719, "computational techniques": 28414, "techniques resources": 164013, "disproportionately focused": 43084, "languages spoken": 87132, "existing research": 53554, "research developed": 141696, "better multilingual": 17949, "multilingual monolingual": 110515, "models bridge": 105541, "english nonenglish": 49089, "nonenglish languages": 114042, "languages explore": 87004, "promise incorporating": 130183, "incorporating information": 75106, "images multimodal": 72453, "multimodal machine": 110713, "learning comparative": 90309, "comparative analyses": 26632, "detection tasks": 40634, "tasks focusing": 162423, "information fake": 76444, "emotion recognition": 47571, "languages demonstrate": 86975, "detection frameworks": 40511, "frameworks based": 61507, "better english": 17855, "languages including": 87027, "including images": 74562, "learning bridges": 90268, "pitfalls large": 123126, "theoretical practical": 166045, "practical implications": 125423, "paper available": 118765, "automated scoring": 14603, "comprehension incontext": 27908, "tuning automated": 169967, "student responses": 156828, "responses potential": 142874, "potential significantly": 124979, "reduce human": 138434, "effort recent": 46868, "advances automated": 5988, "textual representations": 165945, "representations based": 140767, "scoring models": 147194, "approaches train": 11931, "train separate": 167824, "separate model": 148692, "essay scoring": 50568, "quite different": 135359, "approaches limitations": 11831, "fail leverage": 56963, "leverage item": 91610, "comprehension multiple": 27920, "multiple items": 110952, "storing model": 155890, "model item": 103904, "difficult models": 42164, "paper report": 119303, "assessment education": 13226, "approach incontext": 11300, "produces single": 129539, "scoring model": 147193, "input structure": 77354, "approach local": 11369, "evaluations using": 52034, "dataset provided": 36478, "challenge discuss": 21627, "error types": 50328, "limitations approach": 92541, "positional embedding": 124272, "length extrapolation": 91364, "received considerable": 137299, "considerable attention": 29606, "effectively model": 46054, "framework generalizes": 61180, "position embedding": 124258, "achieve goal": 3650, "goal using": 66207, "positive definite": 124288, "inner product": 77134, "kernels allows": 81452, "allows derive": 8421, "principled way": 127850, "way experiments": 177807, "variant achieves": 175617, "extrapolation performance": 56413, "modeling datasets": 104987, "datasets implementation": 36919, "checkpoints released": 23552, "models incontext": 106724, "templates demonstration": 164228, "demonstration permutations": 38980, "propose prototypical": 132086, "adaptively learn": 4791, "learn robust": 90046, "decision boundary": 37366, "fewshot classification": 57892, "method adopts": 100663, "gaussian mixture": 62831, "mixture distribution": 102751, "matching problem": 99478, "problem given": 128269, "given example": 65881, "yields substantial": 180044, "tasks extensive": 162378, "analysis different": 8892, "method calibrates": 100724, "improving robustness": 74212, "class imbalance": 23873, "imbalance instruction": 72555, "instruction induction": 78026, "examples natural": 52641, "task descriptions": 161313, "descriptions large": 39469, "able perform": 2538, "perform task": 121060, "task conditioning": 161266, "inputoutput demonstrations": 77378, "known incontext": 82602, "models explicitly": 106249, "underlying task": 170873, "demonstrations prompting": 39038, "examples explore": 52579, "explore ability": 55133, "ability introduce": 2236, "introduce instruction": 79986, "compile dataset": 27223, "dataset consisting": 36187, "tasks define": 162164, "evaluation metric": 51707, "executing generated": 52932, "generated instruction": 63891, "discover large": 42732, "large extent": 87250, "generate instructions": 63579, "instructions instructgpt": 78282, "surprising result": 159554, "result suggests": 143068, "suggests instruction": 158659, "paradigm instead": 119465, "description natural": 39419, "knowledgedriven approach": 82543, "followup questions": 60332, "questions generation": 135146, "generation conversational": 64539, "quality user": 134295, "user experiences": 173410, "experiences enabling": 53862, "enabling dynamic": 48288, "structure paper": 156591, "proposed novel": 132403, "constructed new": 30181, "humanannotated dataset": 71124, "dataset humanwritten": 36347, "dialogue history": 41481, "context conversational": 30721, "dataset designed": 36233, "systematically evaluate": 160179, "evaluate quality": 51085, "questions propose": 135237, "task generates": 161425, "informative coherent": 76867, "using knowledge": 174345, "process experiments": 128825, "compared gptbased": 26825, "gptbased baseline": 67278, "model generates": 103733, "short text": 150005, "augmented data": 14337, "largescale natural": 89367, "model developed": 103453, "developed openai": 40897, "including topic": 74761, "topic classification": 167315, "claim requires": 23825, "requires small": 141443, "number incontext": 114877, "examples learn": 52629, "learn task": 90063, "exceptional quality": 52841, "quality higher": 134155, "address issue": 5254, "issue study": 80963, "related data": 139159, "additional examples": 4957, "examples generated": 52594, "gpt3 study": 66760, "study compares": 157222, "augmented examples": 14340, "optimal training": 116958, "using genetic": 174249, "algorithm augmented": 7779, "validation accuracy": 175357, "accuracy using": 3417, "using augmented": 173979, "yields consistent": 180018, "accuracy unseen": 3415, "unseen examples": 172163, "examples way": 52724, "largescale machine": 89349, "ability propose": 2331, "propose additional": 131698, "examples result": 52683, "improved classification": 73676, "parameterefficient sparsity": 119680, "sparsity large": 153768, "increased number": 75266, "parameters language": 119782, "research focus": 141797, "compress accelerate": 28185, "accelerate models": 2776, "models research": 108950, "research focuses": 141801, "compressed model": 28197, "challenges computational": 21804, "compressing largescale": 28207, "propose parameterefficient": 132062, "parameterefficient sparse": 119679, "method reduce": 101060, "number trainable": 114967, "training downstream": 168401, "tasks specifically": 163274, "datafree datadriven": 36058, "efficiently accurately": 46756, "accurately measure": 3547, "weights investigate": 178114, "weights instead": 178113, "instead using": 77906, "using original": 174564, "original large": 117350, "importance score": 73060, "experiments diverse": 54254, "gpt2 dozens": 66526, "dozens datasets": 44860, "performs par": 122450, "better previous": 17987, "methods despite": 101434, "despite training": 40240, "training small": 168750, "instance compared": 77797, "parameters achieve": 119699, "performance bert": 121198, "comprehensive benchmark": 27962, "benchmark evaluating": 16953, "nlg models": 113657, "models bangla": 105445, "widely spoken": 178385, "introducing new": 80240, "process furthermore": 128844, "furthermore using": 62176, "data pretrain": 35528, "sequencetosequence transformer": 148858, "absolute gain": 2608, "relative gain": 139367, "making new": 98783, "new dialogue": 113145, "dialogue dataset": 41460, "advancing future": 6087, "discriminative pretrained": 42849, "works shown": 179495, "results prompt": 143690, "generative plms": 65529, "plms pretrained": 123627, "pretrained generate": 126821, "generate target": 63743, "target tokens": 161116, "framework discriminative": 61087, "discriminative language": 42843, "classification question": 24061, "compared vanilla": 26963, "vanilla finetuning": 175572, "achieves significantly": 4076, "significantly higher": 151010, "higher performance": 69618, "problem tuning": 128423, "large plms": 88983, "lowresource settings": 97937, "code experiment": 24822, "details paper": 40337, "future large": 62280, "downstream adaptation": 44696, "adaptation methods": 4642, "tune parameters": 169943, "tuning cost": 169979, "cost increases": 32691, "increases linearly": 75281, "growth model": 68085, "size contrast": 151978, "require forward": 141111, "forward computation": 60663, "tuning introduces": 170038, "tasks ptms": 163051, "ptms paper": 133531, "improved version": 73734, "optimize prompts": 117078, "different layers": 41824, "tuning stateoftheart": 170126, "stateoftheart parameterefficient": 155265, "methods adapter": 101285, "adapter lora": 4710, "settings maintaining": 149610, "fewer tunable": 57876, "tunable parameters": 169933, "new knowledge": 113242, "knowledge time": 82457, "time question": 166479, "usually studied": 174921, "studied static": 156941, "knowledge like": 82196, "world dynamic": 179544, "evolves time": 52302, "time models": 166453, "knowledge outdated": 82256, "models underlying": 109538, "adapt evolving": 4525, "evolving knowledge": 52311, "knowledge construct": 81835, "new largescale": 113251, "largescale dataset": 89290, "seen pretraining": 147699, "parametric models": 119895, "semiparametric models": 148357, "adding new": 4828, "search space": 147414, "space allows": 153549, "allows rapid": 8466, "adaptation models": 4646, "named entities": 111393, "particularly beneficial": 120151, "dynamic world": 45175, "dataset enables": 36253, "realistic evaluation": 136291, "experiments highlight": 54305, "perception models": 120814, "models bayesian": 105469, "bayesian models": 16483, "models group": 106568, "learning studied": 91033, "phenomena observed": 122823, "experimental studies": 54093, "studies address": 156946, "models formally": 106384, "utility maximization": 174962, "maximization framework": 99668, "framework introduced": 61239, "models individuals": 106754, "communication work": 26424, "work study": 179317, "behavior models": 16617, "individual agents": 75705, "explore interpretation": 55225, "interpretation results": 79710, "results terms": 143863, "direction results": 42448, "results interpreted": 143536, "different llms": 41835, "llms lead": 95737, "optimal learning": 116940, "learning provide": 90881, "provide example": 132771, "lead llm": 89758, "llm agents": 93451, "measuring social": 99962, "social biases": 152531, "biases promptbased": 18307, "promptbased multitask": 130791, "trained mixture": 168005, "format using": 60552, "using prompts": 174619, "generalize novel": 63267, "novel forms": 114505, "forms language": 60603, "language handle": 83400, "handle novel": 68561, "novel tasks": 114708, "large body": 87201, "body work": 18780, "understand effects": 171000, "forms prompts": 60605, "prompts achieving": 131148, "achieving superior": 4232, "consider alternative": 29562, "way input": 177833, "outputs paper": 118096, "largescale multitask": 89366, "trained using": 168105, "using promptbased": 174615, "learning consider": 90318, "consider different": 29566, "semantically equivalent": 148268, "use existing": 172605, "existing bias": 53303, "bias benchmark": 18102, "benchmark natural": 17040, "form results": 60487, "results benchmarks": 143196, "benchmarks suggest": 17376, "given different": 65873, "different formulations": 41780, "training compared": 168192, "unlike training": 172025, "examples code": 52536, "data released": 35640, "birds fly": 18594, "penguins fly": 120708, "bases used": 16404, "used extensively": 173062, "extensively nlp": 55988, "generic knowledge": 65656, "does hold": 43985, "hold true": 70259, "crucial developing": 33787, "developing comprehensive": 40984, "comprehensive understanding": 28151, "linguistic theory": 93077, "specific cases": 153946, "holds true": 70288, "true false": 169803, "framework outperforms": 61337, "gpt3 baseline": 66650, "analysis highlights": 8956, "highlights importance": 69855, "task natural": 161558, "llms widely": 97004, "subfields natural": 157810, "generally known": 63313, "excellent fewshot": 52789, "thought cot": 166219, "cot prompting": 32882, "prompting recent": 131057, "recent technique": 137696, "reasoning stepbystep": 137142, "stateoftheart performances": 155301, "reasoning difficult": 136813, "follow standard": 60227, "attributed llms": 14096, "llms ability": 94253, "ability fewshot": 2165, "learning llms": 90654, "simply adding": 151609, "lets think": 91435, "think step": 166139, "step step": 155683, "answer experimental": 9705, "single prompt": 151848, "prompt template": 130690, "outperforms zeroshot": 117890, "zeroshot llm": 180253, "performances diverse": 122331, "diverse benchmark": 43472, "benchmark reasoning": 17069, "gsm8k aquarat": 68096, "logical reasoning": 97374, "tasks date": 162158, "date understanding": 37221, "instructgpt model": 77948, "model textdavinci002": 104742, "improvements offtheshelf": 73927, "offtheshelf large": 115912, "diverse reasoning": 43628, "zeroshot capabilities": 180123, "capabilities llms": 20026, "llms suggesting": 96725, "cognitive capabilities": 25446, "simple prompting": 151513, "work serves": 179283, "strongest zeroshot": 156489, "zeroshot baseline": 180120, "reasoning benchmarks": 136682, "importance carefully": 73014, "zeroshot knowledge": 180219, "knowledge hidden": 82098, "inside llms": 77478, "llms crafting": 94754, "crafting finetuning": 33155, "datasets fewshot": 36864, "fewshot exemplars": 57907, "evaluating impact": 51312, "compositional generalization": 27811, "shown struggle": 150385, "shown considerable": 150220, "considerable improvements": 29623, "scaling scaling": 146448, "size improve": 152004, "improve compositional": 73432, "models 11b": 105146, "11b parameters": 257, "decoderonly models": 37547, "models 540b": 105164, "540b parameters": 1362, "compare model": 26696, "scaling curves": 146388, "different methods": 41847, "methods applying": 101312, "model new": 104129, "finetuning parameters": 59429, "parameters prompt": 119841, "tuning incontext": 170029, "learning observe": 90783, "observe finetuning": 115370, "finetuning generally": 59280, "positive scaling": 124308, "generally outperformed": 63320, "smaller finetuned": 152392, "models prompttuning": 108700, "outperform finetuning": 117592, "finetuning suggesting": 59572, "suggesting potential": 158622, "potential improvements": 124777, "improvements scaling": 73943, "scaling exhibits": 146395, "exhibits positive": 53210, "additionally identify": 5079, "scale example": 146284, "generally better": 63303, "better modeling": 17947, "prone certain": 131555, "overall study": 118238, "study highlights": 157389, "highlights limitations": 69861, "limitations current": 92559, "leveraging model": 91904, "suggests promising": 158671, "gpt2 recent": 66590, "transformer decoders": 169117, "popular studies": 124059, "studies examining": 156993, "examining behavior": 52441, "models tend": 109368, "tend focus": 164305, "output language": 117952, "internal states": 79565, "states transformer": 155440, "transformer decoder": 169116, "study present": 157537, "present collection": 126245, "collection methods": 25742, "methods analyze": 101304, "analyze hidden": 9297, "states gpt2": 155426, "gpt2 use": 66607, "models navigation": 108272, "sentences case": 148560, "provide reliable": 132952, "compared established": 26793, "nexttoken probabilities": 113611, "probabilities computed": 128100, "using methods": 174486, "impacts models": 72767, "models representations": 108934, "substantial impact": 158067, "decoder models": 37519, "models hidden": 106598, "understanding textual": 171509, "textual explanations": 165913, "understanding recently": 171448, "recognizing textual": 138178, "textual entailment": 165908, "similar classical": 151219, "datasets current": 36754, "current benchmarks": 34081, "benchmarks suffer": 17375, "spurious correlations": 154614, "problem work": 128437, "data exists": 35008, "language making": 83502, "expressions address": 55595, "spanning categories": 153672, "based gpt3": 15846, "crowd workers": 33717, "expert annotators": 54553, "conjunction human": 29461, "human annotators": 70587, "datasets complex": 36722, "complex linguistic": 27457, "baseline performance": 16249, "step closer": 155607, "developing models": 41012, "language textual": 86786, "question decomposition": 134856, "lms achieved": 97100, "number new": 114910, "new benchmarks": 113094, "building new": 19434, "cost time": 32742, "explore alternative": 55141, "models strengths": 109238, "humans decompose": 71369, "question set": 134937, "simpler questions": 151559, "models solve": 109175, "range datasets": 135605, "datasets involving": 36935, "involving various": 80807, "reasoning possible": 137035, "possible significantly": 124461, "performance 24": 121112, "decomposition approach": 37635, "approach provides": 11480, "provides viable": 133254, "viable option": 176647, "people nlp": 120730, "nlp research": 113802, "meaningful way": 99804, "provide alternate": 132674, "path building": 120426, "datasets improve": 36920, "improve generative": 73476, "generative data": 65407, "ability generative": 2203, "models glms": 106506, "years enabling": 179894, "enabling use": 48356, "augmentation work": 14328, "approach improve": 11288, "data generation": 35106, "generation context": 64532, "generation given": 64697, "given questionanswer": 65972, "questionanswer qa": 134968, "qa pair": 133908, "training context": 168202, "context generators": 30782, "finetuned context": 59001, "domain finally": 44165, "finally use": 58537, "use finetuned": 172627, "relevant contexts": 139584, "classification datasets": 23980, "demonstrate substantial": 38569, "improvements performance": 73931, "settings analysis": 149529, "analysis reveals": 9136, "datasets require": 37081, "highlevel reasoning": 69705, "reasoning abilities": 136616, "commonsense qa": 26292, "datasets tend": 37153, "knowledge alignment": 81741, "alignment reinforcement": 8226, "models readily": 108796, "adapt novel": 4550, "novel settings": 114691, "data zeroshot": 35979, "zeroshot capacity": 180131, "extended multimodal": 55661, "inputs work": 77453, "zeroshot models": 180264, "multimodal tasks": 110770, "like image": 92315, "image audio": 72179, "audio captioning": 14164, "key novelty": 81542, "use reinforcement": 172846, "learning align": 90205, "inputs language": 77419, "model generations": 103740, "direct supervision": 42408, "reward optimization": 144706, "requires additional": 141331, "paired image": 118534, "caption data": 20563, "data parameters": 35471, "model left": 103949, "outperforms baselines": 117713, "variety zeroshot": 175783, "zeroshot tasks": 180353, "tasks include": 162541, "include new": 74336, "models generating": 106468, "captions image": 20610, "used natural": 173154, "processing scenarios": 129291, "scenarios like": 146640, "select best": 147767, "best sentence": 17748, "sentence multiple": 148516, "multiple candidates": 110854, "candidates previous": 19747, "mainly adopted": 98282, "probability estimation": 128111, "bidirectional context": 18342, "context affects": 30684, "tokens time": 166893, "time requires": 166487, "requires multiple": 141424, "multiple forward": 110922, "forward passes": 60666, "large computation": 87214, "model novel": 104133, "modeling slm": 105094, "probability tokens": 128127, "tokens sentence": 166879, "context requires": 30900, "requires single": 141442, "single forward": 151799, "forward pass": 60665, "high effectiveness": 69450, "results multiple": 143619, "multiple tasks": 111060, "fast memoryefficient": 57273, "memory complexity": 100373, "approximate attention": 12013, "methods attempted": 101323, "attempted address": 13804, "quality reduce": 134242, "attention algorithms": 13840, "gpu memory": 67343, "attention algorithm": 13839, "memory readswrites": 100447, "gpu high": 67340, "high bandwidth": 69401, "bandwidth memory": 15532, "memory hbm": 100404, "requires fewer": 141376, "standard attention": 154803, "algorithm faster": 7806, "faster existing": 57290, "existing approximate": 53279, "length 512": 91344, "training speed": 168759, "speedup gpt2": 154523, "longrange arena": 97567, "longer context": 97523, "yielding higher": 180000, "quality models": 134206, "better perplexity": 17975, "entirely new": 49824, "new capabilities": 113100, "capabilities transformers": 20225, "length 16k": 91343, "length 64k": 91345, "generation sequencetosequence": 65078, "learning popular": 90830, "generally focus": 63309, "suboptimal performance": 157911, "verify hypothesis": 176534, "hypothesis empirically": 71617, "empirically study": 47803, "seq2seq pretrained": 148721, "takes important": 160981, "neuron activation": 113008, "models integrating": 106793, "selfsupervised information": 148055, "encoders specifically": 48496, "denoising objective": 39076, "learning better": 90259, "better sentence": 18023, "representations contrastive": 140785, "contrastive objective": 31379, "objective help": 115203, "effectively distinguish": 45977, "noise tokens": 113985, "tokens capture": 166786, "capture highlevel": 20655, "semantic knowledge": 148164, "model accurately": 103022, "generation large": 64771, "large diversity": 87244, "backbone models": 15417, "models bart": 105446, "bart backbone": 15580, "understanding evaluation": 171220, "evaluation glue": 51622, "f05 score": 56478, "score improvement": 147073, "dataset provide": 36477, "indepth analyses": 75512, "stems better": 155590, "better linguistic": 17932, "linguistic representation": 93059, "work foster": 179000, "foster future": 60685, "multiagent reinforcement": 110327, "problem large": 128300, "performance generalization": 121574, "generalization capabilities": 63141, "language recently": 86699, "recently reinforcement": 137970, "problem benefit": 128191, "prosperous development": 132549, "novel architecture": 114404, "architecture named": 12195, "cooperative multiagent": 32078, "learning marl": 90666, "optimal action": 116928, "action sequence": 4338, "architecture leverages": 12185, "policy search": 123872, "search problem": 147391, "problem sequential": 128389, "sequential decision": 148867, "making process": 98798, "complexity multiagent": 27690, "multiagent problems": 110326, "prior arts": 127881, "offline data": 115871, "trials errors": 169742, "multiagent mujoco": 110325, "google research": 66326, "benchmarks results": 17357, "efficiency compared": 46431, "compared strong": 26941, "furthermore demonstrate": 62040, "changes number": 22384, "number agents": 114820, "agents project": 6697, "project page": 130081, "indomain training": 75804, "study legal": 157470, "legal case": 91280, "entailment task": 49772, "task recent": 161680, "shown language": 150295, "models scaled": 109037, "scaled billions": 146359, "perform remarkably": 121024, "scenarios work": 146720, "work experiment": 178947, "models legal": 106951, "coliee 2022": 25569, "scaling number": 146430, "improves f1": 73999, "previous zeroshot": 127706, "zeroshot model": 180263, "set achieves": 149123, "performance single": 122074, "single model": 151832, "3b model": 1119, "version model": 176609, "model despite": 103442, "despite challenges": 40085, "challenges posed": 22000, "models mainly": 108121, "realtime applications": 136371, "applications provide": 10651, "monot53b model": 110082, "used production": 173192, "search engine": 147336, "including legal": 74590, "legal documents": 91286, "documents code": 43892, "code submission": 25159, "attacks pretrained": 13734, "pretrained programming": 127142, "programming language": 129831, "language pl": 86465, "models codet5": 105661, "codet5 codebert": 25326, "codebert graphcodebert": 25231, "potential automate": 124609, "automate software": 14504, "engineering tasks": 48995, "involving code": 80779, "code understanding": 25195, "understanding code": 171158, "human understanding": 71068, "code robust": 25120, "robust changes": 145246, "changes input": 22377, "input potentially": 77309, "potentially susceptible": 125138, "susceptible adversarial": 159727, "blackbox attack": 18628, "attack model": 13651, "code structure": 25155, "structure generate": 156559, "generate effective": 63473, "effective efficient": 45744, "imperceptible adversarial": 72804, "code samples": 25123, "attacks evaluate": 13705, "summarization tasks": 158886, "tasks different": 162225, "different programming": 41931, "stateoftheart adversarial": 155067, "attack models": 13652, "best overall": 17717, "drop performance": 45035, "performance efficient": 121443, "understanding contextualized": 171174, "representations work": 140916, "representation space": 140739, "contextualized embeddings": 31126, "models exists": 106229, "latent states": 89516, "properties contextualized": 131637, "representations instead": 140822, "fully unsupervised": 61797, "unsupervised way": 172282, "way using": 177888, "using structured": 174766, "reveal internal": 144345, "internal mechanism": 79551, "word meanings": 178652, "morphological syntactic": 110132, "encode rich": 48381, "encode syntactic": 48382, "content demonstrate": 30468, "processing using": 129351, "using transformers": 174824, "studies using": 157109, "text features": 165082, "regression tasks": 138966, "tasks main": 162772, "main focus": 98242, "focus methods": 60023, "methods employing": 101473, "models dataset": 105846, "average length": 15296, "400 words": 1182, "available english": 15102, "german dataset": 65760, "dataset short": 36535, "descriptions used": 39507, "demonstrate techniques": 38587, "challenges related": 22040, "long input": 97455, "input sequences": 77339, "output assess": 117898, "assess improve": 13088, "finetuning models": 59389, "models domain": 106017, "specific prediction": 154058, "task finally": 161394, "finally tutorial": 58536, "provides practical": 133196, "data including": 35205, "limited chatgpt": 92727, "chatgpt results": 23280, "results achieved": 143156, "achieved using": 3922, "minimal preprocessing": 102352, "clearly demonstrate": 24285, "demonstrate power": 38472, "power transfer": 125223, "know pretrained": 81711, "plms use": 123650, "subword tokenization": 158205, "variety language": 175717, "characterlevel information": 22497, "information despite": 76354, "despite lacking": 40149, "lacking explicit": 83037, "information training": 76813, "training classifiers": 168182, "classifiers predict": 24193, "predict presence": 125698, "presence absence": 126206, "character token": 22439, "token based": 166692, "based embedding": 15769, "model embedding": 103518, "character models": 22433, "models robustly": 109020, "robustly encode": 145342, "better task": 18041, "results generalize": 143428, "series experiments": 148918, "experiments analyses": 54141, "investigate mechanisms": 80446, "character information": 22430, "training argue": 168164, "knowledge acquired": 81725, "multiple phenomena": 110998, "phenomena including": 122819, "relationship particular": 139330, "speech natural": 154437, "data governance": 35134, "language technology": 86783, "technology recent": 164166, "recent emergence": 137486, "learning technology": 91070, "specifically large": 154239, "models drawn": 106031, "need systematic": 112402, "work proposes": 179227, "proposes approach": 132458, "global language": 66096, "data management": 35345, "values rights": 175555, "informed prior": 76895, "accounts human": 3088, "focused language": 60108, "data incorporating": 35210, "support work": 159355, "sentence representation": 148526, "representation pretraining": 140731, "pretraining multilingual": 127393, "retrieval recent": 144122, "research demonstrates": 141688, "demonstrates effectiveness": 38837, "models plm": 108519, "plm improve": 123560, "retrieval multilingual": 144099, "monolingual pretraining": 110073, "sentence level": 148509, "local context": 97229, "closer pushing": 24540, "form isomorphic": 60465, "structure sentence": 156603, "pairs different": 118563, "model collapse": 103301, "information leakage": 76555, "contrastive training": 31384, "memory bank": 100368, "play essential": 123450, "essential role": 50625, "sentence embedding": 148493, "better retrieval": 18017, "performance multilingual": 121821, "multilingual sentence": 110545, "retrieval task": 144147, "new sota": 113417, "results methods": 143605, "bilingual data": 18413, "shows larger": 150447, "achieves sota": 4083, "zeroshot supervised": 180350, "supervised setting": 159170, "setting pretraining": 149493, "data imitation": 35180, "imitation game": 72580, "demonstrate quantitative": 38515, "quantitative improvement": 134351, "improvement new": 73825, "new qualitative": 113369, "qualitative capabilities": 133987, "capabilities increasing": 19956, "transformative impact": 169067, "impact new": 72699, "inform future": 76252, "model capabilities": 103239, "harmful effects": 68734, "vital understand": 177421, "understand present": 171061, "capabilities limitations": 20015, "challenge introduce": 21661, "game benchmark": 62548, "currently consists": 34312, "biology physics": 18528, "physics social": 122951, "social bias": 152530, "bias software": 18202, "software development": 152787, "capabilities current": 19841, "openais gpt": 116407, "parameters addition": 119707, "human expert": 70779, "expert raters": 54591, "performed tasks": 122382, "order provide": 117236, "provide strong": 132982, "findings include": 58695, "performance calibration": 121215, "improve scale": 73621, "performance performance": 121905, "performance remarkably": 122012, "model classes": 103282, "large knowledge": 87288, "knowledge memorization": 82226, "component tasks": 27742, "tasks exhibit": 162339, "involve multiple": 80691, "multiple steps": 111053, "increases scale": 75291, "ambiguous context": 8637, "improved prompting": 73711, "sparse backpropagation": 153720, "networks rnns": 112797, "solving sequence": 153245, "sequence tasks": 148789, "low computational": 97738, "computational requirements": 28397, "need bridge": 112237, "terms efficiency": 164410, "efficiency performance": 46502, "performance realworld": 121990, "realworld application": 136393, "requirements memory": 141309, "memory computational": 100378, "neurons time": 113032, "training using": 168812, "discrete makes": 42807, "backward pass": 15462, "sparse efficient": 153727, "forward backward": 60661, "backward passes": 15463, "efficiency compromising": 46435, "performance demonstrating": 121371, "demonstrating competitive": 38923, "competitive performance": 27183, "compared stateoftheart": 26931, "models realworld": 108803, "modeling dynamic": 104994, "makes model": 98673, "emergent abilities": 47455, "abilities large": 1941, "models scaling": 109040, "performance sample": 122039, "sample efficiency": 145945, "paper instead": 118982, "models consider": 105747, "consider ability": 29560, "models emergent": 106079, "performance smaller": 122079, "additional scaling": 4996, "range capabilities": 135592, "models write": 109719, "generative visionlanguage": 65608, "models unified": 109547, "advances visionlanguage": 6073, "stateoftheart various": 155408, "various visionlanguage": 176248, "tasks making": 162780, "imagetotext generation": 72538, "generation studies": 65110, "studies investigate": 157027, "capabilities learned": 20009, "making versatile": 98823, "powerful multimodal": 125307, "multimodal foundation": 110636, "pretraining learning": 127375, "concurrently propose": 28935, "model named": 104115, "prefix language": 126097, "prefix image": 126095, "image modeling": 72290, "generative selfsupervised": 65588, "selfsupervised objective": 148069, "modeling framework": 105005, "huge data": 70513, "tasks strong": 163290, "vision text": 176993, "text multimodal": 165316, "multimodal understanding": 110780, "tasks davinci": 162160, "davinci achieves": 37229, "achieves competitive": 3992, "generationunderstanding tasks": 65291, "tasks demonstrates": 162185, "demonstrates superiority": 38910, "visionlanguage generative": 177028, "benchmark performance": 17051, "objectives different": 115241, "scales pretraining": 146377, "pretraining datasets": 127302, "vision inputs": 176926, "establish new": 50666, "stronger baselines": 156465, "baselines future": 16325, "comparisons different": 27077, "different data": 41717, "code pretrained": 25051, "evaluated tasks": 51212, "multitask setting": 111241, "learning cl": 90297, "cl benchmarks": 23818, "research task": 142109, "mitigating catastrophic": 102654, "tasks present": 162970, "benchmark study": 17095, "challenge learning": 21673, "learning multimodal": 90746, "multimodal unimodal": 110783, "unimodal tasks": 171791, "visionlanguage transformer": 177088, "transformer vilt": 169221, "model deployed": 103433, "deployed multimodal": 39216, "tasks common": 162080, "cl methods": 23819, "methods help": 101566, "help mitigate": 69145, "mitigate forgetting": 102604, "forgetting multimodal": 60425, "multimodal task": 110768, "task learning": 161515, "crosstask knowledge": 33710, "facilitate research": 56640, "research new": 141931, "new class": 113110, "challenging multimodal": 22217, "multimodal setting": 110761, "mixture model": 102755, "lowresource nlp": 97926, "existing solutions": 53573, "solutions leverage": 153041, "heuristic rules": 69310, "synonym replacement": 159880, "finetune generalpurpose": 58919, "gpt2 using": 66608, "using limited": 174410, "training instances": 168505, "new synthetic": 113439, "data consequently": 34831, "taskspecific knowledge": 163526, "knowledge limited": 82197, "combat issue": 25813, "pretrained mixture": 127044, "framework knowledge": 61247, "knowledge single": 82404, "utilize knowledge": 175054, "task limited": 161521, "input examples": 77238, "tasks unified": 163409, "unified texttotext": 171751, "learn reconstruct": 90041, "attempt apply": 13780, "multitask training": 111244, "augmentation extensive": 14276, "performance strong": 122117, "nlp benchmark": 113696, "successfully transfers": 158400, "knowledge nlp": 82247, "tasks types": 163398, "types seen": 170424, "seen unseen": 147715, "pretraining work": 127479, "work try": 179346, "connection nlp": 29490, "nlp technology": 113920, "development past": 41180, "past decades": 120382, "potential new": 124883, "new learning": 113253, "paradigm nlp": 119491, "role data": 145478, "process data": 128780, "data storing": 35801, "storing accessing": 155889, "storage mechanism": 155848, "large data": 87229, "data consider": 34832, "ease access": 45277, "valuable information": 175418, "engineering challenges": 48890, "models surpass": 109315, "surpass strong": 159464, "strong competitors": 156369, "popular datasets": 123993, "datasets variety": 37191, "variety nlp": 175737, "achieve superior": 3774, "specifically proposed": 154274, "points higher": 123755, "average scores": 15313, "15 points": 415, "higher gpt3": 69604, "high score": 69538, "gaokao benchmark": 62607, "addition test": 4911, "test model": 164584, "selfsupervised pretraining": 148071, "pretraining transformers": 127471, "human motion": 70931, "motion forecasting": 110147, "severity estimation": 149721, "according scoring": 3054, "scoring systems": 147201, "rating scale": 136041, "severity prediction": 149722, "prediction using": 125885, "using video": 174853, "provides promising": 133199, "impairments limited": 72780, "limited size": 92852, "data hinders": 35158, "hinders model": 70159, "model ability": 103008, "ability clinical": 2099, "potential clinical": 124645, "clinical data": 24322, "gpt3 use": 66771, "use human": 172670, "transformer pretrained": 169200, "applied clinical": 10741, "method outperforms": 101007, "rely solely": 139884, "data large": 35287, "margin achieving": 99177, "achieving f1": 4171, "score 076": 147031, "human movement": 70932, "movement data": 110221, "data repositories": 35648, "clinical use": 24376, "cases learning": 20989, "learning universal": 91103, "motion representations": 110156, "representations code": 140774, "similar natural": 151277, "probing study": 128167, "methodology allows": 101210, "allows obtain": 8461, "representation linguistic": 140718, "using external": 174187, "classifiers statistical": 24198, "statistical analysis": 155482, "analysis pretrained": 9078, "models widely": 109691, "nlu natural": 113942, "used downstream": 173037, "downstream applications": 44699, "contained knowledge": 30319, "study transformer": 157675, "english models": 49080, "language learned": 83481, "learned models": 90111, "models process": 108657, "corpora results": 32247, "stages training": 154773, "capture various": 20695, "various features": 175940, "features various": 57604, "various levels": 176007, "morphology syntax": 110135, "fail tasks": 56983, "opensource framework": 116609, "compatible transformerbased": 27099, "knowledge gpt3": 82040, "studies focus": 157004, "embeddingbased methods": 47205, "methods alleviate": 101299, "past studies": 120394, "exists need": 53662, "need answer": 112225, "queries require": 134531, "sense knowledge": 148389, "gpt3 based": 66649, "based product": 16036, "gpt3 question": 66745, "answering users": 9979, "users need": 173720, "need know": 112327, "querying method": 134660, "prompt tokens": 130697, "gpt3 prompt": 66743, "prompt knowledge": 130557, "method shows": 101093, "shows consistent": 150423, "realworld public": 136485, "public dataset": 133558, "dataset compared": 36169, "indepth discussion": 75527, "leveraging gpt3": 91858, "answering based": 9815, "based retrieval": 16075, "open science": 116288, "supplementary material": 159237, "scientific articles": 146935, "time paper": 166461, "reward mechanism": 144689, "according traditional": 3060, "traditional research": 167690, "research evaluation": 141765, "evaluation frameworks": 51611, "topic significant": 167338, "significant portion": 150815, "different scientific": 41984, "research effort": 141740, "research data": 141678, "exhibit different": 53037, "preliminary study": 126146, "study paper": 157518, "paper leverage": 119068, "wealth information": 177973, "analysis subset": 9184, "marine science": 99209, "results promising": 143689, "worth exploring": 179678, "22 cases": 770, "substantial variations": 158109, "largescale analysis": 89267, "sensitivity analysis": 148452, "architectures bert": 12253, "financial sentiment": 58579, "novel nlp": 114615, "potential applications": 124580, "financial sector": 58578, "lot work": 97719, "methods perform": 101707, "parameters investigate": 119779, "performance sensitivity": 122051, "parameters bert": 119717, "earlier layers": 45233, "pattern information": 120503, "training transformers": 168807, "models overly": 108398, "large corporations": 87224, "methods training": 101885, "models collaboratively": 105667, "training shared": 168739, "shared model": 149815, "texttoimage transformer": 165831, "training run": 168707, "using available": 173994, "available hardware": 15128, "challenges associated": 21784, "associated training": 13515, "limited memory": 92800, "collaborative training": 25634, "finally resulting": 58519, "resulting model": 143115, "generates images": 64076, "quality number": 134212, "adaptation large": 4630, "plms domain": 123589, "finetuning prompting": 59479, "finetuning requires": 59512, "avoid overfitting": 15347, "prompting requires": 131063, "limits performance": 92926, "plms data": 123582, "parameterefficient adaptation": 119656, "general adapted": 62909, "expressed terms": 55578, "terms model": 164437, "structure proposed": 156596, "proposed dynamic": 132279, "experiments fewshot": 54286, "abstractive summarization": 2681, "multidomain language": 110389, "performance direct": 121401, "direct finetuning": 42383, "domainadaptive pretraining": 44330, "individually improve": 75760, "improve parameterefficient": 73540, "parameterefficient transfer": 119683, "networks large": 112766, "models infer": 106760, "representations encode": 140802, "rich semantic": 144799, "semantic syntactic": 148232, "novel neural": 114612, "explicit relational": 54955, "relational structures": 139279, "output representations": 117989, "representations pretrained": 140865, "specifically model": 154250, "model encodes": 103537, "sequences symbols": 148839, "posterior distribution": 124490, "distribution demonstrate": 43351, "demonstrate model": 38439, "able uncover": 2568, "generated datasets": 63847, "datasets random": 37064, "random token": 135544, "leverage pretrained": 91643, "datasets experiments": 36850, "encoding different": 48506, "models effectively": 106047, "symbolic representations": 159826, "representations finally": 140808, "random walk": 135547, "reasoning models": 136988, "knowledge databases": 81855, "databases using": 36028, "enhance performance": 49246, "tasks exploring": 162374, "ability extrapolate": 2163, "longer ones": 97529, "important form": 73138, "outofdistribution generalization": 117522, "generalization reasoning": 63219, "tasks crucial": 162144, "theorem proving": 166007, "solving quantitative": 153242, "mathematics problems": 99618, "paper run": 119314, "careful empirical": 20780, "studies exploring": 157001, "capabilities transformerbased": 20222, "models establish": 106157, "tasks shows": 163239, "shows significant": 150475, "independent model": 75501, "combining pretrained": 25993, "asking model": 12884, "output solution": 117998, "solution steps": 152979, "dramatic improvement": 44880, "identify common": 71873, "efficient pretraining": 46698, "models usually": 109598, "usually requires": 174916, "requires massive": 141413, "resources terms": 142490, "computation data": 28298, "data frequently": 35080, "frequently used": 61629, "web sources": 178022, "pretraining suboptimal": 127449, "suboptimal work": 157918, "experiment different": 53891, "sampling methods": 146104, "novel datacentric": 114457, "sampling enables": 146092, "steps using": 155778, "data resulting": 35667, "results certain": 143212, "way small": 177875, "limited budget": 92722, "based small": 16101, "small datasets": 152285, "datasets comparing": 36720, "learning approaches": 90219, "approaches large": 11819, "model study": 104670, "study discusses": 157289, "combination pretrained": 25839, "aims answer": 7579, "question comparing": 134842, "systems additionally": 160230, "approach results": 11515, "results higher": 143451, "higher scores": 69633, "diversity metrics": 43745, "metrics terms": 102157, "terms output": 164442, "output quality": 117984, "did increase": 41594, "text quality": 165393, "quality scores": 134263, "scores data": 147130, "augmentation approach": 14263, "yielded similar": 179994, "similar scores": 151303, "scores training": 147175, "diversity language": 43738, "present language": 126350, "models defined": 105875, "finite set": 59631, "set inputs": 149221, "scale number": 146321, "supported languages": 159361, "results tradeoff": 143871, "embedding matrix": 47175, "suffers issues": 158464, "images making": 72446, "making possible": 98786, "transfer representations": 168989, "languages based": 86952, "trained reconstruct": 168057, "patches instead": 120414, "predicting distribution": 125738, "tokens pretrain": 166856, "english data": 49042, "semantic tasks": 148235, "including various": 74779, "nonlatin scripts": 114090, "outperforms bert": 117725, "semantic processing": 148195, "robust bert": 145243, "humanlike content": 71256, "tasks abstract": 161882, "abstract reasoning": 2654, "reasoning key": 136936, "key ability": 81455, "lms achieve": 97099, "reasoning imperfect": 136905, "human reasoning": 71005, "realworld knowledge": 136470, "humans reason": 71460, "semantic content": 148126, "correct logical": 32399, "logical inferences": 97364, "patterns play": 120555, "play central": 123437, "nature human": 112005, "human intelligence": 70859, "prior expectations": 127891, "capture aspects": 20632, "aspects human": 12943, "logical problems": 97370, "task evaluate": 161358, "art large": 12545, "models humans": 106648, "humans language": 71417, "reflect patterns": 138800, "patterns observed": 120553, "observed humans": 115414, "humans tasks": 71479, "like humans": 92314, "humans models": 71434, "relationship model": 139328, "human response": 71022, "response times": 142710, "findings implications": 58692, "implications understanding": 72957, "understanding cognitive": 171160, "factors contribute": 56790, "advances transformerbased": 6068, "llms led": 95743, "led significant": 91243, "improvements tasks": 73955, "tasks gains": 162442, "gains come": 62513, "models size": 109148, "size potentially": 152050, "potentially leading": 125118, "slow costly": 152256, "costly use": 32807, "generations llms": 65283, "varying levels": 176290, "levels difficulty": 91535, "benefit models": 17443, "models capacity": 105567, "compute work": 28460, "framework dynamically": 61094, "different amounts": 41650, "input generation": 77252, "challenges address": 21764, "previous tokens": 127679, "theoretical analysis": 166015, "analysis empirical": 8903, "efficacy framework": 46377, "framework reducing": 61377, "reducing compute": 138559, "maintaining high": 98357, "performance multimodal": 121822, "dialog systems": 41430, "text response": 165427, "response generation": 142647, "generation multimodal": 64863, "multimodal taskoriented": 110769, "taskoriented dialog": 161842, "systems aims": 160238, "generate proper": 63662, "response given": 142658, "multimodal context": 110609, "context essential": 30749, "task existing": 161371, "existing efforts": 53352, "success suffer": 158298, "benefit generative": 17431, "textual context": 165885, "related knowledge": 139175, "knowledge address": 81736, "address limitations": 5310, "model multimodal": 104103, "consisting key": 29945, "key components": 81478, "knowledge selection": 82395, "context learning": 30817, "generation specific": 65096, "selection component": 147839, "component aims": 27730, "according textual": 3059, "textual visual": 165963, "modalities given": 102928, "seamlessly integrating": 147306, "selected knowledge": 147798, "learning global": 90505, "global local": 66099, "semantic relation": 148203, "utilizing knowledge": 175199, "generation extensive": 64643, "dataset verify": 36614, "verify superiority": 176542, "superiority proposed": 159071, "stateoftheart competitors": 155109, "model cascades": 103255, "prompted models": 130827, "models demonstrated": 105897, "impressive fewshot": 73295, "model composition": 103324, "composition multiple": 27806, "multiple models": 110981, "expands capabilities": 53708, "probabilistic models": 128091, "graphical models": 67602, "models random": 108768, "random variables": 135546, "values complex": 175524, "complex data": 27388, "data types": 35894, "techniques probabilistic": 163990, "probabilistic programming": 128095, "model structures": 104664, "inference strategies": 76111, "strategies unified": 156086, "unified language": 171727, "existing techniques": 53611, "perspective including": 122667, "tool use": 167048, "smart reply": 152483, "bert finetuned": 17534, "finetuned achieve": 58978, "model tuned": 104810, "provide suggested": 132986, "responses given": 142810, "given query": 65968, "tuning data": 169985, "data sensitive": 35729, "sensitive data": 148424, "important understand": 73211, "understand mitigate": 171043, "risk model": 144954, "data investigate": 35258, "investigate potential": 80468, "potential information": 124787, "consider realistic": 29585, "realistic setting": 136301, "underlying model": 170860, "model frontend": 103697, "frontend interface": 61643, "queries sent": 134541, "model previous": 104336, "attacks work": 13749, "settings require": 149638, "require ability": 141059, "queries directly": 134469, "directly model": 42571, "queries previous": 134520, "attacks typically": 13746, "require thousands": 141207, "thousands millions": 166257, "extract useful": 56174, "useful information": 173332, "information attacks": 76291, "attacks extract": 13708, "extract sensitive": 56161, "just handful": 81368, "queries introduce": 134491, "extraction attack": 56261, "attack exploits": 13642, "patterns text": 120567, "text containing": 164957, "containing sensitive": 30343, "adversary extract": 6248, "sensitive user": 148447, "realistic settings": 136302, "interactions model": 79244, "demonstrate empirically": 38324, "differential privacy": 42101, "effective defense": 45731, "extraction attacks": 56262, "zeroshot video": 180368, "video captioning": 176690, "introduce zeroshot": 80147, "captioning method": 20588, "method employs": 100820, "model clip": 103287, "matching model": 99474, "model matching": 104067, "matching score": 99480, "used steer": 173244, "steer language": 155550, "model generating": 103737, "generating sentence": 64330, "high average": 69400, "video frames": 176706, "captioning methods": 20589, "methods work": 101933, "work considers": 178868, "entire sentence": 49814, "process prompt": 128946, "scratch modifying": 147223, "representation tokens": 140745, "tokens prompt": 166864, "repeating process": 140439, "process iteratively": 128888, "generated sentence": 63972, "range realworld": 135682, "knowledge code": 81815, "context based": 30696, "process determining": 128790, "word based": 178615, "intended meaning": 78976, "meaning unlike": 99783, "depends correctly": 39178, "correctly identifying": 32467, "identifying intended": 72009, "meaning word": 99785, "larger context": 89198, "context surrounding": 30930, "developing efficient": 40990, "algorithm complex": 7788, "used task": 173261, "including machine": 74606, "algorithms paper": 7956, "google t5": 66329, "model presented": 104314, "presented training": 126533, "different context": 41705, "context lengths": 30826, "need visual": 112426, "cultural heritage": 33958, "use deep": 172581, "learning computer": 90316, "augmented reality": 14367, "lots data": 97723, "work effectively": 178923, "user context": 173389, "data annotated": 34633, "annotated experts": 9477, "consuming process": 30273, "process particular": 128936, "order perform": 117229, "perform common": 120887, "common tasks": 26203, "like visual": 92424, "answering paper": 9919, "answering allows": 9812, "allows generate": 8438, "answering visual": 9982, "annotation process": 9543, "use gpt3": 172659, "generating descriptions": 64187, "captioning metrics": 20590, "metrics finally": 102066, "answering captioning": 9821, "captioning tasks": 20597, "training effective": 168406, "effective neural": 45830, "neural sentence": 112978, "automatically mined": 14841, "paraphrases sentence": 119916, "sentence embeddings": 148496, "used text": 173266, "text clustering": 164923, "clustering semantic": 24599, "semantic retrieval": 148210, "stateoftheart sentence": 155350, "representation methods": 140723, "methods based": 101334, "based artificial": 15663, "networks finetuned": 112746, "finetuned large": 59044, "large collections": 87211, "manually labeled": 99100, "labeled sentence": 82733, "sufficient annotated": 158479, "available highresource": 15129, "highresource languages": 70100, "english chinese": 49033, "popular languages": 124005, "languages multilingual": 87064, "problem proposing": 128366, "data approach": 34646, "automatically construct": 14778, "construct dataset": 30127, "data finetune": 35055, "encoder trained": 48445, "day single": 37245, "performance diverse": 121408, "sentencelevel tasks": 148552, "evaluate method": 51015, "linguistic tasks": 93076, "best available": 17659, "available multilingual": 15165, "sequence sequence": 148785, "slovenian language": 152253, "area natural": 12332, "introduced bert": 80153, "model introduced": 103899, "answering text": 9972, "languages massively": 87057, "massively multilingual": 99388, "model supports": 104695, "101 languages": 190, "tasks concerning": 162102, "concerning classification": 28755, "models lag": 106860, "model useful": 104842, "analysis framework": 8940, "framework code": 61009, "code synthesis": 25170, "synthesis large": 159950, "models codex": 105663, "codex large": 25346, "model llm": 103970, "llm trained": 94060, "generate code": 63417, "code codex": 24709, "benefits models": 17483, "code scale": 25125, "significant limitations": 150770, "limitations alignment": 92538, "problems potential": 128593, "potential misused": 124862, "increase rate": 75226, "potential safety": 124963, "explored paper": 55358, "paper outline": 119089, "framework constructed": 61048, "safety risks": 145890, "like codex": 92254, "analysis informed": 8978, "evaluation framework": 51597, "framework determines": 61078, "advanced code": 5717, "specification prompts": 154312, "capability understand": 20382, "understand execute": 171002, "human ability": 70550, "dataset modeling": 36417, "states explicitly": 155424, "explicitly mentioned": 54980, "reader model": 136164, "model understands": 104825, "infer implicit": 75941, "goal introduce": 66175, "dataset contains": 36195, "state changes": 154997, "tasks test": 163353, "test ability": 164507, "ability infer": 2225, "infer state": 75949, "state change": 154996, "change given": 22343, "todays llms": 166679, "llms reason": 96310, "degree large": 38015, "large room": 89038, "improvement especially": 73785, "problems requiring": 128621, "requiring access": 141472, "ability reason": 2338, "reason diverse": 136560, "diverse types": 43689, "types knowledge": 170373, "neural knowledge": 112852, "knowledge essential": 81953, "models inspired": 106773, "inspired existing": 77719, "feedforward networks": 57831, "networks ffns": 112743, "ffns transformers": 58100, "keyvalue memories": 81611, "design neural": 39698, "strategy introduce": 156165, "introduce extra": 79963, "highly interpretable": 69927, "interpretable flexible": 79667, "extra knowledge": 56112, "original pretrained": 117367, "model train": 104757, "modeling ability": 104964, "ability original": 2300, "model verify": 104871, "verify strong": 176541, "strong ability": 156340, "ability store": 2385, "knowledge based": 81779, "closedbook question": 24469, "answering datasets": 9833, "datasets prove": 37052, "representative tasks": 140945, "summarization machine": 158843, "translation thoroughly": 169536, "thoroughly analyze": 166200, "keys values": 81605, "way finally": 177812, "directly modifying": 42573, "text controls": 164965, "realworld text": 136530, "text applications": 164836, "applications involve": 10572, "range text": 135720, "text control": 164963, "editing text": 45491, "text desired": 165011, "desired properties": 40056, "lm perform": 97065, "operations recent": 116794, "manner costly": 98978, "costly search": 32800, "search optimization": 147386, "optimization complex": 116986, "sequence space": 148787, "space paper": 153602, "new efficient": 113161, "efficient approach": 46572, "space text": 153625, "text latent": 165272, "latent vector": 89522, "develop efficient": 40778, "ordinary differential": 117274, "differential equations": 42100, "given arbitrary": 65834, "desired text": 40061, "flexible approach": 59797, "approach permits": 11446, "sentiment tense": 148665, "using relevant": 174667, "relevant data": 139587, "domains experiments": 44406, "manages generate": 98897, "substantially improving": 158127, "improving previous": 74190, "methods terms": 101871, "terms generation": 164426, "quality efficiency": 134109, "semeval2022 task": 148337, "language detection": 83252, "detection task": 40631, "task aimed": 161182, "aimed identifying": 7521, "language presented": 86474, "task usually": 161802, "implicit subtle": 72991, "performance common": 121266, "detection problem": 40596, "paper introduction": 119024, "exploits power": 55046, "power promptbased": 125217, "cloze prompt": 24577, "prompt use": 130735, "models cloze": 105638, "subtasks binary": 158180, "model adopted": 103087, "predict masked": 125689, "label words": 82705, "prompts evaluation": 131256, "evaluation dataset": 51524, "classification approach": 23957, "achieves f1score": 4012, "alexatm 20b": 7761, "largescale multilingual": 89359, "work demonstrate": 178892, "tasks efficient": 162273, "efficient fewshot": 46610, "particular train": 120131, "sota performance": 153362, "outperforming larger": 117681, "decoder model": 37518, "translation especially": 169459, "especially lowresource": 50507, "languages language": 87035, "supported model": 159366, "model arabic": 103127, "arabic english": 12065, "italian japanese": 81072, "tamil telugu": 161023, "flores101 dataset": 59867, "dataset zeroshot": 36620, "20b outperforms": 738, "outperforms gpt3": 117780, "gpt3 175b": 66633, "datasets provides": 37055, "tasks xnli": 163491, "results present": 143679, "present compelling": 126248, "compelling case": 27105, "models powerful": 108582, "powerful alternative": 125254, "llm training": 94061, "quantum manybody": 134439, "inspired advancements": 77709, "advancements large": 5907, "based transformers": 16155, "transformers introduce": 169317, "introduce transformer": 80132, "specific models": 154041, "experimental measurements": 53953, "knowledge new": 82246, "new systems": 113441, "systems trained": 160647, "trained single": 168074, "produces accurate": 129520, "accurate results": 3489, "results small": 143804, "small computational": 152277, "versatile design": 176562, "easily adapted": 45300, "adapted new": 4690, "generalpurpose model": 63358, "model various": 104868, "various challenging": 175849, "demonstrate superiority": 38577, "texts challenge": 165680, "long standing": 97485, "standing challenge": 154922, "research attempts": 141609, "improve task": 73635, "approaches require": 11893, "require laborious": 141132, "manual collection": 99030, "collection prompts": 25751, "prompts downstream": 131236, "unstable performance": 172208, "performance propose": 121955, "prompting method": 131007, "method automatically": 100699, "learnable prompts": 90085, "task input": 161473, "models shared": 109089, "shared knowledge": 149812, "tasks keeping": 162657, "characteristics different": 22455, "different task": 42030, "task schema": 161708, "explicit data": 54926, "formulate prompts": 60623, "little human": 93236, "effort involved": 46852, "test task": 164645, "scale conduct": 146272, "multitask pretraining": 111232, "tasks framework": 162431, "framework achieves": 60916, "performance 16": 121109, "unseen downstream": 172158, "tasks task": 163342, "furthermore comprehensive": 62027, "comprehensive analyses": 27947, "analyses demonstrate": 8758, "effectiveness component": 46148, "ability improve": 2219, "fulldata finetuning": 61718, "finetuning setting": 59530, "parallel training": 119579, "training expert": 168440, "expert language": 54577, "llms possible": 96137, "llms different": 94920, "subsets data": 158015, "train llms": 167791, "set independent": 149219, "expert lms": 54585, "specialized different": 153881, "different textual": 42048, "domain scientific": 44276, "legal text": 91321, "data coverage": 34864, "new domains": 113154, "single lm": 151828, "efficient inference": 46640, "current set": 34235, "set training": 149337, "data new": 35421, "new domain": 113153, "future use": 62396, "gptstyle transformer": 67325, "transformer lms": 169164, "analysis results": 9131, "results robust": 143768, "require expert": 141097, "expert domain": 54560, "domain specialization": 44289, "random data": 135518, "data splits": 35792, "tokens total": 166894, "total parameters": 167419, "25 times": 833, "compute gains": 28443, "domains suggesting": 44533, "train larger": 167787, "models future": 106410, "social computing": 152542, "computing systems": 28561, "systems social": 160613, "social behaviors": 152529, "currently limited": 34333, "small groups": 152295, "groups people": 67977, "challenges arise": 21781, "larger scale": 89246, "understand social": 171078, "make adjustments": 98479, "challenges introduce": 21920, "social interactions": 152589, "produce output": 129447, "response design": 142635, "enable exploration": 48080, "exploration scenarios": 55100, "community members": 26497, "techniques enabled": 163880, "includes wide": 74396, "behavior social": 16648, "media platforms": 100106, "participants unable": 120025, "unable distinguish": 170600, "community behavior": 26451, "designs using": 40026, "using social": 174731, "methods able": 101267, "able use": 2570, "single frozen": 151803, "llm perform": 93875, "perform tasks": 121063, "tasks learning": 162698, "learning taskspecific": 91059, "concatenated input": 28565, "tightly coupled": 166330, "model model": 104095, "corresponding new": 32596, "new prompts": 113364, "prompts need": 131383, "investigate approaches": 80373, "approaches prompt": 11868, "trained source": 168080, "work new": 179136, "new target": 113442, "methods rely": 101767, "pairs prompts": 118608, "prompts taskspecific": 131500, "data training": 35875, "model scratch": 104515, "models possible": 108573, "best settings": 17751, "settings able": 149521, "able successfully": 2561, "baselines significant": 16370, "guided training": 68242, "training efficient": 168412, "efficient framework": 46627, "exposed training": 55543, "compact models": 26539, "efficient deployment": 46594, "necessitates large": 112176, "labeled unlabeled": 82744, "unlabeled training": 171961, "framework training": 61462, "training highquality": 168473, "compact model": 26537, "model leverages": 103952, "leverages knowledge": 91737, "pretrained generative": 126822, "obviating need": 115568, "large volume": 89127, "good representation": 66293, "underlying data": 170836, "data domain": 34936, "domain typically": 44318, "lower dimensional": 97820, "space furthermore": 153578, "gradientbased methods": 67407, "methods making": 101656, "benefit proposed": 17445, "classification retrieval": 24075, "tasks targeted": 163340, "major difficulty": 98423, "distinguish real": 43285, "widely investigated": 178379, "majority existing": 98461, "research assumes": 141607, "knowledge users": 82495, "attackers exploit": 13681, "personally identifiable": 122637, "identifiable information": 71781, "information pii": 76624, "include users": 74345, "users pii": 173735, "pii paper": 122982, "propose build": 131736, "require training": 141210, "conducted pilot": 29275, "pilot experiment": 122989, "extremely difficult": 56430, "larger sample": 89245, "reveal significant": 144370, "significant difference": 150683, "masked autoencoder": 99294, "passage retrieval": 120335, "retrieval aims": 143990, "aims retrieve": 7665, "relevant passages": 139631, "query large": 134602, "based dense": 15748, "representations vectors": 140909, "studies explored": 156999, "explored improving": 55351, "improving pretrained": 74189, "models boost": 105535, "effective generative": 45767, "method dense": 100778, "asymmetric encoderdecoder": 13597, "architecture learns": 12184, "sentence semantics": 148531, "selfsupervised masked": 148065, "learns model": 91187, "model semantics": 104542, "semantics tokens": 148323, "text span": 165475, "text spans": 165476, "experiments largescale": 54339, "retrieval benchmarks": 144018, "benchmarks considerable": 17195, "baselines demonstrating": 16307, "demonstrating high": 38938, "high efficiency": 69452, "prompting strategy": 131088, "create customized": 33183, "customized content": 34402, "models controlling": 105793, "controlling text": 31669, "challenge existing": 21639, "existing prompting": 53537, "prompting techniques": 131101, "techniques proposed": 163993, "taskspecific lack": 163530, "nonexpert users": 114060, "suitable method": 158702, "effort associated": 46832, "associated techniques": 13513, "techniques writing": 164059, "users paper": 173724, "strategy help": 156153, "gpt3 help": 66703, "set relevant": 149294, "relevant questions": 139639, "leveraging user": 91965, "user answers": 173373, "technique help": 163776, "specifically focus": 154205, "focus tasks": 60065, "require significant": 141188, "work encourage": 178932, "encourage development": 48591, "harness power": 68796, "models ask": 105396, "ask question": 12856, "enhancing lifelong": 49507, "lifelong language": 92088, "learning lifelong": 90644, "learning aims": 90193, "retaining knowledge": 143962, "knowledge previous": 82299, "tasks previous": 162989, "works based": 179427, "model following": 103686, "approaches explored": 11764, "tasks suffer": 163310, "suffer catastrophic": 158419, "pseudo data": 133475, "data insufficient": 35242, "data format": 35072, "questions previous": 135228, "easier model": 45289, "generate pseudo": 63663, "data match": 35354, "tasks robust": 163194, "learning computational": 90315, "setting realworld": 149500, "collaboratively perform": 25640, "task significant": 161726, "significant work": 150919, "work conducted": 178863, "enabling humans": 48300, "humans specify": 71473, "specify language": 154347, "agent complete": 6429, "complete task": 27290, "task lowlevel": 161532, "work lacks": 179081, "highlevel strategic": 69710, "language allow": 83147, "autonomous systems": 14950, "according users": 3063, "paper build": 118774, "capable translating": 20477, "translating unstructured": 169433, "constraints leveraging": 30096, "game environment": 62558, "collect dataset": 25657, "dataset 1000": 36073, "1000 examples": 166, "constraints model": 30100, "trained dataset": 167889, "outperforms human": 117785, "furthermore model": 62116, "125m parameters": 300, "parameters significantly": 119862, "outperforms chatgpt": 117731, "chatgpt task": 23378, "integrating diverse": 78592, "diverse knowledge": 43555, "sources online": 153528, "oneshot learning": 116032, "learning novel": 90775, "tasks autonomous": 161991, "autonomous agents": 14925, "agents able": 6520, "variety potential": 175743, "potential sources": 124999, "knowledge current": 81851, "focus investigate": 60004, "investigate challenges": 80385, "mobile robot": 102906, "resulting agent": 143088, "cognitive architecture": 25438, "sources domain": 153501, "domain task": 44307, "interaction environment": 79117, "task execution": 161368, "knowledge human": 82101, "human natural": 70933, "responses retrieved": 142909, "gpt3 explore": 66685, "different combinations": 41695, "terms learning": 164435, "learning correct": 90335, "correct task": 32421, "human workload": 71096, "results agents": 143166, "integration diverse": 78649, "learning overall": 90796, "reducing human": 138572, "reliable task": 139756, "study security": 157610, "security implications": 147590, "model code": 103291, "code assistants": 24669, "llms openai": 95974, "increasingly used": 75451, "coding assistants": 25369, "assistants understanding": 13433, "impact tools": 72732, "developers code": 40938, "code paramount": 25045, "especially recent": 50531, "work showed": 179292, "showed llms": 150142, "llms suggest": 96723, "cybersecurity vulnerabilities": 34477, "assess code": 13061, "written student": 179792, "student programmers": 156825, "assisted llms": 13442, "llms given": 95404, "given potential": 65956, "relative frequency": 139366, "realworld projects": 136484, "structure results": 156599, "produce critical": 129388, "critical security": 33549, "security bugs": 147564, "use llms": 172742, "llms does": 94965, "new security": 113400, "security risks": 147620, "freezes pretrained": 61583, "parameters additional": 119708, "additional soft": 4999, "prompt shows": 130672, "shows competitive": 150418, "performs poorly": 122451, "prompt similar": 130674, "similar source": 151308, "approach usually": 11650, "achieves suboptimal": 4116, "prompt initialized": 130544, "lead catastrophic": 89730, "forgetting source": 60437, "source knowledge": 153447, "knowledge response": 82372, "response problems": 142686, "new metric": 113275, "accurately predict": 3552, "predict prompt": 125699, "distillation technique": 43165, "technique transfer": 163811, "knowledge source": 82410, "use metric": 172765, "approach extensive": 11218, "systematic experiments": 160128, "target datasets": 161052, "datasets scales": 37098, "proposed metric": 132384, "outperforms vanilla": 117886, "average score": 15312, "prompttuning achieve": 131539, "achieve competitive": 3605, "models released": 108901, "released acceptance": 139502, "acceptance using": 2842, "models simulate": 109143, "replicate human": 140494, "human subject": 71047, "studies introduce": 157024, "evaluating extent": 51297, "given language": 65920, "simulate different": 151635, "reveal consistent": 144323, "models simulation": 109145, "specific human": 154008, "turing test": 170162, "single arbitrary": 151778, "requires simulating": 141441, "representative sample": 140938, "subject research": 157842, "attempt replicate": 13797, "findings prior": 58749, "studies design": 156980, "design methodology": 39691, "compare different": 26668, "able reproduce": 2550, "social psychology": 152651, "psychology experiments": 133512, "ultimatum game": 170592, "existing findings": 53368, "using recent": 174655, "hyperaccuracy distortion": 71580, "including chatgpt": 74443, "chatgpt gpt4": 23009, "affect downstream": 6301, "applications education": 10496, "fewshot tabletotext": 58067, "generation approaches": 64429, "lowresource realworld": 97933, "applications previous": 10643, "plms generate": 123605, "nature plms": 112022, "finetuning plms": 59446, "lead overfitting": 89765, "alleviate problems": 8300, "table structure": 160753, "structure better": 156540, "better fit": 17874, "input addition": 77207, "contents word": 30669, "evaluations different": 51963, "improvements baseline": 73879, "approaches prompting": 11869, "using language": 174352, "base construction": 15594, "construction language": 30221, "lms proven": 97186, "proven useful": 132650, "useful various": 173358, "translation question": 169505, "lms increasingly": 97152, "increasingly important": 75405, "tools artificial": 167104, "vast quantity": 176352, "originally proposed": 117404, "proposed openai": 132406, "multistep approach": 111161, "combines variety": 25959, "variety prompting": 175748, "techniques achieve": 163820, "results manual": 143588, "answer sets": 9782, "increase precision": 75221, "suggestions generated": 158639, "generated lm": 63921, "lm size": 97074, "crucial factor": 33799, "improves lm": 74023, "score evaluation": 147062, "study indicates": 157411, "indicates proposed": 75643, "proposed techniques": 132444, "substantially enhance": 158116, "enhance quality": 49268, "quality final": 134130, "final predictions": 58395, "won track": 178606, "outperforming baseline": 117666, "implementation available": 72835, "language rationales": 86689, "examples challenging": 52534, "problem current": 128214, "current deep": 34101, "limitation persists": 92516, "stateoftheart transformerbased": 155405, "solutions problem": 153059, "use specific": 172886, "training methods": 168579, "methods generalize": 101549, "training procedure": 168646, "procedure experimental": 128699, "results generating": 143433, "stepbystep rationales": 155702, "required effective": 141231, "effectively communicate": 45964, "longer current": 97525, "token positions": 166723, "output tokens": 118012, "complementary approaches": 27255, "approaches enable": 11743, "limitation current": 92497, "form guidance": 60459, "guidance code": 68139, "shortcut learning": 150028, "understanding large": 171322, "llms achieved": 94302, "performance series": 122054, "tasks llms": 162747, "llms rely": 96385, "dataset bias": 36135, "significantly affected": 150941, "adversarial robustness": 6226, "robustness paper": 145413, "review recent": 144539, "developments address": 41270, "challenge llms": 21679, "llms introduce": 95675, "introduce methods": 80011, "methods identify": 101574, "learning behavior": 90252, "models characterize": 105603, "learning introduce": 90592, "introduce mitigation": 80014, "mitigation solutions": 102696, "solutions finally": 153020, "discuss key": 42908, "key research": 81563, "research challenges": 141631, "challenges potential": 22006, "advance field": 5680, "field llms": 58197, "aligning llms": 8100, "llms human": 95514, "recent advancements": 137342, "llms harness": 95473, "data practical": 35512, "applications ability": 10404, "understand physical": 171057, "physical world": 122915, "world using": 179626, "data remains": 35645, "remains question": 140061, "reviewing existing": 144569, "explore question": 55283, "reasoning test": 137203, "compare human": 26684, "versions gpt3": 176620, "findings highlight": 58677, "commonsense relations": 26323, "directly data": 42528, "verbal reasoning": 176440, "par human": 119416, "learning human": 90520, "human judgements": 70880, "gpt3 performs": 66740, "combining llms": 25986, "llms symbolic": 96746, "symbolic world": 159832, "world grounding": 179557, "grounding promising": 67922, "associative learning": 13542, "knowledgebased question": 82532, "study investigates": 157436, "works generated": 179453, "triples knowledge": 169779, "express complex": 55558, "complex operations": 27510, "operations like": 116788, "needs explored": 112473, "explored recently": 55366, "recently generative": 137898, "plms typically": 123649, "typically trained": 170523, "trained natural": 168018, "proven effective": 132640, "effective lowresource": 45805, "effectively utilize": 46105, "approach lowresource": 11373, "generate questions": 63669, "secondly propose": 147525, "largescale unsupervised": 89419, "nl description": 113639, "nl question": 113640, "performance especially": 121463, "settings furthermore": 149582, "pairs generated": 118582, "reasoning framework": 136869, "framework conversational": 61053, "embodied agents": 47302, "building conversational": 19385, "embodied agent": 47301, "agent execute": 6441, "reallife tasks": 136337, "quite challenging": 135358, "challenging research": 22262, "research goal": 141816, "goal requires": 66195, "requires effective": 141361, "traditional symbolic": 167703, "symbolic methods": 159813, "methods scaling": 101802, "endtoend deep": 48730, "suffer data": 158422, "task complexity": 161259, "benefit worlds": 17454, "worlds propose": 179640, "representations prompting": 140870, "llms language": 95716, "subgoal planning": 157816, "semantic maps": 148176, "visual observations": 177240, "observations symbolic": 115355, "symbolic module": 159814, "planning action": 123241, "action generation": 4320, "based task": 16129, "dataset validate": 36611, "validate efficacy": 175315, "efficacy efficiency": 46372, "embodied tasks": 47315, "execution dialog": 52942, "dialog history": 41418, "history edh": 70218, "edh trajectory": 45426, "task completion": 161255, "method boosts": 100718, "unseen success": 172182, "success rate": 158283, "systematically analyze": 160168, "factors affect": 56787, "performance demonstrate": 121369, "superiority method": 159070, "alexa prize": 7756, "public benchmark": 133548, "benchmark challenge": 16851, "challenge transformers": 21746, "complexity input": 27678, "activation function": 4410, "essential step": 50635, "design choice": 39570, "finetuning result": 59514, "life cycle": 92076, "developed models": 40894, "models roberta": 109012, "roberta bart": 145140, "bart gpt3": 15581, "gpt3 follow": 66694, "follow prior": 60224, "bert use": 17614, "investigate effectiveness": 80402, "contrast conventional": 31298, "learn optimal": 90023, "validation perplexity": 175372, "vanilla bert": 175570, "tasks low": 162762, "fulldata settings": 61719, "settings results": 149640, "outperforms counterpart": 117744, "model majority": 104057, "bert glue": 17539, "lowdata scenario": 97802, "205 points": 733, "setting analysis": 149422, "vary different": 176268, "layers pretrained": 89680, "different conventional": 41711, "new research": 113384, "research direction": 141710, "according learned": 3045, "faithful reasoning": 57080, "reasoning using": 137222, "contemporary large": 30414, "lms demonstrate": 97122, "impressive questionanswering": 73365, "questionanswering capabilities": 134977, "inherently multistep": 76989, "lms perform": 97174, "causal structure": 21225, "underlying logical": 170852, "logical structure": 97397, "problem approach": 128185, "approach works": 11668, "step results": 155678, "calls finetuned": 19683, "finetuned lms": 59062, "selection inference": 147857, "produce valid": 129479, "valid reasoning": 175296, "reasoning trace": 137210, "beam search": 16500, "space reasoning": 153611, "reasoning traces": 137211, "effectiveness model": 46244, "model multistep": 104112, "multistep logical": 111163, "logical deduction": 97353, "showing outperforms": 150182, "final answer": 58373, "answer accuracy": 9672, "interpretable reasoning": 79689, "learning analytics": 90209, "analytics framework": 9261, "predictive modelling": 125955, "explainable ai": 54739, "chatgpt significant": 23326, "research field": 141787, "field learning": 58192, "focused leveraging": 60110, "approaches predicting": 11862, "completion rates": 27341, "majority research": 98466, "research studies": 142095, "science prediction": 146902, "predictive analytics": 125944, "models explaining": 106246, "individual cases": 75707, "largely neglected": 89161, "works attempt": 179424, "attempt employ": 13787, "ai field": 6995, "field recently": 58238, "cuttingedge tools": 34450, "tools support": 167262, "support transparent": 159341, "techniques generating": 163915, "students study": 156904, "study proposes": 157562, "transparent machine": 169601, "techniques enabling": 163881, "latest advances": 89537, "advances large": 6021, "demonstrates proposed": 38882, "predictive models": 125956, "study demonstrates": 157273, "order generate": 117202, "generate humanreadable": 63559, "risk using": 144965, "using chatgpt": 174032, "social network": 152638, "nlp approaches": 113692, "entity linking": 49895, "focus retrieving": 60047, "retrieving similar": 144289, "representations common": 140775, "retrieves candidate": 144267, "wikipedia articles": 178495, "entity mention": 49901, "extensive textual": 55962, "textual descriptions": 165899, "context named": 30855, "work seek": 179278, "seek leverage": 147658, "induction strategies": 75834, "cluster inference": 24591, "inference methods": 76054, "methods experiment": 101498, "experiment data": 53885, "data consisting": 34836, "representations especially": 140805, "especially larger": 50499, "increase performance": 75219, "task present": 161636, "novel supervised": 114702, "inference model": 76056, "performance little": 121744, "little computational": 93226, "computational effort": 28361, "effort making": 46858, "making ideal": 98748, "temporal relation": 164277, "extraction extracting": 56298, "temporal relationships": 164282, "events texts": 52130, "crucial challenging": 33774, "problem natural": 128333, "distance events": 43118, "local global": 97241, "global contexts": 66089, "relation prediction": 139262, "prediction learning": 125818, "fuse information": 62184, "information proved": 76658, "proved challenging": 132630, "better fusion": 17880, "contextualized features": 31127, "features model": 57540, "model encode": 103536, "context graph": 30785, "graph neural": 67554, "network gnn": 112658, "unlike previous": 172012, "methods use": 101902, "simple concatenation": 151418, "select optimal": 147784, "using sophisticated": 174737, "approaches model": 11845, "modules using": 110007, "modules learn": 109989, "context embeddings": 30737, "empirically demonstrate": 47783, "provides improved": 133163, "improved ability": 73668, "encoded using": 48404, "using bert": 174005, "compared current": 26776, "stateoftheart experimental": 155135, "extraction datasets": 56279, "aligning language": 8090, "language technologies": 86782, "communication humans": 26379, "different contexts": 41707, "particular use": 120135, "output natural": 117966, "response prompts": 142688, "prompts queries": 131435, "social ethical": 152575, "ethical questions": 50827, "does mean": 44001, "agents human": 6623, "norms values": 114205, "values aligned": 175519, "number steps": 114947, "steps help": 155743, "help answer": 69085, "start developing": 154955, "analysis building": 8833, "human interlocutors": 70870, "use analysis": 172497, "identify formulate": 71894, "humans conversational": 71364, "agents furthermore": 6613, "furthermore explore": 62071, "used align": 172956, "range different": 135607, "conclude discussing": 28863, "discussing practical": 42984, "proposal design": 131690, "agents aligned": 6537, "inference finetuning": 76012, "models nlp": 108300, "benefit using": 17449, "llms 100": 94239, "100 billion": 145, "parameters release": 119849, "requires highend": 141384, "highend hardware": 69576, "cases llms": 20991, "flexible research": 59822, "requires access": 141329, "access weights": 2926, "weights attention": 178098, "attention logits": 13921, "logits work": 97421, "resources multiple": 142458, "multiple parties": 110993, "strategy outperforms": 156192, "offloading large": 115892, "models running": 109025, "consumer gpus": 30261, "step second": 155680, "interactive llm": 79320, "llm applications": 93470, "applications unlike": 10712, "exposes hidden": 55545, "allowing train": 8395, "custom model": 34372, "model extensions": 103618, "based efficient": 15768, "efficient finetuning": 46615, "models know": 106837, "ability results": 2358, "child development": 23591, "development particularly": 41179, "particularly exposure": 120188, "language exposure": 83306, "assessing models": 13188, "models exposed": 106264, "large quantities": 89031, "states characters": 155421, "preregistered analyses": 126194, "analyses present": 8779, "task human": 161451, "human participants": 70947, "participants large": 120012, "significantly exceeds": 151002, "behavior does": 16584, "does perform": 44008, "behavior despite": 16581, "exposed language": 55541, "language human": 83403, "statistical learning": 155493, "humans develop": 71374, "reason mental": 136571, "makes language": 98661, "recent approaches": 137441, "approaches natural": 11849, "remarkable abilities": 140115, "perform incontext": 120964, "task task": 161768, "work examines": 178945, "examines implications": 52434, "datasets new": 37001, "new natural": 113292, "recent incontext": 137518, "methods formulate": 101538, "twostep framework": 170280, "annotate unlabeled": 9443, "data advance": 34602, "followed prompt": 60242, "prompt retrieval": 130655, "examples annotated": 52524, "time based": 166351, "based framework": 15823, "framework propose": 61361, "propose unsupervised": 132191, "unsupervised graphbased": 172248, "annotation method": 9536, "select diverse": 147773, "diverse representative": 43631, "experiments 10": 54120, "10 datasets": 113, "datasets covering": 36745, "reasoning dialogue": 136811, "method improves": 100919, "improves task": 74089, "randomly selecting": 135572, "selecting examples": 147814, "supervised finetuning": 159112, "yields similar": 180039, "annotation cost": 9515, "10 tasks": 137, "tasks analyze": 161946, "analyze effectiveness": 9288, "framework various": 61493, "scenarios language": 146632, "models varying": 109617, "varying sizes": 176304, "annotation methods": 9537, "methods cases": 101359, "cases test": 21023, "test data": 164540, "domain shift": 44279, "serve basis": 148964, "data annotations": 34639, "annotations large": 9598, "increasingly applied": 75377, "news corpus": 113554, "pretrained autoregressive": 126752, "shared task": 149822, "event causality": 52071, "focused automatic": 60083, "automatic detection": 14657, "spans present": 153691, "present sentence": 126443, "t5 pretrained": 160719, "ones predict": 116009, "causal relationships": 21223, "model conditioned": 103338, "sentence previous": 148522, "training extremely": 168446, "extremely small": 56450, "samples approach": 145987, "approach achieved": 10946, "achieved competitive": 3797, "achieves similar": 4079, "similar results": 151301, "causal relation": 21219, "approach paper": 11440, "prediction approach": 125760, "finetuning lms": 59366, "task treated": 161789, "approach allows": 10989, "problems directly": 128485, "directly generate": 42544, "generate textual": 63756, "textual responses": 165946, "performance method": 121797, "ensemble techniques": 49645, "trained entire": 167910, "entire dataset": 49801, "dataset bestperforming": 36133, "bestperforming submission": 17782, "instances class": 77818, "data obtained": 35432, "precision 082": 125607, "transformer ensembles": 169123, "reliable methods": 139737, "methods automatic": 101327, "potential impact": 124765, "fields ranging": 58301, "recently large": 137921, "german language": 65765, "develop deep": 40771, "based approaches": 15660, "promise improve": 130181, "improve automatic": 73414, "studied ability": 156920, "models reliably": 108908, "sentences combined": 148561, "performance ensemble": 121459, "performed better": 122362, "2022 shared": 679, "task text": 161773, "text complexity": 164939, "assessment data": 13225, "data german": 35127, "root mean": 145601, "mean squared": 99757, "squared error": 154649, "recent trends": 137713, "trends training": 169729, "models substantially": 109275, "substantially improved": 158124, "learning performance": 90818, "tasks huge": 162511, "huge cost": 70511, "cost training": 32744, "training larger": 168534, "expensive motivating": 53792, "efficient methods": 46674, "tune hyperparameters": 169935, "previously studied": 127745, "setting apply": 149424, "tasks time": 163372, "gains strong": 62531, "translation natural": 169492, "translation method": 169482, "method generalizes": 100886, "hyperparameters pretraining": 71605, "pretraining improve": 127342, "downstream nlu": 44744, "learning multiple": 90749, "global learning": 66097, "training improves": 168485, "bias greedy": 18129, "greedy methods": 67809, "used facilitate": 173066, "understanding benchmarks": 171134, "benchmarks new": 17314, "really understand": 136342, "tasks derived": 162200, "progressively sophisticated": 130048, "aspects understanding": 12979, "key elements": 81493, "relationships images": 139342, "images captions": 72397, "human experience": 70777, "languageonly models": 86930, "models challenged": 105598, "images directly": 72413, "directly given": 42548, "descriptions visual": 39515, "visual scene": 177304, "visual understanding": 177334, "types models": 170387, "tasks example": 162337, "models fall": 106306, "30 accuracy": 954, "points human": 123757, "performance matching": 121789, "matching task": 99487, "task provided": 161665, "explanations preferred": 54889, "fewshot gpt4": 57920, "release models": 139483, "code leaderboard": 24973, "corpus includes": 32317, "describing images": 39398, "performance disparities": 121404, "offensive language": 115620, "language classifiers": 83188, "classifiers text": 24199, "text classifiers": 164917, "regarding different": 138866, "languages dialects": 86978, "gaps present": 62762, "geographical regions": 65713, "regions secondly": 138936, "performance introduce": 121693, "thousand examples": 166250, "address questions": 5360, "perform comprehensive": 120904, "impact performance": 72710, "models overall": 108393, "overall current": 118186, "produce false": 129405, "false positives": 57169, "english model": 49079, "warning paper": 177710, "paper contains": 118817, "contains offensive": 30387, "language improving": 83416, "model prompting": 104369, "prompting support": 131096, "llms offer": 95954, "offer potential": 115682, "knowledge agents": 81738, "agents need": 6671, "acquire new": 4259, "llm responses": 93969, "agent learning": 6464, "learning new": 90765, "measure used": 99883, "used commonly": 172999, "extraction llms": 56317, "llms specific": 96657, "agents task": 6746, "native language": 111505, "series empirical": 148916, "empirical investigations": 47711, "prompting strategies": 131080, "evaluate responses": 51093, "obtained llms": 115526, "llms support": 96736, "support online": 159312, "agent task": 6502, "learning text": 91075, "past decade": 120380, "decade witnessed": 37328, "witnessed dramatic": 178561, "gains natural": 62524, "scaling large": 146407, "fewshot techniques": 58073, "prompting specifically": 131078, "fewshot setup": 58062, "augmenting prompts": 14400, "intermediate steps": 79533, "despite impressive": 40131, "tasks reasons": 163088, "explored work": 55373, "counterfactual prompting": 32950, "prompting mechanisms": 131006, "mechanisms large": 100043, "models systematically": 109341, "identify define": 71881, "define key": 37933, "conduct exhaustive": 29083, "exhaustive set": 53020, "querying model": 134661, "model counterfactual": 103390, "experiments models": 54362, "models palm": 108401, "palm gpt3": 118658, "reveal surprising": 144377, "success cot": 158226, "results conclude": 143252, "facilitate learning": 56632, "learning solve": 91007, "solve task": 153160, "task intermediate": 161488, "form factual": 60453, "knowledge meaning": 82223, "symbiotic relationship": 159797, "success fewshot": 158237, "prompting text": 131110, "extract commonsense": 56122, "commonsense question": 26296, "knowledge leverage": 82192, "creation curation": 33336, "structured semantic": 156673, "knowledge present": 82284, "present approach": 126224, "descriptions essential": 39450, "essential information": 50613, "scholarly articles": 146816, "knowledge discovery": 81876, "global scholarly": 66107, "creating new": 33314, "new versions": 113495, "knowledge digital": 81874, "agents researchers": 6715, "given existing": 65883, "mt evaluation": 110278, "efficiency key": 46474, "key property": 81558, "reduce environmental": 138423, "era llms": 50238, "llms work": 97014, "metrics approach": 102003, "approach involves": 11318, "alignment algorithms": 8121, "algorithms llm": 7947, "llm representations": 93958, "referencefree referencebased": 138689, "referencebased metrics": 138681, "datasets examine": 36836, "transformers addition": 169294, "efficiency metrics": 46492, "metrics like": 102102, "efficiency gains": 46465, "enhance training": 49302, "speed memory": 154511, "cases metric": 20995, "findings help": 58676, "strike balance": 156315, "essential effective": 50601, "nlg systems": 113659, "systems furthermore": 160398, "furthermore research": 62156, "research contributes": 141665, "contributes ongoing": 31445, "ongoing efforts": 116067, "nlg evaluation": 113652, "performance knowledge": 121702, "knowledge comprehensive": 81827, "aspects efficiency": 12935, "mt metrics": 110280, "metrics conducted": 102033, "conducted far": 29252, "framework languagebased": 61255, "depression anxiety": 39319, "neuropathic pain": 113034, "overcome difficulty": 118287, "difficulty propose": 42220, "clinical notes": 24351, "patient interviews": 120468, "makes use": 98695, "perform sentencelevel": 121031, "sentencelevel classification": 148545, "interpretability approach": 79636, "approach explain": 11206, "finally generate": 58469, "generate summaries": 63735, "interviews expert": 79813, "introducing novel": 80243, "summary based": 158931, "model instruction": 103875, "tuning generate": 170019, "generate annotated": 63394, "intent classification": 79007, "data intent": 35246, "multilingual sequencetosequence": 110546, "flexible instruction": 59811, "instruction prompt": 78045, "surpasses stateoftheart": 159500, "wide margin": 178260, "improvement target": 73856, "target intents": 161073, "25 points": 831, "score zeroshot": 147109, "crosslingual setting": 33669, "baseline machine": 16231, "score languages": 147076, "matching performance": 99477, "finally verify": 58542, "multilingual dataset": 110479, "dataset conversational": 36199, "knowledge demonstrate": 81862, "demonstrate instruction": 38386, "instruction finetuning": 77998, "model control": 103375, "multilingual intent": 110488, "multidomain multitask": 110390, "learning unified": 91101, "transformers shown": 169356, "shown remarkable": 150349, "learning especially": 90425, "especially natural": 50516, "attempts train": 13820, "train transformers": 167840, "clear relationship": 24281, "relationship domains": 139318, "domains code": 44367, "code summarization": 25163, "summarization natural": 158854, "language summary": 86750, "describes code": 39390, "study multitask": 157497, "learning works": 91144, "works tasks": 179511, "tasks significantly": 163244, "significantly different": 150978, "domains project": 44503, "project investigated": 130078, "python code": 133828, "popular training": 124068, "finetuning evaluate": 59248, "evaluate model": 51020, "model metrics": 104086, "score bleu": 147047, "metrics measure": 102107, "measure performance": 99865, "learning negative": 90761, "negative knowledge": 112519, "considerable challenges": 29608, "challenges models": 21958, "models gptstyle": 106551, "finetuning strategy": 59567, "showed promise": 150149, "learning performs": 90820, "performs tasks": 122465, "multidomain knowledge": 110388, "model chinese": 103278, "chinese large": 23636, "learning demonstrated": 90358, "impressive zeroshot": 73387, "capabilities wide": 20258, "spectrum tasks": 154368, "types tasks": 170427, "10b parameters": 205, "curated highquality": 34018, "highquality corpus": 70008, "corpus covering": 32291, "range topics": 135722, "broad knowledge": 19179, "knowledge various": 82500, "various domains": 175896, "domains languages": 44448, "languages 18": 86941, "chinese tasks": 23667, "similar sizes": 151307, "match performance": 99420, "times larger": 166596, "multilingual codeswitching": 110472, "outperforming existing": 117673, "languages furthermore": 87015, "humanwritten prompts": 71523, "datasets chinese": 36695, "training resulting": 168700, "strong generalization": 156387, "outperform unsupervised": 117644, "learning finally": 90459, "basic skills": 16441, "research models": 141913, "accelerating transformerbased": 2804, "generation transformer": 65216, "transformer deep": 169119, "model widely": 104900, "gpt achieved": 66382, "processing large": 129177, "large input": 87287, "context summarization": 30929, "summarization stage": 158878, "generation stage": 65099, "word time": 178685, "parallel processing": 119576, "performance significantly": 122066, "degrades generation": 38001, "efficient hardware": 46633, "required address": 141221, "address high": 5246, "high latency": 69473, "low latency": 97765, "latency high": 89483, "summarization generation": 158836, "generation stages": 65100, "uses model": 173887, "instructions provide": 78331, "operations endtoend": 116780, "xilinx alveo": 179837, "alveo u280": 8602, "number compute": 114845, "high hardware": 69464, "hardware efficiency": 68686, "energy efficiency": 48790, "nvidia v100": 115086, "v100 gpus": 175269, "suggesting promising": 158624, "promising solution": 130314, "workloads cloud": 179414, "cloud datacenters": 24555, "selecting better": 147811, "samples pretrained": 146055, "llms case": 94549, "llms recent": 96322, "years demonstrated": 179891, "prowess natural": 133420, "generation common": 64507, "improve generation": 73475, "generation diversity": 64588, "sample multiple": 145952, "multiple outputs": 110991, "outputs model": 118089, "model lacks": 103919, "simple robust": 151524, "robust way": 145337, "best output": 17716, "context question": 30891, "generation propose": 64978, "promptbased approaches": 130753, "selecting highquality": 147815, "highquality questions": 70067, "lack access": 82879, "limitations realworld": 92650, "realworld deployment": 136441, "deployment llms": 39288, "llms automatic": 94454, "approach effectively": 11144, "effectively select": 46079, "exploring design": 55462, "design prompts": 39736, "prompts applying": 131161, "based chatbots": 15696, "chatbots mental": 22624, "mental wellbeing": 100510, "mechanical turk": 99967, "largelanguage models": 89139, "potential enable": 124694, "designers researchers": 39982, "researchers create": 142189, "chatbots specific": 22637, "specific applications": 153935, "applications evaluating": 10510, "designing prompts": 40008, "prompts optimize": 131390, "challenging present": 22238, "present case": 126237, "questions applying": 135043, "dimensions prompt": 42347, "prompt design": 130419, "quantitative qualitative": 134366, "qualitative analyses": 133977, "conversations user": 31967, "user perceptions": 173464, "researchers build": 142179, "tasks build": 162018, "use prompt": 172824, "design evaluation": 39624, "evaluation prompt": 51794, "examples recent": 52679, "research information": 141853, "supervision limited": 159204, "tasks targeting": 163341, "targeting different": 161144, "queries search": 134537, "domains paper": 44488, "paper suggest": 119345, "work fewshot": 178979, "task comes": 161249, "short description": 149964, "examples propose": 52672, "leverages large": 91740, "models llm": 107021, "llm fewshot": 93672, "query generator": 134590, "generator creates": 65617, "taskspecific retrievers": 163544, "retrievers based": 144263, "based generated": 15827, "powered llms": 125246, "llms generalization": 95348, "possible create": 124409, "solely based": 152865, "based examples": 15784, "examples using": 52723, "question generators": 134888, "surprisingly llm": 159567, "llm prompting": 93919, "average 11": 15256, "sets training": 149410, "rerankers using": 141527, "using generated": 174228, "data yields": 35978, "studies determine": 156981, "far effective": 57215, "previously observed": 127733, "especially small": 50543, "small taskspecific": 152372, "given case": 65844, "case report": 20887, "report ai": 140511, "problem social": 128396, "social concerns": 152545, "concerns modern": 28795, "longshort term": 97579, "term memory": 164371, "features allow": 57445, "store use": 155861, "llms gpt3": 95416, "gpt3 openai": 66732, "known able": 82583, "problem modern": 128327, "models truly": 109513, "truly understand": 169821, "understand prompts": 171067, "evaluating large": 51324, "lms tasks": 97208, "prompts instead": 131335, "inverse scaling": 80343, "evaluate different": 50946, "prompts pretrained": 131411, "opt gpt3": 116906, "gpt3 varying": 66776, "125m 175b": 299, "novel prompts": 114658, "lms provided": 97188, "lms finetuned": 97141, "finetuned specifically": 59115, "types perform": 170398, "prompts scale": 131460, "huge performance": 70524, "gap human": 62657, "performance comparing": 121302, "score original": 147084, "highlighting critical": 69808, "critical limitation": 33515, "limitation existing": 92500, "lms methods": 97169, "urge community": 172412, "community develop": 26462, "new approaches": 113067, "approaches developing": 11734, "follow given": 60212, "given instructions": 65915, "code datasets": 24769, "datasets explore": 36852, "reporting biases": 140575, "trained raw": 168055, "raw texts": 136093, "direct access": 42367, "gordon van": 66343, "van durme": 175566, "durme 2013": 45106, "reporting bias": 140574, "texts rarely": 165762, "instead focusing": 77875, "cooccurrence statistics": 32051, "naturally learn": 111977, "view physical": 176817, "lms smaller": 97200, "smaller scales": 152438, "bias remains": 18193, "remains unknown": 140106, "bias perspective": 18176, "larger language": 89207, "llms palm": 96025, "specifically query": 154276, "llms typical": 96867, "grounded physical": 67873, "surprisingly llms": 159568, "llms significantly": 96594, "outperform smaller": 117628, "smaller lms": 152404, "texts suggests": 165786, "suggests large": 158660, "language able": 83123, "able overcome": 2535, "keyword extraction": 81613, "short texts": 150010, "transformer paper": 169197, "intrinsic extrinsic": 79891, "text passages": 165349, "evaluation carried": 51465, "metadata corpus": 100566, "scientific publications": 146982, "compare results": 26726, "results obtained": 143641, "obtained different": 115517, "particularly promising": 120241, "keywords furthermore": 81622, "keyword generation": 81614, "produce highly": 129423, "highly useful": 69969, "results crossdomain": 143268, "crossdomain text": 33630, "discuss performance": 42920, "represent text": 140658, "dataset scientific": 36519, "scientific abstracts": 146932, "challenges evaluating": 21854, "model intrinsic": 103896, "bidirectional language": 18355, "learners large": 90149, "arbitrary tasks": 12094, "arbitrary task": 12093, "prompt language": 130559, "model asked": 103139, "asked generate": 12871, "performing task": 122417, "known promptbased": 82622, "capabilities mainly": 20045, "unidirectional language": 171693, "models bidirectional": 105515, "pretrained denoising": 126785, "representations transfer": 140897, "possibility prompting": 124387, "prompting paradigm": 131034, "prompting technique": 131099, "technique enables": 163766, "translation task": 169527, "task case": 161232, "study prompt": 157554, "xue et": 179866, "demonstrate fewshot": 38341, "zeroshot translations": 180366, "outperform fewshot": 117590, "unidirectional models": 171695, "xglm lin": 179829, "lin et": 92935, "approximately 50": 12024, "effective question": 45862, "answering summarization": 9964, "learning emergent": 90408, "emergent property": 47484, "class language": 23880, "models dynamic": 106033, "dynamic prompt": 45153, "reasoning mathematical": 136980, "reasoning core": 136778, "ability human": 2216, "unique challenges": 171826, "reasoning recent": 137089, "recent large": 137532, "progress mathematical": 129987, "tasks written": 163490, "written text": 179794, "text form": 165095, "math word": 99540, "word problems": 178664, "problems mwp": 128571, "unknown models": 171939, "models handle": 106581, "complex problems": 27522, "math reasoning": 99535, "heterogeneous information": 69301, "information tabular": 76794, "tabular data": 160783, "data gap": 35087, "gap present": 62703, "problems require": 128619, "reasoning textual": 137205, "textual tabular": 165958, "data question": 35597, "semistructured text": 148365, "text structured": 165490, "structured table": 156676, "table types": 160757, "types questions": 170412, "process evaluate": 128818, "different pretrained": 41917, "including gpt3": 74536, "model fewshot": 103649, "earlier studies": 45235, "studies suggest": 157093, "selection incontext": 147855, "examples performance": 52652, "handling complex": 68586, "problems like": 128555, "mitigate propose": 102631, "select incontext": 147778, "examples small": 52698, "test example": 164552, "best baseline": 17661, "accuracy metric": 3308, "reduces prediction": 138531, "significantly compared": 150965, "compared random": 26904, "random selection": 135542, "study neural": 157504, "raises intriguing": 135490, "intriguing questions": 79879, "natural artificial": 111518, "artificial systems": 12794, "widely employed": 178375, "modeling machine": 105041, "words semantically": 178750, "vector space": 176390, "expected model": 53754, "lexical level": 91988, "learning best": 90258, "efficient endtoend": 46605, "endtoend machine": 48744, "systems despite": 160335, "opaque nature": 116195, "cast light": 21038, "reviewing relevant": 144571, "transparent explainable": 169599, "training domain": 168399, "adaptation crosslingual": 4605, "llms emerged": 95021, "emerged powerful": 47384, "powerful technique": 125335, "technique enable": 163765, "tasks adaptation": 161901, "languages remains": 87118, "remains open": 140050, "open question": 116270, "leading positive": 89854, "negative transfer": 112535, "transfer paper": 168981, "analyze knowledge": 9305, "transfer natural": 168976, "sentimental analysis": 148674, "analysis sentence": 9155, "sentence similarity": 148533, "similarity using": 151385, "using llms": 174424, "llms bert": 94490, "analyzing performance": 9379, "finetuning target": 59578, "datasets domain": 36800, "adaptation tasks": 4665, "larger dataset": 89202, "dataset experiments": 36288, "experiments showed": 54461, "showed finetuning": 150136, "training lead": 168541, "tasks generalized": 162450, "tasks necessitate": 162846, "training step": 168765, "modular approach": 109899, "approach solving": 11559, "solving complex": 153200, "surprisingly powerful": 159571, "powerful way": 125356, "way use": 177885, "llms solve": 96636, "solve various": 153166, "complexity increases": 27674, "individual reasoning": 75733, "steps task": 155774, "hard learn": 68645, "embedded complex": 47136, "address propose": 5351, "propose decomposed": 131775, "prompting new": 131028, "approach solve": 11558, "solve complex": 153103, "simpler subtasks": 151563, "llms dedicated": 94791, "modular structure": 109911, "structure allows": 156536, "prompt optimized": 130619, "optimized specific": 117093, "specific subtask": 154094, "effective prompts": 45860, "models symbolic": 109331, "allows outperform": 8462, "outperform prior": 117618, "prompting using": 131117, "tasks decompose": 162162, "decompose subtasks": 37616, "hard llms": 68646, "llms simpler": 96612, "complexity comes": 27661, "decompose task": 37617, "task smaller": 161730, "inputs evaluate": 77401, "task effectively": 161341, "effectively teach": 46088, "opendomain multihop": 116457, "incorporate symbolic": 75038, "decomposition framework": 37638, "framework leading": 61268, "leading improved": 89823, "datasets code": 36696, "code prompts": 25068, "ask simple": 12860, "simple strategy": 151527, "strategy prompting": 156197, "llms transfer": 96844, "transfer new": 168978, "tasks outofthebox": 162896, "simply given": 151614, "given natural": 65937, "task additional": 161169, "training prompting": 168664, "prompt cause": 130379, "cause large": 21247, "large variations": 89101, "variations model": 175656, "model predictions": 104303, "significant effort": 150698, "task mitigate": 161546, "mitigate high": 102610, "high degree": 69440, "lead high": 89748, "proposed prompting": 132420, "effective prompt": 45849, "prompt formats": 130507, "questionanswering qa": 134994, "qa prompts": 133917, "prompts encourage": 131247, "approach recursively": 11498, "uses llm": 173882, "llm transform": 94065, "task inputs": 161474, "inputs effective": 77398, "qa format": 133888, "prompts obtain": 131386, "inputs true": 77450, "true label": 169806, "complex dependencies": 27399, "dependencies propose": 39145, "use weak": 172938, "noisy predictions": 114005, "produce final": 129407, "opensource model": 116649, "model families": 103639, "bloom opt": 18747, "125m175b parameters": 302, "average performance": 15301, "strategy enables": 156137, "model match": 104063, "match exceed": 99413, "exceed performance": 52739, "popular benchmarks": 123987, "generalization properties": 63216, "retrievalbased models": 144204, "models modern": 108230, "primarily rely": 127791, "networks simultaneously": 112800, "parallel line": 119573, "line work": 92947, "work aims": 178792, "aims improve": 7627, "input instance": 77265, "inference examples": 76000, "similar examples": 151234, "examples retrieved": 52685, "retrieved training": 144252, "retrievalbased methods": 144202, "range problems": 135675, "problems ranging": 128609, "standard natural": 154857, "protein folding": 132574, "recent efforts": 137481, "efforts including": 46919, "despite growing": 40116, "models theoretical": 109399, "models remains": 108916, "remains underexplored": 140091, "present formal": 126319, "ability particular": 2307, "particular focus": 120078, "classification approaches": 23958, "local learning": 97249, "empirical risk": 47739, "risk minimization": 144952, "minimization based": 102370, "based retrieved": 16076, "retrieved examples": 144242, "underlying learning": 170848, "learning task": 91052, "subtasks enables": 158183, "model employ": 103528, "low complexity": 97737, "ensure good": 49686, "good overall": 66281, "overall accuracy": 118173, "retrievalbased approaches": 144199, "global model": 66100, "kernel methods": 81445, "methods directly": 101446, "directly map": 42566, "instance retrieved": 77809, "examples prediction": 52660, "learning makes": 90664, "models stronger": 109243, "finetunes language": 59144, "maximizing likelihood": 99688, "target label": 161075, "label given": 82688, "given task": 66022, "instruction input": 78027, "improved zeroshot": 73735, "lms struggle": 97205, "struggle generalize": 156748, "challenging tasks": 22296, "tasks containing": 162123, "novel labels": 114557, "trains lm": 168845, "lm generate": 97056, "given input": 65910, "likely generate": 92454, "16 times": 457, "average 84": 15266, "97 points": 1817, "points respectively": 123763, "large improvements": 87285, "tasks unseen": 163419, "20 average": 589, "average f1": 15282, "score indicates": 147074, "indicates strong": 75644, "improved generalization": 73688, "evaluate reasoning": 51089, "multilingual settings": 110549, "settings introduce": 149594, "introduce multilingual": 80020, "grade school": 67367, "school math": 146835, "gradeschool math": 67374, "math problems": 99530, "problems gsm8k": 128526, "gsm8k dataset": 68101, "ability solve": 2374, "problems chainofthought": 128465, "chainofthought prompting": 21517, "strong multilingual": 156418, "multilingual reasoning": 110538, "underrepresented languages": 170905, "languages bengali": 86956, "models extend": 106268, "extend tasks": 55644, "tasks commonsense": 162082, "wordincontext semantic": 178699, "benchmark publicly": 17062, "models transforming": 109501, "poses severe": 124224, "severe threat": 149715, "threat academic": 166266, "academic integrity": 2738, "original work": 117398, "role large": 145505, "literature work": 93213, "work explores": 178966, "generation scientific": 65069, "detection performance": 40586, "automated solutions": 14608, "detection software": 40620, "perform human": 120957, "human study": 71046, "performance quality": 121973, "examples results": 52684, "suggest large": 158549, "models rewrite": 108999, "rewrite text": 144731, "text humans": 165223, "difficulty identifying": 42214, "experts rate": 54679, "original texts": 117391, "detection model": 40562, "synergizing reasoning": 159868, "reasoning acting": 136652, "impressive capabilities": 73261, "capabilities tasks": 20207, "understanding interactive": 171308, "abilities reasoning": 2003, "reasoning chainofthought": 136734, "action plan": 4326, "plan generation": 123213, "generation primarily": 64949, "primarily studied": 127792, "topics paper": 167361, "llms generate": 95353, "generate reasoning": 63675, "help model": 69147, "model induce": 103852, "action plans": 4329, "external sources": 56087, "sources knowledge": 153513, "information apply": 76282, "apply approach": 10838, "approach named": 11397, "set language": 149227, "making tasks": 98814, "effectiveness stateoftheart": 46291, "baselines improved": 16332, "improved human": 73690, "interpretability trustworthiness": 79658, "fact verification": 56749, "verification fever": 176478, "issues hallucination": 81008, "error propagation": 50313, "chainofthought reasoning": 21538, "benchmarks alfworld": 17169, "alfworld webshop": 7766, "methods absolute": 101269, "absolute success": 2621, "prompted incontext": 130818, "project site": 130085, "site code": 151924, "transfer methods": 168971, "learning mtl": 90745, "tuning prompting": 170098, "prompting recently": 131058, "improve generalizability": 73470, "models studies": 109255, "results work": 143938, "tuning fewshot": 170013, "models fewer": 106320, "500 million": 1315, "million parameters": 102237, "experiments zeroshot": 54547, "setting demonstrate": 149438, "models gain": 106415, "improvement average": 73759, "works large": 179460, "tuning provides": 170101, "improvement small": 73850, "small models": 152327, "llms shown": 96530, "shown exceptional": 150232, "exceptional performance": 52824, "tasks capabilities": 162021, "fully explored": 61762, "finetuned llms": 59057, "analysis capabilities": 8835, "tasks semantic": 163211, "description generation": 39412, "autonomous web": 14954, "work developed": 178907, "understanding llms": 171339, "llms pretrained": 96175, "pretrained standard": 127164, "language corpora": 83220, "tasks instance": 162610, "llms 12": 94243, "accurate semantic": 3495, "classification compared": 23974, "trained exclusively": 167913, "dataset finetuned": 36309, "finetuned data": 59004, "miniwob benchmark": 102420, "benchmark llms": 17019, "llms successfully": 96718, "successfully complete": 158372, "50 tasks": 1308, "data compared": 34802, "previous best": 127576, "supervised model": 159157, "model llms": 104039, "llms evaluate": 95100, "models ideal": 106656, "promote research": 130343, "research llms": 141894, "opensource largescale": 116625, "dataset distilled": 36242, "analogy generation": 8739, "generation prompting": 64972, "models case": 105576, "novel application": 114359, "application prompting": 10373, "prompting pretrained": 131041, "generate analogies": 63393, "design effective": 39613, "task settings": 161721, "generating source": 64338, "given target": 66021, "target concept": 161046, "concept generation": 28597, "given pair": 65948, "pair target": 118526, "best prompts": 17739, "statements especially": 155044, "temperature setting": 164205, "systematically analyzed": 160169, "spelling errors": 154534, "errors model": 50380, "model particularly": 104223, "sensitive certain": 148418, "size largest": 152022, "achieve humanlevel": 3668, "humanlevel performance": 71232, "performance generating": 121583, "generating meaningful": 64273, "models incur": 106747, "feature maps": 57416, "explore approaches": 55151, "simple alternative": 151403, "outperforms prior": 117830, "prior methods": 127915, "generation challenging": 64485, "great variety": 67746, "variety input": 175714, "domains finance": 44411, "endtoend neural": 48755, "neural methods": 112878, "require substantial": 141201, "substantial training": 158107, "disambiguate data": 42638, "data realworld": 35610, "problems suffer": 128634, "suffer various": 158456, "issues access": 80973, "handful training": 68521, "examples different": 52559, "domain schema": 44275, "gap propose": 62713, "flexibly applicable": 59835, "applicable diverse": 10280, "diverse settings": 43658, "settings making": 149611, "making efficient": 98735, "efficient use": 46747, "use given": 172655, "given examples": 65882, "consists steps": 29987, "steps data": 155729, "finetuning data": 59215, "stage employ": 154730, "prompted gpt3": 130816, "model understand": 104823, "data convert": 34855, "short sentence": 149989, "stage uses": 154754, "lm like": 97060, "evaluate extensively": 50966, "extensively various": 55998, "different scenarios": 41981, "outofdomain data": 117538, "improvement baselines": 73763, "error analysis": 50271, "llms saturated": 96482, "wellknown nlp": 178177, "benchmarks leaderboards": 17288, "aggregate performance": 6771, "performance times": 122183, "data rare": 35603, "data groups": 35141, "datasets lack": 36941, "lack visual": 83028, "features characterize": 57458, "failure modes": 57013, "introduces interactive": 80187, "tool uses": 167051, "twostep approach": 170279, "approach identify": 11284, "identify high": 71899, "high error": 69456, "data second": 35713, "second step": 147509, "variety methods": 175726, "groups using": 67988, "models semantic": 109069, "semantic labeling": 148170, "texttoimage model": 165820, "generating visual": 64374, "reasoning sequential": 137119, "applications areas": 10424, "user modeling": 173455, "medicine finance": 100240, "learning shifting": 90985, "neural autoregressive": 112832, "autoregressive models": 15004, "models rnns": 109011, "largely restricted": 89174, "simple cases": 151413, "represented sets": 140962, "estimation methods": 50756, "based beam": 15682, "importance sampling": 73059, "sequence datasets": 148732, "different application": 41652, "query answering": 134562, "clear differences": 24264, "search sampling": 147409, "literature shown": 93204, "shown large": 150298, "llms generally": 95351, "fewshot reasoners": 58038, "reasoners solve": 136614, "text reasoning": 165408, "tasks capability": 162022, "llms table": 96755, "table reasoning": 160752, "tasks explored": 162373, "aim understanding": 7501, "llms perform": 96064, "tablerelated tasks": 160763, "evaluated llms": 51186, "llms popular": 96121, "table qa": 160747, "qa fact": 133886, "verification datasets": 176472, "datasets like": 36959, "complex reasoning": 27550, "table structures": 160755, "structures models": 156709, "chain thoughts": 21471, "thoughts prompting": 166247, "prompting llms": 130998, "llms achieve": 94285, "generating comprehensive": 64169, "longform answers": 97540, "reasoning chains": 136737, "elicited llms": 47052, "llms reasoning": 96312, "chains highly": 21560, "highly consistent": 69901, "consistent underlying": 29845, "underlying semantic": 170870, "believe llms": 16782, "llms serve": 96505, "serve simple": 149005, "simple generic": 151464, "explanations large": 54870, "make small": 98601, "reasoners better": 136611, "better integrating": 17918, "freetext explanations": 61575, "explanations incontext": 54865, "llm shown": 93998, "shown elicit": 150228, "elicit strong": 47045, "strong reasoning": 156435, "reasoning capabilities": 136695, "reasonable explanations": 136592, "explanations paper": 54886, "paper consider": 118811, "consider problem": 29583, "problem leveraging": 128308, "explanations generated": 54855, "generated llm": 63911, "llm improve": 93745, "improve training": 73643, "low cost": 97745, "systematically explore": 160186, "approaches llm": 11833, "llm utilize": 94086, "framework facilitate": 61156, "acquire strong": 4266, "reasoning power": 137037, "generation capabilities": 64462, "capabilities experiments": 19888, "multiple reasoning": 111015, "consistently significantly": 29920, "finetuning baselines": 59180, "baselines different": 16309, "accuracy benefit": 3159, "benefit human": 17432, "evaluation shows": 51859, "shows method": 150453, "method generate": 100887, "highquality explanations": 70026, "explanations justify": 54868, "moving goal": 110239, "feature importance": 57410, "saliency maps": 145923, "models predictions": 108592, "identifying important": 72003, "important input": 73147, "difficult interpret": 42157, "features order": 57551, "make accessible": 98475, "task translating": 161785, "maps natural": 99164, "compare methods": 26695, "address key": 5295, "challenges approach": 21780, "evaluation setups": 51855, "setups using": 149687, "tasks compare": 162084, "novel methods": 114597, "ease understanding": 45281, "gpt35 generate": 66810, "plausible explanations": 123428, "human ratings": 70999, "information inconsistent": 76512, "interpretation task": 79711, "approach efficiently": 11149, "feature attribution": 57387, "cognitively challenging": 25493, "challenging humans": 22171, "conventional representations": 31728, "text comprehensive": 164943, "comprehensive survey": 28129, "threat models": 166274, "models detection": 105949, "detection methods": 40559, "methods machine": 101651, "distinguish human": 43280, "powerful opensource": 125318, "opensource models": 116651, "models freely": 106397, "freely available": 61571, "democratize access": 38191, "access generative": 2859, "chatgpt released": 23263, "great potential": 67702, "potential stateoftheart": 125003, "detection machine": 40550, "text key": 165259, "models significant": 109121, "significant technical": 150902, "problems provide": 128606, "provide survey": 132992, "includes extensive": 74371, "models posed": 108561, "complete review": 27285, "methods date": 101418, "provides strong": 133221, "guidance future": 68144, "work addressing": 178780, "addressing critical": 5439, "critical threat": 33561, "models ensuring": 106133, "fairness robustness": 57070, "modeling transformer": 105111, "success language": 158250, "speech processing": 154441, "recently various": 138009, "various efficient": 175926, "efficacy especially": 46375, "modeling long": 105036, "widelyused benchmark": 178417, "benchmark test": 17107, "longrange modeling": 97571, "long range": 97466, "range arena": 135585, "completely ignores": 27302, "equally important": 50163, "important downstream": 73126, "propose comprehensive": 131754, "attention benchmark": 13846, "attention patterns": 13961, "seven realworld": 149701, "different research": 41969, "areas evaluate": 12364, "patterns tasks": 120565, "exhaustive experiments": 53018, "benchmark performances": 17052, "performances widelyused": 122353, "designed different": 39848, "fundamental problems": 61968, "efficiency length": 46484, "vanilla attention": 175569, "attention performance": 13962, "performance consistency": 121329, "patterns benefit": 120519, "longcontext language": 97508, "modeling language": 105026, "models cause": 105586, "survey recent": 159678, "capacity large": 20514, "generate humanlike": 63548, "humanlike text": 71281, "resulted increased": 143080, "societal harms": 152689, "development safer": 41216, "fairer models": 57044, "models going": 106510, "risks harms": 144989, "work provides": 179237, "provides survey": 133224, "practical methods": 125433, "methods addressing": 101291, "addressing potential": 5468, "potential threats": 125021, "models draw": 106028, "risks present": 145018, "present structured": 126459, "structured overview": 156660, "language generators": 83390, "strands research": 155933, "research survey": 142105, "aims serve": 7667, "serve practical": 148995, "practical guide": 125418, "guide lm": 68194, "explanations different": 54833, "limitations open": 92630, "problems future": 128517, "influence campaigns": 76188, "age llms": 6398, "ai approach": 6869, "approach detecting": 11116, "campaigns social": 19701, "community significant": 26522, "challenge propose": 21715, "second employ": 147469, "quantifying degree": 134326, "assess effectiveness": 13072, "effectiveness method": 46232, "examine performance": 52406, "performance context": 121332, "presidential election": 126705, "compelling results": 27108, "results demonstrating": 143346, "demonstrating approach": 38918, "approach holds": 11279, "holds significant": 70279, "significant advantage": 150584, "llms contrast": 94729, "greater resilience": 67772, "identifying influence": 72005, "especially given": 50481, "potential increase": 124783, "increase usage": 75241, "usage llms": 172462, "llms generating": 95387, "content finally": 30499, "solution various": 152991, "different information": 41796, "results guide": 143449, "guide future": 68175, "research prompting": 142001, "prompting gpt3": 130949, "reliable large": 139730, "llms impressive": 95551, "abilities fewshot": 1908, "openai gpt3": 116347, "increase use": 75242, "use realworld": 172840, "language applications": 83157, "applications crucial": 10466, "crucial problem": 33836, "problem improve": 128277, "improve reliability": 73608, "existing framework": 53373, "core contribution": 32162, "establish simple": 50674, "prompts improve": 131317, "distribution uses": 43404, "uses natural": 173888, "updates llms": 172351, "llms factual": 95242, "appropriate prompts": 11989, "prompts gpt3": 131295, "processed datasets": 129043, "datasets evaluation": 36831, "evaluation scripts": 51847, "study sheds": 157623, "sheds new": 149881, "insights reliability": 77639, "llms importantly": 95550, "strategies help": 156008, "help practitioners": 69159, "llms like": 95762, "gpt3 challenging": 66662, "challenging bigbench": 22124, "tasks chainofthought": 162035, "al 2022": 7730, "diverse evaluation": 43520, "fall short": 57120, "23 challenging": 790, "bigbench hard": 18392, "hard bbh": 68634, "task prior": 161646, "prior language": 127912, "model evaluations": 103575, "chainofthought cot": 21485, "bbh tasks": 16489, "performance 10": 121099, "tasks bbh": 161998, "require multistep": 141162, "reasoning fewshot": 136859, "prompting cot": 130889, "performance capabilities": 121216, "prompting analysis": 130854, "analysis explore": 8923, "flat scaling": 59771, "generation question": 64997, "generation recently": 65028, "recently gained": 137888, "gained lot": 62468, "lot research": 97716, "research especially": 141759, "especially advent": 50426, "advent large": 6172, "models question": 108755, "good bad": 66255, "paper tackle": 119362, "massive text": 99380, "risks misinformation": 145005, "approaches hand": 11793, "misinformation problem": 102496, "higher level": 69609, "level accuracy": 91445, "accuracy content": 3188, "content provide": 30587, "introduce adversarial": 79909, "adversarial approach": 6189, "tackle question": 160848, "scale specifically": 146346, "unanswerable questions": 170630, "questions generated": 135141, "quality answers": 134040, "answers generated": 10028, "pipeline used": 123097, "body text": 18779, "hate speech": 68858, "based results": 16073, "times number": 166602, "number quality": 114933, "quality questions": 134236, "generated abstractive": 63788, "recommendation task": 138233, "task spoken": 161745, "spoken dialogue": 154567, "dialogue improve": 41483, "interactive capabilities": 79289, "capabilities dialogue": 19856, "adapt different": 4517, "modules natural": 109994, "modules gpt2": 109983, "dialogue state": 41517, "state tracking": 155022, "tracking dst": 167536, "handcrafted rules": 68510, "policy used": 123876, "main reasons": 98265, "limited performance": 92816, "controllable text": 31625, "generation prompt": 64969, "models clms": 105632, "vanilla prompt": 175580, "control attributes": 31521, "attributes resulting": 14128, "resulting poor": 143129, "able capture": 2475, "relationship different": 139317, "different attributes": 41666, "control performance": 31571, "texts specifically": 165783, "capable producing": 20461, "texts used": 165797, "candidates based": 19740, "based context": 15722, "ensure diversity": 49679, "diversity tokens": 43758, "tokens candidates": 166785, "candidates providing": 19749, "knowledge finally": 82001, "performance maintaining": 121780, "efficient highquality": 46634, "10 virtual": 141, "transformer biomedical": 169110, "models attracted": 105411, "attracted increasing": 14045, "increasing attention": 75301, "success general": 158244, "general natural": 63002, "language domain": 83266, "models general": 106425, "extensively studied": 55991, "success variety": 158304, "downstream biomedical": 44705, "biomedical tasks": 18574, "tasks lack": 162668, "application scope": 10382, "domainspecific generative": 44584, "scale biomedical": 146267, "biomedical literature": 18555, "previous models": 127619, "endtoend relation": 48760, "extraction tasks": 56361, "tasks respectively": 163172, "new record": 113379, "study text": 157664, "demonstrates advantage": 38823, "literature generate": 93171, "biomedical terms": 18576, "terms code": 164396, "guidance robot": 68160, "2022 proposed": 677, "proposed combined": 132266, "search information": 147365, "information used": 76828, "used original": 173166, "original speech": 117386, "dialog task": 41434, "task result": 161701, "ranked second": 135785, "ai study": 7231, "surveys human": 159714, "subjects enrolled": 157872, "queries submitted": 134544, "openais language": 116423, "gpt3 test": 66765, "relative control": 139362, "mean response": 99752, "50 100": 1290, "distinct modes": 43234, "effect ai": 45647, "ai bot": 6892, "shift compared": 149902, "compared human": 26832, "responses adhering": 142723, "remaining responses": 139967, "control group": 31548, "responses depending": 142763, "perturbations prompt": 122760, "meaningful differences": 99793, "gender race": 62892, "models improves": 106694, "performance comes": 121264, "costs paper": 32835, "method substantially": 101123, "improves existing": 73998, "existing language": 53396, "tiny extra": 166633, "key idea": 81511, "stateoftheart large": 155169, "negligible extra": 112559, "extra computational": 56105, "sources data": 153500, "data able": 34567, "improve scaling": 73622, "scaling properties": 146440, "downstream metrics": 44729, "metrics paper": 102122, "2x computational": 947, "computational savings": 28408, "performance final": 121519, "leads emergent": 89886, "demonstrates better": 38827, "better quality": 17995, "smaller scale": 152437, "outperforms palm": 117812, "fewshot setups": 58063, "english nlp": 49087, "answering reasoning": 9945, "tasks finally": 162400, "finally provide": 58513, "qualitative examples": 133997, "synthesis generating": 159946, "object models": 115147, "language specifications": 86738, "specifications introduce": 154317, "leveraging domain": 91834, "embedded large": 47141, "llms help": 95479, "help users": 69193, "models high": 106601, "leading key": 89834, "designed using": 39971, "synthesizes fields": 160004, "second majority": 147493, "object model": 115145, "model highlighting": 103801, "reduce time": 138475, "models iterative": 106827, "distinct complementary": 43212, "complementary capabilities": 27257, "gpt3 capable": 66659, "understand visual": 171097, "models dalle": 105838, "generate photorealistic": 63645, "fail understand": 56984, "understand complex": 170989, "complex language": 27450, "descriptions work": 39518, "framework composing": 61025, "models combining": 105677, "combining strengths": 25997, "model solve": 104631, "various multimodal": 176045, "problems zeroshot": 128653, "zeroshot manner": 180256, "manner use": 99013, "models generators": 106490, "provide feedback": 132788, "feedback refine": 57772, "refine generated": 138731, "generated result": 63965, "enables models": 48222, "errors caused": 50340, "significantly boosting": 150956, "boosting performance": 18846, "tasks improving": 162539, "improving accuracy": 74107, "requiring model": 141501, "finetuning demonstrate": 59220, "leveraging strengths": 91956, "expert model": 54586, "used general": 173082, "framework wide": 61497, "range zeroshot": 135734, "tasks image": 162523, "generation video": 65255, "video question": 176730, "answering mathematical": 9896, "robotic manipulation": 145193, "manipulation project": 98957, "models selfimprove": 109066, "finetuning llm": 59357, "llm requires": 93962, "requires extensive": 141370, "extensive supervision": 55954, "supervision human": 159200, "demonstrate llm": 38407, "llm capable": 93520, "unlabeled datasets": 171953, "pretrained llm": 127018, "llm generate": 93699, "using chainofthought": 174027, "prompting selfconsistency": 131071, "finetune llm": 58941, "llm using": 94082, "using selfgenerated": 174697, "target outputs": 161093, "outputs approach": 118024, "approach improves": 11290, "general reasoning": 63040, "performance ground": 121612, "truth label": 169885, "studies finetuning": 157003, "reasoning critical": 136786, "linguistic evaluation": 93028, "evaluation large": 51658, "knowledge encoded": 81929, "encoded pretrained": 48399, "minimal sentence": 102354, "highlevel linguistic": 69699, "sentence contrast": 148487, "pairs created": 118561, "created translating": 33276, "dataset minimal": 36412, "syntactic lexical": 159894, "process test": 129007, "pretrained monolingual": 127119, "lms far": 97139, "far human": 57220, "achieves highest": 4022, "highest accuracy": 69659, "lms larger": 97159, "larger ones": 89239, "ones additionally": 115986, "lms strong": 97204, "bias perform": 18175, "questions large": 135178, "llms grow": 95455, "grow larger": 67996, "larger sophisticated": 89252, "assessing reasoning": 13201, "capabilities natural": 20068, "challenging recent": 22255, "assess reasoning": 13117, "limited narrow": 92804, "narrow scope": 111463, "subject matters": 157837, "dataset built": 36140, "built novel": 19497, "contains 9000": 30357, "set topics": 149333, "question answer": 134676, "llms demands": 94804, "demands rigorous": 38167, "implicit commonsense": 72972, "gpt3 baselines": 66651, "baselines achieve": 16276, "leaving significant": 91207, "room future": 145581, "future improvements": 62271, "improvements large": 73911, "acquire rich": 4264, "rich linguistic": 144788, "knowledge training": 82463, "pretraining text": 127462, "models helpful": 106594, "reasoning set": 137120, "regular expressions": 138977, "true experiments": 169802, "experiments training": 54502, "model regularization": 104439, "effect text": 45678, "text domain": 165035, "text different": 165024, "experiments surprisingly": 54487, "surprisingly reveal": 159574, "reveal positive": 144364, "effects pretraining": 46346, "multilingual text": 110557, "computer code": 28473, "code text": 25181, "hitherto unexplored": 70233, "leveraging large": 91878, "answering large": 9888, "answering mcqa": 9898, "generally lag": 63314, "art sota": 12559, "tasks traditionally": 163381, "presented llms": 126519, "tasks llm": 162746, "conditioned question": 28986, "question associated": 134833, "answer options": 9741, "prompting approach": 130856, "approach present": 11455, "llm jointly": 93783, "model explicitly": 103610, "options reduces": 117147, "reduces computational": 138510, "tokenization scheme": 166760, "selection natural": 147873, "effective llm": 45801, "llm used": 94076, "used able": 172947, "able associate": 2468, "llm needs": 93844, "ability ability": 2046, "varies greatly": 175682, "approach traditional": 11609, "20 diverse": 593, "diverse datasets": 43502, "datasets largely": 36951, "gap sota": 62730, "ability llms": 2256, "llms previously": 96185, "text primary": 165374, "primary goal": 127812, "researchers regulators": 142258, "adverse drug": 6251, "reduce harm": 138432, "patients ultimately": 120495, "growing collection": 68015, "health professionals": 68961, "facilitating analysis": 56696, "analysis reports": 9123, "automation potential": 14908, "identify safety": 71957, "public resources": 133603, "developing natural": 41013, "annotated events": 9475, "medical case": 100140, "case reports": 20888, "making largest": 98771, "largest public": 89447, "dataset date": 36220, "hierarchical event": 69353, "event schema": 52091, "designed provide": 39933, "provide coarse": 132701, "coarse finegrained": 24627, "finegrained information": 58872, "information patients": 76620, "patients demographics": 120485, "demographics treatments": 38212, "dataset present": 36458, "present thorough": 126483, "experimental evaluation": 53937, "evaluation current": 51520, "approaches biomedical": 11707, "highlight open": 69764, "open challenges": 116209, "challenges foster": 21874, "model ensemble": 103547, "instead prompt": 77893, "transfer method": 168970, "fewshot prompt": 58018, "tuning prompt": 170096, "approaches learn": 11826, "learn taskspecific": 90065, "attracted growing": 14043, "sufficient training": 158499, "data prompt": 35564, "tuning performs": 170080, "performs comparably": 122435, "fullmodel tuning": 61725, "tuning limited": 170048, "training samples": 168711, "samples fewshot": 146013, "settings prompt": 149630, "performance fullmodel": 121539, "fullmodel finetuning": 61724, "finetuning work": 59611, "focus improving": 59995, "prompts source": 131478, "tasks recognizing": 163104, "ensemble methods": 49640, "lowdata regime": 97800, "based different": 15759, "prompts outperforms": 131396, "approaches source": 11910, "motivated observation": 110185, "model ensembles": 103548, "ensembles propose": 49654, "source models": 153462, "model target": 104719, "outputs way": 118138, "superior generalization": 159006, "generalization model": 63197, "ensemble approaches": 49631, "prompt conduct": 130401, "large xl": 89135, "scale large": 146302, "generation fewshot": 64657, "structure prediction": 156592, "prediction large": 125812, "code demonstrated": 24783, "impressive capability": 73286, "translating natural": 169428, "language nl": 86443, "semantic structures": 148231, "translated code": 169417, "code propose": 25070, "translation capability": 169446, "capability tackle": 20380, "prediction tasks": 125873, "tasks case": 162029, "event argument": 52068, "argument extraction": 12427, "extraction eae": 56287, "converting text": 32004, "code enables": 24806, "type annotation": 170295, "annotation introduce": 9534, "introduce external": 79961, "textbased prompts": 165599, "prompts despite": 131224, "using 20": 173944, "20 training": 614, "training event": 168427, "absolute f1": 2607, "types outperforms": 170396, "baseline 12": 16186, "12 absolute": 261, "works specifically": 179503, "specifically incorporate": 154224, "incorporate linguistic": 75022, "models ambiguity": 105349, "consists parts": 29982, "incorporate context": 75005, "output label": 117950, "predictor learns": 125962, "time evaluation": 166397, "types demonstrate": 170345, "efficacy model": 46399, "representations exploring": 140806, "trained synthetic": 168091, "synthetic task": 160077, "apparent competence": 10213, "networks just": 112765, "just memorize": 81383, "process generates": 128847, "question applying": 134829, "variant gpt": 175620, "task predicting": 161633, "legal moves": 91307, "board game": 18767, "game othello": 62566, "network priori": 112688, "priori knowledge": 127964, "game rules": 62570, "experiments indicate": 54317, "used control": 173011, "control output": 31569, "create latent": 33208, "help explain": 69115, "explain predictions": 54708, "human terms": 71055, "terms better": 164393, "gpt3 palm": 66736, "technique significantly": 163804, "performance llms": 121749, "key observation": 81543, "randomly selected": 135571, "past tokens": 120396, "tokens masked": 166842, "quality learned": 134182, "representations downstream": 140795, "randomly masking": 135567, "tokens encourages": 166805, "causal masking": 21204, "improves fewshot": 74001, "inverted index": 80357, "applications conversational": 10460, "used real": 173203, "world despite": 179540, "despite wide": 40252, "popularity large": 124091, "llms realworld": 96305, "realworld conversational": 136428, "advantage llms": 6115, "llms extensive": 95213, "extensive resources": 55944, "resources consumed": 142430, "developers integrating": 40949, "applications study": 10697, "study leverage": 157471, "combined llms": 25908, "llms improve": 95554, "efficiency questionanswering": 46513, "questionanswering models": 134991, "questions experiments": 135124, "average response": 15309, "response time": 142708, "average bleu": 15272, "survey current": 159617, "heated debate": 69032, "debate ai": 37284, "community large": 26492, "models said": 109030, "understand language": 171031, "physical social": 122910, "social situations": 152668, "situations language": 151945, "understanding key": 171316, "key questions": 81560, "developed provide": 40908, "understanding strengths": 171486, "strengths limitations": 156258, "diverse forms": 43532, "radiology reports": 135411, "reports using": 140617, "landscape natural": 83101, "fine tuning": 58841, "tuning models": 170064, "examples target": 52704, "task annotating": 161192, "expensive work": 53819, "main idea": 98244, "class prototypes": 23890, "regularization term": 138992, "outperforms various": 117889, "various strong": 176188, "internal datasets": 79544, "tool detecting": 166965, "detecting potential": 40426, "outofdistribution ood": 117523, "ood data": 116177, "data points": 35494, "open information": 116238, "extraction benchmark": 56264, "benchmark pretrained": 17056, "studies demonstrated": 156972, "demonstrated pretrained": 38744, "gpt store": 66497, "relational knowledge": 139277, "knowledge particular": 82267, "able answer": 2466, "questions given": 135148, "predefined relations": 125656, "relations create": 139288, "benchmark aiming": 16825, "examine open": 52405, "relational information": 139276, "present pretrained": 126416, "surprisingly pretrained": 159572, "obtain competitive": 115468, "distant supervision": 43127, "lms outperform": 97170, "score stateoftheart": 147098, "datasets needing": 37000, "needing use": 112462, "use training": 172919, "training sets": 168736, "sets code": 149360, "datasets available": 36670, "causal analysis": 21174, "probing work": 128171, "work evidence": 178942, "information pretrained": 76639, "analysis focused": 8937, "monolingual models": 110069, "models analyses": 105352, "models employed": 106096, "choice probing": 23699, "tasks study": 163297, "models xglm": 109722, "various languages": 175998, "languages performing": 87089, "counterfactual perturbations": 32949, "neuron activations": 113009, "model extent": 103623, "encoded language": 48393, "language significant": 86725, "models distinct": 106004, "sets neurons": 149383, "subject verb": 157844, "analyses language": 8769, "models syntactic": 109334, "benchmark robust": 17081, "questions derived": 135098, "wikidata knowledge": 178490, "robustness qa": 145426, "worstcase performance": 179675, "performance question": 121975, "compared prior": 26899, "questions require": 135255, "reasoning evidence": 136839, "text average": 164855, "correct answers": 32374, "addition human": 4865, "annotators rate": 9640, "evaluate stateoftheart": 51104, "finetuning settings": 59531, "challenging zeroshot": 22324, "fewshot models": 57995, "perform similarly": 121039, "baselines supervised": 16375, "upper bounds": 172383, "related questions": 139204, "questions results": 135266, "challenging benchmark": 22121, "provides quantifiable": 133202, "build robust": 19347, "qa methods": 133898, "using multiple": 174507, "decisions paper": 37476, "applications automated": 10429, "automated extraction": 14550, "text case": 164871, "2022 work": 683, "task aims": 161185, "aims detect": 7594, "authors used": 14445, "used different": 173032, "different large": 41819, "models customized": 105837, "loss functions": 97673, "information experiments": 76407, "corpus dataset": 32295, "using minimum": 174491, "secret information": 147532, "manner adversarial": 98970, "literature recent": 93194, "advances generative": 6011, "learning researchers": 90925, "researchers developing": 142198, "techniques work": 164058, "yield best": 179960, "algorithms achieve": 7897, "achieve perfect": 3701, "perfect security": 120855, "security guarantees": 147588, "distributions provide": 43429, "provide empirical": 132763, "empirical validation": 47773, "approach modern": 11394, "adaptive dynamic": 4774, "dynamic grouping": 45131, "grouping using": 67963, "image transformer": 72349, "communication channels": 26351, "encoding efficiency": 48507, "efficiency despite": 46441, "despite stronger": 40217, "suggest natural": 158571, "understanding finetuning": 171239, "llms despite": 94903, "despite widespread": 40254, "widespread use": 178476, "llms conversational": 94737, "evaluations performance": 52014, "fail capture": 56946, "capture crucial": 20642, "crucial aspect": 33761, "interpreting language": 79734, "language context": 83216, "context incorporating": 30794, "humans interpret": 71415, "language using": 86875, "intuitively understand": 80305, "investigate llms": 80445, "type inference": 170307, "inference known": 76036, "simple task": 151535, "used stateoftheart": 173242, "models categories": 105581, "perform close": 120884, "close random": 24450, "llms instructiontuned": 95654, "perform significantly": 121035, "suggest certain": 158519, "finetuning strategies": 59561, "present findings": 126315, "point research": 123723, "research evaluating": 141764, "evaluating llms": 51333, "llms interpret": 95669, "model evaluation": 103568, "require highquality": 141117, "highquality human": 70029, "evaluation expensive": 51573, "expensive timeconsuming": 53811, "suffers large": 158466, "especially conversational": 50448, "conversational speech": 31926, "grammatical structures": 67464, "structures large": 156704, "grammatical structure": 67463, "structure present": 156594, "using gpt": 174254, "approach human": 11281, "additionally approach": 5025, "enables quantitative": 48242, "quantitative assessment": 134337, "inverse text": 80346, "text normalization": 165324, "normalization itn": 114184, "traditional word": 167717, "metrics fail": 102065, "strongly correlated": 156497, "human readability": 71000, "readability scores": 136158, "pearsons correlation": 120645, "correlation coefficients": 32537, "eliminates need": 47074, "need human": 112307, "transcriptions model": 168887, "shifts zeroshot": 149942, "zeroshot dense": 180155, "retrieval contrastive": 144029, "distributionally robust": 43415, "robust learning": 145281, "learning present": 90841, "new zeroshot": 113515, "tasks target": 163337, "scenarios mitigate": 146650, "mitigate impact": 102611, "continues pretraining": 31224, "corpora adapt": 32205, "target distributions": 161058, "unseen target": 172184, "samples different": 146004, "model robustness": 104497, "beir zeroshot": 16751, "zeroshot retrieval": 180329, "larger size": 89250, "bert large": 17562, "embedding model": 47182, "transfer tasks": 168996, "tasks scale": 163196, "scale increasing": 146295, "modeling research": 105084, "research emergence": 141744, "parameters models": 119808, "difficult evaluate": 42146, "impact emergent": 72646, "emergent capabilities": 47472, "capabilities given": 19924, "given capabilities": 65843, "capabilities arise": 19789, "sheer scale": 149888, "process building": 128747, "big science": 18385, "science large": 146882, "openaccess multilingual": 116316, "goal identify": 66170, "identify architecture": 71857, "training setup": 168738, "best use": 17763, "specifically perform": 154258, "perform ablation": 120860, "ablation study": 2447, "comparing different": 26980, "different modeling": 41860, "modeling practices": 105067, "addition study": 4908, "impact various": 72739, "various popular": 176107, "finally consider": 58428, "size shape": 152068, "setup models": 149675, "code opensourced": 25038, "diverse decoding": 43503, "decoding large": 37571, "models decoding": 105862, "decoding methods": 37578, "tradeoff diversity": 167558, "computation methods": 28313, "methods beam": 101344, "topk sampling": 167381, "different output": 41890, "temperature sampling": 164203, "nucleus sampling": 114814, "defined large": 37949, "compatible common": 27093, "certain conditions": 21372, "unbiased consistent": 170650, "sampling beam": 146085, "query intent": 134595, "using retrieval": 174674, "distillation large": 43149, "shown impressive": 150264, "variety text": 175774, "text understanding": 165545, "queries pose": 134517, "pose unique": 124180, "unique challenge": 171825, "feature engineering": 57399, "efforts lead": 46924, "downstream improvements": 44726, "increased complexity": 75254, "distillation paper": 43160, "make following": 98541, "following contributions": 60264, "demonstrate retrieval": 38535, "queries provides": 134524, "llms valuable": 96940, "context enabling": 30741, "improved understanding": 73730, "understanding retrieval": 171465, "provide practical": 132927, "practical effective": 125409, "way distilling": 177797, "augmentation llms": 14292, "llms specifically": 96660, "use novel": 172784, "novel twostage": 114732, "twostage distillation": 170255, "distillation approach": 43142, "increased compute": 75256, "typically associated": 170466, "demonstrate benefits": 38255, "benefits proposed": 17490, "understanding resulting": 171464, "including public": 74686, "public benchmarks": 133551, "work offers": 179139, "recipe practical": 138026, "methods model": 101666, "improvement text": 73860, "classifiers large": 24188, "performance past": 121900, "dataset generalize": 36322, "training scenario": 168716, "reduce models": 138450, "models reliance": 108909, "features improve": 57510, "setting existing": 149452, "usually use": 174928, "use fixed": 172631, "various bias": 175840, "features paper": 57552, "set existing": 149189, "features demonstrate": 57467, "model works": 104908, "works best": 179428, "choosing appropriate": 23731, "model obtain": 104138, "better robustness": 18018, "sophisticated model": 153314, "semiparametric language": 148354, "generally require": 63325, "require huge": 141118, "huge number": 70523, "store necessary": 155857, "necessary knowledge": 112147, "knowledge solving": 82409, "multiple natural": 110982, "settings addition": 149524, "costly model": 32793, "model retraining": 104478, "paper develop": 118849, "novel semiparametric": 114686, "external memory": 56081, "contains different": 30367, "knowledge entity": 81951, "causality knowledge": 21232, "knowledge input": 82132, "model adaptively": 103072, "knowledge type": 82479, "retrieves helpful": 144269, "pieces knowledge": 122977, "knowledge augmentation": 81756, "t5 generate": 160706, "generate output": 63637, "moe model": 110018, "model knowledge": 103913, "plays role": 123535, "used determine": 173028, "novel algorithm": 114353, "algorithm training": 7869, "needs smaller": 112491, "superior zeroshot": 159063, "evaluating 40": 51254, "40 different": 1172, "770m parameters": 1602, "outperforms large": 117788, "abilities smaller": 2015, "models exploiting": 106254, "exploiting prompt": 55040, "disease detection": 43028, "early diagnosis": 45244, "speech based": 154385, "based automatic": 15674, "screening systems": 147240, "textual embedding": 165907, "features produced": 57559, "produced pretrained": 129508, "bert widely": 17618, "used systems": 173258, "domain finetuning": 44171, "based masked": 15939, "task end": 161348, "end paper": 48667, "investigates use": 80581, "plms consistently": 123580, "classification errors": 23990, "features based": 57450, "incorporated prompt": 75045, "plm finetuning": 123558, "based combination": 15706, "different plms": 41908, "different finetuning": 41775, "finetuning paradigms": 59425, "paradigms conventional": 119537, "finetuning applied": 59169, "maximum accuracy": 99692, "accuracy scores": 3387, "performance measurements": 121794, "detection accuracy": 40434, "asr speech": 13008, "speech transcripts": 154483, "answering using": 9980, "gpt3 present": 66741, "present early": 126288, "early results": 45260, "perform question": 121016, "answering tabular": 9967, "pretrained gpt3": 126836, "simple prompt": 151512, "examples significantly": 52694, "improves accuracy": 73970, "heterogeneous data": 69294, "data apply": 34644, "approach novel": 11406, "results overall": 143653, "diffusion models": 42243, "domains images": 44429, "images similar": 72486, "similar efforts": 151232, "domains text": 44538, "key design": 81484, "iteratively generating": 81154, "blocks text": 18733, "allowing flexible": 8369, "output length": 117959, "decoding time": 37606, "time enabling": 166390, "classifier guidance": 24158, "control using": 31600, "using offtheshelf": 174548, "offtheshelf classifiers": 115903, "adaptation evaluate": 4617, "autoregressive gpt2": 14982, "metrics vastly": 102163, "outperforms competitive": 117739, "competitive baselines": 27162, "extra advantage": 56104, "llm finetuning": 93676, "llms general": 95344, "problem solvers": 128401, "tasks prompts": 163031, "prompts improved": 131319, "finetuning specialized": 59552, "specialized dataset": 153879, "additional tasks": 5003, "available work": 15229, "finetuning single": 59544, "finetuned task": 59126, "task format": 161407, "propose prompt": 132078, "effective twostage": 45912, "twostage finetuning": 170256, "framework reduces": 61376, "improves generalization": 74006, "learning additional": 90183, "experiments finetuning": 54291, "tasks incontext": 162585, "incontext evaluation": 74846, "evaluation tasks": 51893, "finetuned tasks": 59127, "tasks standard": 163283, "outofdomain evaluation": 117540, "tasks importantly": 162531, "generalization incontext": 63179, "tasks semantically": 163213, "translation significantly": 169516, "performance summarization": 122136, "summarization experiments": 158829, "ctr prediction": 33913, "new findings": 113191, "strong memorization": 156413, "memory mechanism": 100426, "model learn": 103940, "learn memorize": 90008, "mechanism efficiently": 99987, "main memory": 98249, "ctr model": 33912, "datasets online": 37012, "law large": 89601, "obtain performance": 115493, "gains work": 62535, "demonstrates importance": 38853, "sheds light": 149874, "light new": 92132, "new promising": 113356, "promising research": 130300, "language reasoning": 86690, "using promptgenerated": 174617, "promptgenerated rationales": 130846, "languagebased reasoning": 86909, "tasks utilizing": 163444, "latent knowledge": 89507, "pretrained parameters": 127139, "parameters make": 119800, "process explicit": 128826, "internal knowledge": 79550, "generate freetext": 63513, "freetext rationales": 61579, "rationales used": 136071, "used guide": 173096, "guide task": 68213, "task predictions": 161634, "reasoning lm": 136970, "lms require": 97192, "require expensive": 141096, "expensive rationale": 53804, "rationale annotation": 136051, "generated rationales": 63956, "rationales improve": 136066, "faithfully reflect": 57085, "decisionmaking paper": 37424, "learning learns": 90637, "process task": 129004, "prompting frozen": 130943, "lm finetuned": 97054, "ability reasoning": 2341, "performance indistribution": 121673, "indistribution outofdistribution": 75703, "predictions generated": 125909, "task multilingual": 161552, "emnlp 2022": 47554, "present work": 126504, "approaches training": 11934, "performance languages": 121714, "tasks hand": 162490, "model helps": 103793, "achieved promising": 3859, "received highest": 137304, "task systems": 161765, "systems received": 160569, "1st place": 583, "2022 large": 670, "models humanlevel": 106644, "prompt engineers": 130490, "conditioning natural": 28994, "llms displayed": 94953, "displayed impressive": 43075, "capabilities generalpurpose": 19912, "generalpurpose computers": 63340, "performance depends": 121373, "quality prompt": 134230, "prompt used": 130736, "steer model": 155559, "prompts handcrafted": 131304, "inspired classical": 77715, "classical program": 23946, "approach prompt": 11468, "engineering propose": 48975, "propose automatic": 131725, "automatic prompt": 14717, "prompt engineer": 130438, "automatic instruction": 14693, "instruction generation": 78023, "generation selection": 65075, "selection method": 147869, "proposed llm": 132325, "order maximize": 117222, "score function": 147066, "quality selected": 134265, "evaluate zeroshot": 51137, "performance llm": 121746, "llm following": 93683, "instruction experiments": 77992, "experiments 24": 54127, "tasks automatically": 161990, "generated instructions": 63892, "instructions outperform": 78317, "prior llm": 127914, "llm baseline": 93503, "baseline large": 16226, "better comparable": 17827, "performance instructions": 121685, "instructions generated": 78267, "generated human": 63885, "extensive qualitative": 55935, "quantitative analyses": 134334, "explore performance": 55251, "steer models": 155560, "improve fewshot": 73465, "performance simply": 122072, "simply prepending": 151618, "standard incontext": 154831, "learning prompts": 90875, "prompts check": 131186, "model benchmark": 103203, "benchmarks getting": 17255, "larger complex": 89197, "arms race": 12499, "tasks trivial": 163396, "humans writing": 71496, "sentence containing": 148484, "containing specific": 30344, "identifying words": 72041, "words list": 178735, "specific category": 153948, "provide quick": 132943, "interpretable insights": 79671, "insights capabilities": 77519, "robustness large": 145398, "failure cases": 57006, "cases immediately": 20973, "pose considerable": 124153, "considerable challenge": 29607, "openais latest": 116430, "evaluation approaches": 51435, "providing quick": 133356, "unit test": 171871, "benchmark suites": 17097, "better representations": 18006, "representations natural": 140853, "statistical language": 155491, "based contextual": 15724, "require data": 141086, "data learn": 35308, "data sparsity": 35784, "including chinese": 74450, "chinese vietnamese": 23670, "writing systems": 179762, "represented visual": 140967, "contain semantic": 30304, "cues paper": 33930, "novel study": 114701, "study explores": 157343, "information learning": 76558, "better semantic": 18022, "test hypothesis": 164563, "hypothesis natural": 71627, "nli task": 113670, "task evaluating": 161361, "multimodal representations": 110755, "results languages": 143553, "languages different": 86979, "systems suggest": 160631, "suggest significant": 158587, "significant benefits": 150624, "benefits using": 17496, "using multimodal": 174505, "systems especially": 160362, "experiences using": 53872, "code explanations": 24829, "generated large": 63898, "models web": 109681, "resulted large": 143082, "llms capable": 94531, "recent versions": 137714, "versions models": 176623, "codex gpt3": 25342, "code code": 24705, "generating multiple": 64276, "multiple code": 110867, "code explanation": 24826, "types using": 170435, "llms integrating": 95659, "integrating interactive": 78603, "llmgenerated code": 94195, "code snippets": 25143, "use explanations": 172611, "ask feedback": 12841, "available students": 15208, "code snippet": 25142, "preliminary results": 126140, "students perceived": 156883, "explanations helpful": 54858, "student engagement": 156806, "type code": 170301, "discuss future": 42890, "generated llms": 63914, "llms existing": 95166, "existing computer": 53320, "progress scalable": 130014, "scalable oversight": 146251, "models developing": 105955, "developing safe": 41023, "safe useful": 145818, "generalpurpose ai": 63333, "systems require": 160589, "make progress": 98581, "systems potentially": 160536, "potentially outperform": 125127, "relevant task": 139657, "task hand": 161442, "empirical work": 47775, "problem straightforward": 128413, "abilities paper": 1981, "discusses major": 42974, "present experimental": 126306, "experimental design": 53933, "human specialists": 71043, "humans current": 71368, "current general": 34123, "general ai": 62910, "systems fail": 160383, "present proofofconcept": 126425, "demonstrate key": 38389, "key feature": 81501, "tasks mmlu": 162806, "participants interact": 120011, "baseline strategy": 16264, "substantially outperform": 158132, "unaided performance": 170618, "results encouraging": 143377, "present models": 126371, "findings large": 58718, "assist humans": 13347, "difficult tasks": 42182, "tasks users": 163424, "insecure code": 77466, "ai assistants": 6875, "largescale user": 89420, "study examining": 157334, "examining users": 52457, "users interact": 173689, "ai code": 6914, "solve variety": 153164, "languages overall": 87080, "participants access": 119992, "ai assistant": 6874, "assistant based": 13386, "based openais": 15991, "secure code": 147547, "likely believe": 92448, "furthermore participants": 62125, "trusted ai": 169842, "language format": 83330, "provided code": 133042, "security vulnerabilities": 147632, "better inform": 17912, "inform design": 76251, "design future": 39639, "aibased code": 7338, "assistants provide": 13426, "language interaction": 83457, "interaction behavior": 79103, "user interface": 173442, "similar studies": 151309, "lay language": 89621, "generation recent": 65022, "systems used": 160657, "trained parallel": 168035, "parallel corpus": 119563, "health information": 68944, "applicability models": 10264, "models constrained": 105760, "constrained limited": 30035, "domain experts": 44154, "assuring quality": 13580, "quality dataset": 134089, "dataset furthermore": 36321, "furthermore qualitative": 62149, "qualitative evaluation": 133993, "language summaries": 86749, "explanation key": 54786, "key strategy": 81578, "strategy increase": 156161, "increase accessibility": 75186, "explanation challenging": 54778, "generation generating": 64691, "adopt retrievalaugmented": 5582, "retrievalaugmented models": 144196, "models intuitive": 106820, "fit task": 59685, "task background": 161215, "summary quality": 158940, "maintaining factual": 98349, "taken work": 160973, "scientific knowledge": 146966, "broader audience": 19207, "task report": 161690, "make sentences": 98596, "sentences concise": 148565, "define task": 37943, "different related": 41963, "simplification evaluation": 151582, "release test": 139499, "annotated human": 9478, "respectively demonstrate": 142546, "difficult task": 42181, "task zeroshot": 161817, "zeroshot setups": 180346, "perform given": 120952, "given limitations": 65927, "approaches propose": 11870, "generation method": 64823, "scratch finetune": 147218, "finetune t5": 58974, "strongest baselines": 156483, "improved finetuning": 73686, "dataset derived": 36231, "translation test": 169531, "sets fewshot": 149369, "character understanding": 22440, "humans quickly": 71457, "understand new": 171050, "fictional characters": 58105, "drawing analogies": 44924, "real people": 136242, "humans inference": 71410, "theoryofmind tom": 166110, "largely ignored": 89154, "research gap": 141809, "gap novel": 62688, "narrative understanding": 111448, "dataset consists": 36188, "movie scripts": 110231, "understanding task": 171497, "humans ability": 71335, "approach designed": 11113, "designed explicitly": 39876, "assess influence": 13090, "surpasses existing": 159480, "existing baseline": 53291, "underscoring significance": 170968, "task extensive": 161384, "extensive human": 55907, "study verifies": 157714, "solving problem": 153234, "based previously": 16028, "based stateoftheart": 16109, "models gpt4": 106541, "metalearning algorithms": 100575, "20 highlighting": 594, "notable limitation": 114233, "tom capabilities": 166914, "educational resources": 45623, "resources leveraging": 142450, "article introduce": 12586, "introduce evaluate": 79956, "evaluate concept": 50935, "educational content": 45602, "lies intersection": 92068, "crowdsourcing large": 33733, "models instead": 106775, "requests large": 141052, "models replace": 108925, "traditionally performed": 167724, "input evaluate": 77236, "evaluations used": 52033, "used improve": 173104, "improve large": 73500, "process study": 128996, "study feasibility": 157358, "programming exercises": 129818, "codex results": 25354, "effort creating": 46835, "creating diverse": 33295, "quality similar": 134269, "demonstrations natural": 39031, "instructions capabilities": 78210, "led widespread": 91259, "adoption llms": 5645, "llms developed": 94914, "powerful technology": 125337, "model designed": 103439, "bloom decoderonly": 18744, "dataset comprising": 36178, "comprising hundreds": 28261, "variety benchmarks": 175695, "prompted finetuning": 130814, "finetuning facilitate": 59266, "research applications": 141588, "applications using": 10717, "llms publicly": 96269, "responsible ai": 142954, "efficiently scaling": 46817, "transformer inference": 169147, "problem efficient": 128239, "efficient generative": 46630, "generative inference": 65424, "inference transformer": 76131, "challenging settings": 22272, "large deep": 87237, "models tight": 109401, "tradeoffs inference": 167575, "large transformerbased": 89085, "models important": 106683, "cases models": 20996, "growing rapidly": 68047, "application areas": 10299, "develop simple": 40835, "analytical model": 9255, "inference efficiency": 75992, "based application": 15655, "pareto frontier": 119929, "model flops": 103680, "flops utilization": 59865, "parameter models": 119631, "models outperforms": 108390, "suite benchmarks": 158718, "multiquery attention": 111132, "multiple query": 111012, "token generation": 166711, "using int8": 174333, "weight quantization": 178078, "context length": 30818, "models controllable": 105792, "working memory": 179401, "memory large": 100414, "series breakthroughs": 148907, "breakthroughs natural": 19026, "excellent understanding": 52798, "models apart": 105366, "amounts world": 8709, "pretraining downstream": 127310, "models world": 109717, "information presented": 76636, "context remains": 30896, "remains explored": 140005, "behavior llm": 16611, "context contains": 30715, "taskrelevant information": 161860, "memorized knowledge": 100348, "knowledge enables": 81925, "predictions grounded": 125910, "grounded context": 67857, "context used": 30950, "specific model": 154040, "irrelevant task": 80856, "paper undertake": 119375, "study aforementioned": 157137, "context llms": 30836, "llms demonstrate": 94808, "stateoftheart t5": 155385, "pretrained finetuned": 126807, "solution propose": 152967, "method knowledge": 100943, "knowledge aware": 81762, "robustness incorporating": 145394, "datasets comprehensive": 36723, "evaluation showcases": 51856, "architectures sizes": 12293, "states language": 155428, "models event": 106171, "understanding physical": 171406, "procedural knowledge": 128685, "knowledge objects": 82250, "objects interact": 115288, "fail reason": 56973, "reason world": 136586, "demonstrate existing": 38331, "surprising abilities": 159540, "abilities llms": 1953, "prompting dramatically": 130902, "dramatically improve": 44891, "particular results": 120119, "especially useful": 50559, "according current": 3029, "did originate": 41595, "particular work": 120139, "little known": 93240, "model discovers": 103472, "previously unknown": 127750, "statistical properties": 155508, "properties relevant": 131659, "texts shows": 165776, "shows similarities": 150479, "texts written": 165804, "reliability large": 139691, "semantic consistency": 148124, "consistency large": 29770, "sensitive prompts": 148441, "feed prompts": 57632, "prompts semantically": 131465, "different answers": 41651, "safe trustworthy": 145814, "plms like": 123619, "outputs consistent": 118039, "mean thing": 99759, "intent work": 79023, "stateoftheart plms": 155303, "address need": 5323, "lexical equality": 91980, "equality single": 50158, "single multiword": 151839, "multiword answers": 111299, "consistency generative": 29762, "generative text": 65600, "sequences order": 148832, "order understand": 117251, "plms text": 123645, "generation settings": 65083, "settings develop": 149557, "measure semantic": 99875, "text outputs": 165335, "consistency metric": 29778, "metric evaluate": 101968, "performance number": 121854, "paraphrased versions": 119910, "truthfulqa dataset": 169903, "proposed metrics": 132385, "traditional metrics": 167661, "lexical consistency": 91976, "correlate human": 32516, "output consistency": 117906, "higher degree": 69590, "virtual worlds": 176873, "trained code": 167879, "generation applied": 64424, "worlds work": 179642, "work promptbased": 179194, "game development": 62554, "development example": 41109, "using generative": 174229, "generative processes": 65578, "3d objects": 1136, "naturally leads": 111976, "evaluate benchmark": 50910, "created generative": 33258, "models qualitative": 108748, "quantitative metrics": 134362, "scenarios conclude": 146562, "challenges aiassisted": 21770, "framework latent": 61264, "latent concept": 89494, "concept analysis": 28583, "challenge deploying": 21618, "deploying solutions": 39254, "precision present": 125617, "humanintheloop framework": 71201, "space pretrained": 153607, "use unsupervised": 172927, "unsupervised method": 172255, "method discover": 100793, "concepts learned": 28670, "models enable": 106103, "graphical interface": 67599, "interface humans": 79435, "humans generate": 71394, "generate explanations": 63485, "process provide": 128952, "concepts based": 28643, "based traditional": 16145, "traditional linguistic": 167646, "enable development": 48073, "latent concepts": 89495, "learned deep": 90093, "models include": 106699, "linguistic concepts": 93017, "based gender": 15825, "gender religious": 62894, "model framework": 103693, "concept discovery": 28592, "discovery ii": 42769, "fact probing": 56742, "plms shown": 123638, "knowledge prompts": 82318, "prompts discrete": 131232, "methods consider": 101395, "task object": 161575, "object prediction": 115156, "method factual": 100868, "probing plms": 128162, "subject object": 157838, "prediction results": 125859, "results popular": 143669, "probing dataset": 128150, "models outofdistribution": 108378, "data pretraining": 35533, "ood generalization": 116182, "problem remains": 128381, "tasks limiting": 162739, "unified benchmark": 171702, "benchmark named": 17039, "ood robustness": 116184, "robustness nlp": 145410, "models highlighting": 106607, "highlighting importance": 69813, "measure robustness": 99874, "benchmark includes": 16997, "includes 13": 74357, "datasets ood": 37013, "evaluations conducted": 51952, "classic nlp": 23926, "plms including": 123611, "gpt3 gpt35": 66700, "gpt35 findings": 66807, "findings confirm": 58646, "need improved": 112315, "ood accuracy": 116176, "tasks significant": 163241, "observed settings": 115432, "settings compared": 149538, "indistribution id": 75700, "dutch language": 45109, "gpt3 outperform": 66734, "corpora text": 32256, "finetuning particular": 59430, "particular task": 120127, "models uptodate": 109566, "information paper": 76614, "tokens present": 166855, "evaluate new": 51039, "model plugin": 104285, "introduce additional": 79908, "criteria based": 33425, "concept drift": 28593, "alignment novel": 8201, "certain language": 21397, "tasks update": 163420, "performance increase": 121664, "continually updating": 31183, "updating language": 172361, "graph construction": 67499, "understanding users": 171524, "users intentions": 173687, "ecommerce platforms": 45386, "requires commonsense": 141343, "framework reveal": 61391, "challenging perform": 22237, "extraction propose": 56340, "approach leverages": 11348, "generation power": 64934, "language modelsllms": 86420, "humanintheloop annotation": 71198, "construct knowledge": 30142, "graph llms": 67547, "prompts explain": 131264, "data order": 35449, "pattern mining": 120505, "abstract knowledge": 2640, "knowledge extensive": 81982, "extensive evaluations": 55777, "constructed knowledge": 30180, "graph model": 67549, "knowledge potential": 82279, "empowering language": 48012, "graph reasoning": 67569, "knowledge incontext": 82114, "entities pretrained": 49863, "required knowledge": 141241, "knowledge external": 81985, "used augment": 172968, "lms work": 97221, "consists novel": 29981, "novel knowledge": 114556, "flexibly plugged": 59841, "plugged existing": 123671, "existing transformerbased": 53623, "transformerbased lms": 169259, "lms interact": 97155, "way lm": 177848, "answer retrieved": 9773, "retrieved knowledge": 144247, "roberta t5": 145161, "performance gain": 121550, "results closedbook": 143231, "closedbook setting": 24471, "setting performance": 149492, "relational facts": 139273, "provides reasoning": 133204, "reasoning paths": 137023, "models decision": 105855, "speech encoders": 154410, "studies existing": 156995, "existing selfsupervised": 53570, "selfsupervised speech": 148074, "information result": 76702, "asr large": 12998, "llm systems": 94039, "systems achieve": 160225, "results semantic": 143777, "spoken language": 154572, "utilizing rich": 175237, "representations llm": 140844, "come cost": 26003, "timeconsuming obtain": 166553, "obtain propose": 115494, "incorporating semantic": 75130, "information llms": 76565, "improve existing": 73460, "existing speech": 53577, "speech encoder": 154408, "entity resolution": 49938, "slot filling": 152249, "spoken question": 154577, "unsupervised approach": 172234, "performance supervised": 122140, "supervised methods": 159154, "methods trained": 101882, "trained 100": 167860, "100 hours": 150, "demonstrating feasibility": 38936, "feasibility unsupervised": 57362, "evaluating factual": 51298, "factual consistency": 56857, "models news": 108292, "news summarization": 113585, "summarization large": 158839, "llms proven": 96250, "effective large": 45795, "tasks known": 162663, "known hallucinate": 82596, "hallucinate information": 68333, "measure llm": 99857, "factually consistent": 56923, "input propose": 77319, "benchmark called": 16850, "benchmark focuses": 16981, "summarization specifically": 158877, "specifically benchmark": 154144, "benchmark involves": 17006, "involves comparing": 80721, "scores llm": 147159, "factually inconsistent": 56928, "consistent summaries": 29841, "summaries use": 158785, "humanwritten reference": 71524, "reference summaries": 138675, "manually verify": 99108, "summaries factually": 158763, "summarization models": 158851, "models manually": 108135, "manually annotated": 99073, "models factual": 106298, "higher score": 69632, "validate usefulness": 175337, "ranging 1b": 135741, "176b parameters": 507, "parameters different": 119739, "families including": 57185, "existing llms": 53421, "assign higher": 13317, "including scoring": 74711, "scoring method": 147191, "method source": 101114, "summaries code": 158759, "code benchmark": 24692, "benchmark data": 16887, "generalization gap": 63177, "exhibit low": 53074, "tasks just": 162655, "finetuning known": 59321, "work look": 179110, "id outofdistribution": 71715, "ood performance": 116183, "parsing tasks": 119969, "model evaluated": 103566, "ood settings": 116187, "bloom codegen": 18743, "codegen codex": 25258, "codex semantic": 25355, "parsing datasets": 119956, "different number": 41881, "number exemplars": 114862, "gap models": 62681, "knowledgebased visual": 82536, "vqa involves": 177574, "knowledge image": 82106, "answer large": 9729, "particularly helpful": 120203, "task strong": 161750, "knowledge retrieval": 82379, "retrieval reasoning": 144120, "capabilities enable": 19870, "understand images": 171020, "captioning model": 20591, "convert images": 31989, "images text": 72495, "text summarizing": 165517, "visual entities": 177168, "visual details": 177153, "answer visual": 9797, "visual questions": 177286, "questions correctly": 135081, "correctly address": 32456, "serve better": 148965, "blackbox lms": 18645, "generic captions": 65648, "control visual": 31603, "entities generated": 49849, "generated caption": 63807, "trained examples": 167912, "gpt3 existing": 66682, "effectiveness existing": 46170, "outperforms generic": 117775, "stateoftheart accuracy": 155064, "knowledgebased vqa": 82540, "vqa tasks": 177582, "zeroshot results": 180328, "generalizes unseen": 63289, "unseen domains": 172157, "make language": 98558, "better paper": 17957, "collections using": 25762, "approach proposed": 11476, "geographical information": 65710, "evaluation models": 51736, "set evaluation": 149186, "supervised classification": 159092, "relevant metadata": 139619, "produce robust": 129458, "models context": 105770, "biomedical knowledge": 18548, "generates prompts": 64095, "knowledge triples": 82476, "research shown": 142077, "shown promptbased": 150346, "factors like": 56810, "longtailed distribution": 97592, "address introduce": 5252, "metric different": 101966, "different previous": 41924, "evaluation criteria": 51515, "propose concept": 131758, "experiments 12": 54123, "rare relations": 135949, "model guided": 103779, "interpretable image": 79669, "concept bottleneck": 28586, "bottleneck models": 18894, "inherently interpretable": 76985, "interpretable models": 79682, "models factor": 106297, "model decisions": 103407, "easily understand": 45340, "understand model": 171044, "model failing": 103633, "highstakes applications": 70116, "require manually": 141154, "broad adoption": 19161, "adoption address": 5627, "language guided": 83398, "leverages language": 91738, "large space": 89064, "space possible": 153604, "given problem": 65961, "problem domain": 128234, "uses gpt3": 173861, "gpt3 produce": 66742, "produce factual": 129402, "diverse information": 43546, "using clip": 174054, "effective prior": 45846, "concepts important": 28659, "important visual": 73215, "visual recognition": 177293, "recognition evaluation": 138065, "evaluation 11": 51408, "11 diverse": 224, "excel fewshot": 52767, "linear probes": 92969, "comparable data": 26569, "data overall": 35456, "similar better": 151212, "random layerwise": 135528, "layerwise token": 89689, "token dropping": 166701, "largescale transformers": 89416, "transformers largescale": 169325, "various machine": 176025, "learning applications": 90213, "cv nlp": 34456, "prohibitive training": 130059, "training costs": 168214, "mitigate issue": 102614, "novel random": 114661, "subset input": 158002, "achieves considerable": 4001, "accuracy standard": 3396, "standard training": 154887, "training baseline": 168169, "compared token": 26950, "special token": 153854, "length training": 91392, "proposed pretraining": 132415, "proposed training": 132448, "training mechanism": 168573, "mechanism finally": 99990, "broader applications": 19206, "compute cost": 28438, "time achieving": 166345, "similar zeroshot": 151328, "zeroshot evaluations": 180165, "use search": 172866, "search algorithms": 147314, "algorithms possible": 7961, "instead present": 77892, "uses texttotext": 173916, "seq2seq paradigm": 148720, "use multilingual": 172769, "underlying language": 170841, "obtain stateoftheart": 115506, "2021 using": 660, "higher previous": 69621, "addition use": 4914, "sets experiments": 149368, "setting using": 149515, "data substantially": 35824, "substantially higher": 158121, "higher zeroshot": 69650, "languages previous": 87095, "approaches significantly": 11906, "previous supervised": 127673, "supervised stateoftheart": 159174, "results tested": 143865, "tested languages": 164674, "descriptions using": 39511, "text description": 165007, "description prompt": 39422, "prompt guide": 130532, "generation text": 65199, "wide attention": 178253, "attention recently": 13975, "recently text": 138006, "generation work": 65263, "possibility utilizing": 124391, "utilizing text": 175241, "descriptions guide": 39461, "speech synthesis": 154475, "synthesis develop": 159940, "texttospeech tts": 165837, "style content": 157740, "synthesize corresponding": 159986, "corresponding speech": 32604, "content encoder": 30485, "encoder extract": 48420, "extract corresponding": 56125, "synthesize speech": 159997, "representations compared": 140776, "controllable tts": 31629, "require users": 141216, "knowledge understand": 82485, "descriptions natural": 39480, "way express": 177809, "dataset prompts": 36472, "prompts benchmark": 131174, "benchmark task": 17104, "construct release": 30156, "content information": 30529, "information corresponding": 76337, "speech experiments": 154412, "generate speech": 63723, "high speech": 69543, "speech quality": 154443, "quality audio": 134050, "audio samples": 14187, "samples dataset": 146000, "dataset publicly": 36482, "automatic generation": 14678, "teaching math": 163653, "socratic questioning": 152727, "method allows": 100675, "answers complex": 10004, "challenging requiring": 22261, "understanding reasoning": 171437, "enhance human": 49210, "word problem": 178659, "problem mwp": 128332, "lms generating": 97146, "sequential questions": 148880, "word problemsolving": 178668, "problemsolving propose": 128671, "propose various": 132210, "guided question": 68235, "generation schemes": 65068, "schemes based": 146801, "learning automatic": 90233, "human quality": 70994, "lms constrained": 97120, "improve overall": 73539, "performance math": 121790, "problem solver": 128400, "conduct preliminary": 29164, "preliminary user": 126153, "study examine": 157330, "examine potential": 52407, "potential value": 125062, "value question": 175495, "education domain": 45535, "domain results": 44273, "difficulty level": 42217, "level problems": 91497, "plays important": 123521, "important role": 73190, "role determining": 145480, "performance discuss": 121403, "aggregated label": 6774, "tasks particularly": 162935, "inherently subjective": 76993, "asked classify": 12867, "classify facial": 24208, "facial expressions": 56587, "datasets commonly": 36712, "sample models": 145951, "tasks subjective": 163304, "subjective nature": 157861, "allowing models": 8382, "datasets provide": 37054, "labels sample": 82823, "single label": 151817, "models attend": 105409, "input human": 77255, "evaluations indicate": 51986, "annotator disagreement": 9627, "empirical evaluations": 47686, "demonstrates substantial": 38905, "gains performance": 62527, "subjective tasks": 157863, "models current": 105830, "models account": 105207, "complementary explanations": 27259, "effective incontext": 45781, "llms exhibited": 95156, "exhibited remarkable": 53147, "remarkable capabilities": 140147, "capabilities learning": 20010, "explanations prompts": 54892, "prompts limited": 131363, "limited understanding": 92873, "effective work": 45929, "used incontext": 173107, "factors performance": 56817, "performance prompts": 121953, "language used": 86871, "used express": 173061, "effectiveness explanations": 46173, "solving given": 153215, "given test": 66028, "test query": 164604, "llms benefit": 94488, "set diverse": 149177, "maximal marginal": 99661, "exemplar selection": 52982, "approach constructing": 11081, "exemplar sets": 52983, "sets relevant": 149399, "improves incontext": 74010, "tasks multiple": 162826, "multiple llms": 110970, "agents training": 6751, "order train": 117248, "research explored": 141777, "providing semantic": 133365, "linguistic cues": 93021, "questions despite": 135101, "despite showing": 40205, "efficiency method": 46489, "hand costly": 68483, "costly process": 32798, "process context": 128770, "processing field": 129158, "investigate efficiency": 80406, "efficiency using": 46549, "qa training": 133936, "training study": 168770, "study generating": 157380, "content using": 30644, "method consists": 100759, "explaining task": 54769, "task llm": 161524, "llm natural": 93841, "evaluate output": 51046, "content results": 30609, "results suggested": 143844, "content conduct": 30455, "field study": 58247, "primary school": 127821, "children aged": 23595, "qa performance": 133912, "performance having": 121618, "training compare": 168191, "compare types": 26739, "types content": 170339, "cues leading": 33929, "questions similar": 135276, "scalability approach": 146210, "gpt3 better": 66653, "open training": 116307, "training results": 168702, "language prompting": 86667, "approach affords": 10978, "ai techniques": 7267, "techniques furthermore": 163913, "furthermore results": 62157, "suitable training": 158709, "method names": 100986, "pretrained code": 126771, "generation generate": 64686, "generate executable": 63481, "executable code": 52897, "languages possibly": 87091, "despite substantial": 40218, "substantial performance": 158086, "thoroughly investigated": 166213, "investigated paper": 80535, "study demonstrate": 157270, "perspective specifically": 122690, "specifically propose": 154268, "code generator": 24932, "consists components": 29959, "input semantic": 77334, "semantic visual": 148256, "similar original": 151283, "original input": 117344, "generate completely": 63429, "synthesizes new": 160005, "codegpt plbart": 25264, "plbart codet5": 123543, "finetuning code": 59196, "codegen codet5": 25257, "codet5 zeroshot": 25329, "zeroshot code": 180148, "studying model": 157721, "robustness software": 145437, "memory transformer": 100471, "long documents": 97451, "stateoftheart different": 155130, "different natural": 41866, "summarization paper": 158858, "use general": 172641, "general memory": 62993, "study general": 157378, "input proposed": 77320, "using masked": 174477, "verify ability": 176520, "ability proposed": 2332, "model handle": 103782, "used t5": 173259, "t5 transformer": 160726, "augmented input": 14352, "model overcome": 104196, "modeling task": 105103, "task specific": 161737, "parameters ablation": 119697, "study reveals": 157601, "ability using": 2408, "using compressed": 174071, "degradation performance": 37988, "performance understanding": 122210, "understanding model": 171355, "instruction prompting": 78047, "models affected": 105309, "size work": 152078, "question investigating": 134895, "ability discriminate": 2135, "context introduce": 30801, "introduce dataset": 79946, "evaluates models": 51242, "ability follow": 2167, "target word": 161122, "scaling trend": 146453, "degrades model": 38002, "size increase": 152005, "models smaller": 109160, "representations task": 140892, "play important": 123454, "control planning": 31572, "sequential decisionmaking": 148869, "decisionmaking problems": 37427, "highlevel task": 69713, "knowledge required": 82369, "required build": 141224, "knowledge textual": 82456, "textual outputs": 165933, "decisionmaking propose": 37432, "finite state": 59632, "task goal": 161434, "extract task": 56168, "textual form": 165917, "textbased knowledge": 165593, "fills gap": 58341, "method iteratively": 100942, "iteratively refine": 81159, "glm based": 66081, "ability build": 2083, "everyday tasks": 52165, "secure multiparty": 147551, "multiparty computation": 110824, "generation factual": 64654, "recently enabled": 137878, "generation frameworks": 64673, "tackle variety": 160851, "generation framework": 64669, "framework general": 61177, "leads lack": 89898, "realworld usage": 136531, "usage propose": 172473, "task generate": 161422, "generate factual": 63489, "given set": 66006, "passages address": 120341, "task introduce": 161491, "measures propose": 99934, "correctness generated": 32489, "model equipped": 103554, "helpful passages": 69215, "passages generate": 120345, "entity descriptions": 49886, "experimental result": 53959, "result shows": 143062, "significantly improved": 151032, "relative gains": 139368, "recall precision": 137275, "precision finally": 125614, "model generated": 103731, "classification recent": 24066, "unstructured text": 172222, "text documents": 165033, "online sources": 116142, "useful auxiliary": 173315, "auxiliary information": 15030, "information zeroshot": 76852, "classification methods": 24030, "require access": 141060, "access highquality": 2860, "limited single": 92850, "single source": 151865, "source information": 153444, "information large": 76548, "trained webscale": 168128, "webscale text": 178042, "multitude tasks": 111262, "provide novel": 132906, "novel perspective": 114632, "perspective using": 122695, "using llm": 174417, "llm provide": 93928, "provide text": 132999, "text supervision": 165520, "llm provided": 93929, "provided text": 133091, "examples llm": 52633, "examples generate": 52593, "generate multiple": 63615, "semantic embeddings": 148141, "views text": 176833, "class provides": 23891, "complementary information": 27260, "information allowing": 76276, "supervision llm": 159205, "llm compared": 93544, "datasets zeroshot": 37206, "classification unsupervised": 24133, "models fail": 106300, "fail systematically": 56982, "groups data": 67967, "share common": 149792, "common semantic": 26186, "semantic characteristics": 148111, "interactive process": 79329, "models helps": 106596, "helps users": 69263, "users identify": 173670, "identify fix": 71893, "modes given": 109852, "language description": 83242, "retrieves relevant": 144272, "relevant images": 139610, "small data": 152282, "gpt3 suggest": 66762, "suggest new": 158574, "descriptions user": 39508, "demonstrate usefulness": 38601, "user studies": 173504, "stateoftheart classification": 155101, "classification object": 24041, "detection image": 40524, "captioning models": 20592, "failure rates": 57016, "methods finally": 101527, "finally finetuning": 58462, "finetuning examples": 59257, "indistribution accuracy": 75698, "accuracy improving": 3273, "outofdistribution datasets": 117517, "datasets pretraining": 37041, "scientific text": 146996, "educational materials": 45616, "personalised learning": 122567, "play key": 123458, "key role": 81566, "role enabling": 145484, "model built": 103233, "adapting large": 4740, "model initial": 103862, "initial experiments": 77025, "making latent": 98772, "task especially": 161355, "especially limited": 50501, "limited supervision": 92859, "works leverage": 179462, "leverage capabilities": 91569, "perform complex": 120898, "complex question": 27539, "setting demonstrating": 149440, "output intermediate": 117947, "question single": 134938, "break complex": 18986, "task simple": 161728, "task solve": 161733, "process final": 128835, "final solution": 58403, "simple questions": 151520, "allowing multiple": 8384, "examples reasoning": 52678, "reasoning step": 137141, "step learn": 155652, "including using": 74776, "steps large": 155749, "large lm": 88894, "lm does": 97052, "typically manually": 170500, "manually written": 99110, "way generate": 177821, "synthetic dataset": 160036, "dataset used": 36605, "used bootstrap": 172983, "ability decompose": 2120, "questions best": 135056, "prompting achieves": 130852, "achieves improvement": 4029, "stateoftheart model": 155223, "model supervision": 104690, "study social": 157640, "multilingual large": 110494, "interdisciplinary research": 79382, "models date": 105853, "collaborations large": 25604, "models datasets": 105847, "datasets analysis": 36647, "analysis turn": 9211, "led wide": 91257, "range research": 135688, "research publications": 142016, "modeling choices": 104982, "training paper": 168622, "collaborative research": 25629, "diversity tasks": 43756, "tasks required": 163156, "share lessons": 149798, "experience better": 53825, "did impact": 41593, "impact social": 72724, "scientific research": 146987, "contexts tasks": 31058, "tasks increasingly": 162592, "models seek": 109057, "computation costs": 28297, "efficient terms": 46724, "terms quality": 164453, "quality computation": 134072, "computation cost": 28296, "models remain": 108914, "costly train": 32805, "scratch large": 147220, "regime work": 138916, "way reuse": 177873, "mixtureofexperts model": 102766, "base large": 15609, "transformer base": 169098, "respectively significantly": 142580, "dense counterparts": 39085, "using 50": 173949, "scratch 100": 147213, "computation budget": 28293, "like language": 92327, "studies paper": 157048, "analysis large": 8995, "llms automated": 94451, "subjects argue": 157871, "llms yield": 97029, "introduce language": 79993, "discuss significance": 42946, "interpreting model": 79736, "outputs support": 118130, "semistructured interviews": 148363, "models moral": 108234, "harmless design": 68757, "model acts": 103063, "social desires": 152561, "prompting model": 131018, "model comes": 103306, "lead human": 89750, "media methods": 100097, "powerful new": 125313, "aidriven language": 7383, "language systems": 86755, "extraction complex": 56273, "complex scientific": 27578, "text finetuned": 165088, "text challenging": 164876, "challenging endeavor": 22156, "processing present": 129277, "approach joint": 11326, "recognition relation": 138121, "complex hierarchical": 27427, "hierarchical information": 69359, "information scientific": 76748, "text approach": 164839, "llm gpt3": 93723, "gpt3 finetuned": 66690, "approximately 500": 12025, "prompts inputs": 131333, "single sentences": 151861, "english sentences": 49106, "structured format": 156635, "objects demonstrate": 115279, "demonstrate llms": 38410, "llms trained": 96820, "way capable": 177782, "capable accurately": 20394, "metalorganic frameworks": 100585, "extraction approach": 56257, "approach represents": 11508, "knowledge extracted": 81989, "text online": 165328, "online demo": 116090, "query language": 134600, "demonstrated outstanding": 38728, "answering code": 9823, "input language": 77270, "used automatically": 172974, "automatically complete": 14775, "complete sequence": 27288, "way based": 177776, "based users": 16167, "users prompt": 173745, "instructions examples": 78252, "advanced prompting": 5792, "prompting methods": 131014, "interaction language": 79136, "model user": 104843, "external tools": 56092, "models specific": 109199, "tasks complex": 162093, "interaction based": 79102, "based present": 16015, "model programming": 104358, "pure text": 133723, "combination text": 25851, "text prompting": 165384, "constraints specified": 30113, "specified language": 154332, "enables easy": 48176, "easy adaption": 45348, "model internals": 103892, "providing highlevel": 133307, "highlevel semantics": 69709, "leverages constraints": 91716, "prompt generate": 130515, "minimizes number": 102383, "capture wide": 20696, "range stateoftheart": 135702, "stateoftheart prompting": 155315, "methods intuitive": 101613, "intuitive way": 80302, "way especially": 177803, "challenging implement": 22173, "implement existing": 72821, "apis evaluation": 10186, "shows retain": 150473, "increase accuracy": 75187, "accuracy downstream": 3211, "significantly reducing": 151143, "cost savings": 32740, "paraphrase identification": 119906, "learning review": 90935, "review datasets": 144498, "datasets methods": 36983, "rapid advancement": 135844, "advancement ai": 5822, "ai technology": 7275, "generation tools": 65206, "tools like": 167197, "gpt3 chatgpt": 66663, "chatgpt increasingly": 23068, "accessible scalable": 2968, "scalable effective": 146240, "pose threat": 124179, "used plagiarism": 173173, "news sources": 113582, "development automated": 41058, "automated methods": 14572, "trained study": 168088, "propose refined": 132095, "represented popular": 140961, "detection capabilities": 40453, "capabilities finally": 19901, "research datasets": 141680, "paraphrase detection": 119904, "ai mapping": 7078, "nlp model": 113765, "increasing data": 75317, "information contextual": 76332, "information artist": 76285, "just important": 81372, "important contemporary": 73116, "present generic": 126328, "pair dataset": 118515, "dataset manually": 36400, "annotated team": 9494, "score outperforms": 147086, "models provide": 108722, "network built": 112631, "contrastive languageimage": 31356, "learning scaling": 90960, "laws function": 89611, "size compute": 151971, "offers valuable": 115857, "valuable guidance": 175416, "largescale experiments": 89304, "work scaling": 179275, "primarily used": 127797, "models focused": 106375, "unimodal language": 171788, "learning address": 90185, "limitations investigate": 92608, "investigate scaling": 80494, "languageimage pretraining": 86918, "pretraining clip": 127276, "dataset opensource": 36437, "experiments involve": 54324, "law scaling": 89606, "including zeroshot": 74785, "zeroshot classification": 180142, "linear probing": 92970, "endtoend finetuning": 48734, "plays key": 123529, "openclip models": 116443, "different scaling": 41980, "scaling behavior": 146386, "similar training": 151322, "training recipes": 168681, "opensource evaluation": 116603, "including largest": 74587, "clip models": 24409, "models ensure": 106131, "ensure reproducibility": 49697, "code instructions": 24948, "study available": 157180, "visionlanguage foundation": 177025, "reason compositionally": 136557, "common human": 26145, "human vision": 71087, "vision natural": 176963, "language compositional": 83202, "compositional nature": 27817, "despite performance": 40169, "large vision": 89107, "language pretraining": 86476, "pretraining architectures": 127265, "massive datasets": 99350, "datasets struggle": 37134, "arrive conclusion": 12533, "compositionality evaluation": 27831, "science literature": 146890, "test dataset": 164542, "designed test": 39963, "hard negative": 68649, "pairs test": 118624, "different complexities": 41697, "datasets generated": 36889, "visual genome": 177179, "scene graphs": 146737, "templates gpt3": 164234, "novel compositions": 114442, "models retrieval": 108979, "results hold": 143468, "language modelsplms": 86424, "training lack": 168514, "visual semantics": 177309, "solutions rely": 153067, "rely explicit": 139836, "explicit images": 54939, "images visual": 72514, "retrieval generation": 144057, "generation conduct": 64525, "specific inputs": 154015, "generally applied": 63301, "applied various": 10820, "various plms": 176105, "using retrieved": 174678, "retrieved generated": 144245, "results approach": 143176, "consistently improve": 29877, "baselines tasks": 16377, "tasks codes": 162067, "codes data": 25290, "data publicly": 35591, "result high": 143038, "despite importance": 40130, "design engineering": 39620, "work attempts": 178816, "tracking results": 167540, "using opensource": 174562, "shown good": 150247, "good agreement": 66253, "paper concludes": 118790, "current simulation": 34236, "reasoning generating": 136882, "generating chain": 64149, "cot shown": 32905, "llm performance": 93878, "work mainly": 179112, "arithmetic commonsense": 12471, "qa remains": 133922, "types reasoning": 170414, "reasoning especially": 136833, "socially situated": 152681, "evaluation zeroshot": 51935, "zeroshot cot": 180151, "harmful questions": 68748, "benchmarks zeroshot": 17396, "cot reasoning": 32901, "domains significantly": 44529, "significantly increases": 151059, "increases models": 75286, "produce harmful": 129417, "different prompt": 41933, "increase model": 75215, "improved instruction": 73694, "following work": 60325, "work suggests": 179324, "cot used": 32915, "used caution": 172989, "marginalized groups": 99201, "sensitive topics": 148446, "ai drug": 6962, "drug discovery": 45049, "challenges opportunities": 21976, "ai potential": 7154, "potential revolutionize": 124947, "discovery process": 42787, "offering improved": 115744, "improved efficiency": 73684, "efficiency accuracy": 46418, "accuracy speed": 3395, "application ai": 10296, "dependent availability": 39159, "availability highquality": 15053, "highquality data": 70011, "data addressing": 34600, "addressing ethical": 5444, "ethical concerns": 50795, "benefits challenges": 17460, "challenges drawbacks": 21836, "possible strategies": 124467, "overcoming present": 118321, "present obstacles": 126397, "proposed use": 132450, "ai integration": 7048, "integration ai": 78638, "methods potential": 101713, "potential advantages": 124561, "pharmaceutical research": 122791, "overall review": 118232, "review highlights": 144511, "highlights potential": 69868, "potential ai": 124562, "insights challenges": 77520, "opportunities realizing": 116873, "realizing potential": 136332, "potential field": 124723, "article created": 12569, "ability chatgpt": 2095, "chatgpt chatbot": 22767, "chatbot based": 22564, "based gpt35": 15847, "gpt35 language": 66830, "human authors": 70603, "review articles": 144483, "generated ai": 63791, "following instructions": 60284, "supporting information": 159378, "ability automatically": 2076, "generate content": 63434, "content evaluated": 30488, "thorough review": 166194, "review human": 144513, "advantages limitations": 6141, "limitations using": 92683, "ai purpose": 7180, "discussed section": 42967, "fusionindecoder fid": 62209, "retrievalaugmented language": 144181, "model sets": 104555, "sets stateoftheart": 149406, "knowledgeintensive nlp": 82561, "model analysis": 103110, "majority inference": 98463, "memory bandwidth": 100367, "decoder propose": 37521, "simple changes": 151414, "speed inference": 154507, "allows use": 8477, "use larger": 172723, "larger decoder": 89204, "performance existing": 121478, "models wide": 109685, "improves reasoning": 74066, "achieving state": 4218, "datasets reasoning": 37068, "emerge models": 47331, "parameters knowledge": 119781, "finetune student": 58973, "outputs generated": 118057, "generated larger": 63905, "larger teacher": 89255, "model experiments": 103601, "performance arithmetic": 121163, "commonsense symbolic": 26326, "reasoning datasets": 136792, "datasets example": 36838, "example accuracy": 52460, "accuracy t5": 3401, "t5 xxl": 160727, "generated chains": 63810, "chains thought": 21567, "zeroshot opendomain": 180275, "qa opendomain": 133904, "answering odqa": 9916, "providing specific": 133375, "documents zeroshot": 43952, "available train": 15217, "customized models": 34409, "shown power": 150327, "direct prompting": 42401, "methods methods": 101661, "methods far": 101522, "llms implicitly": 95547, "way paper": 177859, "utilize massive": 175068, "massive knowledge": 99360, "stored parameters": 155875, "parameters llms": 119797, "llms strong": 96693, "instruction understanding": 78142, "understanding abilities": 171104, "prompt llms": 130596, "llms step": 96681, "step generate": 155639, "use generated": 172643, "learning experimental": 90436, "method surpasses": 101128, "previous sota": 127649, "sota methods": 153354, "datasets achieves": 36635, "data language": 35283, "acceptability judgements": 2826, "ask models": 12854, "models stable": 109221, "datasets ask": 36662, "make judgements": 98557, "just single": 81386, "input does": 77228, "does match": 44000, "match language": 99417, "input sentences": 77337, "raises important": 135488, "robust models": 145290, "investigate stability": 80499, "properties input": 131649, "length context": 91356, "context types": 30945, "generally robust": 63327, "randomly sampled": 135569, "linguistic contexts": 93019, "contexts containing": 31011, "tested models": 164680, "gpt2 variants": 66609, "variants opt": 175636, "significantly worsen": 151181, "effect amplified": 45648, "unrelated inputs": 172118, "changes model": 22381, "matching context": 99455, "context test": 30937, "test inputs": 164566, "lexical overlap": 91991, "syntactic features": 159891, "context explained": 30757, "explained models": 54757, "models implicit": 106680, "feedback generation": 57696, "generation english": 64609, "learners does": 90146, "augmentation help": 14283, "help paper": 69154, "present strong": 126458, "baselines task": 16376, "task feedback": 161391, "comment generation": 26055, "generation writing": 65268, "learning given": 90504, "given sentence": 66003, "error span": 50325, "generate feedback": 63498, "llms create": 94755, "create multiple": 33213, "datasets task": 37150, "performance present": 121928, "results task": 143861, "analysis generated": 8943, "future studies": 62384, "augmenting pretrained": 14399, "promise effectively": 130172, "nlp problems": 113793, "problems language": 128545, "paper evaluate": 118884, "evaluate strengths": 51109, "weaknesses popular": 177970, "tasks findings": 162404, "similarity metric": 151364, "reasoning additionally": 136656, "provided required": 133087, "performance drops": 121436, "statements using": 155054, "performance substantial": 122129, "substantial room": 158100, "analysis indicates": 8973, "promising large": 130269, "like gpt35": 92291, "gpt35 does": 66801, "does generalize": 43980, "generalize language": 63256, "increased model": 75262, "data despite": 34905, "despite current": 40089, "stateoftheart lms": 155202, "languages additionally": 86943, "work pretrained": 179189, "focused encoderonly": 60094, "encoderonly models": 48476, "tasks does": 162250, "generative architectures": 65376, "suitable llms": 158701, "nlp pipeline": 113787, "texttotext tasks": 165864, "tasks leverage": 162703, "leverage powerful": 91642, "multilingual pretrained": 110530, "models mt5": 108238, "need specialized": 112392, "separately finetuned": 148701, "decoder using": 37527, "approach experiments": 11205, "improvements previously": 73933, "previously published": 127739, "published results": 133697, "results existing": 143396, "present promising": 126419, "tuning language": 170040, "human labor": 70897, "tuning enables": 170000, "vast amounts": 176312, "amounts human": 8686, "human supervision": 71050, "supervision form": 159197, "interactions work": 79281, "introduce unnatural": 80141, "large dataset": 87232, "diverse instructions": 43552, "labor collect": 82848, "examples prompting": 52668, "examples instructions": 52617, "outputs experiments": 118053, "effectiveness training": 46303, "training opensource": 168615, "datasets surpassing": 37144, "surpassing performance": 159520, "various benchmarks": 175834, "modelgenerated data": 104956, "costeffective alternative": 32755, "dataset expansion": 36282, "grounding language": 67897, "realworld environments": 136450, "capacity current": 20501, "grounding realworld": 67924, "environments existing": 50077, "work grounded": 179007, "grounded language": 67869, "generate plans": 63647, "plans executed": 123356, "environment achieve": 49980, "faithfulness controllability": 57087, "lms propose": 97184, "generic framework": 65655, "framework grounded": 61186, "generative ability": 65294, "valid plans": 175295, "candidate plans": 19724, "guide search": 68207, "study challenging": 157204, "problem knowledge": 128294, "base question": 15632, "answering kbqa": 9880, "environment demonstrates": 49992, "demonstrates remarkable": 38883, "effectiveness flexibility": 46181, "standard kbqa": 154834, "kbqa datasets": 81415, "datasets larger": 36952, "larger lms": 89219, "enables time": 48251, "time effective": 166382, "effective fewshot": 45760, "learning kbqa": 90599, "lms codex": 97118, "codex language": 25345, "mental models": 100506, "models similarly": 109139, "investigate propose": 80484, "consisting 100": 29936, "using questions": 174641, "observe stateoftheart": 115395, "stateoftheart pretrained": 155304, "constraint violation": 30056, "add constraint": 4805, "constraint satisfaction": 30053, "apply commonsense": 10841, "commonsense constraints": 26257, "significantly reduced": 151134, "prompting elicit": 130906, "elicit language": 47042, "tasks stepbystep": 163287, "cot methods": 32875, "models reduce": 108872, "reduce model": 138448, "method generates": 100888, "generates reasoning": 64101, "reasoning samples": 137112, "samples large": 146033, "large teacher": 89071, "teacher models": 163615, "models finetune": 106347, "finetune smaller": 58968, "range public": 135679, "reasoning capability": 136718, "model tasks": 104723, "tasks additionally": 161907, "additionally extend": 5067, "extend method": 55636, "method leveraging": 100965, "multiple distinct": 110896, "original sample": 117381, "data diverse": 34931, "reasoning results": 137107, "results substantial": 143826, "performance boost": 121207, "datasets small": 37120, "studies understand": 157104, "student models": 156821, "code implementation": 24943, "implementation data": 72838, "pay attention": 120609, "task compared": 161252, "previous text": 127678, "text style": 165494, "tasks addressed": 161918, "requires deep": 141356, "sentencelevel edits": 148546, "challenging nlp": 22225, "effort efficient": 46846, "dataset 10k": 36076, "gold standard": 66242, "training validation": 168816, "validation test": 175382, "human review": 71025, "work dataset": 178884, "released soon": 139541, "contribute research": 31417, "research challenging": 141632, "paradigm help": 119461, "receptive field": 138019, "field analysis": 58121, "analysis length": 9001, "model short": 104560, "short sequences": 149991, "field allows": 58120, "length information": 91368, "information uses": 76832, "longer training": 97536, "training sequence": 168727, "reasoning fundamental": 136872, "aspect human": 12905, "intelligence plays": 78877, "plays crucial": 123513, "crucial role": 33847, "solving decision": 153204, "critical thinking": 33558, "years large": 179905, "llms significant": 96582, "observation models": 115326, "exhibit reasoning": 53089, "sufficiently large": 158508, "clear extent": 24268, "extent llms": 56015, "reasoning paper": 137015, "comprehensive overview": 28084, "overview current": 118424, "reasoning llms": 136967, "llms including": 95566, "techniques improving": 163928, "methods benchmarks": 101347, "benchmarks evaluating": 17235, "evaluating reasoning": 51381, "abilities findings": 1909, "suggestions future": 158636, "aim provide": 7478, "review topic": 144560, "harmful content": 68727, "content detection": 30471, "detection multilingual": 40566, "demand large": 38129, "increases size": 75293, "using web": 174865, "data main": 35336, "corpus models": 32332, "important challenge": 73105, "task developing": 161319, "developing highly": 40998, "highly optimized": 69932, "optimized models": 117089, "main components": 98226, "step pretraining": 155669, "corpora large": 32233, "content paper": 30565, "data traditional": 35870, "traditional methods": 167659, "methods harmful": 101561, "small specialized": 152363, "specialized datasets": 153880, "noisy web": 114007, "perplexity based": 122505, "corpus train": 32362, "model use": 104836, "low perplexity": 97776, "data select": 35718, "greatly facilitate": 67788, "allow obtain": 8346, "obtain higher": 115477, "higher precision": 69619, "traditional classification": 167601, "gpt3 good": 66698, "good data": 66265, "process labeling": 128891, "labeling data": 82754, "having highquality": 68880, "highquality annotation": 69991, "relationship input": 139321, "impressive zero": 73385, "natural wonder": 111961, "used effectively": 173042, "annotate data": 9435, "comparing traditional": 27019, "traditional data": 167605, "methods analyzing": 101305, "output range": 117985, "tasks analysis": 161944, "analysis aim": 8810, "insight potential": 77496, "potential gpt3": 124751, "generalpurpose data": 63341, "precise zeroshot": 125598, "tasks languages": 162680, "remains difficult": 140001, "create effective": 33191, "fully zeroshot": 61803, "retrieval systems": 144146, "relevance label": 139559, "available paper": 15174, "instead propose": 77894, "propose pivot": 132066, "instructionfollowing language": 78184, "document document": 43823, "embedding vector": 47201, "vector vector": 176395, "documents retrieved": 43940, "retrieved based": 144231, "based vector": 16173, "vector similarity": 176389, "similarity second": 151375, "generated document": 63857, "stateoftheart unsupervised": 155407, "unsupervised dense": 172240, "dense retriever": 39107, "comparable finetuned": 26575, "retrievers various": 144265, "models investigating": 106823, "parametric nonparametric": 119896, "tasks requiring": 163158, "rich world": 144814, "relying solely": 139908, "encode wealth": 48387, "wealth world": 177976, "conducting largescale": 29318, "questions lms": 135186, "knowledge long": 82209, "long tail": 97490, "retrievalaugmented lms": 144195, "magnitude larger": 98204, "entities based": 49833, "based findings": 15807, "devise simple": 41332, "powerful efficient": 125271, "improves models": 74034, "performance reducing": 122003, "inference costs": 75985, "costs transformers": 32850, "chatgpt finetuned": 22947, "scientific papers": 146978, "human automatic": 70607, "automatic metrics": 14708, "evaluation suggests": 51881, "performs similarly": 122460, "similarly human": 151390, "relative humans": 139369, "humans learn": 71423, "finally chatgpt": 58417, "chatgpt finetuning": 22950, "best finetuned": 17674, "reranking natural": 141534, "produce suboptimal": 129466, "suboptimal results": 157916, "present empirical": 126291, "translation constrained": 169450, "multiple decoding": 110886, "performance improve": 121649, "uses single": 173910, "jointly encode": 81272, "source input": 153445, "candidates compare": 19742, "experiments nlg": 54379, "tasks demonstrated": 162183, "demonstrated effectiveness": 38641, "showing strong": 150197, "results compared": 143241, "previous baselines": 127574, "baselines addition": 16283, "rerankers trained": 141526, "algorithmic reasoning": 7887, "llm reasoning": 93941, "llms struggle": 96698, "like generating": 92271, "generating complex": 64166, "complex programs": 27534, "tasks humans": 162514, "start highlevel": 154957, "design implement": 39649, "framework enabling": 61124, "enabling automatic": 48271, "complex algorithms": 27354, "algorithms code": 7906, "code llms": 24990, "automatically decompose": 14786, "tasks hierarchical": 162500, "hierarchical natural": 69365, "function descriptions": 61831, "descriptions search": 39496, "search combinations": 147326, "using tests": 174796, "used domains": 173036, "hierarchical reasoning": 69371, "reasoning including": 136911, "including program": 74681, "robotic planning": 145194, "planning using": 123338, "solve competitionlevel": 153102, "competitionlevel problems": 27152, "apps dataset": 12044, "dataset resulting": 36507, "pass rates": 120324, "75 higher": 1575, "higher prior": 69622, "results directly": 143357, "codex using": 25360, "using smaller": 174728, "generated tests": 64002, "improve stateoftheart": 73632, "robotic plans": 145195, "plans using": 123369, "likely considered": 92450, "accurate directly": 3450, "directly generated": 42545, "generated plans": 63937, "llm limitations": 93810, "useful human": 173329, "human programmers": 70985, "grammar induction": 67445, "datasets mscoco": 36991, "multimodal settings": 110762, "approach llmbased": 11367, "previous multimodal": 127620, "multimodal methods": 110717, "methods achieves": 101280, "visually grounded": 177384, "multimodal contexts": 110610, "contexts results": 31051, "establishing robust": 50712, "baseline evaluating": 16208, "multimodal approaches": 110589, "semantic faithfulness": 148144, "models input": 106772, "shown highly": 150261, "small large": 152309, "respect semantic": 142515, "notion semantic": 114328, "models behavior": 105474, "performing novel": 122411, "novel semantic": 114685, "standard question": 154874, "tasks fail": 162389, "number cases": 114834, "mitigate undesirable": 102640, "understand effectiveness": 170999, "training does": 168398, "aspects semantic": 12972, "models inability": 106697, "structure texts": 156610, "test instructgpt": 164569, "task fail": 161389, "fail respond": 56978, "respond adequately": 142587, "taskoriented semantic": 161852, "parsing using": 119970, "zeroshot semantic": 180333, "parsing semantic": 119966, "involves mapping": 80753, "representations language": 140828, "generally trained": 63330, "trained publicly": 168052, "available text": 15213, "directly generalize": 42543, "setting work": 149516, "taskoriented parsing": 161851, "parsing method": 119964, "method decomposes": 100773, "decomposes semantic": 37626, "problem set": 128390, "abstractive extractive": 2678, "extractive questionanswering": 56388, "enabling leverage": 48320, "leverage ability": 91564, "prompt llm": 130594, "questions corresponding": 135082, "use llm": 172737, "llm generations": 93714, "meaning representation": 99776, "observe current": 115365, "current llms": 34165, "llms fail": 95243, "fail detect": 56950, "handle questions": 68563, "synthetic negative": 160058, "finetuned llm": 59056, "llm correctly": 93566, "data images": 35176, "images textual": 72499, "textual prompts": 165937, "prompts zeroshot": 131531, "frozen large": 61664, "tasks effective": 162266, "effective utilization": 45920, "utilization llms": 175006, "visual questionanswering": 177283, "questionanswering vqa": 135005, "vqa remains": 177580, "remains challenging": 139984, "task endtoend": 161349, "data bridge": 34726, "computationally expensive": 28422, "plugandplay module": 123664, "module provides": 109954, "modality task": 102978, "perform zeroshot": 121095, "tasks endtoend": 162301, "training order": 168618, "prompts employ": 131243, "prompts image": 131313, "image content": 72215, "pairs effectively": 118566, "effectively guide": 46006, "guide llm": 68188, "offers following": 115806, "following benefits": 60255, "work various": 179365, "various llms": 176018, "training significantly": 168744, "reduces cost": 138514, "deploying llm": 39246, "llm zeroshot": 94105, "tasks achieves": 161895, "methods relying": 101773, "training example": 168428, "aokvqa dataset": 10134, "dataset method": 36404, "tuning multitask": 170069, "models efficiently": 106060, "prompts natural": 131381, "learning help": 90515, "tasks enhancing": 162308, "enhancing potential": 49542, "potential effective": 124686, "perform efficient": 120935, "methods prompt": 101732, "tuning proposed": 170100, "proposed existing": 132291, "tuning methods": 170059, "methods lack": 101621, "lack generalization": 82948, "generalization propose": 63217, "tuning method": 170058, "novel component": 114440, "memory prompts": 100445, "based discrete": 15760, "domains evaluating": 44400, "evaluating zeroshot": 51406, "generalization heldout": 63178, "heldout datasets": 69070, "task categories": 161234, "glue datasets": 66127, "datasets evaluating": 36830, "actively studied": 4457, "studied long": 156931, "long time": 97497, "time various": 166526, "various approaches": 175807, "programming recent": 129876, "programming using": 129884, "inference based": 75968, "thinking process": 166157, "process unclear": 129019, "using method": 174484, "logical inference": 97363, "process automatically": 128743, "automatically generates": 14821, "generates programs": 64094, "inference example": 75999, "important issue": 73149, "issue artificial": 80887, "acquire knowledge": 4255, "knowledge study": 82436, "study propose": 157558, "generate programs": 63659, "inference proposed": 76082, "automatically acquire": 14761, "data generalization": 35090, "generalization using": 63237, "randomly selects": 135573, "adjusting number": 5544, "number nodes": 114913, "short time": 150012, "available github": 15123, "public repository": 133602, "world questionandanswer": 179608, "experimental platform": 53956, "latest chatgpt": 89542, "chatgpt model": 23128, "advanced understanding": 5817, "understanding complex": 171167, "coding questions": 25402, "questions research": 135262, "coding tasks": 25409, "tasks generally": 162451, "mitre attck": 102702, "attck framework": 13775, "varying success": 176307, "experimental prompts": 53957, "prompts generate": 131287, "generate examples": 63480, "results illustrate": 143480, "functionality including": 61886, "coding approaches": 25366, "approaches yield": 11958, "method evaluation": 100841, "model ai": 103095, "score novel": 147083, "method assess": 100688, "llms ai": 94374, "method relies": 101070, "different personalities": 41902, "single score": 151857, "auditing technique": 14222, "llm tested": 94052, "prompting leads": 130993, "human judges": 70881, "assigning higher": 13322, "methodology applied": 101212, "creative domains": 33366, "accurate standard": 3498, "standard approach": 154798, "approach compare": 11060, "minimizing human": 102391, "human participation": 70949, "reduce cost": 138413, "hiring human": 70186, "framework low": 61296, "potential learning": 124817, "learning representations": 90918, "representations transferable": 140898, "difficult obtain": 42166, "obtain large": 115485, "large quantity": 89032, "data limited": 35320, "limited availability": 92712, "availability resources": 15063, "resources time": 142491, "significant research": 150857, "adopting large": 5613, "datasets diverse": 36798, "diverse downstream": 43515, "tasks fine": 162410, "tuning low": 170053, "normalization techniques": 114186, "improving generalization": 74147, "used wide": 173302, "variety applications": 175688, "nlp speech": 113810, "speech tasks": 154478, "limited reasons": 92832, "reasons inability": 137251, "inability capture": 74252, "helps better": 69236, "reduces overfitting": 138530, "negligible increase": 112562, "parameters memory": 119805, "memory overheads": 100440, "detailed experimental": 40292, "evaluation multiple": 51741, "demonstrates superior": 38906, "compared popular": 26877, "regularization techniques": 138991, "techniques language": 163942, "better humans": 17905, "prediction current": 125780, "models considered": 105751, "writing code": 179719, "code language": 24964, "tasks trained": 163385, "trained accurately": 167862, "predict token": 125708, "token given": 166712, "given previous": 65960, "text clear": 164918, "better worse": 18073, "worse humans": 179660, "try answer": 169906, "directly compare": 42522, "compare humans": 26685, "top1 accuracy": 167297, "experiments humans": 54308, "humans consistently": 71363, "ai revolution": 7198, "latest ai": 89538, "language modules": 86426, "produce original": 129446, "physics essays": 122937, "technologies chatgpt": 164080, "available internet": 15143, "present evidence": 126301, "ai generated": 7012, "university physics": 171927, "students answer": 156845, "answer openended": 9739, "openended questions": 116503, "achieved average": 3787, "strong agreement": 156342, "current ai": 34056, "represent significant": 140653, "significant threat": 150905, "physics courses": 122932, "meta learning": 100556, "learning lens": 90640, "shown finetuning": 150242, "performance tradeoffs": 122187, "tradeoffs different": 167573, "benchmark different": 16933, "task sampling": 161705, "demonstrations training": 39051, "objectives paper": 115259, "paper characterize": 118778, "effect instructiontuning": 45660, "sizes end": 152094, "end create": 48649, "categories existing": 21095, "framework measure": 61301, "tasks fully": 162433, "tasks seen": 163209, "seen categories": 147686, "lens framework": 91413, "present insights": 126340, "different evaluation": 41759, "benchmarks diverse": 17222, "tasks input": 162606, "input formats": 77249, "promptsource flan": 131533, "does significantly": 44032, "benchmarks highly": 17262, "competitive existing": 27172, "specific benchmark": 153944, "bench evaluation": 16810, "framework measuring": 61302, "intelligence agents": 78718, "humans using": 71488, "using machine": 174466, "humans trust": 71483, "advanced artificial": 5705, "agents respect": 6716, "advanced ai": 5697, "humans challenging": 71356, "agents respond": 6717, "humans present": 71449, "present method": 126364, "agents underlying": 6754, "algorithms goal": 7928, "goal orientation": 66181, "experiments employ": 54266, "agent large": 6459, "higher rates": 69628, "second experiment": 147472, "game play": 62567, "trust ai": 169830, "furthermore address": 62006, "uncertainty experiments": 170669, "experiments include": 54314, "conditions present": 29015, "task provides": 161666, "conditions ai": 29001, "social behavior": 152528, "behavior consistent": 16577, "precision model": 125615, "popular recent": 124051, "like information": 92321, "domains finetuning": 44415, "standard performance": 154865, "performance finetune": 121529, "datasets necessary": 36998, "tune models": 169942, "training techniques": 168781, "techniques paper": 163978, "present indepth": 126336, "performance transformerbased": 122200, "task biomedical": 161225, "biomedical information": 18545, "retrieval models": 144093, "7b parameters": 1640, "parameters gptj": 119770, "gptj 6b": 67292, "6b parameters": 1517, "175b parameters": 503, "bloom 176b": 18741, "relevance accuracy": 139551, "accuracy interpretability": 3282, "research papers": 141958, "prediction dataset": 125781, "dataset findings": 36304, "parameters finetuned": 119760, "finetuned domainspecific": 59012, "domainspecific datasets": 44573, "outperform larger": 117604, "models highly": 106610, "specific questions": 154070, "questions terms": 135303, "50 average": 1291, "results broader": 143203, "bar exam": 15545, "united states": 171876, "license exam": 92048, "commonly referred": 26231, "seven years": 149704, "postsecondary education": 124526, "education including": 45545, "law school": 89607, "despite significant": 40207, "significant investment": 150763, "rate required": 136012, "face complex": 56523, "depth knowledge": 39328, "evaluation performance": 51767, "performance openais": 121874, "openais textdavinci003": 116433, "textdavinci003 model": 165625, "optimization prompt": 117034, "positively impacted": 124316, "performance best": 121200, "best prompt": 17738, "prompt parameters": 130625, "gpt35 achieves": 66790, "correct rate": 32407, "passing rate": 120360, "ranking responses": 135819, "choices correct": 23713, "time respectively": 166492, "respectively indicating": 142561, "indicating strong": 75663, "performance ability": 121119, "ability interpret": 2234, "interpret results": 79629, "results limited": 143569, "limited nascent": 92805, "scientific understanding": 146998, "llms proprietary": 96249, "nature gpt": 112003, "believe results": 16789, "results strongly": 143817, "strongly suggest": 156504, "suggest llm": 158555, "llm pass": 93874, "near future": 112089, "future chatgpt": 62236, "chatgpt makes": 23116, "exploratory case": 55120, "release chatgpt": 139439, "chatgpt language": 23083, "text appears": 164835, "gained significant": 62477, "attention research": 13981, "convincing performance": 32029, "performance chatgpt": 121234, "users apply": 173581, "including prompting": 74683, "medical reports": 100216, "investigate phenomenon": 80463, "conducted exploratory": 29244, "correct complete": 32380, "potentially harmful": 125104, "instances incorrect": 77835, "incorrect statements": 75173, "key medical": 81533, "medical findings": 100176, "findings potentially": 58747, "initial insights": 77033, "insights study": 77653, "study indicate": 157410, "potential using": 125045, "like chatgpt": 92216, "chatgpt improve": 23061, "medical domains": 100164, "llms various": 96947, "stored knowledge": 155867, "models inevitably": 106759, "inevitably incomplete": 75921, "utilize external": 175041, "assist llms": 13352, "unfortunately current": 171662, "current methods": 34178, "methods incorporating": 101599, "incorporating external": 75096, "knowledge require": 82368, "training finetuning": 168454, "finetuning costly": 59212, "costly feasible": 32785, "llms address": 94348, "relevant external": 139603, "decomposed reasoning": 37620, "lightweight approach": 92169, "finetuning limited": 59351, "limited input": 92783, "length llms": 91379, "evaluate effectiveness": 50951, "experiments gpt3": 54299, "reasoning temporal": 137202, "temporal reasoning": 164274, "tabular reasoning": 160793, "faithful explanations": 57077, "explanations improve": 54862, "recent paper": 137576, "extend standard": 55643, "new related": 113383, "add context": 4806, "available literature": 15158, "constraints lead": 30095, "chat ai": 22522, "chatgpt offer": 23156, "offer advanced": 115633, "understanding question": 171432, "question context": 134852, "context memory": 30849, "experiments test": 54495, "challenge chatgpt": 21597, "chatgpt plays": 23190, "main empirical": 98239, "generation chat": 64488, "object names": 115149, "average 12": 15257, "experimental setups": 54092, "research introduces": 141865, "task humans": 161452, "humans typically": 71484, "typically fail": 170486, "questions english": 135114, "questions future": 135137, "problemsolving using": 128677, "using similar": 174714, "applications dialogue": 10481, "dialogue format": 41474, "methods key": 101618, "key goal": 81510, "ai develop": 6954, "needs just": 112478, "significant proportion": 150849, "proportion knowledge": 131680, "certain regions": 21411, "cultural differences": 33955, "differences model": 41632, "characteristics lead": 22467, "lead performance": 89766, "bias underrepresented": 18215, "underrepresented groups": 170903, "model attributes": 103153, "visual concepts": 177140, "concepts help": 28657, "help learn": 69138, "similar categories": 151218, "knowledge visual": 82504, "visual characteristics": 177128, "characteristics concepts": 22454, "similar visual": 151324, "features fall": 57494, "different categories": 41683, "image knowledge": 72283, "knowledge matching": 82222, "similar scale": 151302, "vl tasks": 177436, "artificially intelligent": 12805, "intelligent agent": 78934, "experiment test": 53916, "consisting large": 29947, "models developed": 105952, "private company": 128042, "company openai": 26552, "using real": 174646, "tokens used": 166899, "task select": 161712, "agent human": 6450, "experimental condition": 53928, "task does": 161335, "agent exhibits": 6442, "dictator game": 41583, "resembling humans": 142291, "humans game": 71392, "game agents": 62546, "findings provide": 58757, "provide evidence": 132769, "study offers": 157512, "offers novel": 115829, "behaviors future": 16698, "future ai": 62218, "qa benchmark": 133871, "representation power": 140729, "llms stateoftheart": 96677, "based llms": 15930, "llms ignore": 95534, "language existing": 83295, "existing benchmark": 53294, "benchmark quantitatively": 17064, "quantitatively evaluate": 134386, "evaluate multimodal": 51033, "multimodal transformers": 110779, "multimodal question": 110749, "music videos": 111318, "al 2017": 7723, "systematically evaluating": 160183, "evaluating multimodal": 51352, "transformers perform": 169343, "previously learned": 127729, "approach multimodal": 11395, "correctly interpreting": 32468, "irrespective model": 80860, "demonstrate augmenting": 38251, "augmenting original": 14398, "original training": 117393, "examples allow": 52522, "allow model": 8344, "model reliably": 104449, "reason negation": 136576, "generation procedure": 64957, "palm model": 118662, "model automatically": 103162, "easily accessible": 45298, "video tags": 176738, "tags generated": 160900, "examples contain": 52543, "linguistic patterns": 93049, "patterns gains": 120530, "compared templatebased": 26948, "convolutional networks": 32040, "masked modeling": 99316, "modeling identify": 105013, "masked image": 99297, "convolution operation": 32036, "images ii": 72431, "3d point": 1141, "point clouds": 123703, "use sparse": 172884, "sparse convolution": 153721, "modeling ii": 105014, "decoder reconstruct": 37523, "features method": 57539, "called sparse": 19673, "used directly": 173033, "validate classical": 175305, "tasks surpasses": 163324, "stateoftheart contrastive": 155114, "similarly large": 151392, "detection instance": 40529, "instance segmentation": 77810, "strong transferability": 156449, "features learned": 57533, "gains larger": 62521, "models evidence": 106173, "reveals promising": 144445, "future generative": 62265, "codes models": 25308, "capabilities global": 19925, "increasingly dependent": 75390, "knowledge workers": 82516, "meet needs": 100280, "public private": 133596, "knowledge work": 82512, "capability engage": 20286, "comprehensive assessment": 27960, "assessment capability": 13218, "professional knowledge": 129625, "paper experimentally": 118897, "evaluate openais": 51044, "versions gpt": 176619, "gpt sample": 66490, "multiplechoice questions": 111097, "questions based": 135053, "legal financial": 91297, "technology ethical": 164138, "tasks textdavinci003": 163364, "human capabilities": 70628, "quantitative reasoning": 134376, "reasoning zeroshot": 137242, "zeroshot prompts": 180307, "prompts second": 131462, "approaching humanlevel": 11963, "understanding application": 171126, "skill levels": 152137, "parameters model": 119807, "model answers": 103113, "answers correct": 10005, "recent generations": 137509, "generations gpt3": 65279, "findings strongly": 58799, "models potential": 108575, "potential transform": 125027, "future knowledge": 62277, "work memory": 179124, "memory augmented": 100366, "augmented large": 14358, "models computationally": 105719, "model conditions": 103340, "augmenting models": 14397, "processing arbitrarily": 129115, "arbitrarily large": 12073, "existing large": 53399, "simulate execution": 151637, "key aspect": 81461, "relies solely": 139809, "specific set": 154085, "set prompts": 149283, "understanding online": 171386, "developed set": 40917, "applications use": 10713, "identify analyze": 71855, "analyze data": 9283, "identifying relevant": 72026, "analyzed using": 9351, "corpora created": 32216, "finetune gpt2": 58923, "latent information": 89506, "tools allow": 167098, "allow researchers": 8349, "interactive prompting": 79331, "prompting vision": 131120, "visual reasoning": 177287, "pretrained vision": 127225, "demonstrated remarkable": 38754, "remarkable capacities": 140185, "capacities various": 20493, "tasks solving": 163264, "challenging requires": 22259, "requires model": 141416, "model comprehensively": 103327, "comprehensively understand": 28181, "understand image": 171018, "external world": 56098, "knowledge perform": 82270, "perform stepbystep": 121049, "stepbystep reasoning": 155703, "reasoning answer": 136669, "prompting visual": 131123, "fewshot knowledgebased": 57940, "contains stages": 30394, "visual concept": 177139, "visual perception": 177242, "perception model": 120812, "model think": 104746, "adopts pretrained": 5664, "key concepts": 81480, "visual captioning": 177125, "model adopts": 103088, "generate answer": 63395, "rationale answer": 136052, "verify generated": 176533, "rationale infer": 136055, "predicted output": 125723, "experiments range": 54427, "enjoys benefits": 49593, "previous fewshot": 127591, "learning baselines": 90249, "transparency trustworthiness": 169591, "trustworthiness reasoning": 169858, "process providing": 128954, "providing rationales": 133357, "rationales reasoning": 136070, "compared finetuning": 26810, "llms making": 95851, "community past": 26502, "scalability llms": 146220, "llms advent": 94367, "advent deep": 6167, "learning seen": 90971, "perspective current": 122655, "closed source": 24466, "code work": 25216, "given new": 65942, "new work": 113510, "work given": 179004, "given numerous": 65944, "llms related": 96370, "related methods": 139186, "new wave": 113503, "processing community": 129128, "dramatic shift": 44884, "hybrid methods": 71567, "researchers open": 142237, "source llm": 153457, "llm code": 93537, "hybrid approaches": 71560, "typically performs": 170505, "indistribution data": 75699, "generalization distribution": 63162, "shifts work": 149941, "task transfer": 161782, "proposed mitigate": 132386, "mitigate catastrophic": 102592, "transfer experiments": 168913, "close gap": 24443, "gap finetuning": 62653, "finetuning achieve": 59154, "transfer performance": 168983, "methods just": 101617, "delve deeper": 38088, "empirical findings": 47703, "findings investigate": 58715, "learning dynamics": 90392, "fisher information": 59676, "different learning": 41825, "dynamics compared": 45202, "finetuning provide": 59490, "crosslingual generalization": 33653, "performance additionally": 121132, "achieves average": 3961, "average points": 15305, "points improvement": 123758, "finetuning provides": 59492, "empirical evidence": 47690, "information code": 76313, "industry practitioners": 75882, "practitioners face": 125530, "face problem": 56546, "appropriate model": 11982, "reduce total": 138477, "total cost": 167415, "concerns work": 28837, "challenge using": 21749, "classification accuracy": 23954, "accuracy main": 3302, "performances variety": 122345, "including large": 74581, "associated costs": 13472, "finetuning cost": 59211, "cost inference": 32693, "inference cost": 75983, "cost discuss": 32664, "discuss model": 42912, "model choices": 103280, "situations like": 151946, "like having": 92308, "having large": 68882, "samples needed": 146043, "needed inference": 112449, "work help": 179010, "help people": 69155, "people better": 120710, "agents learn": 6643, "trained designed": 167891, "computational models": 28384, "used way": 173301, "scenarios simulation": 146700, "original results": 117380, "trivially easy": 169788, "offer fresh": 115653, "fresh insights": 61632, "paradigm create": 119439, "chatgpt human": 23053, "comparison corpus": 27031, "introduction chatgpt": 80250, "chatgpt garnered": 22968, "garnered widespread": 62794, "widespread attention": 178463, "attention academic": 13833, "academic industrial": 2733, "industrial communities": 75851, "chatgpt able": 22664, "able respond": 2551, "effectively wide": 46110, "range human": 135629, "human questions": 70997, "questions providing": 135239, "fluent comprehensive": 59899, "comprehensive answers": 27958, "answers significantly": 10079, "significantly surpass": 151165, "surpass previous": 159461, "public chatbots": 133552, "terms security": 164470, "security usefulness": 147630, "usefulness hand": 173364, "worry potential": 179651, "potential negative": 124881, "negative impacts": 112518, "impacts large": 72761, "news plagiarism": 113572, "social security": 152666, "security issues": 147597, "issues work": 81067, "work collected": 178843, "comparison responses": 27064, "responses human": 142819, "experts chatgpt": 54646, "chatgpt questions": 23242, "financial medical": 58573, "medical legal": 100193, "collected dataset": 25682, "dataset human": 36341, "human chatgpt": 70633, "chatgpt comparison": 22788, "corpus hc3": 32314, "dataset study": 36560, "chatgpts responses": 23508, "directions llms": 42489, "llms conducted": 94695, "conducted comprehensive": 29219, "linguistic analyses": 93004, "chatgptgenerated content": 23467, "content compared": 30452, "compared humans": 26839, "interesting results": 79404, "experiments effectively": 54262, "effectively detect": 45973, "generated chatgpt": 63812, "chatgpt humans": 23055, "humans build": 71355, "different detection": 41732, "systems explore": 160374, "explore key": 55227, "factors influence": 56800, "influence effectiveness": 76195, "scenarios dataset": 146570, "chatgpt case": 22759, "explore capabilities": 55163, "limitations chatgpt": 92550, "chatgpt natural": 23140, "processing model": 129194, "false information": 57161, "identifying analogies": 71985, "visual representations": 177302, "representations abstract": 140759, "abstract concepts": 2635, "batch prompting": 16461, "model apis": 103115, "llms computationally": 94682, "realworld use": 136532, "use propose": 172828, "propose batch": 131729, "prompting simple": 131074, "effective prompting": 45854, "enables llm": 48209, "run inference": 145740, "time method": 166450, "token time": 166742, "time costs": 166372, "costs retaining": 32847, "performance theoretically": 122181, "learning setting": 90981, "prompting datasets": 130893, "qa arithmetic": 133868, "arithmetic reasoning": 12483, "chatbased llms": 22559, "llms gpt35": 95424, "gpt35 gpt4": 66812, "shows number": 150456, "complexity tasks": 27702, "affect performance": 6311, "reasoning methods": 136986, "llms code": 94618, "semantics context": 148291, "n400 amplitude": 111380, "explained using": 54758, "models mental": 108174, "work showing": 179293, "distributional information": 43409, "information raises": 76671, "raises question": 135494, "models necessary": 108274, "contextual effects": 31084, "computational language": 28368, "models sets": 109084, "word vectors": 178689, "semantic grounding": 148153, "model effect": 103510, "models fact": 106296, "require explicit": 141100, "models matching": 108152, "zeroshot prompt": 180297, "automatic scoring": 14733, "scoring science": 147197, "science education": 146864, "automatically score": 14851, "score students": 147101, "responses science": 142913, "science problems": 146904, "collecting labeling": 25713, "responses training": 142932, "models time": 109402, "adapted downstream": 4682, "finetuning prompts": 59483, "prompts research": 131449, "research employed": 141749, "employed prompt": 47899, "prompt approach": 130368, "approach science": 11520, "education student": 45590, "presented natural": 126522, "costly finetuning": 32786, "study developed": 157283, "developed zeroshot": 40927, "zeroshot approach": 180118, "score student": 147099, "responses matching": 142849, "approach employs": 11158, "employs training": 47984, "assessment tasks": 13268, "cohens kappa": 25502, "performance extend": 121494, "performance improved": 121650, "score 054": 147029, "better human": 17899, "approach study": 11572, "scoring student": 147199, "responses significantly": 142917, "reducing cost": 138560, "cost model": 32711, "training method": 168574, "classroom assessment": 24227, "research explore": 141775, "explore applicability": 55144, "tasks science": 163204, "performance transfer": 122196, "knowledge natural": 82240, "cardiovascular disease": 20758, "llms drawn": 94989, "drawn increasing": 44952, "learned embeddings": 90094, "embeddings pretrained": 47271, "pretrained largescale": 127012, "shown powerful": 150328, "powerful ability": 125250, "ability various": 2410, "knowledge llms": 82202, "llms transferred": 96845, "unknown work": 171945, "aim bridge": 7433, "llms clinical": 94612, "propose approach": 131710, "disease diagnosis": 43029, "diagnosis automatic": 41359, "diagnosis report": 41372, "report generation": 140531, "generation introduce": 64760, "additional loss": 4974, "function optimal": 61851, "optimal transport": 116959, "transport ot": 169608, "language embedding": 83279, "embedding learned": 47173, "evaluated downstream": 51171, "tasks automatic": 161989, "generation zeroshot": 65269, "detection approach": 40447, "competitive zeroshot": 27210, "compared supervised": 26943, "supervised baselines": 159091, "multitask instructionbased": 111213, "valid arguments": 175292, "arguments support": 12449, "intrinsically difficult": 79903, "humans machines": 71430, "big challenge": 18373, "challenge computational": 21607, "models lies": 106963, "lies fact": 92067, "datasets differences": 36791, "input format": 77248, "types number": 170393, "types dataset": 170343, "recognition task": 138139, "task approach": 161197, "multitask setup": 111243, "improves results": 74075, "results approaches": 143179, "built specific": 19502, "specific dataset": 153967, "prompt choice": 130385, "results finally": 143413, "finally analyze": 58412, "analyze effect": 9287, "annotation quality": 9546, "quality model": 134202, "engineering conversational": 48896, "conversational programming": 31897, "programming assistants": 129794, "programmers assistant": 129774, "development environment": 41102, "code editor": 24798, "conversational capability": 31856, "capability achieved": 20268, "model providing": 104388, "providing prompt": 133355, "conversational interaction": 31875, "pattern set": 120510, "appropriate application": 11969, "existing foundation": 53371, "manner particular": 99005, "medical advice": 100133, "objective assess": 115177, "assess feasibility": 13082, "feasibility using": 57364, "chatgpt similar": 23329, "aibased chatbot": 7337, "communication participants": 26401, "study participants": 157520, "patients questions": 120491, "placed chatgpt": 123181, "using approximately": 173973, "word count": 178622, "participants informed": 120010, "informed responses": 76896, "participants asked": 119995, "correctly identify": 32466, "using likert": 174408, "likert scale": 92472, "results correct": 143264, "correct classification": 32378, "chatbot responses": 22585, "correctly identified": 32464, "score 34": 147035, "complexity task": 27701, "chatgpt responses": 23278, "patient questions": 120473, "use chatbots": 172544, "health questions": 68963, "models segment": 109059, "similarly humans": 151391, "humans humans": 71403, "visits train": 177102, "important prerequisite": 73172, "perception ability": 120789, "researchers quantify": 142251, "information derived": 76352, "present alternative": 126222, "computational approach": 28328, "approach event": 11199, "derived using": 39366, "gpt3 instead": 66710, "human annotations": 70580, "annotations demonstrate": 9578, "demonstrate gpt3": 38362, "correlated human": 32521, "event annotations": 52067, "annotations furthermore": 9593, "annotations achieve": 9569, "solution obtained": 152957, "individual human": 75719, "finding suggests": 58625, "parallel human": 119568, "human cognition": 70642, "principles underlying": 127870, "effective strategy": 45891, "strategy improve": 156155, "range reasoning": 135684, "benefit explanations": 17429, "explanations use": 54905, "label explanation": 82686, "explanation given": 54785, "model dubbed": 103498, "explanations furthermore": 54853, "incurs additional": 75484, "additional computational": 4935, "entities events": 49846, "events crucial": 52108, "crucial natural": 33827, "reasoning common": 136756, "texts existing": 165708, "work focused": 178991, "entity state": 49944, "causally related": 21236, "related propose": 139197, "propose crepe": 131770, "reasoning event": 136837, "close chance": 24441, "lagging far": 83063, "boost model": 18818, "59 f1": 1400, "relations entities": 139292, "intermediate reasoning": 79523, "models efficacy": 106052, "prompting combined": 130882, "combined chainofthought": 25894, "prompting multihop": 131021, "introduce video": 80144, "framework modeling": 61311, "verbal nonverbal": 176438, "nonverbal communication": 114164, "dyadic conversation": 45112, "input speech": 77351, "speech speaker": 154473, "approach retrieves": 11516, "listener facial": 93136, "appropriate given": 11977, "context approach": 30688, "approach models": 11393, "models visionlanguage": 109636, "models creating": 105818, "representations interpretable": 140825, "interpretable controllable": 79662, "video dataset": 176697, "covering diverse": 33075, "diverse topics": 43685, "challenges remain": 22044, "spur progress": 154610, "website video": 178050, "video results": 176734, "results data": 143273, "media discourse": 100084, "vital resources": 177411, "experiences offering": 53868, "rich data": 144772, "various health": 175967, "topics despite": 167352, "despite advancements": 40076, "advancements natural": 5934, "enabling largescale": 48318, "largescale social": 89399, "media data": 100081, "gap remains": 62727, "remains applying": 139972, "used identify": 173100, "identify salient": 71958, "salient concepts": 145926, "predefined entity": 125649, "extraction framework": 56299, "framework tailored": 61446, "tailored social": 160934, "pioneering approach": 123010, "designed capture": 39830, "clinically relevant": 24383, "broad categories": 19172, "extraction task": 56360, "formulate novel": 60618, "extraction demonstrate": 56280, "potential efficiently": 124690, "media text": 100117, "analysis demonstrate": 8881, "demonstrate feasibility": 38337, "extracting actionable": 56216, "actionable insights": 4354, "insights social": 77645, "data efficiently": 34953, "efficiently extracting": 46780, "supervised nlp": 159162, "models contributions": 105789, "contributions include": 31494, "include development": 74330, "collection curation": 25728, "dataset kind": 36376, "community identify": 26486, "models extract": 106282, "efficiently lastly": 46795, "model chatgpt": 103267, "chatgpt outperforms": 23166, "outperforms unsupervised": 117883, "evaluate efficacy": 50961, "understanding effectiveness": 171203, "evaluation language": 51655, "models steadily": 109229, "steadily increased": 155535, "increased size": 75274, "size past": 152041, "used generation": 173092, "tasks realm": 163083, "harness llms": 68793, "understanding capabilities": 171139, "evaluation task": 51892, "llms bloom": 94506, "gpt3 flant5": 66693, "paper shows": 119330, "shows choice": 150415, "used training": 173280, "performs task": 122464, "diverse relevant": 43630, "evaluation performs": 51769, "examples prompt": 52666, "type example": 170305, "example selection": 52503, "affect models": 6307, "human resources": 71020, "multitude domains": 111259, "article discusses": 12574, "systems general": 160401, "general responses": 63045, "instructgpt large": 77945, "feedback mechanisms": 57736, "problem suggest": 128416, "future language": 62278, "consider ai": 29561, "construction knowledge": 30220, "knowledge rare": 82332, "llms overcome": 96022, "biases order": 18295, "prompt gpt3": 130528, "acceptability judgments": 2828, "prompt using": 130738, "aann construction": 1858, "compare gpt": 26683, "crowdsourced human": 33727, "align proposed": 8028, "judgments human": 81333, "improving crosslingual": 74123, "crosslingual information": 33655, "progress recently": 130012, "recently advent": 137829, "provides great": 133157, "crosslingual retrieval": 33665, "shown performance": 150321, "high lowresource": 69485, "tasks crosslingual": 162143, "models built": 105552, "language bias": 83170, "leading suboptimal": 89861, "task largescale": 161510, "available lack": 15149, "lack crosslingual": 82914, "retrieval data": 144032, "data lowresource": 35332, "language makes": 83500, "makes challenging": 98635, "training crosslingual": 168216, "high low": 69482, "token alignment": 166691, "alignment task": 8243, "task optimal": 161584, "problem learn": 128306, "retrieval model": 144091, "crosslingual knowledge": 33659, "knowledge knowledge": 82152, "data distillation": 34925, "languages experimental": 87001, "results minimal": 143607, "minimal training": 102360, "including neural": 74640, "bootstrapping languageimage": 18865, "frozen image": 61657, "image encoders": 72237, "encoders large": 48487, "models cost": 105807, "generic efficient": 65653, "offtheshelf frozen": 115904, "encoders frozen": 48480, "bridges modality": 19084, "modality gap": 102970, "querying transformer": 134663, "stages stage": 154772, "visionlanguage representation": 177082, "learning frozen": 90485, "image encoder": 72234, "second stage": 147507, "generative learning": 65453, "model blip2": 103221, "despite having": 40119, "having significantly": 68891, "significantly fewer": 151008, "fewer trainable": 57872, "parameters existing": 119754, "methods example": 101494, "example model": 52492, "models emerging": 106082, "emerging capabilities": 47506, "zeroshot imagetotext": 180209, "follow natural": 60219, "surprising ability": 159544, "fewshot chainofthought": 57888, "chainofthought prompts": 21537, "model specialization": 104640, "hypothesis large": 71624, "spread large": 154597, "large spectrum": 89067, "tasks small": 163257, "limited model": 92802, "achieve decent": 3621, "performance use": 122217, "multistep math": 111164, "emergent ability": 47462, "aspects model": 12954, "model abilities": 103007, "balance tradeoff": 15504, "models multidimensional": 108240, "ability comprehensive": 2109, "important design": 73118, "including tuning": 74766, "model checkpoint": 103272, "checkpoint new": 23545, "hope practice": 70369, "serve important": 148986, "research paradigm": 141959, "set llms": 149237, "red teaming": 138373, "bias robustness": 18196, "robustness reliability": 145429, "toxicity recent": 167479, "synthesis comprehension": 159938, "text openended": 165331, "way translating": 177882, "applications large": 10580, "significantly impacted": 151017, "report summarization": 140560, "observations indicate": 115340, "indicate llms": 75600, "llms exhibit": 95135, "exhibit social": 53104, "social prejudice": 152648, "posing ethical": 124245, "ethical societal": 50839, "consequences resulting": 29530, "largescale benchmarks": 89275, "accountable llms": 3084, "llms consequently": 94699, "consequently developed": 29539, "investigations reveal": 80656, "advanced llms": 5762, "llms little": 95798, "little systematic": 93248, "systematic examination": 160125, "harmful behaviors": 68722, "behaviors current": 16689, "current llm": 34163, "llm usage": 94073, "future efforts": 62257, "efforts constructing": 46894, "qualitative research": 134015, "research method": 141907, "paper chatgpt": 118779, "recent llms": 137551, "llms analyze": 94396, "benchmark chatgpt": 16855, "chatgpt multiple": 23135, "datasets significant": 37117, "ethical risks": 50830, "benchmarks illustrate": 17268, "addition examine": 4858, "examine implications": 52394, "implications findings": 72924, "findings ai": 58633, "ai ethics": 6983, "behaviors chatgpt": 16687, "chatgpt future": 22959, "problems practical": 128595, "practical design": 125407, "design considerations": 39583, "llms believe": 94482, "believe findings": 16776, "findings light": 58725, "light future": 92116, "applications multimodal": 10611, "multimodal large": 110681, "3d perception": 1138, "perception framework": 120803, "framework visual": 61496, "reasoning visual": 137234, "reasoning vcr": 137228, "vcr task": 176372, "task choose": 161243, "rationale based": 136053, "based given": 15841, "representative works": 140947, "approaches consider": 11719, "positions objects": 124283, "manner making": 98999, "accurately distinguish": 3526, "objects understand": 115307, "visual relation": 177299, "recently multimodal": 137940, "models mllms": 108199, "used powerful": 173175, "powerful tools": 125343, "reasoning specific": 137137, "specific visual": 154127, "visual objects": 177239, "objects referred": 115301, "framework designed": 61069, "specifically demonstrate": 154170, "images introduce": 72437, "transformer proposed": 169204, "objects visual": 115309, "visual scenes": 177306, "depth visual": 39331, "answer words": 9802, "process images": 128861, "referring expressions": 138711, "object labels": 115139, "parameter optimization": 119633, "optimization technique": 117048, "fully consider": 61752, "framework stateoftheart": 61427, "science emergent": 146867, "llm openais": 93855, "openais chatgpt": 116391, "chatgpt gpt3": 23002, "offer unique": 115710, "eighteen months": 46962, "1000 times": 170, "provide basic": 132685, "basic arithmetic": 16409, "analysis complex": 8860, "complex datasets": 27392, "described combines": 39378, "rules work": 145729, "descriptive statistics": 39525, "datasets llm": 36965, "using python": 174635, "python libraries": 133837, "exploratory data": 55122, "analysis showcases": 9163, "models capabilities": 105559, "unseen test": 172192, "test cases": 164523, "cases using": 21029, "using linear": 174412, "linear regression": 92976, "extend models": 55637, "transformer recent": 169205, "llms incredibly": 95612, "incredibly effective": 75464, "problem sequence": 128388, "chen et": 23576, "methods optimize": 101693, "optimize high": 117066, "extract information": 56140, "information diverse": 76363, "diverse dataset": 43501, "decision transformers": 37389, "shown utilizing": 150397, "future trajectory": 62394, "trajectory information": 168866, "information form": 76460, "form information": 60464, "trajectory data": 168863, "data building": 34732, "building propose": 19443, "propose skill": 132137, "skill discovery": 152132, "discovery methods": 42781, "methods discover": 101448, "discover diverse": 42727, "set primitive": 149276, "skills skill": 152189, "behaviors easily": 16693, "rl approaches": 145045, "benchmark code": 16860, "code videos": 25206, "environments difficult": 50073, "challenging deploy": 22141, "parameters present": 119833, "present flame": 126317, "transformerbased model": 169261, "leverages domain": 91718, "performance substantially": 122130, "substantially smaller": 158141, "curate training": 34004, "span prediction": 153656, "objectives evaluate": 115242, "models davinci": 105854, "codex codet5": 25339, "evaluation settings": 51853, "completion tasks": 27343, "combining deep": 25970, "models discrete": 105988, "reasoning requires": 137104, "reasoning freeform": 136871, "freeform natural": 61564, "nl questions": 113641, "questions structured": 135289, "structured tabular": 156677, "data previous": 35539, "usually suffer": 174922, "suffer significant": 158451, "degradation huge": 37984, "addition existing": 4859, "struggle reason": 156771, "reason complex": 136556, "required information": 141239, "challenges exploit": 21860, "exploit large": 55009, "reasoning decompose": 136803, "mitigate interference": 102613, "information table": 76793, "reasoning ii": 136903, "decompose complex": 37612, "simpler subquestions": 151562, "reasoning specifically": 137138, "llms break": 94510, "relevant evidence": 139599, "strategy alleviate": 156102, "alleviate hallucination": 8287, "step extensive": 155634, "experiments method": 54351, "method effectively": 100807, "datasets notably": 37003, "notably model": 114286, "explaining large": 54764, "language modelbased": 83965, "neural semantic": 112976, "semantic parsers": 148183, "abstract large": 2643, "strong capability": 156367, "underlying mechanisms": 170859, "work studies": 179315, "methods explaining": 101503, "semantic parser": 148182, "model behaviors": 103201, "hoping inspire": 70414, "inspire future": 77699, "research better": 141619, "understanding mathematical": 171350, "mathematical capabilities": 99556, "capabilities chatgpt": 19812, "chatgpt investigate": 23077, "iterations chatgpt": 81109, "ones using": 116024, "novel methodology": 114596, "contrast formal": 31305, "formal mathematics": 60508, "formal proofs": 60513, "mathematical library": 99570, "current datasets": 34099, "used benchmark": 172976, "benchmark language": 17007, "models cover": 105812, "publicly releasing": 133679, "releasing new": 139549, "datasets curated": 36753, "models distinguish": 106005, "datasets test": 37155, "test chatgpt": 164532, "helpful assistants": 69201, "cases arise": 20944, "arise daily": 12453, "benchmark models": 17032, "advanced mathematics": 5772, "detailed evaluation": 40289, "chatgpt used": 23412, "used successfully": 173251, "gpt4 additionally": 66909, "additionally used": 5143, "undergraduatelevel mathematics": 170812, "positive reports": 124306, "selection bias": 147838, "bias overall": 18171, "performance level": 121734, "goal use": 66206, "use chatgpt": 172545, "chatgpt pass": 23176, "models easily": 106036, "far evaluated": 57216, "evaluated primarily": 51204, "context relevant": 30895, "solving task": 153251, "task work": 161812, "models model": 108220, "irrelevant information": 80851, "use benchmark": 172517, "techniques large": 163944, "information included": 76510, "approaches mitigating": 11844, "adding prompt": 4831, "prompt instruction": 130553, "instruction tells": 78060, "information improving": 76508, "exploring exploiting": 55466, "auxiliary data": 15029, "applications learning": 10590, "model overfitting": 104198, "focus fewshot": 59980, "paradigm assumes": 119432, "works proposed": 179485, "proposed automated": 132258, "data methods": 35366, "methods typically": 101890, "datasets limiting": 36962, "limiting practicality": 92896, "practicality work": 125472, "multiarmed bandit": 110346, "bandit setting": 15528, "algorithms computational": 7909, "allowing scale": 8392, "datasets prior": 37043, "methods propose": 101736, "compare prior": 26720, "exploration exploitation": 55070, "extensive experimentation": 55791, "methods lead": 101632, "parameter gpt3": 119617, "gpt3 overall": 66735, "overall work": 118261, "better efficient": 17852, "provide viable": 133030, "viable path": 176648, "generalization fewshot": 63175, "learning survey": 91046, "survey deep": 159619, "activations transformers": 4423, "tremendous progress": 169691, "architectures layers": 12276, "objectives optimization": 115258, "transformers selfsupervised": 169354, "learning schemes": 90964, "overview important": 118434, "basic understanding": 16444, "form new": 60478, "diverse areas": 43464, "learning identify": 90556, "multiple patterns": 110995, "summarize key": 158909, "key strategies": 81577, "strategies successful": 156078, "closedsource models": 24494, "openais gpt4": 116419, "gpt4 googles": 67031, "googles palm": 66339, "models risks": 109007, "make use": 98619, "models absence": 105198, "problem furthermore": 128263, "believe large": 16778, "models understood": 109545, "raises significant": 135497, "significant opportunities": 150790, "desirable outputs": 40031, "safety problems": 145885, "problems particularly": 128587, "predict output": 125695, "output ai": 117894, "potential solutions": 124991, "solutions problems": 153060, "problems primarily": 128601, "prediction objective": 125833, "inner alignment": 77130, "alignment problem": 8214, "superhuman capabilities": 158983, "future models": 62294, "textimage alignment": 165636, "alignment recent": 8221, "progress scaling": 130015, "capabilities performing": 20105, "learning wide": 91133, "tasks key": 162658, "key limitation": 81530, "crucial attribute": 33765, "able interact": 2525, "interact real": 79072, "world solve": 179618, "visualquestion answering": 177393, "pretraining andor": 127260, "andor finetuning": 9406, "imagetext datasets": 72525, "datasets costly": 36743, "expensive process": 53800, "limitation propose": 92519, "vqvae learns": 177589, "learns align": 91173, "data unsupervised": 35909, "unsupervised manner": 172254, "manner leveraging": 98998, "encode image": 48375, "image sequences": 72329, "sequences text": 148841, "text tokens": 165532, "image embeddings": 72232, "embeddings using": 47296, "random masking": 135531, "model decoder": 103409, "reconstruct original": 138295, "original image": 117340, "predicted text": 125727, "text token": 165531, "clusters text": 24604, "aligning modalities": 8104, "modalities use": 102959, "use aligned": 172496, "textimage pairs": 165638, "enables fewshot": 48185, "fewshot image": 57922, "classification large": 24022, "linear classification": 92952, "based bert": 15685, "work work": 179368, "tasks leveraging": 162704, "leveraging power": 91918, "explore language": 55230, "analyze language": 9306, "originally conceived": 117401, "informationtheoretic measure": 76862, "assess given": 13085, "predict text": 125707, "word sequence": 178681, "data employed": 34964, "gpt2 transformerbased": 66605, "perplexity scores": 122516, "scores used": 147176, "best performing": 17726, "performing models": 122409, "achieved accuracy": 3784, "accuracy fscore": 3245, "subjects results": 157878, "potential application": 124577, "mental disorders": 100494, "hardware security": 68695, "bugs large": 19293, "novel aibased": 114352, "llms openais": 95978, "codex demonstrated": 25340, "demonstrated capabilities": 38624, "consider llms": 29577, "leveraged automatically": 91688, "automatically repair": 14849, "present hardware": 126329, "hardware designs": 68685, "bug repair": 19278, "repair code": 140405, "hardware description": 68681, "description language": 39414, "study build": 157197, "implement framework": 72822, "framework quantitatively": 61368, "llm tasked": 94044, "design space": 39762, "space exploration": 153571, "prompts prompt": 131421, "engineering identifying": 48932, "identifying best": 71987, "parameters llm": 119796, "ensemble llms": 49638, "repair benchmarks": 140403, "repair tool": 140417, "bugs results": 19298, "results llms": 143574, "important step": 73197, "ultimate goal": 170578, "goal automated": 66150, "repair framework": 140408, "framework large": 61256, "human sensory": 71035, "determining extent": 40722, "language longstanding": 83498, "longstanding problem": 97585, "philosophy cognitive": 122857, "science stateoftheart": 146914, "models unlock": 109552, "problem providing": 128370, "perceptual information": 120848, "extracted language": 56189, "language specifically": 86736, "data domains": 34937, "representations like": 140841, "like color": 92255, "model gpt4": 103767, "language does": 83265, "does necessarily": 44002, "necessarily lead": 112132, "visual modality": 177229, "study influence": 157413, "specific languages": 154026, "apply models": 10865, "english russian": 49101, "language perception": 86462, "mitigating data": 102656, "scarcity large": 146495, "achieving new": 4197, "benchmarks stateoftheart": 17371, "performances models": 122334, "rely heavily": 139850, "specialized domains": 153884, "augmentation neural": 14301, "ensemble learning": 49637, "techniques neural": 163970, "evaluate impact": 50985, "specifically data": 154168, "explore techniques": 55302, "data moving": 35403, "original context": 117323, "techniques introduce": 163935, "writing styles": 179759, "data results": 35669, "effective solutions": 45886, "models considerably": 105750, "nlp domains": 113724, "domains tasks": 44536, "tasks neural": 162854, "learning use": 91105, "neural classifier": 112834, "best prediction": 17735, "individual pretrained": 75731, "simplification task": 151588, "largescale scientific": 89398, "scientific progress": 146981, "methods techniques": 101869, "unfortunately lack": 171667, "lack largescale": 82978, "largescale comprehensive": 89281, "gaining deeper": 62495, "science paper": 146899, "new resource": 113390, "takes form": 160980, "graph kg": 67538, "various sources": 176178, "sources including": 153511, "available sources": 15205, "community detection": 26461, "detection algorithms": 40446, "algorithms large": 7939, "support studies": 159334, "studies reasoning": 157063, "reasoning scientific": 137115, "networks create": 112725, "core task": 32182, "completion kgc": 27326, "present challenges": 126242, "graph embedding": 67518, "including adversarial": 74410, "evaluation setting": 51852, "setting zeroshot": 149517, "learning largescale": 90632, "resources accessible": 142420, "paper presented": 119143, "paper extends": 118947, "uses large": 173870, "generate conversational": 63440, "rely common": 139832, "70 time": 1528, "represents step": 140998, "improve neural": 73533, "developing automatic": 40980, "task demands": 161304, "ability understanding": 2404, "approaches mainly": 11839, "problem text": 128420, "model decode": 103408, "question recent": 134927, "work finds": 178983, "pattern matching": 120504, "context text": 30938, "used existing": 173054, "decoding processes": 37590, "encoder encodes": 48419, "text uses": 165554, "uses guide": 173864, "uses deep": 173842, "representations embeddings": 140801, "invariant permutation": 80325, "established benchmarks": 50687, "showing effectiveness": 150165, "effectiveness techniques": 46300, "techniques conduct": 163855, "results limitations": 143568, "approach discuss": 11126, "potential future": 124729, "regression testing": 138967, "prompt strategies": 130679, "strategies pretrained": 156052, "gpt3 carry": 66661, "multiturn conversations": 111268, "chatbot design": 22569, "improve llm": 73506, "prompts instructions": 131337, "face challenges": 56512, "understanding prompt": 171424, "prompt strategy": 130680, "conversations users": 31968, "users address": 173578, "testing based": 164698, "based sample": 16084, "errors persist": 50389, "applying different": 10886, "interactive design": 79301, "design tool": 39787, "designers identify": 39980, "multiple conversations": 110876, "visualization highlights": 177355, "effects prompt": 46347, "prompt changes": 130382, "evaluation demonstrates": 51537, "concept regression": 28620, "models importance": 106682, "dataset crucial": 36211, "unlabeled dataset": 171952, "match desired": 99408, "desired target": 40059, "target distribution": 161057, "distribution given": 43364, "given unlabeled": 66045, "unlabeled target": 171956, "data existing": 35005, "simple heuristics": 151469, "require human": 141119, "experts manually": 54667, "data instead": 35236, "propose data": 131773, "efficient scalable": 46711, "scalable framework": 146245, "weights reduced": 178126, "feature space": 57432, "features efficiency": 57479, "efficiency enabling": 46450, "enabling selection": 48348, "45 hours": 1238, "data relevant": 35643, "relevant target": 139656, "metric measures": 101977, "data target": 35850, "selection methods": 147870, "including expert": 74512, "expert selection": 54592, "downstream accuracy": 44695, "selecting data": 147812, "data continued": 34850, "continued pretraining": 31211, "specific domain": 153977, "expert curation": 54556, "models target": 109355, "benefits training": 17494, "recently language": 137919, "multitaskprompted finetuning": 111248, "finetuning mt": 59391, "shown capability": 150215, "capability generalize": 20301, "generalize unseen": 63272, "stronger mt": 156475, "tasks 11": 161864, "unseen datasets": 172156, "datasets 13": 36625, "13 datasets": 328, "mean accuracy": 99746, "casts doubt": 21043, "simply scaling": 151625, "tasks makes": 162779, "lms leveraging": 97162, "leveraging finding": 91849, "approach training": 11611, "training separate": 168725, "lm training": 97075, "task instead": 161478, "instead single": 77900, "zeroshot inference": 180213, "avoiding negative": 15360, "continually learn": 31179, "tasks having": 162496, "having retrain": 68889, "chatgpt software": 23337, "software testing": 152849, "predictive language": 125952, "modeling code": 104983, "valuable tool": 175459, "new forms": 113195, "recently seen": 137988, "purpose large": 133746, "based neural": 15971, "trained massive": 167994, "datasets human": 36913, "code natural": 25022, "language despite": 83251, "power models": 125203, "constrained specific": 30040, "limiting general": 92887, "model created": 103392, "created openai": 33268, "openai trained": 116380, "agent enabling": 6437, "end users": 48696, "models chatgpt": 105606, "chatgpt spurred": 23349, "discussion educators": 42991, "students use": 156908, "use ai": 172490, "new types": 113484, "types learning": 170378, "learning opportunities": 90791, "knowledge related": 82353, "different educational": 41753, "settings potential": 149626, "examine chatgpt": 52374, "chatgpt performs": 23184, "tasked answering": 161836, "common questions": 26183, "questions popular": 135219, "popular software": 124057, "indicate chatgpt": 75574, "chatgpt provide": 23227, "provide correct": 132730, "cases provide": 21009, "correct explanations": 32385, "explanations answers": 54816, "cases prompting": 21007, "context leads": 30814, "correct responses": 32413, "responses based": 142733, "findings discuss": 58662, "related use": 139224, "chatgpt students": 23359, "students instructors": 156868, "long horizon": 97454, "temperature scaling": 164204, "popular technique": 124061, "model distribution": 103482, "distribution used": 43403, "model uncertainty": 104820, "parameter large": 119623, "models deployment": 105926, "propose long": 131908, "joint distributions": 81248, "generation controllable": 64536, "temperature parameter": 164201, "image diffusion": 72228, "models demonstrating": 105921, "scaling likelihood": 146417, "sample quality": 145955, "showing improvements": 150171, "improvements accuracy": 73871, "accuracy multiple": 3314, "dense retrievers": 39108, "ability language": 2238, "information corpora": 76336, "plug new": 123658, "memory inference": 100406, "learning mechanism": 90671, "labels derived": 82794, "hard negatives": 68651, "retrieval accuracy": 143988, "tasks included": 162542, "beir benchmark": 16749, "benchmark outperforms": 17049, "parameters computation": 119728, "computation steps": 28320, "robust generalization": 145268, "parameters plan": 119830, "code reliable": 25095, "answer set": 9780, "set programming": 149279, "programming humans": 129823, "humans understand": 71485, "language extracting": 83311, "extracting information": 56229, "meaning sentences": 99780, "sentences combining": 148562, "combining existing": 25972, "existing commonsense": 53316, "performing reasoning": 122414, "draw conclusions": 44913, "leverage patterns": 91636, "text solve": 165471, "tasks fall": 162390, "reasoning reliably": 137096, "better propose": 17994, "framework combines": 61012, "combines llms": 25945, "llms answer": 94400, "effectively extract": 45996, "extract knowledge": 56143, "knowledge represented": 82367, "reason knowledge": 136567, "knowledge apply": 81749, "framework different": 61085, "different nlu": 41877, "requiring reasoning": 141506, "qualitative reasoning": 134014, "reasoning goaldirected": 136890, "able bridge": 2473, "gap reasoning": 62724, "tasks leading": 162695, "improvements especially": 73898, "especially smaller": 50544, "smaller llms": 152403, "llms llms": 95813, "llms smaller": 96623, "nlu applications": 113936, "applications developed": 10479, "multitask multilingual": 111229, "multimodal evaluation": 110630, "evaluation chatgpt": 51472, "chatgpt reasoning": 23251, "proposes framework": 132464, "quantitatively evaluating": 134390, "evaluating interactive": 51319, "interactive llms": 79321, "llms chatgpt": 94566, "chatgpt using": 23418, "using publicly": 174631, "carry extensive": 20840, "technical evaluation": 163702, "covering different": 33074, "nlp application": 113683, "application tasks": 10388, "aspects chatgpt": 12925, "chatgpt based": 22735, "sets newly": 149391, "newly designed": 113533, "designed multimodal": 39916, "multimodal dataset": 110617, "dataset chatgpt": 36149, "outperforms llms": 117800, "tasks outperforms": 162899, "tasks better": 162009, "nonlatin script": 114088, "script languages": 147248, "languages generating": 87017, "generate multimodal": 63613, "multimodal content": 110608, "intermediate code": 79508, "10 different": 114, "reasoning categories": 136729, "reasoning nontextual": 137004, "reasoning making": 136978, "making unreliable": 98816, "deductive inductive": 37696, "inductive reasoning": 75842, "reasoning chatgpt": 136745, "chatgpt suffers": 23366, "hallucination problems": 68406, "like llms": 92340, "llms generates": 95386, "extrinsic hallucinations": 56462, "parametric memory": 119893, "does access": 43956, "access external": 2857, "base finally": 15600, "finally interactive": 58485, "human collaboration": 70652, "underlying llm": 170849, "release codebase": 139452, "generative artificial": 65378, "ai enabled": 6977, "development sophisticated": 41224, "sophisticated models": 153315, "utilization large": 175000, "quality generation": 134150, "arduous task": 12310, "task generation": 161431, "adequate consideration": 5507, "recently paper": 137950, "abilities zeroshot": 2044, "zeroshot instruction": 180217, "models score": 109048, "score generated": 147067, "models explored": 106256, "ranging size": 135761, "gpt3 experimental": 66683, "results text": 143867, "evaluation aspects": 51437, "evaluate texts": 51118, "longstanding challenges": 97583, "challenges text": 22084, "multifaceted evaluation": 110402, "evaluation need": 51745, "need annotated": 112224, "annotated samples": 9489, "samples make": 146039, "chatgpt caught": 22764, "rise artificial": 144889, "impact education": 72644, "new generation": 113207, "generation ai": 64405, "systems chatbots": 160283, "capabilities use": 20233, "particularly chatgpt": 120156, "chatgpt generating": 22981, "generating academic": 64125, "scholars study": 146826, "aims explore": 7609, "popular ai": 123979, "ai chatbots": 6909, "chatbots chatgpt": 22605, "chatgpt end": 22887, "detection tools": 40642, "tools used": 167279, "used evaluate": 173047, "chatgpt various": 23427, "results manifest": 143587, "chatgpt great": 23036, "potential generate": 124744, "generate sophisticated": 63719, "sophisticated text": 153327, "words chatgpt": 178718, "chatgpt create": 22816, "findings align": 58635, "recent concerns": 137460, "concerns students": 28830, "minimal effort": 102327, "chatgpt asked": 22716, "showed superior": 150155, "tools paper": 167218, "measures mitigate": 99930, "mitigate potential": 102626, "impact ai": 72618, "technology education": 164133, "implications discussed": 72915, "discussed paper": 42963, "realtime visual": 136384, "visual feedback": 177174, "feedback guide": 57700, "benchmark creation": 16883, "exploit artifacts": 54999, "artifacts benchmarks": 12640, "creating better": 33287, "benchmarks propose": 17337, "novel benchmark": 114416, "nlp focuses": 113740, "providing realtime": 133358, "improve sample": 73616, "quality approach": 134043, "approach domain": 11135, "domain model": 44227, "shift robust": 149919, "dynamic benchmark": 45116, "review user": 144561, "nasa tlx": 111480, "performance user": 122219, "user groups": 173418, "created samples": 33270, "study observe": 157511, "adversarial models": 6211, "gpt3 fewshot": 66689, "better better": 17819, "writing assistance": 179711, "compare students": 26734, "writing performance": 179738, "writing assistant": 179713, "assistant tool": 13400, "materials methods": 99512, "participated study": 120033, "study control": 157255, "control experimental": 31538, "experimental group": 53950, "group used": 67959, "numerical values": 115017, "writing time": 179766, "content similarity": 30619, "similarity results": 151370, "slightly higher": 152232, "low overall": 97774, "similarity index": 151350, "recognized potential": 138166, "potential aigenerated": 124568, "aigenerated texts": 7415, "conclusions study": 28913, "evidence using": 52228, "essay quality": 50567, "quality control": 134082, "written natural": 179785, "prone various": 131572, "quality assurance": 134047, "processes carried": 129054, "manually tedious": 99106, "important quality": 73178, "quality issues": 134175, "issues time": 81065, "time budget": 166352, "qa approach": 133867, "provides automated": 133109, "stakeholders including": 154780, "answers given": 10031, "resources work": 142498, "external domain": 56045, "knowledge addressing": 81737, "addressing requirements": 5475, "requirements engineering": 141287, "containing total": 30351, "recent largescale": 137543, "models empirical": 106088, "answer posed": 9746, "posed question": 124189, "qa language": 133890, "nlp natural": 113775, "learning demonstration": 90360, "demonstration examples": 38975, "examples large": 52625, "large pretraining": 89023, "architecture existing": 12164, "large context": 87219, "context size": 30918, "underexplored study": 170777, "transformer mechanism": 169168, "tokens batch": 166783, "plms gpt3": 123608, "scale size": 146344, "size examples": 151993, "learning explore": 90446, "results diverse": 143360, "higher accuracy": 69579, "accuracy average": 3152, "achieving best": 4150, "best accuracy": 17656, "accuracy score": 3386, "improve upper": 73653, "upper bound": 172381, "scaling incontext": 146401, "code security": 25133, "security hardening": 147589, "adversarial testing": 6231, "testing large": 164724, "increasingly trained": 75445, "code lms": 24992, "lack awareness": 82886, "frequently produce": 61627, "produce unsafe": 129477, "studies security": 157076, "important axes": 73097, "aims enhance": 7601, "enhance lms": 49233, "reliability generating": 139688, "ii adversarial": 72083, "evaluate lms": 51013, "called controlled": 19653, "takes input": 160983, "generate secure": 63700, "lms capability": 97112, "capability generating": 20305, "generating functionally": 64228, "functionally correct": 61891, "correct code": 32379, "novel learningbased": 114566, "learningbased approach": 91154, "guide program": 68200, "program generation": 129734, "weights training": 178131, "specialized loss": 153898, "terms different": 164407, "different regions": 41962, "regions code": 138932, "code using": 25200, "using highquality": 174296, "highquality dataset": 70013, "dataset carefully": 36143, "carefully curated": 20804, "curated extensive": 34016, "extensive evaluation": 55766, "effective achieving": 45683, "achieving strong": 4226, "strong security": 156445, "27b parameters": 884, "significantly boosted": 150955, "closely matches": 24520, "functional correctness": 61872, "scaling vision": 146455, "22 billion": 769, "scaling transformers": 146452, "present largest": 126359, "llms contain": 94715, "architecture image": 12170, "image video": 72356, "perform wide": 121088, "experiments resulting": 54439, "linear model": 92965, "model frozen": 103698, "observe interesting": 115376, "benefits scale": 17493, "including improved": 74565, "tradeoff fairness": 167560, "fairness performance": 57063, "stateoftheart alignment": 155073, "human visual": 71088, "shapetexture bias": 149785, "improved robustness": 73722, "demonstrates potential": 38874, "key steps": 81575, "retrievalaugmented large": 144186, "difficult prevent": 42168, "hallucinations generative": 68433, "generative large": 65446, "models common": 105681, "solution augmenting": 152899, "augmenting llms": 14394, "llms retrieval": 96444, "retrieval making": 144084, "generated output": 63931, "attributable retrieved": 14073, "retrieved information": 144246, "information given": 76480, "quality output": 134215, "terms fluency": 164424, "llms prompted": 96232, "retrieved evidence": 144241, "settings experiments": 149571, "aligned human": 8051, "evaluate large": 50997, "generations produced": 65286, "supplied context": 159246, "context larger": 30811, "tend better": 164300, "better fluency": 17875, "using topk": 174810, "retrieval improves": 144064, "improves attribution": 73978, "models preserve": 108608, "posthoc explanations": 124502, "risk prediction": 144958, "prediction models": 125826, "medical experts": 100173, "experts use": 54687, "use artificial": 172505, "connect inferences": 29470, "inferences context": 76145, "context use": 30949, "importance improving": 73038, "model usage": 104835, "patients clinical": 120482, "ai predictions": 7158, "predictions explore": 125906, "medical guidelines": 100180, "answer typical": 9790, "typical questions": 170458, "identify question": 71947, "task employ": 161346, "employ stateoftheart": 47863, "stateoftheart llms": 155186, "llms present": 96162, "model inferences": 103858, "building endtoend": 19399, "ai risk": 7200, "model explanations": 103607, "combined insights": 25903, "insights different": 77545, "dimensions data": 42329, "disease common": 43023, "experts including": 54661, "final evaluation": 58378, "panel llms": 118685, "llms particular": 96048, "bert scibert": 17603, "extract relevant": 56153, "relevant explanations": 139602, "support clinical": 159264, "clinical usage": 24375, "explanations expert": 54843, "expert panel": 54589, "relevant clinical": 139577, "clinical setting": 24362, "setting overall": 149487, "overall paper": 118213, "realworld clinical": 136418, "calibration incontext": 19635, "years witnessed": 179945, "witnessed increasing": 178563, "increasing interests": 75326, "trained annotated": 167865, "making suitable": 98809, "settings using": 149654, "predict missing": 125690, "built transformer": 19504, "tend generate": 164307, "generate similar": 63713, "output embeddings": 117921, "class labels": 23877, "problem exacerbated": 128245, "information diffusion": 76358, "different tokens": 42053, "layers transformer": 89683, "calibration method": 19639, "embeddings capture": 47216, "hierarchical relations": 69372, "token embedding": 166703, "metric learning": 101975, "learning strategy": 91026, "experiments datasets": 54213, "datasets various": 37192, "various settings": 176164, "settings demonstrate": 149548, "approach code": 11048, "linguistic ambiguity": 93003, "analysis chatgpt": 8847, "chatgpt linguistic": 23105, "main challenges": 98224, "systems modern": 160485, "modern transformer": 109840, "architectures like": 12278, "nlp fields": 113739, "chatgpt paper": 23170, "provide introduction": 132863, "relevance modern": 139562, "graphs current": 67622, "current status": 34270, "status future": 155527, "directions knowledge": 42485, "chatbots conversational": 22611, "questionanswering systems": 135000, "emerging research": 47530, "empower users": 47997, "users natural": 173717, "language interfaces": 83461, "information easily": 76369, "conversations humans": 31946, "data captured": 34737, "datasets contrast": 36740, "recent information": 137520, "information kg": 76537, "understanding translating": 171515, "present comprehensive": 126251, "existing alternatives": 53258, "chatbots framework": 22615, "conversational models": 31892, "chatgpt galactica": 22967, "qas conduct": 133941, "conduct thorough": 29190, "thorough evaluation": 166184, "evaluation using": 51917, "various application": 175798, "identify current": 71879, "findings propose": 58751, "propose open": 132053, "research opportunities": 141944, "chatbot capabilities": 22566, "raw results": 136090, "chatgpt generalpurpose": 22975, "processing task": 129307, "task solver": 161734, "spurred advancements": 154622, "advancements scale": 5960, "perform variety": 121079, "zeroshot adaptation": 180116, "adaptation downstream": 4613, "downstream data": 44711, "data recently": 35622, "debut chatgpt": 37326, "chatgpt drawn": 22864, "drawn great": 44948, "great deal": 67689, "deal attention": 37262, "attention natural": 13941, "highquality responses": 70071, "human input": 70847, "previous mistakes": 127618, "based subsequent": 16117, "chatgpt serve": 23300, "generalist model": 63096, "work empirically": 178928, "empirically analyze": 47778, "chatgpt evaluating": 22902, "representative task": 140941, "categories extensive": 21097, "effectiveness limitations": 46220, "current version": 34296, "version chatgpt": 176600, "chatgpt chatgpt": 22771, "faces challenges": 56568, "solving specific": 153249, "tasks sequence": 163221, "analysis qualitative": 9105, "qualitative case": 133988, "safety classifiers": 145848, "concern safety": 28748, "digital assistants": 42276, "assistants chatbots": 13408, "require different": 141088, "different classifiers": 41689, "safety policies": 145882, "policies improve": 123812, "adaptation paper": 4651, "evaluates methods": 51240, "classifiers trained": 24200, "annotation schemes": 9551, "key finding": 81504, "prompttuning large": 131544, "like palm": 92374, "palm 62b": 118656, "examples achieve": 52517, "performance argue": 121162, "especially models": 50515, "models supporting": 109314, "online discourse": 116093, "instead collecting": 77868, "attempt create": 13784, "tuned using": 169954, "datasets created": 36749, "small organizations": 152344, "specific use": 154121, "convergence language": 31758, "vision model": 176953, "model geometries": 103744, "lack ability": 82877, "lm representations": 97070, "different lms": 41844, "gpt2 opt": 66573, "parameterefficient tuning": 119685, "llms able": 94266, "solve wide": 153170, "tasks transfer": 163388, "explainability methods": 54732, "methods developed": 101440, "tracin pruthi": 167508, "pruthi et": 133471, "gradientbased method": 67406, "inferences based": 76144, "influence training": 76224, "examples paper": 52649, "use tracin": 172915, "tuning pet": 170081, "setting develop": 149442, "unique characteristics": 171830, "cause certain": 21243, "methodology using": 101259, "using gradientbased": 174274, "explainability techniques": 54735, "performance benchmarks": 121196, "automatically perform": 14846, "perform data": 120915, "data cleaning": 34756, "introduces potential": 80214, "structured reasoning": 156669, "explanation benchmark": 54775, "benchmark introduce": 17004, "unified multitask": 171741, "multitask multidomain": 111228, "benchmark unlike": 17114, "existing questionanswering": 53547, "questions produce": 135233, "question used": 134952, "produce intermediate": 129435, "prove correctness": 132618, "evaluation popular": 51775, "lag human": 83057, "community better": 26453, "train test": 167839, "test systems": 164643, "explanations natural": 54881, "language language": 83474, "lms function": 97143, "bases kbs": 16396, "raised wide": 135475, "wide research": 178331, "recently existing": 137882, "focus simple": 60050, "lms knowledge": 97157, "ontologies propose": 116163, "complex concepts": 27381, "concepts conduct": 28644, "scales results": 146379, "background knowledge": 15438, "traditional natural": 167665, "significantly small": 151157, "samples given": 146020, "ai special": 7224, "chatgpt study": 23360, "collecting analyzing": 25707, "analyzing social": 9386, "survey conducted": 159615, "content analysis": 30436, "analysis method": 9016, "method finds": 100874, "study finds": 157366, "proposes semantic": 132486, "crosslayer design": 33645, "model utilized": 104860, "semantic importance": 148155, "importance data": 73017, "existing deep": 53338, "semantic communication": 148115, "current communication": 34091, "systems introducing": 160442, "scheme achieve": 146780, "semantic loss": 148174, "multitask benchmark": 111203, "benchmark realistic": 17067, "realistic diverse": 136289, "diverse input": 43549, "usually contain": 174893, "contain various": 30315, "recognition errors": 138063, "realistic input": 136294, "robustness fairness": 145385, "study construct": 157241, "construct benchmarks": 30122, "world order": 179600, "original test": 117388, "data commonly": 34795, "used chinese": 172992, "input methods": 77286, "annotation pipeline": 9542, "maximize diversity": 99671, "annotators use": 9647, "use diverse": 172592, "input method": 77285, "speakers diverse": 153835, "series strong": 148952, "methods models": 101668, "like data": 92259, "augmentation largescale": 14291, "creating benchmark": 33286, "serves important": 149042, "complement existing": 27243, "code dataset": 24762, "incontext example": 74847, "text transformation": 165539, "llm specific": 94014, "users tend": 173794, "unseen cases": 172147, "examples included": 52611, "highquality demonstration": 70015, "sets incontext": 149376, "data taskspecific": 35856, "active learning": 4433, "learning manner": 90665, "help llm": 69139, "simulation studies": 151718, "studies text": 157098, "text perturbation": 165352, "sampling improves": 146097, "sampling variance": 146123, "different patterns": 41897, "efficiently resulting": 46812, "resulting better": 143092, "better incontext": 17910, "learning user": 91110, "reasoning conversational": 136777, "ai survey": 7234, "survey state": 159695, "gpt t5": 66500, "understanding contextual": 171173, "contextual semantics": 31113, "semantics language": 148300, "enabled significant": 48149, "significant advances": 150583, "ai including": 7039, "including development": 74493, "systems capable": 160281, "complete tasks": 27291, "higher levels": 69610, "levels reasoning": 91552, "including commonsense": 74464, "reasoning humans": 136902, "presents survey": 126646, "recent conversational": 137462, "research focused": 141798, "approaches include": 11804, "benchmarks used": 17388, "evaluating commonsense": 51278, "ai problems": 7163, "finally paper": 58502, "presents preliminary": 126620, "preliminary observations": 126136, "capabilities stateoftheart": 20195, "stateoftheart open": 155262, "open dialogue": 116224, "negative effect": 112512, "natural interactions": 111537, "interactions observations": 79249, "motivate research": 110169, "ai natural": 7120, "generation chinese": 64491, "important area": 73084, "conversation agents": 31776, "mrc benchmarks": 110258, "target corpus": 161048, "trained datasets": 167890, "datasets generate": 36888, "humanlike responses": 71278, "qa scenarios": 133927, "scenarios end": 146583, "end construct": 48646, "providing training": 133393, "test bed": 164516, "generation real": 65018, "real scenarios": 136250, "data highquality": 35156, "relatively large": 139405, "models mixture": 108195, "prefix prompts": 126101, "experiments validated": 54526, "validated effectiveness": 175343, "effectiveness design": 46156, "processes observed": 129090, "observed large": 115420, "respect number": 142513, "phenomenon artifact": 122827, "construct simple": 30160, "stochastic process": 155825, "previously discussed": 127721, "distribution paper": 43377, "randomly chosen": 135563, "discuss relevance": 42938, "relevance similar": 139566, "chatgpt dalle": 22822, "making spatial": 98808, "spatial reasoning": 153795, "reasoning conduct": 136768, "conduct pilot": 29162, "pilot study": 122992, "evaluating cognitive": 51277, "cognitive abilities": 25434, "reasoning recently": 137092, "released generative": 139515, "input prompts": 77317, "prompts constructed": 131202, "post hoc": 124480, "generate correct": 63443, "reasoning prompt": 137072, "incorrect model": 75159, "understanding objects": 171385, "evaluating chatgpt": 51273, "von neumannmorgenstern": 177553, "utility theorem": 174977, "chatgpts outputs": 23498, "problems generally": 128518, "incorrect reasoning": 75168, "briefly comment": 19110, "challenges involved": 21924, "evaluation conducting": 51500, "closed set": 24465, "given models": 65936, "models inherently": 106767, "responding prompts": 142609, "higher education": 69593, "instructors students": 78424, "learning students": 91032, "ask questions": 12857, "need work": 112427, "conceptual understanding": 28722, "creative thinking": 33381, "thinking skills": 166161, "academic institutions": 2737, "institutions need": 77924, "fundamental approach": 61930, "continuous learning": 31243, "learning end": 90416, "end developed": 48655, "based power": 16006, "power language": 125184, "intelligent assistants": 78940, "academic level": 2743, "teaching assistant": 163640, "capable answering": 20402, "questions concerning": 135074, "improve access": 73400, "students reduce": 156892, "evaluation accuracy": 51418, "accuracy performance": 3335, "performance largescale": 121727, "models comprehensive": 105713, "success models": 158267, "models single": 109147, "like computer": 92257, "processing multimodal": 129199, "attention recent": 13973, "years work": 179950, "work comprehensive": 178852, "hope paper": 70362, "introduce background": 79920, "background multimodal": 15444, "conventional deep": 31696, "learning pretraining": 90849, "language process": 86483, "vision speech": 176983, "introduce task": 80121, "task definition": 161301, "advantages multimodal": 6146, "focus data": 59965, "data objectives": 35428, "pretraining introduce": 127350, "validation largescale": 175366, "including generative": 74528, "generative classification": 65404, "visualization analysis": 177352, "results representative": 143748, "finally point": 58505, "point possible": 123713, "possible research": 124456, "directions topic": 42501, "future works": 62414, "continuously updated": 31271, "pretrained multimodal": 127127, "chatgpt understand": 23407, "study chatgpt": 157206, "finetuned bert": 58989, "recently chatgpt": 137841, "chatgpt attracted": 22723, "attracted great": 14041, "great attention": 67684, "human inquiries": 70849, "shown chatgpt": 150219, "chatgpt attains": 22722, "attains remarkable": 13772, "remarkable generation": 140202, "ability compared": 2103, "models quantitative": 108751, "analysis chatgpts": 8848, "chatgpts understanding": 23511, "understanding ability": 171105, "ability given": 2206, "evaluating popular": 51371, "finetuned bertstyle": 58991, "bertstyle models": 17651, "chatgpt falls": 22936, "tasks chatgpt": 162040, "models inference": 106761, "chatgpt achieves": 22676, "bert sentiment": 17604, "analysis questionanswering": 9110, "combining advanced": 25963, "strategies understanding": 156085, "chatgpt improved": 23062, "chat generative": 22529, "transformer chatgpt": 169115, "chatgpt revolutionized": 23286, "approach artificial": 11001, "chatgpt evaluation": 22903, "test effectiveness": 164547, "wellknown natural": 178174, "tasks existing": 162342, "existing studies": 53590, "scale work": 146357, "chatgpts capabilities": 23485, "25 diverse": 828, "stance detection": 154786, "reasoning like": 136965, "evaluated gpt4": 51180, "gpt4 model": 67080, "model selected": 104528, "tasks automated": 161988, "prompting process": 131046, "responses comparison": 142747, "sota solutions": 153367, "average loss": 15297, "loss quality": 97691, "quality chatgpt": 134059, "fewshot evaluation": 57901, "evaluation gpt4": 51627, "model loss": 104046, "chatgpt showed": 23311, "higher chatgpt": 69584, "additional qualitative": 4991, "analysis revealed": 9135, "revealed chatgpt": 144387, "chatgpt bias": 22742, "openai results": 116375, "results provide": 143706, "provide basis": 132686, "models indicate": 106750, "tools usefulness": 167280, "generative ai": 65304, "education research": 45582, "exploratory study": 55128, "chatgpt potential": 23197, "practice learning": 125486, "research tools": 142119, "stages development": 154763, "overview development": 118427, "development generative": 41126, "ai specifically": 7226, "specifically explore": 154200, "explore chatgpts": 55167, "chatgpts ability": 23481, "ability provide": 2333, "code explain": 24825, "basic concepts": 16414, "create knowledge": 33205, "research investigating": 141872, "responses structured": 142922, "prompts highlight": 131310, "highlight benefits": 69725, "benefits limitations": 17479, "results study": 143822, "structured tasks": 156679, "tasks translating": 163392, "translating code": 169425, "creating code": 33288, "code scratch": 25130, "scratch using": 147230, "new ai": 113050, "educators researchers": 45638, "productive current": 129601, "development results": 41211, "used conjunction": 173008, "methods ensure": 101484, "ensure accurate": 49667, "evaluation introduce": 51652, "introduce biases": 79926, "biases models": 18290, "incomplete data": 74811, "explore large": 55232, "evaluations examine": 51967, "relevant document": 139592, "query available": 134563, "available evaluation": 15103, "evaluation explore": 51579, "explore various": 55325, "predicting relevance": 125749, "human assessments": 70595, "labels produce": 82818, "ranking systems": 135826, "labels specifically": 82829, "approaches consistently": 11720, "consistently reach": 29919, "variety measures": 175725, "approach substantially": 11574, "substantially increases": 158128, "confidence results": 29360, "alongside work": 8502, "work release": 179258, "easytouse software": 45369, "software package": 152830, "challenge multilingual": 21685, "vqa challenging": 177569, "nlp computer": 113714, "attracting significant": 14064, "attention researchers": 13983, "resourcerich language": 142417, "models visual": 109641, "languages developed": 86977, "dataset targeting": 36572, "visual content": 177141, "content particular": 30568, "cultural characteristics": 33952, "address weakness": 5388, "community benchmark": 26452, "english japanese": 49066, "images taken": 72494, "evaluating multilingual": 51351, "dataset challenge": 36146, "9th workshop": 1844, "vietnamese language": 176803, "language speech": 86739, "task attracted": 161207, "teams various": 163671, "various universities": 176241, "article present": 12591, "overview methods": 118439, "participants results": 120019, "private test": 128053, "set multilingual": 149243, "systems proposed": 160561, "powerful pretrained": 125323, "based transformer": 16151, "challenging dataset": 22139, "nlp cv": 113718, "researchers explore": 142208, "explore multilingual": 55244, "models systems": 109343, "systems visual": 160669, "answering systems": 9966, "evaluation research": 51825, "research does": 141728, "learn abstract": 89957, "models means": 108159, "learning context": 90322, "context time": 30939, "time lack": 166427, "introduce systematic": 80120, "framework explore": 61151, "models transferability": 109490, "experiments conducted": 54185, "conducted based": 29209, "strong evidence": 156380, "plms t5": 123643, "shedding light": 149867, "twostage process": 170266, "process learned": 128901, "evenly distributed": 52065, "distributed model": 43327, "capabilities exhibit": 19881, "exhibit robustness": 53097, "capability plms": 20355, "plms exhibit": 123593, "exhibit better": 53026, "sizes data": 152091, "drive success": 44978, "success natural": 158268, "processing fundamental": 129159, "fundamental property": 61970, "compositional structure": 27821, "allowing humans": 8374, "humans produce": 71454, "unlike humans": 172004, "poses problem": 124222, "simulate human": 151638, "learning evolution": 90428, "biases different": 18259, "systems directly": 160340, "directly test": 42599, "humans learning": 71424, "generalizing different": 63291, "input languages": 77272, "languages vary": 87157, "vary degree": 176265, "structure evaluate": 156551, "memorization generalization": 100329, "capabilities pretrained": 20115, "model gpt35": 103765, "second language": 147485, "networks trained": 112810, "results striking": 143815, "linguistic input": 93036, "generalization better": 63138, "better convergence": 17835, "humans findings": 71386, "suggest learning": 158554, "systems sensitive": 160604, "languages similar": 87128, "learning findings": 90460, "highlight challenges": 69728, "avenues research": 15252, "research language": 141877, "evolution language": 52265, "prediction clinical": 125771, "clinical prediction": 24357, "prediction essential": 125791, "essential task": 50637, "task healthcare": 161445, "domain research": 44271, "use transformers": 172924, "transformers language": 169319, "using realworld": 174649, "data molecular": 35401, "profiles paper": 129700, "investigates potential": 80576, "improve clinical": 73426, "prediction compared": 125773, "conventional machine": 31706, "addresses challenge": 5404, "learning predicting": 90839, "rare disease": 135947, "areas study": 12393, "study benchmarks": 157188, "baselines language": 16342, "prediction multiple": 125829, "fewshot regimes": 58042, "demonstrate significant": 38542, "potential nlp": 124885, "nlp clinical": 113704, "clinical research": 24361, "research improve": 141843, "built factual": 19479, "used linguistic": 173135, "resources building": 142425, "building complex": 19382, "task best": 161221, "knowledge explored": 81978, "explored generative": 55349, "future steps": 62383, "improve initial": 73489, "additional languages": 4971, "knowledge automated": 81759, "automated feedback": 14552, "feedback large": 57721, "humanlike fluent": 71262, "fluent responses": 59910, "tasks taskoriented": 163344, "applying llms": 10905, "applications remains": 10666, "tendency generate": 164326, "generate hallucinations": 63524, "use external": 172617, "blackbox llm": 18642, "set plugandplay": 149266, "plugandplay modules": 123666, "makes llm": 98667, "grounded external": 67861, "llm prompts": 93922, "model responses": 104468, "using feedback": 174196, "feedback generated": 57692, "utility functions": 174952, "response effectiveness": 142639, "empirically validated": 47809, "types scenarios": 170422, "fluency informativeness": 59891, "responses make": 142847, "leveraging chatgpt": 91817, "chatgpt text": 23389, "augmentation effective": 14273, "overcoming challenge": 118316, "challenge limited": 21677, "limited sample": 92841, "target domain": 161059, "quality natural": 134209, "strategy mitigate": 156184, "mitigate challenges": 102595, "augmentation better": 14267, "capture data": 20643, "increase sample": 75232, "current text": 34282, "ensure correct": 49676, "correct labeling": 32398, "data lacking": 35279, "ensure sufficient": 49708, "sufficient diversity": 158485, "models especially": 106149, "especially development": 50455, "development chatgpt": 41065, "chatgpt demonstrated": 22831, "demonstrated improved": 38714, "language comprehension": 83203, "comprehension abilities": 27876, "abilities work": 2043, "propose text": 132163, "approach based": 11020, "based chatgpt": 15697, "chatgpt named": 23136, "samples multiple": 146042, "different samples": 41976, "augmented samples": 14371, "samples used": 146075, "downstream model": 44730, "performance proposed": 121957, "approach stateoftheart": 11566, "testing accuracy": 164692, "accuracy distribution": 3206, "answer correctness": 9693, "correctness generative": 32491, "models gplms": 106516, "models parameters": 108430, "models observe": 108326, "knowledge used": 82491, "used inference": 173113, "task specified": 161743, "specified user": 154339, "user prompt": 173476, "questionanswering task": 135001, "leverage knowledge": 91612, "patterns learned": 120546, "training produce": 168658, "produce answer": 129370, "answer user": 9792, "answers produced": 10066, "knowledge provided": 82322, "provided prompts": 133086, "engine used": 48867, "used retrieve": 173219, "retrieve documents": 144216, "documents relevant": 43938, "relevant question": 139638, "question content": 134851, "prompt paper": 130623, "chatgpt leveraging": 23100, "leveraging models": 91905, "combination prompt": 25840, "study context": 157244, "health advice": 68931, "measuring effectiveness": 99948, "effectiveness chatgpt": 46140, "chatgpt context": 22810, "context knowledge": 30804, "correctness work": 32509, "work important": 179033, "important implications": 73143, "implications development": 72914, "development robust": 41212, "based generative": 15829, "independent evaluation": 75497, "mathematical word": 99606, "commercially available": 26101, "available large": 15151, "problems mwps": 128572, "knowledge independent": 82119, "chatgpt chatgpts": 22774, "chatgpts performance": 23499, "performance changes": 121230, "requirement work": 141273, "time provides": 166478, "work compared": 178848, "operations lead": 116787, "lead higher": 89749, "higher probability": 69623, "probability failure": 128112, "addition subtraction": 4909, "predict chatgpt": 125677, "chatgpt correctly": 22814, "correctly answer": 32457, "dataset comprised": 36176, "support research": 159328, "chatgpt technology": 23384, "technology applications": 164122, "applications limitations": 10592, "aipowered chatbot": 7689, "write coherent": 179696, "attention paper": 13957, "overview chatbots": 118421, "transformer better": 169109, "applications chatgpt": 10449, "domains including": 44432, "including healthcare": 74552, "research highlighted": 141825, "despite promising": 40183, "privacy ethical": 127997, "concerns surrounding": 28832, "chatgpt addition": 22682, "addition highlight": 4864, "highlight important": 69748, "important limitations": 73153, "ask chatgpt": 12834, "provide point": 132922, "present responses": 126436, "responses questions": 142893, "attempt answer": 13779, "models continue": 105777, "continue scale": 31203, "learning leverage": 90641, "overhead associated": 118354, "associated model": 13499, "models computer": 105722, "proven challenging": 132638, "challenging train": 22310, "result performance": 143055, "performance lags": 121707, "learning effectiveness": 90397, "key value": 81597, "successfully implement": 158384, "activation units": 4417, "train proposed": 167814, "parameters best": 119718, "model date": 103404, "generation comprehension": 64519, "comprehension natural": 27921, "length input": 91369, "remains competitive": 139993, "models tested": 109381, "benchmarks maintaining": 17299, "fewer operations": 57866, "analysis adversarial": 8805, "generate toxic": 63761, "way reduce": 177871, "reduce risk": 138471, "risk llms": 144949, "training llm": 168550, "computation requirements": 28317, "requirements methods": 141310, "finished text": 59625, "significantly smaller": 151158, "model detoxification": 103451, "applied diverse": 10749, "diverse llms": 43568, "llms long": 95821, "importantly method": 73225, "access internal": 2864, "llm token": 94055, "token probability": 166727, "crucial llms": 33820, "accessible apis": 2941, "approach significantly": 11538, "compared base": 26745, "base llms": 15615, "techniques terms": 164037, "language detoxification": 83253, "search tool": 147425, "tool data": 166961, "data transparency": 35890, "transparency llms": 169583, "developed training": 40922, "currently largest": 34331, "largest language": 89440, "accompanied commensurate": 2993, "search capabilities": 147325, "corpus date": 32296, "tool opensourced": 167015, "opensourced available": 116688, "available hugging": 15135, "hugging face": 70535, "tool goal": 166982, "differences language": 41628, "descriptions mining": 39479, "mining large": 102410, "generate useful": 63773, "timeconsuming humans": 166544, "formulate new": 60616, "automatically discovers": 14793, "differences large": 41629, "performance contribute": 121336, "sciences humanities": 146928, "health propose": 68962, "unified evaluation": 171706, "significance dataset": 150552, "propose relevant": 132099, "relevant novel": 139624, "range applications": 135580, "error patterns": 50312, "search engines": 147343, "deployment interactive": 39276, "search applications": 147317, "designed facilitate": 39880, "integrates features": 78555, "indexing text": 75557, "text collections": 164929, "deploy search": 39203, "exploration make": 55085, "retrieval relevant": 144127, "quick efficient": 135334, "efficient userfriendly": 46748, "userfriendly interface": 173552, "interface enables": 79429, "modes large": 109854, "models framework": 106395, "framework open": 61330, "source available": 153389, "applications portfolio": 10635, "applications created": 10463, "prefix prompt": 126100, "following paper": 60302, "input improves": 77261, "improves instructionfollowing": 74013, "instructionfollowing ability": 78174, "various large": 176000, "llms inference": 95623, "prompts llms": 131366, "llms fixed": 95281, "fixed prompt": 59717, "regardless target": 138905, "llms finetuned": 95272, "finetuned follow": 59020, "instructions instructiontuned": 78285, "instructiontuned models": 78402, "llms improved": 95559, "time fixed": 166405, "prompt constructed": 130406, "estimate output": 50726, "output distribution": 117916, "focusing instruction": 60186, "instruction target": 78058, "task inference": 161468, "inference words": 76137, "ability does": 2137, "instructionfinetuned llms": 78170, "llms experiments": 95188, "dream reports": 44962, "content large": 30537, "models field": 106329, "research study": 142096, "study dream": 157296, "analysis verbal": 9233, "performed manual": 122376, "manual scoring": 99063, "trained annotators": 167866, "consistent body": 29807, "nlp tools": 113924, "support automatic": 159258, "automatic analysis": 14638, "reports proposed": 140604, "context required": 30899, "extensive data": 55743, "cases methods": 20994, "limitations adopting": 92532, "llms study": 96707, "study replicate": 157591, "manual annotation": 99022, "using mixture": 174492, "approaches focus": 11777, "low performance": 97775, "linguistic differences": 93025, "reports collected": 140586, "collected different": 25685, "different groups": 41790, "classification method": 24029, "achieves high": 4018, "performance robust": 122033, "potential biases": 124625, "biases overall": 18296, "approach application": 10994, "results studies": 143821, "reward design": 144683, "design language": 39669, "models reward": 108998, "design reinforcement": 39740, "rl challenging": 145049, "desired behavior": 40040, "behavior difficult": 16583, "reward functions": 144686, "expert demonstrations": 54559, "demonstrations instead": 39018, "language interface": 83459, "design prompting": 39735, "proxy reward": 133442, "reward function": 144685, "function user": 61864, "textual prompt": 165936, "prompt containing": 130410, "behavior approach": 16564, "rl framework": 145055, "framework specifically": 61424, "specifically users": 154303, "users specify": 173786, "training training": 168796, "llm evaluates": 93641, "agents behavior": 6549, "behavior described": 16579, "described prompt": 39384, "outputs corresponding": 118041, "corresponding reward": 32603, "reward signal": 144711, "signal rl": 150522, "rl agent": 145038, "agent uses": 6506, "uses reward": 173906, "train agents": 167745, "aligned user": 8078, "negotiation task": 112572, "task tasks": 161769, "tasks rl": 163192, "users objectives": 173722, "trained reward": 168063, "functions learned": 61913, "mixedmethods approach": 102738, "approach understanding": 11625, "understanding user": 171522, "user trust": 173531, "voice assistant": 177521, "despite huge": 40124, "voice assistants": 177522, "fail meet": 56964, "meet user": 100285, "user expectations": 173407, "expectations study": 53746, "study conducted": 157232, "mixedmethods analysis": 102737, "users trust": 173797, "assistants illustrate": 13411, "contribute crowdsourced": 31395, "crowdsourced dataset": 33726, "survey data": 159618, "data certain": 34745, "users input": 173682, "additionally examine": 5055, "future tasks": 62388, "users stop": 173787, "stop using": 155841, "assistants specific": 13429, "tasks result": 163174, "short period": 149981, "period time": 122470, "building trust": 19457, "gpt35 models": 66839, "tasks showcasing": 163234, "showcasing strong": 150125, "strong understanding": 156450, "handle various": 68576, "open world": 116310, "explored especially": 55346, "crucial assessing": 33764, "stability models": 154675, "trustworthy ai": 169862, "study perform": 157523, "experimental analysis": 53924, "analysis gpt35": 8950, "exploring robustness": 55504, "robustness using": 145442, "21 datasets": 748, "test samples": 164611, "popular natural": 124028, "gpt35 outperforms": 66841, "existing finetuned": 53369, "encounters significant": 48586, "degradation average": 37981, "inference sentiment": 76095, "robustness challenges": 145353, "challenges including": 21910, "prompt sensitivity": 130664, "guiding future": 68272, "research addressing": 141563, "addressing challenges": 5431, "analysis language": 8993, "llms variety": 96944, "brittle small": 19157, "small changes": 152274, "changes inputs": 22378, "contexts better": 31006, "understand behavior": 170984, "llms provide": 96254, "provide causal": 132698, "causal formulation": 21187, "linguistic competence": 93015, "llms propose": 96245, "general framework": 62954, "framework study": 61430, "study measure": 157483, "models internal": 106802, "representations various": 140908, "evaluating models": 51347, "models alignment": 105341, "alignment interventions": 8175, "given causal": 65845, "causal model": 21209, "model develop": 103452, "gradientbased adversarial": 67402, "attacks target": 13744, "broader range": 19218, "range properties": 135678, "techniques carry": 163847, "tasks showing": 163236, "valuable tools": 175460, "behavior tasks": 16653, "robust asr": 145240, "asr error": 12993, "correction using": 32449, "constrained decoding": 30029, "correction models": 32445, "models form": 106382, "form important": 60463, "important automatic": 73091, "postprocessing improve": 124511, "improve readability": 73600, "1best asr": 564, "asr hypothesis": 12997, "input perform": 77303, "correction leveraging": 32442, "leveraging context": 91826, "task finetuned": 161400, "model utilizes": 104861, "utilizes asr": 175122, "asr nbest": 13004, "nbest lists": 112079, "model input": 103866, "model obtaining": 104141, "richer information": 144818, "standard error": 154818, "process based": 128745, "nbest list": 112077, "list asr": 93122, "used allows": 172958, "information propagated": 76653, "semeval2023 task": 148339, "finetuning chatgpt": 59192, "chatgpt data": 22824, "prediction paper": 125835, "describes submission": 39393, "2023 task": 716, "results 10": 143143, "10 languages": 121, "evaluation measure": 51691, "measure crosslingual": 99836, "approach explores": 11212, "parameters updates": 119885, "updates pretrained": 172355, "reduced learning": 138493, "additionally study": 5135, "impact using": 72738, "case chatgpt": 20868, "humanlabeled data": 71213, "available study": 15209, "stabilizes training": 154684, "consistently improves": 29881, "results pretrained": 143680, "models lack": 106855, "lack domain": 82928, "noticeable performance": 114320, "learning synthetic": 91047, "systems improve": 160429, "finally examine": 58452, "data contribute": 34852, "interference issues": 79479, "models classifying": 105628, "nuclear medicine": 114809, "growing use": 68056, "use transformerbased": 172921, "models medicine": 108166, "unclear models": 170697, "domainspecific vocabulary": 44637, "reporting styles": 140580, "study evaluated": 157323, "score prediction": 147089, "prediction based": 125763, "text reports": 165419, "remaining text": 139969, "reports used": 140616, "used model": 173149, "input multiple": 77291, "medicine domain": 100237, "domain using": 44322, "assessed impact": 13143, "monte carlo": 110088, "domain adaption": 44082, "models example": 106183, "following domain": 60271, "performing model": 122408, "accuracy 774": 3119, "adaptation improved": 4624, "models interpreting": 106810, "controllable data": 31614, "llms effectively": 95006, "effectively generate": 46003, "fluent text": 59916, "text target": 165525, "target output": 161092, "output follows": 117933, "language patterns": 86461, "output format": 117934, "llms direct": 94938, "resource limitations": 142390, "leveraging llm": 91895, "llm tool": 94057, "prediction proposed": 125852, "proposed mixture": 132387, "procedure generating": 128701, "generating data": 64183, "data controlled": 34854, "controlled manner": 31642, "applied improve": 10766, "quality synthesized": 134278, "synthesized data": 160000, "metrics method": 102112, "method capable": 100727, "producing diverse": 129551, "diverse natural": 43582, "text preserving": 165367, "label semantics": 82699, "benchmarks compared": 17190, "baselines method": 16348, "method offers": 100998, "datacentric approach": 36032, "approach applying": 10997, "llms complex": 94664, "model reinforcement": 104440, "learning inspired": 90581, "rl use": 145084, "pretraining propose": 127416, "model trains": 104800, "encoder combined": 48410, "combined transformer": 25923, "transformer blocks": 169112, "rl avoids": 145046, "models sequence": 109076, "representation captures": 140676, "including dynamic": 74502, "learning sampleefficient": 90959, "dataset quality": 36486, "indicates potential": 75642, "chatgpt large": 23085, "models evolutionary": 106177, "engines online": 49018, "game design": 62553, "design large": 39671, "llms taken": 96761, "world storm": 179621, "changing landscape": 22402, "answer complex": 9685, "perform challenging": 120882, "creative tasks": 33380, "tasks generate": 162453, "write stories": 179701, "pieces music": 122979, "music paper": 111313, "design framework": 39636, "combines interactive": 25937, "evolution large": 52267, "typical human": 170450, "human design": 70693, "process use": 129023, "use exploit": 172613, "users feedback": 173657, "ideas large": 71765, "complex creative": 27387, "process starts": 128991, "set candidate": 149146, "designs generated": 40019, "users users": 173804, "users collaborate": 173595, "providing feedback": 133297, "feedback interactive": 57712, "evaluated framework": 51177, "framework game": 61176, "design tasks": 39779, "human designers": 70694, "domain specific": 44290, "specific question": 154069, "graphs using": 67653, "using logical": 174453, "programming large": 129850, "models answering": 105362, "requires tailored": 141457, "approach limited": 11363, "nature domain": 111996, "domain approach": 44094, "approach integrates": 11311, "llms enabling": 95059, "enabling utilization": 48360, "task representing": 161693, "representation facilitate": 140687, "approach evaluate": 11195, "evaluate using": 51126, "using wellknown": 174866, "wellknown benchmark": 178168, "achieves accurate": 3957, "accurate identification": 3464, "test questions": 164605, "trained small": 168075, "small fraction": 152290, "presents promising": 126622, "approach addressing": 10975, "addressing question": 5473, "explainable robust": 54751, "robust solution": 145323, "solution incorporating": 152948, "specialized code": 153876, "models feasibility": 106310, "feasibility study": 57361, "study recent": 157583, "significantly boost": 150951, "engineering training": 49002, "demands substantial": 38168, "collection annotation": 25724, "annotation training": 9558, "datasets proprietary": 37051, "process requires": 128974, "requires costly": 141354, "gpu cluster": 67336, "intellectual property": 78709, "commercial llms": 26080, "llms makes": 95850, "attacks creating": 13696, "model comparable": 103310, "incurs high": 75486, "high costs": 69436, "explore practical": 55275, "novel direction": 114469, "commercial blackbox": 26071, "blackbox llms": 18643, "llms using": 96918, "explore feasibility": 55205, "attacks llms": 13723, "llms extract": 95225, "synthesis code": 159936, "code translation": 25191, "systematically investigate": 160193, "code ability": 24648, "attacks different": 13703, "different coderelated": 41692, "coderelated tasks": 25278, "schemes including": 146805, "zeroshot incontext": 180211, "refine outputs": 138737, "outputs leading": 118082, "process results": 128978, "promising outcomes": 130280, "number queries": 114934, "backbone model": 15416, "similar target": 151311, "target llms": 161081, "llms summarize": 96731, "summarize findings": 158907, "findings insights": 58710, "insights help": 77578, "help researchers": 69174, "researchers better": 142178, "threats posed": 166282, "attacks including": 13711, "attack surface": 13668, "code examples": 24816, "examples llms": 52635, "compositionality language": 27832, "remarkably good": 140318, "individual tasks": 75744, "success paper": 158276, "argue current": 12404, "current paradigms": 34202, "critical aspect": 33461, "modeling human": 105011, "learned tasks": 90134, "challenge field": 21643, "field ai": 58116, "ai fields": 6996, "hallmarks human": 68326, "crosslingual summarization": 33671, "translate english": 169406, "document summary": 43859, "important open": 73167, "open problem": 116264, "problem requires": 128383, "attention field": 13880, "plms gpt2": 123606, "gpt2 t5": 66600, "far humanlevel": 57222, "finally suggest": 58530, "suggest research": 158586, "models evaluating": 106167, "speech understanding": 154485, "used default": 173024, "models parameter": 108426, "model need": 104120, "need updated": 112420, "individual downstream": 75714, "finetuning prohibitively": 59471, "expensive model": 53791, "tasks mitigate": 162803, "issue parameterefficient": 80939, "proposed way": 132454, "introduce trainable": 80130, "plugged large": 123672, "tuning lora": 170052, "parameters task": 119871, "effectiveness parameter": 46256, "learning speech": 91014, "synthesis task": 159968, "models examine": 106181, "text learn": 165275, "underlying structure": 170872, "structure syntax": 156608, "lms text": 97209, "provide additional": 132669, "observed model": 115424, "behaviors using": 16729, "using set": 174710, "establish training": 50678, "exhibit substantial": 53111, "t5 language": 160711, "model does": 103485, "does appear": 43960, "lexical items": 91986, "biases training": 18319, "finetuning t5": 59575, "remains somewhat": 140074, "gpt2 similarly": 66596, "twostage pipeline": 170264, "task localizing": 161528, "paper outlines": 119090, "outlines approach": 117503, "2023 shared": 711, "task identify": 161454, "dialects languages": 41404, "languages results": 87123, "9way classification": 1846, "approach consists": 11079, "consists twostage": 29989, "outperforms participants": 117814, "systems previous": 160546, "domain achieve": 44061, "codebase available": 25222, "verification chainofthought": 176469, "prompting enables": 130912, "enables large": 48201, "tasks generating": 162457, "explanation final": 54783, "final prediction": 58394, "promising ability": 130211, "prompting performance": 131039, "performance greatly": 121611, "factuality generated": 56910, "generated explanation": 63862, "improve correctness": 73436, "explanations finetuning": 54849, "data needed": 35419, "approaches data": 11723, "collection tool": 25755, "tool building": 166951, "building introduce": 19426, "generated explanations": 63863, "data wrong": 35976, "furthermore suggest": 62167, "suggest use": 158593, "faithfulness explanations": 57088, "toolkit publicly": 167086, "ai usage": 7308, "aigenerated content": 7401, "content given": 30513, "systems like": 160462, "chatgpt generate": 22976, "responsible use": 142975, "use technology": 172905, "understanding benefits": 171135, "benefits harms": 17469, "systems requires": 160590, "indiscriminate adoption": 75682, "adoption practice": 5649, "lack common": 82897, "common framework": 26141, "framework language": 61252, "ai content": 6932, "content generation": 30508, "generation prior": 64950, "work proposed": 179225, "guidelines using": 68255, "ai specific": 7225, "specific scenarios": 154083, "work makes": 179118, "makes contributions": 98638, "contributions propose": 31504, "model consisting": 103357, "second introduce": 147480, "introduce ai": 79910, "standardized way": 154912, "ai scientific": 7207, "model cards": 103252, "allow users": 8353, "reflect key": 138796, "help research": 69173, "support development": 159277, "community norms": 26499, "aims promote": 7649, "research provide": 142007, "research fields": 141793, "easily generate": 45315, "dataset language": 36378, "models grow": 106569, "need largescale": 112342, "largescale highquality": 89314, "paper documents": 118866, "documents data": 43900, "data creation": 34871, "text sources": 165473, "dataset spanning": 36552, "languages used": 87155, "multilingual bloom": 110468, "model release": 104445, "release large": 139474, "subset corpus": 157998, "monolingual multilingual": 110070, "multilingual modeling": 110509, "large multilingual": 88933, "multilingual corpus": 110476, "visual chatgpt": 177130, "editing visual": 45495, "visual foundation": 177175, "capabilities domains": 19863, "domains chatgpt": 44364, "chatgpt trained": 23400, "languages currently": 86973, "capable processing": 20460, "processing generating": 129160, "visual world": 177343, "stable diffusion": 154688, "showing great": 150168, "outputs end": 118049, "end build": 48638, "different visual": 42084, "enable user": 48132, "interact chatgpt": 79050, "complex visual": 27642, "visual editing": 177156, "editing instructions": 45462, "instructions require": 78344, "require collaboration": 141076, "collaboration multiple": 25597, "multiple ai": 110832, "design series": 39752, "series prompts": 148947, "inject visual": 77104, "model information": 103860, "information chatgpt": 76312, "considering models": 29723, "require visual": 141217, "feedback experiments": 57677, "experiments visual": 54539, "chatgpt opens": 23162, "opens door": 116550, "chatgpt help": 23043, "optimization large": 117002, "model generation": 103738, "llms sparked": 96647, "sparked significant": 153703, "capabilities leading": 20007, "leading development": 89809, "development various": 41257, "various commercial": 175859, "commercial applications": 26070, "applications high": 10552, "high cost": 69431, "cost using": 32748, "value generation": 175487, "generation limited": 64796, "limited inference": 92779, "presents study": 126642, "optimizing inference": 117115, "temperature max": 164200, "tokens significantly": 166883, "significantly affects": 150942, "generation design": 64564, "tasks verify": 163459, "learning masked": 90667, "visual token": 177328, "modeling prompt": 105074, "learning achieved": 90177, "success efficiently": 158233, "ones achieve": 115984, "area current": 12321, "current visual": 34299, "methods designed": 101431, "careful design": 20779, "forms pretraining": 60604, "pretrained visual": 127240, "consistency propose": 29784, "propose visual": 132215, "downstream visual": 44856, "visual classification": 177131, "classification pretrained": 24054, "prediction addition": 125756, "prototypical verbalizer": 132606, "mapping predicted": 99153, "labels best": 82788, "prompt method": 130601, "method generative": 100891, "robustness prompt": 145422, "prompt length": 130588, "materials data": 99506, "data research": 35659, "conversational language": 31880, "models prompt": 108683, "replace manual": 140456, "automated data": 14533, "data extraction": 35031, "extraction based": 56263, "processing language": 129175, "llms methods": 95885, "enable efficient": 48077, "sets research": 149400, "coding work": 25419, "method fully": 100882, "fully automate": 61741, "accurate data": 3447, "using advanced": 173962, "advanced conversational": 5720, "conversational llm": 31887, "consists set": 29985, "engineered prompts": 48873, "llm identify": 93742, "data extract": 35028, "known issues": 82606, "issues llms": 81032, "factually inaccurate": 56927, "inaccurate responses": 74270, "conversational llms": 31888, "llms yields": 97032, "yields high": 180020, "precision recall": 125618, "best conversational": 17668, "demonstrate exceptional": 38328, "enabled information": 48138, "information retention": 76706, "conversational model": 31891, "model combined": 103303, "prompts results": 131455, "likely powerful": 92462, "tools data": 167135, "critical cooling": 33474, "cooling rates": 32062, "rates metallic": 136034, "metallic glasses": 100583, "high entropy": 69455, "human instructions": 70854, "instructions image": 78278, "success chatgpt": 158220, "drawn widespread": 44956, "attention multimodal": 13939, "multimodal dialogue": 110622, "systems lack": 160448, "lack datasets": 82918, "datasets academic": 36630, "academic community": 2727, "effectively evaluate": 45989, "multimodal generation": 110641, "capabilities visual": 20255, "visual language": 177208, "paper address": 118698, "gap introducing": 62666, "novel multimodal": 114608, "datasets synthetic": 37146, "incorporate visual": 75041, "multimodal systems": 110767, "human requests": 71017, "chatgpt conversations": 22812, "conversations introduce": 31949, "specific rules": 154081, "supervisory signals": 159227, "reasoning accompanied": 136650, "clarify reasons": 23859, "given human": 65900, "human instruction": 70853, "instruction proposed": 78049, "method involves": 100940, "involves twostage": 80769, "twostage training": 170271, "training image": 168479, "transformer scratch": 169208, "stage employs": 154731, "employs discrete": 47957, "concise tokens": 28854, "tokens single": 166886, "single data": 151789, "data stream": 35804, "subsequently fed": 157976, "transformer generate": 169129, "generate visual": 63784, "textual feedback": 165916, "feedback second": 57792, "stage conduct": 154727, "results focusing": 143420, "image quality": 72309, "user queries": 173478, "findings aim": 58634, "aim contribute": 7441, "contribute valuable": 31423, "millions users": 102256, "emergence pretrained": 47446, "range social": 135697, "social chatbots": 152535, "chitchat chatbots": 23680, "demonstrate language": 38391, "language ability": 83122, "users work": 173818, "development social": 41222, "user engagement": 173403, "specifically examining": 154199, "examining use": 52456, "efficiently develop": 46772, "engaging chatbots": 48843, "train reward": 167818, "sample responses": 145957, "conversation length": 31795, "measure level": 99856, "ab testing": 1861, "users chai": 173591, "chai research": 21446, "research platform": 141970, "approach increases": 11303, "increase user": 75243, "model future": 103704, "aims use": 7683, "model reward": 104488, "evaluation llms": 51672, "using xai": 174873, "deployed artificial": 39207, "ai impacts": 7036, "evaluate tools": 51119, "aibased systems": 7348, "analysis human": 8958, "ai xai": 7323, "interaction hci": 79130, "gaps remain": 62765, "understanding humans": 171285, "humans interact": 71413, "explanations humans": 54861, "community paper": 26500, "paper draw": 118868, "rapidly evolving": 135919, "boom large": 18809, "metrics llms": 102105, "llms humancentered": 95519, "discussing llms": 42983, "llms outline": 96010, "developed focus": 40876, "cognitive engagement": 25454, "llms goal": 95407, "llm evaluation": 93642, "evaluation consistency": 51505, "consistency analysis": 29750, "chatgpt gained": 22960, "gained huge": 62462, "huge popularity": 70525, "analyses showed": 8784, "showed chatgpt": 150131, "chatgpt achieved": 22675, "adding extra": 4825, "replace humans": 140455, "industrial fields": 75855, "reliability trustworthiness": 139710, "logically consistent": 97402, "focusing specifically": 60198, "consistency properties": 29783, "suggest models": 158568, "enhanced language": 49342, "short generating": 149972, "consistent predictions": 29833, "experiments prompt": 54405, "prompt designing": 130424, "designing fewshot": 39998, "learning employing": 90411, "llms unlikely": 96891, "issue llms": 80927, "llms learning": 95742, "controllable image": 31617, "guidance given": 68148, "control signals": 31588, "various kinds": 175987, "different control": 41709, "architectures focus": 12264, "focus certain": 59953, "control signal": 31587, "promptbased framework": 130765, "directly utilize": 42613, "model help": 103791, "help bridge": 69090, "gap different": 62637, "sentence generation": 148506, "new lightweight": 113261, "generation network": 64880, "network generate": 112656, "signals different": 150529, "experiments prevalent": 54400, "verified effectiveness": 176509, "chatgpt asks": 22717, "visual descriptions": 177152, "insightful questions": 77503, "acquiring knowledge": 4283, "understanding world": 171540, "importance questioning": 73054, "largely overlooked": 89164, "models primarily": 108642, "chatgpt discover": 22858, "suitable prompt": 158704, "new opportunity": 113310, "opportunity develop": 116889, "develop automatic": 40759, "method deployed": 100779, "chatgpt prompted": 23222, "informative questions": 76880, "questionanswering model": 134990, "new visual": 113498, "image descriptions": 72226, "descriptions conduct": 39442, "evaluations common": 51949, "common image": 26146, "captions significantly": 20624, "significantly informative": 151064, "image information": 72276, "objects image": 115287, "matching code": 99454, "available httpsgithubcomvisioncairchatcaptioner": 15133, "learning visionlanguage": 91126, "models continual": 105773, "help pretrained": 69161, "efficiently adapt": 46758, "continual training": 31174, "training contrastive": 168204, "model observe": 104137, "observe models": 115382, "transfer ability": 168894, "ability significantly": 2368, "forgetting existing": 60419, "methods mitigate": 101663, "previous data": 127581, "data clip": 34759, "replay methods": 140483, "methods access": 101271, "access pretraining": 2896, "dataset addition": 36096, "data previously": 35541, "tasks enhance": 162303, "cost sacrificing": 32738, "performance address": 121134, "models feature": 106312, "parameter space": 119644, "space feature": 153575, "reference dataset": 138654, "dataset semantic": 36524, "semantic diversity": 148139, "need labeled": 112330, "prevent large": 127536, "large parameter": 88980, "parameter shift": 119640, "averaging weights": 15327, "training propose": 168666, "propose challenging": 131742, "multidomain task": 110392, "task incremental": 161466, "incremental learning": 75469, "methods tasks": 101866, "outperforms methods": 117802, "classincremental learning": 24223, "impressive ability": 73256, "ability code": 2101, "struggling address": 156791, "intent provided": 79019, "humans widely": 71493, "widely acknowledged": 178356, "typically employ": 170482, "prior implementation": 127897, "introduce planning": 80085, "planning code": 123256, "generation help": 64714, "reduce difficulty": 138419, "method large": 100946, "model consists": 103358, "planning phase": 123305, "combined incontext": 25901, "generates code": 64060, "evaluated multiple": 51193, "generation datasets": 64556, "results demonstrated": 143343, "naive direct": 111387, "direct generation": 42384, "model improvement": 103831, "improvement performance": 73833, "highlighting significance": 69836, "type classification": 170300, "classification case": 23970, "realworld setting": 136511, "goal determine": 66161, "job posting": 81231, "explore multiple": 55245, "multiple approaches": 110838, "including supervised": 74741, "supervised approaches": 159089, "approaches traditional": 11930, "traditional models": 167664, "support vector": 159347, "compare large": 26687, "used fewshot": 173071, "classification settings": 24090, "accomplish task": 3013, "employ prompt": 47857, "engineering technique": 48997, "involves designing": 80726, "prompts guide": 131298, "guide llms": 68190, "llms desired": 94902, "specifically evaluate": 154197, "models textdavinci003": 109390, "textdavinci003 gpt35turbo": 165622, "analysis impact": 8965, "aspects prompt": 12963, "engineering models": 48958, "results welldesigned": 143930, "welldesigned prompt": 178152, "zeroshot gpt35turbo": 180204, "classifier outperforms": 24163, "achieving increase": 4192, "recall compared": 137264, "compared best": 26755, "supervised approach": 159088, "approach furthermore": 11243, "furthermore observe": 62121, "wording prompt": 178701, "prompt critical": 130416, "critical factor": 33494, "eliciting appropriate": 47057, "appropriate reasoning": 11993, "model seemingly": 104521, "prompt significantly": 130673, "significantly affect": 150938, "performance evaluation": 121470, "google translate": 66330, "english translation": 49118, "translation sentiment": 169513, "analysis google": 8947, "prominent language": 130150, "language translation": 86800, "translation limited": 169478, "limited work": 92880, "work evaluating": 178941, "evaluating quality": 51377, "quality translation": 134291, "translation compared": 169449, "written languages": 179783, "languages world": 87160, "languages hindi": 87023, "original language": 117348, "framework evaluates": 61143, "using google": 174253, "using sentiment": 174703, "terms sentiment": 164474, "analysis low": 9008, "low level": 97768, "compared expert": 26807, "translation certain": 169447, "words phrases": 178745, "nature contextual": 111991, "historical information": 70204, "information framework": 76462, "framework lays": 61265, "lays foundation": 89711, "evaluation languages": 51657, "exploring chatgpts": 55459, "ability rank": 2337, "consistency human": 29766, "language assistant": 83162, "chatgpt capable": 22756, "capable performing": 20456, "article generation": 12583, "generation code": 64493, "analysis furthermore": 8942, "furthermore chatgpt": 62021, "chatgpt consistently": 22807, "accuracy reliability": 3371, "content evaluation": 30490, "mimicking human": 102270, "chatgpts potential": 23503, "conducted assess": 29206, "assess ability": 13039, "content order": 30562, "order test": 117247, "consisting prompts": 29953, "prompts created": 131213, "range use": 135723, "models utilized": 109601, "utilized generate": 175101, "generate corresponding": 63446, "responses chatgpt": 142740, "rank responses": 135778, "generated models": 63924, "results test": 143864, "preliminary experimental": 126123, "finding implies": 58607, "chatgpts zeroshot": 23512, "zeroshot ranking": 180314, "used reduce": 173208, "reduce annotation": 138399, "ranking tasks": 135828, "chatgpt replace": 23268, "replace traditional": 140458, "traditional kbqa": 167634, "kbqa models": 81416, "models indepth": 106749, "analysis question": 9108, "answering performance": 9920, "performance gpt": 121596, "gpt llm": 66448, "llm family": 93670, "chatgpt powerful": 23203, "powerful large": 125294, "llm covers": 93568, "knowledge resources": 82371, "knowledge growing": 82093, "growing exploring": 68024, "exploring chatgpt": 55458, "models works": 109716, "chatgpt lack": 23082, "comprehensive testing": 28145, "testing various": 164766, "questions analyze": 135036, "analyze limitations": 9310, "limitations model": 92624, "blackbox testing": 18666, "ribeiro et": 144760, "evaluate chatgpt": 50921, "chatgpt family": 22938, "family llms": 57198, "datasets include": 36924, "multilingual datasets": 110480, "datasets total": 37159, "number test": 114959, "addition gpt": 4863, "evaluate wellknown": 51132, "llms dataset": 94781, "does chatgpt": 43964, "chatgpt resemble": 23274, "resemble humans": 142284, "chatgpt shown": 23313, "internal workings": 79568, "workings remain": 179408, "remain black": 139912, "unclear llms": 170696, "llms chatbots": 94565, "humanlike characteristics": 71250, "characteristics language": 22465, "devised experiments": 41335, "experiments probe": 54401, "great progress": 67714, "people process": 120734, "12 experiments": 266, "words different": 178721, "different meanings": 41845, "sentence structures": 148538, "reasonable inferences": 136593, "using shorter": 174712, "informative content": 76868, "use context": 172561, "architecture overall": 12200, "chatbots like": 22621, "capable mimicking": 20449, "potential provide": 124928, "insights people": 77620, "people learn": 120727, "learn use": 90070, "struggle answer": 156728, "answer multiplechoice": 9736, "code analyzed": 24663, "effectiveness generative": 46189, "question mcq": 134911, "snippets code": 152512, "introductory intermediate": 80263, "programming courses": 129805, "courses postsecondary": 33021, "postsecondary level": 124527, "emerging technology": 47541, "discussions potential": 43015, "potential uses": 125041, "uses exercise": 173848, "exercise generation": 53003, "explanation misuses": 54794, "misuses programming": 102579, "programming education": 129812, "capabilities gpt": 19926, "analyze code": 9275, "formative summative": 60561, "python courses": 133831, "containing code": 30329, "questions requiring": 135258, "reasoning code": 136748, "findings leveraged": 58723, "leveraged educators": 91690, "gpt valuable": 66508, "optimization problems": 117030, "problems based": 128461, "language optimization": 86450, "investigate methods": 80448, "methods extracting": 101512, "optimization problem": 117028, "accessibility usability": 2936, "interface using": 79449, "label semantic": 82698, "problem generate": 128265, "form problem": 60480, "entities task": 49876, "aims reduce": 7663, "reduce ambiguity": 138398, "second task": 147512, "linear programming": 92972, "programming lp": 129855, "report present": 140550, "problem dataset": 128218, "dataset shared": 36534, "shared tasks": 149829, "neurips 2022": 112996, "furthermore investigate": 62104, "hope bring": 70348, "applications datasets": 10469, "analyze large": 9307, "llms represent": 96404, "investigating reliance": 80617, "text perturbations": 165353, "models extensive": 106272, "representations particularly": 140861, "particularly higher": 120204, "higher layers": 69608, "robustness llms": 145403, "breast cancer": 19033, "nlp algorithms": 113682, "electronic health": 46997, "health records": 68965, "records objective": 138316, "clinical large": 24341, "model development": 103456, "clinical nlp": 24349, "different clinical": 41690, "clinical settings": 24363, "task materials": 161538, "methods clinical": 101369, "clinical corpora": 24321, "cancer patients": 19707, "collected electronic": 25686, "mayo clinic": 99704, "developed types": 40923, "types nlp": 170392, "models conditional": 105731, "conditional random": 28964, "bidirectional long": 18357, "phenotypes clinical": 122843, "clinical texts": 24372, "generalizability different": 63110, "sets different": 149365, "model transfer": 104801, "entity coverage": 49885, "model performances": 104264, "results manually": 143589, "clinical documents": 24331, "higher similarity": 69637, "similarity target": 151379, "target entities": 161065, "entities overall": 49859, "models obtained": 108329, "obtained best": 115514, "best performances": 17724, "reasonable performance": 136596, "local data": 97233, "ability generalizability": 2177, "types clinical": 170336, "models generalizability": 106430, "models correlated": 105805, "correlated similarity": 32522, "model good": 103753, "fewshot information": 57934, "information extractor": 76441, "hard samples": 68657, "llms remarkable": 96393, "remarkable strides": 140288, "strides various": 156312, "llms competitive": 94659, "competitive fewshot": 27173, "question extensive": 134872, "datasets tasks": 37151, "demonstrate current": 38279, "llms consistently": 94704, "exhibit inferior": 53068, "inferior performance": 76157, "higher latency": 69607, "compared finetuned": 26809, "finetuned slms": 59108, "settings conclude": 149542, "conclude llms": 28872, "llms effective": 95005, "information extractors": 76442, "appropriate prompting": 11986, "strategies llms": 156035, "tackle challenging": 160810, "challenging samples": 22265, "propose adaptive": 131696, "combine strengths": 25888, "strengths llms": 156264, "llms slms": 96619, "small portion": 152348, "achieves promising": 4057, "promising improvements": 130265, "acceptable time": 2836, "collection web": 25759, "searching information": 147447, "information internet": 76528, "search query": 147396, "based fact": 15800, "decision process": 37378, "process carried": 128749, "news media": 113567, "daily basis": 34505, "queries based": 134453, "based factual": 15803, "factual statements": 56902, "formulated human": 60629, "textual similarity": 165950, "collection dataset": 25730, "results investigate": 143541, "investigate generating": 80420, "generating queries": 64305, "queries using": 134556, "using number": 174543, "automatic text": 14753, "hybrid approach": 71559, "practice prompting": 125490, "models socratic": 109168, "socratic method": 152726, "method paper": 101023, "presents systematic": 126647, "systematic approach": 160103, "method developing": 100788, "developing prompt": 41019, "prompt templates": 130694, "interact large": 79060, "gpt3 various": 66775, "various methods": 176031, "precise answers": 125574, "enhance creative": 49179, "creative writing": 33384, "counterfactual reasoning": 32953, "engineering prompt": 48972, "inductive deductive": 75838, "deductive abductive": 37694, "abductive reasoning": 1871, "reasoning examples": 136842, "examples effectiveness": 52566, "dialogue reasoning": 41505, "interesting observation": 79398, "tasks goal": 162473, "user intent": 173426, "dialogue large": 41486, "external context": 56036, "report development": 140519, "text inputs": 165249, "produce text": 129469, "humans realworld": 71458, "gpt4 exhibits": 66999, "various professional": 176116, "professional academic": 129617, "academic benchmarks": 2725, "score 10": 147033, "10 test": 138, "gpt4 transformerbased": 67200, "token document": 166700, "posttraining alignment": 124530, "alignment process": 8217, "results improved": 143488, "adherence desired": 5524, "core component": 32159, "optimization methods": 117012, "gpt4s performance": 67237, "zeroresource blackbox": 180103, "blackbox hallucination": 18632, "hallucination detection": 68366, "detection generative": 40515, "generating highly": 64240, "highly fluent": 69920, "responses wide": 142943, "variety user": 175779, "user prompts": 173477, "llms known": 95708, "hallucinate facts": 68329, "trust output": 169837, "output existing": 117925, "existing factchecking": 53367, "output probability": 117975, "systems chatgpt": 160284, "chatgpt external": 22925, "external databases": 56041, "modules work": 110008, "blackbox models": 18651, "zeroresource fashion": 180106, "external database": 56040, "leverages simple": 91778, "llm knowledge": 93785, "given concept": 65859, "sampled responses": 145978, "contain consistent": 30292, "investigate approach": 80372, "manually annotate": 99071, "generated passages": 63935, "sentences ii": 148584, "terms factuality": 164421, "compare approach": 26662, "baselines approach": 16288, "considerably higher": 29645, "higher correlation": 69586, "correlation scores": 32553, "factuality assessment": 56905, "methods automated": 101326, "domainspecific conversational": 44567, "agents understand": 6755, "human dialogs": 70698, "achieving humanlike": 4188, "humanlike communication": 71255, "challenging topic": 22306, "topic field": 167321, "field knowledge": 58185, "knowledge representation": 82361, "representation reasoning": 140736, "understanding semantic": 171471, "meaning sentence": 99779, "generate incorrect": 63565, "incorrect responses": 75171, "responses generate": 142800, "correct response": 32412, "understand semantics": 171077, "semantics sentence": 148320, "methods answer": 101306, "needed paper": 112452, "leverages llms": 91751, "focused specific": 60122, "based preferences": 16013, "interactively understand": 79354, "understand users": 171095, "users utterances": 173810, "identify missing": 71924, "user natural": 173457, "sentence provide": 148524, "restaurant recommendation": 142986, "recommendation based": 138194, "human user": 71069, "framework developed": 61080, "gpt3 convert": 66669, "like human": 92313, "provide help": 132816, "truly understanding": 169822, "art automatic": 12542, "reasoning tooluse": 137209, "generating intermediate": 64260, "steps reasoning": 155766, "rely external": 139839, "core llm": 32177, "llm capabilities": 93518, "code prior": 25058, "typically requires": 170514, "requires handcrafting": 141382, "handcrafting taskspecific": 68512, "taskspecific demonstrations": 163515, "introduce automatic": 79917, "automatic reasoning": 14728, "framework uses": 61474, "frozen llms": 61671, "llms automatically": 94457, "generate intermediate": 63581, "program given": 129735, "selects demonstrations": 147915, "demonstrations multistep": 39030, "reasoning tool": 137208, "use task": 172899, "generation external": 64646, "resuming generation": 143949, "achieves substantial": 4117, "improvement fewshot": 73795, "prompting automatic": 130861, "automatic cot": 14652, "mmlu benchmarks": 102886, "matches performance": 99446, "cot prompts": 32899, "makes easy": 98646, "easy humans": 45356, "humans improve": 71405, "performance correcting": 121340, "correcting errors": 32429, "programs incorporating": 129911, "incorporating new": 75122, "new tools": 113470, "tools demonstrate": 167136, "tasks minimal": 162799, "models popularity": 108557, "popularity recent": 124100, "recent transformerbased": 137709, "models represented": 108936, "chatgpt stateoftheart": 23355, "tasks massive": 162783, "huge memory": 70521, "tackle issue": 160823, "retraining method": 143979, "achieves finegrained": 4014, "multiplication gelu": 111112, "gelu softmax": 62858, "softmax layer": 152751, "normalization intermediate": 114181, "results case": 143205, "results general": 143427, "achieve accuracy": 3575, "transformers gpt": 169308, "pass assessments": 120312, "assessments higher": 13287, "education programming": 45572, "evaluated capability": 51152, "capability generative": 20307, "assessments introductory": 13292, "intermediate python": 79518, "intensified date": 78988, "date rigorous": 37219, "rigorous analysis": 144851, "analysis models": 9019, "programming course": 129804, "assessment instruments": 13236, "assessments ranging": 13302, "ranging simple": 135757, "simple multiplechoice": 151497, "code involved": 24956, "involved complex": 80700, "complex programming": 27529, "programming projects": 129867, "projects code": 130107, "code bases": 24688, "bases distributed": 16391, "distributed multiple": 43328, "multiple files": 110914, "files 599": 58325, "599 exercises": 1406, "exercises overall": 53010, "models leverage": 106955, "leverage feedback": 91591, "feedback provided": 57767, "provided autograder": 133037, "straightforward application": 155918, "accessible models": 2959, "exhibit remarkable": 53091, "capabilities including": 19950, "solutions based": 152996, "requiring complex": 141475, "chains reasoning": 21564, "endtoend solution": 48763, "internal decisionmaking": 79545, "process model": 128921, "model utility": 104856, "intermediate representations": 79528, "inspecting hidden": 77677, "representations layers": 140837, "context language": 30805, "modeling method": 105046, "early layer": 45255, "layer representations": 89648, "final output": 58388, "early layers": 45256, "layers demonstrate": 89661, "demonstrate practicality": 38475, "strategies showing": 156073, "accuracy approach": 3148, "original approach": 117311, "approach extend": 11214, "science exam": 146872, "asked chatgpt": 12866, "chatgpt participate": 23174, "undergraduate computer": 170804, "algorithms data": 7915, "data structures": 35809, "program evaluated": 129731, "setup alongside": 149670, "students chatgpt": 156848, "chatgpt narrowly": 23139, "performance indicates": 121669, "indicates chatgpt": 75635, "university exams": 171926, "structurally similar": 156534, "experiment chatgpt": 53882, "chatgpt understanding": 23408, "reaching performance": 136138, "performance average": 121181, "conversations chatgpt": 31937, "chatgpt available": 22729, "denoising diffusion": 39072, "advances diffusion": 6003, "denoising autoencoders": 39071, "pretraining paper": 127404, "models denoising": 105923, "intermediate layers": 79513, "learning validate": 91117, "linear probe": 92968, "finetuning evaluations": 59256, "transformers suggesting": 169361, "potential scale": 124968, "unified foundation": 171710, "unsupervised object": 172260, "object discovery": 115124, "discovery learning": 42777, "impressive progress": 73360, "popular generative": 123999, "knowledge highlevel": 82100, "semantic relations": 148204, "relations paper": 139305, "propose exploit": 131815, "models mainstream": 108122, "segmentation object": 147745, "object localization": 115140, "challenges exist": 21855, "generative discriminative": 65414, "models limits": 107008, "direct use": 42410, "use lack": 172697, "explicitly labeled": 54977, "data significantly": 35754, "performance unsupervised": 122215, "unsupervised settings": 172272, "tackle issues": 160828, "issues introduce": 81016, "framework containing": 61049, "strategies alleviate": 155963, "alleviate data": 8284, "data insufficiency": 35241, "images propose": 72468, "novel trainingfree": 114724, "stage second": 154751, "gap use": 62745, "directly used": 42608, "architectures extensive": 12262, "experiments ablation": 54129, "comprehensive capability": 27973, "gpt35 series": 66851, "series models": 148938, "codex instructgpt": 25344, "instructgpt chatgpt": 77941, "gained considerable": 62457, "attention exceptional": 13873, "exceptional natural": 52820, "processing capabilities": 129124, "limited attention": 92709, "attention given": 13887, "capabilities time": 20216, "time conduct": 166363, "models select": 109062, "select representative": 147787, "representative models": 140934, "gpt3 series": 66752, "datasets particular": 37026, "performance robustness": 122034, "different models": 41861, "scenarios extensive": 146599, "ability gpt": 2207, "models nlu": 108303, "does increase": 43990, "models evolve": 106178, "evolve especially": 52296, "rlhf training": 145104, "strategy strategy": 156206, "strategy enhances": 156140, "enhances models": 49424, "furthermore findings": 62078, "areas model": 12379, "sparse pretraining": 153740, "directly training": 42602, "finetuned taskspecific": 59128, "data natural": 35412, "model dataset": 103402, "prohibitive computational": 130055, "pretraining llms": 127379, "llms require": 96414, "flops finetuning": 59863, "introduce sparse": 80108, "unstructured weight": 172228, "weight sparsity": 178080, "representational capacity": 140754, "75 sparsity": 1577, "13b parameter": 368, "gpt3 xl": 66780, "significant loss": 150772, "loss accuracy": 97660, "tasks relative": 163116, "relative dense": 139363, "evaluating multiple": 51353, "tasks establish": 162321, "establish relationship": 50671, "large gpt": 87275, "fraction training": 60887, "benefits pretrained": 17488, "trillion parameter": 169763, "model sparse": 104637, "heterogeneous computing": 69293, "greatly improved": 67790, "generation reasoning": 65020, "work develop": 178904, "develop trained": 40848, "model cluster": 103290, "mindspore framework": 102296, "parameter inherent": 119618, "routed experts": 145644, "tokens using": 166900, "using expert": 174182, "increase training": 75239, "training throughput": 168788, "provides stateoftheart": 133220, "various chinese": 175852, "nlp downstream": 113725, "demonstrates strong": 38899, "strong abilities": 156339, "application data": 10306, "opendomain dialogue": 116453, "dialogue question": 41503, "translation code": 169448, "multimodal information": 110657, "augmented generation": 14343, "generation survey": 65121, "survey large": 159645, "emerged important": 47360, "trend using": 169708, "using multimodality": 174506, "augment llms": 14249, "llms generation": 95393, "enables llms": 48211, "llms better": 94494, "better interact": 17921, "interact world": 79080, "incorporate different": 75007, "different modalities": 41851, "survey review": 159689, "methods assist": 101320, "tables graphs": 160770, "methods offer": 101688, "offer promising": 115690, "reasoning interpretability": 136927, "interpretability robustness": 79653, "providing indepth": 133314, "indepth review": 75548, "expected provide": 53758, "understanding methods": 171353, "methods applications": 101308, "adapt existing": 4526, "fastgrowing field": 57309, "information source": 76766, "source scientific": 153467, "scientific writing": 147000, "information sources": 76768, "public libraries": 133582, "tools including": 167181, "including advanced": 74409, "explored study": 55369, "study explored": 157342, "web science": 178016, "repository prompt": 140632, "provide abstract": 132664, "title paper": 166643, "compared humanwritten": 26840, "abstracts using": 2693, "using statistical": 174760, "unsupervised text": 172276, "similarity chatgpt": 151338, "chatgpt generated": 22979, "14 respectively": 382, "similarity score": 151371, "high similarity": 69542, "similarity scores": 151372, "study findings": 157364, "suggest chatgpt": 158520, "information currently": 76344, "attention needed": 13945, "chatgpt multimodal": 23134, "thought experiment": 166225, "based preceding": 16008, "preceding context": 125565, "information investigate": 76530, "investigate impact": 80422, "impact multimodal": 72694, "information game": 76466, "lm gpt2": 97058, "addition image": 4869, "information improves": 76507, "selfreported confidence": 148047, "confidence accuracy": 29341, "accuracy humans": 3265, "benefit additional": 17418, "additional modality": 4978, "modality information": 102971, "apparent context": 10214, "information sentence": 76755, "potential multimodal": 124869, "prompting chatgpt": 130880, "reasoning action": 136653, "paradigm integrates": 119467, "integrates chatgpt": 78549, "vision experts": 176917, "paper define": 118832, "comprehensive list": 28072, "tasks intriguing": 162622, "capabilities existing": 19884, "achieve advanced": 3577, "advanced visual": 5819, "visual intelligence": 177203, "visual signals": 177310, "images videos": 72511, "allows language": 8444, "models accept": 105201, "process multimodal": 128923, "combination chatgpt": 25822, "various vision": 176247, "zeroshot experiments": 180167, "effectiveness addressing": 46116, "wide application": 178244, "require advanced": 141068, "understanding furthermore": 171242, "furthermore discuss": 62048, "discuss compare": 42879, "approach extends": 11217, "multimodal scenarios": 110760, "demo video": 38183, "models received": 108817, "widespread public": 178472, "public attention": 133540, "attention generated": 13886, "survey discuss": 159623, "possess basic": 124331, "basic capabilities": 16412, "semantics pragmatics": 148314, "capabilities sensitive": 20170, "surface features": 159411, "features despite": 57470, "dramatic increases": 44882, "scale hundreds": 146292, "models prone": 108701, "memorized text": 100352, "text social": 165470, "learned patterns": 90113, "recent results": 137639, "currently known": 34322, "capabilities providing": 20136, "work research": 179267, "adjacent fields": 5533, "fields use": 58308, "models sparse": 109188, "efficiency recent": 46516, "works explored": 179445, "explored use": 55370, "works aim": 179421, "aim reduce": 7486, "reduce training": 138479, "training sparse": 168756, "weights leads": 178117, "leads accuracy": 89871, "resulting training": 143141, "contrast focus": 31304, "focus using": 60076, "sparsity increase": 153766, "dense model": 39091, "accuracy work": 3423, "dropin replacements": 45040, "layers improve": 89668, "improve representational": 73609, "sparsity level": 153771, "changing training": 22406, "leads significant": 89909, "cv natural": 34452, "matching larger": 99470, "demonstrate use": 38597, "sparsity improving": 153765, "large ai": 87177, "models health": 106588, "applications challenges": 10442, "recently emerging": 137877, "example chatgpt": 52468, "chatgpt capability": 22755, "influence large": 76204, "models brought": 105549, "new paradigms": 113324, "design methodologies": 39690, "multimodal data": 110615, "data biomedical": 34723, "health domain": 68942, "community embraced": 26467, "learning provides": 90882, "develop validate": 40852, "advance large": 5684, "models breakthroughs": 105540, "article presents": 12592, "comprehensive review": 28110, "review large": 144516, "medical diagnosis": 100155, "diagnosis medical": 41365, "medical imaging": 100183, "imaging medical": 72551, "medical education": 100165, "education public": 45576, "examine challenges": 52372, "critical discussion": 33482, "discussion potential": 43002, "english learners": 49074, "chatgpt deep": 22828, "narrative writing": 111449, "chatgpt publicly": 23236, "quickly generate": 135345, "generate texts": 63755, "texts given": 165726, "given topics": 66038, "aspects writing": 12984, "writing writing": 179771, "study compared": 157220, "performance narrative": 121830, "chatgpt chinese": 22775, "data analyzed": 34631, "analyzed terms": 9350, "terms discourse": 164408, "discourse components": 42702, "components using": 27783, "chatgpt performed": 23181, "initial version": 77063, "correlation analysis": 32533, "analysis discourse": 8893, "augmenting large": 14390, "performance eliminating": 121444, "conversational large": 31882, "llms open": 95970, "research challenge": 141630, "challenge particularly": 21702, "ground llms": 67829, "information structured": 76780, "sources paper": 153529, "retrieve generate": 144217, "dialogue responses": 41511, "tabular information": 160791, "uses transformer": 173917, "embeddings dense": 47224, "125 relative": 297, "uses shared": 173908, "combined gpt35": 25900, "llm response": 93968, "response generator": 142657, "improvement rouge": 73847, "rouge scores": 145623, "finally human": 58479, "evaluators prefer": 52058, "80 time": 1660, "chatgpt programming": 23215, "numerical methods": 115002, "methods chatgpt": 101365, "model recently": 104423, "capability chatgpt": 20272, "algorithms specifically": 7972, "specifically examine": 154198, "examine capability": 52370, "generating codes": 64160, "additionally assess": 5026, "assess chatgpt": 13058, "chatgpt recognize": 23258, "given codes": 65851, "reach goal": 136111, "consider variety": 29600, "mathematical problems": 99579, "problems solving": 128630, "solving linear": 153221, "linear systems": 92978, "physicsinformed neural": 122954, "networks convolutional": 112724, "computational physics": 28391, "examples investigate": 52622, "successes failures": 158324, "challenges chatgpt": 21796, "chatgpt examples": 22907, "examples failures": 52582, "relatively long": 139408, "chatgpt successfully": 23364, "certain limitations": 21400, "limitations challenges": 92549, "require improvement": 141123, "fundamentals generative": 61996, "models perspectives": 108508, "models gained": 106416, "attention late": 13914, "late 2022": 89470, "users expectations": 173647, "interactions ai": 79201, "focal point": 59936, "chatgpt subsequent": 23362, "integration auxiliary": 78645, "including search": 74712, "microsoft bing": 102185, "despite extensive": 40108, "development performance": 41181, "performance applicability": 121150, "daily tasks": 34515, "tasks remained": 163124, "technical expertise": 163704, "expertise large": 54615, "large possible": 88986, "conversational finetuning": 31866, "true capabilities": 169801, "realworld environment": 136449, "excitement potential": 52868, "capabilities potential": 20109, "potential malicious": 124854, "review aims": 144476, "aims provide": 7650, "provide brief": 132691, "brief overview": 19106, "overview history": 118433, "implications generative": 72928, "models terms": 109376, "limitations future": 92587, "future prospects": 62305, "especially context": 50447, "fewshot multimodal": 57997, "multimodal multitask": 110732, "multilingual learning": 110499, "paradigm gained": 119457, "significant traction": 150907, "scenarios limited": 146641, "data primarily": 35542, "context building": 30701, "existing literature": 53413, "learning perform": 90817, "learning requires": 90920, "requires manually": 141412, "manually generated": 99097, "level manual": 91488, "learning suffers": 91040, "leads high": 89890, "high inference": 69468, "prompts examples": 131257, "examples model": 52639, "based transfer": 16149, "aforementioned issues": 6368, "cost finetuning": 32677, "finetuning weights": 59610, "lack exposure": 82942, "learning paper": 90797, "using taskspecific": 174788, "finetuning enable": 59243, "enable fewshot": 48082, "combines best": 25927, "based learning": 15919, "consists major": 29976, "major components": 98418, "components multimodal": 27767, "multimodal contrastive": 110611, "perform multitask": 120987, "prominent tasks": 130160, "tasks vision": 163463, "language domains": 83267, "qnli mnli": 133955, "evaluation generative": 51619, "ai generative": 7017, "generation important": 64730, "capabilities limits": 20024, "limits models": 92923, "evaluating generative": 51306, "generative llms": 65459, "llms restricted": 96433, "capable models": 20452, "understanding generating": 171245, "text languages": 165267, "languages present": 87092, "comprehensive benchmarking": 27970, "benchmarking generative": 17139, "standard nlp": 154861, "benchmarks covering": 17197, "covering 16": 33069, "languages compare": 86963, "performance generative": 121585, "gpt4 state": 67174, "nonautoregressive models": 114017, "tasks determine": 162216, "perform compared": 120894, "previous generation": 127594, "generation llms": 64798, "languages tasks": 87142, "tasks discuss": 162241, "discuss challenges": 42874, "challenges improving": 21907, "llms lowresource": 95831, "languages create": 86970, "framework evaluating": 61144, "llms multilingual": 95906, "provide directions": 132755, "sparks artificial": 153707, "artificial general": 12648, "general intelligence": 62960, "early experiments": 45248, "experiments gpt4": 54301, "gpt4 artificial": 66912, "ai researchers": 7195, "refining large": 138780, "capabilities variety": 20235, "variety domains": 175703, "understanding learning": 171331, "openai gpt4": 116351, "gpt4 trained": 67198, "scale compute": 146270, "version gpt4": 176605, "gpt4 new": 67086, "chatgpt googles": 22998, "exhibit general": 53049, "implications models": 72946, "gpt4 solve": 67167, "solve novel": 153136, "tasks span": 163269, "mathematics coding": 99613, "vision medicine": 176950, "medicine law": 100241, "needing special": 112461, "performance strikingly": 122116, "surpasses prior": 159497, "prior models": 127916, "given breadth": 65840, "gpt4s capabilities": 67235, "intelligence agi": 78719, "special emphasis": 153851, "challenges ahead": 21767, "pursuing new": 133783, "nextword prediction": 113614, "recent technological": 137698, "adoption demonstrated": 5632, "performance numerous": 121855, "numerous natural": 115049, "evaluating chatgpts": 51275, "diverse problem": 43603, "problem domains": 128235, "domains remains": 44514, "model continuous": 103371, "feedback rlhf": 57782, "issue data": 80892, "data contamination": 34848, "chatgpt evaluations": 22904, "task stance": 161746, "ensuring fair": 49737, "fair model": 57039, "llms master": 95863, "skills llms": 152173, "llms potential": 96140, "learning communities": 90307, "abilities humans": 1926, "forms including": 60602, "moral reasoning": 110119, "reasoning fact": 136854, "question llms": 134907, "domains research": 44522, "aims investigate": 7631, "tasks conducting": 162113, "directly use": 42606, "datasets analogical": 36646, "additionally evaluate": 5052, "evaluate ability": 50887, "openended natural": 116497, "questions findings": 135130, "llms excel": 95120, "struggle perform": 156767, "tasks believe": 161999, "experiments crucial": 54209, "informing future": 76900, "future development": 62242, "development llms": 41156, "llms particularly": 96050, "push forward": 133796, "forward understanding": 60670, "better emulate": 17854, "humans chatgpt": 71357, "chatgpt good": 22995, "study emergence": 157303, "emergence chatgpt": 47416, "chatgpt recently": 23254, "recently garnered": 137893, "garnered significant": 62784, "attention computational": 13859, "linguistics community": 93088, "preliminary evaluation": 126119, "various aspects": 175814, "aspects including": 12946, "generation prompts": 64976, "long document": 97450, "document understanding": 43862, "evaluation based": 51443, "datasets adopt": 36642, "adopt prompt": 5579, "candidate prompts": 19727, "prompts chatgpt": 131185, "performs exceptionally": 122443, "minor performance": 102426, "performance differences": 121386, "differences observed": 41634, "datasets based": 36672, "findings conclude": 58645, "conclude chatgpt": 28859, "discover chatgpt": 42725, "challenges comes": 21799, "transition large": 169394, "various recent": 176141, "llm exhibit": 93647, "exhibit emergent": 53041, "provide simple": 132975, "phenomenon model": 122836, "step use": 155690, "use list": 172736, "list candidate": 93123, "output sequence": 117996, "embedding based": 47154, "graph question": 67566, "present endtoend": 126297, "answering kgqa": 9881, "uses t5": 173913, "texttotext pretrained": 165862, "model takes": 104717, "does directly": 43974, "directly produce": 42589, "produce entity": 129397, "entity relation": 49931, "produces corresponding": 129525, "corresponding entity": 32581, "relation labels": 139261, "grounded kg": 67867, "step improve": 155645, "instruct model": 77932, "kg embeddings": 81631, "performance result": 122023, "report strong": 140559, "datasets endtoend": 36822, "medical imagetext": 100182, "demonstrates simple": 38897, "results medical": 143590, "matching tasks": 99488, "analyze use": 9342, "textual input": 165922, "negative impact": 112517, "impact downstream": 72642, "performance medical": 121796, "textual contexts": 165886, "train release": 167816, "trained simple": 168073, "sliding window": 152221, "textual captions": 165881, "tested medical": 164677, "matching models": 99475, "datasets large": 36945, "detectors aigenerated": 40671, "aigenerated text": 7412, "malicious usage": 98848, "usage large": 172458, "models fake": 106305, "fake content": 57096, "content creation": 30463, "motivated development": 110175, "approaches identify": 11800, "including based": 74429, "based watermarking": 16182, "outlier detection": 117484, "robustness detection": 145369, "text remains": 165417, "stress test": 156283, "11b parameter": 256, "lexical diversity": 91979, "diversity content": 43715, "paraphrase text": 119907, "detectors including": 40677, "false positive": 57167, "positive rate": 124304, "input semantics": 77335, "increase robustness": 75231, "attacks introduce": 13714, "introduce simple": 80105, "defense relies": 37910, "model api": 103114, "given candidate": 65842, "algorithm searches": 7853, "searches database": 147440, "previously generated": 127726, "generated api": 63796, "match candidate": 99406, "text certain": 164874, "certain threshold": 21422, "empirically verify": 47811, "using database": 174112, "generations finetuned": 65278, "t5xxl model": 160739, "model detect": 103447, "generations different": 65277, "study tested": 157663, "users perception": 173729, "tiktok videos": 166334, "chatbots responses": 22636, "used chatgpt": 172991, "users chatgpt": 173594, "response text": 142706, "response presented": 142683, "100 participants": 154, "group participants": 67957, "chatgpts text": 23510, "warning labels": 177709, "set 50": 149122, "did affect": 41592, "participants expressed": 120006, "programming tasks": 129880, "chatgpt computer": 22797, "computer programming": 28479, "carry essential": 20837, "essential research": 50623, "research tasks": 142111, "write code": 179695, "code challenging": 24699, "researchers students": 142261, "advances artificial": 5983, "functional code": 61870, "raising questions": 135505, "evaluated extent": 51176, "extent model": 56018, "model openais": 104150, "feedback model": 57739, "fewer attempts": 57861, "research education": 141735, "need write": 112428, "machinelearning models": 98157, "instructors need": 78423, "need adapt": 112210, "pedagogical approaches": 120651, "approaches assessment": 11698, "assessment techniques": 13273, "account new": 3077, "capabilities available": 19795, "available general": 15118, "general public": 63024, "transformers efficient": 169303, "inference mobile": 76055, "mobile edge": 102901, "automated design": 14537, "design efficient": 39617, "recently attracted": 137835, "attention industry": 13906, "industry academia": 75869, "certain metrics": 21402, "furthermore running": 62159, "architectures diverse": 12258, "bestperforming models": 17781, "accuracy given": 3252, "latency energy": 89480, "energy consumption": 48785, "peak power": 120639, "accuracy hardware": 3258, "model edge": 103505, "edge device": 45419, "postprocessing step": 124514, "step improves": 155647, "higher glue": 69603, "particular natural": 120100, "nlp increasingly": 113744, "intelligence tool": 78910, "gaining traction": 62504, "trained openai": 168031, "article delves": 12572, "pros cons": 132530, "utilizing chatgpt": 175175, "support dynamic": 159283, "personalized experiences": 122596, "article aims": 12565, "possible influence": 124435, "influence chatgpt": 76192, "effectively create": 45969, "immersive engaging": 72608, "virtual environment": 176862, "environment evaluating": 49995, "education vision": 45597, "integrating generative": 78595, "ai educational": 6966, "educational practice": 45621, "ai gai": 7004, "ai used": 7310, "various areas": 175810, "areas software": 12391, "github copilot": 65810, "copilot chatgpt": 32107, "chatgpt ignited": 23058, "technologies large": 164095, "large software": 89062, "software companies": 152779, "google bard": 66310, "industry professionals": 75883, "understand current": 170993, "current practice": 34207, "practice challenges": 125477, "vision future": 176924, "human vs": 71092, "vs machine": 177604, "gpt4 chatgpt": 66939, "chatgpt led": 23098, "led increased": 91228, "concerns academic": 28759, "machinegenerated content": 98146, "explored detection": 55343, "content remains": 30602, "analysis various": 9232, "commonly employed": 26226, "methods findings": 101530, "limitations different": 92568, "terms performance": 164447, "performance individual": 121674, "datasets revealing": 37095, "lack suitable": 83013, "datasets aligned": 36645, "human expectations": 70776, "main finding": 98240, "machinegenerated ones": 98149, "ones terms": 116019, "difficulty diversity": 42209, "diversity similarity": 43755, "performance transformers": 122204, "semantically diverse": 148265, "diverse corpora": 43490, "diverse challenging": 43478, "help large": 69132, "meaning context": 99765, "context smart": 30920, "smart home": 152480, "survey available": 159609, "current practical": 34206, "practical systems": 125456, "appropriate context": 11973, "devices paper": 41314, "contextual knowledge": 31101, "inferring user": 76163, "intent generating": 79013, "generating appropriate": 64138, "inference action": 75957, "action planning": 4328, "showing llms": 150175, "llms capacity": 94542, "demonstrate proofofconcept": 38494, "llm control": 93560, "real devices": 136226, "showing ability": 150160, "finetuning taskspecific": 59582, "motivating future": 110200, "scaling expert": 146396, "models unsupervised": 109565, "unsupervised domain": 172242, "discovery large": 42773, "parameters updated": 119884, "inputs requires": 77443, "large sparse": 89066, "sparse language": 153730, "models arbitrary": 105381, "arbitrary text": 12095, "corpora method": 32238, "method clusters": 100734, "related documents": 139161, "automatically discovering": 14792, "communication overhead": 26397, "models technique": 109363, "technique outperforms": 163790, "multiple corpora": 110877, "number experts": 114864, "efficient accessible": 46557, "accessible approach": 2942, "attributing model": 14138, "behavior scale": 16643, "goal data": 66158, "data attribution": 34664, "predictions training": 125936, "despite long": 40157, "work goal": 179005, "struggle accurately": 156723, "models makes": 108131, "makes impractical": 98657, "datasets work": 37202, "attribution method": 14143, "effective computationally": 45715, "differentiable models": 42097, "attribution methods": 14144, "demonstrate utility": 38603, "various modalities": 176037, "trained imagenet": 167949, "clip language": 24405, "program demonstrate": 129730, "demonstrate appropriate": 38247, "models triggered": 109510, "including popular": 74670, "popular algorithms": 123980, "software developer": 152785, "trigger execution": 169755, "ways using": 177920, "using strong": 174765, "execution paths": 52962, "parts generated": 120299, "text dynamic": 165037, "program execution": 129733, "accuracy gains": 3249, "powerful gpt4": 125283, "education prompts": 45574, "prompts responses": 131451, "student assignments": 156804, "structures algorithms": 156687, "findings hold": 58688, "implications evaluating": 72921, "llms typically": 96868, "solving problems": 153236, "problems previously": 128600, "previously thought": 127746, "thought hard": 166227, "llms logical": 95819, "plays critical": 123511, "critical role": 33546, "previously recognized": 127741, "approaches widely": 11956, "used semantic": 173227, "tasks mainstream": 162774, "units different": 171881, "tend favor": 164304, "data leading": 35301, "intuition design": 80285, "design mechanism": 39688, "use knowledge": 172689, "semantic frames": 148148, "parsing architecture": 119954, "enhance semantic": 49288, "semantic representation": 148208, "representation incorporating": 140698, "knowledge plms": 82276, "extraction module": 56327, "templates high": 164235, "high dimensional": 69446, "space design": 153562, "design taskoriented": 39778, "using hybrid": 174310, "hybrid prompts": 71572, "prompts terms": 131501, "continuous discrete": 31234, "prompts incorporate": 131328, "plms adapt": 123573, "plms tasks": 123644, "identification experimental": 71789, "results current": 143271, "current benchmark": 34080, "mathematical theory": 99604, "information theory": 76808, "based probability": 16033, "communication technology": 26419, "technology based": 164126, "based theory": 16141, "information age": 76271, "transmit information": 169569, "information content": 76328, "processing needs": 129204, "content processing": 30581, "processing capability": 129126, "massive data": 99349, "truly intelligent": 169819, "intelligent paper": 78953, "meaning information": 99770, "information knowledge": 76538, "content investigate": 30533, "investigate relationship": 80490, "communication framework": 26374, "framework furthermore": 61172, "furthermore propose": 62135, "propose semantic": 132114, "semantic decomposition": 148134, "complex simple": 27587, "verify proposed": 176537, "semantic recognition": 148201, "proven powerful": 132647, "powerful tool": 125341, "partial differential": 119976, "leveraging expressivity": 91841, "networks computing": 112722, "heterogeneous hardware": 69300, "systems network": 160494, "hidden layer": 69324, "reduced number": 138497, "number neurons": 114909, "adaptively learns": 4792, "layer neuron": 89637, "time end": 166391, "encompassing small": 48556, "trained set": 168069, "parameter values": 119652, "entire parameter": 49812, "accurately efficiently": 3527, "applications require": 10668, "require manual": 141152, "manual data": 99033, "tasks notably": 162860, "train classifiers": 167753, "unsupervised models": 172259, "tasks conducted": 162112, "annotators research": 9642, "assistants using": 13435, "using sample": 174689, "demonstrate chatgpt": 38265, "annotation tasks": 9553, "including relevance": 74700, "detection specifically": 40622, "specifically zeroshot": 154307, "accuracy chatgpt": 3166, "annotators tasks": 9645, "times cheaper": 166579, "results potential": 143674, "drastically increase": 44902, "efficiency text": 46542, "evaluation despite": 51541, "predominant approach": 125972, "approach evaluation": 11198, "mainly relies": 98299, "exact matching": 52343, "matching human": 99462, "human references": 71015, "systems generate": 160403, "practical utility": 125463, "utility better": 174945, "better assess": 17807, "assess capability": 13056, "systems propose": 160560, "critical aspects": 33462, "metrics reflect": 102138, "evaluation strategy": 51874, "correlates better": 32524, "metrics using": 102162, "discover established": 42730, "model comparison": 103315, "especially considering": 50446, "referencefree evaluation": 138686, "prior evaluation": 127890, "single best": 151782, "information integrating": 76522, "integrating nonverbal": 78618, "nonverbal cues": 114165, "recently achieved": 137815, "model applied": 103121, "applied multimodal": 10788, "behavior understanding": 16658, "tasks video": 163461, "acoustic visual": 4246, "integrated language": 78533, "jointly modeling": 81281, "increases model": 75283, "collecting largescale": 25715, "video datasets": 176698, "extremely expensive": 56431, "expensive terms": 53810, "terms time": 164483, "time money": 166454, "money paper": 110050, "investigate large": 80436, "successfully incorporate": 158386, "presented textual": 126532, "corresponding textual": 32609, "spoken text": 154580, "text feed": 165084, "downstream multimodal": 44733, "interpretability models": 79649, "near sota": 112091, "analysis multimodal": 9022, "general competitive": 62927, "behavioral analysis": 16664, "particularly lowresource": 120221, "setting large": 149468, "models assist": 105403, "remarkable natural": 140218, "capabilities applied": 19785, "applied variety": 10818, "explores potential": 55413, "potential integrating": 124793, "integrating llms": 78611, "human analyst": 70570, "experiment explore": 53892, "increasingly complex": 75385, "complex versions": 27640, "using open": 174553, "open ais": 116200, "ais chatgpt": 7698, "chatgpt service": 23304, "service quality": 149068, "systematically assessed": 160172, "llm technology": 94049, "suggest llms": 158556, "llms useful": 96911, "human analysts": 70571, "masking strategy": 99331, "exploiting high": 55029, "graphics processing": 67609, "tremendous strides": 169693, "mask tokens": 99290, "information surrounding": 76789, "surrounding words": 159590, "hidden information": 69323, "framework pretrained": 61355, "models enables": 106106, "benchmark develop": 16931, "based token": 16143, "token input": 166714, "compare standard": 26731, "performance competitive": 121305, "public github": 133570, "github repository": 65826, "level generation": 91470, "competition 2023": 27145, "chatgpt conversational": 22811, "competition platform": 27148, "trivial task": 169785, "quality levels": 134185, "lower entry": 97822, "entry barrier": 49970, "used generating": 173091, "sample prompt": 145954, "prompt provided": 130646, "hope inspire": 70360, "procedural content": 128682, "attention models": 13936, "graph structure": 67575, "models 70": 105166, "functions powerful": 61918, "resource provides": 142392, "provides value": 133251, "researchers industry": 142223, "hallucinations large": 68437, "multilingual translation": 110564, "multilingual machine": 110504, "systems demonstrated": 160329, "ability translate": 2400, "languages making": 87056, "making increasingly": 98754, "generate hallucinated": 63523, "raise safety": 135458, "safety concerns": 145850, "research hallucinations": 141818, "hallucinations primarily": 68450, "primarily focused": 127780, "bilingual models": 18420, "trained highresource": 167937, "leaving gap": 91204, "gap understanding": 62744, "diverse translation": 43688, "translation scenarios": 169512, "work gap": 179002, "gap conducting": 62628, "conducting comprehensive": 29306, "conventional neural": 31720, "generalpurpose large": 63349, "language modelllm": 84035, "investigation covers": 80628, "covers broad": 33101, "broad spectrum": 19189, "translation directions": 169457, "various resource": 176144, "pairs provide": 118610, "provide key": 132867, "key insights": 81526, "insights regarding": 77638, "mitigation hallucinations": 102688, "paving way": 120599, "reliable machine": 139734, "generation empirical": 64598, "study object": 157510, "declarative language": 37491, "hindered adoption": 70138, "advancements llms": 5924, "including semantic": 74716, "finetuned publicly": 59092, "code github": 24934, "code programming": 25064, "compiled dataset": 27230, "specifications crafted": 154316, "crafted prompt": 33148, "information target": 76797, "using zero": 174875, "methods measuring": 101659, "execution accuracy": 52939, "accuracy metrics": 3309, "information enabling": 76383, "enabling fewshot": 48295, "reliability generated": 139687, "constraints furthermore": 30083, "similarity based": 151337, "embedding generated": 47166, "ones ground": 115998, "investigating language": 80603, "form understanding": 60492, "returned results": 144296, "narrow set": 111464, "cultural stereotypes": 33968, "complex topics": 27633, "topics like": 167357, "varying degrees": 176283, "distinct information": 43227, "information search": 76749, "bias paper": 18173, "evidence analysis": 52170, "social implications": 152585, "complex topic": 27632, "emerging tools": 47543, "cultural perspectives": 33964, "challenging important": 22174, "collaborative efforts": 25612, "harnessing power": 68834, "computational biology": 28331, "rise advanced": 144887, "advanced chatbots": 5716, "chatgpt sparked": 23343, "generalpurpose chatbot": 63338, "chatbot powered": 22581, "powered large": 125238, "gpt4 potential": 67115, "impact numerous": 72702, "numerous fields": 115042, "fields including": 58277, "experience chatgpt": 53826, "chatgpt assist": 22721, "relevant prompts": 139635, "chatgpt llm": 23110, "ranging code": 135749, "code refactoring": 25088, "engineering hope": 48929, "various implications": 175973, "creative applications": 33363, "tools chatgpt": 167122, "chatgpt established": 22899, "chatgpt llms": 23111, "llms increase": 95595, "scientific discovery": 146950, "life sciences": 92083, "completing tasks": 27318, "incredible progress": 75461, "advanced foundation": 5734, "offer powerful": 115686, "opendomain tasks": 116475, "domainspecific tasks": 44628, "based common": 15707, "face difficulties": 56527, "specialized tasks": 153913, "lack domainspecific": 82931, "domainspecific data": 44569, "need accurate": 112209, "hand existing": 68485, "working mechanisms": 179400, "pressing need": 126714, "leverage foundation": 91595, "propose task": 132157, "automatically match": 14840, "offtheshelf models": 115921, "ai ecosystem": 6964, "improve single": 73627, "ai model": 7087, "focuses using": 60167, "solvers achieve": 153184, "position paper": 124264, "present vision": 126500, "explain key": 54699, "use study": 172890, "cases illustrate": 20972, "challenges need": 21963, "need address": 112217, "using rich": 174682, "rich metadata": 144791, "models sensitive": 109072, "context effectively": 30735, "effectively capture": 45956, "specific characteristics": 153950, "leveraging annotations": 91803, "annotations challenging": 9575, "leverage rich": 91658, "models scalable": 109035, "scalable manner": 146247, "model reduce": 104431, "approach performs": 11445, "finetuning finetuning": 59271, "data past": 35476, "demographic characteristics": 38202, "findings consistent": 58647, "contains rich": 30389, "manual annotations": 99024, "corpus including": 32318, "character descriptions": 22423, "descriptions automatically": 39436, "automatically extracted": 14804, "extracted metadata": 56197, "costbenefit analysis": 32753, "analysis highlighting": 8955, "language feedback": 83318, "feedback scale": 57791, "generate outputs": 63639, "harmful text": 68752, "text factually": 165077, "factually incorrect": 56929, "incorrect summaries": 75174, "summaries recent": 158778, "learning simple": 90994, "simple form": 151458, "form human": 60461, "comparisons pairs": 27081, "pairs modelgenerated": 118599, "modelgenerated outputs": 104958, "outputs comparison": 118034, "comparison feedback": 27040, "feedback conveys": 57655, "conveys limited": 32022, "information human": 76496, "preferences paper": 126060, "feedback ilf": 57705, "approach utilizes": 11653, "informative language": 76878, "applied iteratively": 10771, "conditioning language": 28992, "lm output": 97063, "output feedback": 117927, "feedback generate": 57689, "generate refinements": 63679, "refinements second": 138774, "incorporating feedback": 75100, "model maximize": 104068, "maximize likelihood": 99673, "likelihood chosen": 92434, "chosen refinement": 23740, "refinement given": 138756, "viewed bayesian": 176822, "bayesian inference": 16479, "inference similar": 76101, "feedback evaluate": 57671, "toy task": 167486, "task realistic": 161677, "models accurately": 105210, "accurately incorporate": 3541, "incorporate feedback": 75014, "outperforming finetuning": 117677, "finetuning human": 59293, "learning achieving": 90179, "achieving humanlevel": 4187, "humanlevel summarization": 71239, "summarization performance": 158860, "making large": 98766, "tasks rely": 163122, "rely labeled": 139861, "process especially": 128816, "especially task": 50549, "task involves": 161496, "data requires": 35655, "requires specialized": 141446, "domains recently": 44512, "paper claim": 118780, "gpt35 serve": 66853, "providing sufficient": 133380, "examples make": 52637, "make llms": 98566, "propose twostep": 132183, "creating prompts": 33318, "subsequently utilize": 157994, "utilize prompt": 175081, "provide explanation": 132779, "chainofthought prompt": 21516, "experiments tasks": 54492, "including user": 74774, "user input": 173420, "results gpt35": 143443, "gpt35 surpasses": 66859, "crowdsourced annotation": 33723, "additionally tasks": 5138, "comparable obtained": 26589, "obtained crowdsourced": 115516, "chatting chatgpt": 23515, "chatgpt complex": 22794, "complex systems": 27601, "systems present": 160543, "present overview": 126403, "systems field": 160387, "field using": 58256, "chatgpt learned": 23097, "learned language": 90103, "styles large": 157782, "dataset internet": 36368, "allowing provide": 8388, "reflect common": 138790, "teaching learning": 163649, "research topics": 142121, "chatgpt source": 23342, "evaluating gpt35": 51308, "gpt4 models": 67081, "models brazilian": 105539, "poses challenging": 124200, "tasks lms": 162754, "span multiple": 153655, "multiple fields": 110913, "understanding information": 171299, "diverse domains": 43513, "solved work": 153179, "generated gpt35": 63876, "models questions": 108760, "questions presented": 135227, "public training": 133608, "tested including": 164673, "use chainofthought": 172540, "accuracy 87": 3125, "11 points": 232, "points code": 123744, "experiments available": 54156, "model applications": 103120, "applications efficient": 10498, "network management": 112676, "management tutorial": 98892, "phenomenal success": 122825, "models dgms": 105958, "explosive growth": 55526, "internet things": 79594, "digital twin": 42299, "outstanding ability": 118159, "ability represent": 2352, "represent complex": 140637, "generate plausible": 63648, "article explore": 12576, "explore applications": 55149, "management proposed": 98885, "wireless networks": 178549, "study network": 157503, "using stateoftheart": 174752, "model diffusion": 103464, "diffusion model": 42237, "content aigc": 30429, "aigc services": 7395, "discuss important": 42904, "open directions": 116225, "chatgpt identify": 23056, "identify entities": 71886, "documents large": 43917, "llms leveraged": 95759, "performance recognizing": 122000, "recognizing entities": 138172, "agent chatgpt": 6425, "community public": 26511, "capacity generating": 20506, "answers paper": 10059, "ability probing": 2324, "recognition classification": 138051, "sources historical": 153507, "historical newspapers": 70207, "systems findings": 160388, "historical text": 70210, "text range": 165399, "entity annotation": 49884, "annotation guidelines": 9532, "public internet": 133576, "impacts performance": 72768, "times model": 166601, "times training": 166611, "training long": 168558, "continuous training": 31257, "training new": 168603, "investigate questions": 80486, "questions simple": 135277, "experiments llms": 54343, "recognition experiments": 138067, "ask model": 12853, "model distinguish": 103481, "seen example": 147692, "model correctly": 103387, "models memory": 108171, "memory original": 100438, "original examples": 117333, "examples single": 52697, "achieve near": 3686, "near perfect": 112090, "perfect accuracy": 120853, "accuracy challenging": 3165, "challenging recognition": 22256, "recognition performance": 138115, "performance small": 122078, "exceeds human": 52760, "human recognition": 71010, "similar experiments": 151235, "achieving near": 4195, "models just": 106834, "remarkable capacity": 140186, "fast learning": 57272, "recall performance": 137274, "10 training": 140, "examples followed": 52589, "observed human": 115413, "longterm memory": 97603, "memory retention": 100457, "generally superior": 63328, "iterative refinement": 81139, "humans large": 71419, "initial outputs": 77038, "outputs llms": 118084, "llms iterative": 95690, "iterative feedback": 81123, "idea generate": 71731, "generate initial": 63569, "initial output": 77037, "llms provides": 96261, "provides feedback": 133148, "feedback output": 57751, "require supervised": 141204, "data additional": 34593, "training reinforcement": 168687, "learning instead": 90583, "instead uses": 77905, "single llm": 151826, "tasks ranging": 163074, "dialog response": 41425, "generation mathematical": 64816, "stateoftheart gpt35": 155154, "gpt35 chatgpt": 66796, "gpt4 llms": 67067, "llms evaluated": 95104, "humans automatic": 71350, "generation improving": 64734, "20 absolute": 587, "absolute average": 2604, "demonstrates stateoftheart": 38898, "like gpt4": 92297, "gpt4 improved": 67050, "time using": 166525, "using simple": 174716, "evaluation gpt": 51624, "proteinprotein interactions": 132577, "text detecting": 165014, "crucial understanding": 33885, "drug design": 45047, "growth biomedical": 68078, "literature growing": 93172, "growing need": 68036, "need automated": 112228, "bert shown": 17606, "results natural": 143624, "tasks evaluated": 162327, "evaluated performance": 51200, "multiple gpt": 110928, "language logic": 83495, "human protein": 70988, "interaction extraction": 79123, "extraction performance": 56336, "performance assessment": 121171, "achieved best": 3789, "achieving highest": 4185, "interestingly despite": 79407, "explicitly trained": 54991, "trained biomedical": 167873, "biomedical texts": 18580, "texts gpt4": 165727, "gpt4 achieved": 66903, "commendable performance": 26051, "achieved precision": 3856, "dataset results": 36508, "suggest gpt": 158541, "data offering": 35435, "offering promising": 115762, "promising avenues": 130231, "literature mining": 93184, "mining research": 102413, "explore models": 55243, "tasks biomedical": 162013, "communicative agents": 26433, "exploration large": 55078, "progress complex": 129952, "heavily relies": 69045, "relies human": 139801, "conversation challenging": 31778, "challenging timeconsuming": 22304, "potential building": 124633, "building scalable": 19449, "techniques facilitate": 163902, "facilitate autonomous": 56596, "provides insight": 133167, "cognitive processes": 25472, "challenges achieving": 21760, "achieving autonomous": 4144, "agent framework": 6446, "involves using": 80773, "prompting guide": 130952, "chat agents": 22521, "maintaining consistency": 98346, "human intentions": 70863, "conversational data": 31861, "behaviors capabilities": 16685, "agents providing": 6701, "providing valuable": 133398, "valuable resource": 175448, "comprehensive studies": 28124, "multiagent settings": 110334, "include introducing": 74335, "scalable approach": 146231, "approach studying": 11573, "cooperative behaviors": 32075, "capabilities multiagent": 20061, "multiagent systems": 110337, "pair programming": 118524, "models sampling": 109032, "writing single": 179751, "single line": 151823, "line code": 92940, "code human": 24939, "simulation based": 151686, "llm finetuned": 93675, "conversations includes": 31947, "interaction chatgpt": 79107, "producing working": 129565, "optimizing code": 117108, "code parallel": 25043, "cpus gpus": 33133, "results contrast": 143262, "studies assess": 156953, "assess accuracy": 13041, "accuracy llms": 3296, "chatgpt tasks": 23379, "successful solution": 158357, "solution standard": 152978, "ai particularly": 7141, "careful prompt": 20785, "solutions generated": 153025, "resulting comprehensive": 143095, "correct solution": 32416, "knowledge form": 82011, "mathematical theorems": 99603, "knowledge order": 82255, "provide solution": 132977, "correct ability": 32371, "opportunity achieve": 116884, "users limited": 173704, "limited knowledge": 92788, "knowledge programming": 82314, "chatbots pass": 22625, "fundamentals engineering": 61994, "engineering fe": 48916, "engineering community": 48894, "witnessed emergence": 178562, "chatbot technology": 22589, "standardized tests": 154911, "including medical": 74615, "diverse range": 43615, "environmental engineering": 50042, "questions scenarios": 135271, "scenarios used": 146715, "chatbots performance": 22626, "performance commonly": 121267, "based relevance": 16070, "accuracy clarity": 3168, "chatgpt4 bard": 23454, "fe exam": 57344, "pass fe": 120320, "likely pass": 92460, "exams study": 52734, "teaching assistants": 163641, "assessing language": 13179, "cards paper": 20760, "framework structured": 61429, "risks associated": 144975, "bring harm": 19124, "text prior": 165375, "work establishes": 178936, "model harms": 103787, "different actors": 41645, "identify categories": 71864, "harms posed": 68781, "establish automated": 50651, "automated tests": 14619, "documentation standards": 43871, "standards models": 154917, "datasets encourage": 36820, "transparent reporting": 169602, "framework documenting": 61091, "shared models": 149816, "gap providing": 62721, "framework assessing": 60963, "model given": 103748, "given scenario": 65999, "broad literature": 19180, "literature survey": 93208, "model application": 103117, "application scenario": 10378, "ultimately contributing": 170583, "contributing better": 31456, "understanding risk": 171467, "landscape survey": 83107, "complex intricate": 27448, "grammatical rules": 67462, "challenge develop": 21623, "capable ai": 20399, "ai algorithms": 6859, "modeling widely": 105123, "recently pretrained": 137953, "largescale corpora": 89284, "capabilities solving": 20189, "solving various": 153254, "improvement study": 73853, "scaling effect": 146393, "size larger": 152020, "parameter scale": 119635, "certain level": 21399, "achieve significant": 3732, "special abilities": 153847, "smallscale language": 152460, "term large": 164369, "significant size": 150877, "recently research": 137981, "llms largely": 95732, "industry remarkable": 75884, "launch chatgpt": 89584, "attracted widespread": 14058, "attention society": 13989, "technical evolution": 163703, "evolution llms": 52271, "making important": 98750, "important impact": 73142, "revolutionize way": 144635, "way develop": 177793, "advances llms": 6030, "introducing background": 80227, "techniques particular": 163982, "aspects llms": 12953, "llms pretraining": 96180, "pretraining adaptation": 127255, "tuning utilization": 170142, "capacity evaluation": 20503, "summarize available": 158901, "available resources": 15199, "developing llms": 41009, "llms discuss": 94947, "scholarly manuscripts": 146821, "scholarly writing": 146824, "presents complex": 126555, "complex space": 27592, "involving large": 80792, "llm demonstrate": 93581, "demonstrate considerable": 38275, "considerable success": 29639, "struggle provide": 156770, "document level": 43836, "writing paper": 179737, "novel taxonomy": 114710, "taxonomy categorizes": 163575, "information types": 76819, "written data": 179775, "original dataset": 117327, "dataset annotated": 36111, "simplified version": 151595, "motivated cognitive": 110174, "identify distinct": 71884, "intends provide": 78984, "provide complete": 132706, "complete picture": 27279, "trajectory writing": 168868, "feedback suggestions": 57804, "models rate": 108793, "news outlet": 113570, "prone hallucinations": 131566, "hallucinations stateoftheart": 68458, "stateoftheart chatbots": 155099, "new bing": 113095, "attempt mitigate": 13794, "gathering information": 62813, "information directly": 76360, "capacity distinguish": 20502, "trustworthy sources": 169873, "sources critical": 153499, "providing appropriate": 133265, "chatgpt prominent": 23217, "prominent llm": 130154, "llm evaluate": 93639, "evaluate credibility": 50939, "credibility news": 33403, "news outlets": 113571, "appropriate instructions": 11979, "explanations results": 54897, "llms affordable": 94371, "applications future": 10538, "future llms": 62287, "llms enhance": 95073, "enhance alignment": 49151, "improve information": 73488, "information accuracy": 76262, "data exploration": 35022, "exploration exploring": 55071, "data crucial": 34876, "crucial data": 33782, "users understand": 173799, "understand interpret": 171028, "interpret data": 79624, "effective data": 45725, "requires indepth": 141393, "indepth knowledge": 75541, "knowledge dataset": 81856, "expertise data": 54608, "analysis techniques": 9198, "process timeconsuming": 129013, "data analysts": 34629, "issue introduce": 80913, "llm large": 93790, "modelbased automated": 104929, "exploration process": 55095, "automatically selects": 14859, "selects appropriate": 147914, "create meaningful": 33209, "meaningful coherent": 99789, "exploration sequence": 55103, "approach data": 11089, "process users": 129026, "users employing": 173635, "employing llm": 47935, "llm iteratively": 93781, "analyzing realworld": 9380, "realworld datasets": 136433, "datasets enabling": 36816, "enabling users": 48358, "insights natural": 77609, "datacentric framework": 36033, "framework improving": 61212, "improving domainspecific": 74133, "data cause": 34740, "improving dataset": 74125, "enhance model": 49236, "highquality datasets": 70014, "datasets needed": 36999, "llms training": 96842, "training domainspecific": 168400, "domainspecific models": 44606, "engage large": 48820, "number domain": 114856, "ensure highquality": 49689, "highquality domainspecific": 70021, "framework enhancing": 61133, "enhancing data": 49472, "datasets applied": 36654, "biomedical datasets": 18540, "using translation": 174825, "quality large": 134179, "driven recent": 44996, "advances ai": 5982, "golden age": 66246, "novel solution": 114696, "credit assignment": 33407, "assignment problem": 13326, "problem ensure": 128243, "heart approach": 69028, "high impact": 69467, "research methodologies": 141908, "model era": 103555, "revolutionized fields": 144650, "fields computer": 58265, "models exceptional": 106194, "inference natural": 76058, "tasks bert": 162005, "language multilingual": 86427, "architecture pretrained": 12204, "corpus evaluate": 32304, "evaluate compare": 50931, "tasks addition": 161904, "performance nlg": 121845, "newly introduced": 113539, "summarization dataset": 158816, "code new": 25030, "available inference": 15139, "logic large": 97330, "concepts paper": 28679, "paper explain": 118899, "llms set": 96510, "concepts recent": 28682, "traditional dnns": 167614, "usually encode": 174898, "llm parameters": 93870, "llm encodes": 93627, "score llms": 147079, "llms dialogue": 94918, "sentence evaluate": 148503, "llm verify": 94090, "concepts usually": 28702, "usually exhibit": 174899, "exhibit high": 53056, "high transferability": 69553, "concepts used": 28699, "used explain": 173059, "llms prediction": 96157, "prediction errors": 125790, "process called": 128748, "focused learning": 60109, "learning pruning": 90887, "independently work": 75510, "hebbian learning": 69057, "pruning aims": 133452, "process way": 129034, "task agent": 161178, "network structure": 112696, "compare proposed": 26721, "traditional neural": 167670, "classical control": 23934, "tasks openai": 162881, "better traditional": 18051, "observe performance": 115387, "finally perform": 58503, "testing models": 164735, "learning phase": 90823, "case results": 20889, "safety analysis": 145839, "analysis era": 8906, "era large": 50227, "analysis make": 9012, "demand management": 38132, "semantic complexity": 148118, "results comparative": 143239, "comparative results": 26649, "related issues": 139174, "outperform human": 117601, "significant differences": 150684, "varying input": 176288, "complexity using": 27706, "using common": 174065, "necessity developing": 112195, "developing domainspecific": 40988, "domainspecific prompt": 44614, "highlight future": 69742, "future challenges": 62234, "including concerns": 74473, "concerns llm": 28791, "domain classification": 44106, "human beings": 70622, "multiple deep": 110887, "learning architectures": 90224, "engineering approaches": 48884, "evaluated automated": 51146, "automated machine": 14563, "learning automl": 90236, "platforms amazon": 123395, "engineered features": 48872, "features furthermore": 57498, "introduced method": 80163, "method utilizes": 101168, "fourier series": 60862, "finally evaluated": 58450, "llms gpt4": 95432, "gptj llama": 67295, "llama falcon": 93302, "engineering remains": 48978, "remains important": 140013, "important task": 73200, "task improve": 161458, "automl llms": 14918, "llms pythia": 96273, "analyzing large": 9375, "change models": 22346, "questions introduce": 135170, "16 llms": 455, "public data": 133556, "data seen": 35717, "70m 12b": 1545, "12b parameters": 312, "parameters provide": 119844, "provide public": 132938, "models alongside": 105347, "exact training": 52344, "studies including": 157019, "novel results": 114673, "reducing gender": 138568, "gender bias": 62886, "bias demonstrate": 18111, "controlled setup": 31647, "used yield": 173307, "insights llms": 77600, "training dynamics": 168404, "analysis code": 8849, "code training": 25188, "perspectives potential": 122716, "potential generative": 124748, "include text": 74342, "aspects modern": 12956, "modern life": 109814, "life including": 92078, "range scientific": 135690, "scientific disciplines": 146947, "range fields": 135622, "add value": 4808, "disciplines including": 42677, "including ways": 74783, "ways ai": 177896, "accelerate scientific": 2779, "discovery research": 42788, "future scholars": 62380, "scientific findings": 146962, "opportunities generative": 116852, "ai augment": 6877, "augment scientists": 14256, "current practices": 34208, "asked participants": 12876, "concerns ai": 28761, "ai findings": 6997, "help guide": 69121, "guide responsible": 68205, "responsible development": 142964, "gpt4 gpt35": 67034, "plastic surgery": 123374, "important indicator": 73144, "serves useful": 149056, "practice questions": 125493, "technical paper": 163710, "questions evaluated": 135117, "questions questions": 135242, "realistic clinical": 136286, "clinical vignettes": 24378, "scores highly": 147150, "improvement gpt4": 73804, "gpt4 vision": 67216, "evaluation pipeline": 51771, "access openai": 2889, "gpt4 api": 66910, "multimodal input": 110661, "achieve superhuman": 3772, "chatgpt research": 23273, "network analysis": 112623, "analysis main": 9011, "main objective": 98255, "objective paper": 115219, "identify major": 71921, "areas chatgpt": 12360, "study total": 157670, "study showed": 157631, "number times": 114963, "intelligence large": 78848, "gpt study": 66499, "study study": 157648, "science computer": 146857, "information technology": 76800, "prompt exploration": 130500, "using visual": 174859, "visual analytics": 177107, "llms gained": 95321, "gained widespread": 62490, "widespread popularity": 178469, "popularity ability": 124078, "simple natural": 151501, "individuals prior": 75778, "techniques natural": 163968, "vary significantly": 176273, "significantly terms": 151170, "terms linguistic": 164436, "linguistic structure": 93070, "structure context": 156545, "context semantics": 30908, "differences task": 41639, "challenging identify": 22172, "needed improve": 112448, "improve prompt": 73592, "domainspecific knowledge": 44589, "feedback address": 57637, "interactively create": 79352, "test prompts": 164599, "users improve": 173673, "using strategies": 174764, "perturbations paraphrasing": 122759, "obtaining best": 115542, "best set": 17749, "process involving": 128887, "nlp experts": 113735, "evaluated quantitative": 51210, "qualitative assessments": 133986, "assessments llms": 13296, "llms findings": 95266, "generate diverse": 63464, "prompts help": 131306, "analyze performance": 9319, "performance generated": 121582, "surpassing existing": 159513, "existing stateoftheart": 53578, "unlocking potential": 172041, "potential chatgpt": 124643, "chatgpt comprehensive": 22796, "comprehensive exploration": 28053, "exploration applications": 55052, "applications advantages": 10413, "directions natural": 42492, "models revolutionized": 108993, "field artificial": 58123, "intelligence used": 78917, "various applications": 175800, "applications models": 10610, "stands powerful": 154932, "tool widely": 167059, "adopted chatgpt": 5592, "applied numerous": 10793, "numerous areas": 115027, "chatbots content": 22610, "personalized recommendations": 122617, "recommendations medical": 138254, "diagnosis treatment": 41374, "attributed ability": 14089, "responses understand": 142933, "understand natural": 171047, "language adapt": 83130, "tendency produce": 164331, "potential perpetuate": 124902, "perpetuate harmful": 122498, "harmful language": 68738, "article provides": 12597, "chatgpt applications": 22708, "limitations additionally": 92531, "additionally paper": 5099, "paper emphasizes": 118873, "emphasizes importance": 47640, "importance ethical": 73029, "robust tool": 145330, "tool realworld": 167020, "scenarios finally": 146603, "paper contributes": 118825, "ongoing discussions": 116065, "discussions surrounding": 43020, "surrounding artificial": 159586, "intelligence impact": 78840, "domains providing": 44506, "insights prompt": 77630, "engineering techniques": 48998, "2017 2023": 641, "llms class": 94608, "tasks highly": 162505, "area ability": 12313, "language potential": 86469, "science technology": 146917, "technology study": 164171, "study conduct": 157229, "literature llms": 93183, "llms synthesizing": 96749, "paper serves": 119320, "roadmap researchers": 145134, "current landscape": 34141, "landscape llms": 83099, "llms research": 96419, "research present": 141980, "present research": 126435, "research trends": 142126, "identifying patterns": 72022, "fundamental llms": 61958, "research investigate": 141869, "applications llms": 10597, "fields domains": 58270, "including medicine": 74616, "medicine engineering": 100239, "social science": 152660, "fastpaced evolution": 57312, "research overall": 141949, "paper offers": 119086, "insights current": 77536, "impact potential": 72712, "potential llms": 124833, "networks particularly": 112782, "enhancing quality": 49554, "little effort": 93232, "effort devoted": 46843, "automatic interactive": 14694, "scalable accessible": 146229, "framework includes": 61213, "includes modules": 74376, "modules context": 109975, "reasoning proposed": 137076, "approach context": 11082, "data reasoning": 35614, "provide explanations": 132780, "qualitative experiments": 133998, "code proposed": 25072, "approach publicly": 11484, "available algorithm": 15069, "dynamic attention": 45115, "llms fundamental": 95311, "fundamental changes": 61941, "changes human": 22374, "human life": 70914, "attention scheme": 13985, "transformers gpt2": 169309, "inspired previous": 77746, "theoretical study": 166050, "zandieh han": 180059, "han daliri": 68479, "2023 alman": 686, "alman song": 8491, "2023 work": 719, "formally define": 60537, "attention matrix": 13925, "mathbbrn times": 99551, "value llms": 175490, "times square": 166608, "mathrmdiaga bf": 99627, "bf 1n": 18083, "diagonal matrix": 41396, "vector entries": 176381, "ones provide": 116013, "provide results": 132958, "cohen lee": 25497, "lee song": 91264, "song stoc": 153278, "stoc 2019": 155814, "2019 brand": 648, "brand soda": 18964, "soda 2020": 152730, "matrix vector": 99647, "algorithm use": 7870, "designing ai": 39986, "ai support": 7232, "support realworld": 159325, "writing tasks": 179764, "exciting new": 52878, "new opportunities": 113309, "opportunities challenges": 116832, "challenges designing": 21824, "designing developing": 39992, "aiassisted writing": 7333, "writing support": 179760, "support tools": 159339, "tools recent": 167244, "shown leveraging": 150306, "leveraging new": 91913, "new technology": 113460, "writing scenarios": 179748, "writing editing": 179724, "literature reviews": 93201, "writing progress": 179743, "relatively understudied": 139425, "challenges lead": 21935, "external documents": 56044, "documents new": 43927, "new information": 113227, "knowledge seen": 82394, "source documents": 153436, "support design": 159276, "considerations future": 29663, "research revolutionizing": 142057, "analysis power": 9071, "cell type": 21310, "annotation recent": 9547, "rna sequencing": 145115, "used technique": 173263, "technique study": 163807, "cell types": 21312, "data challenging": 34748, "cell biology": 21308, "emergence large": 47427, "chatgpt new": 23145, "literature providing": 93193, "enables researchers": 48246, "researchers conduct": 142185, "conduct literature": 29159, "potentially uncover": 125139, "uncover new": 170730, "annotation using": 9560, "chatgpt annotate": 22700, "type function": 170306, "reveal specific": 144374, "previously overlooked": 127734, "important applications": 73081, "applications understanding": 10711, "cancer progression": 19708, "discovery key": 42770, "looks promising": 97621, "model important": 103827, "important milestone": 73160, "bases using": 16405, "task relies": 161688, "relies manual": 139805, "manual curation": 99032, "expert curators": 54557, "rely extensive": 139837, "complex nested": 27496, "nested knowledge": 112610, "approach relies": 11505, "learning zsl": 91152, "given detailed": 65869, "obtain set": 115502, "set responses": 149297, "existing ontologies": 53508, "present examples": 126303, "food recipes": 60339, "accuracy comparable": 3178, "existing relation": 53551, "easy customization": 45349, "tasks absence": 161881, "absence training": 2595, "data method": 35364, "method supports": 101127, "supports general": 159396, "general strategy": 63052, "strategy leveraging": 156178, "leveraging language": 91876, "assemble knowledge": 13018, "knowledge curation": 81850, "available open": 15171, "conceptual structure": 28721, "used tool": 173269, "tool developing": 166966, "conceptual representation": 28718, "representations words": 140915, "tasks contemporary": 162124, "llms make": 95843, "make possible": 98576, "latent structure": 89518, "structure conceptual": 156543, "using experimental": 174181, "methods nearly": 101676, "nearly identical": 112113, "current work": 34302, "work utilizes": 179363, "cognitive psychology": 25474, "suite llms": 158732, "llms humans": 95521, "structure robust": 156600, "estimated llm": 50733, "llm behavior": 93506, "fairly consistent": 57047, "estimated human": 50732, "vary depending": 176266, "estimates results": 50741, "important difference": 73122, "contemporary llms": 30418, "fundamental limitations": 61956, "machine language": 98006, "text exploring": 165074, "writing tools": 179767, "rely large": 139863, "models recognize": 108862, "predict content": 125678, "content position": 30573, "paper probes": 119197, "sets used": 149411, "llms paper": 96026, "paper asks": 118755, "asks llms": 12894, "trained open": 168030, "used data": 173017, "data start": 35796, "offers practical": 115837, "road map": 145123, "general users": 63064, "consider context": 29564, "llmpowered writing": 94233, "facilitating effective": 56706, "multimedia content": 110578, "content various": 30647, "era search": 50242, "engines recommendation": 49020, "systems recently": 160573, "extraction multimodal": 56328, "completely zeroshot": 27306, "zeroshot fashion": 180168, "core insight": 32173, "engineering llms": 48949, "able extract": 2505, "given textual": 66034, "build highquality": 19322, "specific application": 153934, "generative method": 65465, "late semantic": 89472, "semantic matching": 148177, "solution based": 152903, "framework equipped": 61135, "llm gpt35": 93724, "gpt35 used": 66866, "applicable various": 10289, "modalities data": 102920, "ability wide": 2418, "shaping future": 149787, "transformer gpt4": 169145, "gpt4 developed": 66970, "milestone large": 102209, "llms billions": 94498, "llms stirred": 96684, "impressive skills": 73376, "profoundly impact": 129716, "fields paper": 58296, "paper mainly": 119073, "primary llm": 127813, "llm deployment": 93584, "applications especially": 10509, "multisource data": 111151, "advanced natural": 5781, "reasoning perform": 137026, "complex clinical": 27372, "present cases": 126240, "cases demonstrate": 20955, "potential fully": 124727, "fully automatic": 61745, "multimodal llm": 110701, "llm ai": 93454, "clinical application": 24314, "application llms": 10343, "offer significant": 115701, "significant potential": 150818, "challenges data": 21814, "data privacy": 35544, "privacy data": 127994, "need study": 112397, "overall llms": 118209, "promising avenue": 130228, "application research": 10376, "research advances": 141568, "13b parameters": 369, "parameters train": 119876, "dataset following": 36314, "deepmind chinchilla": 37866, "chinchilla scaling": 23602, "given compute": 65857, "compute budget": 28437, "powerlaw scaling": 125360, "models stateoftheart": 109226, "efficiency pretraining": 46505, "downstream objectives": 44746, "maximal update": 99662, "scale release": 146339, "code making": 24994, "making paper": 98784, "computeoptimal model": 28470, "trained fixed": 167925, "dataset sizes": 36546, "available huggingface": 15137, "prompting effectively": 130905, "think stepbystep": 166142, "input query": 77324, "multiarith dataset": 110344, "dataset gpt3s": 36332, "accuracy improved": 3269, "cot effective": 32863, "recent instruction": 137523, "instruction finetuned": 77996, "longer effective": 97526, "effective certain": 45706, "effective reasoning": 45865, "chatgpt usually": 23420, "performance generate": 121581, "trained tasks": 168095, "tasks cot": 162138, "potential risk": 124951, "training llms": 168551, "llms addition": 94341, "leakage pretraining": 89940, "dataset instruction": 36362, "training chatgpt": 168179, "chatgpt experiments": 22919, "new baseline": 113083, "results chatgpt": 143216, "chatgpt variety": 23426, "variety reasoning": 175754, "memorization pretraining": 100332, "programs natural": 129919, "various business": 175843, "programs optimization": 129922, "process conducting": 128767, "involvement experts": 80712, "operations research": 116795, "advanced algorithms": 5702, "program code": 129726, "automating task": 14892, "task synthesizing": 161762, "constraints expressed": 30081, "expressed unstructured": 55580, "unstructured form": 172214, "form natural": 60476, "mathematical program": 99582, "work evaluate": 178937, "efficacy employing": 46373, "generation synthetic": 65128, "synthetic examples": 160045, "examples apply": 52525, "patterns observe": 120552, "codet5 base": 25325, "zeroshot execution": 180166, "chatgpt really": 23249, "talking large": 161017, "chatgpt developed": 22851, "extremely popular": 56446, "early adopters": 45240, "disruptive technology": 43101, "fields like": 58283, "customer service": 34382, "service education": 149062, "education healthcare": 45544, "healthcare finance": 69000, "users provide": 173750, "provide valuable": 133023, "insights potential": 77622, "success failure": 158235, "failure technology": 57018, "technology different": 164132, "different areas": 41659, "areas research": 12389, "research examines": 141767, "chatgpt different": 22855, "conversational qa": 31899, "study employed": 157307, "compare responses": 26725, "obtain natural": 115486, "gpt3 gpt4": 66702, "study identified": 157398, "instances chatgpt": 77817, "chatgpt provided": 23230, "incorrect answers": 75145, "insights areas": 77511, "model prone": 104372, "captions using": 20627, "role understanding": 145547, "understanding public": 171429, "public sentiment": 133605, "preferences particularly": 126062, "particularly context": 120164, "political elections": 123896, "source data": 153434, "presents challenges": 126550, "limitations data": 92563, "source specifically": 153471, "specifically focusing": 154208, "mining framework": 102408, "report chatgpt": 140514, "identify correct": 71874, "accuracy based": 3153, "robustness approach": 145350, "method offer": 100997, "mining using": 102418, "evaluating logical": 51339, "gpt4 harnessing": 67042, "comprehensive natural": 28081, "advanced reasoning": 5797, "eager learn": 45226, "gpt4 performance": 67109, "tasks report": 163138, "analyses multiple": 8774, "datasets popular": 37032, "benchmarks requiring": 17354, "dataset investigate": 36371, "investigate robustness": 80491, "robustness chatgpt": 145354, "gpt4 make": 67068, "comparison chatgpt": 27026, "performs significantly": 122457, "benchmarks early": 17226, "able conduct": 2480, "results gpt4": 143444, "gpt4 yields": 67220, "yields higher": 180023, "datasets benchmarks": 36679, "wellknown datasets": 178171, "drops significantly": 45045, "newly released": 113541, "datasets logical": 36967, "reasoning remains": 137098, "gpt4 especially": 66986, "especially outofdistribution": 50522, "inference datasets": 75987, "datasets release": 37076, "datasets benchmark": 36677, "benchmark suite": 17096, "orchestrating data": 117163, "preparation program": 126164, "successful machine": 158344, "generating programs": 64299, "interacting users": 79097, "prompts limitations": 131362, "limitations specifically": 92665, "provide specific": 132979, "specific prompts": 154064, "prompts iteratively": 131343, "guide chatgpt": 68169, "improving data": 74124, "level expertise": 91467, "programming dataset": 129808, "task program": 161649, "revisit previous": 144612, "make changes": 98495, "process paper": 128932, "novel designed": 114467, "facilitate seamless": 56651, "seamless interaction": 147291, "interaction users": 79188, "provides users": 133243, "effective recommendation": 45866, "recommendation data": 138196, "guides chatgpt": 68257, "generate program": 63658, "enables users": 48256, "users easily": 173630, "roll previous": 145569, "previous versions": 127683, "facilitates efficient": 56682, "web application": 177992, "ml tasks": 102794, "tasks showcase": 163233, "showcase capabilities": 150067, "revisiting automated": 144615, "better current": 17841, "current literature": 34162, "demonstrates large": 38861, "llms great": 95445, "prompting significantly": 131073, "increases performance": 75288, "progress achieved": 129937, "kshot learning": 82657, "scenarios paper": 146663, "paper revisit": 119312, "techniques automated": 163840, "tasks larger": 162691, "larger range": 89244, "settings automated": 149532, "prompting does": 130900, "does consistently": 43969, "outperform simple": 117624, "manual prompts": 99059, "prompts work": 131527, "used baseline": 172975, "research chatgpt": 141633, "chatgpt biased": 22743, "challenges risks": 22058, "capabilities generative": 19919, "continue advance": 31187, "implications biases": 72905, "models garnered": 106424, "garnered increasing": 62782, "practitioners broader": 125526, "article investigates": 12589, "investigates challenges": 80552, "biases largescale": 18284, "chatgpt discuss": 22859, "origins biases": 117411, "biases stemming": 18314, "nature training": 112036, "product design": 129572, "unintended consequences": 171799, "biased model": 18229, "outputs analyze": 118023, "analyze potential": 9324, "potential opportunities": 124889, "mitigate biases": 102591, "implications deploying": 72911, "applications virtual": 10727, "generation chatbots": 64489, "identify quantify": 71946, "biases language": 18277, "models emphasizing": 106086, "emphasizing need": 47653, "collaborative effort": 25611, "effort develop": 46842, "equitable transparent": 50193, "aims stimulate": 7674, "intelligence community": 78797, "researchers developers": 142197, "ethical ai": 50789, "massive news": 99371, "expensive human": 53785, "annotations common": 9576, "common approach": 26118, "approach existing": 11201, "stories recent": 155885, "models expected": 106231, "improve embedding": 73457, "adoption models": 5646, "encoding information": 48508, "pretrained sentence": 127153, "considering shared": 29733, "realize idea": 136327, "idea unsupervised": 71743, "main techniques": 98275, "evaluation real": 51816, "real news": 136240, "news data": 113555, "achieves higher": 4021, "baselines robust": 16366, "robust scalable": 145319, "streaming settings": 156227, "skills solve": 152191, "agents enabling": 6593, "expert models": 54587, "agi large": 6799, "llms promising": 96224, "promising learning": 130272, "learning reasoning": 90900, "external models": 56083, "models tools": 109411, "tools plugins": 167225, "apis tackle": 10199, "tackle complex": 160812, "problems work": 128652, "agi research": 6809, "research development": 141698, "development platform": 41183, "platform designed": 123382, "dual strategy": 45076, "standard benchmark": 154804, "tasks benchmarking": 162002, "benchmarking evaluation": 17136, "evaluation openended": 51750, "openended tasks": 116508, "creative problemsolving": 33376, "tasks presented": 162973, "queries llm": 134503, "propose reinforcement": 132096, "mechanism uses": 100034, "results improve": 143487, "improve llms": 73509, "llms tasksolving": 96774, "ai feedback": 6993, "feedback loop": 57732, "solution path": 152960, "integration llms": 78676, "llms domainspecific": 94970, "domainspecific expert": 44579, "intelligence humans": 78838, "benchmarks evaluation": 17237, "evaluation methods": 51701, "foster community": 60678, "bridging gap": 19088, "universal interaction": 171903, "descriptions paper": 39486, "approach establish": 11192, "establish connection": 50658, "classes large": 23909, "gpt4 counterparts": 66954, "like python": 92379, "promote development": 130336, "development digital": 41085, "exploit inherent": 55007, "doing aim": 44047, "aim facilitate": 7456, "object oriented": 115150, "objects corresponding": 115278, "advancing digital": 6082, "accessible practical": 2962, "introduces groundbreaking": 80182, "groundbreaking approach": 67851, "connect linguistic": 29472, "allowing efficient": 8367, "efficient implementation": 46636, "ultimately contributes": 170582, "nature digital": 111994, "data integration": 35244, "augmented language": 14354, "limitations large": 92612, "models access": 105202, "access uptodate": 2919, "personal data": 122556, "data result": 35666, "extend language": 55627, "models techniques": 109364, "external data": 56038, "data sense": 35728, "llms share": 96514, "share vision": 149804, "vision data": 176901, "integration systems": 78689, "goal provide": 66192, "provide seamless": 132967, "seamless access": 147282, "large collection": 87210, "techniques llms": 163958, "integration paper": 78686, "elucidate research": 47103, "openais large": 116425, "model widespread": 104902, "widespread usage": 178475, "individualized learning": 75757, "increased demand": 75257, "demand rapid": 38134, "production highquality": 129590, "highquality items": 70046, "process using": 129028, "new items": 113240, "reduce reliance": 138467, "reliance human": 139778, "step process": 155670, "used test": 173265, "development time": 41238, "time use": 166524, "use machine": 172758, "introduced potential": 80170, "potential improve": 124775, "efficiency effectiveness": 46442, "presented paper": 126526, "paper utilizes": 119385, "latest transformerbased": 89570, "carefully engineered": 20812, "similar content": 151225, "content structure": 30624, "prompt generated": 130516, "generated multiple": 63926, "passages final": 120342, "original passage": 117365, "grammatical factual": 67458, "factual errors": 56869, "evaluated human": 51181, "online human": 116104, "evaluation social": 51865, "prompting conversational": 130888, "public users": 133611, "users engaging": 173640, "technology social": 164168, "interaction experiences": 79121, "highlights need": 69865, "robust evaluation": 145260, "aim automate": 7429, "user evaluation": 173405, "approximate human": 12014, "human judgment": 70882, "ability capture": 2087, "realworld settings": 136512, "settings address": 149526, "address limitation": 5302, "approach approximate": 10999, "evaluation leveraging": 51667, "llms gpt": 95409, "based prompting": 16040, "achieves impressive": 4025, "correlation human": 32540, "involves collecting": 80720, "chat logs": 22543, "setting llm": 149473, "llm carefully": 93523, "follow specific": 60226, "specific scenario": 154082, "different prompting": 41941, "prompting approaches": 130858, "approaches produce": 11867, "llm best": 93511, "prompts contain": 131203, "tested dataset": 164667, "dialog corpora": 41413, "toxicity chatgpt": 167468, "chatgpt analyzing": 22699, "incredible capabilities": 75458, "services like": 149083, "like healthcare": 92309, "service users": 149071, "critical information": 33505, "information needs": 76595, "safety systems": 145895, "limitations llms": 92621, "evaluate toxicity": 51120, "half million": 68318, "chatgpt popular": 23195, "dialoguebased llm": 41544, "chatgpt toxicity": 23398, "stereotypes harmful": 155788, "specific entities": 153987, "reflect inherent": 138795, "biases model": 18289, "model hope": 103805, "hope findings": 70354, "findings inspire": 58711, "current safety": 34234, "safety guardrails": 145864, "develop better": 40762, "better techniques": 18044, "techniques lead": 163949, "chatgpt bard": 22731, "bard generate": 15557, "assessment items": 13237, "reliability analysis": 139673, "bard ai": 15549, "chatbots based": 22597, "different applications": 41653, "applications diverse": 10488, "education ai": 45515, "applications assessment": 10427, "assessment teaching": 13271, "teaching assessment": 163639, "used automated": 172971, "automated essay": 14543, "scoring automated": 147183, "tools assist": 167107, "high reliability": 69522, "scores human": 147152, "llms tools": 96811, "writing prompts": 179744, "performance metric": 121799, "openai chatgpt": 116327, "chatgpt google": 22996, "standard human": 154828, "bibliometric analysis": 18333, "systematic review": 160145, "analysis scientific": 9149, "specifically chatgpt": 154148, "chatgpt chatbots": 22769, "gained increasing": 62466, "trends field": 169717, "field analyzing": 58122, "analyzing data": 9363, "research consists": 141661, "analysis chatbot": 8846, "review scientific": 144548, "documents chatgpt": 43891, "analysis conducted": 8863, "conference papers": 29337, "reviews chatbots": 144576, "analysis focusing": 8939, "chatgpt latest": 23095, "field consequently": 58146, "second phase": 147498, "studies analyzed": 156951, "key areas": 81460, "identified study": 71833, "intelligence related": 78888, "related technologies": 139217, "digital technologies": 42295, "provide guidelines": 132815, "conduct research": 29171, "research effectively": 141737, "chatbots specifically": 22639, "specifically highlight": 154221, "highlight significant": 69784, "significant areas": 150596, "areas future": 12367, "future investigation": 62275, "chatgpt training": 23401, "large foundation": 87254, "foundation language": 60724, "adapted perform": 4691, "generation sentiment": 65077, "semantic search": 148216, "foundational models": 60846, "models nontrivial": 108310, "compute power": 28450, "expertise machine": 54621, "promising technique": 130324, "compute requirements": 28453, "requirements training": 141321, "new challenges": 113104, "challenges training": 22087, "counterparts furthermore": 32974, "patterns makes": 120549, "efficiently utilize": 46826, "gpt using": 66507, "architecture enables": 12157, "enables efficient": 48178, "kernel fusion": 81444, "successfully train": 158397, "train gpt": 167775, "13b model": 365, "model achieving": 103058, "models recognition": 108861, "impact large": 72674, "technology tools": 164172, "llm like": 93805, "like openais": 92370, "chatgpt perceived": 23177, "reflect biases": 138789, "stress importance": 156281, "importance evaluating": 73031, "play crucial": 123442, "role aspects": 145461, "paper highlights": 118969, "comparing responses": 27009, "united nations": 171875, "aibased tools": 7351, "llms leading": 95738, "leading new": 89846, "ai construction": 6931, "chatgpt information": 23071, "chatgpt emerging": 22878, "novel information": 114546, "chatgpt taking": 23376, "objective study": 115225, "study evaluate": 157318, "evaluate accuracy": 50898, "accuracy completeness": 3182, "information aspects": 76286, "survey analysis": 159607, "results indicated": 143524, "responses provided": 142889, "provided chatgpt": 133041, "chatgpt accurate": 22672, "accurate complete": 3443, "evaluations generated": 51978, "generated information": 63890, "information accurate": 76263, "information provided": 76660, "provided accurate": 133035, "accurate information": 3466, "information generated": 76472, "prompts related": 131444, "evaluation information": 51647, "actions results": 4390, "regarding utility": 138900, "utility ai": 174943, "assistive technologies": 13454, "improved taking": 73725, "survey evaluating": 159626, "evaluating information": 51316, "chatgpt findings": 22946, "study provide": 157564, "improving public": 74197, "modeling typical": 105114, "model glm": 103750, "potential latest": 124816, "study various": 157713, "structure information": 156568, "information type": 76818, "extensively utilized": 55995, "fully unleashing": 61795, "unleashing power": 171984, "syntactic knowledge": 159893, "representations posttraining": 140863, "generation decoding": 64559, "introduce taskoriented": 80125, "mechanism adjusting": 99975, "benchmarks tasks": 17383, "identifying source": 72032, "source codes": 153429, "retrieval multimodal": 144100, "clinical report": 24360, "automated interpretation": 14560, "advancements machine": 5925, "learning methodologies": 90676, "current studies": 34273, "focus solely": 60052, "overlook crucial": 118376, "diagnosis diagnostic": 41361, "diagnostic report": 41386, "leveraging recent": 91934, "breakthroughs large": 19021, "vit models": 177398, "automatically identifying": 14831, "identifying similar": 72031, "clinical cases": 24319, "cases based": 20946, "visionlanguage learning": 177032, "jointly learn": 81275, "visionlanguage alignment": 177020, "result efficient": 143030, "highly practical": 69938, "clinical applications": 24315, "importantly findings": 73222, "findings serve": 58791, "serve crucial": 148972, "providing diagnostic": 133283, "evaluating general": 51301, "general abilities": 62907, "abilities foundation": 1912, "models tackle": 109348, "development application": 41052, "pursuit artificial": 133785, "traditional benchmarks": 167596, "benchmarks rely": 17350, "accurately represent": 3561, "humanlevel capabilities": 71223, "capabilities paper": 20094, "benchmark specifically": 17089, "designed assess": 39816, "model context": 103366, "entrance exams": 49957, "tests evaluate": 164779, "stateoftheart foundation": 155142, "including gpt4": 74543, "chatgpt textdavinci003": 23392, "using benchmark": 174001, "gpt4 surpasses": 67185, "accuracy rate": 3358, "math test": 99539, "accuracy english": 3219, "english test": 49115, "chinese national": 23650, "extraordinary performance": 56404, "models contrast": 105783, "proficient tasks": 129691, "require complex": 141078, "capabilities understanding": 20228, "reasoning calculation": 136694, "limitations providing": 92649, "directions enhancing": 42472, "enhancing general": 49486, "general capabilities": 62922, "evaluation foundation": 51596, "chatgpt4 outperforms": 23455, "paper assesses": 118758, "reliability bias": 139676, "llm chatgpt4": 93534, "task classifying": 161245, "political affiliation": 123892, "based content": 15721, "compared manual": 26854, "considered gold": 29688, "standard tasks": 154883, "2020 election": 656, "providing ground": 133304, "measure accuracy": 99827, "accuracy paper": 3332, "accuracy higher": 3260, "bias human": 18132, "llm able": 93425, "able correctly": 2483, "authors intentions": 14440, "traditionally seen": 167726, "uniquely human": 171863, "human abilities": 70549, "use textual": 172909, "ubiquitous modern": 170548, "finding applications": 58598, "applications various": 10719, "domains natural": 44476, "translation speech": 169517, "breakthrough work": 19017, "attention model": 13935, "model probabilistic": 104343, "probabilistic contextfree": 128080, "contextfree grammar": 30992, "computing probability": 28551, "rank given": 135775, "times times": 166610, "song woodruff": 153282, "input sparsity": 77347, "sparsity time": 153776, "time algorithm": 166349, "models huge": 106633, "huge potential": 70526, "teachers students": 163631, "students alike": 156844, "quality diverse": 134100, "generation dramatically": 64589, "dramatically reduce": 44895, "quality educational": 134104, "content recent": 30594, "work domain": 178917, "real teachers": 136255, "classroom setting": 24229, "setting instead": 149466, "unhelpful content": 171688, "generated high": 63883, "showing promise": 150186, "use classroom": 172551, "study large": 157461, "large decoderonly": 87236, "largely improved": 89156, "impact text": 72729, "autoregressive lms": 14999, "lms retrieval": 97195, "retrieval answer": 143994, "retrievalaugmented lm": 144194, "inference stages": 76107, "provide recipe": 132948, "based following": 15820, "novel findings": 114501, "outperforms gpt": 117778, "slightly lower": 152234, "retrieval database": 144033, "ii lm": 72103, "lm evaluation": 97053, "evaluation harness": 51634, "largely outperforms": 89163, "furthermore introduce": 62099, "largely improves": 89157, "results original": 143652, "em score": 47120, "finetuning zeroshot": 59614, "settings findings": 149577, "pretraining autoregressive": 127269, "citation counts": 23796, "environmental science": 50051, "chatgpt gpt": 23000, "100 million": 152, "million users": 102247, "users worldwide": 173820, "information gpt": 76482, "study focusing": 157376, "information field": 76447, "gpt identify": 66431, "identify significant": 71961, "focusing factors": 60181, "number citations": 114838, "indicate gpt": 75589, "citation count": 23795, "publication year": 133616, "journals field": 81298, "interestingly findings": 79408, "google scholar": 66327, "citation information": 23798, "scientific databases": 146946, "conclusion study": 28905, "play significant": 123470, "significant role": 150865, "utilizing gpt": 175192, "literature review": 93199, "challenges foundation": 21875, "models geospatial": 106496, "geospatial artificial": 65748, "known foundation": 82593, "models fms": 106371, "taskagnostic manner": 161826, "manner largescale": 98997, "data adapted": 34591, "adapted wide": 4698, "finetuning fewshot": 59268, "learning despite": 90366, "despite successes": 40232, "intelligence geoai": 78834, "promises challenges": 130208, "challenges developing": 21827, "potential existing": 124713, "seven tasks": 149703, "subdomains including": 157807, "including geospatial": 74531, "remote sensing": 140346, "geospatial tasks": 65753, "text modality": 165309, "toponym recognition": 167397, "llms outperform": 96011, "especially tasks": 50550, "multiple data": 110879, "street view": 156240, "sensing image": 148410, "scene classification": 146726, "based observations": 15983, "observations propose": 115347, "distinct challenges": 43209, "geospatial data": 65751, "data modality": 35377, "suggest possibility": 158577, "model reason": 104416, "data geospatial": 35126, "conclude paper": 28877, "risks challenges": 144978, "theoretical perspective": 166044, "integrates large": 78560, "llms key": 95696, "aigenerated code": 7400, "code suggestions": 25162, "mutual understanding": 111347, "sharing data": 149837, "using quantitative": 174637, "metrics identify": 102085, "group suggestions": 67958, "cognitive load": 25458, "evaluation confirmed": 51501, "confirmed effectiveness": 29399, "advantages existing": 6135, "empirical insights": 47709, "role llms": 145510, "evaluating understanding": 51402, "understanding identifying": 171286, "generated gpt": 63872, "generated content": 63827, "presents considerable": 126564, "need able": 112205, "able detect": 2487, "detect text": 40376, "need understand": 112417, "lexical syntactic": 91998, "stylistic features": 157788, "language teaching": 86780, "balanced corpus": 15510, "models response": 108964, "machinegenerated texts": 98153, "equal number": 50156, "human ones": 70939, "ones results": 116015, "accuracy 61": 3112, "number rises": 114942, "perform linguistic": 120978, "complex finally": 27418, "finally test": 58534, "existing aigc": 53251, "aigc detectors": 7391, "detectors using": 40685, "roberta finetuned": 145145, "achieves 90": 3948, "90 accuracy": 1742, "classification best": 23964, "revolutionizing field": 144671, "field deep": 58153, "recognized models": 138165, "propose definition": 131779, "models adaptation": 105268, "split learning": 154559, "application scenarios": 10379, "scenarios comprehensive": 146560, "generation witnessed": 65261, "witnessed significant": 178573, "significant growth": 150716, "copy mechanism": 32116, "traditional encoderdecoder": 167615, "new performance": 113331, "benchmarks paper": 17322, "presents various": 126657, "various experiments": 175933, "studies comparing": 156964, "comparing pretrained": 27004, "llms highlighting": 95492, "highlighting impact": 69812, "various finetuning": 175946, "particular provide": 120115, "test generalization": 164557, "yields significant": 180032, "performance enhancements": 121458, "annotating data": 9504, "data pivotal": 35487, "generating correct": 64178, "additionally findings": 5068, "reveal primary": 144367, "using base": 173997, "models does": 106015, "mechanism leads": 100009, "selecting wrong": 147827, "finally performance": 58504, "tested llms": 164676, "fell short": 57845, "short achieving": 149951, "achieving desired": 4166, "desired outcomes": 40054, "model intelligent": 103885, "information processing": 76649, "rapid advance": 135843, "advance artificial": 5673, "intelligence technology": 78907, "research methods": 141910, "methods need": 101677, "crucial component": 33776, "based corpus": 15728, "gpttype models": 67328, "models aimed": 105324, "ability process": 2325, "traditional chinese": 167597, "chinese ancient": 23604, "help promote": 69166, "thought prompt": 166233, "demonstrated promising": 38747, "fewshot downstream": 57900, "tasks prompting": 163029, "visual models": 177230, "studies use": 157106, "neglecting inherent": 112552, "cognitive reasoning": 25476, "process humans": 128859, "conduct complex": 29035, "processing images": 129169, "unfamiliar domains": 171644, "useful natural": 173339, "based cognitive": 15704, "reasoning important": 136908, "important problem": 73173, "visual tasks": 177319, "tasks chain": 162033, "solution problem": 152965, "modeling extensive": 105001, "generalizes better": 63286, "better image": 17908, "tasks greater": 162482, "domain generalization": 44175, "performance performs": 121906, "better imagetext": 17909, "successfully adapt": 158362, "prompting combines": 130883, "embeddings release": 47277, "release codes": 139453, "indepth investigation": 75539, "user response": 173487, "search conversational": 147328, "recent attention": 137447, "nlp communities": 113705, "users search": 173774, "multiturn natural": 111281, "language interactions": 83458, "trained evaluated": 167911, "evaluated deployed": 51166, "key challenge": 81467, "challenge training": 21745, "training evaluating": 168422, "does scale": 44031, "current user": 34295, "user simulators": 173498, "yesno questions": 179956, "existing user": 53625, "simulation systems": 151720, "systems significantly": 160611, "simulating user": 151682, "goal supplement": 66202, "supplement existing": 159229, "unsolved challenges": 172200, "propose solutions": 132141, "solutions challenges": 152999, "challenges identified": 21903, "blind spot": 18701, "difficult learn": 42160, "learn specific": 90058, "specific type": 154119, "standard setup": 154878, "setup propose": 149677, "generation effectively": 64595, "improvements existing": 73900, "additionally analysis": 5022, "analysis provides": 9099, "nature user": 112038, "chinese open": 23653, "preliminary release": 126137, "widely recognized": 178381, "recognized key": 138164, "key technique": 81588, "technique building": 163747, "building generalist": 19414, "attracted attention": 14036, "public release": 133600, "llms underexplored": 96875, "foundation llms": 60731, "compared english": 26792, "english tasks": 49114, "project attempt": 130071, "chinese instruction": 23630, "instruction dataset": 77980, "methods adapted": 101284, "tuning samples": 170114, "guarantee high": 68112, "summarize existing": 158905, "finetuning chinese": 59193, "instruction data": 77973, "data instruction": 35237, "following large": 60290, "instructiontuning large": 78412, "models crucial": 105827, "crucial area": 33758, "limitations researchers": 92660, "tuning techniques": 170135, "techniques lora": 163959, "encouraging results": 48625, "results comparison": 143245, "terms training": 164486, "methods utilizing": 101921, "utilizing llama": 175209, "llama base": 93291, "results selection": 143776, "foundational model": 60844, "learnable parameter": 90083, "important factors": 73132, "provide inspiration": 132858, "especially field": 50475, "field chinese": 58134, "better tradeoff": 18049, "strategy training": 156212, "results dataset": 143274, "equipped language": 50183, "capabilities various": 20239, "tasks diverse": 162245, "datasets end": 36821, "pretrains language": 127484, "model diverse": 103483, "corpus containing": 32288, "containing 1m": 30323, "perform simple": 121040, "data filtering": 35050, "filtering process": 58360, "space using": 153629, "using kmeans": 174344, "filter lowquality": 58348, "pretraining use": 127473, "use pretrain": 172808, "pretrain bert": 126730, "checkpoints trained": 23553, "effective instruction": 45785, "instructions instruction": 78283, "enables language": 48199, "better follow": 17876, "follow user": 60229, "data costly": 34862, "challenging prior": 22240, "work employs": 178930, "noisy examples": 113998, "instructions generate": 78266, "instructions llms": 78304, "set humanwritten": 149214, "llms approach": 94421, "instructiontuning dataset": 78407, "dataset natural": 36422, "outperform 10x": 117563, "10x larger": 217, "longform question": 97546, "models flant5": 106368, "alpaca large": 8511, "finally models": 58493, "effectively follow": 46001, "multilingual instructions": 110487, "instructions demonstrate": 78230, "news generation": 113563, "generation publicly": 64987, "release data": 139459, "learning compress": 90314, "way utilize": 177889, "multitask capabilities": 111204, "lms prompts": 97182, "space input": 153581, "context window": 30958, "computationally inefficient": 28423, "finetuning distillation": 59227, "distillation methods": 43157, "methods allow": 101300, "retraining model": 143980, "compute efficiency": 28441, "gist models": 65805, "trained additional": 167863, "additional cost": 4944, "finetuning simply": 59543, "simply modifying": 151616, "prompts resulting": 131454, "resulting 40": 143087, "wall time": 177676, "minimal loss": 102345, "quality stochastic": 134273, "stochastic parrots": 155824, "llms easy": 95000, "hard detect": 68640, "detect llms": 40366, "abilities models": 1964, "llms recently": 96327, "gained prominence": 62476, "expectations regarding": 53745, "regarding ai": 138859, "concerns regarding": 28816, "regarding misuse": 138876, "misuse llms": 102576, "led emergence": 91224, "emergence numerous": 47441, "numerous tools": 115070, "tools critically": 167132, "suggested llms": 158601, "easy detect": 45353, "assumed publicly": 13551, "available generative": 15122, "attacker access": 13678, "detection fully": 40512, "training reasonable": 168676, "combining common": 25967, "common reinforcement": 26185, "surprisingly good": 159562, "representative ability": 140918, "results critical": 143267, "critical implications": 33502, "detection prevention": 40595, "malicious use": 98849, "ai seen": 7212, "advances field": 6006, "emergence llms": 47436, "content current": 30466, "llmbased generative": 94148, "tools mainly": 167207, "performance tools": 122185, "tools generating": 167171, "generating relevant": 64317, "relevant content": 139581, "content code": 30449, "concerns related": 28825, "design use": 39795, "context work": 30972, "work survey": 179326, "based empirical": 15771, "al 2008": 7720, "useful tool": 173353, "furthermore analyses": 62009, "analyses suggest": 8785, "likely key": 92458, "key factor": 81498, "work following": 178996, "plan investigate": 123214, "tools specific": 167256, "specific audiences": 153941, "perspectives large": 122706, "chatgpt claim": 22776, "relevance judgments": 139558, "reliably used": 139772, "perspectives paper": 122712, "paper discuss": 118856, "discuss possible": 42923, "possible ways": 124475, "ways llms": 177909, "concerns issues": 28784, "issues arise": 80983, "humanmachine collaboration": 71302, "categorize different": 21136, "strategies based": 155967, "based humans": 15859, "humans rely": 71464, "human assessors": 70596, "perspectives use": 122722, "experimental evidence": 53945, "virtual assistant": 176860, "assistant framework": 13389, "retrieval efficient": 144048, "efficient information": 46643, "building information": 19420, "significant challenges": 150646, "framework integrating": 61234, "technologies support": 164113, "generate prompts": 63661, "ir dataset": 80830, "dataset approach": 36117, "accuracy rates": 3359, "queries data": 134462, "prompts respectively": 131450, "respectively additionally": 142533, "contributes development": 31438, "development effective": 41093, "construction industry": 30216, "significantly enhancing": 151000, "efforts training": 46938, "data requirements": 35654, "digital technology": 42296, "chatgpt generative": 22982, "european countries": 50867, "analyse impact": 8745, "synthetic control": 160016, "control approach": 31520, "google search": 66328, "usage data": 172441, "data shows": 35752, "significant increase": 150757, "tools findings": 167165, "users swiftly": 173791, "facilitated use": 56672, "aigenerated synthetic": 7410, "synthetic media": 160054, "media education": 100086, "hci researchers": 68902, "technologies particular": 164105, "propose design": 131781, "realtime voice": 136385, "character animation": 22422, "aims support": 7676, "specifically children": 154149, "raises concerns": 135479, "gender choices": 62888, "effect paper": 45668, "taken account": 160964, "offers insights": 115819, "ai design": 6949, "functioning large": 61895, "models critically": 105823, "applications built": 10436, "built model": 19494, "applications text": 10702, "language art": 83160, "allows test": 8474, "test potential": 164595, "critical code": 33470, "object study": 115164, "study deep": 157264, "code demonstrate": 24782, "demonstrate validity": 38606, "validity code": 175390, "intelligence critical": 78803, "critical machine": 33519, "learning studies": 91034, "work draws": 178922, "draws attention": 44959, "ordinary users": 117276, "extension works": 55705, "models expansive": 106230, "transformer network": 169190, "network traffic": 112699, "traffic data": 167731, "data internet": 35252, "transferred network": 169028, "accurately modeling": 3550, "protect data": 132553, "privacy pretrained": 128016, "models network": 108281, "results input": 143530, "considering specific": 29734, "effective pretrained": 45843, "optimize training": 117082, "effectiveness downstream": 46166, "tasks application": 161953, "attack detection": 13638, "traffic generation": 167733, "generation despite": 64566, "pretraining natural": 127396, "processing work": 129357, "considering diverse": 29710, "diverse demands": 43505, "model network": 104123, "various challenges": 175848, "challenges especially": 21849, "tasks tackle": 163334, "challenges paper": 21983, "provide generative": 132807, "traffic modeling": 167735, "unified text": 171750, "tasks optimize": 162893, "model diversified": 103484, "incorporating diverse": 75090, "diverse task": 43674, "task labels": 161502, "labels prompts": 82820, "traffic datasets": 167732, "expensive experiments": 53783, "tasks traffic": 163383, "datasets outperform": 37017, "outperform stateoftheart": 117631, "baselines wide": 16387, "code generated": 24854, "chatgpt recent": 23253, "models responsible": 108966, "great advances": 67682, "ai chatgpt": 6911, "chatgpt particular": 23175, "particular ai": 120046, "ai chatbot": 6908, "chatbot developed": 22572, "developed recently": 40913, "able process": 2542, "translate natural": 169409, "language code": 83189, "programs generated": 129906, "overlooked paper": 118383, "paper perform": 119098, "perform experiment": 120940, "generate number": 63634, "evaluate security": 51100, "code investigate": 24955, "investigate chatgpt": 80386, "improve security": 73624, "prompts discuss": 131233, "ethical aspects": 50792, "code results": 25112, "potential vulnerabilities": 125069, "robust certain": 145245, "improved access": 73670, "access biomedical": 2848, "tasks face": 162385, "specialized knowledge": 153892, "teaching llms": 163652, "llms use": 96902, "specifically prompt": 154266, "prompt codex": 130388, "codex solve": 25358, "benchmark average": 16843, "retrievalaugmented llms": 144193, "biomedical llms": 18557, "multihop questions": 110429, "work different": 178910, "types errors": 170350, "tasks providing": 163049, "prompting improves": 130958, "design chainofthought": 39566, "cot selfconsistency": 32903, "methods enhance": 101481, "enhance ability": 49140, "ability methods": 2276, "methods fully": 101540, "llm guide": 93728, "guide subsequent": 68212, "subsequent responses": 157956, "responses paper": 142868, "new prompting": 113360, "enables automatic": 48162, "multiple interactions": 110948, "interactions users": 79275, "users llms": 173707, "using previously": 174606, "generated answers": 63794, "making easy": 98733, "stateoftheart techniques": 155390, "extensive comprehensive": 55738, "experiments seven": 54457, "seven benchmarks": 149690, "improvement gsm8k": 73805, "compared complex": 26768, "paths selfconsistency": 120449, "selfconsistency gpt4": 147950, "compositional reasoning": 27819, "progress solving": 130016, "tasks emergent": 162280, "emergent reasoning": 47485, "llms inherent": 95636, "uptodate information": 172399, "tools performing": 167223, "precise mathematical": 125587, "llms plugandplay": 96117, "various tools": 176233, "tools llms": 167206, "llms offtheshelf": 95968, "offtheshelf vision": 115928, "python functions": 133832, "llmbased planner": 94160, "tools execute": 167154, "generate final": 63499, "final response": 58397, "showcase effectiveness": 150071, "knowledgeintensive reasoning": 82564, "gpt4 achieves": 66905, "accuracy scienceqa": 3385, "best published": 17741, "exhibits consistent": 53190, "tool selection": 167028, "potential constraints": 124656, "instructions compared": 78214, "project available": 130072, "ai source": 7223, "source user": 153483, "explores impact": 55397, "systems recent": 160570, "conversational ais": 31844, "increasingly deployed": 75391, "deployed realworld": 39220, "study takes": 157659, "better user": 18064, "various conversational": 175879, "design results": 39746, "safety models": 145879, "models way": 109676, "reviews large": 144582, "proliferation fake": 130123, "fake reviews": 57106, "regulatory bodies": 139015, "advancements fields": 5893, "fields machine": 58285, "processing remains": 129287, "study utilizes": 157706, "utilizes novel": 175152, "specifically compare": 154154, "performance traditional": 122188, "traditional ml": 167662, "ml models": 102779, "models logistic": 108091, "logistic regression": 97411, "use gpt4": 172660, "newest model": 113522, "uncover key": 170727, "key dimensions": 81490, "significantly superior": 151164, "context additionally": 30678, "requires smaller": 141445, "smaller training": 152449, "training sample": 168710, "models suggesting": 109292, "gpt3 performance": 66739, "performance increases": 121667, "cold start": 25564, "context prior": 30880, "finally employ": 58444, "employ gpt4": 47827, "reveal crucial": 144324, "distinguish fake": 43278, "contrast previous": 31319, "previous findings": 127592, "findings literature": 58726, "using simulated": 174718, "simulated data": 151654, "data findings": 35053, "realworld dataset": 136431, "dataset fake": 36295, "better structure": 18032, "crucial tools": 33878, "multilingual natural": 110520, "tasks facilitate": 162387, "words language": 178731, "using typical": 174830, "pipeline consisting": 123041, "word alignment": 178612, "rely pretrained": 139878, "pipeline german": 123063, "german dialects": 65761, "poses unique": 124239, "lack standardization": 83009, "analyze respect": 9329, "edit distance": 45428, "additionally release": 5129, "release evaluation": 139466, "datasets comprising": 36725, "theory emergent": 166081, "distribution languages": 43367, "advent llms": 6179, "big data": 18378, "models precisely": 108585, "exploring sparse": 55508, "distribution effective": 43355, "quantitative results": 134379, "demonstrate emergent": 38323, "understanding incontext": 171294, "learning chainofthought": 90289, "prompting effective": 130904, "inference sparse": 76102, "llms revolutionizing": 96466, "revolutionizing natural": 144673, "increasing use": 75370, "use various": 172930, "domains incorporating": 44439, "unidirectional attention": 171692, "autoregressive llms": 14997, "generate long": 63600, "long coherent": 97440, "coherent paragraphs": 25536, "bidirectional attention": 18338, "models employing": 106097, "techniques employed": 163877, "capture context": 20640, "context multiple": 30854, "advancements gpt": 5902, "model expands": 103593, "model include": 103837, "input image": 77257, "image proposed": 72308, "feature extractor": 57406, "token type": 166747, "coherent long": 25533, "long paragraphs": 97462, "human thought": 71061, "thought process": 166230, "infer answer": 75936, "vqa models": 177577, "robotic scene": 145197, "newly annotated": 113527, "dataset based": 36128, "annotations allow": 9570, "subtype analysis": 158202, "extensively study": 55993, "model supporting": 104694, "humanai collaboration": 71107, "auditing llms": 14221, "llms large": 95721, "increasingly pervasive": 75419, "ubiquitous society": 170550, "sociotechnical systems": 152723, "systems language": 160449, "classification generation": 24006, "generation shown": 65085, "harm people": 68717, "existing auditing": 53284, "work draw": 178919, "fair ai": 57028, "auditing tool": 14223, "powered generative": 125233, "llm design": 93585, "process highlight": 128856, "leverage complementary": 91577, "complementary strengths": 27262, "humans generative": 71396, "conduct user": 29199, "commercial language": 26073, "effectively leverages": 46043, "leverages human": 91729, "hypothesis formation": 71619, "testing tool": 164763, "tool participants": 167016, "different topics": 42055, "topics tasks": 167371, "labels study": 82830, "computing tasks": 28562, "tasks release": 163118, "llms substitute": 96715, "substitute human": 158160, "intelligence paper": 78867, "paper seek": 119315, "seek understand": 147661, "annotations social": 9611, "tasks achievement": 161894, "computing research": 28553, "research use": 142135, "bot detection": 18879, "detection results": 40612, "highlight chatgpt": 69729, "chatgpt does": 22862, "potential handle": 124753, "handle data": 68538, "number challenges": 114835, "chatgpt obtains": 23155, "analysis dataset": 8877, "open new": 116255, "high dimensions": 69448, "detect presence": 40373, "features large": 57527, "intermediate natural": 79515, "fragment natural": 60892, "case natural": 20881, "intermediate features": 79509, "nli models": 113668, "representations allowing": 140763, "critical analysis": 33453, "work carry": 178833, "carry new": 20842, "new existing": 113183, "features nli": 57546, "nli classification": 113664, "furthermore delve": 62039, "delve limitations": 38094, "limitations methods": 92623, "base population": 15625, "bases cskb": 16390, "task nlp": 161573, "unseen events": 172162, "al 2021a": 7729, "population benchmark": 124110, "benchmark evaluation": 16963, "crowdsourced annotations": 33724, "sampling paper": 146109, "benchmark addresses": 16822, "adversarial samples": 6229, "make evaluation": 98532, "experiments comparing": 54180, "comparisons empirical": 27078, "challenging large": 22187, "llm chatgpt": 93532, "potential artificial": 124601, "intelligence chatbots": 78793, "chatbots data": 22612, "graphs paper": 67645, "work progress": 179193, "chatgpt facilitating": 22931, "data access": 34569, "provide examples": 132772, "illustrate potential": 72155, "use conversational": 172566, "performance opensource": 121877, "opensource english": 116602, "chinese models": 23647, "models excelling": 106193, "languages limited": 87050, "limited resources": 92838, "nonlatin languages": 114087, "languages believe": 86953, "make chatgpt": 98496, "especially countries": 50449, "people use": 120738, "chatgpt fall": 22934, "short providing": 149986, "demonstrated significant": 38793, "challenges providing": 22032, "providing reliable": 133361, "reliable accurate": 139713, "accurate answers": 3435, "user questions": 173481, "questions better": 135057, "understand models": 171045, "indepth exploration": 75537, "answering specifically": 9957, "undertake detailed": 171566, "detailed examination": 40291, "examination chatgpts": 52354, "chatgpts failures": 23491, "failure identify": 57008, "identify critical": 71876, "knowledge recall": 82344, "factuality propose": 56919, "propose potential": 132068, "potential enhancement": 124698, "strategies findings": 156002, "augmenting model": 14396, "cues knowledge": 33925, "enhance models": 49238, "questions supporting": 135293, "analysis textual": 9202, "textual contents": 165884, "rich valuable": 144811, "assigning labels": 13324, "data process": 35551, "datasets recent": 37069, "readily available": 136173, "available ai": 15068, "resources expertise": 142438, "limited generalizability": 92770, "models study": 109256, "llms supporting": 96737, "analysis researchers": 9128, "codebooks label": 25236, "label data": 82678, "data fixed": 35063, "fixed set": 59719, "training taskspecific": 168779, "questions coding": 135067, "coding task": 25408, "results lay": 143561, "support qualitative": 159323, "understanding advanced": 171116, "advanced large": 5753, "gpt4 demonstrated": 66960, "demonstrated extraordinary": 38667, "multimodal abilities": 110580, "abilities directly": 1895, "directly generating": 42547, "text identifying": 165225, "observed previous": 115431, "models technical": 109362, "technical details": 163698, "remain undisclosed": 139946, "capabilities gpt4": 19930, "sophisticated large": 153307, "phenomenon present": 122837, "aligns frozen": 8268, "frozen visual": 61688, "visual encoder": 177160, "encoder frozen": 48421, "advanced llm": 5761, "llm vicuna": 94091, "vicuna using": 176674, "projection layer": 130097, "work time": 179342, "aligning visual": 8113, "model possess": 104291, "detailed image": 40299, "image description": 72225, "writing stories": 179756, "caption pairs": 20570, "pairs produce": 118607, "unnatural language": 172057, "language outputs": 86452, "description dataset": 39408, "dataset second": 36521, "finetune model": 58947, "model consequently": 103347, "models generation": 106471, "generation reliability": 65036, "dataset available": 36124, "fields nlp": 58294, "offensive content": 115614, "provided input": 133063, "input lowresource": 77282, "lowresource data": 97901, "data regime": 35632, "regime lead": 138913, "posthoc methods": 124503, "topk nucleus": 167378, "paper apply": 118748, "using token": 174806, "sequence level": 148765, "unlikelihood training": 172027, "generating offensive": 64285, "offensive words": 115629, "content quality": 30590, "quality llm": 134188, "llm outputs": 93864, "methods particularly": 101706, "language module": 86425, "llm methods": 93828, "informal text": 76257, "suffer outofvocabulary": 158443, "outofvocabulary oov": 117556, "problem hand": 128270, "hand rulebased": 68496, "rulebased methods": 145700, "semantic web": 148257, "text inspired": 165251, "propose strategies": 132146, "problem semantic": 128387, "synergy prediction": 159878, "shown significant": 150376, "potential fewshot": 124722, "data ability": 34564, "complex fields": 27417, "fully evaluated": 61756, "promising alternative": 130215, "particularly cases": 120154, "corpora proposed": 32243, "uses llms": 173884, "llms predict": 96155, "data features": 35044, "features experiments": 57489, "experiments involved": 54325, "model achieved": 103028, "significant accuracy": 150563, "accuracy zero": 3425, "zero samples": 180087, "124m parameters": 294, "finetuned gpt3": 59030, "parameters research": 119855, "research tackle": 142108, "prediction rare": 125855, "data utilize": 35937, "reaction prediction": 136144, "tasks gpt4": 162477, "gpt4 perform": 67108, "designing effective": 39994, "leverages generative": 91726, "gpt4 blackbox": 66935, "promising candidates": 130237, "performance assess": 121168, "comparing existing": 26983, "illustrate effectiveness": 72147, "performance objective": 121860, "potential assist": 124605, "assist research": 13357, "technical problem": 163711, "prompting scheme": 131069, "relatively limited": 139406, "limited domain": 92749, "point future": 123705, "purpose language": 133743, "tasks highlight": 162503, "limitations study": 92668, "implications ai": 72901, "arithmetic operations": 12479, "gpt3 showed": 66753, "shot settings": 150062, "certain degree": 21377, "reasoning arithmetic": 136675, "operations paper": 116791, "perform arithmetic": 120868, "pipeline performing": 123081, "accuracy 63": 3113, "pipeline introduced": 123067, "introduced finetuning": 80156, "results accuracy": 143154, "planning based": 123250, "construction emerged": 30213, "solution address": 152890, "address numerous": 5327, "numerous challenges": 115031, "main obstacles": 98257, "robotic systems": 145198, "systems need": 160493, "need effective": 112274, "construction tasks": 30235, "including mathematical": 74610, "techniques machine": 163960, "methods face": 101513, "face limitations": 56537, "limitations adaptability": 92530, "adaptability scalability": 4584, "scalability dynamic": 146212, "current robot": 34232, "sequential understanding": 148889, "leverages advanced": 91708, "model automated": 103160, "feasibility effectiveness": 57349, "evaluation including": 51644, "including case": 74439, "real construction": 136222, "adapt changes": 4512, "efforts enhance": 46910, "enhance capabilities": 49161, "capabilities performance": 20104, "integration large": 78666, "model technologies": 104728, "models guarantee": 106573, "mistakes new": 102551, "large conversational": 87221, "accuracy recently": 3367, "technology companies": 164128, "google announced": 66308, "announced new": 9650, "services aim": 149076, "ai numerous": 7128, "factual claims": 56856, "hope researchers": 70377, "developers improve": 40947, "improve ai": 73409, "models transparency": 109507, "reliability chatgpt": 139677, "text annotation": 164833, "promising potential": 130293, "human coders": 70640, "input lead": 77274, "lead different": 89738, "given appropriate": 65833, "capabilities text": 20211, "prompt variations": 130741, "inputs based": 77387, "based realworld": 16060, "website texts": 178049, "texts news": 165751, "news news": 113568, "outputs multiple": 118090, "reliability study": 139709, "caution using": 21274, "chatgpt zeroshot": 23443, "zeroshot text": 180355, "underscores need": 170949, "need thorough": 112408, "application chatgpt": 10304, "ai era": 6980, "era generative": 50225, "reference architecture": 138652, "architecture designing": 12145, "designing foundation": 39999, "based systems": 16124, "systems release": 160581, "models broad": 105546, "models fundamental": 106405, "lack systematic": 83016, "design particularly": 39712, "particularly rapidly": 120245, "growing capabilities": 68011, "models eventually": 106172, "posing challenges": 124243, "design furthermore": 39638, "systems raises": 160564, "significant concerns": 150662, "concerns responsible": 28827, "rapidly advancing": 135912, "advancing intelligence": 6090, "intelligence address": 78716, "evolution ai": 52252, "systems era": 160360, "era foundation": 50223, "paper identifies": 118971, "identifies key": 71844, "associated risks": 13505, "exploration bias": 55056, "research machine": 141895, "succeed fail": 158210, "great societal": 67726, "societal relevance": 152697, "framework used": 61472, "outputs produced": 118103, "models focus": 106373, "focus generative": 59988, "tasks commonly": 162081, "commonly studied": 26233, "cognitive task": 25488, "influences behavior": 76232, "measuring biases": 99943, "biases racism": 18310, "gpt35 shows": 66854, "biases prompted": 18308, "text likely": 165281, "models strong": 109240, "strong influence": 156400, "progress understanding": 130024, "engineering demonstrate": 48901, "assignments introductory": 13330, "introductory physics": 80268, "physics course": 122931, "likely agree": 92446, "unfortunately providing": 171675, "providing meaningful": 133329, "solutions need": 153051, "step using": 155691, "using gpt4": 174268, "formative assessment": 60558, "scenarios particularly": 146670, "particularly highstakes": 120205, "solution approaches": 152897, "llms vs": 96991, "answers openended": 10056, "longterm effect": 97600, "effect learning": 45662, "review answers": 144480, "task timeconsuming": 161778, "possible solution": 124463, "automate detection": 14497, "option automate": 117136, "llm paper": 93865, "mathematics using": 99622, "gpt3 bloom": 66654, "zero shots": 180092, "compared performance": 26873, "trained machine": 167991, "questions answers": 135041, "responses students": 142923, "closer examination": 24536, "examination chatgpt": 52353, "models meet": 108167, "personalization large": 122577, "benchmark novel": 17046, "benchmark training": 17112, "models producing": 108667, "offers comprehensive": 115788, "framework diverse": 61089, "user profile": 173474, "personalized tasks": 122625, "tasks spanning": 163270, "spanning text": 153685, "propose retrieval": 132101, "augmentation approaches": 14264, "items user": 81094, "various retrieval": 176146, "methods extensive": 101509, "zeroshot finetuned": 180187, "efficacy proposed": 46407, "approach highlight": 11278, "highlight impact": 69746, "tasks processing": 163008, "processing natural": 129202, "language embedded": 83278, "embedded devices": 47138, "modern models": 109821, "systems ubiquitous": 160651, "alexa siri": 7759, "highperformance computing": 69979, "devices large": 41307, "numerous parameters": 115058, "substantial obstacles": 158083, "embedded systems": 47146, "accuracy particularly": 3334, "particularly complex": 120160, "complex nlp": 27500, "tasks unclear": 163401, "systems limited": 160467, "battery power": 16471, "set configurations": 149162, "empirical observations": 47714, "study commonly": 157215, "systems tested": 160642, "hardware configurations": 68678, "configurations datasets": 29383, "running various": 145756, "performance modern": 121816, "especially based": 50429, "bert architectures": 17511, "prompt chain": 130380, "combined large": 25904, "achieved encouraging": 3801, "results complex": 143247, "tasks texttosql": 163366, "task converts": 161282, "converts natural": 32007, "questions sql": 135284, "statements involving": 155047, "work using": 179357, "using cot": 174094, "activate llms": 4400, "capabilities texttosql": 20215, "texttosql tasks": 165854, "paradigm prompting": 119501, "tasks called": 162020, "task subtasks": 161755, "subtasks approach": 158179, "promptingbased methods": 131131, "texttosql ability": 165839, "higher execution": 69602, "differentiate chatgptgenerated": 42105, "medical texts": 100229, "background large": 15440, "chatgptgenerated texts": 23471, "texts clinical": 165683, "erroneous medical": 50264, "content generated": 30504, "chatgpt potentially": 23202, "significant harm": 150717, "public objective": 133587, "responsible ethical": 142968, "intelligence generated": 78829, "analyzing differences": 9364, "differences medical": 41631, "chatgpt designing": 22845, "learning workflows": 91142, "texts generated": 165718, "methods construct": 101401, "datasets containing": 36738, "features types": 57596, "perplexity finally": 122512, "finally design": 58434, "methods detect": 101436, "typically contain": 170474, "contain useful": 30314, "information medical": 76575, "usually express": 174901, "effective information": 45784, "information specific": 76770, "specific context": 153962, "bertbased model": 17629, "model effectively": 103512, "chatgpt f1": 22929, "extraction capabilities": 56266, "assessment performance": 13256, "performance explainability": 121491, "chatgpt comprehend": 22795, "comprehend user": 27859, "provide reasonable": 132945, "reasonable responses": 136598, "focus assessing": 59947, "assessing overall": 13193, "using finegrained": 174204, "systematically analysis": 160167, "experts findings": 54659, "reveal chatgpts": 144318, "exhibits excellent": 53192, "evaluation addition": 51421, "research indicates": 141851, "chatgpt provides": 23231, "provides highquality": 133161, "explanations decisions": 54831, "overconfident predictions": 118324, "resulting low": 143113, "calibration furthermore": 19634, "chatgpt demonstrates": 22842, "majority cases": 98459, "sets finegrained": 149372, "finegrained tasks": 58895, "14 datasets": 376, "astronomy large": 13592, "applications chatbots": 10446, "chatbots education": 22613, "presented major": 126520, "major problems": 98447, "problems accuracy": 128447, "solutions proposed": 153063, "gpt4 large": 67055, "propose called": 131738, "created chatgpt": 33251, "unique features": 171841, "features appear": 57446, "english study": 49111, "chatgpt follow": 22954, "artificially constructed": 12801, "constructed human": 30178, "word frequencies": 178643, "chatgpt fundamentally": 22957, "way human": 177824, "certain tokens": 21423, "trained corpora": 167883, "text includes": 165239, "includes different": 74367, "languages exhibit": 86998, "aim understand": 7500, "chatgpt exhibit": 22909, "exhibit similar": 53101, "properties natural": 131655, "artificial human": 12654, "human assistance": 70597, "ai capable": 6896, "long way": 97504, "lexglue benchmark": 91973, "benchmark following": 16982, "recent development": 137464, "openais gpt35": 116414, "gpt35 model": 66836, "model gpt35turbo": 103766, "available chatgpt": 15080, "benchmark zeroshot": 17121, "providing examples": 133290, "instructionfollowing format": 78183, "format results": 60548, "microf1 score": 102181, "surpassing baseline": 159507, "datasets achieving": 36636, "datasets respectively": 37087, "respectively code": 142540, "code base": 24682, "amr parsing": 8726, "finetuned pretrained": 59091, "collection instruction": 25737, "abstract meaning": 2648, "representation amr": 140670, "semantic role": 148213, "role labeling": 145503, "labeling srl": 82762, "evaluations paper": 52013, "finetuning followed": 59273, "finetuning lora": 59369, "new stateofthearts": 113435, "better questionanswering": 17996, "lowrank adaptation": 97883, "adaptation lora": 4639, "models easier": 106035, "sophisticated conversational": 153296, "conversational abilities": 31817, "stanford alpaca": 154935, "alpaca dataset": 8507, "improve capabilities": 73418, "13b 27b": 358, "models benchmark": 105478, "multiple ways": 111087, "ways including": 177906, "gpt4 judge": 67052, "knowledge writing": 82519, "writing programming": 179741, "tasks smaller": 163258, "performant models": 122358, "3x larger": 1169, "little 40": 93220, "version chinese": 176601, "chinese room": 23660, "gained positive": 62474, "able pass": 2536, "licensing examinations": 92055, "suggests chatgpt": 158655, "computer program": 28478, "question current": 134854, "approaching artificial": 11961, "artificial consciousness": 12645, "potential evidence": 124712, "chatgpt exhibits": 22913, "critical errors": 33491, "errors causal": 50339, "time demonstrate": 166377, "generate possible": 63650, "responses question": 142892, "learning tool": 91085, "tool chatgpt": 166956, "reasoning leads": 136960, "leads hallucinations": 89889, "chatgpt generates": 22980, "mimic real": 102263, "real publications": 136245, "models rise": 109001, "rise large": 144898, "retrieval question": 144116, "summarization code": 158812, "inaccurate information": 74265, "known hallucinations": 82600, "hallucinations llms": 68442, "llms inherently": 95638, "number input": 114880, "tokens processed": 166862, "making potentially": 98788, "potentially effective": 125096, "effective tasks": 45897, "stream information": 156224, "approach reducing": 11501, "reducing size": 138595, "size data": 151981, "data long": 35330, "level semantic": 91506, "contributions research": 31507, "results experiments": 143400, "compression using": 28234, "llms focusing": 95287, "specifically gpt35": 154217, "second investigate": 147482, "compressed representations": 28199, "prompts present": 131410, "novel metrics": 114599, "llms studied": 96705, "indicate gpt4": 75591, "gpt4 effectively": 66978, "preserving semantic": 126697, "text providing": 165391, "path leverage": 120430, "retrieval zeroshot": 144166, "setting recently": 149502, "illustrative examples": 72171, "examples shown": 52693, "nlp related": 113800, "representative model": 140933, "empirically evaluate": 47787, "evaluate chatgpts": 50922, "tasks derive": 162199, "derive insights": 39345, "developing effective": 40989, "methods tools": 101878, "tools based": 167112, "llms design": 94899, "framework considering": 61038, "considering different": 29709, "popular ir": 124002, "types zeroshot": 170439, "ability retrieve": 2360, "requirements relevant": 141319, "information high": 76493, "high recall": 69518, "specific requirements": 154075, "information low": 76568, "low precision": 97778, "provides preliminary": 133197, "participation game": 120039, "point new": 123711, "new frontier": 113204, "frontier ai": 61645, "participants social": 120020, "use make": 172760, "test ai": 164510, "intelligence discuss": 78808, "quantify uncertainty": 134323, "coding theory": 25413, "direct usage": 42409, "mathematical modeling": 99573, "modeling propose": 105075, "new concept": 113120, "applications machine": 10599, "document classification": 43814, "scheme leverage": 146792, "sequential data": 148866, "data easily": 34943, "achieve dramatic": 3627, "perplexity reduction": 122514, "quantum systems": 134441, "advanced generative": 5736, "generative chat": 65400, "chat models": 22546, "chatgpt raised": 23244, "raised questions": 135471, "questions potential": 135223, "general artificial": 62918, "intelligence chatgpt": 78794, "chatgpt consistent": 22806, "passing test": 120366, "asking chatgpt": 12880, "explores possibility": 55412, "model recognizing": 104426, "passes test": 120357, "distinct types": 43261, "effective applied": 45692, "understanding development": 171190, "lack corresponding": 82913, "corresponding capability": 32572, "propose test": 132162, "accuracy large": 3286, "major domains": 98424, "highest average": 69661, "average zeroshot": 15321, "gpt35turbo model": 66880, "clinical medicine": 24343, "models subtasks": 109277, "models performed": 108498, "performed poorly": 122378, "legal domain": 91287, "highest zeroshot": 69672, "accuracy reaching": 3361, "knowledge multiple": 82239, "multiple disciplines": 110895, "disciplines test": 42678, "accurately identify": 3538, "shortcomings models": 150024, "speech music": 154435, "music sound": 111316, "success current": 158227, "processing complex": 129130, "complex audio": 27363, "spoken conversations": 154566, "like siri": 92401, "siri alexa": 151922, "propose multimodal": 131939, "multimodal ai": 110583, "chatgpt foundation": 22955, "process complex": 128761, "information solve": 76765, "solve numerous": 153137, "tasks inputoutput": 162607, "increasing demand": 75318, "multimodal llms": 110703, "human intention": 70862, "processes test": 129101, "terms consistency": 164399, "capability robustness": 20370, "solving ai": 153193, "ai tasks": 7262, "tasks speech": 163282, "multiround dialogues": 111140, "humans create": 71365, "create rich": 33229, "rich diverse": 144775, "diverse audio": 43469, "audio content": 14169, "models mark": 108139, "milestone field": 102208, "ability interact": 2232, "interact users": 79078, "series challenging": 148910, "tasks prompted": 163028, "allows multiple": 8456, "models interact": 106798, "chatgpt specifically": 23346, "distinct perspectives": 43239, "diverse viewpoints": 43693, "objectively comprehensively": 115235, "languagebased feedback": 86907, "feedback mechanism": 57735, "modern systems": 109839, "break questions": 18988, "sequence reasoning": 148783, "answer multiple": 9735, "voting mechanism": 177558, "final answers": 58375, "steps chains": 155721, "chains provide": 21563, "provide unified": 133014, "unified explanation": 171708, "predicted answer": 125722, "approach prompts": 11474, "aggregating answers": 6777, "selects relevant": 147920, "relevant facts": 139604, "facts generating": 56832, "explanations exhibit": 54839, "humans verify": 71491, "verify answers": 176522, "unstructured structured": 172221, "related topic": 139219, "types data": 170342, "study inductive": 157412, "learning humans": 90532, "language explicit": 83304, "explicit structural": 54958, "fundamental cognitive": 61944, "question leveraging": 134906, "leveraging transformer": 91963, "evaluate biased": 50912, "learning investigate": 90593, "models types": 109522, "hierarchical processing": 69370, "contextfree grammars": 30993, "biases study": 18315, "study leverages": 157472, "leverages capabilities": 91711, "capabilities transformer": 20220, "models run": 109024, "controlled language": 31640, "learning experiments": 90439, "experiments possible": 54395, "possible run": 124458, "current query": 34221, "expansion models": 53717, "pseudorelevance feedback": 133486, "feedback improve": 57707, "firstpass retrieval": 59666, "results relevant": 143740, "model retrieved": 104482, "retrieved results": 144250, "results propose": 143695, "feedback grf": 57698, "feedback models": 57740, "longform text": 97551, "study effective": 157298, "effective methods": 45812, "methods generating": 101553, "zeroshot generation": 180200, "set queries": 149287, "document collections": 43819, "prf methods": 127759, "methods specifically": 101836, "effectiveness datasets": 46154, "stateoftheart sparse": 155374, "models exploring": 106258, "leads performance": 89904, "tasks comprise": 162100, "seek answer": 147654, "interacting language": 79088, "popular gpt": 124000, "selection tasks": 147893, "tasks qa": 163057, "prompts consistently": 131200, "prompts furthermore": 131286, "code prompt": 25066, "prompt large": 130561, "large effect": 87247, "text instructions": 165253, "instructions leads": 78296, "performance code": 121254, "learning weight": 91132, "softmax regression": 152758, "regression large": 138956, "making highly": 98747, "critical component": 33471, "component llms": 27739, "llms allows": 94389, "model selectively": 104537, "selectively focus": 147909, "focus specific": 60055, "specific input": 154014, "softmax unit": 152763, "unit key": 171870, "role played": 145523, "llms important": 95549, "querying llms": 134658, "chatgpt parameter": 23172, "transformers learn": 169327, "based incontext": 15868, "transformers incontext": 169315, "incontext learners": 74862, "recently works": 138014, "based linear": 15924, "learning linear": 90649, "linear functions": 92960, "functions context": 61903, "study incontext": 157408, "based softmax": 16102, "minx langle": 102442, "langle expax": 83116, "expax bf": 53729, "1n rangle1": 578, "rangle1 expax": 135766, "single selfattention": 151858, "selfattention layer": 147936, "regression loss": 138960, "prediction function": 125799, "models learned": 106944, "enhancing large": 49502, "memory framework": 100402, "llms constrained": 94710, "inability process": 74255, "lengthy inputs": 91408, "information address": 76268, "limitation paper": 92513, "framework enhance": 61129, "llms maintain": 95839, "framework comprises": 61027, "comprises key": 28245, "components llmbased": 27764, "llmbased agent": 94112, "serving backbone": 149094, "additionally proposed": 5118, "integrate instruction": 78490, "following llms": 60294, "annotate dataset": 9436, "handling lengthy": 68597, "dataset covers": 36205, "covers tasks": 33107, "book summarization": 18798, "summarization meeting": 158846, "meeting summarization": 100290, "summarization experimental": 158826, "informative responses": 76882, "responses compared": 142746, "compared competitive": 26766, "position bias": 124255, "shown stateoftheart": 150380, "tasks downstream": 162260, "ner partofspeech": 112596, "partofspeech pos": 120290, "pos tagging": 124141, "data imbalance": 35178, "imbalance issues": 72557, "issues specifically": 81062, "negative examples": 112515, "imbalance paper": 72558, "models position": 108567, "positive examples": 124290, "token classification": 166694, "indepth evaluation": 75534, "evaluation impact": 51641, "benchmarks study": 17374, "study includes": 157406, "propose evaluation": 131809, "evaluation approach": 51434, "approach investigate": 11317, "models encoders": 106112, "decoders gpt2": 37553, "suffer bias": 158418, "bias average": 18099, "performance mitigate": 121801, "mitigate effect": 102602, "effect propose": 45672, "propose methods": 131926, "methods random": 101755, "results improvement": 143490, "improvement approx": 73754, "ambiguous word": 8644, "models lexical": 106962, "lexical ambiguity": 91975, "presents profound": 126621, "challenge language": 21667, "sciences researchers": 146929, "problem language": 128298, "language users": 86873, "users learn": 173701, "process words": 129036, "meaning work": 99787, "new insight": 113229, "models grounded": 106567, "grounded understanding": 67878, "meanings words": 99811, "predict words": 125715, "words based": 178715, "context provided": 30889, "representations capture": 140773, "capture finegrained": 20653, "polysemous words": 123929, "raise new": 135451, "challenges understanding": 22089, "information shapes": 76756, "power llms": 125198, "llms practice": 96153, "survey chatgpt": 159611, "comprehensive practical": 28098, "llms downstream": 94981, "tasks provide": 163040, "llms perspectives": 96100, "data downstream": 34939, "tasks firstly": 162419, "firstly offer": 59655, "discuss influence": 42905, "data test": 35859, "importantly provide": 73229, "detailed discussion": 40283, "cases large": 20984, "tasks traditional": 163377, "present various": 126497, "various use": 176242, "try understand": 169910, "data specific": 35787, "specific challenges": 153949, "task furthermore": 161415, "biases llms": 18287, "llms delve": 94801, "delve essential": 38091, "essential considerations": 50595, "efficiency cost": 46436, "cost latency": 32701, "ensure comprehensive": 49674, "deploying llms": 39249, "provide researchers": 132955, "insights best": 77513, "best practices": 17732, "working llms": 179398, "successful implementation": 158340, "curated list": 34021, "list practical": 93128, "resources llms": 142453, "llms regularly": 96366, "regularly updated": 139000, "internal state": 79564, "llm knows": 93788, "tasks prominent": 163019, "generating inaccurate": 64254, "inaccurate false": 74261, "evidence llms": 52197, "llms internal": 95667, "statements provided": 155051, "provided llm": 133073, "statements llm": 155049, "llm generates": 93706, "train classifier": 167752, "outputs probability": 118102, "layer activations": 89623, "demonstrate given": 38361, "set test": 149327, "test sentences": 164616, "classifier achieves": 24148, "accuracy labeling": 3285, "llm base": 93495, "model furthermore": 103700, "explore relationship": 55289, "performance approaches": 121157, "sentence length": 148508, "reliable approach": 139717, "highlighting potential": 69826, "potential enhance": 124695, "enhance reliability": 49280, "llmgenerated content": 94196, "content practical": 30574, "practical applicability": 125380, "scenarios extracting": 146602, "extracting structured": 56245, "research pathways": 141962, "interaction various": 79191, "control properties": 31581, "computational experimental": 28363, "experimental approaches": 53927, "approach leveraging": 11356, "synthesis information": 159949, "information embedded": 76378, "developing tools": 41033, "data automated": 34699, "using powerful": 174586, "model extract": 103626, "extract structured": 56164, "unstructured scientific": 172219, "text gpt3": 165213, "prompt completions": 130393, "text input": 165248, "accuracy 86": 3124, "performance notable": 121850, "model performing": 104267, "simultaneous entity": 151742, "extraction present": 56338, "data classification": 34755, "realm computational": 136350, "computational social": 28409, "navigate complex": 112045, "domains face": 44408, "challenges acquiring": 21761, "acquiring annotating": 4278, "data aim": 34610, "aim establish": 7449, "set guidelines": 149207, "comparing use": 27020, "data synthetically": 35841, "synthetically generated": 160093, "data gpt4": 35137, "gpt4 llama2": 67064, "tasks varying": 163455, "varying complexity": 176280, "complexity additionally": 27656, "examine impact": 52391, "performance findings": 121522, "trained humanlabeled": 167945, "data consistently": 34834, "exhibit superior": 53112, "superior comparable": 158996, "proves beneficial": 132656, "multiclass tasks": 110363, "furthermore leverage": 62108, "leverage gpt4": 91601, "llama2 zeroshot": 93374, "short compared": 149959, "compared specialized": 26923, "specialized classifiers": 153875, "moderately sized": 109767, "prompting chainofthought": 130875, "reasoning improving": 136910, "improving llms": 74165, "llms answering": 94403, "answering investigate": 9879, "enhance answer": 49153, "frequently asked": 61610, "asked questions": 12877, "questions posed": 135220, "distributed users": 43339, "users using": 173805, "cloudbased large": 24568, "users ask": 173583, "similar queries": 151297, "propose improve": 131868, "using selfconsistency": 174696, "selfconsistency sc": 147956, "cot techniques": 32911, "techniques specifically": 164028, "specifically retrieve": 154281, "questions different": 135103, "different parameters": 41894, "respectively refer": 142576, "generate significantly": 63712, "queries requiring": 134532, "significantly enhance": 150985, "model controllable": 103376, "generation swedish": 65125, "swedish language": 159767, "single consumergrade": 151785, "consumergrade gpu": 30265, "special tokens": 153855, "tokens generation": 166819, "article provide": 12596, "detailed account": 40263, "utilized training": 175118, "extent possible": 56020, "data evaluation": 34998, "evaluation model": 51733, "model discriminative": 103474, "methods generative": 101554, "open available": 116203, "big brother": 18372, "vulnerable attacks": 177650, "text encoding": 165054, "perturbing text": 122766, "results search": 143771, "queries demonstrate": 134465, "demonstrate attack": 38249, "attack successful": 13666, "commercial search": 26092, "google bing": 66314, "successful llm": 158343, "llm chat": 93530, "chat search": 22552, "bings gpt4": 18492, "googles bard": 66333, "attack targeting": 13669, "models ml": 108197, "tasks closely": 162049, "closely tied": 24531, "search provide": 147394, "motivating need": 110202, "need search": 112384, "analyzing chatgpt": 9358, "researches evaluating": 142279, "tasks studies": 163296, "studies investigated": 157028, "chatgpts behavior": 23484, "behavior changes": 16571, "changes time": 22394, "consisting parts": 29952, "pairs collected": 118551, "questions reasoning": 135245, "reasoning classification": 136747, "longform generation": 97542, "comprehensive automatic": 27961, "evaluation provide": 51802, "evolving patterns": 52324, "extracting knowledge": 56234, "improve robustness": 73613, "versions chatgpt": 176617, "search generation": 147359, "datasets multimodal": 36992, "datasets critical": 36751, "component recent": 27741, "research attention": 141610, "training algorithms": 168154, "ecosystem introduce": 45407, "candidate pool": 19725, "benchmark design": 16926, "curate new": 34001, "clip training": 24416, "code testing": 25180, "model 38": 103004, "consists multiple": 29980, "multiple compute": 110869, "enables study": 48249, "scaling trends": 146454, "accessible researchers": 2967, "baseline experiments": 16211, "accuracy imagenet": 3268, "outperforming openais": 117685, "chatgpt vs": 23434, "vs stateoftheart": 177606, "models benchmarking": 105481, "benchmarking study": 17159, "task transformerbased": 161783, "demonstrated exceptional": 38654, "limited research": 92834, "involves identifying": 80738, "identifying informative": 72007, "accurately reflect": 3558, "content study": 30625, "study seeks": 157612, "seeks address": 147671, "gap comparing": 62621, "comparing chatgpts": 26978, "generation performance": 64922, "models testing": 109382, "challenges field": 21868, "generation long": 64802, "conducted experiments": 29239, "datasets scientific": 37100, "articles news": 12614, "news domains": 113560, "domains analyzing": 44356, "performance short": 122060, "short long": 149976, "documents results": 43939, "tested datasets": 164668, "datasets environments": 36825, "generating highquality": 64241, "adapt diverse": 4518, "empowers large": 48028, "multimodality large": 110801, "zeroshot abilities": 180111, "abilities variety": 2033, "llms multimodal": 95907, "generation study": 65111, "novel training": 114721, "equips llms": 50191, "learning foundation": 90473, "foundation llm": 60730, "llm visual": 94094, "module visual": 109967, "module approach": 109920, "support multiple": 159309, "facilitate diverse": 56607, "unimodal multimodal": 171790, "modality collaboration": 102965, "twostage method": 170262, "method aligning": 100673, "aligning image": 8089, "knowledge assistance": 81754, "llm maintaining": 93819, "maintaining improving": 98360, "improving generation": 74149, "abilities llm": 1952, "module trained": 109961, "trained frozen": 167926, "frozen llm": 61669, "llm module": 93835, "align image": 8006, "text second": 165446, "jointly finetune": 81274, "lowrank adaption": 97892, "adaption lora": 4769, "module freezing": 109939, "carefully build": 20792, "existing multimodal": 53491, "impressive instruction": 73306, "instruction visual": 78145, "multiturn conversation": 111266, "conversation ability": 31774, "ability knowledge": 2237, "understanding makes": 171347, "comprehension code": 27891, "model instructiontuned": 103879, "ai write": 7320, "comparison humanwritten": 27049, "versus chatgptgenerated": 176630, "background recently": 15450, "similar generative": 151240, "hundreds millions": 71539, "public discourse": 133566, "believe models": 16784, "society result": 152709, "significant change": 150657, "education information": 45547, "information generation": 76478, "generation future": 64678, "study comparing": 157224, "student essays": 156808, "systematically assess": 160171, "rated using": 136028, "using standard": 174747, "criteria large": 33433, "number human": 114875, "linguistic characteristics": 93013, "characteristics generated": 22459, "essays results": 50574, "results results": 143751, "rated higher": 136026, "quality humanwritten": 134158, "writing style": 179758, "style ai": 157734, "models exhibits": 106220, "results clearly": 143229, "chatgpt outperform": 23165, "outperform humans": 117603, "humans generating": 71395, "available use": 15222, "utilize ai": 175024, "general concepts": 62928, "concepts use": 28698, "tools free": 167168, "free time": 61554, "time learning": 166434, "coding process": 25399, "predominantly centered": 125978, "approaches recent": 11880, "learning practices": 90836, "important note": 73165, "learning plays": 90827, "plays pivotal": 123531, "pivotal role": 123151, "writing computer": 179721, "essential skills": 50630, "education systems": 45593, "selfdirected learning": 147978, "educators understand": 45641, "understand process": 171064, "settings providing": 149635, "constructive feedback": 30240, "process challenging": 128751, "code runs": 25121, "education learning": 45557, "visualization tools": 177358, "process interactive": 128880, "provide insightful": 132845, "educators learners": 45637, "ability acquire": 2052, "errors result": 50398, "process machines": 128911, "decision processes": 37380, "inference handle": 76027, "belief systems": 16757, "engineering large": 48941, "study chatgpts": 157209, "potential solving": 124994, "problems various": 128651, "automatic identification": 14692, "strong weak": 156453, "solutions fundamental": 153022, "processes remain": 129097, "remain challenging": 139915, "llm approaches": 93473, "approaches particularly": 11856, "chatgpt selected": 23298, "chatgpt solving": 23339, "areas llms": 12378, "models virtual": 109631, "wave new": 177752, "included prompt": 74352, "prompt instructions": 130554, "instructions challenging": 78211, "designers use": 39983, "rules constraints": 145709, "constraints explore": 30080, "explore using": 55318, "using distillation": 174147, "generation contrastive": 64534, "examples generating": 52595, "generate set": 63711, "set highlevel": 149209, "produces diverse": 129526, "diverse training": 43686, "classification process": 24057, "prompt gpt4": 130529, "gpt4 generate": 67023, "contrastive examples": 31347, "distilled model": 43181, "feature natural": 57420, "understanding allowing": 171122, "listeners language": 93138, "increasingly employed": 75398, "interfaces writing": 79472, "handling ambiguous": 68583, "language critical": 83225, "critical success": 33554, "examples diverse": 52562, "presenting evaluation": 126540, "recognize ambiguity": 138155, "task remains": 161689, "extremely challenging": 56426, "gpt4 generated": 67025, "considered correct": 29682, "evaluation compared": 51486, "dataset finally": 36302, "finally illustrate": 58481, "nli model": 113667, "python library": 133838, "analysis powered": 9072, "powered artificial": 125229, "intelligence tools": 78911, "analyses offer": 8775, "offer invaluable": 115666, "spanning diverse": 153678, "diverse academic": 43454, "academic disciplines": 2730, "ai capabilities": 6894, "core functionality": 32165, "visually appealing": 177382, "similarity analysis": 151336, "topic modeling": 167327, "modeling text": 105108, "tasks employing": 162291, "employing models": 47940, "bert chatgpt": 17518, "documents associated": 43887, "fuzzy logic": 62424, "ai analysis": 6864, "topics chatgpt": 167345, "interpreting results": 79738, "inquiries chatgpt": 77461, "daunting challenge": 37225, "integrating cuttingedge": 78587, "cuttingedge ai": 34429, "capabilities analyzing": 19783, "analyzing scientific": 9383, "enabling researchers": 48343, "examine interpret": 52396, "effectively training": 46092, "evaluation multilingual": 51740, "provides detailed": 133132, "nordic pile": 114172, "features share": 57575, "learned vocabulary": 90141, "analyze properties": 9325, "regard different": 138852, "data chatgpt": 34751, "temporal causal": 164248, "discourse relations": 42717, "chatgpt interactive": 23075, "relations temporal": 139310, "temporal relations": 164279, "relations given": 139294, "promising performance": 130284, "thorough evaluations": 166188, "11 datasets": 222, "ensure reliability": 49696, "tailored prompt": 160932, "task including": 161463, "icl prompt": 71691, "initial baseline": 77013, "baseline scores": 16261, "scores popular": 147163, "relation classification": 139235, "time study": 166513, "study discover": 157288, "exhibits exceptional": 53194, "exceptional proficiency": 52838, "possess level": 124344, "temporal order": 164272, "order events": 117195, "capable identifying": 20434, "explicit discourse": 54927, "discourse connectives": 42703, "implicit discourse": 72975, "discourse relation": 42716, "remains formidable": 140009, "formidable challenge": 60580, "subpar performance": 157922, "performance dialogue": 121384, "dialogue discourse": 41465, "discourse parsing": 42713, "structural understanding": 156531, "understanding dialogue": 171192, "models solving": 109180, "tasks field": 162399, "field machine": 58198, "significant demand": 150680, "predominant approaches": 125973, "automation solving": 14909, "hard understand": 68661, "human developers": 70697, "contrast human": 31308, "tasks reason": 163086, "approaches paper": 11854, "gap machine": 62678, "machine intelligence": 98005, "intelligence human": 78837, "framework leverages": 61276, "leverages stateoftheart": 91780, "extending capability": 55671, "llms comprehend": 94671, "structured inputs": 156642, "perform thorough": 121068, "reasoning solving": 137132, "solving novel": 153232, "design llm": 39679, "llm observe": 93850, "observe existing": 115368, "deliver promising": 38064, "tasks solution": 163261, "solution generated": 152940, "automated circuit": 14523, "circuit discovery": 23772, "discovery mechanistic": 42779, "mechanistic interpretability": 100060, "considerable effort": 29613, "paper systematizes": 119361, "process followed": 128842, "dataset elicit": 36250, "elicit desired": 47036, "desired model": 40050, "apply activation": 10836, "activation patching": 4413, "researchers understand": 142267, "automate process": 14502, "process steps": 128992, "interpretability results": 79652, "results validate": 143910, "small manually": 152317, "claims large": 23841, "models display": 105997, "display emergent": 43070, "smallerscale models": 152456, "largerscale models": 89261, "abilities particular": 1983, "model family": 103640, "fixed model": 59712, "ways make": 177910, "choice using": 23709, "abilities make": 1959, "abilities multiple": 1971, "multiple vision": 111085, "diverse deep": 43504, "analyses provide": 8780, "different metrics": 41850, "metrics better": 102017, "models speak": 109191, "gpt4 using": 67211, "using cloze": 174056, "membership inference": 100314, "openai models": 116366, "wide collection": 178257, "copyrighted materials": 32143, "degree memorization": 38017, "ability models": 2284, "models memorize": 108169, "measurement validity": 99909, "open models": 116254, "data known": 35269, "multimodal prompts": 110747, "instruction learning": 78033, "improve scalability": 73620, "scalability multiple": 146223, "focus adapting": 59940, "adapting prompt": 4761, "design based": 39558, "based instruction": 15882, "visual transformer": 177333, "classification called": 23966, "image prompt": 72306, "information guide": 76487, "based experiments": 15791, "experiments image": 54311, "performance domain": 121420, "domain adaptability": 44062, "work provided": 179236, "innovative strategy": 77191, "fuse multimodal": 62185, "crosslanguage information": 33643, "retrieval training": 144157, "data key": 35266, "stumbling block": 157729, "retrieval clir": 144021, "clir systems": 24429, "paucity training": 120578, "monolingual training": 110076, "advances state": 6065, "languages using": 87156, "suffers number": 158468, "documents written": 43951, "written language": 179782, "language native": 86435, "native speaker": 111512, "address problems": 5347, "problems introduce": 128540, "creation methodology": 33342, "approach begins": 11024, "arbitrary size": 12091, "shows use": 150492, "use creating": 172570, "using newly": 174531, "newly created": 113531, "anomaly detection": 9656, "detection learning": 40543, "feature embeddings": 57398, "oneclass classification": 115973, "detection setting": 40617, "significant practical": 150826, "practical value": 125464, "struggle build": 156731, "build compact": 19308, "detecting logical": 40414, "contextual relationships": 31108, "relationships focusing": 139341, "detection propose": 40598, "based selfsupervised": 16087, "graph convolution": 67504, "uses generative": 173857, "pretraining network": 127398, "encoder learning": 48429, "learning embedding": 90403, "normal patterns": 114179, "better summarize": 18035, "elements image": 47016, "detection logical": 40549, "demonstrating effectiveness": 38928, "singleturn multiturn": 151907, "inclusive language": 74794, "language expansion": 83296, "chatgpt mental": 23121, "health support": 68979, "developing specialized": 41027, "conversation data": 31780, "facilitate advancements": 56593, "privacy protection": 128017, "cost involved": 32696, "chatgpt rewrite": 23288, "singleturn dialogues": 151906, "multiturn ones": 111284, "ones work": 116025, "language transformation": 86796, "feasibility proposed": 57360, "method compared": 100746, "methods conduct": 101393, "conduct study": 29181, "study dialogue": 157285, "lexical features": 91984, "features semantic": 57572, "features dialogue": 57475, "method furthermore": 100883, "furthermore implement": 62094, "expert evaluation": 54567, "demonstrate dialogues": 38284, "dialogues generated": 41558, "generated proposed": 63948, "generated baseline": 63801, "largescale diverse": 89300, "highquality dialogue": 70017, "dialogues total": 41569, "total average": 167414, "average 104": 15255, "collected corpus": 25680, "assess overall": 13103, "chat dataset": 22528, "dialogues model": 41562, "evaluations demonstrate": 51958, "demonstrate trained": 38594, "mathematical abilities": 99553, "models surprisingly": 109320, "surprisingly adept": 159559, "tasks explicitly": 162369, "understood paper": 171551, "basic mathematical": 16424, "abilities acquired": 1876, "models concretely": 105730, "interpretability techniques": 79657, "examine ability": 52365, "tasks output": 162900, "multilayer perceptrons": 110453, "finally related": 58517, "tasks activate": 161900, "using complex": 174069, "diverse contexts": 43488, "integrating chatgpt": 78581, "chatgpt python": 23238, "python api": 133827, "enhanced creativity": 49328, "creativity problemsolving": 33395, "problemsolving skills": 128673, "aligns principles": 8273, "learning experiences": 90435, "learning journey": 90598, "various resources": 176145, "personalized manner": 122609, "innovative approach": 77158, "motivation work": 110206, "thinking problemsolving": 166156, "tool students": 167035, "solutions evaluate": 153014, "make informed": 98553, "informed decisions": 76891, "learning environments": 90422, "environments integration": 50084, "integration chatgpt": 78647, "allowing effective": 8366, "individual needs": 75728, "needs preferences": 112486, "abilities leading": 1950, "skill development": 152131, "leveraging capabilities": 91806, "educational institutions": 45613, "institutions create": 77921, "learning environment": 90421, "environment approach": 49984, "approach aligns": 10986, "learning promoting": 90869, "everchanging world": 52144, "tuning instructiontuned": 170036, "instructiontuned lms": 78400, "lms chatgpt": 97116, "chatgpt flan": 22951, "instructgpt finetuned": 77943, "finetuned datasets": 59006, "datasets contain": 36737, "opensource datasets": 116598, "examples datasets": 52552, "manipulate model": 98930, "trigger phrase": 169757, "input example": 77237, "provides input": 133166, "joe biden": 81240, "optimize inputs": 117068, "outputs using": 118135, "using bagofwords": 173995, "method opensource": 101000, "opensource instructiontuned": 116616, "lms using": 97215, "using 100": 173939, "degenerate outputs": 37976, "worryingly larger": 179654, "defenses based": 37915, "reducing model": 138584, "capacity provide": 20541, "accuracy evaluating": 3225, "models communication": 105688, "parallel large": 119569, "llms increasingly": 95600, "applied semantic": 10806, "logical representations": 97395, "existing llm": 53415, "use work": 172941, "evaluate capacity": 50920, "capacity llms": 20524, "llms infer": 95622, "comparison llms": 27054, "llms derive": 94897, "complex pragmatic": 27520, "results inform": 143527, "corresponding code": 32573, "radiology report": 135409, "lightweight domain": 92173, "investigate lightweight": 80442, "strategies adapt": 155955, "adapt large": 4530, "llms task": 96768, "task radiology": 161674, "adaptation pretraining": 4655, "language biomedical": 83171, "text clinical": 164919, "clinical text": 24370, "discrete prompting": 42812, "finetuning results": 59516, "consistently achieve": 29852, "pretraining clinical": 127275, "text finetuning": 165089, "method finetunes": 100878, "model contrast": 103372, "contrast endtoend": 31301, "parameters additionally": 119709, "effect incontext": 45659, "reader study": 136165, "study qualitative": 157575, "analysis findings": 8936, "importance domain": 73025, "insights developing": 77542, "clinical tasks": 24367, "llms developing": 94915, "llm mllm": 93829, "lightweight visual": 92190, "data alternative": 34617, "alternative solution": 8579, "transfer existing": 168912, "existing mllms": 53480, "llms explore": 95203, "transfer different": 168907, "different llm": 41831, "llm sizes": 94007, "based observation": 15981, "design twostage": 39792, "transfer framework": 168915, "helps significantly": 69259, "significantly speed": 151161, "compromising performance": 28286, "10 times": 139, "times speedup": 166607, "series intriguing": 148935, "intriguing findings": 79875, "findings potential": 58746, "discussed finally": 42958, "finally showcase": 58526, "showcase practical": 150082, "mllms including": 102828, "released llama": 139522, "llama vicuna": 93344, "plms achieved": 123570, "high deployment": 69444, "deployment costs": 39266, "costs low": 32831, "low training": 97791, "efficiency finetuning": 46461, "task essential": 161356, "strategy language": 156170, "consider language": 29575, "format trained": 60551, "language strong": 86742, "interactive manner": 79322, "model demonstrates": 103426, "generalization robustness": 63226, "gpt3 instructgpt": 66711, "models dont": 106022, "finetuning powerful": 59449, "trained vast": 168119, "vast quantities": 176351, "unlabelled data": 171965, "data greatly": 35138, "greatly advanced": 67778, "advanced field": 5730, "nlp study": 113813, "pretraining lms": 127381, "texts improves": 165733, "finetuning ft": 59277, "fullysupervised settings": 61816, "pretraining does": 127308, "tasks promptbased": 163026, "used tackle": 173260, "combines idea": 25934, "pretraining approach": 127262, "approach aims": 10983, "objectives finetuning": 115244, "task empirical": 161345, "evaluations 21": 51937, "stateoftheart promptbased": 155314, "examples additionally": 52520, "extra data": 56107, "analysis explores": 8924, "performance lower": 121770, "sizes models": 152103, "unsupervised visual": 172281, "visual word": 177339, "information visual": 76846, "disambiguation vwsd": 42645, "task image": 161457, "image accurately": 72175, "sense target": 148394, "word given": 178647, "words paper": 178744, "information external": 76414, "suggest employing": 158532, "inference incorporate": 76033, "incorporate sense": 75037, "sense information": 148388, "information answer": 76279, "propose contextaware": 131763, "definition generation": 37963, "generation gpt3": 64702, "significantly increased": 151058, "approach addition": 10967, "generation achieved": 64393, "achieved prominent": 3857, "prominent performance": 130159, "ood examples": 116181, "examples exhibiting": 52571, "certain scale": 21412, "scale demonstrate": 146278, "emergent capability": 47476, "generating freetext": 64225, "rationales predictions": 136068, "dramatically improved": 44892, "guarantee generated": 68110, "justify decisions": 81397, "decisions work": 37485, "propose faithful": 131819, "faithful knowledge": 57079, "distillation method": 43156, "method learn": 100954, "learn small": 90054, "model teacher": 104725, "model orders": 104163, "better supervision": 18038, "supervision elicit": 159195, "gold answers": 66237, "answers large": 10045, "contrastive decoding": 31346, "generate tokens": 63760, "tokens plausible": 166849, "plausible answer": 123425, "distillation use": 43167, "student lm": 156817, "experiments yielding": 54546, "endtask performance": 48722, "cot rationales": 32900, "baselines analysis": 16286, "model respects": 104466, "making decisions": 98724, "performance refining": 122004, "detection empirical": 40491, "unified view": 171753, "experimental settings": 54089, "presents thorough": 126649, "thorough empirical": 166182, "fair evaluation": 57034, "evaluation compare": 51485, "representative methods": 140932, "methods datasets": 101417, "models detailed": 105944, "analysis experiments": 8921, "chatgpt significantly": 23327, "performance investigate": 121696, "break design": 18987, "build unified": 19357, "methods unified": 101899, "different modules": 41864, "effective baseline": 45702, "baseline outperforms": 16247, "f1 gains": 56480, "gains lowresource": 62523, "rapidly improving": 135933, "gpt openai": 66470, "legally compliant": 91325, "report differences": 140520, "grade distribution": 67365, "current artificial": 34071, "largely unaffected": 89176, "oral examinations": 117156, "report experience": 140522, "smaller groups": 152395, "mediqachat 2023": 100251, "2023 clinical": 694, "clinical note": 24350, "note generation": 114299, "doctorpatient conversations": 43807, "conversations using": 31969, "automatic clinical": 14645, "report results": 140556, "second uses": 147514, "uses fewshot": 173854, "icl large": 71680, "llm achieve": 93430, "performance measured": 121793, "metrics rouge": 102142, "rouge bertscore": 145619, "submissions shared": 157891, "expert human": 54572, "human scrutiny": 71033, "indicates notes": 75641, "notes generated": 114307, "approach gpt4": 11261, "making promising": 98800, "promising path": 130282, "pass introductory": 120322, "functional language": 61875, "language programming": 86664, "recent introduction": 137524, "drawn significant": 44954, "solving diverse": 153208, "programming capability": 129797, "code ease": 24795, "ease use": 45282, "education paper": 45564, "explore chatgpt": 55166, "chatgpt perform": 23178, "evaluation treated": 51907, "demonstrated achieve": 38621, "evaluation provides": 51804, "insights chatgpts": 77523, "student instructor": 156811, "instructor perspectives": 78421, "believe study": 16791, "advances understanding": 6071, "understanding chatgpts": 171156, "data smaller": 35769, "llms challenging": 94561, "challenging memory": 22209, "train smaller": 167831, "smaller taskspecific": 152447, "human labels": 70896, "using llmgenerated": 174422, "llmgenerated labels": 94201, "new mechanism": 113267, "outperform llms": 117608, "llms achieves": 94325, "leveraging training": 91959, "needed finetuning": 112445, "method extracts": 100864, "additional supervision": 5001, "supervision training": 159221, "multitask framework": 111207, "distillation mechanism": 43155, "mechanism achieves": 99973, "performance fewer": 121507, "examples second": 52689, "fewshot prompted": 58024, "prompted llms": 130826, "data benchmark": 34715, "model struggles": 104665, "match using": 99433, "100 dataset": 149, "dataset release": 36501, "elicit reasoning": 47044, "allows models": 8455, "models decompose": 105863, "improves multistep": 74036, "incorporating visual": 75139, "augmentation reasoning": 14307, "reasoning essential": 136834, "tasks consequently": 162114, "consequently introduce": 29544, "method leverages": 100959, "leverages chainofthought": 91713, "prompting visionlanguage": 131122, "visionlanguage grounding": 177029, "method uses": 101160, "visual guidance": 177182, "guidance generate": 68147, "synthetic multimodal": 160055, "information reduce": 76684, "reasoning provide": 137077, "summarization datasets": 158817, "demonstrate human": 38371, "baselines used": 16382, "used enhance": 173043, "enhance downstream": 49186, "performance entity": 121461, "keeping track": 81430, "unfolds key": 171654, "systematic investigations": 160133, "entities work": 49882, "present task": 126476, "extent language": 56011, "infer final": 75938, "given english": 65877, "initial state": 77058, "task investigate": 161495, "code exhibit": 24819, "exhibit ability": 53023, "entities finetuning": 49848, "performance degrades": 121368, "evaluated different": 51167, "different set": 41990, "entities training": 49879, "training longer": 168559, "taken results": 160970, "suggest language": 158547, "does make": 43999, "stability performance": 154676, "studies prompt": 157057, "tuning better": 169971, "leverage power": 91637, "instability issues": 77788, "scores different": 147131, "different random": 41956, "address critical": 5211, "critical problem": 33532, "problem investigate": 128291, "loss landscape": 97677, "essential factor": 50607, "tuning based": 169968, "observation introduce": 115323, "tuning propose": 170099, "new algorithm": 113052, "algorithm called": 7785, "called prompt": 19663, "dramatically boost": 44887, "design kinds": 39667, "flexible text": 59827, "text space": 165474, "space embedding": 153566, "space extensive": 153573, "experiments effectiveness": 54263, "stabilizing training": 154686, "stateoftheart prompt": 155311, "benchmarks respectively": 17356, "apis large": 10189, "llms power": 96145, "models extremely": 106286, "time raising": 166480, "capabilities better": 19799, "efficiency metric": 46491, "running queries": 145754, "environment unfortunately": 50036, "blackbox text": 18667, "generation apis": 64421, "apply various": 10878, "various software": 176173, "susceptible performance": 159734, "efficiency models": 46494, "models equal": 106137, "propose methodology": 131925, "efficiently estimate": 46775, "incorporate number": 75031, "using metrics": 174488, "metrics compare": 102028, "compare stateoftheart": 26732, "provide analysis": 132675, "analysis inference": 8976, "make observations": 98574, "observations analysis": 115336, "including fact": 74516, "superior inference": 159010, "inference runtime": 76094, "runtime performance": 145766, "optimizations api": 117055, "comparison different": 27034, "different software": 42002, "llms capture": 94544, "explore viability": 55329, "specifically openais": 154256, "gpt4 emulating": 66982, "emulating human": 48051, "human survey": 71051, "survey respondents": 159685, "leveraging extensive": 91842, "extensive literature": 55919, "responses llms": 142844, "human responses": 71024, "responses exploring": 142788, "larger later": 89216, "reveal gpt": 144334, "humans gpt35": 71399, "gpt4 does": 66976, "discount rates": 42692, "considerably larger": 29646, "models greater": 106564, "correlation language": 32548, "language structure": 86743, "preferences demonstrate": 126035, "demonstrate prompting": 38489, "prompting gpt": 130948, "explain decisions": 54696, "does eliminate": 43975, "llm human": 93739, "responses directly": 142769, "preferences using": 126072, "misleading results": 102510, "results combining": 143234, "combining chainofthought": 25966, "hypothesis generation": 71620, "generation enabling": 64603, "provides structured": 133222, "structured framework": 156637, "llms identify": 95529, "heterogeneity different": 69289, "planning large": 123285, "demonstrate remarkable": 38526, "challenging paper": 22231, "premises used": 126159, "correctness answer": 32479, "formulate task": 60625, "task discrete": 161327, "decisionmaking problem": 37426, "problem solve": 128398, "interaction reasoning": 79174, "space large": 153588, "planning algorithm": 123243, "algorithm lookahead": 7828, "lookahead search": 97614, "search select": 147412, "eventually lead": 52139, "steps compared": 155723, "compared large": 26846, "just say": 81385, "testing repairing": 164748, "suggestions large": 158642, "applications ensuring": 10508, "concern particular": 28745, "particular given": 120081, "given llms": 65933, "potential serve": 124972, "daily life": 34508, "suggestions real": 158645, "tackling challenge": 160863, "automatically testing": 14866, "introduces framework": 80181, "framework testing": 61456, "test suite": 164640, "moral scenarios": 110120, "test llms": 164579, "serving automated": 149093, "automated test": 14615, "test oracle": 164588, "oracle detect": 117151, "hard problem": 68653, "requiring human": 141493, "human expertise": 70781, "task automatically": 161211, "applicable llms": 10284, "llms blackbox": 94505, "blackbox api": 18625, "seven popular": 149699, "popular llms": 124014, "scheme llms": 146793, "generates valid": 64122, "sampling language": 146100, "decoding procedure": 37587, "procedure based": 128695, "set words": 149350, "probability work": 128130, "conformal prediction": 29422, "prediction calibration": 125767, "focuses construction": 60133, "prediction sets": 125863, "according desired": 3030, "confidence level": 29353, "word distribution": 178623, "opt models": 116912, "interactive image": 79314, "diverse multimodal": 43580, "emerging multimodal": 47524, "following human": 60277, "particular text": 120130, "controls output": 31674, "data largely": 35295, "limits usability": 92930, "interactive ai": 79284, "systems leveraging": 160461, "model augmented": 103157, "captioning framework": 20577, "supporting wide": 159388, "visual controls": 177148, "including points": 74666, "points boxes": 123741, "trajectories language": 168860, "length language": 91371, "segment model": 147722, "model sam": 104500, "chatgpt unify": 23409, "unify visual": 171780, "enabling flexible": 48296, "flexible combination": 59800, "different controls": 41710, "extensive case": 55728, "user intention": 173430, "intention alignment": 79027, "alignment capabilities": 8129, "capabilities framework": 19908, "effective user": 45918, "applications code": 10450, "acceleration large": 2808, "critical issue": 33511, "issue present": 80944, "research paper": 141950, "small transformer": 152377, "structure large": 156578, "main research": 98267, "problems related": 128614, "work explored": 178964, "work relies": 179261, "dynamics address": 45198, "weights experiments": 178108, "significantly faster": 151007, "related work": 139226, "work achieve": 178766, "improve finetuning": 73467, "performances time": 122343, "time gpt4": 166410, "opportunities natural": 116867, "processing generative": 129164, "research article": 141601, "challenges face": 21864, "compared gpt4": 26821, "gpt4 predecessor": 67118, "capabilities improved": 19948, "contextual understanding": 31114, "personal assistants": 122552, "assistants language": 13413, "summarization questionanswering": 158868, "poses challenges": 124197, "challenges limitations": 21942, "models explainable": 106245, "vast data": 176331, "achieved unprecedented": 3920, "unprecedented success": 172095, "complex textual": 27629, "space making": 153593, "making powerful": 98789, "modalities visual": 102961, "result semantically": 143061, "visual inputs": 177193, "leverage capability": 91571, "approach provide": 11478, "provide semantic": 132968, "insights models": 77605, "data task": 35853, "data point": 35493, "extract semantically": 56159, "representation training": 140746, "clip embeddings": 24397, "train lightweight": 167788, "diagnosis model": 41367, "model maps": 104062, "representation data": 140678, "point task": 123725, "generate insights": 63574, "insights performance": 77621, "performance blackbox": 121206, "blackbox model": 18650, "model terms": 104735, "demonstrating good": 38937, "performance generation": 121584, "texts leads": 165744, "trust model": 169835, "performance complex": 121308, "knowledge building": 81802, "framework lead": 61267, "accuracy improvements": 3271, "improvements multiple": 73920, "opendomain questionanswering": 116472, "chatgpt entity": 22894, "entity matching": 49899, "matching entity": 99457, "rely finetuning": 139844, "finetuning transformer": 59594, "drawbacks using": 44922, "models entity": 106134, "amounts finetuning": 8684, "performance ii": 121643, "ii finetuned": 72089, "entities paper": 49860, "investigate using": 80518, "training dataefficient": 168368, "alternative traditional": 8584, "perform experiments": 120941, "general prompt": 63021, "ii incontext": 72093, "iii provision": 72120, "knowledge chatgpt": 81809, "chatgpt competitive": 22791, "competitive finetuned": 27175, "finetuned roberta": 59103, "roberta model": 145156, "2000 training": 618, "reaching similar": 136139, "performance adding": 121130, "adding incontext": 4826, "incontext demonstrations": 74843, "prompts improves": 131320, "selection using": 147897, "performance finally": 121520, "chatgpt guided": 23041, "prompts providing": 131432, "providing incontext": 133313, "multimodal chainofthought": 110597, "mixed large": 102720, "model signals": 104568, "science question": 146908, "recently demonstrated": 137848, "shown ability": 150201, "reasoning solve": 137130, "problems recent": 128610, "complex multimodal": 27482, "finetuning multimodal": 59393, "models highquality": 106613, "highquality humanannotated": 70031, "collecting highquality": 25711, "usually timeconsuming": 174926, "timeconsuming costly": 166537, "method termed": 101140, "approach generates": 11251, "generates highquality": 64075, "data mixing": 35372, "mixing strategy": 102746, "strategy produce": 156196, "simple complex": 151416, "answer problems": 9749, "problems extensive": 128508, "performance scienceqa": 122044, "scienceqa benchmark": 146923, "finetuned baseline": 58987, "baseline 45": 16187, "aims create": 7591, "create multimodal": 33212, "earlier works": 45237, "works limited": 179467, "specific objects": 154050, "images recent": 72474, "opendomain dialogues": 116455, "prone generating": 131561, "images shared": 72485, "chatbot using": 22593, "multimodal deep": 110620, "texts response": 165771, "images image": 72432, "image given": 72273, "given dialogue": 65871, "database images": 35992, "images response": 72479, "generates appropriate": 64057, "appropriate response": 11994, "image models": 72291, "evaluation proposed": 51797, "retriever outperforms": 144258, "images proposed": 72470, "surpasses baseline": 159472, "showing significant": 150191, "competitive fluency": 27176, "31 compared": 994, "models transform": 109491, "capable successfully": 20471, "performing language": 122406, "zeroshot training": 180358, "zeroshot llms": 180254, "llms reliably": 96381, "classify explain": 24207, "social phenomena": 152646, "phenomena like": 122821, "political ideology": 123898, "llms augment": 94447, "ways work": 177921, "provides road": 133209, "map using": 99133, "end contribute": 48648, "set prompting": 149282, "measure zeroshot": 99884, "performance 13": 121104, "labeling tasks": 82767, "tasks classification": 162046, "classification llms": 24028, "fail outperform": 56967, "outperform best": 117570, "levels agreement": 91525, "agreement humans": 6830, "llms produce": 96203, "exceed quality": 52740, "performance todays": 122184, "serving zeroshot": 149109, "creative generation": 33371, "attributes text": 14132, "text summary": 165518, "llms posed": 96124, "participate social": 120031, "science analysis": 146847, "subspace learning": 158019, "learning blackbox": 90266, "optimization algorithms": 116976, "propose blackbox": 131735, "based assumption": 15669, "optimal prompts": 116948, "tasks exist": 162341, "set similar": 149308, "shares similarities": 149835, "experiments confirm": 54202, "framework consistently": 61040, "llms jointly": 95692, "outcomes findings": 117451, "reports llms": 140601, "llms results": 96437, "randomized controlled": 135555, "controlled trials": 31653, "trials rcts": 169743, "unstructured natural": 172216, "articles describing": 12608, "execution outcomes": 52960, "manually extract": 99096, "manual process": 99055, "instructiontuned large": 78388, "results reported": 143745, "manual expert": 99044, "evidence extraction": 52180, "finetuning llms": 59358, "llms purpose": 96271, "gains previous": 62528, "perform ablations": 120862, "error analyses": 50270, "potential directions": 124678, "improvements apply": 73874, "technique improve": 163778, "expansion leverages": 53714, "generative abilities": 65293, "llms unlike": 96889, "unlike traditional": 172024, "traditional query": 167681, "feedback prf": 57760, "creative abilities": 33362, "llm leverage": 93803, "knowledge inherent": 82125, "inherent model": 76967, "study variety": 157712, "variety different": 175702, "prompts including": 131325, "cot cot": 32860, "prompts especially": 131251, "model break": 103226, "provide large": 132870, "number terms": 114958, "terms related": 164459, "related original": 139189, "original query": 117376, "msmarco beir": 110273, "beir demonstrate": 16750, "demonstrate query": 38519, "query expansions": 134583, "llms powerful": 96146, "task unified": 161795, "retrievalaugmented multilingual": 144197, "semantic ambiguity": 148099, "task cope": 161285, "problems previous": 128599, "suffer insufficient": 158434, "insufficient knowledge": 78448, "limited context": 92734, "retrieval strategy": 144142, "strategy paper": 156194, "proposes unified": 132490, "multilingual ner": 110523, "analysis previous": 9081, "reveal performance": 144363, "performance bottleneck": 121210, "retrieval knowledge": 144074, "model enhance": 103543, "retrieval context": 144028, "infusion approach": 76921, "model explore": 103613, "search strategies": 147418, "code scripts": 25131, "compared chatgpt": 26759, "models unlocked": 109554, "unlocked strong": 172039, "results room": 143769, "improvement chatgpt": 73767, "chatgpt extraction": 22928, "incorporates large": 75061, "models assess": 105400, "real time": 136256, "sensor data": 148465, "realtime information": 136379, "patients clinicians": 120483, "reducing likelihood": 138577, "possible proposed": 124451, "discussed governance": 42960, "governance ai": 66353, "ai ai": 6856, "half century": 68317, "authors believe": 14438, "age ai": 6385, "powerful image": 125284, "dalle2 midjourney": 34532, "ability easily": 2141, "easily create": 45307, "complex art": 27362, "chatgpt bloom": 22749, "users compose": 173600, "writing software": 179755, "software use": 152852, "code capable": 24698, "myriad applications": 111359, "applications ai": 10419, "ai continue": 6934, "continue evolve": 31193, "evolve improve": 52297, "profound changes": 129709, "challenges ability": 21755, "social structures": 152669, "analysis range": 9112, "ai governance": 7019, "decisions maximize": 37471, "maximize benefits": 99670, "main aspects": 98220, "approach taken": 11594, "informed ai": 76888, "ai article": 6871, "chatgpt works": 23440, "writing ai": 179709, "ai recent": 7187, "ai raised": 7184, "appropriate legal": 11980, "professional contexts": 129619, "present perspective": 126406, "approach writing": 11669, "ai offer": 7130, "approaches evaluating": 11752, "fair use": 57042, "use present": 172807, "set best": 149141, "plagiarism copyright": 123190, "ai likely": 7070, "coming years": 26032, "integrating ai": 78577, "offer framework": 115652, "incontext instruction": 74856, "universal capabilities": 171897, "exemplified gpt3": 52993, "chatgpt effectively": 22873, "following natural": 60298, "instructions accomplish": 78203, "accomplish realworld": 3011, "propose introduce": 131885, "tuning multimodal": 170065, "similar approach": 151206, "construct multimodal": 30148, "multimodal incontext": 110652, "tuning mimicit": 170060, "mimicit dataset": 102267, "dataset introduce": 36370, "flamingo trained": 59742, "showcasing improved": 150116, "ability incontext": 2221, "training resources": 168697, "a100 gpu": 1850, "huggingface transformers": 70546, "customized training": 34413, "inference pipelines": 76072, "memory capacity": 100371, "capacity chatgpt": 20496, "chatgpt empirical": 22879, "intelligence artificial": 78787, "examining performance": 52453, "performance verbal": 122287, "various conditions": 175871, "conditions experiments": 29003, "reveal chatgpt": 144317, "capacity limit": 20522, "strikingly similar": 156324, "humans furthermore": 71390, "different instruction": 41804, "observe fundamental": 115371, "fundamental patterns": 61964, "tasks serve": 163227, "hold potential": 70250, "efforts aimed": 46884, "aimed enhancing": 7515, "enhancing ai": 49456, "clinical domain": 24332, "domain pretraining": 44251, "pretraining approaches": 127264, "approaches limited": 11832, "data scenarios": 35702, "scenarios recent": 146682, "major advancements": 98407, "nlp driven": 113727, "revolutionized research": 144664, "development field": 41112, "progress study": 130018, "study delves": 157267, "various pretraining": 176113, "clinical language": 24339, "task involving": 161497, "focus addressing": 59941, "posed limited": 124186, "limited language": 92795, "additionally evaluated": 5053, "approach utilizing": 11659, "utilizing limited": 175208, "limited clinical": 92729, "clinical task": 24366, "data time": 35866, "indicate general": 75586, "corpus demonstrate": 32297, "demonstrate best": 38256, "approach potential": 11450, "potential capture": 124636, "capture domainspecific": 20649, "domainspecific patterns": 44608, "susceptible overfitting": 159733, "overfitting furthermore": 118340, "results underscore": 143882, "underscore significance": 170928, "enhancing model": 49527, "performance ultimately": 122209, "knowledge taskspecific": 82451, "essential achieving": 50581, "achieving optimal": 4199, "optimal performance": 116944, "range categories": 135593, "models guide": 106574, "pretraining techniques": 127458, "languages clinical": 86960, "regular language": 138978, "recurrent models": 138347, "models conventional": 105794, "regular languages": 138979, "variant named": 175622, "novel combination": 114439, "enabling efficient": 48290, "attention effect": 13868, "tuning improving": 170028, "improving prompt": 74195, "tuning successful": 170130, "successful approaches": 158336, "parameters typically": 119881, "performs worse": 122467, "quite sensitive": 135364, "sensitive hyperparameters": 148426, "stability prompt": 154677, "prompt embeddings": 130435, "benchmark notably": 17045, "notably method": 114285, "improvement prompt": 73840, "hurting performance": 71554, "performance addition": 121131, "addition approach": 4841, "robust choice": 145247, "choice learning": 23691, "based prompt": 16037, "engineering leverages": 48946, "model optimize": 104158, "auxiliary models": 15039, "introduce iterative": 79990, "optimization mechanism": 117010, "mechanism potential": 100019, "removing need": 140370, "need manual": 112347, "manual intervention": 99050, "intervention experiments": 79792, "experiments findings": 54288, "refinement framework": 138755, "model detailed": 103446, "examples provided": 52673, "provided demonstrate": 133047, "evade detection": 50876, "windows platform": 178531, "work contributes": 178875, "comprehensive empirical": 27996, "popular offtheshelf": 124032, "detection response": 40611, "known methods": 82615, "methods experiments": 101502, "furthermore conduct": 62028, "study regarding": 157588, "regarding ability": 138857, "threat actors": 166268, "detection rate": 40602, "rate highly": 135995, "remarkable language": 140210, "language abilities": 83121, "abilities gpt4": 1920, "gpt4 based": 66930, "based advanced": 15646, "llms exhibits": 95164, "capabilities previous": 20122, "previous visual": 127684, "models attribute": 105412, "attribute use": 14086, "use advanced": 172488, "llms compared": 94654, "models unfortunately": 109546, "unfortunately model": 171671, "endow llms": 48713, "capabilities propose": 20131, "inputs large": 77420, "multiple frozen": 110925, "consists stages": 29986, "information languages": 76547, "aligned llm": 8067, "integrating multiple": 78615, "integrate multimodal": 78499, "capabilities llm": 20025, "llm experiments": 93650, "demonstrates impressive": 38854, "impressive multimodel": 73313, "multimodel chat": 110806, "chat abilities": 22517, "abilities exhibiting": 1901, "exhibiting behaviors": 53164, "behaviors multimodal": 16716, "multimodal gpt4": 110645, "gpt4 unseen": 67204, "unseen imagesinstructions": 172166, "imagesinstructions yields": 72517, "relative score": 139383, "gpt4 synthetic": 67188, "multimodal instructionfollowing": 110667, "instructionfollowing dataset": 78180, "dataset conduct": 36183, "conduct quantitative": 29169, "tests using": 164796, "llm asr": 93477, "llmbased speech": 94169, "explanations chainofthought": 54822, "tasks producing": 163010, "giving final": 66065, "cot explanations": 32864, "explanations llms": 54875, "llms process": 96201, "process solving": 128989, "task level": 161516, "llms predictions": 96158, "yield significant": 179979, "significant safety": 150873, "true reason": 169813, "prediction demonstrate": 125784, "heavily influenced": 69042, "adding biasing": 4822, "multiplechoice options": 111092, "prompt make": 130598, "explanations bias": 54821, "models incorrect": 106733, "13 tasks": 334, "influence social": 76219, "trust llms": 169834, "improving cot": 74122, "alternative methods": 8568, "study using": 157698, "using gpt35": 174265, "gpt35 large": 66831, "intelligence trained": 78912, "amounts natural": 8693, "enabling generate": 48298, "responses written": 142948, "written spoken": 179791, "example llm": 52490, "llm supports": 94034, "agent called": 6422, "called chatgpt": 19650, "chatgpt work": 23439, "work used": 179352, "prompts determine": 131225, "chatgpt shows": 23324, "heuristics biases": 69317, "tested prompts": 164681, "prompts human": 131312, "studies chatgpt": 156962, "higher likelihood": 69612, "event occurring": 52086, "positively negatively": 124317, "study human": 157396, "llm lacks": 93789, "possibility language": 124383, "play role": 123465, "role generating": 145495, "humans improving": 71407, "stepbystep instructions": 155700, "tuning shown": 170118, "challenging language": 22186, "models complete": 105702, "tasks following": 162424, "instructions general": 78265, "lack intermediate": 82965, "instructions help": 78273, "help language": 69130, "decompose tasks": 37618, "detailed specific": 40319, "completing target": 27316, "chatgpt combined": 22784, "combined original": 25914, "tune language": 169936, "highquality stepbystep": 70078, "instructions improve": 78279, "generalization different": 63161, "indicates importance": 75637, "stepbystep instruction": 155699, "research release": 142042, "instructions human": 78274, "quality evaluation": 134114, "models parametric": 108432, "parametric knowledge": 119890, "guiding large": 68274, "significantly advanced": 150927, "nlp impressive": 113742, "impressive language": 73307, "performance suboptimal": 122125, "suboptimal domainspecific": 157907, "require specialized": 141196, "limited exposure": 92764, "data additionally": 34594, "sota llms": 153352, "llms accessed": 94278, "accessed apis": 2928, "custom data": 34367, "data providing": 35586, "data llms": 35326, "problems address": 128450, "framework equips": 61136, "access relevant": 2908, "llms parameters": 96045, "based opensource": 15992, "whitebox language": 178234, "allowing offline": 8385, "llms range": 96288, "multiround dialogue": 111139, "various instructions": 175983, "generating detailed": 64192, "answering general": 9860, "general questions": 63039, "lowrank adapter": 97889, "crossattention selfattention": 33610, "model construct": 103360, "construct instruction": 30139, "multimodality instruction": 110799, "tuning make": 170056, "understand follow": 171006, "follow human": 60213, "instructions quality": 78335, "data containing": 34846, "short answers": 149954, "lead model": 89762, "languageonly instructionfollowing": 86929, "instructionfollowing data": 78178, "instruction template": 78061, "effectively improves": 46026, "improves dialogue": 73992, "continuous dialogue": 31233, "dataset demo": 36223, "combinations seen": 25858, "capability finetuning": 20296, "finetuning neural": 59401, "fewshot paradigm": 58013, "paradigm based": 119434, "generalization paper": 63207, "investigate incontext": 80427, "easily affected": 45301, "factors make": 56812, "study potential": 157535, "potential factors": 124721, "diversity complexity": 43713, "indicate incontext": 75594, "similar test": 151317, "test case": 164519, "strong limitations": 156408, "limitations observed": 92628, "used ones": 173164, "examples cover": 52547, "linguistic structures": 93071, "analysis facilitate": 8927, "facilitate understanding": 56661, "understanding utilization": 171527, "zero hero": 180080, "biomedical named": 18558, "datasets timeconsuming": 37158, "extraction new": 56334, "additional annotation": 4923, "domain method": 44226, "datasets biomedical": 36686, "biomedical entities": 18542, "learn semantic": 90048, "given potentially": 65957, "oneshot ner": 116033, "new biomedical": 113097, "examples outperforming": 52647, "outperforming previous": 117686, "previous transformerbased": 127680, "transformerbased methods": 169260, "methods comparable": 101383, "gpt3based models": 66890, "web content": 177997, "content filtering": 30498, "stateoftheart approach": 155074, "leverages power": 91762, "address primary": 5335, "primary objectives": 127817, "environment method": 50015, "utilizes llms": 175148, "generate accurate": 63382, "distillation techniques": 43166, "techniques create": 163859, "smaller specialized": 152442, "specialized student": 153911, "models tailored": 109350, "rate improvement": 135998, "telemetry data": 164191, "30 distinct": 961, "categories based": 21089, "surpassing current": 159511, "model matches": 104064, "performance teacher": 122163, "teacher llm": 163612, "175 times": 497, "times parameters": 166603, "requires orders": 141425, "labeled training": 82739, "approach depending": 11105, "depending specific": 39170, "case output": 20884, "output generated": 117938, "generated approach": 63797, "approach directly": 11124, "dynamics language": 45209, "transformer large": 169156, "llms generative": 95395, "achieved tremendous": 3916, "tremendous success": 169694, "concerns challenges": 28770, "need addressed": 112218, "gain better": 62433, "models inner": 106770, "inner mechanisms": 77131, "generation analyzing": 64419, "systematic way": 160163, "way identify": 177826, "identify interpret": 71905, "way understand": 177884, "language pattern": 86460, "addition investigate": 4874, "levels model": 91546, "training observe": 168612, "generation correct": 64541, "adequately trained": 5520, "shows opposite": 150457, "concepts techniques": 28695, "approach extended": 11215, "complex coherent": 27374, "coherent language": 25532, "opening opportunities": 116527, "capabilities develop": 19855, "develop specialized": 40840, "specialized models": 153904, "models reducing": 108876, "cost improving": 32689, "performance rapidly": 121988, "number large": 114894, "llms users": 96914, "review cost": 144492, "cost associated": 32651, "popular llm": 124012, "llm apis": 93467, "models heterogeneous": 106597, "particular using": 120137, "queries text": 134550, "text expensive": 165068, "outline discuss": 117490, "discuss types": 42954, "strategies users": 156088, "users exploit": 173650, "reduce inference": 138437, "associated using": 13521, "llms prompt": 96230, "adaptation llm": 4636, "llm cascade": 93524, "simple flexible": 151457, "combinations llms": 25855, "use different": 172586, "different queries": 41954, "accuracy experiments": 3230, "llm gpt4": 93726, "cost reduction": 32733, "accuracy gpt4": 3257, "ideas findings": 71760, "lay foundation": 89618, "enables chatgpt": 48166, "abilities various": 2034, "tasks fundamentally": 162436, "datasets computationally": 36726, "expensive finetuning": 53784, "memory external": 100395, "external resources": 56085, "framework mot": 61312, "let llm": 91433, "divided stages": 43772, "stage llm": 154743, "stage given": 154739, "memory help": 100405, "help chatgpt": 69095, "improve abilities": 73398, "reasoning factual": 136856, "factual reasoning": 56898, "lead consistent": 89733, "consistent improvements": 29819, "improvements various": 73963, "methods llms": 101649, "llms taxonomy": 96777, "software architecture": 152771, "architecture recent": 12213, "recent release": 137611, "llm based": 93497, "attracted huge": 14044, "widely believed": 178368, "serve fundamental": 148979, "systems foundation": 160394, "systematically explored": 160188, "models software": 109171, "propose taxonomy": 132159, "models design": 105928, "design options": 39708, "architectural design": 12110, "decisions designing": 37456, "decisions large": 37467, "model programs": 104359, "programs recent": 129929, "instructions perform": 78320, "tasks examples": 162338, "llm incontext": 93749, "lower cost": 97819, "extend line": 55632, "reasoning present": 137040, "llm embedding": 93614, "embedding algorithm": 47150, "benefits approach": 17459, "present illustrative": 126333, "finetuning furthermore": 59278, "furthermore highlight": 62088, "highlight recent": 69780, "perspective discuss": 122658, "advantages disadvantages": 6132, "standard approaches": 154800, "dataset 500": 36086, "test large": 164574, "compares performance": 26972, "academic performance": 2748, "passing score": 120361, "cybersecurity network": 34476, "data analytics": 34630, "offensive security": 115622, "models displayed": 105998, "professional domains": 129622, "including nursing": 74644, "financial industry": 58570, "service tasks": 149070, "tasks suggesting": 163312, "applications human": 10554, "human augmentation": 70600, "services models": 149085, "body language": 18774, "latest models": 89563, "models shortcomings": 109092, "highly performant": 69934, "opensource benchmark": 116571, "professional skills": 129629, "segmentation performance": 147747, "performance transformer": 122197, "fundamental task": 61979, "thoroughly explored": 166211, "explored various": 55372, "various architectures": 175809, "lms paper": 97172, "paper compare": 118783, "segmentation algorithm": 147729, "morphological segmentation": 110131, "including ones": 74646, "rich morphology": 144792, "sizes model": 152101, "sizes results": 152111, "results training": 143873, "converge efficiently": 31743, "time achieve": 166344, "achieve equivalent": 3632, "equivalent better": 50201, "scores downstream": 147132, "tasks lastly": 162693, "smaller size": 152440, "comparably models": 26629, "model cost": 103388, "inference phase": 76070, "interactive visual": 79348, "visual framework": 177177, "short framework": 149970, "planning reasoning": 123311, "instructions like": 78302, "enable users": 48133, "users directly": 173624, "manipulate images": 98925, "finegrained control": 58860, "generation visual": 65257, "existing interactive": 53392, "systems rely": 160582, "pure language": 133722, "instructions proposed": 78330, "improves efficiency": 73995, "communication users": 26420, "users chatbots": 173593, "scenarios number": 146657, "mechanism used": 100033, "capability llm": 20335, "large visionlanguage": 89112, "model termed": 104734, "finetuned highquality": 59033, "highquality multimodal": 70053, "visual systems": 177318, "large code": 87209, "massive corpora": 99348, "corpora demonstrated": 32220, "format generative": 60546, "llms natural": 95922, "prompted solve": 130835, "solve nontrivial": 153135, "structured output": 156658, "language utilize": 86881, "utilize generative": 175046, "code codellms": 24708, "codellms codex": 25270, "codex perform": 25352, "tasks designing": 162207, "formulating tasks": 60636, "tasks experiment": 162356, "models specially": 109198, "specially designed": 153925, "designed tasks": 39960, "settings conduct": 149543, "multistage approach": 111155, "models medical": 108163, "purposes including": 133770, "including clinical": 74455, "clinical decisionmaking": 24327, "accurately capture": 3516, "despite complexity": 40087, "language minor": 83508, "care patient": 20765, "paper tackles": 119364, "tackles problem": 160861, "problem medical": 128322, "medical conversation": 100147, "conversation summarization": 31810, "tasks sequentially": 163226, "identify medical": 71923, "medical entities": 100166, "blocks study": 18732, "fewshot prompts": 58036, "prompts tasks": 131499, "tasks conditioning": 162107, "relevant patient": 139634, "patient information": 120467, "information use": 76827, "backbone experiments": 15411, "summarization metrics": 158849, "study metrics": 157487, "summaries generated": 158766, "clinically accurate": 24382, "approach summarizing": 11580, "chatgpt capabilities": 22754, "capabilities impact": 19945, "recently popular": 137951, "popular topic": 124066, "research companies": 141652, "investing heavily": 80660, "train run": 167823, "models substantial": 109274, "substantial cost": 158042, "cost hardware": 32685, "impact llms": 72683, "research focusing": 141803, "integrating models": 78613, "systems exhibit": 160369, "applications important": 10557, "error classification": 50280, "feedback students": 57799, "math questions": 99534, "potential improving": 124778, "learning outcomes": 90794, "outcomes large": 117457, "feedback systems": 57806, "systems error": 160361, "student errors": 156807, "deployed existing": 39212, "classification use": 24134, "use rulebased": 172864, "rulebased method": 145699, "limited capacity": 92725, "capacity generalize": 20504, "datadriven methods": 36042, "syntax trees": 159928, "syntactically valid": 159914, "flexible method": 59815, "classification using": 24135, "method outperform": 101003, "able classify": 2476, "responses additionally": 142720, "additionally analyze": 5023, "analyze common": 9276, "errors method": 50379, "limitations automated": 92545, "remove bias": 140359, "presence specific": 126214, "decisions based": 37453, "based protected": 16047, "possible discrimination": 124416, "potential technique": 125016, "bias mitigation": 18163, "simplification text": 151589, "driving force": 45013, "language different": 83256, "different subgroups": 42019, "experiment shows": 53913, "classifier accuracy": 24147, "accuracy predicting": 3341, "sensitive attribute": 148416, "bot human": 18880, "human detecting": 70695, "detecting chatgpt": 40399, "single question": 151850, "question large": 134900, "malicious purposes": 98845, "purposes fraud": 133768, "crucial develop": 33786, "human paper": 70945, "finding large": 58610, "conversational bots": 31853, "manner specifically": 99011, "specifically target": 154289, "target single": 161103, "effectively differentiate": 45975, "divided categories": 43770, "ascii art": 12826, "difficult humans": 42154, "different strengths": 42013, "questions effectiveness": 135110, "effectiveness providing": 46280, "providing new": 133336, "new way": 113505, "online service": 116134, "service providers": 149067, "real users": 136260, "opensourced dataset": 116692, "detection datasets": 40480, "largescale foundation": 89305, "health management": 68954, "industrial production": 75857, "reliability reducing": 139701, "reducing production": 138589, "ai remarkable": 7192, "remarkable achievements": 140129, "various industries": 175976, "emergence largescale": 47434, "ai new": 7126, "chatgpt represents": 23272, "represents landmark": 140982, "paradigm offering": 119492, "hope general": 70356, "change ai": 22335, "field systematic": 58251, "development directions": 41087, "gap paper": 62693, "latest developments": 89543, "lifelong learning": 92090, "learning open": 90788, "world lifelong": 179585, "important ability": 73075, "approaches reported": 11892, "learn sequence": 90049, "model types": 104816, "hierarchically organized": 69384, "capture knowledge": 20663, "different granularities": 41788, "prompts capture": 131181, "prompts learn": 131358, "learn knowledge": 89999, "input samples": 77332, "samples improve": 146024, "prompts explicitly": 131266, "model unseen": 104830, "tasks introduce": 162624, "introduce set": 80103, "set prompt": 149281, "prompt key": 130556, "facilitate knowledge": 56630, "knowledge sharing": 82399, "sharing tasks": 149841, "especially handling": 50485, "using informative": 174324, "informative data": 76870, "data subsets": 35823, "models salient": 109031, "remarkable improvement": 140205, "emergence new": 47438, "models pushing": 108747, "inevitably leads": 75923, "significant efforts": 150699, "efforts underway": 46940, "training pipelines": 168636, "function design": 61832, "utility training": 174978, "key question": 81559, "ask possible": 12855, "highly informative": 69925, "data maintaining": 35337, "performance building": 121214, "building recent": 19444, "data subset": 35822, "subset selection": 158008, "highly representative": 69950, "corpora demonstrate": 32218, "framework applied": 60959, "bert biobert": 17517, "using fraction": 174218, "fraction data": 60885, "data perform": 35480, "perform rigorous": 121026, "rigorous empirical": 144856, "evaluation resulting": 51827, "fullytrained models": 61818, "think twice": 166143, "llms dominate": 94978, "majority language": 98464, "correlations training": 32564, "assess model": 13099, "ood datasets": 116178, "task datasets": 161297, "method measuring": 100976, "assess robustness": 13121, "set known": 149224, "prediction biases": 125766, "biases various": 18323, "debiasing methods": 37311, "existing debiasing": 53336, "mitigate reliance": 102633, "suggesting biases": 158611, "different qa": 41953, "datasets finally": 36865, "finally evidence": 58451, "measuring performance": 99960, "datasets relies": 37078, "features hope": 57505, "hope results": 70378, "results motivate": 143616, "motivate future": 110164, "lms robustness": 97196, "addressing specific": 5479, "spurious features": 154618, "interactive web": 79350, "responses facto": 142792, "searches relevant": 147445, "supporting facts": 159373, "information synthesis": 76791, "answer paper": 9744, "unique feature": 171840, "time following": 166406, "search relevant": 147405, "using interface": 174335, "search behaviors": 147323, "highquality questionanswer": 70065, "search actions": 147311, "models imitate": 106672, "imitate human": 72573, "human behaviors": 70618, "search generate": 147357, "generate answers": 63396, "answers based": 9999, "based collected": 15705, "built finetuned": 19480, "models generates": 106467, "generates answers": 64056, "cases dataset": 20954, "chatgpt numerous": 23153, "numerous studies": 115067, "studies highlighted": 157011, "surpasses human": 159485, "perspective demonstrating": 122657, "typical tasks": 170461, "specifically domain": 154189, "domain computer": 44113, "competition benchmark": 27146, "programming contest": 129803, "encompassing wide": 48560, "problems different": 128484, "evaluation selected": 51848, "using major": 174473, "languages python": 87103, "python java": 133836, "provides evidence": 133142, "contrary popular": 31289, "popular belief": 123985, "competitive edge": 27171, "certain aspects": 21366, "obtained chatgpt": 115515, "programming problems": 129865, "times lower": 166599, "human score": 71031, "paper elaborates": 118869, "critical insights": 33509, "insights limitations": 77598, "limitations potential": 92636, "aibased language": 7339, "created equal": 33256, "llms improving": 95561, "improving multilingual": 74172, "multilingual capability": 110470, "substantially different": 158115, "improve multilingual": 73528, "template prompt": 164217, "enhance task": 49298, "languages conduct": 86965, "comprehensive evaluations": 28026, "reasoning understanding": 137219, "tasks covering": 162140, "highresource lowresource": 70104, "enhances performance": 49431, "various multilingual": 176043, "languages notably": 87075, "average improvement": 15292, "reasoning opendomain": 137010, "understanding generalization": 171244, "abilities remain": 2006, "remain lacking": 139922, "stateoftheart ai": 155069, "systems substantial": 160629, "substantial research": 158097, "particularly using": 120272, "idealized domains": 71753, "ravens progressive": 136082, "progressive matrices": 130042, "bongard problems": 18793, "problems ai": 128451, "meant capture": 99822, "abstraction reasoning": 2667, "reasoning corpus": 136780, "corpus arc": 32278, "analogy problems": 8742, "available benchmark": 15075, "systematically assesses": 160173, "number basic": 114828, "spatial semantic": 153806, "differs original": 42120, "dataset specifically": 36554, "problems focus": 128514, "level abstraction": 91444, "results testing": 143866, "benchmark machine": 17021, "gpt4 results": 67145, "results humans": 143475, "benchmark showing": 17087, "showing abilities": 150159, "systems believe": 160267, "benchmark spur": 17093, "development ai": 41046, "effective evaluation": 45751, "going simple": 66235, "principles guide": 127861, "guide selection": 68210, "provide experimental": 132777, "flexibly adjust": 59834, "results strong": 143816, "questionanswering performance": 134993, "models conducting": 105742, "human experiments": 70778, "humanlike way": 71294, "gpt3 highly": 66704, "highly sensitive": 69954, "form prompt": 60481, "tasks adapting": 161902, "adapting llms": 4747, "realworld business": 136413, "business scenarios": 19549, "warranting investigation": 177729, "investigation paper": 80644, "gap adapting": 62609, "llms practical": 96151, "insurance case": 78461, "challenge reasoning": 21721, "reasoning based": 136679, "task design": 161314, "llms empowered": 95052, "additional knowledge": 4967, "knowledge helps": 82097, "helps llms": 69249, "llms understand": 96880, "results qa": 143718, "datasets knowledge": 36938, "knowledge enhancement": 81946, "ability gpt35": 2208, "accuracy analysis": 3142, "indicates existing": 75636, "existing public": 53542, "public knowledge": 133577, "beneficial knowledge": 17411, "enhancement findings": 49380, "reveal inherent": 144342, "inherent complexity": 76948, "effective problemsolving": 45848, "search large": 147368, "retrieval information": 144068, "relevant resources": 139646, "data applications": 34642, "models rms": 109010, "llms revolutionized": 96453, "field enabling": 58158, "respective strengths": 142530, "queries retrieving": 134536, "information leverage": 76559, "leverage benefits": 91567, "framework facilitates": 61157, "expand knowledge": 53685, "knowledge queries": 82326, "enhance prompt": 49267, "prompt formulation": 130510, "formulation using": 60641, "retrieved documents": 144237, "refinement process": 138767, "leading accurate": 89803, "retrieval experiments": 144050, "largescale retrieval": 89397, "benchmarks involving": 17281, "achieves overall": 4047, "overall superior": 118248, "wordlevel quality": 178705, "quality estimation": 134112, "estimation method": 50755, "blackbox machine": 18646, "translation quality": 169504, "mt output": 110282, "models supervised": 109303, "require humanlabeled": 141122, "training making": 168570, "research unsupervised": 142134, "mt systems": 110283, "systems parallel": 160517, "synthetic errors": 160044, "estimation approach": 50749, "works simply": 179502, "input source": 77344, "sentences approach": 148557, "approach unsupervised": 11627, "systems including": 160431, "prominent large": 130152, "language directions": 83259, "approach better": 11028, "errors translation": 50402, "usage performance": 172469, "indicating approach": 75647, "approach generalizable": 11245, "examples demonstrating": 52554, "demonstrating approachs": 38919, "source words": 153485, "models enhanced": 106126, "years advancements": 179882, "models remarkable": 108921, "remarkable models": 140215, "demonstrating exceptional": 38933, "proficiency diverse": 129653, "diverse linguistic": 43565, "models billions": 105521, "parameters poses": 119832, "poses formidable": 124204, "challenge primarily": 21713, "scarcity datasets": 146489, "training innovative": 168500, "innovative strategies": 77190, "including methods": 74617, "methods finetune": 101532, "using fewer": 174197, "parameters set": 119859, "minigpt4 llava": 102308, "potential various": 125064, "domains models": 44474, "remain limited": 139925, "fully grasp": 61768, "grasp intricate": 67668, "intricate nuances": 79854, "manner akin": 98971, "akin human": 7716, "work introduces": 179060, "pioneering large": 123019, "model tailored": 104716, "address deficiencies": 5215, "contemporary models": 30420, "pairs utilizing": 118632, "comprising approximately": 28259, "model render": 104452, "mirroring human": 102454, "human interpretation": 70872, "unique dataset": 171836, "designed evaluate": 39868, "models subsequent": 109271, "benchmarks introduced": 17279, "models discussion": 105995, "discussion large": 42996, "models intelligent": 106795, "intelligent agents": 78935, "agents present": 6694, "intelligence models": 78862, "models cultural": 105828, "cultural technologies": 33970, "cultural transmission": 33971, "modern world": 109847, "discover novel": 42736, "novel causal": 114432, "causal structures": 21226, "serves step": 149055, "knowledge skill": 82405, "particular learning": 120092, "techniques data": 163860, "data critically": 34874, "suggest machines": 158562, "scale language": 146300, "language images": 83412, "transforming natural": 169382, "temporal logics": 164269, "models temporal": 109367, "temporal logic": 164266, "specify complex": 154343, "complex highlevel": 27428, "systems engineering": 160355, "engineering applications": 48879, "lack dataset": 82917, "accurate generalizable": 3459, "exploring use": 55511, "llms multiple": 95913, "multiple stages": 111049, "contributions twofold": 31509, "develop framework": 40783, "framework create": 61054, "publish dataset": 133688, "pairs finetune": 118577, "atomic propositions": 13617, "enhanced generalizability": 49337, "aspects usage": 12980, "characterizes common": 22487, "structures constraints": 156694, "domains application": 44357, "largely enhances": 89150, "domains achieve": 44350, "accuracy 95": 3130, "using 10": 173938, "model improving": 103836, "improving small": 74218, "remarkable advancements": 140134, "size poses": 152044, "challenges terms": 22080, "terms computational": 164397, "models slms": 109155, "especially specific": 50546, "method aimed": 100667, "aimed improving": 7522, "using llmbased": 174420, "objective approach": 115176, "specifically tailored": 154288, "tailored specialized": 160935, "effectiveness llms": 46224, "llms refining": 96362, "process leads": 128900, "leads improved": 89894, "16 billion": 450, "parameters outperforms": 119824, "facilitate explorations": 56612, "history ai": 70216, "ai comparative": 6921, "gpt 35": 66374, "35 gpt4": 1053, "predictive accuracy": 125943, "fact checking": 56735, "checking rapid": 23540, "rapid proliferation": 135905, "information digital": 76359, "digital era": 42282, "underscores importance": 170945, "intelligence shown": 78896, "promise various": 130204, "fields potential": 58298, "remains largely": 140020, "largely untapped": 89189, "untapped study": 172291, "study evaluates": 157325, "evaluates performance": 51246, "35 gpt": 1052, "events based": 52106, "data novel": 35426, "assess models": 13100, "historical facts": 70201, "facts results": 56845, "reveal substantial": 144376, "substantial potential": 158092, "historical studies": 70209, "gpt demonstrating": 66408, "demonstrating superior": 38961, "need research": 112376, "ais role": 7705, "enriching understanding": 49624, "historical knowledge": 70205, "knowledge gaps": 82025, "online education": 116096, "model scientific": 104510, "question data": 134855, "ai large": 7057, "models suggest": 109290, "originally designed": 117402, "domain generative": 44179, "specific focus": 153999, "focus large": 60009, "advantages drawbacks": 6134, "biological research": 18513, "research believe": 141616, "llms potentially": 96144, "potentially contributing": 125091, "framework highlight": 61198, "role enhancing": 145485, "impact generative": 72659, "final point": 58392, "approach llm": 11366, "llm research": 93964, "exploring security": 55507, "risks chatgpt": 144980, "increasing popularity": 75345, "growing concerns": 68018, "concerns safety": 28829, "safety security": 145892, "risks ethical": 144984, "implications paper": 72948, "provide overview": 132915, "overview different": 118428, "types security": 170423, "associated chatgpt": 13466, "chatgpt including": 23063, "malicious text": 98847, "generation private": 64952, "data disclosure": 34920, "services information": 149081, "information gathering": 76470, "unethical content": 171610, "content present": 30575, "examining effectiveness": 52445, "potential ways": 125072, "bypass safeguards": 19564, "implications security": 72954, "based qualitative": 16051, "analysis security": 9150, "potential strategies": 125004, "strategies mitigate": 156039, "mitigate risks": 102636, "researchers policymakers": 142239, "security challenges": 147565, "posed llms": 124187, "study contributes": 157247, "ongoing discussion": 116061, "ethical security": 50834, "implications llms": 72944, "llms underscoring": 96879, "underscoring need": 170966, "need continued": 112251, "continued research": 31216, "area make": 12331, "boosting model": 18844, "shown increasing": 150294, "increasing power": 75349, "tasks usually": 163441, "usually needs": 174909, "proposed address": 132226, "problem optimizing": 128341, "accessing gradients": 2975, "fully exploited": 61758, "gradientfree optimization": 67411, "techniques enhancing": 163884, "enhancing efficiency": 49480, "blackbox optimization": 18656, "specifically method": 154249, "method includes": 100925, "optimization strategy": 117045, "automatic verbalizer": 14758, "verbalizer construction": 176448, "novel usage": 114740, "better prompt": 17991, "policy based": 123829, "understanding inference": 171298, "inference demonstrate": 75989, "method codes": 100738, "codes publicly": 25313, "framework novel": 61326, "approach aimed": 10981, "improving problemsolving": 74192, "problemsolving capabilities": 128657, "autoregressive large": 14992, "trial error": 169738, "process human": 128858, "human mind": 70928, "explores solution": 55430, "solution space": 152977, "process allowing": 128734, "additional modules": 4981, "modules including": 109987, "solve given": 153119, "engage multiround": 48825, "conversation llm": 31797, "llm memory": 93825, "conversation state": 31807, "solving process": 153238, "process allows": 128735, "previous steps": 127663, "explore directions": 55187, "directions verify": 42504, "proposed technique": 132443, "significantly increase": 151057, "increase success": 75235, "puzzle solving": 133816, "despite remarkable": 40193, "significantly underperform": 151174, "lack reasoning": 82994, "addressing complex": 5434, "number tokens": 114964, "strategy tailored": 156209, "tailored addressing": 160907, "involved text": 80709, "based diagnostic": 15755, "diagnostic reasoning": 41384, "process induced": 128873, "model supervised": 104688, "supervised dataset": 159098, "model advantage": 103091, "evidence provided": 52208, "yields new": 180030, "sota performances": 153363, "comparable sota": 26617, "specifically using": 154305, "16 examples": 454, "comparable performances": 26611, "performances supervised": 122342, "conventional knowledge": 31702, "construction kgc": 30219, "kgc approaches": 81640, "approaches typically": 11937, "typically follow": 170491, "static information": 155463, "set predefined": 149271, "predefined schema": 125657, "short applied": 149955, "dynamic scenarios": 45161, "scenarios domains": 146581, "domains new": 44481, "type knowledge": 170309, "automatically extract": 14802, "need propose": 112369, "kgc aims": 81639, "relation event": 139239, "based dynamically": 15767, "dynamically changing": 45185, "schema graph": 146769, "based principles": 16029, "build benchmark": 19306, "performance wellknown": 122294, "gpt35 propose": 66847, "dynamic decoding": 45124, "better handle": 17897, "improvement hope": 73806, "hope proposed": 70372, "proposed work": 132455, "work deliver": 178889, "feedback reinforcement": 57773, "repairing model": 140422, "outputs despite": 118044, "despite unprecedented": 40243, "make mistakes": 98568, "learn improve": 89992, "improve using": 73658, "expensive obtain": 53793, "obtain researchers": 115498, "lieu human": 92072, "train downstream": 167764, "downstream models": 44732, "models utilize": 109600, "utilize generated": 175045, "generated feedback": 63866, "feedback approach": 57644, "does apply": 43961, "limited access": 92693, "access models": 2886, "large generalpurpose": 87264, "language agents": 83139, "learning feedback": 90454, "multiagent collaborative": 110308, "collaborative framework": 25617, "generator trained": 65631, "trained maximize": 168000, "times size": 166605, "outputs study": 118127, "relative improvements": 139373, "improvements 10": 73869, "text similarity": 165462, "similarity metrics": 151365, "guidelines creating": 68247, "creating synthetic": 33325, "synthetic datasets": 160039, "engineering design": 48902, "design applications": 39544, "advancements artificial": 5865, "necessitates vast": 112182, "publicly accessible": 133622, "accessible datasets": 2949, "datasets unfortunately": 37170, "datasets poses": 37033, "challenge researchers": 21732, "researchers aiming": 142171, "design synthetic": 39774, "viable alternative": 176645, "represent realworld": 140649, "realworld data": 136430, "data suitable": 35829, "aims knowledge": 7633, "gap proposing": 62718, "proposing comprehensive": 132496, "tradeoffs methods": 167577, "implications guidelines": 72931, "guidelines illustrated": 68251, "study underscores": 157682, "size diversity": 151987, "diversity does": 43722, "taskspecific samples": 163547, "samples influence": 146028, "sampling strategy": 146118, "insights researchers": 77641, "create publish": 33227, "effective applications": 45691, "ai advancements": 6850, "field code": 58136, "data dataset": 34886, "dataset methods": 36407, "methods publicly": 101751, "aims explain": 7608, "explain reasoning": 54710, "feature prediction": 57423, "prediction recent": 125856, "work extended": 178970, "interactions multiple": 79246, "features lack": 57523, "lack unified": 83027, "led proliferation": 91236, "directly comparable": 42521, "score shows": 147097, "individual features": 75717, "feature interactions": 57412, "special cases": 153849, "identifies new": 71846, "framework utilizes": 61484, "linear algebra": 92949, "tools provides": 167240, "game theory": 62572, "theory causal": 166077, "causal mediation": 21207, "mediation analysis": 100130, "demonstrate frameworks": 38352, "versatility effectiveness": 176583, "effectiveness applying": 46120, "analysis chainofthought": 8842, "models builtin": 105554, "standard web": 154892, "engines existing": 49014, "obtain representations": 115497, "questions documents": 135106, "independently allowing": 75505, "interactions overcome": 79251, "recent autoregressive": 137448, "number candidate": 114831, "candidate documents": 19714, "documents increases": 43914, "paper large": 119063, "llms follow": 95288, "instructions directly": 78241, "demonstrations llms": 39027, "documents contain": 43896, "way llms": 177847, "document identifiers": 43830, "existing retrieval": 53561, "retrieval approaches": 143996, "approaches significant": 11904, "answering benchmarks": 9818, "settings code": 149536, "data unified": 35904, "unified way": 171757, "tool augmentation": 166942, "construct specialized": 30161, "collect relevant": 25673, "reasoning task": 137162, "support llms": 159307, "reasoning structured": 137154, "help external": 69118, "approach gradually": 11262, "approach target": 11596, "answer given": 9719, "conducted types": 29293, "data demonstrate": 34894, "chatgpt achieve": 22674, "baselines codes": 16301, "models smart": 109162, "home assistants": 70311, "user commands": 173385, "response natural": 142676, "devices current": 41303, "current systems": 34277, "relate human": 139144, "introduce large": 79995, "llms problem": 96199, "problem space": 128409, "use controlling": 172565, "study baseline": 157182, "baseline quality": 16255, "address gaps": 5243, "executing plans": 52934, "plans achieve": 123345, "implement evaluate": 72820, "showing capabilities": 150163, "blackbox scenario": 18662, "scenario large": 146511, "versatility potential": 176592, "solving wide": 153262, "spectrum natural": 154360, "tasks cost": 162137, "considerations potential": 29670, "risks misuse": 145006, "descent training": 39376, "methods exhibit": 101495, "exhibit significant": 53099, "gap compared": 62619, "compared gradientbased": 26827, "introduce gradient": 79973, "manner experimental": 98987, "methods assessing": 101319, "risks llms": 145003, "llms empirical": 95044, "study robustness": 157604, "recent popularity": 137582, "llms brought": 94517, "brought significant": 19246, "fields particularly": 58297, "particularly openended": 120237, "opensourced models": 116703, "deployment general": 39272, "lack research": 82997, "analyzes potential": 9356, "intend conduct": 78969, "pioneering study": 123022, "llms systems": 96753, "related literature": 139182, "era llm": 50237, "propose automated": 131724, "automated workflow": 14629, "mainstream llms": 98310, "chatgpt llama": 23106, "llama opt": 93331, "consists data": 29960, "followed automated": 60233, "evaluates llms": 51239, "result draw": 143029, "query input": 134594, "cause llm": 21248, "llm respond": 93967, "poor consistency": 123942, "similar query": 151298, "finding chatgpt": 58602, "memorization llms": 100330, "llms raises": 96284, "concerns using": 28836, "models longterm": 108100, "interactions artificial": 79203, "intelligence systems": 78903, "despite notable": 40160, "increasingly evident": 75400, "psychological counseling": 133501, "novel memory": 114580, "tailored llms": 160925, "relevant memories": 139618, "adapt user": 4567, "synthesizing information": 160008, "information past": 76619, "past interactions": 120390, "incorporates memory": 75068, "memory updating": 100472, "updating mechanism": 172364, "mechanism inspired": 100002, "curve theory": 34361, "humanlike memory": 71272, "chatgpt opensource": 23163, "llmbased chatbot": 94131, "chatbot named": 22579, "experiment involves": 53894, "analysis realworld": 9114, "realworld user": 136537, "users diverse": 173627, "diverse characteristics": 43479, "dialog contexts": 41411, "array topics": 12529, "analysis reveal": 9134, "emphatic response": 47662, "understand user": 171093, "role numerous": 145520, "data formats": 35073, "profiles current": 129698, "specialized specific": 153910, "specific datasets": 153968, "broader applicability": 19204, "applicability motivated": 10265, "motivated success": 110195, "explore development": 55180, "development foundational": 41119, "trained multiple": 168017, "finetuned different": 59008, "tasks overcome": 162903, "various formats": 175948, "missing values": 102534, "transformer method": 169169, "method model": 100980, "model enable": 103532, "sentences specifically": 148595, "position embeddings": 124259, "spatiotemporal features": 153822, "model versatile": 104872, "settings different": 149559, "including joint": 74575, "pretraining larger": 127369, "human activity": 70558, "signals demonstrate": 150528, "outperforms robust": 117842, "robust baselines": 145241, "facilitates learning": 56688, "different formats": 41778, "shows improvement": 150440, "balanced accuracy": 15508, "method models": 100981, "models optimized": 108368, "optimized data": 117087, "bring improvements": 19125, "improvements palm": 73929, "report introduce": 140537, "palm palm": 118664, "mixture objectives": 102758, "objectives extensive": 115243, "evaluations english": 51966, "english multilingual": 49081, "demonstrates robust": 38887, "exemplified large": 52994, "bigbench reasoning": 18395, "stable performance": 154701, "performance suite": 122135, "additional overhead": 4984, "capabilities overall": 20093, "various sizes": 176168, "finetuned variants": 59137, "variants models": 175635, "include additional": 74325, "pre postprocessing": 125558, "postprocessing steps": 124515, "underlying models": 170861, "evolve time": 52298, "applications emerging": 10501, "directions generative": 42478, "represents notable": 140984, "notable breakthrough": 114214, "domain natural": 44231, "machines understand": 98170, "communicate using": 26339, "closely resembles": 24528, "resembles humans": 142287, "humans gpt": 71398, "gpt based": 66390, "architecture deep": 12139, "designed natural": 39917, "tasks impressive": 162533, "converse gpt": 31976, "significant popularity": 150811, "used effective": 173041, "processing related": 129285, "related fields": 139167, "review review": 144547, "review provides": 144538, "detailed overview": 40308, "including architecture": 74417, "applications review": 10673, "explored potential": 55360, "potential challenges": 124641, "limitations gpt": 92592, "gpt furthermore": 66420, "solutions future": 153023, "directions overall": 42494, "understanding gpt": 171275, "verbal visual": 176441, "learning existing": 90433, "works primarily": 179479, "learning content": 90321, "new vocabulary": 113501, "vocabulary existing": 177504, "existing knowledge": 53393, "using keyword": 174342, "requires manual": 141410, "approach endtoend": 11175, "endtoend pipeline": 48759, "generate highly": 63536, "human participant": 70946, "experiment comparing": 53883, "networks reinforcement": 112793, "rl machine": 145059, "transformers chatgpt": 169302, "points used": 123774, "used rl": 173221, "rl algorithm": 145042, "algorithm based": 7781, "diffusion versus": 42262, "physics simulations": 122950, "allow control": 8334, "density estimation": 39119, "methods simple": 101827, "toy models": 167485, "generation diffusion": 64581, "different training": 42057, "normalizing flows": 114194, "assessment large": 13240, "models given": 106502, "llm reliably": 93957, "reliably generate": 139768, "generate factually": 63490, "generate distinct": 63463, "responses different": 142768, "prompts paper": 131398, "facts propose": 56842, "statistical approach": 155483, "approach assess": 11004, "assess factual": 13081, "llms main": 95836, "llm generating": 93711, "text corresponding": 164976, "given diverse": 65874, "comprehensive set": 28119, "method evaluate": 100838, "20 llms": 602, "including llama": 74595, "llama alpaca": 93287, "experiments results": 54440, "kendalls tau": 81436, "results human": 143470, "human assessment": 70594, "assessment llms": 13245, "models capability": 105561, "capability generate": 20302, "correct text": 32422, "text reliably": 165416, "tree thoughts": 169672, "solving large": 153218, "decisionmaking processes": 37430, "processes inference": 129068, "short tasks": 150000, "initial decisions": 77019, "play pivotal": 123462, "surmount challenges": 159448, "thoughts tot": 166248, "thought approach": 166217, "approach prompting": 11472, "enables exploration": 48182, "serve intermediate": 148992, "deliberate decision": 38045, "considering multiple": 29724, "multiple different": 110890, "looking ahead": 97617, "necessary make": 112150, "significantly enhances": 150993, "models problemsolving": 108655, "problemsolving abilities": 128655, "planning search": 123321, "game 24": 62545, "mini crosswords": 102304, "solved tasks": 153177, "rate 74": 135967, "74 code": 1566, "model hidden": 103794, "predictions recent": 125926, "way complex": 177785, "complex computations": 27379, "computations performed": 28434, "based initial": 15876, "initial input": 77032, "input token": 77360, "contemporary transformer": 30421, "influence model": 76211, "model probabilities": 104344, "probability measure": 128117, "importance work": 73072, "context words": 30971, "words make": 178739, "rely primarily": 139879, "linguistic factors": 93030, "syntactic dependencies": 159888, "relationships making": 139344, "nextword predictions": 113616, "predictions additionally": 125889, "analyses using": 8786, "explain language": 54700, "models embodied": 106071, "experiences enhance": 53863, "enhance language": 49216, "simple reasoning": 151521, "reasoning planning": 137030, "planning physical": 123306, "physical environments": 122898, "understanding object": 171384, "object permanence": 115152, "planning household": 123279, "household activities": 70463, "limitation arises": 92496, "trained written": 168130, "embodied knowledge": 47312, "knowledge skills": 82406, "skills paper": 152178, "paradigm enhancing": 119448, "enhancing lms": 49517, "lms finetuning": 97142, "language capabilities": 83176, "capabilities approach": 19786, "approach deploys": 11110, "agent world": 6509, "world model": 179589, "acquires diverse": 4276, "set embodied": 149182, "random exploration": 135519, "used finetune": 173075, "finetune lms": 58945, "world planning": 179604, "goals object": 66222, "weight updates": 178083, "lowrank adapters": 97890, "adapters lora": 4727, "efficiency extensive": 46458, "improves base": 73981, "base lms": 15617, "small lms": 152315, "6b 13b": 1516, "enhanced approach": 49320, "approach match": 11382, "match outperform": 99418, "models fit": 106366, "reading paper": 136199, "paper looks": 119072, "models participate": 108434, "text generate": 165107, "diverse questions": 43614, "content coverage": 30461, "questions evaluate": 135115, "students responses": 156898, "based evaluation": 15780, "generate high": 63529, "questions high": 135156, "high correlation": 69428, "cover topics": 33046, "text increases": 165241, "low high": 97760, "significantly biased": 150950, "able effectively": 2494, "effectively summarize": 46083, "masked lms": 99315, "streaming asr": 156226, "asr models": 13002, "core idea": 32168, "acts like": 4479, "like prompt": 92378, "encourage model": 48600, "model predict": 104298, "predict future": 125683, "ability masked": 2272, "loss specifically": 97694, "specifically compared": 154155, "theoretically experimentally": 166058, "aishell1 librispeech": 7707, "librispeech datasets": 92046, "ability artificial": 2068, "audio signals": 14193, "crucial applications": 33757, "applications significant": 10687, "progress area": 129941, "audio inputs": 14180, "label sets": 82700, "humans possess": 71443, "ability classify": 2098, "finer details": 58906, "explain reason": 54709, "reason predictions": 136580, "needs taken": 112492, "capabilities perception": 20101, "present existing": 126304, "existing audio": 53283, "audio models": 14183, "models hand": 106579, "model audio": 103155, "perception reasoning": 120819, "ability paper": 2302, "understand train": 171090, "created new": 33266, "audio question": 14185, "answer tuples": 9788, "audio tasks": 14196, "reasoning comprehension": 136764, "models best": 105502, "general audio": 62920, "current machine": 34170, "ml techniques": 102795, "combined simple": 25922, "general software": 63048, "software design": 152782, "implementation approach": 72834, "llms encode": 95061, "large world": 89134, "knowledge frozen": 82015, "frozen time": 61687, "models static": 109227, "static limited": 155464, "time order": 166456, "improve capacity": 73419, "llms knowledgeintensive": 95706, "llms largescale": 95734, "web using": 178025, "using search": 174692, "sources wikipedia": 153537, "wikipedia data": 178499, "constantly updated": 30005, "updated information": 172342, "retrieved contents": 144232, "major improvements": 98434, "firstly propose": 59656, "level llms": 91487, "adaptively determine": 4790, "design pretraining": 39718, "continual knowledge": 31162, "knowledge learning": 82187, "reduce discrepancy": 138420, "previous retrievalaugmented": 127646, "empowering large": 48014, "models intrinsic": 106812, "abilities multimodal": 1966, "crucial step": 33860, "step artificial": 155597, "chatgpt current": 22818, "typically adopt": 170465, "capable perceiving": 20455, "perceiving generating": 120771, "discrete speech": 42816, "speech representations": 154468, "dataset additionally": 36098, "additionally employ": 5051, "employ threestage": 47865, "threestage training": 166295, "pretraining crossmodal": 127288, "finetuning experimental": 59259, "follow multimodal": 60218, "potential handling": 124754, "handling multiple": 68602, "demos shown": 39060, "instruction tasks": 78059, "zeroshot relation": 180326, "largescale instructionfollowing": 89321, "instructionfollowing datasets": 78181, "datasets substantially": 37138, "especially zeroshot": 50563, "instructiontuned llms": 78397, "extraction fundamental": 56300, "instructiontuning datasets": 78409, "wang et": 177684, "framework aligns": 60949, "datasets series": 37106, "llms total": 96813, "improves llm": 74020, "performance strongly": 122119, "enabling llms": 48323, "zeroshot baselines": 180121, "baselines large": 16343, "margin additionally": 99179, "thorough experiments": 166190, "robustness fewshot": 145386, "effectiveness strong": 46293, "framework work": 61499, "work illustrates": 179030, "promising way": 130331, "way adapting": 177763, "tasks aligning": 161935, "instructiontuning tasks": 78418, "like qa": 92380, "model openended": 104151, "llms notably": 95944, "notably accelerated": 114255, "accelerated progress": 2785, "progress artificial": 129942, "immense potential": 72597, "applications field": 10526, "field computer": 58140, "despite availability": 40082, "powerful vision": 125353, "models vfms": 109626, "task capabilities": 161230, "present llmbased": 126362, "llmbased framework": 94146, "framework provides": 61365, "provides unified": 133236, "unified perspective": 171743, "treating images": 169634, "foreign language": 60393, "tasks flexibly": 162420, "instructions llmbased": 78303, "based instructions": 15884, "achieve different": 3624, "levels task": 91557, "good results": 66295, "framework model": 61310, "generalist vision": 63098, "models demo": 105880, "shall released": 149762, "prompt improving": 130541, "accuracyefficiency tradeoff": 3430, "llm inference": 93757, "transferable prompt": 169020, "llms contribute": 94730, "massive scale": 99377, "hard deploy": 68639, "deploy commodity": 39194, "commodity hardware": 26115, "hardware single": 68696, "memory power": 100443, "devices model": 41311, "compression methods": 28220, "methods widely": 101929, "employed reduce": 47902, "size inference": 152008, "efficiency optimizing": 46496, "optimizing accuracyefficiency": 117106, "crucial llm": 33819, "hardware paper": 68689, "optimize tradeoff": 117081, "compressed models": 28198, "specifically observe": 154254, "observe certain": 115359, "quality compressed": 134071, "llm significantly": 94001, "carefully designed": 20808, "hard prompts": 68656, "case questions": 20886, "observation propose": 115327, "propose soft": 132139, "method expose": 100854, "process aiming": 128732, "aiming enhance": 7548, "prompts experimental": 131260, "llama7b model": 93397, "model joint": 103909, "4bit quantization": 1279, "weight pruning": 178077, "pruning compression": 133454, "demonstrate learned": 38398, "prompts transferred": 131506, "compression levels": 28217, "taxonomy llm": 163583, "text traditional": 165534, "conversational settings": 31924, "studies challenging": 156961, "llms performance": 96087, "different degrees": 41728, "issue paper": 80932, "prompts specific": 131480, "specific properties": 154065, "properties order": 131656, "range complex": 135599, "future benchmarking": 62231, "specific categories": 153947, "categories prompts": 21116, "used study": 173246, "meaningful comparisons": 99790, "different studies": 42016, "establishing common": 50707, "common standard": 26197, "researchers able": 142162, "draw accurate": 44908, "accurate conclusions": 3445, "conclusions llms": 28909, "performance specific": 122094, "specific complex": 153958, "framework finetuning": 61162, "models agreement": 105315, "diverse opinions": 43597, "potential addressing": 124552, "addressing challenge": 5430, "capabilities comprehending": 19830, "human opinions": 70942, "generating humanlike": 64247, "text typically": 165544, "typically rely": 170510, "llms autonomously": 94462, "agreement using": 6832, "data generated": 35096, "llm specifically": 94018, "specifically approach": 154137, "employs generative": 47960, "dataset create": 36207, "highest agreement": 69660, "process yields": 129040, "use finetune": 172626, "parameters showcasing": 119860, "showcasing ability": 150107, "ability identify": 2218, "identify agreement": 71854, "agreement various": 6833, "various opinions": 176094, "better utilization": 18068, "paper work": 119386, "work better": 178824, "tasks accuracy": 161888, "accuracy proposed": 3349, "llm particularly": 93873, "improvement zeroshot": 73867, "performance reasoning": 121994, "performance gsm8k": 121615, "zeroshot methods": 180261, "sensemaking large": 148400, "models people": 108453, "people increasingly": 120720, "turning large": 170182, "complex information": 27435, "information tasks": 76799, "academic research": 2752, "current interfaces": 34138, "support conversational": 159272, "designed support": 39953, "support complex": 159266, "llm enabling": 93625, "manage complexity": 98863, "complexity information": 27676, "multilevel abstraction": 110456, "seamlessly switch": 147309, "empowers users": 48039, "users explore": 173651, "explore topics": 55304, "levels abstraction": 91522, "pretraining point": 127409, "llms based": 94467, "gpt demonstrated": 66405, "effectiveness diverse": 46163, "tasks inspired": 162609, "gpt present": 66475, "low information": 97762, "information density": 76350, "point cloud": 123702, "task proposed": 161661, "proposed pretrain": 132413, "pretrain transformer": 126745, "input point": 77306, "ordered sequence": 117254, "spatial proximity": 153794, "learns latent": 91184, "representations conditioned": 140779, "conditioned preceding": 28983, "autoregressive manner": 15000, "allows learning": 8447, "particular approach": 120048, "achieves classification": 3977, "classification accuracies": 23953, "dataset outperforming": 36440, "furthermore method": 62113, "method attains": 100692, "learning benchmarks": 90255, "systems strive": 160625, "services users": 149090, "medical knowledge": 100186, "emphasizing importance": 47650, "importance providing": 73053, "responses specific": 142921, "difficult large": 42158, "tasks medical": 162793, "medical field": 100175, "field inspired": 58181, "inspired incontext": 77730, "learning propose": 90876, "module response": 109955, "response ranking": 142693, "module enhances": 109933, "enhances llms": 49419, "strategies improving": 156013, "module designed": 109927, "model response": 104467, "selection appropriate": 147833, "appropriate responses": 11995, "llms furthermore": 95313, "evaluation method": 51694, "based matching": 15941, "matching users": 99491, "users intent": 173685, "medical term": 100226, "effectively assess": 45949, "responses conduct": 142750, "experimental evaluations": 53940, "dialogue datasets": 41462, "results including": 143492, "including automatic": 74426, "extraction dataset": 56278, "traditional information": 167630, "training paradigms": 168627, "especially dynamic": 50459, "world bridge": 179532, "gap explore": 62648, "paradigm paper": 119493, "llms observe": 95950, "tend overly": 164314, "directly relevant": 42596, "dataset chinese": 36150, "chinese english": 23622, "time incorporate": 166420, "scheme design": 146783, "design effectively": 39616, "develop innovative": 40787, "innovative framework": 77170, "designed automatic": 39821, "evaluations based": 51943, "reveal current": 144325, "models promise": 108680, "instructionbased tasks": 78161, "opportunities potential": 116871, "empower large": 47990, "domainspecific question": 44618, "llm gained": 93692, "gained popularity": 62469, "remarkable results": 140284, "results opendomain": 143649, "performance real": 121989, "real industrial": 136236, "domainspecific scenarios": 44623, "lack specific": 83007, "knowledge issue": 82150, "attention relevant": 13977, "relevant benchmarks": 139575, "benchmarks available": 17176, "provide benchmark": 132687, "benchmark question": 17065, "technical problems": 163712, "general llms": 62987, "wellsuited evaluating": 178189, "methods aiming": 101297, "enhance llms": 49228, "interaction paradigm": 79156, "empower llm": 47993, "performance domainspecific": 121423, "following method": 60297, "used llm": 173137, "llm retrieval": 93973, "code sample": 25122, "sample data": 145943, "debate large": 37287, "applications face": 10524, "primarily focus": 127777, "llms collaboration": 94627, "collaboration examine": 25584, "examine llms": 52399, "collaborate effectively": 25571, "effectively achieve": 45933, "reasoning introduce": 136930, "introduce formal": 79966, "debate llms": 37290, "datasets llms": 36966, "effectively collaborate": 45961, "reach consensus": 136107, "superior llms": 159014, "llms leveraging": 95760, "leveraging advanced": 91797, "contributes understanding": 31450, "foundation developing": 60714, "developing future": 40994, "collaboration methods": 25596, "methods codes": 101373, "llms substantially": 96714, "processing demonstrating": 129141, "exceptional results": 52843, "study employ": 157306, "facilitate llms": 56633, "generating succinct": 64345, "method enhances": 100830, "agents performance": 6682, "considering essential": 29712, "scenarios learning": 146638, "learning agents": 90188, "agents past": 6680, "past experiences": 120386, "generalizing diverse": 63292, "games importantly": 62582, "improvements finetuning": 73905, "adjust prompt": 5539, "advantage employing": 6104, "experiments involving": 54326, "performance approach": 121155, "questions llms": 135185, "works prompt": 179482, "llms directly": 94939, "generate response": 63684, "response based": 142619, "based dialogue": 15757, "dialogue context": 41456, "dialogue scenarios": 41515, "scenarios challenging": 146547, "challenging existing": 22159, "aiming provide": 7561, "provide personalized": 132919, "response evaluate": 142640, "approach build": 11032, "benchmark indepth": 17002, "questions consisting": 135076, "consisting datasets": 29942, "settings empirical": 149563, "standard prompting": 154870, "models progress": 108674, "interactions online": 79250, "online reinforcement": 116127, "learning domainspecific": 90387, "domainspecific model": 44605, "model designs": 103441, "designs make": 40022, "difficult leverage": 42161, "offline training": 115888, "multimodal agent": 110581, "navigation actions": 112055, "trained jointly": 167958, "finetuning instructionfinetuned": 59317, "instructionfinetuned language": 78169, "model vision": 104876, "vision encoder": 176908, "perception large": 120810, "demonstrate recipe": 38523, "agents ability": 6519, "grounded multimodal": 67872, "multimodal perception": 110740, "reasoning outperforming": 137013, "outperforming prior": 117691, "improve previous": 73589, "offline methods": 115877, "existing sota": 53574, "strong positive": 156430, "positive transfer": 124310, "transfer realworld": 168986, "planning tasks": 123327, "tasks mind2web": 162798, "highquality demonstrations": 70016, "demonstrations using": 39056, "using trained": 174812, "larger prior": 89243, "available promote": 15185, "promote future": 130338, "reasoning coding": 136751, "coding llms": 25392, "improving correctness": 74121, "correctness output": 32494, "llms selfconsistency": 96501, "llm multiple": 93839, "multiple times": 111070, "solution existing": 152929, "techniques generate": 163914, "constant number": 30001, "question better": 134837, "available budget": 15079, "based agreement": 15650, "samples generated": 146018, "dynamically adjusts": 45184, "algorithms study": 7974, "study examines": 157332, "chatgpt preregistered": 23205, "preregistered study": 126196, "student participants": 156823, "academic subjects": 2760, "model update": 104832, "initial responses": 77050, "versus human": 176631, "accurate advice": 3433, "able discern": 2491, "discern correct": 42661, "advice accuracy": 6269, "llms garnered": 95338, "having billion": 68871, "zeroshot generative": 180201, "answering requires": 9955, "retrieval paper": 144106, "dataset presents": 36459, "presents results": 126632, "answers different": 10011, "chatgpt best": 22740, "33b parameters": 1033, "importance using": 73068, "appropriate training": 11999, "solely relying": 152870, "finegrained feedback": 58866, "source community": 153431, "closing gap": 24550, "gap best": 62615, "commercial models": 26083, "exploring role": 55505, "role explanations": 145489, "prompting reasoning": 131056, "skills large": 152168, "thorough investigation": 166192, "open pretrained": 116260, "transformers opt": 169341, "models representative": 108935, "entails finetuning": 49777, "corpus resulting": 32351, "sets finetuned": 149373, "explanations evaluate": 54838, "outofdomain tasks": 117543, "tasks drawn": 162262, "benchmark covering": 16880, "distinct reasoning": 43246, "prompting scale": 131067, "understand role": 171074, "skills findings": 152158, "explanations fewshot": 54847, "impact models": 72689, "consistent increase": 29820, "increase classification": 75194, "respectively finally": 142556, "finally offer": 58499, "offer insights": 115662, "benefit incorporating": 17434, "incorporating explanations": 75093, "negative effects": 112513, "models correctly": 105804, "correctly reason": 32471, "assumptions pretraining": 13570, "vast factual": 176333, "knowledge allows": 81742, "allows achieve": 8403, "tasks typically": 163400, "settings present": 149627, "present scenarios": 126439, "scenarios addressing": 146531, "question paper": 134914, "systematically create": 160178, "create evaluation": 33197, "evaluation data": 51522, "common assumption": 26123, "based contexts": 15723, "evaluations multiple": 52004, "gpt3 flan": 66692, "flan t5": 59746, "specifically performance": 154259, "absolute points": 2618, "points furthermore": 123752, "analyze results": 9330, "revealing interesting": 144401, "findings believe": 58642, "research developing": 141697, "developing robust": 41022, "school graduation": 146830, "graduation examination": 67430, "dataset large": 36381, "dataset developed": 36238, "llms introduced": 95678, "introduced article": 80151, "article dataset": 12571, "subjects generated": 157875, "vietnamese national": 176804, "national high": 111490, "assesses llms": 13155, "generation reading": 65016, "chatgpt bingchat": 22746, "vietnamese students": 176808, "bingchat perform": 18490, "human level": 70913, "history geography": 70222, "especially areas": 50428, "mathematics physics": 99616, "physics chemistry": 122927, "chemistry biology": 23564, "seeks provide": 147677, "provide adequate": 132670, "assessing abilities": 13164, "future developments": 62245, "making dataset": 98723, "community especially": 26470, "involving mathematics": 80797, "linguistic perspective": 93050, "years deep": 179889, "received attention": 137296, "attention success": 13992, "following thought": 60318, "linear nonlinear": 92967, "weights linear": 178118, "linear mappings": 92964, "infinite number": 76171, "number words": 114983, "article investigate": 12588, "provide linguistic": 132875, "crossdisciplinary study": 33621, "approximation theory": 12041, "multimodal named": 110733, "recognition mner": 138092, "media aims": 100070, "textual entity": 165910, "studies mainly": 157039, "mainly focus": 98291, "knowledge explicit": 81974, "methods neglect": 101678, "providing model": 133331, "model external": 103624, "encounter issues": 48570, "issues high": 81009, "twostage framework": 170257, "framework aims": 60945, "aims leverage": 7636, "leverage chatgpt": 91572, "implicit knowledge": 72981, "generate auxiliary": 63402, "auxiliary knowledge": 15032, "prediction specifically": 125866, "similar example": 151233, "suitable examples": 158698, "samples examples": 146008, "examples integrated": 52618, "formatted prompt": 60574, "acquired knowledge": 4270, "knowledge integrated": 82137, "text fed": 165083, "processing extensive": 129154, "exhibits stronger": 53226, "stronger robustness": 156479, "robustness generalization": 145387, "good visual": 66302, "methods build": 101355, "benchmark curated": 16884, "evaluate mllms": 51019, "mllms visual": 102860, "visual semantic": 177307, "understanding finegrained": 171238, "finegrained perception": 58887, "mae dino": 98190, "selfsupervised models": 148067, "models gap": 106423, "gap narrowed": 62684, "particularly effective": 120177, "visual tokenizer": 177329, "leads loss": 89900, "dataset given": 36330, "given findings": 65886, "finegrained visual": 58901, "feature distillation": 57397, "obtaining good": 115544, "based critical": 15735, "obtain new": 115488, "new mllm": 113280, "strong visual": 156452, "visual comprehension": 177137, "comprehension capability": 27888, "introducing extra": 80233, "extra parameters": 56115, "answering image": 9868, "object counting": 115114, "science social": 146913, "rapidly changing": 135914, "changing world": 22408, "emerging phenomenon": 47527, "experts struggle": 54685, "attention propose": 13970, "process writing": 129039, "topics demonstrate": 167351, "help writers": 69197, "write better": 179694, "discuss importance": 42903, "llms preserve": 96173, "efficiently improve": 46789, "adopted language": 5599, "best way": 17766, "probability given": 128113, "transformerbased lm": 169258, "softmax bottleneck": 152749, "networks used": 112816, "finding propose": 58619, "efficient mixture": 46675, "significantly decreasing": 150972, "speed best": 154499, "best method": 17699, "based t5small": 16127, "score points": 147088, "xsum dataset": 179859, "dataset improves": 36353, "taskagnostic distillation": 161824, "appealing performance": 10221, "diverse array": 43465, "array tasks": 12528, "shifted focus": 149931, "focus taskspecific": 60066, "lms yielded": 97222, "previous studies": 127664, "bert decoderonly": 17521, "largely neglect": 89160, "lms t5": 97206, "methods fail": 101517, "fail handle": 56956, "successfully tackles": 158396, "summarization results": 158874, "results showcase": 143784, "generally effective": 63307, "effective competitive": 45714, "competitive compared": 27168, "results imply": 143485, "models llama": 107018, "answering openqa": 9918, "task directly": 161326, "directly estimate": 42533, "factuality large": 56911, "llms current": 94768, "current automatic": 34077, "indicating human": 75652, "evaluation remains": 51822, "remains reliable": 140065, "approach introduce": 11314, "evaluating qa": 51376, "qa evaluation": 133884, "corresponding dataset": 32575, "accuracy aigenerated": 3140, "aigenerated answers": 7399, "humanannotated results": 71129, "performance specifically": 122098, "investigates methods": 80572, "methods improve": 101581, "improve llmbased": 73508, "llmbased evaluators": 94144, "believe new": 16785, "task corresponding": 161286, "effective automatic": 45701, "evaluation tools": 51905, "valuable future": 175413, "gpt4 bard": 66929, "ability zeroshot": 2422, "debate regarding": 37294, "reasoning capacity": 136726, "capacity paper": 20531, "performance gpt35": 121602, "performing thorough": 122419, "tasks distinct": 162243, "distinct datasets": 43214, "provides empirical": 133140, "showcasing superior": 150127, "performance chatgpt4": 121241, "chatgpt35 bard": 23446, "gpt4 compared": 66948, "compared gpt35": 26820, "limited proficiency": 92822, "tasks bolster": 162015, "findings present": 58748, "present detailed": 126282, "detailed comprehensive": 40278, "enhances zeroshot": 49448, "students perspective": 156885, "research nlp": 141934, "nlp era": 113728, "progress large": 129975, "deployment generative": 39273, "generative nlp": 65523, "applications time": 10704, "researchers especially": 142207, "area focus": 12322, "diverse group": 43534, "students academic": 156840, "research lab": 141874, "identify research": 71952, "currently addressed": 34308, "addressed llms": 5397, "llms lag": 95715, "lag performance": 83059, "focused llm": 60111, "llm development": 93593, "suggestions research": 158646, "directions include": 42483, "energybased language": 48798, "distribution natural": 43375, "natural sentences": 111952, "different popular": 41912, "models alms": 105346, "important application": 73080, "cnn lstm": 24612, "lstm networks": 97960, "networks recent": 112791, "new possibility": 113341, "energy functions": 48791, "functions different": 61905, "methods investigate": 101614, "investigate capabilities": 80381, "recognition using": 138148, "models backbones": 105440, "realworld domain": 136444, "providing explanations": 133293, "explanations existing": 54840, "lowresource learning": 97919, "learning al": 90194, "aim support": 7497, "support human": 159296, "point work": 123727, "need label": 112329, "explanation annotations": 54774, "annotations lowresource": 9602, "scenarios al": 146533, "human explanations": 70789, "utilizes generated": 175129, "automated human": 14557, "effectiveness incorporating": 46201, "annotation efficiency": 9521, "architecture additional": 12116, "additional ablation": 4917, "exhibit exceptional": 53046, "relatively simple": 139416, "effectiveness complex": 46147, "complex realworld": 27547, "warrants indepth": 177731, "indepth study": 75549, "adaptation transformers": 4670, "models domainspecific": 106019, "data leads": 35302, "leads substantial": 89920, "gains downstream": 62517, "approaches adapters": 11684, "limited expressiveness": 92765, "adaptation method": 4641, "method modular": 100982, "freezing parameters": 61588, "finetuning performed": 59441, "broad evaluation": 19178, "tasks 14": 161867, "multidomain setups": 110391, "efficient alternative": 46568, "pretraining adapters": 127256, "introducing additional": 80224, "parameters complex": 119727, "complex training": 27634, "training steps": 168766, "gpt large": 66439, "increasingly prevalent": 75431, "assess capabilities": 13048, "processing paper": 129272, "paper examines": 118895, "domains risk": 44524, "preferences measure": 126055, "domain demonstrate": 44130, "demonstrate higher": 38369, "higher rationality": 69629, "score human": 147071, "parallel experiment": 119567, "parameters gpt": 119767, "different human": 41792, "exhibit lower": 53075, "scores robust": 147169, "age gender": 6390, "sensitive contexts": 148422, "contexts based": 31004, "situations results": 151949, "suggest potential": 158579, "decisions need": 37473, "understand capabilities": 170986, "lightweight language": 92177, "model conditioning": 103339, "space recent": 153612, "progress various": 130027, "negatively impact": 112542, "existing model": 53481, "facing different": 56731, "open challenge": 116208, "challenge work": 21750, "inspired observation": 77741, "text conditions": 164949, "certain words": 21427, "words context": 178720, "hidden markov": 69326, "markov models": 99263, "establish theoretical": 50677, "theoretical connection": 166025, "connection language": 29489, "model finding": 103655, "space language": 153586, "generation control": 64535, "despite requiring": 40203, "time overhead": 166459, "overhead compared": 118355, "sentences document": 148573, "baseline make": 16234, "community following": 26480, "llms humanai": 95518, "collaborate llms": 25573, "humanlike agents": 71243, "proactively manage": 128076, "interaction collaboration": 79108, "function llms": 61846, "collect new": 25665, "features using": 57600, "dataset develop": 36237, "evaluations models": 52003, "features associated": 57448, "associated high": 13483, "likely perceived": 92461, "training approach": 168161, "settings work": 149661, "reports results": 140608, "results adopting": 143164, "following main": 60295, "extraction pipelines": 56337, "tested method": 164678, "method text": 101143, "knowledge domain": 81898, "domain test": 44309, "test method": 164582, "knowledge turn": 82478, "data ii": 35169, "achieve performance": 3702, "performance boosts": 121209, "knowledge capture": 81807, "gap offering": 62689, "domain context": 44116, "context transformer": 30944, "higher diversity": 69592, "emergence generative": 47419, "involving text": 80804, "human workers": 71094, "study investigate": 157425, "investigate case": 80384, "generation intent": 64755, "classification apply": 23956, "apply data": 10842, "crowdsourcing study": 33737, "seed data": 147639, "bidirectional transformer": 18363, "grammatical error": 67454, "correction task": 32447, "decoding propose": 37591, "propose bidirectional": 131734, "generated pretrained": 63938, "architecture utilizes": 12242, "probability target": 128125, "token using": 166749, "modeling capture": 104981, "representations target": 140891, "target context": 161047, "negative sampling": 112532, "results comparing": 143244, "top1 results": 167298, "original ones": 117361, "sets respectively": 149401, "score jfleg": 147075, "points compared": 123745, "set large": 149229, "models emulate": 106102, "thematic analysis": 165997, "analysis semistructured": 9154, "limits approach": 92910, "applied fields": 10761, "areas work": 12395, "gpt 35turbo": 66379, "research subject": 142097, "analysis commonly": 8854, "used social": 173232, "interpretations human": 79719, "qualitative data": 133990, "analysis based": 8826, "way learn": 177844, "used qualitative": 173200, "analysis proposed": 9092, "produced model": 129504, "datasets open": 37014, "analysis related": 9120, "results produced": 143685, "produced llm": 129502, "llm results": 93972, "replace human": 140454, "llm data": 93574, "data manipulation": 35349, "prompting machine": 131002, "related languages": 139177, "languages languages": 87037, "languages family": 87009, "lexical similarity": 91996, "leverages small": 91779, "generate translations": 63766, "procedure requires": 128708, "simultaneously ensuring": 151748, "produce fluent": 129412, "accurate translation": 3502, "translation propose": 169503, "task machine": 161533, "approach fewshot": 11228, "prompting decomposes": 130894, "translation process": 169501, "process sequence": 128983, "evaluation conducted": 51498, "conducted multiple": 29271, "multiple related": 111022, "related language": 139176, "pairs various": 118633, "surpasses multiple": 159490, "approaches example": 11754, "prompting bloom": 130868, "bloom model": 18746, "model average": 103172, "chrf scores": 23744, "languages response": 87122, "response length": 142672, "inference pipeline": 76071, "pipeline large": 123069, "capacity various": 20547, "tasks inference": 162599, "inference process": 76080, "process llms": 128907, "llms comes": 94637, "efficient llm": 46663, "pipeline harnesses": 123064, "harnesses power": 68810, "llms accurately": 94284, "predict response": 125702, "minimal overhead": 102349, "leveraging information": 91867, "information introduce": 76529, "introduce efficient": 79952, "scheduling technique": 146764, "groups queries": 67979, "queries similar": 134542, "approach realworld": 11493, "realworld instruction": 136466, "instruction datasets": 77982, "llamabased model": 93401, "improvement inference": 73807, "inference throughput": 76119, "inference acceleration": 75955, "acceleration techniques": 2811, "techniques making": 163963, "making valuable": 98820, "valuable addition": 175400, "quantization llm": 134411, "inference chatgpt": 75973, "evaluating llm": 51331, "gpt4 shown": 67159, "know models": 81710, "based deep": 15743, "way work": 177890, "testing llms": 164731, "llm user": 94079, "make correct": 98513, "clever hans": 24291, "hans effect": 68622, "requires llm": 141407, "achieve correct": 3617, "answer able": 9671, "greater depth": 67758, "reasoning required": 137103, "required solve": 141255, "benchmarks spanning": 17368, "commonsense logic": 26285, "reported existing": 140566, "work generating": 179003, "correct stepbystep": 32418, "stepbystep solutions": 155704, "work points": 179166, "model alignment": 103105, "findings llms": 58729, "based feedback": 15806, "claim verification": 23827, "tables current": 160766, "exhibit shortcomings": 53098, "evidence present": 52206, "challenging evaluation": 22158, "scientific claims": 146937, "reasoning verification": 137230, "annotated labels": 9482, "challenge stateoftheart": 21739, "achieved performance": 3855, "random guessing": 135525, "popular prompting": 124047, "techniques chainofthought": 163848, "analysis uncovers": 9215, "including table": 74747, "table grounding": 160745, "scaling llm": 146419, "highlighted importance": 69798, "scaling limit": 146418, "limit llms": 92485, "straightforward approach": 155919, "study empirically": 157305, "investigate key": 80432, "key aspects": 81462, "approach explore": 11211, "explore consequences": 55174, "data revealing": 35678, "examine key": 52397, "factors contributing": 56791, "factors include": 56798, "include dataset": 74329, "influential factors": 76243, "techniques yield": 164060, "requires careful": 141339, "size additionally": 151960, "additionally discover": 5046, "costeffective efficient": 32761, "computationally intensive": 28425, "dense llms": 39089, "llms comparable": 94650, "potentially impacting": 125108, "generating predictions": 64297, "explanations explaining": 54844, "explaining decisions": 54763, "crucial ensuring": 33797, "deployment time": 39308, "explanations nles": 54884, "predictions recently": 125927, "demands large": 38161, "datasets humanwritten": 36914, "humanwritten nles": 71521, "groundtruth answers": 67934, "available finetuning": 15112, "parameters making": 119802, "expensive propose": 53803, "strategy leverages": 156177, "generate predictions": 63654, "model datasets": 103403, "techniques perform": 163985, "perform automatic": 120870, "evaluations assess": 51941, "quality modelgenerated": 134205, "parameters leads": 119790, "leads competitive": 89880, "competitive results": 27199, "llms hallucinate": 95463, "hallucinate generate": 68330, "generate fake": 63495, "fake information": 57098, "data inspired": 35231, "sources propose": 153532, "llms ground": 95453, "ground responses": 67832, "grounding propose": 67923, "measures extent": 99926, "answers directly": 10013, "improve grounding": 73478, "metrics additional": 101996, "additional benefit": 4926, "performance furthermore": 121547, "prompts ask": 131162, "model decrease": 103411, "models increase": 106734, "increase decrease": 75200, "enhance reasoning": 49273, "ability visuallanguage": 2415, "models vlm": 109650, "performance image": 121645, "contrast large": 31310, "llms emerge": 95020, "powerful reasoning": 125327, "zeroshot scenarios": 180332, "overall information": 118203, "combines image": 25935, "information task": 76798, "inference final": 76010, "final result": 58399, "investigating role": 80619, "networks transformers": 112813, "transformers using": 169369, "using parallel": 174570, "design paper": 39709, "investigates key": 80563, "architecture comparing": 12133, "assumptions regarding": 13571, "attention block": 13847, "design study": 39771, "contributes deeper": 31436, "selfattention mechanisms": 147939, "behavior large": 16606, "knowledge conflicts": 81829, "providing external": 133295, "llms tool": 96810, "augmentation including": 14285, "including retrieval": 74704, "solution addressing": 152891, "addressing limitations": 5459, "llms static": 96678, "llms external": 95222, "external evidence": 56049, "especially evidence": 50469, "behavior llms": 16614, "llms encountering": 95066, "propose systematic": 132153, "elicit highquality": 47039, "llms construct": 94712, "enables conduct": 48167, "investigation reveals": 80648, "behaviors llms": 16715, "llms hand": 95465, "llms highly": 95497, "memory given": 100403, "hand llms": 68492, "contains information": 30378, "results pose": 143671, "pose important": 124159, "careful consideration": 20776, "consideration development": 29655, "development deployment": 41081, "feature matching": 57417, "powered largescale": 125245, "pretraining vision": 127475, "image understanding": 72352, "unlike large": 172006, "tackling various": 160879, "require taskspecific": 141206, "model structure": 104663, "utilizes offtheshelf": 175153, "address various": 5385, "perception tasks": 120825, "training additionally": 168145, "additionally design": 5041, "unleash potential": 171977, "potential diverse": 124683, "impressive generalization": 73297, "various segmentation": 176161, "segmentation tasks": 147751, "example achieves": 52461, "surpassing stateoftheart": 159529, "specialist model": 153861, "model 16": 102995, "semantic segmentation": 148217, "stateoftheart generalist": 155146, "set summarization": 149318, "summarization using": 158892, "computational analysis": 28327, "terms associated": 164385, "properties based": 131633, "gene ontology": 62904, "scientific texts": 146997, "texts directly": 165703, "terms ontology": 164441, "method use": 101158, "different sources": 42005, "structured text": 156680, "text derived": 165004, "direct model": 42394, "model retrieval": 104479, "retrieval demonstrate": 144036, "approaches unable": 11939, "reliable scores": 139750, "inability generalize": 74253, "using ontology": 174552, "ontology results": 116172, "results highly": 143467, "minor variations": 102428, "variations prompt": 175660, "replacement standard": 140467, "remains necessary": 140042, "necessary llms": 112149, "llms facilitate": 95235, "facilitate interpretation": 56628, "annotated corpora": 9449, "methods approaches": 101314, "limited terms": 92864, "terms scalability": 164468, "propose using": 132198, "enable finegrained": 48084, "finegrained interpretation": 58874, "interpretation analysis": 79701, "models applying": 105375, "hierarchical clustering": 69351, "concepts using": 28700, "findings demonstrate": 58652, "chatgpt produces": 23213, "accurate semantically": 3496, "compared humanannotated": 26837, "concepts additionally": 28636, "additionally showcase": 5134, "showcase gptbased": 150075, "annotations empower": 9582, "exploration experimentation": 55069, "annotated concepts": 9447, "linguistic rules": 93061, "llms mainly": 95838, "lead significantly": 89777, "significantly worse": 151180, "worse performance": 179662, "performance applied": 121152, "applied english": 10755, "assume access": 13547, "identification systems": 71807, "predefined categories": 125647, "categories paper": 21113, "handle specific": 68567, "adaptation specific": 4661, "simultaneous adaptation": 151740, "adaptation various": 4678, "models offering": 108333, "framework adapting": 60924, "information flow": 76458, "transformers recent": 169348, "weights hidden": 178111, "lms vocabulary": 97218, "makes human": 98654, "human interpretable": 70871, "interpretable paper": 79683, "vectors models": 176411, "models dynamically": 106034, "analyzing tokens": 9391, "tokens represent": 166873, "identify patterns": 71936, "mechanism based": 99977, "transformers gpts": 169310, "flow graph": 59872, "graph nodes": 67561, "huge amounts": 70504, "reflect models": 138799, "contribution component": 31471, "models final": 106335, "influence models": 76212, "languages recent": 87108, "focus research": 60046, "research automatic": 141611, "using expensive": 174180, "goal increasing": 66172, "models accuracy": 105208, "traditional handcrafted": 167626, "work step": 179309, "focus linguistic": 60017, "degree language": 38014, "short stories": 149994, "stories written": 155887, "assessment models": 13253, "setups results": 149685, "ngram overlap": 113627, "applied languages": 10774, "languages high": 87020, "high mutual": 69489, "use offtheshelf": 172785, "models consequently": 105746, "combined achieve": 25891, "existing training": 53620, "data incontext": 35206, "models harness": 106585, "work tackle": 179328, "llms finetuning": 95275, "llm predictions": 93898, "candidates llm": 19744, "output experiments": 117926, "demonstrate small": 38554, "outperforming standard": 117694, "furthermore illustrate": 62093, "need extensive": 112288, "extensive prompt": 55932, "engineering finally": 48921, "seamlessly integrated": 147302, "integrated different": 78524, "inference serving": 76098, "performance prompting": 121951, "prompting evaluating": 130922, "proactive dialogues": 128072, "context understanding": 30946, "understanding response": 171462, "capabilities possess": 20108, "possess limitations": 124345, "answers ambiguous": 9996, "ambiguous queries": 8641, "users requests": 173765, "requests considered": 141049, "llmbased conversational": 94136, "proactive dialogue": 128070, "dialogue problems": 41500, "work conduct": 178855, "analysis llmbased": 9005, "systems specifically": 160621, "focusing aspects": 60173, "proactivity llms": 128078, "augments llms": 14408, "planning capability": 123254, "findings discussed": 58664, "resource language": 142388, "language alignment": 83145, "crosslingual instruction": 33657, "llms tuned": 96865, "instructions demonstrated": 78231, "limited scarcity": 92846, "directly adapting": 42512, "adapting new": 4751, "llms result": 96434, "result catastrophic": 143024, "ability address": 2056, "enable llms": 48105, "llms align": 94382, "new unseen": 113486, "unseen languages": 172173, "languages previously": 87097, "limited parallel": 92814, "data preventing": 35537, "forgetting work": 60439, "contributes advancement": 31429, "language adaptation": 83131, "particularly adapting": 120144, "languages code": 86961, "chatgpt personal": 23186, "data amplified": 34620, "need efficient": 112276, "automl tools": 14919, "understanding domainspecific": 171199, "tasks necessitates": 162850, "agent capable": 6424, "capable assisting": 20404, "assisting users": 13450, "tasks intuitive": 162630, "intuitive natural": 80298, "natural conversations": 111524, "processes agents": 129051, "agents key": 6636, "accurately comprehend": 3519, "comprehend users": 27860, "formulate precise": 60620, "sets model": 149382, "results effectively": 143368, "effectively paper": 46060, "pioneering step": 123021, "ambitious goal": 8646, "chatgptbased conversational": 23461, "utilize large": 175056, "build natural": 19336, "natural interface": 111539, "interface users": 79447, "allows approach": 8410, "dialogue states": 41520, "data visualization": 35953, "task formulation": 161411, "summary recommendation": 158941, "impacting overall": 72753, "multiple llm": 110967, "llm instances": 93764, "conversation flow": 31790, "novel concept": 114444, "llms solving": 96641, "tasks interestingly": 162621, "critical weaknesses": 33572, "weaknesses current": 177961, "chatgpt highlighted": 23049, "opportunities improvement": 116855, "bridging human": 19095, "models necessitate": 108275, "knowledge generate": 82030, "reliable answers": 139715, "inherent biases": 76940, "pose questions": 124171, "work formulate": 178999, "question relates": 134930, "employs language": 47965, "achieve automatic": 3581, "automatic knowledge": 14696, "enhances alignment": 49399, "role knowledge": 145502, "mitigating hallucination": 102659, "improving knowledge": 74156, "producing highquality": 129557, "physics language": 122940, "design controlled": 39586, "gpt learn": 66444, "capturing aspects": 20714, "aspects natural": 12957, "construct synthetic": 30162, "long ambiguous": 97435, "generate sentences": 63707, "nearperfect accuracy": 112124, "diversity importantly": 43733, "tree node": 169663, "node information": 113967, "learn form": 89981, "overall research": 118225, "empirical understanding": 47772, "understanding transformers": 171514, "capture structure": 20688, "languages chatgpt": 86958, "generate solutions": 63718, "coding exercises": 25383, "evaluation effectiveness": 51557, "java programming": 81213, "course study": 33015, "study assess": 157173, "assess efficacy": 13076, "employing chatgpt": 47915, "course chatgpt": 33005, "chatgpt largescale": 23094, "largescale deep": 89294, "programming code": 129801, "code based": 24685, "based textual": 16138, "evaluation involves": 51653, "diverse programming": 43605, "correct solutions": 32417, "solutions findings": 153021, "chatgpt accurately": 22673, "characterized high": 22485, "organization additionally": 117283, "additionally model": 5093, "produce alternative": 129369, "solutions natural": 153049, "chatgpt struggles": 23357, "descriptions class": 39439, "class files": 23872, "solutions conclusion": 153005, "conclusion chatgpt": 28895, "chatgpt holds": 23052, "holds potential": 70273, "potential valuable": 125060, "students seeking": 156900, "programming challenges": 129798, "challenges explore": 21861, "alternative approaches": 8549, "coding problems": 25397, "problems understanding": 128643, "design coding": 39578, "minimize potential": 102377, "potential misuse": 124860, "assessment tools": 13275, "fewshot data": 57896, "data synthesis": 35835, "open domain": 116227, "powerful llms": 125302, "llms usually": 96931, "contain tens": 30312, "tens hundreds": 164345, "making inefficient": 98755, "inefficient inference": 75904, "time improve": 166416, "synthesis framework": 159944, "framework multihop": 61313, "human annotated": 70573, "annotated question": 9487, "answer pairs": 9743, "built data": 19474, "llms prompts": 96235, "prompts synthesize": 131493, "evaluated popular": 51202, "answering fact": 9853, "empirically approach": 47779, "gpt35 based": 66795, "size parameter": 152040, "exploring large": 55481, "advances nlp": 6047, "led creation": 91217, "uses bert": 173832, "bert work": 17620, "work create": 178880, "dimensions study": 42350, "encoderonly encoderdecoder": 48473, "t5 strong": 160723, "strong model": 156414, "english evaluate": 49047, "syntactic tasks": 159906, "texts experiments": 165710, "experiments provide": 54414, "benchmarking analysis": 17129, "analysis existing": 8918, "provide significant": 132972, "improvements sota": 73946, "systematic analysis": 160100, "novel generative": 114530, "tasks make": 162778, "available community": 15084, "resources large": 142446, "curated pretraining": 34023, "models resources": 108958, "languages cost": 86969, "api vendors": 10178, "users based": 173586, "based usage": 16161, "generated underlying": 64033, "token training": 166745, "information different": 76357, "work analyze": 178798, "cost utility": 32749, "languages evidence": 86997, "aim increase": 7466, "efforts improve": 46918, "improve logical": 73513, "models predominantly": 108593, "predominantly relied": 125986, "relied supervised": 139792, "large langauge": 87293, "langauge models": 83112, "demonstrated capacity": 38626, "abundant knowledge": 2707, "enabling tackle": 48351, "tackle multiple": 160837, "tasks effectively": 162267, "llms capability": 94528, "capability logical": 20341, "benchmarks far": 17246, "attempt investigate": 13792, "investigate feasibility": 80415, "logical knowledge": 97365, "knowledge selfsupervised": 82396, "specifically devise": 154186, "autoregressive objective": 15005, "integrate llm": 78497, "llm series": 93989, "series flant5": 148923, "flant5 llama": 59756, "parameter size": 119641, "size ranging": 152063, "ranging billion": 135748, "results challenging": 143215, "challenging logical": 22198, "extensive ablation": 55708, "studies analyze": 156950, "models inductive": 106756, "numerous works": 115072, "improve evaluate": 73458, "evaluate capabilities": 50915, "llms fulfill": 95307, "fulfill user": 61713, "user instructions": 173425, "user inputs": 173422, "incorrect information": 75155, "information users": 76831, "content cause": 30444, "benchmark consisting": 16874, "evaluate llms": 51006, "instructions questions": 78336, "false premises": 57171, "instructions based": 78209, "experiments strong": 54477, "strong llms": 156411, "llms reveal": 96448, "llms easily": 94999, "prompting encourage": 130917, "encourage llms": 48599, "like previous": 92377, "instructions zeroshot": 78378, "images language": 72439, "language space": 86733, "demonstrated robust": 38791, "robust performance": 145301, "actively researched": 4455, "models additionally": 105275, "handle images": 68544, "images input": 72436, "work ask": 178808, "visual input": 177192, "input argue": 77209, "require strong": 141199, "accessible language": 2957, "using separate": 174705, "specifically investigate": 154236, "information results": 76704, "models effective": 106044, "effective solving": 45887, "solving visionlanguage": 153259, "limited samples": 92843, "approach enhances": 11181, "enhances interpretability": 49416, "providing means": 133330, "models introduction": 106819, "importance making": 73045, "data scientific": 35707, "data insights": 35230, "face tradeoff": 56554, "flexibility data": 59788, "exploration capabilities": 55057, "capabilities recent": 20144, "uses gpt4": 173862, "underlying large": 170844, "llm explore": 93659, "sequencing data": 148860, "provided correct": 133044, "conclusion llms": 28898, "llms enable": 95055, "information systems": 76792, "field public": 58235, "facilitate analysis": 56594, "genomic data": 65690, "exploration different": 55063, "quick direct": 135333, "access latest": 2877, "understanding conversational": 171175, "pragmatic inferences": 125550, "human communication": 70655, "communication recent": 26407, "struggle comprehend": 156740, "model chainofthought": 103260, "performance surpassing": 122144, "surpassing average": 159506, "memory models": 100430, "nearly million": 112118, "million questions": 102239, "words average": 178714, "document length": 43835, "comprehension dataset": 27898, "books project": 18802, "project gutenberg": 130076, "types multiplechoice": 170390, "scene recognition": 146740, "questions dataset": 135093, "dataset order": 36438, "questions known": 135174, "memory needed": 100434, "memory performance": 100442, "evaluation validate": 51929, "validate data": 175306, "human labelers": 70894, "adequately represent": 5518, "source material": 153459, "used diagnose": 173030, "lastly provide": 89464, "used expand": 173056, "expand dataset": 53682, "challenges extensive": 21863, "specialized skills": 153909, "generic abilities": 65647, "ability chainofthought": 2092, "llms contains": 94716, "faulty reasoning": 57324, "reasoning incorrect": 136915, "llms obtain": 95952, "obtain specialized": 115504, "programaided reasoning": 129764, "error checking": 50279, "gsm8k benchmark": 68097, "certain llms": 21401, "llms llama": 95799, "llama achieves": 93285, "achieves 10": 3933, "10 improvement": 119, "baselines significantly": 16371, "scale parameters": 146324, "data pruning": 35588, "higher training": 69645, "symbolic language": 159808, "llms bring": 94512, "bring performance": 19130, "turn llms": 170176, "llms data": 94777, "deployment inference": 39275, "approach primarily": 11458, "primarily applied": 127766, "applied natural": 10789, "complex structured": 27597, "structured outputs": 156659, "outputs semantic": 118121, "generating various": 64372, "compared llms": 26851, "performance largely": 121724, "inference deployment": 75991, "human demonstrations": 70692, "demonstrations effective": 38998, "annotation effort": 9522, "light data": 92108, "generation complex": 64516, "conversational artificial": 31847, "led development": 91218, "development powerful": 41185, "chatgpt produce": 23212, "indistinguishable humangenerated": 75692, "increasing accessibility": 75296, "technology students": 164170, "school work": 146839, "age artificial": 6386, "tools perform": 167221, "courses students": 33023, "regarding use": 138897, "use tools": 172913, "remain unknown": 139948, "designed specifically": 39948, "students educators": 156857, "comparable superior": 26623, "current aitext": 34058, "reliably detect": 139762, "classify humanwritten": 24210, "humanwritten answers": 71509, "detection finally": 40508, "use tool": 172912, "educators treat": 45640, "findings offer": 58735, "insights guide": 77576, "educational frameworks": 45610, "finetuning despite": 59224, "output structures": 118006, "control generation": 31546, "generation lms": 64801, "follows given": 60329, "structure existing": 156552, "methods limited": 101644, "limited specific": 92854, "wider range": 178442, "serve unified": 149010, "general increased": 62958, "enable generation": 48089, "structures different": 156698, "different inputs": 41802, "extraction entity": 56291, "entity disambiguation": 49887, "taskspecific finetuned": 163520, "models grammar": 106556, "grammar constraints": 67441, "constraints hold": 30085, "hold great": 70243, "great promise": 67717, "offtheshelf lms": 115920, "lms wide": 97219, "especially training": 50554, "data scarce": 35693, "preserving knowledge": 126689, "robustness evaluation": 145382, "robustness distribution": 145371, "distribution changes": 43346, "realistic world": 136308, "especially information": 50492, "pairwise matching": 118644, "present benchmark": 126233, "models real": 108799, "meaning different": 99766, "different syntactic": 42027, "metric model": 101979, "performance consistently": 121330, "experiments typical": 54504, "models published": 108744, "popular large": 124006, "successful models": 158346, "resources code": 142428, "network pretraining": 112687, "effective scaling": 45882, "transformers model": 169333, "conditioning input": 28991, "performance keeping": 121700, "keeping training": 81431, "major design": 98422, "expert size": 54593, "block selection": 18719, "method general": 100885, "conceptual framework": 28711, "using unified": 174832, "framework compare": 61019, "architectures language": 12271, "relative efficacy": 139365, "efficiency simpler": 46530, "achieving lower": 4194, "existing moe": 53488, "moe architectures": 110016, "including switch": 74743, "switch transformer": 159783, "benchmarks makes": 17300, "evaluate improve": 50986, "question based": 134835, "based counterfactual": 15733, "require models": 141159, "identify right": 71954, "right information": 144833, "information retrieve": 76739, "retrieve reason": 144220, "highly challenging": 69895, "existing opendomain": 53511, "retrievethenread pipeline": 144276, "pipeline methods": 123075, "recent fewshot": 137501, "fewshot approaches": 57885, "research retrieval": 142053, "theory mind": 166090, "mind theory": 102285, "mind tom": 102288, "tom ability": 166911, "human thinking": 71060, "thinking decisionmaking": 166149, "decisionmaking ability": 37396, "role social": 145534, "communication paper": 26400, "investigates extent": 80560, "extent recent": 56024, "possess tom": 124353, "address biases": 5160, "biases human": 18271, "reasoning decision": 136795, "chatgpt compared": 22786, "compared results": 26910, "strategies results": 156069, "results concerning": 143251, "somewhat inconclusive": 153268, "arrive correct": 12534, "false assumptions": 57158, "invalid reasoning": 80308, "models chainofthought": 105593, "chainofthought finetuning": 21507, "reasoning contrast": 136774, "aim equip": 7448, "order achieve": 117168, "new instructiontuning": 113236, "flan collection": 59745, "tasks additional": 161905, "cot finetuning": 32867, "finetuning flant5": 59272, "lms better": 97110, "cot capabilities": 32859, "capabilities unseen": 20231, "benchmark report": 17073, "flant5 11b": 59750, "accuracy furthermore": 3246, "stronger fewshot": 156470, "tasks resulting": 163176, "resulting improvement": 143108, "outperforming chatgpt": 117670, "chatgpt utilizing": 23422, "margin code": 99180, "code cot": 24739, "collection data": 25729, "model checkpoints": 103273, "checkpoints publicly": 23550, "corpus linguistic": 32328, "dataset comes": 36167, "label experiments": 82685, "chance level": 22331, "experiments finegrained": 54289, "finegrained linguistic": 58878, "linguistic analysis": 93005, "analysis provide": 9096, "predictions demonstrate": 125895, "demonstrate time": 38593, "time knowledge": 166426, "distinct languages": 43229, "selfadaptive prompting": 147925, "sophisticated tasks": 153325, "humans possible": 71446, "effectively learn": 46039, "prompted reason": 130833, "observed performance": 115430, "sensitive choice": 148420, "choice examples": 23687, "examples design": 52556, "design requires": 39744, "llms difficult": 94930, "labels second": 82825, "second zeroshot": 147516, "setting does": 149448, "limited lack": 92794, "lack guidance": 82952, "guidance llms": 68153, "novel prompt": 114648, "method llms": 100968, "llms requiring": 96418, "groundtruth labels": 67938, "builds set": 19468, "set examples": 149188, "setting different": 149443, "15 compared": 403, "compared zeroshot": 26969, "fewshot baselines": 57886, "seen significant": 147704, "thanks development": 165986, "llms models": 95898, "sophisticated interactions": 153303, "interactions humans": 79231, "way novel": 177855, "lines human": 92996, "human machine": 70923, "detection unlike": 40646, "unlike conventional": 171990, "specific object": 154048, "interact using": 79079, "stateoftheart multimodal": 155244, "models openvocabulary": 108361, "openvocabulary object": 116714, "object detectors": 115123, "detectors perform": 40679, "perform reasoning": 121023, "reasoning context": 136772, "context users": 30952, "users instructions": 173684, "instructions visual": 78376, "object based": 115106, "users expressed": 173654, "knowledge typical": 82481, "flexibility makes": 59793, "applicable wide": 10290, "fields robotics": 58303, "autonomous driving": 14930, "overall proposed": 118219, "proposed paradigm": 132410, "potential sophisticated": 124996, "intuitive interactions": 80294, "open door": 116228, "systems project": 160553, "humanintheloop approach": 71199, "approach evaluating": 11197, "demographic factors": 38203, "factors language": 56808, "humanmachine conversations": 71303, "like age": 92194, "change way": 22355, "little investigation": 93238, "investigation large": 80638, "gap consider": 62632, "lm language": 97059, "target demographic": 161054, "conduct evaluation": 29080, "evaluation domain": 51554, "domain expert": 44145, "clinical evaluation": 24334, "evaluation scale": 51842, "varies widely": 175684, "widely depending": 178370, "depending task": 39174, "ability humans": 2217, "outperforms typical": 117882, "findings affirm": 58632, "importance considering": 73015, "considering demographic": 29708, "conversational goals": 31871, "goals using": 66225, "using lms": 174451, "tools code": 167123, "package available": 118491, "finetuned llama": 59051, "llama outperforms": 93333, "outperforms gpt4": 117783, "arithmetic tasks": 12490, "llama model": 93325, "range arithmetic": 135586, "tasks finetuned": 162414, "finetuned synthetically": 59120, "generated dataset": 63844, "particular zeroshot": 120140, "matches surpasses": 99447, "surpasses accuracy": 159471, "achieved fewshot": 3809, "models bloom": 105532, "thoroughly examine": 166207, "offering comprehensive": 115731, "easily trained": 45336, "using lora": 174456, "facilitating reproducibility": 56716, "reproducibility researchers": 141017, "release model": 139481, "python script": 133852, "dataset generation": 36325, "generation finetuned": 64662, "llms know": 95700, "hallucinate wrong": 68338, "wrong answers": 179798, "12 billion": 262, "facts used": 56849, "improve factuality": 73462, "answering benchmark": 9817, "consists realworld": 29984, "annotation paper": 9540, "presents fewshot": 126578, "unique domain": 171839, "entity linker": 49894, "finetune llama": 58937, "fewshot training": 58077, "alpaca experimental": 8508, "effectiveness methodology": 46241, "dev test": 40745, "provide useful": 133017, "dataset 36": 36084, "evaluating improving": 51313, "words previous": 178747, "studies typically": 157101, "typically limited": 170498, "german dutch": 65762, "work systematically": 179327, "address data": 5213, "introducing dataset": 80231, "array large": 12517, "task llms": 161526, "methodology train": 101255, "train dedicated": 167757, "dedicated models": 37680, "learning stage": 91018, "data selfsupervised": 35725, "tools furthermore": 167169, "equivalent model": 50204, "superior fewshot": 159004, "texttosql parsing": 165849, "improvement paper": 73830, "paper hypothesize": 118970, "aspect llms": 12913, "improve texttosql": 73641, "study enhance": 157312, "ability chain": 2091, "cot style": 32909, "including original": 74654, "original chainofthought": 117319, "wei et": 178063, "leasttomost prompting": 91199, "zhou et": 180389, "al 2023": 7733, "demonstrate iterative": 38388, "iterative prompting": 81137, "using detailed": 174131, "detailed reasoning": 40312, "issues based": 80986, "development set": 41219, "set spider": 149315, "respectively compared": 142542, "method reasoning": 101057, "24 15": 806, "answering programming": 9924, "timesensitive questions": 166617, "questions question": 135241, "role human": 145499, "human daily": 70682, "everchanging nature": 52142, "nature realworld": 112025, "realworld facts": 136456, "different time": 42050, "time constraint": 166364, "answering experiments": 9845, "aforementioned problems": 6372, "problems pose": 128591, "llms inability": 95563, "rigorous reasoning": 144869, "text semantics": 165451, "question propose": 134921, "leveraging modern": 91906, "modern llms": 109816, "llms superior": 96733, "superior capability": 158993, "capability understanding": 20383, "understanding natural": 171364, "expressed text": 55579, "best matching": 17698, "timesensitive question": 166615, "datasets achieve": 36632, "llms proficient": 96211, "latent beliefs": 89491, "inconsistencies exist": 74823, "answers supported": 10088, "layer llm": 89634, "llm given": 93719, "question construct": 134849, "graph using": 67587, "relevant model": 139621, "answer candidates": 9680, "second identify": 147479, "using formal": 174214, "overall answer": 118175, "accuracy resulting": 3379, "suggests new": 158667, "style architecture": 157736, "architecture llm": 12187, "layer provide": 89647, "provide interpretable": 132860, "systematic reasoning": 160142, "present llm": 126361, "finegrained atomic": 58855, "long form": 97452, "form text": 60490, "generation evaluating": 64620, "mixture supported": 102761, "pieces information": 122976, "information making": 76572, "judgments quality": 81339, "evaluation timeconsuming": 51901, "costly paper": 32796, "generation series": 65080, "series atomic": 148904, "atomic facts": 13616, "reliable knowledge": 139727, "evaluation obtain": 51748, "generated stateoftheart": 63989, "stateoftheart commercial": 155106, "lms instructgpt": 97154, "chatgpt retrievalaugmented": 23284, "analysis demonstrating": 8884, "demonstrating need": 38943, "finegrained score": 58891, "costly introduce": 32790, "introduce automated": 79916, "automated model": 14576, "model estimates": 103563, "model error": 103556, "use automated": 172511, "generations new": 65284, "set 13": 149118, "evaluated humans": 51183, "humans various": 71490, "various findings": 175945, "findings gpt4": 58675, "chatgpt factual": 22932, "models vicuna": 109627, "alpaca best": 8506, "best public": 17740, "public use": 133610, "pip install": 123027, "navigation large": 112058, "tasks alleviate": 161936, "alleviate issue": 8290, "diverging previous": 43452, "web page": 178011, "prompt propose": 130645, "propose construct": 131761, "predicts action": 125966, "action based": 4310, "based summarized": 16119, "broad applicability": 19162, "complex domain": 27405, "information approach": 76283, "task success": 161756, "demonstrating potential": 38946, "tasks long": 162757, "ability neural": 2296, "generate novel": 63633, "link prediction": 93095, "severely limiting": 149718, "focus optimizing": 60029, "novel setting": 114689, "setting models": 149476, "problems experimental": 128500, "settings goals": 149585, "literature present": 93188, "uses retrieval": 173905, "evaluations reveal": 52026, "reveal gpt4": 144336, "tends generate": 164336, "low technical": 97790, "technical depth": 163696, "methods partially": 101705, "issue work": 80970, "work represents": 179265, "step evaluating": 155630, "evaluating developing": 51286, "developing language": 41002, "help requests": 69172, "potential accessibility": 124546, "individuals disabilities": 75772, "development multimodal": 41164, "capable responding": 20467, "utilizing existing": 175184, "includes tasks": 74391, "generate informative": 63567, "given dialog": 65870, "evaluates effectiveness": 51232, "response consistent": 142633, "agent including": 6451, "including finetuning": 74521, "multimodal response": 110757, "method conducted": 100752, "project website": 130089, "llms play": 96108, "powerful blackbox": 125258, "pipeline making": 123074, "making remarkable": 98803, "llms perspective": 96099, "studies focusing": 157006, "retriever reader": 144259, "pays attention": 120618, "attention adaptation": 13836, "generate query": 63668, "query use": 134634, "engine retrieve": 48866, "contexts furthermore": 31020, "propose trainable": 132171, "scheme pipeline": 146795, "llm reader": 93939, "feedback llm": 57729, "learning evaluation": 90427, "tasks opendomain": 162882, "multiplechoice qa": 111094, "effective scalable": 45881, "brings new": 19145, "retrievalaugmented llm": 144191, "prompt complexity": 130395, "classification study": 24101, "exhibited impressive": 53136, "capacity generate": 20505, "responses follow": 142796, "computational demands": 28357, "demands associated": 38153, "setting paper": 149488, "context computational": 30711, "tasks investigating": 162633, "investigating effects": 80593, "various prompting": 176124, "strategies experiments": 155998, "experiments investigate": 54323, "impact prompt": 72718, "complexity including": 27673, "definitions prompt": 37967, "use synonyms": 172895, "label names": 82692, "influence integrating": 76201, "integrating past": 78620, "indicate zeroshot": 75630, "llms unable": 96872, "unable match": 170605, "additionally different": 5045, "strategies significantly": 156074, "accuracy f1": 3233, "exceeding 10": 52745, "tool creation": 166960, "progress utilizing": 130025, "utilizing tools": 175242, "ability limited": 2254, "limited api": 92705, "reasoning particularly": 137021, "planning execution": 123270, "overcome limitations": 118298, "framework enables": 61119, "tools using": 167282, "using documentation": 174149, "documentation code": 43867, "resulting improved": 143107, "performance evaluate": 121467, "challenging math": 22201, "math competition": 99523, "competition problems": 27149, "diverse tabular": 43672, "chainofthought programofthought": 21515, "baselines additionally": 16284, "challenge dataset": 21615, "dataset featuring": 36298, "emphasize necessity": 47631, "benefits llms": 17480, "creation ability": 33332, "ability research": 2354, "leveraging llms": 91896, "transfer llms": 168967, "exhibit varying": 53119, "levels tool": 91559, "abilities enabling": 1899, "enabling adapt": 48265, "comprehensive data": 27987, "data utilization": 35936, "utilization existing": 174992, "llms lack": 95711, "lack dedicated": 82919, "ability explicitly": 2157, "explicitly store": 54989, "store retrieve": 155859, "retrieve knowledge": 144219, "recall knowledge": 137270, "needed task": 112455, "performance inspired": 121682, "designed scalable": 39939, "qualitative evaluations": 133995, "framework baseline": 60986, "framework exhibits": 61148, "exhibits robust": 53218, "performance handling": 121617, "effectively manage": 46048, "improving factuality": 74142, "multiagent debate": 110314, "extensive body": 55726, "present complementary": 126250, "complementary approach": 27254, "language responses": 86712, "responses multiple": 142855, "instances propose": 77841, "individual responses": 75735, "responses reasoning": 142895, "reasoning processes": 137064, "processes multiple": 129087, "multiple rounds": 111030, "enhances mathematical": 49421, "strategic reasoning": 155947, "validity generated": 175394, "content reducing": 30598, "hallucinations contemporary": 68425, "applied existing": 10757, "existing blackbox": 53305, "models uses": 109577, "overall findings": 118190, "significantly advance": 150926, "advance capabilities": 5676, "llms pave": 96056, "simulation framework": 151696, "learn human": 89990, "chatgpt seen": 23297, "strong instructionfollowing": 156401, "instructionfollowing abilities": 78173, "llms involves": 95688, "involves complex": 80722, "requiring training": 141515, "training human": 168475, "requires tackling": 141456, "challenges high": 21896, "reference method": 138663, "simulator enables": 151735, "high agreement": 69391, "humans second": 71468, "second propose": 147503, "realworld interactions": 136468, "reference implementations": 138660, "methods ppo": 101715, "ppo dpo": 125370, "expert iteration": 54575, "learn pairwise": 90025, "feedback finally": 57682, "model substantially": 104676, "ppo implementation": 125371, "compositional zeroshot": 27827, "learning czsl": 90344, "aims recognize": 7659, "recognize unseen": 138158, "unseen compositional": 172151, "compositional visual": 27823, "model learned": 103944, "literature shows": 93205, "diversity informativeness": 43736, "class context": 23866, "primitives state": 127838, "state object": 155011, "properly addressed": 131621, "literature paper": 93185, "diverse informative": 43548, "enhance compositionality": 49173, "strategy proposed": 156199, "dynamically fuse": 45188, "orthogonal existing": 117417, "prompts method": 131373, "class distribution": 23870, "generalization experimental": 63172, "mitstates utzappos": 102707, "utzappos cgqa": 175261, "cgqa datasets": 21444, "datasets superior": 37142, "graph meets": 67548, "meets llm": 100299, "llm novel": 93849, "collaborative filtering": 25615, "filtering robust": 58361, "robust conversational": 145253, "conversational understanding": 31932, "queries ensure": 134474, "ensure robust": 49701, "mistakes errors": 102548, "errors automatic": 50335, "approach focuses": 11239, "focuses reducing": 60159, "taking account": 161001, "users individual": 173678, "preferences typically": 126070, "unseen interactions": 172170, "users history": 173669, "history present": 70226, "additional challenges": 4930, "challenges personalized": 21992, "approach specifically": 11562, "new user": 113489, "interactions previously": 79260, "approach builds": 11035, "interaction graph": 79129, "graph traversal": 67584, "called collaborative": 19651, "add additional": 4804, "model incorporate": 103842, "llm enhance": 93632, "domains specifically": 44530, "7b model": 1633, "augmented finetuned": 14341, "generation significantly": 65088, "unseen user": 172197, "compared graph": 26829, "approach information": 11305, "chatgpt analysis": 22697, "robustness errors": 145379, "errors chatgpt": 50341, "field large": 58188, "paper assess": 118757, "perspectives including": 122705, "including performance": 74661, "robustness error": 145378, "17 datasets": 482, "datasets 14": 36626, "gap chatgpt": 62617, "chatgpt sota": 23341, "strategy evaluation": 156143, "evaluation accurately": 51419, "analyze robustness": 9331, "invalid responses": 80309, "greatly affect": 67779, "error type": 50327, "quality annotated": 134037, "data indicates": 35216, "released github": 139516, "study comprehensive": 157225, "particular construct": 120064, "multilingual multidomain": 110516, "multidomain dataset": 110387, "hindi russian": 70165, "domain language": 44214, "language diversity": 83263, "multilingual nonenglish": 110526, "nonenglish language": 114041, "xlmr mt5": 179844, "llama2 gpt4": 93363, "outperform trained": 117642, "datasets showcasing": 37110, "assessment crosslingual": 13223, "capabilities compare": 19823, "compare traditional": 26737, "traditional readability": 167682, "readability metrics": 136157, "grade level": 67366, "metric measuring": 101978, "unsupervised metric": 172257, "models necessitates": 108276, "necessitates substantial": 112181, "obtain paper": 115492, "novel unsupervised": 114738, "improves llms": 74021, "llms reliance": 96382, "reliance external": 139777, "labels approach": 82782, "approach grounded": 11264, "assess text": 13130, "quality generate": 134136, "text building": 164866, "building insight": 19421, "llms dual": 94996, "dual roles": 45075, "roles student": 145564, "student teacher": 156831, "teacher student": 163621, "student llm": 156815, "evaluates generated": 51236, "assigns scores": 13333, "evaluation score": 51845, "score demonstrate": 147058, "tasks reasoning": 163087, "reasoning problems": 137048, "problems text": 128640, "generation machine": 64808, "external supervision": 56090, "accuracy reasoning": 3362, "applicability large": 10258, "abilities wide": 2041, "work studied": 179314, "using artificial": 173975, "winograd schema": 178538, "schema challenge": 146768, "challenge paper": 21693, "instructiontuned language": 78386, "models difficult": 105975, "detectors investigations": 40678, "time periods": 166465, "models preferred": 108596, "small amounts": 152271, "student simulation": 156829, "simulation capabilities": 151687, "make inferences": 98551, "present prompts": 126424, "determine llms": 40709, "deduction process": 37690, "prompts evaluate": 131254, "dataset facts": 36294, "question findings": 134876, "advanced gpt": 5740, "prompt settings": 130671, "simulation models": 151705, "models mitigate": 108192, "extent findings": 56007, "models involve": 106824, "involve reasoning": 80692, "dataset rich": 36516, "properties grounded": 131646, "problems automatic": 128459, "automatic dialogue": 14658, "potential making": 124853, "personalized accessible": 122586, "accessible research": 2966, "hampered lack": 68475, "large highquality": 87279, "datasets collecting": 36709, "datasets remains": 37079, "raises privacy": 135492, "privacy concerns": 127987, "leads insufficient": 89897, "insufficient data": 78445, "generate dialogues": 63461, "human teachers": 71054, "llm prompted": 93917, "tutoring dialogues": 170198, "incorrect feedback": 75151, "feedback prone": 57764, "revealing solutions": 144409, "provide learning": 132873, "opportunities students": 116877, "using various": 174845, "according taxonomy": 3058, "extensive annotations": 55716, "annotations used": 9621, "interactive setting": 79339, "dataset released": 36503, "released publicly": 139537, "hallucination large": 68386, "capable natural": 20453, "applied tasks": 10814, "like question": 92381, "present series": 126444, "series behavioral": 148905, "studies llm": 157036, "llm families": 93669, "llama gpt35": 93312, "gpt35 palm": 66842, "behavior using": 16661, "using controlled": 174090, "major sources": 98450, "data entities": 34984, "entities used": 49881, "memorized data": 100347, "patterns usage": 120571, "hypothesis training": 71630, "data bias": 34720, "offer valuable": 115714, "future llm": 62283, "models plan": 108513, "plan execute": 123207, "execute actions": 52903, "strategies chainofthought": 155970, "prompting improve": 130956, "examples intermediate": 52619, "steps remains": 155767, "apply methods": 10863, "input documents": 77227, "intermediate step": 79532, "obtain work": 115508, "prompting framework": 130939, "framework improve": 61209, "stages action": 154760, "plan execution": 123209, "execution specifically": 52967, "specifically given": 154214, "decomposes question": 37625, "sequence actions": 148726, "work gpt4": 179006, "challenging subset": 22280, "narrative texts": 111447, "zeroshot chainofthought": 180136, "ablation experiments": 2431, "critical performance": 33529, "performance overall": 121885, "documents evaluating": 43905, "openais whisper": 116435, "whisper asr": 178221, "asr systems": 13009, "systems play": 160531, "applications involving": 10573, "models portuguese": 108558, "portuguese language": 124137, "language proposed": 86673, "humans recently": 71462, "asr proposed": 13006, "generalpurpose speech": 63368, "recognition model": 138093, "chapter presents": 22418, "theoretical aspects": 166021, "marks promising": 99270, "results videos": 143929, "realworld scenario": 136495, "content enable": 30483, "enable better": 48066, "better text": 18048, "interpret text": 79630, "observed language": 115418, "language inspired": 83439, "introduce method": 80009, "explicitly account": 54963, "related text": 139218, "plausibility generated": 123423, "incorporating explicit": 75094, "content proves": 30586, "proves useful": 132662, "problem settings": 128393, "settings involve": 149596, "involve human": 80689, "assessing similarity": 13208, "making sense": 98806, "data modeling": 35392, "behavior results": 16641, "nlp particularly": 113783, "particularly applications": 120147, "applications social": 10690, "improved dataset": 73681, "texts text": 165790, "text describes": 165005, "understanding requires": 171459, "text major": 165290, "major limitation": 98437, "limitations present": 92640, "entities attributes": 49832, "entity salience": 49940, "using state": 174750, "salient entities": 145929, "prompt downstream": 130430, "classical planning": 23944, "related entities": 139165, "understand dynamics": 170997, "entities text": 49877, "geopolitical biases": 65737, "llm answer": 93463, "chinese tagalog": 23665, "tagalog vietnamese": 160886, "consistently paper": 29914, "paper llms": 119070, "llms recall": 96318, "phenomenon term": 122840, "associated set": 13507, "set multiplechoice": 149245, "languages total": 87144, "propose suite": 132150, "suite evaluation": 158722, "quantify bias": 134313, "consistency responses": 29789, "multilingual llms": 110501, "dataset metrics": 36409, "knowledge use": 82490, "use proposed": 172829, "models respond": 108962, "respond different": 142590, "languages finally": 87010, "prompt modification": 130607, "strategies aiming": 155961, "interaction context": 79109, "model reasoning": 104417, "difficult single": 42179, "model generalize": 103711, "question types": 134949, "types require": 170417, "abilities provide": 1997, "llms suffer": 96720, "suffer poor": 158445, "reasoning types": 137215, "specialized language": 153893, "backbone language": 15413, "prompts optimized": 131391, "multihop mathematical": 110417, "key insight": 81523, "abstain answering": 2629, "specialized model": 153903, "design improves": 39653, "improves selective": 74081, "selective question": 147905, "outputs human": 118065, "study confirms": 157239, "process helps": 128855, "systems output": 160506, "data facilitate": 35039, "instructing large": 77954, "models distinguished": 106006, "aligned large": 8063, "crafting prompts": 33158, "utilize incontext": 175050, "learning automatically": 90234, "automatically synthesize": 14864, "specific instruction": 154017, "instruction ask": 77964, "ask llms": 12850, "opensource chat": 116575, "chat assistant": 22523, "evaluation expert": 51578, "expert data": 54558, "existing opensource": 53512, "chatgpts capability": 23487, "capability data": 20278, "combination large": 25828, "sparse mixtureofexperts": 153735, "llms increasing": 95598, "increasing inference": 75322, "cost instruction": 32694, "tuning technique": 170134, "technique training": 163810, "combining approaches": 25964, "benefit instruction": 17435, "studies experimental": 156996, "tasks iii": 162518, "iii instruction": 72118, "tasks scenario": 163200, "tuning second": 170115, "used independently": 173111, "surpasses performance": 159492, "advancements embodied": 5881, "design principles": 39719, "models diffusion": 105977, "visual metaphors": 177228, "devices used": 41318, "creative ideas": 33373, "similar linguistic": 151267, "convey meaning": 32017, "symbols propose": 159837, "diffusionbased texttoimage": 42268, "texttoimage models": 165821, "requires ability": 141327, "model implicit": 103824, "implicit meaning": 72985, "propose solve": 132142, "collaboration large": 25590, "llms diffusion": 94933, "models instruct": 106776, "prompting generates": 130946, "text represents": 165424, "relevant objects": 139625, "objects used": 115308, "used input": 173115, "collaboration framework": 25585, "interact llm": 79064, "model create": 103391, "create highquality": 33201, "associated visual": 13523, "model collaboration": 103299, "collaboration task": 25602, "evaluate utility": 51127, "dataset perform": 36453, "evaluation extrinsic": 51584, "extrinsic evaluation": 56460, "contextaware decoding": 30978, "contain hallucinations": 30295, "hallucinations mitigate": 68445, "decoding cad": 37562, "context experiments": 30756, "different lm": 41843, "including opt": 74653, "gpt llama": 66445, "llama flant5": 93306, "factuality metrics": 56917, "metrics furthermore": 102068, "leading substantial": 89864, "resolving knowledge": 142357, "knowledge conflict": 81828, "claim decomposition": 23822, "produce answers": 129371, "satisfy criteria": 146173, "question existing": 134869, "techniques aim": 163831, "aim detect": 7443, "used verify": 173298, "input question": 77325, "perform finegrained": 120950, "ability determine": 2126, "determine extent": 40702, "model psychological": 104391, "psychological metrics": 133504, "evaluation present": 51781, "metrics evaluating": 102054, "present interpretable": 126343, "linguistic style": 93073, "metrics applied": 102002, "metrics compared": 102029, "metrics bartscore": 102010, "seven standard": 149702, "corpus consists": 32287, "annotated conversations": 9448, "metrics offer": 102120, "offer novel": 115676, "metrics used": 102161, "systems lead": 160457, "lead increased": 89757, "increased accuracy": 75250, "accuracy existing": 3228, "tool evaluating": 166971, "ai opportunities": 7131, "humanlike traits": 71292, "prevalent social": 127522, "versatile tool": 176573, "behavioral psychology": 16672, "adoption ai": 5628, "make humanlike": 98547, "alignment techniques": 8247, "human voice": 71089, "increases significantly": 75292, "understanding phenomenon": 171405, "objective legal": 115213, "lens recent": 91420, "psychological aspects": 133500, "llms customized": 94776, "different user": 42077, "user bases": 173377, "llms affects": 94369, "fundamentally change": 61988, "change nature": 22348, "nature humanai": 112006, "influence llms": 76210, "groups like": 67973, "important contribution": 73117, "contribution propose": 31481, "improve trustworthiness": 73650, "chatgpt simple": 23334, "simple linguistic": 151488, "blind spots": 18702, "paper sheds": 119327, "light limitations": 92127, "limitations chatgpts": 92551, "capabilities focusing": 19905, "typically easy": 170481, "humans appear": 71348, "challenging model": 22211, "evaluation sets": 51851, "zeroshot setup": 180345, "setup results": 149678, "low accuracy": 97730, "fails incorporate": 57000, "knowledge make": 82213, "correct inferences": 32393, "causes model": 21263, "regardless correct": 138902, "correct semantic": 32414, "semantic label": 148169, "suggest despite": 158528, "despite gpts": 40112, "respect certain": 142501, "features act": 57441, "emphasize need": 47632, "comprehension reasoning": 27927, "llms order": 96004, "zeroshot commonsense": 180149, "capacity reason": 20543, "general scenarios": 63046, "presented specific": 126531, "datasets existing": 36841, "approaches tackling": 11922, "tackling task": 160877, "task leverage": 161517, "leverage external": 91589, "knowledge commonsense": 81820, "model synthetic": 104708, "synthetic qa": 160063, "randomly sampling": 135570, "approaches inherent": 11810, "semantic coverage": 148132, "pairs lack": 118593, "lack human": 82960, "sampled negative": 145976, "examples potentially": 52656, "commonsense questionanswering": 26298, "questionanswering framework": 134986, "framework fully": 61171, "knowledge triple": 82475, "answer space": 9783, "questions zeroshot": 135328, "commonsense scenarios": 26324, "scenarios existing": 146593, "models gpt35": 106535, "checkpoints available": 23548, "guide text": 68214, "traditional unsupervised": 167713, "unsupervised methods": 172256, "understands users": 171545, "users preference": 173739, "textual instruction": 165924, "prompt chatgpt": 130383, "similar data": 151227, "strategy effective": 156131, "effective finetuning": 45761, "finetuning small": 59546, "query chatgpt": 134568, "chatgpt second": 23296, "chatgpt helps": 23044, "helps clustering": 69240, "belong category": 16803, "chatgpt answers": 22705, "average cost": 15276, "challenge task": 21742, "generating taskspecific": 64358, "text games": 165102, "games work": 62588, "investigate capacity": 80383, "capacity language": 20513, "generate explicit": 63486, "interpretable interactive": 79672, "models scientific": 109046, "hundreds lines": 71538, "facilitate task": 56657, "corpus 32": 32273, "demonstrate gpt4": 38364, "gpt4 use": 67207, "evaluating simulation": 51393, "introduce suite": 80117, "metrics assess": 102004, "task specifications": 161741, "showing high": 150170, "degree agreement": 38008, "pose challenge": 124149, "world modeling": 179593, "dialog models": 41424, "tasks rapidly": 163078, "rapidly increasing": 135934, "problems field": 128512, "fully utilize": 61799, "utilize models": 175070, "models abilities": 105171, "understanding behavior": 171131, "behavior different": 16582, "required llms": 141242, "directly interact": 42560, "interact models": 79068, "models textbased": 109388, "tasks understanding": 163407, "dialog modeling": 41423, "important study": 73199, "building dialog": 19388, "llms considering": 94702, "considering various": 29737, "prompt prompt": 130643, "providing instructions": 133322, "context research": 30901, "research analyzes": 141586, "paper suggests": 119346, "history information": 70225, "information ensuring": 76393, "contributes better": 31431, "effectively used": 46103, "misinformation mitigation": 102493, "generalization uncertainty": 63233, "misinformation poses": 102495, "poses critical": 124203, "societal challenge": 152687, "challenge current": 21613, "effective solution": 45884, "models order": 108372, "order create": 117183, "evaluate information": 50989, "gpt4 outperform": 67097, "methods multiple": 101671, "multiple settings": 111039, "techniques handle": 163917, "handle uncertainty": 68573, "discuss results": 42942, "models temperature": 109366, "providing practical": 133350, "practical insights": 125426, "liarnew dataset": 92023, "dataset novel": 36429, "sufficient context": 158482, "evaluation overall": 51754, "lays groundwork": 89714, "groundwork future": 67944, "future tools": 62391, "everyday conversations": 52158, "different roles": 41974, "explore llms": 55240, "roles generate": 145559, "llms assume": 94442, "different personas": 41903, "social identity": 152583, "bandit task": 15529, "different ages": 41647, "better llms": 17934, "experts finally": 54658, "complementary visual": 27264, "information describing": 76353, "better prompted": 17992, "uncover llms": 170728, "biases llm": 18286, "capable taking": 20474, "diverse roles": 43637, "used uncover": 173288, "uncover hidden": 170725, "chainofthought language": 21508, "assign high": 13316, "high likelihood": 69481, "decoding strategies": 37603, "strategies optimize": 156046, "solution likelihood": 152955, "yield incorrect": 179970, "incorrect solutions": 75172, "solutions address": 152993, "propose guiding": 131857, "reasoning correctness": 136782, "stepwise decoding": 155780, "decoding approach": 37560, "process producing": 128945, "producing correct": 129550, "correct reasoning": 32408, "discriminator trained": 42856, "contrastive loss": 31375, "correct incorrect": 32391, "based correctness": 15729, "llama families": 93303, "exhibits substantial": 53227, "margins human": 99206, "human llm": 70917, "llm evaluations": 93644, "social knowledge": 152597, "shown perform": 150319, "including conversational": 74476, "interact humans": 79057, "measure llms": 99858, "language introduce": 83463, "tasks testing": 163356, "testing social": 164756, "knowledge group": 82092, "group categories": 67950, "sentiment emotion": 148650, "benchmark demonstrate": 16922, "models attain": 105406, "potential task": 125014, "categories tasks": 21123, "predicted theory": 125728, "limited capabilities": 92723, "capabilities social": 20184, "benchmark provides": 17061, "provides systematic": 133225, "way analyze": 177769, "analyze model": 9314, "performance important": 121648, "points clear": 123743, "llms associated": 94441, "resources released": 142482, "capabilities case": 19807, "predictability large": 125717, "implications llm": 72943, "llm users": 94080, "users deciding": 173614, "evaluation representative": 51823, "tasks research": 163168, "warrant investigation": 177724, "investigation study": 80650, "performance prediction": 121926, "prediction problem": 125846, "greater 95": 67748, "indicating presence": 75661, "evaluating new": 51359, "task representations": 161692, "importance task": 73062, "task diversity": 161333, "mitigating knowledge": 102666, "reasoning aims": 136663, "aims identifying": 7625, "relations events": 139293, "biases learned": 18285, "learned model": 90110, "model systematically": 104710, "event relation": 52090, "counterfactual data": 32941, "augmentation based": 14266, "applied pretrained": 10795, "plms large": 123614, "llms additional": 94342, "demonstrations incontext": 39014, "reducing hallucination": 138570, "visionandlanguage vl": 177014, "progress endtoend": 129960, "pipeline paper": 123078, "previous efforts": 127585, "inherent shortcomings": 76974, "answer subquestions": 9786, "subquestions subanswers": 157933, "utilizes llm": 175146, "generate subquestions": 63732, "provide corresponding": 132731, "modules perform": 109999, "multiple challenging": 110857, "setting particular": 149490, "best existing": 17671, "model planning": 104282, "remarkable reasoning": 140282, "capabilities especially": 19874, "prompted generate": 130815, "steps chainofthought": 155720, "cot llms": 32874, "problems easy": 128489, "generating action": 64129, "plans executing": 123357, "executing tasks": 52936, "given environment": 65879, "performing complex": 122395, "complex math": 27468, "fact llms": 56738, "outcomes actions": 117445, "prevents llms": 127561, "llms performing": 96096, "exploring alternative": 55450, "alternative reasoning": 8573, "anticipating future": 10120, "future states": 62382, "states rewards": 155438, "iteratively refining": 81162, "existing reasoning": 53548, "new llm": 113263, "llm world": 94100, "reasoning agent": 136660, "carlo tree": 20823, "tree search": 169665, "reasoning space": 137133, "llm agent": 93449, "incrementally builds": 75471, "reasoning tree": 137213, "guidance llm": 68152, "taskspecific rewards": 163546, "reasoning path": 137022, "balance exploration": 15498, "problems including": 128539, "reasoning logical": 136971, "inference empirical": 75994, "results tasks": 143862, "33 relative": 1021, "generation setting": 65082, "entities relations": 49868, "entity pairs": 49904, "pairs based": 118548, "draw line": 44916, "pairs satisfy": 118615, "typically covered": 170475, "llms gap": 95337, "gap end": 62641, "ranked according": 135783, "satisfy given": 146175, "relation task": 139264, "ranking problem": 135818, "problem models": 128326, "stateoftheart relation": 155324, "embedding strategies": 47197, "llms covering": 94751, "available llms": 15160, "closed models": 24459, "correlation model": 32549, "models struggling": 109251, "naive baseline": 111385, "models remarkably": 108924, "remarkably strong": 140326, "clear gap": 24269, "performance remains": 122011, "posted internet": 124485, "explore effective": 55192, "effective text": 45900, "classification techniques": 24128, "users access": 173573, "knowledge high": 82099, "approaches employing": 11742, "employing finetuning": 47924, "plms demonstrated": 123583, "nonetheless methods": 114054, "face drawbacks": 56528, "ability complex": 2105, "complex expensive": 27416, "recent chatgpt": 137457, "chatgpt gpt35": 23003, "gpt4 work": 67218, "explore capability": 55164, "utilization chatgpt": 174989, "chatgpt applying": 22710, "field shown": 58243, "commonsense evaluation": 26261, "llms serving": 96509, "serving generalpurpose": 149097, "generalpurpose interfaces": 63346, "posing significant": 124250, "comprehensive visual": 28158, "knowledge remains": 82359, "knowledge investigate": 82149, "benchmark fundamental": 16984, "fundamental visual": 61986, "analyze factors": 9293, "factors affecting": 56788, "knowledge largescale": 82171, "insights development": 77544, "development language": 41143, "gpt4 good": 67030, "demonstrated powerful": 38741, "powerful capabilities": 125259, "generation data": 64554, "raise concerns": 135446, "aim answer": 7426, "comparative studies": 26650, "gpt4 data": 66957, "domains propose": 44504, "framework tackle": 61444, "tackle problems": 160846, "carefully designing": 20810, "prompts gpt4": 131296, "gpt4 conduct": 66949, "taskspecific evaluation": 163517, "professional human": 129624, "gpt4 experimental": 67002, "gpt4 achieve": 66902, "performance humans": 121637, "humans provide": 71456, "indepth discussions": 75528, "study computational": 157227, "llms democratized": 94807, "potential simplify": 124983, "generative distribution": 65416, "distribution differs": 43354, "data researchers": 35660, "detection study": 40625, "strategies increase": 156017, "increase faithfulness": 75206, "data grounding": 35140, "generation evaluate": 64618, "evaluate strategies": 51108, "strategies using": 156089, "performance classifiers": 121246, "trained generated": 167933, "data strategies": 35803, "best task": 17757, "everincreasing role": 52152, "role nlp": 145518, "research expect": 141771, "stepping stone": 155710, "utility conclude": 174946, "mechanistic interpretation": 100063, "process store": 128993, "store information": 155855, "improve understanding": 73652, "arithmetic questions": 12482, "framework intervening": 61237, "predicted probabilities": 125724, "identify subset": 71970, "subset parameters": 158007, "parameters responsible": 119856, "responsible specific": 142973, "insights information": 77589, "lms experimental": 97133, "indicate lms": 75607, "process input": 128877, "information relevant": 76689, "relevant query": 139637, "mechanism information": 100001, "information processed": 76648, "mlp modules": 102869, "information incorporated": 76515, "residual stream": 142318, "effects different": 46328, "knowledge questions": 82330, "planning interactive": 123281, "interactive decisionmaking": 79299, "decisionmaking tasks": 37446, "environments llms": 50096, "llms frequently": 95304, "frequently fail": 61621, "fail complex": 56948, "complex decisionmaking": 27396, "tasks misalignment": 162801, "environment existing": 49996, "require costly": 141082, "gradient computation": 67383, "demonstrations paper": 39036, "approach guide": 11266, "llmbased agents": 94115, "agents accomplish": 6524, "augments llm": 14407, "llm prompt": 93914, "achieves success": 4121, "success rates": 158294, "using humanwritten": 174309, "hotpotqa code": 70443, "knowledge static": 82419, "falls date": 57148, "limiting models": 92891, "life online": 92080, "online finetuning": 116100, "finetuning reduce": 59498, "leads low": 89901, "level information": 91479, "finetuning does": 59228, "important tokens": 73207, "tokens representing": 166875, "beneficial propose": 17413, "propose learning": 131899, "modeling loss": 105040, "loss token": 97701, "base questionanswering": 15635, "step approach": 155596, "loss scaling": 97692, "different distributions": 41741, "documents experiments": 43907, "improved information": 73693, "documents compared": 43893, "finetuning baseline": 59179, "baseline heuristics": 16221, "reading model": 136197, "llms stimulated": 96683, "surge research": 159438, "research aimed": 141574, "domain models": 44228, "promise generating": 130179, "generating abstract": 64124, "facilitating natural": 56713, "images requires": 72478, "introduce contrastive": 79940, "designed enhance": 39861, "understanding capability": 171148, "llms capturing": 94546, "capturing intricate": 20731, "intricate details": 79842, "overlooked existing": 118381, "contrastive feature": 31348, "feature alignment": 57385, "alignment technique": 8246, "technique achieve": 163734, "achieve effective": 3628, "language information": 83435, "bridges gap": 19081, "gap vision": 62748, "understanding paving": 171398, "way development": 177795, "intelligence assistants": 78789, "rigorous evaluations": 144859, "evaluations diverse": 51964, "tasks demand": 162167, "capabilities demonstrate": 19849, "model field": 103651, "field visual": 58257, "tasks event": 162332, "extraction require": 56350, "require indepth": 141124, "output structure": 118004, "rely taskspecific": 139891, "data form": 35070, "target structure": 161107, "pairs obtain": 118603, "performance obtaining": 121864, "annotation costly": 9516, "costly leading": 32791, "extraction approaches": 56258, "human labeling": 70895, "applications finetuning": 10531, "method existing": 100846, "existing data": 53328, "groundtruth data": 67935, "data applied": 34643, "complicated tasks": 27720, "tasks poor": 162956, "llms synthesize": 96748, "synthesize data": 159987, "data instances": 35235, "instances given": 77830, "given limited": 65928, "involves generating": 80735, "followed generating": 60239, "generating passages": 64290, "aid llms": 7365, "obtain initial": 115482, "reduce errors": 138425, "errors improve": 50367, "error identification": 50300, "experiments data": 54211, "performance lowresource": 121771, "extraction relation": 56346, "humancurated data": 71162, "data exhibits": 35004, "exhibits higher": 53201, "ability utilize": 2409, "uptodate knowledge": 172400, "knowledge information": 82123, "information work": 76849, "generation instruction": 64747, "following abilities": 60249, "abilities complex": 1888, "complex search": 27580, "results generated": 143429, "external search": 56086, "case different": 20870, "search apis": 147316, "set containing": 149165, "grounding information": 67896, "information response": 76701, "finetune llama7b": 58939, "model constructed": 103361, "constructed training": 30187, "languages model": 87061, "target response": 161097, "process entails": 128814, "retrieved passages": 144249, "answer experiments": 9707, "experiments finetuned": 54290, "openended question": 116501, "testing general": 164716, "size space": 152070, "llms possess": 96132, "given chainofthought": 65846, "proofs using": 131590, "size distribution": 151986, "distribution incontext": 43365, "llms test": 96788, "broad set": 19187, "set deduction": 149171, "deduction rules": 37691, "measure ability": 99826, "demonstrations multiple": 39029, "multiple angles": 110834, "facilitate systematic": 56655, "systematic exploration": 160129, "sizes training": 152118, "vision challenges": 176895, "ai machine": 7074, "scientific inquiry": 146964, "years development": 179893, "prominent ai": 130139, "vision research": 176981, "background development": 15436, "development technology": 41235, "technology popular": 164156, "applications discuss": 10486, "things iot": 166128, "enhancing applicability": 49458, "robotics computer": 145203, "gap finally": 62652, "current trends": 34289, "perspective recent": 122687, "discovered chainofthought": 42744, "particularly dealing": 120167, "dealing complex": 37268, "mathematics reasoning": 99619, "despite enormous": 40102, "empirical success": 47771, "unlocks potential": 172048, "llms remain": 96386, "remain elusive": 139917, "elusive paper": 47114, "paper step": 119337, "llms cot": 94749, "solving fundamental": 153213, "complexity theory": 27704, "impossibility results": 73240, "results showing": 143791, "size grows": 152001, "problems known": 128543, "tackling complex": 160865, "finally extensive": 58460, "extensive set": 55949, "predict answers": 125676, "given sufficient": 66020, "cot demonstrations": 32862, "demonstrations large": 39021, "capture rich": 20675, "rich representations": 144796, "representations concepts": 140778, "language limited": 83490, "health applications": 68932, "numerical data": 114999, "clinical domains": 24333, "text existing": 165066, "fewshot tuning": 58083, "capable grounding": 20430, "grounding various": 67931, "timeseries data": 166619, "health tasks": 68980, "tasks clinical": 162048, "physical activity": 122895, "activity recognition": 4467, "firstorder logic": 59663, "translation translating": 169538, "nlfol translation": 113649, "formal logic": 60506, "translation using": 169541, "capable directly": 20414, "directly translating": 42603, "outperforms gpt35": 117782, "performance gpt4": 121607, "fraction cost": 60884, "correction ability": 32433, "ability achieved": 2051, "finetuning sft": 59533, "sft reinforcement": 149743, "framework initially": 61225, "initially trains": 77086, "nlfol pairs": 113648, "using fol": 174212, "dataset 34k": 36083, "highquality diverse": 70018, "gpt4 dataset": 66958, "implementing pipeline": 72886, "adjusts prompts": 5549, "contexts different": 31015, "levels complexity": 91530, "weights data": 178105, "gather information": 62808, "information embodied": 76380, "embodied decision": 47308, "capabilities reasoning": 20143, "world large": 179581, "building versatile": 19461, "performing diverse": 122398, "tasks deployed": 162196, "unfamiliar environments": 171645, "environments llm": 50095, "agents face": 6608, "necessary information": 112145, "information leading": 76554, "performance hand": 121616, "unfamiliar scenarios": 171646, "scenarios human": 146616, "seek additional": 147651, "action leveraging": 4324, "leveraging external": 91843, "method empowers": 100821, "empowers agent": 48027, "query external": 134585, "pertinent information": 122742, "interactions environment": 79222, "able enhance": 2495, "enhance efficiency": 49189, "alfworld demonstrate": 7765, "demonstrate despite": 38283, "modifications prompts": 109876, "method exceeds": 100842, "exceeds baseline": 52758, "baseline llm": 16230, "known information": 82604, "information subsequent": 76784, "subsequent tasks": 157960, "tasks mitigating": 162805, "mitigating need": 102671, "need repetitive": 112375, "struggle solve": 156773, "false promise": 57172, "proprietary llms": 132522, "llms emerging": 95039, "weaker language": 177941, "finetune outputs": 58955, "stronger model": 156474, "chatgpt alpaca": 22696, "selfinstruct approach": 148010, "approach looks": 11370, "proprietary models": 132525, "capabilities using": 20234, "weaker opensource": 177945, "work critically": 178881, "critically analyze": 33575, "approach finetune": 11236, "data amounts": 34619, "tokens evaluate": 166808, "better following": 17879, "outputs competitive": 118038, "chatgpt conducting": 22802, "targeted automatic": 161128, "automatic evaluations": 14671, "base lm": 15616, "tasks heavily": 162497, "data performance": 35482, "models adept": 105285, "overall conclude": 118185, "conclude model": 28874, "gap open": 62690, "open closed": 116215, "using capable": 174017, "action improving": 4321, "tackle difficult": 160817, "difficult challenge": 42134, "challenge developing": 21624, "developing better": 40982, "better base": 17813, "chatgpt era": 22896, "systems support": 160632, "field automated": 58128, "areas explore": 12366, "order advantage": 117172, "advantage tools": 6120, "tools field": 167163, "pruning efficient": 133456, "efficient interpretable": 46648, "adopted large": 5602, "llms hard": 95469, "scale long": 146309, "cost llms": 32704, "llms adopt": 94359, "tokens sequence": 166880, "cost study": 32741, "approach dynamically": 11140, "information preserving": 76638, "preserving models": 126693, "models expressiveness": 106267, "resulting reduced": 143131, "requirements inference": 141301, "inference method": 76053, "valuable insight": 175420, "insight models": 77494, "models decisionmaking": 105856, "technique applied": 163742, "finetuning process": 59469, "process pruning": 128955, "notably empirical": 114264, "demonstrate effectively": 38289, "tasks offering": 162875, "offering valuable": 115772, "reference implementation": 138659, "implementation achieves": 72832, "increase inference": 75208, "memory savings": 100462, "detection mitigation": 40561, "mitigation large": 102689, "producing text": 129564, "text contains": 164958, "hallucinated content": 68341, "content important": 30524, "comprehensive investigation": 28067, "various instructiontuned": 175984, "lms generate": 97144, "produced chatgpt": 129486, "large portion": 88985, "verified using": 176512, "designed effectively": 39851, "detect mitigate": 40370, "detector achieves": 40665, "accuracy 80": 3121, "iteratively refines": 81161, "preserving text": 126700, "entire framework": 49807, "framework applicable": 60957, "require external": 141105, "grounded knowledge": 67868, "knowledge approach": 81751, "approach practically": 11453, "public available": 133546, "response investigate": 142666, "phenomenon llms": 122835, "response using": 142714, "responses similar": 142918, "llms respond": 96428, "given prompts": 65964, "training support": 168772, "components model": 27766, "classify truthfulness": 24217, "limits current": 92912, "findings possibility": 58745, "time limited": 166438, "limited scope": 92848, "bias chatgpt": 18105, "current large": 34146, "captured publics": 20700, "attention remarkable": 13978, "language demonstrate": 83238, "tendency use": 164333, "observed languages": 115419, "english spanish": 49107, "despite differences": 40093, "intelligence language": 78845, "acquire language": 4256, "language training": 86793, "answering leveraging": 9895, "knowledge enhance": 81939, "ability crucial": 2118, "answering existing": 9844, "rely manual": 139871, "support reasoning": 159326, "reasoning diverse": 136814, "questions recently": 135246, "recently largescale": 137934, "llms dramatically": 94985, "leveraging knowledge": 91871, "way address": 177764, "turns llms": 170190, "llms knowledge": 95701, "facts knowledge": 56835, "knowledge statements": 82418, "statements given": 155045, "question develop": 134858, "develop unified": 40850, "unified prompt": 171745, "prompt consisting": 130404, "cover different": 33038, "commonsense different": 26259, "different question": 41955, "facts various": 56851, "commonsense questions": 26299, "generation apply": 64425, "selection strategy": 147891, "answer inference": 9725, "model question": 104405, "design unified": 39793, "reasoning various": 137227, "including general": 74524, "general commonsense": 62926, "commonsense scientific": 26325, "social commonsense": 152539, "commonsenseqa 20": 26334, "social iqa": 152594, "performance inference": 121675, "manually constructed": 99080, "models sentence": 109074, "sentence meaning": 148514, "expressive power": 55604, "text requires": 165425, "compositional ability": 27810, "fail represent": 56977, "models compose": 105709, "improve ability": 73399, "ability specifically": 2380, "measure compositional": 99834, "models causal": 105585, "causal tracing": 21227, "models locate": 108087, "neural representations": 112969, "bias sentence": 18199, "crossmodal attention": 33680, "regularization selfsupervised": 138989, "formal semantics": 60515, "empowering llms": 48018, "llms humanlike": 95520, "abilities current": 1891, "current research": 34225, "generating chains": 64151, "significant discrepancy": 150688, "capability solving": 20374, "present approaches": 126225, "reasoning challenges": 136742, "employ various": 47868, "abilities necessitate": 1979, "external environment": 56047, "environment information": 50004, "intricate tasks": 79867, "framework referred": 61379, "studied cognitive": 156921, "architecture framework": 12167, "framework involves": 61243, "approximating different": 12037, "different cognitive": 41694, "attention memory": 13934, "reasoning learning": 136961, "mechanism human": 99996, "learning unit": 91102, "similar problems": 151294, "problems paper": 128581, "common effective": 26134, "reasoning frameworks": 136870, "human problemsolving": 70981, "decisionmaking mechanism": 37422, "mechanism proposed": 100022, "proposed maximize": 132331, "maximize model": 99677, "accuracy efficacy": 3217, "experimental outcomes": 53954, "stateoftheart benchmarks": 155090, "benchmarks demonstrating": 17216, "performance implementation": 121647, "think act": 166133, "model llmbased": 104034, "llmbased decisionmaking": 94138, "decisionmaking agents": 37400, "agents shown": 6726, "generalize multiple": 63261, "forgetting phenomenon": 60430, "contrast llms": 31314, "llms implicit": 95546, "human brain": 70627, "multiple skills": 111041, "skills efficiently": 152154, "mitigating forgetting": 102657, "inspired propose": 77750, "module store": 109960, "retrieve information": 144218, "tasks evaluation": 162329, "improves training": 74095, "manipulation tasks": 98961, "memory finetuning": 100396, "adaptability proposed": 4581, "approach empower": 11160, "visual auditory": 177120, "instructionfollowing capabilities": 78176, "pilot experiments": 122990, "thanks strong": 165990, "displays emergent": 43080, "emergent zeroshot": 47487, "data image": 35174, "text video": 165568, "video audio": 176685, "initial step": 77059, "understand inputs": 171027, "inputs different": 77397, "dialogue agents": 41447, "agents increasingly": 6630, "increasingly humanlike": 75404, "humanlike performance": 71273, "imperative develop": 72796, "develop effective": 40777, "effective ways": 45928, "dialogue agent": 41446, "agent behaviour": 6421, "lack important": 82962, "known produce": 82619, "exhibit certain": 53030, "use opendomain": 172791, "based dialog": 15756, "dialog generation": 41416, "generation compare": 64512, "models widespread": 109693, "discovered potential": 42747, "potential chainofthought": 124640, "thought processes": 166231, "graphofthought got": 67615, "approach captures": 11040, "generating rationales": 64309, "specifically employ": 154191, "representation original": 140726, "input representation": 77327, "fusion mechanism": 62199, "task gsm8k": 161440, "improvement strong": 73852, "boosts accuracy": 18849, "t5large model": 160734, "model stateoftheart": 104653, "parameters despite": 119738, "having fewer": 68876, "evaluation question": 51813, "generation qg": 64990, "generating valid": 64370, "context target": 30933, "according various": 3064, "various purposes": 176131, "different concepts": 41701, "written different": 179776, "learned metric": 90109, "fully evaluate": 61755, "evaluate potential": 51068, "methods end": 101479, "semantically syntactically": 148277, "syntactically diverse": 159912, "questions adopt": 135030, "adopt simple": 5583, "popular evaluation": 123996, "final scores": 58402, "scores experiments": 147141, "evaluation showing": 51858, "evaluation single": 51864, "single reference": 151852, "event prediction": 52089, "prediction fewshot": 125795, "shown astonishing": 150211, "astonishing performance": 13585, "investigate reason": 80488, "realworld events": 136453, "event sequence": 52092, "prediction particularly": 125837, "particularly language": 120212, "model proposes": 104380, "predictions future": 125907, "future events": 62260, "events given": 52114, "demonstrations language": 39019, "suggest possible": 158578, "search module": 147379, "function learns": 61844, "challenging realworld": 22249, "english large": 49071, "models dominant": 106021, "rate speakers": 136015, "work addresses": 178776, "adoption robust": 5654, "taskspecific adapters": 163508, "taskspecific supervision": 163550, "consistency unified": 29798, "unified alignment": 171700, "alignment function": 8153, "generation applications": 64423, "require generated": 141113, "consistent input": 29821, "input information": 77263, "information automatic": 76292, "challenging previous": 22239, "developed various": 40926, "various metrics": 176034, "depend specific": 39137, "trained limited": 167985, "factual inconsistencies": 56876, "hallucinations occur": 68447, "new holistic": 113215, "factual inconsistency": 56877, "based general": 15826, "information alignment": 76275, "text pieces": 165355, "framework alignment": 60948, "integrating large": 78606, "diversity data": 43719, "tasks nli": 162856, "retrieval semantic": 144136, "datasets seen": 37103, "alignment training": 8253, "parameters matches": 119803, "metrics based": 102011, "openai november": 116368, "november 30": 114768, "30 2022": 951, "family large": 57195, "supervised reinforcement": 159166, "responses diverse": 142770, "domains knowledge": 44444, "help common": 69100, "common software": 26194, "resolution software": 142336, "software requirements": 152843, "case prioritization": 20885, "code review": 25116, "summarization potentially": 158861, "analyze chatgpts": 9274, "respective state": 142528, "outputs available": 118027, "andor human": 9407, "suggest tasks": 158591, "response detailed": 142636, "chatgpt present": 23206, "present form": 126318, "form provides": 60483, "suited tasks": 158745, "selection model": 147871, "model repositories": 104454, "models essential": 106155, "essential software": 50631, "enabling intelligent": 48308, "document generation": 43829, "generation popularity": 64931, "concerns environmental": 28779, "selection paper": 147877, "novel tool": 114719, "tool efficiently": 166967, "employs large": 47966, "quality indicators": 134166, "optimizing resource": 117126, "resource utilization": 142402, "tool utilizes": 167054, "bandit framework": 15527, "framework evaluate": 61139, "able identify": 2519, "identify model": 71927, "blackbox language": 18634, "domains traditionally": 44541, "traditionally assumed": 167721, "whitebox access": 178228, "access model": 2883, "recent trend": 137710, "highest quality": 69670, "weights available": 178099, "available computational": 15086, "practitioners work": 125547, "present lightweight": 126360, "lightweight method": 92183, "assuming access": 13558, "intermediate activations": 79506, "approach finetunes": 11237, "lm combines": 97051, "blackbox lm": 18644, "small validation": 152380, "validation set": 175379, "approach adapting": 10962, "performance cases": 121220, "using domain": 174150, "smaller powerful": 152434, "transformer neural": 169193, "models article": 105392, "reasonable assumptions": 136590, "assumptions work": 13575, "directly address": 42513, "underlying technology": 170875, "important consideration": 73114, "natural languagebased": 111931, "diverse societies": 43662, "large multimodal": 88938, "multimodal neural": 110738, "single llms": 151827, "new agents": 113049, "agents communicating": 6566, "language easily": 83272, "modular fashion": 109906, "fashion demonstrate": 57249, "solve practical": 153140, "texttoimage synthesis": 165827, "3d generation": 1131, "embodied ai": 47303, "ai general": 7009, "task solving": 161735, "research questions": 142023, "future artificial": 62225, "maximize total": 99680, "total reward": 167420, "reward reinforcement": 144708, "work identify": 179027, "discuss try": 42953, "kv cache": 82663, "cache compression": 19588, "time large": 166428, "significant memory": 150779, "memory bottleneck": 100370, "size enormous": 151990, "enormous size": 49609, "inference batch": 75969, "size crucial": 151980, "throughput inference": 166308, "step significantly": 155681, "significantly influence": 151061, "hypothesis propose": 71628, "maintains memory": 98394, "memory usage": 100473, "manages kv": 98898, "tokens higher": 166824, "reduces inference": 138520, "inference memory": 76051, "compromising model": 28282, "used compress": 173004, "compress model": 28190, "weights achieve": 178096, "20x compression": 746, "coded expressions": 25245, "broad audience": 19170, "present largescale": 126356, "largescale computational": 89283, "assess large": 13091, "gpt3 identify": 66705, "gpt3s performance": 66894, "content containing": 30458, "toxicity detection": 167472, "detection highlighting": 40519, "online risks": 116130, "coded language": 25246, "language work": 86899, "work sheds": 179289, "light theoretical": 92155, "nlp computational": 113713, "research modeling": 141912, "method fuse": 100884, "textonly large": 165663, "embedding spaces": 47195, "spaces model": 153637, "image retrieval": 72321, "novel image": 114542, "approach capable": 11038, "arbitrarily interleaved": 12072, "inputs generate": 77407, "mapping network": 99152, "ground llm": 67828, "offtheshelf texttoimage": 115926, "representations text": 140893, "text embedding": 165041, "leverage strong": 91667, "strong text": 156448, "visual outputs": 177241, "tasks longer": 162758, "longer complex": 97522, "language addition": 83132, "addition novel": 4885, "llm model": 93831, "model exhibits": 103589, "capabilities compared": 19824, "imageandtext inputs": 72364, "generated images": 63889, "text outperforming": 165333, "nonllm based": 114099, "based generation": 15828, "models texttoimage": 109392, "tasks measure": 162791, "context dependence": 30725, "image prompts": 72307, "solve diverse": 153116, "tasks handful": 162492, "handful demonstrations": 68519, "tasks suggests": 163314, "tokens play": 166850, "role analogical": 145459, "analogical reasoning": 8731, "enable incontext": 48093, "benchmarks test": 17384, "visual incontext": 177186, "enabling incontext": 48303, "end use": 48694, "agents different": 6581, "reveal tradeoffs": 144378, "representations require": 140879, "crossattention module": 33609, "module generate": 109941, "generate consistent": 63433, "particularly crucial": 120166, "generation good": 64699, "annotation aid": 9507, "collaborative task": 25633, "quality different": 134098, "techniques aid": 163830, "aid annotating": 7354, "problem involving": 128292, "physical object": 122905, "using toolkits": 174808, "speech using": 154486, "segmentation methods": 147741, "implications compared": 72909, "information make": 76570, "judgments annotators": 81328, "fast slow": 57278, "complex interactive": 27443, "interactive tasks": 79343, "framework inspired": 61227, "theory human": 166084, "designed excel": 39874, "planning complex": 123258, "interactive reasoning": 79334, "integrates strengths": 78570, "performance framework": 121538, "primary modules": 127815, "encoderdecoder lm": 48461, "agents action": 6528, "action trajectories": 4343, "module employs": 109929, "employs llms": 47972, "heuristic method": 69308, "problemsolving process": 128670, "30 tasks": 972, "data makes": 35343, "makes models": 98674, "models forget": 106380, "descriptive text": 39526, "text gpt2": 165212, "gpt2 gpt35": 66546, "demonstrated astonishing": 38622, "chatgpt introduced": 23076, "clear large": 24272, "drastic change": 44897, "online text": 116145, "images paper": 72458, "language online": 86446, "online use": 116149, "modelgenerated content": 104955, "content training": 30635, "causes irreversible": 21261, "original content": 117322, "mixture models": 102756, "llms build": 94521, "learned generative": 90098, "data scraped": 35710, "scraped web": 147209, "value data": 175474, "genuine human": 65695, "human interactions": 70866, "systems increasingly": 160435, "data crawled": 34866, "crawled internet": 33165, "tuning parameterefficient": 170074, "plms additional": 123575, "optimal control": 116936, "running cost": 145748, "cost optimal": 32720, "theoretical grounding": 166035, "practice existing": 125481, "intermediate states": 79531, "cost function": 32679, "function propose": 61856, "latent stochastic": 89517, "states use": 155443, "running costs": 145749, "effectiveness generality": 46183, "performance achieved": 121124, "future code": 62237, "language barriers": 83167, "numerous domains": 115034, "enhancing multilingual": 49533, "multilingual performance": 110528, "models systematic": 109339, "systematic investigation": 160132, "evaluation diverse": 51551, "datasets present": 37037, "true potential": 169811, "approach encompasses": 11172, "encompasses key": 48537, "yield remarkable": 179975, "remarkable improvements": 140206, "improvements multilingual": 73919, "llms unlock": 96892, "latent capabilities": 89492, "resulting substantial": 143138, "new hybrid": 113221, "approach synergizes": 11586, "gpt generation": 66424, "embeddings achieves": 47211, "significant multilingual": 150783, "critical tasks": 33556, "qa retrieval": 133925, "novel learning": 114565, "dynamically selects": 45196, "selects optimal": 147918, "optimal prompt": 116947, "strategy llm": 156179, "model embeddings": 103519, "efficacy llms": 46394, "llms languages": 95720, "languages outperforming": 87079, "substantial advancements": 158024, "advancements multilingual": 5928, "multilingual understanding": 110566, "generation diverse": 64587, "range languages": 135636, "cognitive modeling": 25463, "perspective language": 122672, "models think": 109400, "cognitive model": 25462, "different variations": 42081, "finetuned reinforcement": 59097, "ouyang et": 118168, "limitations reinforcement": 92653, "essence research": 50578, "research highlights": 141826, "highlights value": 69884, "probabilistic modeling": 128090, "modeling approach": 104969, "gain insights": 62445, "comprehension evaluation": 27901, "conversational generative": 31869, "wu et": 179814, "processing techniques": 129335, "techniques models": 163967, "enable natural": 48114, "natural interactive": 111538, "verbal inputs": 176437, "users generate": 173664, "responses natural": 142856, "language visual": 86895, "usage deployment": 172442, "suitable evaluation": 158697, "dataset task": 36573, "existing new": 53501, "automated evaluation": 14546, "including dataset": 74488, "dataset evaluation": 36266, "learning power": 90833, "power distribution": 125169, "models detecting": 105948, "data leveraging": 35313, "leveraging pretraining": 91931, "pretraining transfer": 127466, "classes using": 23920, "using curated": 174100, "balanced dataset": 15511, "dataset social": 36547, "media tweets": 100118, "tweets related": 170210, "pretrained limited": 127016, "tasks baseline": 161996, "results classical": 143227, "outperform zeroshot": 117649, "zeroshot language": 180220, "finetuning significantly": 59541, "performance example": 121474, "accuracy 85": 3123, "data availability": 34703, "models power": 108577, "highlighting strengths": 69838, "limitations research": 92659, "critical infrastructure": 33507, "corpus scientific": 32353, "biomedical research": 18572, "existing medical": 53433, "medical evidence": 100167, "evidence work": 52229, "examines potential": 52435, "knowledge using": 82496, "analysis applied": 8816, "models specialised": 109194, "general models": 62999, "gpt4 llama": 67063, "systematic assessment": 160106, "coherence factual": 25512, "generated responses": 63962, "responses results": 142908, "results recent": 143732, "fluency factual": 59889, "accuracy low": 3300, "models biased": 105514, "gpt4 produced": 67123, "chemical compounds": 23558, "best open": 17711, "prompt results": 130654, "llms currently": 94769, "used biomedical": 172982, "level human": 91474, "rise ai": 144888, "slide image": 152219, "proposed based": 132260, "multiple instance": 110942, "instance learning": 77800, "problem context": 128209, "conventional fewshot": 31700, "learning problems": 90856, "framework drawing": 61092, "drawing inspiration": 44930, "recent achievements": 137335, "models vl": 109647, "downstream fewshot": 44722, "tailored pathology": 160930, "incorporating language": 75110, "knowledge specifically": 82415, "specifically leverage": 154243, "clip extract": 24399, "subsequently employ": 157971, "facilitate fewshot": 56613, "approach incorporates": 11302, "utilization gpt4": 174997, "knowledge instance": 82134, "prompts additionally": 131152, "component language": 27737, "available fewshot": 15111, "fewshot labeled": 57941, "experiments real": 54428, "datasets encompassing": 36818, "lung cancer": 97976, "demonstrating notable": 38944, "notable performance": 114240, "assessments study": 13306, "use open": 172786, "ais generative": 7701, "evaluates ability": 51223, "ability academic": 2047, "ai detection": 6951, "research involved": 141873, "assessment process": 13258, "process marked": 128916, "faculty members": 56939, "reveals detection": 144419, "needed using": 112458, "academic misconduct": 2745, "suggesting need": 158620, "need increased": 112320, "increased awareness": 75252, "training tools": 168794, "mean score": 99753, "strategies make": 156037, "providing comprehensive": 133270, "comprehensive training": 28150, "training programs": 168659, "students research": 156896, "understanding relationship": 171451, "content academic": 30424, "integrity impact": 78701, "chatgpt systematic": 23374, "review literature": 144521, "technology chatgpt": 164127, "chatgpt widely": 23436, "fields chatgpt": 58264, "available evidence": 15105, "evidence multiple": 52202, "reviews studies": 144594, "studies provide": 157060, "identify areas": 71858, "research needed": 141922, "objective evaluate": 115190, "existing reviews": 53562, "reviews literature": 144585, "applications potential": 10637, "different fields": 41773, "conducting systematic": 29323, "data related": 35636, "chatgpt considered": 22805, "prisma guidelines": 127983, "original articles": 117314, "screening process": 147239, "specifically focused": 154206, "focused chatgpt": 60085, "ai topics": 7298, "discussions chatgpt": 43011, "chatgpt conducted": 22801, "revolutionize various": 144633, "ensure responsible": 49698, "100 languages": 151, "demonstrate promising": 38486, "promising translation": 130329, "translation performance": 169498, "languages llms": 87052, "llms especially": 95091, "opensourced ones": 116704, "bloom llama": 18745, "making potential": 98787, "covers 20": 33100, "20 languages": 597, "training llama": 168549, "monolingual data": 110064, "largescale parallel": 89372, "parallel dataset": 119565, "model multilingual": 104102, "translation instructions": 169470, "instructions leading": 78295, "model preliminary": 104312, "experiments multilingual": 54367, "translate languages": 169408, "pairs release": 118612, "hope advance": 70344, "advance research": 5692, "research progress": 141996, "user personas": 173467, "phase thematic": 122806, "model precisely": 104297, "building previous": 19439, "perform analysis": 120865, "work particular": 179153, "llm dataset": 93575, "model building": 103232, "personas models": 122643, "users usually": 173808, "analysis like": 9003, "design processes": 39726, "processes paper": 129091, "shows model": 150454, "model build": 103231, "build basic": 19305, "acceptable quality": 2833, "generation ideas": 64725, "utility large": 174957, "ai education": 6965, "use natural": 172773, "engineering education": 48906, "education provide": 45575, "insights underlying": 77662, "underlying processes": 170867, "processes involved": 129074, "involved generating": 80706, "models realistic": 108800, "clustering summarization": 24600, "techniques analyze": 163835, "engineers using": 49010, "embedding representations": 47186, "responses identify": 142824, "quickly identify": 135347, "analyze student": 9337, "student writing": 156833, "writing results": 179746, "feasibility usefulness": 57363, "research automating": 141612, "initial analysis": 77008, "analysis student": 9180, "researchers educators": 142205, "key themes": 81594, "patterns student": 120564, "research purposes": 142017, "analyzing student": 9388, "education community": 45525, "generalize diverse": 63247, "problem types": 128425, "types challenging": 170334, "challenging especially": 22157, "data better": 34719, "better diversity": 17849, "diversity coverage": 43716, "limits use": 92932, "use supervised": 172891, "techniques address": 163826, "approaches leverage": 11828, "prompting scenario": 131068, "prompting program": 131047, "approach largely": 11338, "largely inspired": 89158, "gao et": 62603, "programs intermediate": 129912, "step prompting": 155672, "strategy allows": 156103, "allows accurately": 8402, "correctness program": 32496, "prompting involves": 130969, "correct programs": 32406, "programs large": 129914, "model program": 104357, "involves adapting": 80715, "adapting smaller": 4762, "experiments standard": 54471, "mwp datasets": 111355, "effectiveness approaches": 46132, "improvements previous": 73932, "baselines prompting": 16359, "models prompted": 108690, "examine abilities": 52364, "tasks little": 162744, "meaning words": 99786, "semantics present": 148315, "present semantic": 126442, "unique linguistic": 171846, "given specific": 66015, "context overall": 30862, "lms potentially": 97175, "potentially serve": 125133, "useful tools": 173354, "linguistic annotation": 93006, "references fabricated": 138695, "obstacles use": 115458, "important propose": 73175, "hallucinated references": 68345, "study simple": 157638, "simple search": 151525, "engine queries": 48863, "reliably identify": 139769, "identify hallucinations": 71897, "facilitates evaluation": 56685, "attempt classify": 13783, "using blackbox": 174012, "blackbox queries": 18661, "consistency checks": 29755, "2023 compared": 696, "reliable indicators": 139723, "consistently identify": 29876, "identify authors": 71861, "hallucination generation": 68379, "current training": 34284, "techniques representation": 164010, "detection multimodal": 40567, "recent multimodal": 137567, "captioning question": 20593, "detection work": 40659, "limitation introducing": 92505, "novel research": 114670, "research problem": 141991, "objects different": 115282, "humanai interactive": 71117, "interactive contexts": 79294, "answering present": 9921, "objects language": 115290, "language inputs": 83437, "involves key": 80746, "extracting visual": 56248, "llm multimodal": 93838, "bounding boxes": 18918, "boxes given": 18931, "words new": 178743, "enables detect": 48171, "experiments advantages": 54135, "proposed code": 132264, "referring image": 138712, "image segmentation": 72327, "prediction head": 125804, "component transformer": 27743, "direct impact": 42385, "reveal biases": 144316, "prediction heads": 125805, "frequency corpus": 61601, "method commonly": 100743, "learning quantify": 90890, "quantify effect": 134318, "autoregressive text": 15011, "generation scenarios": 65067, "scenarios particular": 146669, "setting diverse": 149447, "reveals bias": 144414, "bias gpt3": 18128, "highschool students": 70112, "students large": 156872, "increasingly integrated": 75409, "integrated lives": 78537, "biases present": 18303, "present outputs": 126402, "order avoid": 117176, "avoid perpetuating": 15348, "harmful stereotypes": 68750, "ways thinking": 177917, "benchmarks methods": 17305, "semantic bias": 148107, "llms act": 94331, "effects global": 46332, "stem fields": 155583, "fields provided": 58300, "cuttingedge language": 34434, "psychology specifically": 133517, "use behavioral": 172516, "understand llms": 171037, "probing llms": 128158, "previously applied": 127711, "llms overall": 96021, "overall negative": 118211, "fields math": 58287, "perceived negatively": 120763, "observe significant": 115391, "newer versions": 113520, "gpt4 produce": 67121, "compared older": 26866, "architecture llms": 12188, "biased models": 18230, "stereotypes society": 155789, "classification based": 23960, "financial domain": 58566, "domain common": 44109, "common way": 26212, "fine tune": 58839, "using additional": 173961, "additional layers": 4973, "downstream domain": 44717, "specialized domain": 153882, "domain large": 44215, "pretrained generic": 126831, "regular expression": 138976, "expression patterns": 55590, "patterns employed": 120525, "features domain": 57477, "knowledge process": 82311, "tuning addition": 169961, "specific text": 154113, "text experiments": 165070, "real scenario": 136249, "production data": 129587, "tuning improves": 170027, "tuning domain": 169995, "use attention": 172509, "attention network": 13946, "compared simple": 26914, "simple linear": 151486, "linear layers": 92963, "challenges solutions": 22067, "aigc garnered": 7393, "leading paradigm": 89851, "creation knowledge": 33340, "algorithms assist": 7902, "creating massive": 33311, "content faster": 30496, "faster pace": 57295, "cost based": 32653, "recent significant": 137642, "security privacy": 147610, "ethical legal": 50820, "legal challenges": 91281, "addressed paper": 5398, "presents indepth": 126589, "privacy threats": 128030, "challenges aigc": 21771, "paradigm specifically": 119514, "key characteristics": 81475, "characteristics investigate": 22463, "taxonomy security": 163584, "societal implications": 152692, "technologies furthermore": 164088, "review stateoftheart": 144550, "watermarking approaches": 177747, "aigc model": 7394, "model produced": 104352, "finally identify": 58480, "identify future": 71896, "challenges open": 21973, "representations large": 140831, "llm solve": 94010, "solve simple": 153157, "simple abstract": 151400, "problems explore": 128504, "analysis gpt": 8949, "representative benchmark": 140919, "benchmark abstract": 16815, "limited examples": 92761, "core knowledge": 32175, "concepts objects": 28677, "gpt4 solves": 67168, "arc tasks": 12099, "using textual": 174803, "failure analysis": 57004, "capacity identify": 20511, "identify objects": 71931, "objects reason": 115300, "significantly influenced": 151062, "nature text": 112035, "task test": 161771, "external tool": 56091, "nearly doubling": 112111, "stateoftheart gpt4": 155155, "gpt4 unable": 67203, "representations significantly": 140884, "search visualization": 147430, "visualization data": 177353, "data users": 35923, "relevant context": 139582, "research expertise": 141772, "search identify": 147364, "identify relevant": 71949, "relevant datasets": 139589, "datasets leading": 36955, "leading data": 89808, "data providers": 35584, "political social": 123904, "offer standardized": 115705, "search tools": 147426, "support data": 159275, "data search": 35712, "opportunities enhance": 116846, "users ability": 173571, "learn make": 90005, "information data": 76345, "data prior": 35543, "users face": 173656, "graph database": 67514, "database large": 35994, "ways users": 177919, "data reuse": 35676, "making easier": 98730, "easier users": 45295, "models knowledgeintensive": 106849, "performance knowledgeintensive": 121703, "knowledge deployment": 81865, "applications challenging": 10444, "challenging high": 22169, "concerns data": 28774, "studies focused": 157005, "focused building": 60084, "building taskspecific": 19454, "taskspecific small": 163548, "finetuning labeled": 59322, "distilling llms": 43191, "memorizing knowledge": 100356, "generate rationales": 63671, "llms augmented": 94448, "knowledge retrieved": 82385, "retrieved external": 144243, "base propose": 15629, "propose neural": 131947, "rationale generation": 136054, "generation empirically": 64600, "small t5": 152370, "t5 gpt": 160707, "datasets medqausmle": 36978, "larger parameters": 89241, "strategyqa benchmarks": 156220, "training nearest": 168598, "augment language": 14244, "data input": 35228, "added training": 4817, "data cost": 34861, "computation memory": 28310, "build largescale": 19326, "text embeddings": 165044, "dataset test": 36580, "text surprisingly": 165521, "training 20": 168137, "performance 20": 121110, "20 language": 596, "narrows performance": 111474, "quality size": 134271, "establishes baseline": 50700, "chatgpt benchmark": 22738, "datasets development": 36790, "chatgpt brought": 22752, "recently evaluation": 137879, "academic datasets": 2729, "difficulty evaluating": 42210, "generative outputs": 65525, "model ground": 103773, "evaluation chatgpts": 51475, "covering tasks": 33087, "questionanswering text": 135003, "generation commonsense": 64509, "mathematical problemsolving": 99580, "bias detection": 18112, "datasets makes": 36971, "chatgpt nlp": 23149, "short study": 149996, "weaknesses chatgpt": 177959, "research using": 142137, "llms report": 96402, "shows chatgpt": 150413, "performing wide": 122422, "tasks obtain": 162871, "obtain impressive": 115480, "performance benchmark": 121192, "datasets far": 36862, "ability reliably": 2351, "reliably solve": 139771, "solve challenging": 153098, "providing thorough": 133390, "thorough assessment": 166180, "sets stage": 149404, "code prompting": 25067, "prompting neural": 131027, "neural symbolic": 112981, "methods current": 101414, "methods generate": 101552, "help reasoning": 69168, "mitigate limitations": 102621, "explore code": 55171, "method zeroshot": 101177, "code intermediate": 24950, "steps conduct": 155725, "experiments widelyused": 54545, "widelyused benchmarks": 178418, "prompting generally": 130944, "generally outperforms": 63321, "outperforms chainofthought": 117730, "understand performance": 171054, "performance limitations": 121739, "limitations code": 92552, "prompting perform": 131038, "analyses identify": 8766, "advantages using": 6155, "using symbolic": 174773, "compared natural": 26863, "language consider": 83212, "finally experiments": 58454, "experiments code": 54174, "code annotations": 24664, "affect code": 6300, "current information": 34134, "updating llms": 172363, "knowledge editing": 81904, "continual finetuning": 31161, "finetuning significant": 59540, "significant drawbacks": 150693, "generalizability new": 63112, "core challenge": 32155, "probabilities evaluate": 128101, "performance information": 121678, "novel effective": 114479, "effective pipeline": 45839, "pipeline approach": 123034, "approach task": 11598, "task highlighting": 161447, "methods bridge": 101353, "articles published": 12620, "april 2023": 12048, "benchmark experimental": 16969, "significantly increasing": 151060, "consistency score": 29793, "effectively mitigates": 46052, "chatbots test": 22642, "logic problems": 97339, "problems preliminary": 128596, "chatgpt35 chatgpt4": 23447, "focusing ability": 60171, "ability correct": 2115, "mathematics logic": 99615, "problems particular": 128586, "understand problem": 171063, "algorithms methods": 7950, "methods solution": 101832, "response correct": 142634, "described plain": 39382, "set 15": 149119, "original problems": 117371, "set contains": 149166, "contains 15": 30355, "question posed": 134917, "chatbot answers": 22561, "straightforward arithmetic": 155920, "algebraic expressions": 7769, "logic puzzles": 97342, "chatbots provide": 22633, "provide accurate": 132666, "accurate solutions": 3497, "complex mathematical": 27471, "logic tasks": 97346, "tasks answers": 161949, "quantitative evaluation": 134339, "evaluation chatbots": 51471, "outperforms chatgpt35": 117733, "sets questions": 149397, "original questions": 117378, "access internet": 2865, "outside world": 118156, "shown models": 150312, "benchmarks work": 17395, "models goal": 106509, "goal building": 66152, "pursue goal": 133779, "training diffusion": 168392, "computeoptimal training": 28471, "training regimes": 168685, "analysis train": 9209, "large diffusion": 87241, "outperforms gpt2": 117779, "datasets generates": 36893, "generates fluent": 64073, "fluent samples": 59914, "unconditional zeroshot": 170712, "effective knowledge": 45791, "flexible framework": 59806, "llms incorporate": 95588, "data information": 35223, "provide contextaware": 132726, "adaptive knowledge": 4780, "knowledge level": 82191, "unique aspect": 171822, "paradigm lies": 119482, "explore new": 55246, "llm era": 93637, "offering effective": 115735, "effective support": 45894, "scenarios conduct": 146563, "materials various": 99517, "various disciplines": 175893, "qualitative results": 134016, "demonstrated proposed": 38751, "compared outputs": 26870, "creates training": 33282, "data machine": 35334, "learning prompting": 90874, "prompting contrast": 130887, "users encode": 173637, "subject matter": 157834, "prompts language": 131347, "language visionlanguage": 86893, "provides simple": 133214, "simple python": 151518, "python interface": 133834, "emerging paradigm": 47526, "data labeling": 35272, "users quickly": 173755, "create evaluate": 33196, "local development": 97236, "computing clusters": 28531, "naive approach": 111384, "spam detection": 153644, "using oneshot": 174549, "oneshot prompting": 116035, "model provided": 104385, "scores final": 147143, "typically consist": 170472, "consist multiple": 29745, "scores furthermore": 147144, "actionable feedback": 4351, "students despite": 156853, "despite advantages": 40079, "difficulty constructing": 42205, "constructing dataset": 30193, "address difficulty": 5220, "used large": 173128, "model domain": 103490, "quadratic weighted": 133966, "weighted kappa": 178091, "achieved substantial": 3912, "demand intricate": 38128, "models simultaneously": 109146, "llms investigate": 95683, "compositional tasks": 27822, "programming problem": 129864, "breaking problems": 18997, "systematically quantify": 160201, "solve compositional": 153110, "provide theoretical": 133000, "theoretical arguments": 166020, "problems highlight": 128531, "generative task": 65594, "2017 task": 643, "knowledge available": 81761, "task focused": 161403, "model advancements": 103090, "generation humans": 64724, "keywords work": 81628, "little focus": 93235, "answers question": 10071, "behavior incorporated": 16596, "want explore": 177689, "explore areas": 55153, "sampling used": 146122, "tasks depend": 162195, "keywords keywords": 81624, "techniques extract": 163899, "answer generate": 9716, "decoding method": 37576, "methods qa": 101752, "insights large": 77594, "fresh perspectives": 61634, "exhibit humanlike": 53059, "diverse psychological": 43611, "chatgpts gpt35": 23493, "gpt4 multiple": 67083, "identify main": 71920, "main findings": 98241, "findings models": 58733, "models strongly": 109244, "strongly align": 156493, "align human": 7999, "gpt4 outperforming": 67099, "outperforming gpt35": 117679, "gpt35 gpt4s": 66827, "visual learning": 177225, "dimensions like": 42344, "highlight limitations": 69755, "diverse modalities": 43576, "divergent thinking": 43448, "thinking large": 166152, "performance general": 121568, "struggle complex": 156735, "research cognitive": 141640, "problemsolving strategies": 128674, "asks llm": 12893, "llm refine": 93949, "problem llm": 128313, "unable generate": 170602, "incorrect address": 75143, "debate mad": 37291, "debate process": 37292, "process obtain": 128929, "obtain final": 115476, "llms helpful": 95481, "helpful tasks": 69219, "reasoning demonstrate": 136804, "framework extensive": 61154, "extensive analyses": 55711, "agents codes": 6564, "test images": 164564, "leverages recent": 91772, "textbased image": 165591, "image editing": 72231, "suite diverse": 158720, "diverse realistic": 43625, "realistic challenging": 136285, "challenging test": 22299, "altering model": 8537, "data observe": 35429, "significant consistent": 150667, "sensitivity different": 148454, "demonstrate applicability": 38229, "model biases": 103215, "models strategic": 109234, "enables agents": 48160, "agents diverse": 6585, "strategic games": 155943, "new scenarios": 113398, "ability comprehend": 2106, "comprehend generate": 27847, "complex contextrich": 27383, "introduces approach": 80174, "uses pretrained": 173895, "llms fewshot": 95256, "reasoning ai": 136662, "agents approach": 6539, "systematically generated": 160189, "demonstrations reasoning": 39044, "states values": 155445, "using extensive": 174186, "strategies derived": 155985, "information additionally": 76267, "approach lead": 11340, "negotiation strategies": 112571, "realistic scenarios": 136299, "extra training": 56118, "highlight ability": 69722, "llms guided": 95461, "reasoning demonstrations": 136806, "excel diverse": 52766, "learning forgetting": 90471, "learning cil": 90296, "cil continual": 23761, "learning desired": 90365, "world requires": 179613, "tasks forgetting": 162426, "focus visual": 60078, "features recent": 57565, "generalizable representations": 63120, "textual information": 165920, "information continually": 76333, "trained new": 168026, "forgetting knowledge": 60424, "knowledge applying": 81750, "poses major": 124212, "model forgetting": 103688, "use multimodal": 172770, "information end": 76389, "handle challenge": 68528, "propose training": 132172, "based frozen": 15824, "tasks new": 162855, "forgetting old": 60427, "fusion module": 62202, "better utilize": 18069, "information jointly": 76535, "textual features": 165915, "capture semantic": 20677, "ability extensive": 2160, "datasets validate": 37186, "performance impact": 121646, "context sizes": 30919, "critical challenge": 33466, "challenge development": 21625, "development transformerbased": 41244, "identified major": 71829, "decoderonly transformers": 37551, "position encoding": 124260, "evaluation encompasses": 51564, "mathematical tasks": 99601, "methods requiring": 101788, "requiring additional": 141473, "additional computation": 4934, "models counterfactual": 105810, "procedural planning": 128686, "decomposing highlevel": 37629, "highlevel goal": 69691, "ordered steps": 117255, "steps important": 155744, "intricate task": 79866, "task machines": 161535, "involves integrating": 80743, "integrating commonsense": 78585, "knowledge reason": 82336, "llms hindered": 95501, "costly api": 32779, "issues paper": 81039, "twopronged approach": 170249, "models procedural": 108656, "knowledge counterfactual": 81843, "planning capabilities": 123253, "concretely develop": 28926, "inferencetime algorithm": 76148, "accurate reasoning": 3481, "task counterfactual": 161287, "planning requires": 123318, "parameters compete": 119726, "reasoners large": 136612, "sense reasoning": 148393, "remain opaque": 139926, "achieve humanlike": 3670, "humanlike cognitive": 71253, "applying general": 10892, "general pattern": 63013, "evaluating deep": 51285, "task insight": 161475, "potential limitations": 124825, "limitations regarding": 92652, "underexplored area": 170766, "models memorization": 108168, "evaluations stateoftheart": 52028, "llms showing": 96529, "achieve limited": 3681, "performance contrast": 121334, "techniques shown": 164019, "guiding llm": 68278, "llm generation": 93713, "paths help": 120447, "enhanced prompting": 49361, "proper prompt": 131614, "prompt designs": 130425, "make great": 98544, "methods normally": 101683, "correct information": 32394, "proposing novel": 132501, "detection instructions": 40532, "effective technique": 45898, "experiments 20": 54126, "including summarization": 74739, "summarization translation": 158891, "translation dialogue": 169456, "performance multiple": 121825, "model neurons": 104128, "capabilities inner": 19965, "largely unknown": 89188, "individual neurons": 75729, "novel automated": 114411, "automated approach": 14517, "designed scale": 39940, "vast array": 176327, "neurons llms": 113027, "graph n2g": 67551, "innovative tool": 77194, "tool automatically": 166947, "automatically extracts": 14806, "neurons behaviour": 113018, "dataset trained": 36588, "interpretable graph": 79668, "truncation saliency": 169827, "saliency methods": 145924, "dataset examples": 36272, "diverse samples": 43638, "samples better": 145992, "neuron behaviour": 113010, "behaviour graphs": 16733, "graphs visualised": 67654, "visualised aid": 177350, "manual interpretation": 99049, "generate token": 63759, "token activations": 166689, "activations text": 4422, "automatic validation": 14757, "neurons ground": 113020, "truth activations": 169876, "better predicting": 17979, "methods demonstrate": 101423, "demonstrate generated": 38359, "graph representations": 67574, "facilitate automation": 56595, "interpretability research": 79651, "particular properties": 120111, "neurons identify": 113023, "t4 gpu": 160691, "instructions use": 78366, "reasoning stateoftheart": 137140, "train reliable": 167817, "reliable models": 139742, "feedback intermediate": 57713, "step given": 155642, "given importance": 65903, "training reliable": 168689, "given high": 65896, "cost human": 32687, "feedback important": 57706, "carefully compare": 20795, "methods recent": 101759, "work begun": 178820, "conduct investigation": 29152, "math dataset": 99525, "model solves": 104632, "set additionally": 149126, "learning significantly": 90993, "related research": 139205, "feedback labels": 57718, "labels used": 82838, "emerge effective": 47328, "effective userfriendly": 45919, "retrieval successfully": 144143, "successfully employed": 158377, "service healthcare": 149064, "existing image": 53383, "user elicit": 173399, "elicit information": 47041, "information addition": 76266, "initial query": 77047, "search intent": 147366, "capabilities todays": 20217, "todays foundation": 166672, "questions initial": 135167, "order retrieve": 117239, "desired image": 40047, "tested large": 164675, "dataset reveal": 36514, "engaging dialog": 48847, "start building": 154953, "building evaluation": 19402, "pipeline existing": 123054, "existing manually": 53429, "dataset explore": 36289, "related applications": 139146, "applications trained": 10709, "trained reinforcement": 168058, "capable retrieving": 20468, "target image": 161072, "asked humans": 12874, "texttoimage retrieval": 165826, "retrieval extensive": 144051, "reveal strong": 144375, "capabilities examine": 19879, "settings project": 149629, "repository available": 140626, "simplicity efficiency": 151579, "central recent": 21347, "recent successes": 137685, "order build": 117180, "deep network": 37797, "investigate design": 80396, "different permutations": 41901, "efficient using": 46749, "develop complex": 40765, "diverse sets": 43657, "layers dense": 89662, "stateoftheart dense": 155125, "transformers terms": 169363, "model billion": 103217, "training convergence": 168205, "5x faster": 1420, "task evaluation": 161362, "demonstrates higher": 38852, "score finetuning": 147065, "finetuning compared": 59201, "similar number": 151279, "parameters finally": 119759, "model derived": 103436, "similar computation": 151222, "fewshot evaluations": 57902, "domain shifts": 44281, "research domain": 141729, "setups lack": 149683, "lack task": 83020, "scarce research": 146477, "research recent": 142034, "recent capabilities": 137455, "capabilities fewshot": 19898, "learning furthermore": 90489, "focuses challenge": 60131, "challenge sets": 21738, "using source": 174738, "indomain performance": 75799, "reference point": 138667, "performance used": 122218, "developed benchmark": 40860, "benchmark comprised": 16870, "classification qa": 24060, "generation benchmark": 64453, "focuses natural": 60154, "topical domain": 167342, "study involving": 157454, "finetuned fewshot": 59017, "models shows": 109120, "types suffer": 170426, "fewshot llms": 57990, "llms surpass": 96739, "reliable metric": 139739, "metric assessing": 101954, "intelligent tutoring": 78960, "improve learning": 73504, "outcomes task": 117464, "task presents": 161637, "scalability challenges": 146211, "challenges resource": 22054, "time constraints": 166365, "constraints recent": 30106, "gpt4 offer": 67089, "solutions issues": 153036, "issues study": 81063, "explores ability": 55380, "ability gpt4": 2209, "enhance learning": 49223, "iterative prompt": 81136, "llms educational": 95003, "limitations particularly": 92634, "geometry problems": 65735, "need ongoing": 112356, "ongoing evaluation": 116068, "research future": 141808, "work includes": 179037, "includes systematic": 74390, "systematic studies": 160156, "studies measure": 157043, "measure impact": 99849, "students learning": 156876, "handle broader": 68526, "intelligence assessing": 78788, "assessing chatgpts": 13171, "events large": 52116, "existed years": 53241, "society large": 152707, "chatgpts impressive": 23495, "impressive proficiency": 73359, "impacts chatgpt": 72757, "impact machine": 72686, "performance conventional": 121338, "hallucination argue": 68354, "direct attention": 42374, "agents impact": 6626, "ai development": 6956, "contribute ongoing": 31414, "ongoing debates": 116057, "systems hope": 160422, "investigate problem": 80481, "negligible perturbations": 112566, "structure consists": 156544, "proposed scheme": 132429, "tasks dynamic": 162263, "dynamic visual": 45174, "visual prompting": 177256, "research terms": 142115, "visionlanguage vl": 177090, "language encoder": 83283, "excessive memory": 52854, "memory overhead": 100439, "overhead paper": 118360, "focus exploring": 59979, "standalone model": 154794, "inspired recently": 77766, "popular prompt": 124046, "projected semantic": 130093, "space plms": 153603, "single multimodal": 151836, "learning solution": 91006, "information model": 76579, "greatly affects": 67780, "final performance": 58390, "novel transfer": 114725, "termed dynamic": 164374, "module obtain": 109950, "obtain optimal": 115490, "search algorithm": 147313, "algorithm automatically": 7780, "plms different": 123587, "process addition": 128725, "adapter approach": 4701, "parameters plms": 119831, "shift single": 149922, "tasks apply": 161956, "experiments set": 54455, "set vl": 149348, "zeroshot document": 180158, "image question": 72311, "modules existing": 109979, "layout information": 89704, "document images": 43832, "bounding box": 18916, "box coordinates": 18926, "pretraining extensive": 127323, "directly utilizing": 42614, "instructiontuning language": 78410, "language foundation": 83331, "potential zeroshot": 125078, "document content": 43820, "instruction specifically": 78056, "specifically uses": 154304, "information text": 76803, "text segments": 165448, "formatting requirements": 60576, "requirements propose": 141317, "small instructiontuning": 152300, "instructiontuning models": 78416, "like alpaca": 92196, "comparable finetuning": 26576, "performance sotas": 122091, "significantly example": 151001, "20 respectively": 609, "code supplementary": 25168, "release facilitate": 139467, "argumentative writing": 12442, "writing ability": 179708, "students writing": 156914, "success case": 158219, "identifying argument": 71986, "complex problem": 27521, "example adding": 52462, "claims different": 23838, "issue developed": 80897, "prompts facilitate": 131272, "models perception": 108456, "upsurge pretrained": 172393, "community powerful": 26509, "demonstrate advanced": 38224, "ability multimodal": 2290, "benchmarks pretrained": 17332, "llm usually": 94084, "universal ai": 171894, "model conduct": 103341, "conduct various": 29202, "context reasoning": 30892, "reasoning article": 136676, "analysis image": 8964, "content comprehension": 30453, "prohibitively high": 130067, "high memory": 69487, "implementing large": 72882, "model conventional": 103378, "conventional models": 31716, "essential visual": 50647, "propose enhance": 131803, "enhance representation": 49281, "taking advantage": 161003, "advantage large": 6110, "paradigm knowledge": 119471, "utilized help": 175105, "enhanced representations": 49365, "representations achieve": 140760, "firstly curate": 59650, "prompting multimodal": 131023, "generate descriptive": 63454, "text training": 165536, "training images": 168481, "furthermore feed": 62077, "detailed descriptions": 40281, "descriptions pretrained": 39487, "extract text": 56170, "content images": 30523, "training text": 168786, "aligned image": 8056, "image representations": 72319, "learn better": 89963, "better achieve": 17792, "llms conduct": 94692, "experiments verify": 54535, "algorithm consistently": 7789, "modeling large": 105027, "factual inaccuracies": 56875, "long chains": 97436, "advanced capabilities": 5710, "unsolved problem": 172202, "capture robust": 20676, "behavior neural": 16620, "tokens transformer": 166897, "reasoning errors": 136832, "decoder recent": 37522, "autoregressive modeling": 15003, "modeling generate": 105007, "complex novel": 27505, "outputs autoregressively": 118026, "autoregressively timeconsuming": 15025, "dealing long": 37273, "sequences hierarchical": 148820, "outputs original": 118094, "based hierarchical": 15853, "model independently": 103849, "sequences using": 148847, "matrix using": 99646, "develop training": 40849, "algorithm train": 7867, "entire model": 49810, "model highfrequency": 103799, "phase train": 122809, "decoder generate": 37511, "generate data": 63450, "reduces memory": 138521, "total training": 167423, "wallclock time": 177678, "curated corpora": 34010, "corpora web": 32267, "commonly trained": 26234, "data curated": 34877, "highquality corpora": 70007, "curation process": 34039, "abilities larger": 1949, "models requiring": 108949, "pretraining trillions": 127472, "tokens considered": 166793, "data lead": 35298, "powerful models": 125305, "significantly outperforming": 151082, "stateoftheart trained": 155398, "trillion tokens": 169765, "600 billion": 1425, "trained llms": 167990, "outperform traditional": 117641, "traditional ai": 167589, "today recent": 166668, "investigations large": 80655, "specifically gpt4": 154219, "common natural": 26162, "benchmarks gpt4": 17257, "gpt4 directly": 66972, "used practical": 173177, "domains requires": 44521, "experimental validation": 54098, "validation paper": 175370, "comprehensive comparisons": 27983, "gpt4 traditional": 67196, "tools conducted": 167128, "diagnostic accuracy": 41377, "accuracy clinical": 3170, "setting experimental": 149453, "results real": 143725, "real clinical": 136220, "clinical datasets": 24323, "gpt4 demonstrate": 66959, "future advancements": 62215, "surpass performance": 159460, "gpt4 evaluated": 66988, "evaluated comparison": 51161, "real doctors": 136228, "limitations gpt4": 92594, "gpt4 current": 66956, "propose future": 131841, "guided generation": 68224, "successfully model": 158390, "text need": 165323, "need explicit": 112284, "explicit supervision": 54959, "investigate efficacy": 80405, "llms modeling": 95897, "previously unseen": 127752, "generation leverage": 64789, "sampling procedure": 146111, "procedure generate": 128700, "lastly conduct": 89455, "enhancing existing": 49483, "optimizer using": 117099, "convergence properties": 31764, "properties deep": 131640, "complexity respect": 27696, "training batch": 168170, "poor scalability": 123958, "high computation": 69410, "computation complexity": 28295, "second order": 147496, "order information": 117210, "reducing communication": 138552, "communication complexity": 26354, "updates propose": 172357, "accelerate convergence": 2771, "convergence experiments": 31754, "outperforms state": 117852, "state oftheart": 155012, "64 gpus": 1464, "story writing": 155904, "perspective study": 122691, "study applies": 157167, "theory investigate": 166085, "english foreign": 49052, "language efl": 83277, "prompt generative": 130522, "short story": 149995, "hong kong": 70337, "kong secondary": 82642, "school students": 146838, "opensource language": 116617, "study collected": 157214, "prompting research": 131064, "research identified": 141836, "themes regarding": 166002, "writers block": 179704, "identified common": 71818, "quality stories": 134274, "level prompting": 91499, "tools purposes": 167242, "tools provide": 167239, "provide tailored": 132996, "instructions users": 78368, "users various": 173811, "levels story": 91556, "development using": 41253, "contextual biasing": 31072, "endtoend automatic": 48726, "models whisper": 109684, "gpt2 recently": 66591, "recently scaled": 137987, "despite large": 40151, "task exhibit": 161370, "asr performance": 13005, "remedy paper": 140336, "investigates effectiveness": 80555, "effectiveness neural": 46252, "neural contextual": 112839, "biasing whisper": 18327, "scheme dynamically": 146786, "whisper model": 178222, "datasets considerable": 36732, "reduction errors": 138611, "applied domainspecific": 10750, "size exacerbates": 151992, "resource consumption": 142377, "consumption latency": 30284, "challenges particular": 21988, "largescale deployment": 89297, "models hindered": 106616, "resource requirements": 142393, "inference paper": 76063, "challenges employing": 21843, "cache store": 19591, "queries learning": 134500, "provide optimal": 132912, "algorithm jointly": 7821, "jointly optimizing": 81283, "approaches reduce": 11883, "offline online": 115879, "caching algorithm": 19594, "achieve optimal": 3697, "online settings": 116137, "improves baselines": 73983, "improvement baseline": 73762, "real datasets": 136225, "chatgpt concerns": 22798, "concern study": 28749, "study straightforward": 157646, "assessment technique": 13272, "technique proposed": 163796, "practice discussed": 125479, "despite involving": 40145, "ai form": 7000, "chatgpt assessment": 22719, "posing questions": 124247, "employ chatgpt": 47817, "including prompts": 74684, "components present": 27772, "present techniques": 126479, "chatgpt prompts": 23223, "learning proposed": 90878, "students divided": 156854, "significant overlap": 150791, "range approaches": 135584, "distinct answers": 43203, "answers preventing": 10065, "accuracy responses": 3378, "long run": 97469, "coding social": 25406, "datasets language": 36942, "models researchers": 108952, "rely humans": 139857, "annotate large": 9437, "science research": 146912, "process achieved": 128722, "achieved humanlevel": 3826, "handlabeled training": 68524, "examples makes": 52638, "studies costly": 156969, "large ones": 88975, "ones recent": 116014, "lms provide": 97187, "clear lms": 24277, "classify text": 24215, "terms human": 164431, "demonstrate possibilities": 38463, "political science": 123902, "science use": 146920, "performance typical": 122208, "coding text": 25412, "text variety": 165561, "domains using": 44548, "provides exciting": 133143, "evidence language": 52190, "serve critical": 148971, "coding openended": 25394, "generative power": 65530, "attention artificial": 13842, "particularly emergence": 120180, "adaptation continuous": 4603, "speech llms": 154430, "discrete tokens": 42820, "tokens remains": 166871, "remains unsolved": 140109, "hindering application": 70146, "llms speech": 96672, "speech generation": 154416, "generation advanced": 64403, "speech signals": 154472, "tuning demonstrated": 169993, "demonstrated notable": 38726, "gains parameter": 62526, "speech classification": 154388, "tasks extent": 162384, "lms remains": 97191, "pioneering research": 123020, "research explores": 141778, "explores application": 55382, "application prompt": 10369, "various generation": 175958, "parameters proposed": 119843, "framework holds": 61201, "holds great": 70267, "code demos": 24784, "available project": 15182, "online decision": 116089, "autonomous agent": 14924, "agent leverages": 6467, "llms decisionmaking": 94786, "tasks growing": 162486, "regarding effectiveness": 138869, "limited capability": 92724, "agents decisionmaking": 6575, "tasks simulate": 163252, "simulate realworld": 151646, "aim gain": 7458, "gain deeper": 62439, "deeper insights": 37844, "understand adaptability": 170979, "gptbased agents": 67276, "performance popular": 121916, "claude vicuna": 24240, "enables lightweight": 48208, "learning requiring": 90921, "foundational llms": 60843, "comparisons ablation": 27074, "performance online": 121868, "decisionmaking benchmarks": 37402, "able fully": 2507, "evaluate analyze": 50904, "analyze ability": 9267, "reasoning require": 137102, "new chinese": 113108, "chinese dataset": 23620, "early steps": 45265, "steps solution": 155769, "deliberate reasoning": 38046, "steps generated": 155741, "generated solution": 63980, "perspectives tool": 122721, "tool manipulation": 167010, "manipulation natural": 98954, "turn experimental": 170171, "datasets proposed": 37050, "existing cot": 53327, "methods data": 101415, "evaluation ai": 51426, "questions paper": 135214, "notes using": 114309, "chatgpt versions": 23430, "versions 35": 176615, "bard claude": 15555, "accuracy relevance": 3370, "relevance comprehensiveness": 139553, "ensembling large": 49657, "pairwise ranking": 118647, "ranking generative": 135803, "ensembling framework": 49656, "consistently superior": 29924, "performance leveraging": 121738, "leveraging diverse": 91833, "multiple opensource": 110990, "opensource large": 116620, "llms framework": 95303, "consists modules": 29979, "different examples": 41760, "significantly vary": 151176, "pairwise comparison": 118638, "comparison method": 27055, "subtle differences": 158192, "candidate outputs": 19723, "outputs jointly": 118072, "candidates using": 19751, "superior results": 159057, "exhibits highest": 53203, "highest correlation": 69663, "capitalizing strengths": 20559, "strengths mitigating": 156265, "facilitate largescale": 56631, "largescale evaluation": 89303, "multiple instruction": 110945, "datasets featuring": 36863, "pairwise comparisons": 118639, "individual llms": 75725, "llms baseline": 94474, "gap efficient": 62640, "efficient gpt": 46631, "pretraining using": 127474, "representation largescale": 140705, "structure finally": 156556, "showing perplexity": 150183, "perplexity comparable": 122507, "comparable original": 26590, "model downstream": 103493, "understanding text": 171508, "summarization model": 158850, "gpt4 recent": 67133, "focused enhancing": 60097, "models imitation": 106673, "learning drawing": 90390, "number issues": 114886, "issues impact": 81011, "impact quality": 72721, "outputs small": 118125, "small scale": 152353, "data notably": 35425, "notably lack": 114279, "lack rigorous": 83000, "rigorous evaluation": 144858, "tend learn": 164310, "working legal": 179397, "learns imitate": 91182, "including explanation": 74513, "processes complex": 129056, "complex instructions": 27439, "instructions guided": 78272, "assistance chatgpt": 13367, "surpasses conventional": 159476, "conventional stateoftheart": 31731, "stateoftheart instructiontuned": 155162, "models vicuna13b": 109628, "benchmark shows": 17088, "lsat gre": 97950, "gpt4 research": 67143, "generated humans": 63887, "humans advanced": 71341, "direction improve": 42439, "detection llm": 40546, "using prompt": 174613, "order detect": 117186, "learnable approach": 90081, "grand challenge": 67469, "challenge detecting": 21621, "incorporating large": 75111, "feature extraction": 57402, "utilizing prompt": 175234, "engineering develop": 48903, "develop robust": 40832, "robust reliable": 145315, "method captures": 100728, "captures correlation": 20703, "effectively integrates": 46034, "baseline model": 16239, "model allows": 103108, "module demonstrate": 109926, "potential significant": 124978, "proposed methodology": 132377, "methodology holds": 101234, "promising implications": 130264, "implications various": 72962, "processing image": 129168, "submission available": 157887, "model video": 104875, "video understanding": 176742, "understanding present": 171414, "multimodal framework": 110639, "framework empowers": 61116, "understanding visual": 171535, "auditory content": 14227, "content video": 30648, "crossmodal training": 33691, "visual audio": 177118, "audio encoders": 14173, "complement llms": 27247, "process visual": 129033, "video comprehension": 176693, "tackling challenges": 160864, "temporal changes": 164249, "propose video": 132211, "video qformer": 176728, "video encoder": 176704, "videototext generation": 176797, "task learn": 161514, "challenge leverage": 21675, "model aligning": 103104, "modalities pretrained": 102944, "pretrained audio": 126751, "audio encoder": 14172, "learn reasonable": 90039, "query embeddings": 134578, "embeddings llm": 47253, "align output": 8025, "encoders llms": 48492, "llms embedding": 95017, "tune model": 169941, "shows ability": 150400, "ability perceive": 2308, "comprehend video": 27862, "video content": 176694, "content generate": 30503, "meaningful responses": 99800, "grounded visual": 67879, "auditory information": 14229, "nlp case": 113700, "pretraining research": 127427, "research practices": 141978, "practices language": 125511, "despite rapid": 40186, "increasingly better": 75378, "plms current": 123581, "different possible": 41914, "possible sources": 124465, "sources model": 153524, "difficult understand": 42186, "contribute progress": 31416, "progress today": 130023, "demonstrate comparable": 38270, "factors model": 56813, "insights conclude": 77533, "progress better": 129947, "systematic understanding": 160162, "understanding factors": 171234, "factors drive": 56793, "drive progress": 44976, "progress foundation": 129965, "models today": 109406, "generating code": 64154, "code evaluating": 24811, "gpt data": 66403, "gpts ability": 67314, "code visualizations": 25208, "data interpretation": 35253, "visualization design": 177354, "design visual": 39800, "evaluation utilized": 51928, "complete assignments": 27270, "assessment based": 13216, "gpts capabilities": 67315, "capabilities completing": 19827, "gpt4 scored": 67152, "quizzes homework": 135367, "70 accuracy": 1523, "potential completing": 124648, "concludes discussing": 28889, "potential avenues": 124615, "analyzing syntactic": 9389, "generalization capacity": 63153, "capacity pretrained": 20536, "models japanese": 106831, "requires knowledge": 141397, "knowledge grammatical": 82041, "rules contextual": 145711, "information social": 76762, "social relationships": 152653, "relationships remains": 139351, "llms flexibly": 95284, "flexibly handle": 59838, "humans analyze": 71346, "conversion task": 31981, "task considers": 161274, "relationships people": 139349, "dataset problem": 36468, "templates various": 164243, "leading llms": 89840, "settings finetuning": 149580, "showed finetuned": 150134, "model demonstrated": 103423, "demonstrated overall": 38732, "tested data": 164666, "data involving": 35260, "efficient instruction": 46645, "instruction optimization": 78041, "blackbox large": 18637, "instruction followers": 78004, "challenging best": 22123, "different situations": 41995, "directly optimizing": 42579, "optimizing discrete": 117112, "opensource llm": 116629, "generate instruction": 63575, "instruction using": 78143, "bayesian optimization": 16484, "new soft": 113412, "opensource llms": 116631, "llms apis": 94406, "apis including": 10188, "including vicuna": 74780, "outperforms sota": 117848, "methods variety": 101924, "gpt dalle": 66402, "trained generate": 167932, "content risk": 30611, "prohibited content": 130052, "content harmful": 30517, "harmful ones": 68742, "ones use": 116022, "values embedded": 175530, "methods bypass": 101356, "generate harmful": 63525, "coin term": 25558, "suicidal ideation": 158679, "support training": 159340, "using codex": 174059, "buggy solutions": 19285, "current understandings": 34291, "digital twins": 42300, "frequently employed": 61616, "employed models": 47895, "individual systems": 75741, "systems making": 160478, "dynamics different": 45204, "systems address": 160231, "developed novel": 40896, "framework exploits": 61150, "powerful transfer": 125349, "capabilities inherent": 19963, "demonstrated using": 38819, "available process": 15181, "various operational": 176093, "extensive dataset": 55745, "tst model": 169920, "cumulative error": 33986, "superior existing": 159003, "existing ml": 53477, "reduce variance": 138482, "chatgpt remarkable": 23265, "experts paper": 54671, "investigates capabilities": 80548, "chatgpt automated": 22727, "writing mathematics": 179733, "chatgpt enhance": 22889, "enhance productivity": 49263, "processes improve": 129066, "improve writing": 73661, "excessive reliance": 52856, "reliance chatgpt": 139774, "chatgpt fields": 22943, "limitations encompass": 92571, "fictitious responses": 58108, "code limited": 24981, "limited logical": 92798, "chatgpt proves": 23225, "beneficial applications": 17405, "applications used": 10715, "scenarios reliability": 146687, "nonexperts chatgpt": 114062, "offer methods": 115670, "effectively using": 46104, "iterative interaction": 81126, "strategy perform": 156195, "work large": 179085, "corpus human": 32315, "large array": 87193, "set stage": 149316, "prompts scenarios": 131461, "published result": 133696, "dynamic data": 45122, "nlp classification": 113702, "remains bottleneck": 139974, "bottleneck development": 18886, "development cycles": 41076, "pruning reduce": 133469, "based score": 16085, "calculated training": 19607, "prior finetuning": 127894, "important computational": 73112, "training duration": 168402, "task initial": 161472, "initial finetuning": 77030, "set results": 149298, "results glue": 143436, "methods method": 101660, "method preserves": 101033, "preserves accuracy": 126674, "accuracy training": 3411, "minor drop": 102423, "weight averaging": 178070, "high learning": 69474, "llm pretraining": 93905, "pretraining training": 127465, "llms incurs": 95613, "significant cost": 150673, "strategy accelerates": 156097, "model convergence": 103379, "helpful paper": 69214, "ability simple": 2369, "improve convergence": 73435, "convergence generalization": 31755, "steps training": 155775, "outperforms conventional": 117742, "conventional training": 31736, "moving average": 110235, "average ema": 15279, "llms high": 95486, "specifically pretrained": 154264, "sizes small": 152115, "9b tokens": 1841, "tokens additionally": 166774, "results publicly": 143716, "llms ranging": 96290, "llms lessons": 95757, "nlp software": 113808, "web crawls": 178001, "enables learn": 48206, "learn general": 89982, "train deploy": 167760, "data design": 34902, "trend large": 169701, "generalpurpose models": 63360, "modestly sized": 109866, "example large": 52486, "aligned code": 8045, "adopt standard": 5584, "standard practices": 154867, "practices pretraining": 125514, "2048 tokens": 731, "tokens training": 166896, "sota model": 153355, "trained data": 167888, "question prediction": 134918, "introduce models": 80017, "baselines smaller": 16372, "model sufficient": 104681, "sufficient strong": 158497, "data yield": 35977, "ai impact": 7035, "impact assessment": 72624, "deploying ai": 39231, "systems remains": 160583, "framework assist": 60964, "assist ai": 13341, "ai practitioners": 7156, "practitioners decisionmakers": 125528, "potential harms": 124757, "ai deployment": 6948, "deployment scenario": 39304, "different stakeholders": 42009, "ai behaviors": 6887, "behaviors potential": 16721, "potential impacts": 124769, "impacts different": 72758, "models examining": 106182, "different ai": 41649, "deployment scenarios": 39305, "generates meaningful": 64082, "diverse examples": 43521, "potential practical": 124911, "conducted semistructured": 29284, "important ethical": 73129, "drawing results": 44937, "results discuss": 143358, "discuss design": 42884, "design implications": 39652, "challenges present": 22011, "significant debate": 150676, "education tools": 45595, "potential support": 125008, "support students": 159333, "instructors teaching": 78427, "research suggested": 142098, "suggested various": 158607, "various strategies": 176187, "strategies aimed": 155960, "aimed addressing": 7508, "addressing issues": 5456, "introductory programming": 80270, "problem present": 128354, "research evaluated": 141762, "spanning distinct": 153677, "methods modify": 101669, "reduce potential": 138462, "finally conducted": 58426, "understand perspectives": 171055, "leverage ai": 91566, "improvement results": 73846, "ranging academic": 135746, "impact students": 72728, "results derived": 143348, "help instructors": 69129, "create future": 33200, "course material": 33010, "effectively adapt": 45934, "adapt ai": 4510, "assistants capabilities": 13406, "inferencetime intervention": 76150, "answers language": 10042, "introduce inferencetime": 79981, "technique designed": 163758, "model activations": 103062, "number attention": 114825, "llama models": 93327, "models truthfulqa": 109518, "truthfulqa benchmark": 169902, "improves truthfulness": 74096, "computationally inexpensive": 28424, "technique data": 163755, "approaches like": 11830, "like rlhf": 92391, "require extensive": 141101, "directions using": 42503, "using examples": 174176, "examples findings": 52585, "success llms": 158265, "llms limited": 95792, "theoretical understanding": 166053, "prompting work": 131125, "onelayer attention": 115978, "contributions follows": 31493, "model analyze": 103111, "initial trajectory": 77062, "prompt prediction": 130632, "sample complexity": 145942, "complexity demonstrate": 27665, "demonstrate prompt": 38488, "known prompt": 82620, "finite sample": 59630, "performance limits": 121743, "information provide": 76659, "verify theoretical": 176543, "theoretical insights": 166037, "demonstrate prompttuning": 38491, "arc challenge": 12098, "gpt4 prompt": 67124, "prompt engineered": 130439, "model human": 103809, "human priors": 70980, "text typical": 165543, "tasks ask": 161973, "inputoutput mapping": 77380, "input derive": 77223, "test output": 164589, "make specific": 98604, "image interpretation": 72281, "tool visual": 167056, "learning stages": 91019, "stages language": 154768, "typical sequence": 170459, "sequence learning": 148758, "computational principles": 28393, "learning trajectory": 91093, "models children": 105621, "specifically test": 154293, "test training": 164650, "training gpt2": 168469, "18 months": 517, "scratch evaluate": 147216, "semantic abilities": 148094, "benchmarks compare": 17189, "compare evaluations": 26674, "language production": 86661, "linguistic skills": 93067, "skills systematic": 152192, "steps learning": 155751, "principles language": 127862, "process natural": 128925, "essential technique": 50641, "technique enhancing": 163770, "enhancing abilities": 49450, "providing explicit": 133294, "specific instructions": 154018, "instructions enables": 78245, "excel various": 52778, "extraction machine": 56318, "researchers actively": 142164, "actively exploring": 4450, "exploring different": 55463, "engineering strategies": 48991, "unresolved problem": 172130, "problem arises": 128187, "solid theoretical": 152881, "theoretical foundation": 166031, "determining optimal": 40723, "new effective": 113159, "methodology utilizes": 101260, "utilizes text": 175163, "embeddings obtain": 47262, "matrix decomposition": 99636, "space representing": 153614, "space significantly": 153618, "public reasoning": 133599, "benchmarks notably": 17315, "method prompt": 101038, "prompt lets": 130589, "step prompt": 155671, "fewshot method": 57993, "method overall": 101021, "overall approach": 118176, "theoretical framework": 166033, "framework selecting": 61398, "marks significant": 99272, "significant step": 150880, "step improving": 155648, "models democratize": 105881, "llms embedded": 95016, "research providing": 142015, "expertise different": 54609, "fields models": 58290, "easy access": 45347, "technologies capable": 164078, "llm chatbots": 93531, "suggested potential": 158603, "identified detailed": 71820, "collectively results": 25773, "widely accessible": 178355, "training promising": 168661, "measures include": 99929, "evaluations llms": 51997, "curating training": 34032, "harmful concepts": 68725, "llms databases": 94780, "symbolic memory": 159812, "llms memory": 95881, "llms taking": 96764, "memory mechanisms": 100427, "mechanisms support": 100057, "llms simulate": 96615, "simulate complex": 151633, "reasoning symbolic": 137158, "sql databases": 154634, "instructions manipulate": 78306, "proposed memory": 132333, "framework synthetic": 61441, "website available": 178047, "transformers recently": 169350, "demonstrated immense": 38685, "generation success": 65116, "success driven": 158232, "driven ability": 44980, "capture longrange": 20664, "feature makes": 57414, "systems consider": 160303, "higher accuracies": 69578, "sequence large": 148757, "proposed architectures": 132254, "methods allowing": 101301, "allowing study": 8393, "phase transitions": 122810, "reasonable computational": 136591, "general largescale": 62985, "augmentation fewshot": 14277, "aims precisely": 7646, "set questions": 149289, "questions context": 135079, "context passages": 30868, "available existing": 15106, "studies progress": 157055, "usually achieve": 174888, "semantics reasoning": 148318, "generative promptbased": 65579, "augmentation framework": 14279, "framework mitigate": 61306, "mitigate challenge": 102594, "challenge inspired": 21659, "process propose": 128949, "propose integrate": 131882, "cloze task": 24579, "task enhance": 161351, "learning following": 90469, "following recent": 60307, "success prompttuning": 158282, "task allowing": 161189, "learn tasks": 90064, "tasks seamlessly": 163206, "fully advantage": 61740, "experiments widely": 54543, "used benchmarks": 172979, "validating effectiveness": 175353, "models learns": 106946, "guide reasoning": 68201, "incorporates auxiliary": 75049, "task better": 161224, "better multitask": 17950, "increasing diversity": 75320, "maintaining accuracy": 98340, "accuracy text": 3407, "human interventions": 70876, "interventions large": 79802, "creating highquality": 33303, "high diversity": 69449, "diversity accuracy": 43705, "accuracy llmbased": 3295, "llmbased text": 94176, "generation examine": 64625, "examine approaches": 52366, "generation languages": 64770, "token sampling": 166734, "approaches increase": 11808, "data diversity": 34933, "data accuracy": 34576, "domain address": 44085, "oracle studies": 117153, "llmbased fewshot": 94145, "need future": 112298, "chinese social": 23663, "regarding chatgpt": 138862, "chatgpt education": 22868, "education chatgpt": 45524, "community gpt4": 26485, "latest version": 89571, "output study": 118007, "chatgpt educational": 22871, "study serves": 157620, "release gpt4": 139472, "media users": 100120, "chatgpt make": 23115, "moral principles": 110118, "public attitudes": 133541, "direction release": 42445, "gpt4 present": 67120, "ensure ethical": 49683, "ethical application": 50791, "chatgptlike models": 23475, "better data": 17842, "data concise": 34819, "concise summaries": 28852, "despite existing": 40107, "efforts use": 46941, "problems limited": 128556, "data absence": 34568, "selfsupervised methods": 148066, "lack focus": 82946, "focus complex": 59959, "paradigm leverages": 119480, "approach comprises": 11069, "tuning phase": 170082, "phase followed": 122799, "generation phase": 64925, "data support": 35831, "support set": 159330, "prompt gpt": 130527, "gpt generate": 66421, "textual summary": 165957, "data alignment": 34614, "alignment score": 8233, "data serves": 35737, "refine process": 138739, "generating summaries": 64346, "datasets annotation": 36652, "annotation performance": 9541, "tuning human": 170025, "data sentence": 35730, "tasks steps": 163288, "various human": 175969, "human activities": 70557, "actions natural": 4384, "action sequences": 4339, "heavily depend": 69039, "execution robots": 52966, "robots ai": 145216, "capability current": 20277, "current neural": 34194, "models sequential": 109077, "multichoice question": 110359, "data construction": 34841, "task formulations": 161412, "llms experimental": 95184, "llms prompting": 96234, "significantly lags": 151065, "steps enhancing": 155735, "enhancing incontext": 49492, "learning answer": 90211, "chatgpt exhibited": 22911, "impressive general": 73296, "general performance": 63014, "previous researches": 127644, "approach exploiting": 11209, "new questions": 113372, "informing llm": 76902, "output paper": 117970, "model correct": 103386, "incorrect incomplete": 75154, "llms incontext": 95583, "evaluating robustness": 51385, "models adversarial": 105306, "adversarial prompts": 6224, "prompts increasing": 131329, "increasing reliance": 75354, "reliance large": 139779, "necessitates comprehensive": 112171, "understanding robustness": 171468, "need introduce": 112325, "robustness benchmark": 145352, "benchmark designed": 16927, "llms resilience": 96423, "resilience adversarial": 142323, "prompts study": 131488, "study uses": 157697, "adversarial textual": 6236, "textual attacks": 165880, "attacks targeting": 13745, "prompts multiple": 131378, "multiple levels": 110965, "character word": 22441, "sentence semantic": 148530, "semantic adversarial": 148097, "aim evaluate": 7450, "maintaining semantic": 98379, "semantic integrity": 148162, "inference reading": 76086, "math problemsolving": 99531, "problemsolving study": 128675, "prompts meticulously": 131375, "tasks 13": 161866, "datasets findings": 36867, "llms robust": 96476, "robust adversarial": 145235, "furthermore present": 62130, "analysis understand": 9217, "offer insightful": 115661, "robustness analysis": 145349, "pragmatic recommendations": 125553, "recommendations prompt": 138257, "prompt composition": 130398, "everyday users": 52166, "chatgpt fun": 22956, "artificial agents": 12644, "far large": 57224, "increasingly able": 75373, "information especially": 76397, "gained immense": 62464, "gpt3based model": 66889, "communicate human": 26338, "essential component": 50590, "component human": 27735, "generation explanation": 64637, "applied promptbased": 10798, "experiments empirical": 54265, "newly generated": 113538, "explanations invalid": 54867, "recently including": 137909, "benchmark tests": 17109, "performance led": 121733, "language artificial": 83161, "new opensource": 113306, "benchmark assess": 16833, "phrases using": 122890, "using task": 174786, "advanced training": 5814, "combining multiple": 25991, "multiple words": 111089, "test requires": 164606, "versions task": 176628, "conducted series": 29286, "gpt35 bard": 66794, "versions results": 176626, "gpt4 makes": 67069, "binary discrimination": 18472, "worse human": 179659, "used understand": 173289, "understand limitations": 171036, "potentially improve": 125113, "improve test": 73639, "agi llms": 6803, "benchmark analysis": 16828, "analysis llms": 9006, "distribution shift": 43386, "shift settings": 149920, "studies commonly": 156963, "lack adequate": 82881, "challenges hindering": 21901, "accurate evaluation": 3455, "challenging distribution": 22149, "tasks 20": 161871, "experiments pretrained": 54397, "analysis evaluation": 8916, "performance identify": 121642, "identify typical": 71977, "potentially facilitate": 125103, "classic methods": 23925, "despite exhibiting": 40105, "improvement compared": 73770, "various adaptation": 175789, "id data": 71713, "finetuning domainspecific": 59229, "id examples": 71714, "learning yields": 91147, "yields better": 180012, "results identify": 143477, "llms face": 95231, "challenges effectively": 21838, "effectively addressing": 45940, "learning social": 91003, "science applications": 146848, "researchers analyze": 142174, "labels using": 82840, "using interpretable": 174336, "regression analyses": 138951, "increasingly common": 75384, "algorithm using": 7873, "statistical analyses": 155481, "uncertainty quantification": 170677, "substantial bias": 158032, "address build": 5161, "number highquality": 114874, "probability sampling": 128123, "provides valid": 133244, "statistical inference": 155489, "errors comparable": 50344, "comparable existing": 26572, "data comparing": 34805, "comparing approaches": 26975, "developing research": 41020, "papers rapid": 119404, "rapid growth": 135889, "growth scientific": 68086, "emphasizes need": 47643, "need tools": 112409, "latest advancements": 89533, "essential understanding": 50646, "understanding scientific": 171470, "sentences abstracts": 148555, "purpose method": 133750, "method finding": 100872, "finding study": 58623, "large automatically": 87194, "automatically curated": 14785, "pubmed 200k": 133703, "200k rct": 629, "indicate using": 75628, "dataset does": 36246, "does improve": 43988, "task observe": 161578, "gpt4 performs": 67112, "does outperform": 44007, "datasets dataset": 36757, "task code": 161246, "preference learning": 126012, "enhance effectiveness": 49187, "collecting new": 25720, "pairs costly": 118559, "challenging particularly": 22236, "annotations existing": 9586, "input texts": 77358, "efficient way": 46753, "additional human": 4961, "human cost": 70670, "preferences pairs": 126059, "alternative way": 8589, "task auxiliary": 161214, "learning enables": 90413, "learn additional": 89961, "novel multitask": 114610, "preferences provide": 126064, "provide different": 132753, "preference signals": 126026, "effective improving": 45778, "speech pretrained": 154440, "llms tasks": 96771, "tasks overall": 162902, "clip finegrained": 24401, "utilize plms": 175073, "plms propose": 123630, "propose pretraining": 132073, "finetuning pipeline": 59443, "process includes": 128865, "includes pretraining": 74383, "token detection": 166698, "detection module": 40565, "classification sequence": 24087, "employ llms": 47843, "chatgpt renowned": 23267, "llm potential": 93894, "potential advancement": 124558, "application evaluation": 10317, "gaining widespread": 62505, "world use": 179624, "known performance": 82618, "cases paper": 20999, "apply evaluate": 10846, "realworld task": 136523, "task mining": 161543, "insights text": 77657, "corpus order": 32337, "critically evaluate": 33578, "analyzing text": 9390, "implications applying": 72903, "model geoscience": 103745, "geoscience knowledge": 65745, "knowledge understanding": 82486, "general domains": 62942, "paper bring": 118773, "bring llms": 19127, "llms realm": 96303, "advancing research": 6096, "present firstever": 126316, "llm geoscience": 93718, "promote llm": 130340, "tuning dataset": 169986, "align llm": 8016, "queries additionally": 134447, "llms context": 94718, "adapt pretrained": 4553, "geoscience domain": 65743, "domain specifically": 44299, "model share": 104559, "data construct": 34839, "abilities using": 2032, "using tools": 174809, "approach datasets": 11091, "online communities": 116081, "increasingly urgent": 75449, "approach challenge": 11043, "training student": 168769, "llm use": 94074, "use zeroshot": 172942, "models distill": 106001, "datasets followed": 36879, "preliminary findings": 126129, "properly trained": 131627, "toxic comments": 167452, "toxic behavior": 167449, "discourse using": 42721, "openaccess models": 116315, "complex modeling": 27477, "task contribute": 161281, "development framework": 41121, "framework application": 60958, "application generative": 10325, "content online": 30561, "communities providing": 26441, "sample model": 145950, "model suite": 104686, "openaccess llms": 116314, "llms autonomous": 94460, "development cycle": 41075, "developer effort": 40931, "test software": 164635, "software recent": 152841, "recent discoveries": 137478, "suggest used": 158594, "automated testing": 14618, "provide helpful": 132817, "helpful information": 69212, "testing process": 164743, "present taxonomy": 126477, "agents based": 6544, "level autonomy": 91450, "benefit developers": 17427, "developers practice": 40953, "llms testing": 96790, "demonstrate conversational": 38277, "conversational framework": 31868, "help developers": 69105, "hallucination llms": 68392, "llms beneficial": 94487, "tangible benefits": 161032, "multilevel benchmark": 110457, "benchmark examining": 16967, "examining large": 52448, "despite existence": 40106, "models argue": 105387, "argue human": 12409, "means evaluating": 99815, "range abilities": 135578, "understanding domain": 171197, "knowledge problemsolving": 82309, "exam questions": 52351, "questions evaluating": 135118, "exhibits unique": 53232, "questions multiple": 135199, "multimodal nature": 110737, "questions test": 135304, "critical educational": 33487, "comprehensively assess": 28163, "models proficiency": 108670, "questions diverse": 135105, "languages educational": 86983, "performance topperforming": 122186, "topperforming llms": 167400, "gpt4 struggle": 67178, "text particularly": 165348, "lowresource nonlatin": 97928, "poorly complex": 123965, "llms examining": 95118, "examining multilingual": 52452, "development data": 41077, "explore regions": 55288, "potential visual": 125068, "image representation": 72318, "mae generative": 98191, "specifically design": 154172, "design architecture": 39548, "architecture efficiently": 12154, "mapping images": 99145, "effective especially": 45750, "demonstrates consistent": 38835, "datasets downstream": 36803, "detection segmentation": 40613, "segmentation benchmarks": 147730, "computational overheads": 28389, "evaluation analysis": 51430, "indicates models": 75639, "unlock potential": 172035, "interactive segmentation": 79338, "segmentation code": 147731, "code provided": 25074, "way interact": 177834, "initial attempts": 77012, "conversation models": 31798, "encoder llm": 48430, "capable understanding": 20478, "humanlike conversations": 71258, "dataset 100000": 36074, "videoinstruction pairs": 176761, "pairs used": 118629, "pipeline easily": 123047, "easily scalable": 45335, "videobased dialogue": 176751, "benchmark multimodal": 17034, "evidence shows": 52217, "democratic processes": 38186, "online daily": 116087, "despite progress": 40181, "progress automatic": 129946, "community lacks": 26491, "substantial effort": 158053, "verification address": 176466, "gap introduce": 62662, "dataset million": 36410, "million samples": 102240, "pushes boundaries": 133804, "domain fact": 44163, "multimodal fake": 110631, "news dataset": 113556, "associated images": 13487, "instruction tuned": 78065, "tuned models": 169952, "ability enhance": 2147, "downstream training": 44847, "realworld situations": 136516, "scarcity data": 146488, "efficiency instruction": 46471, "required perform": 141249, "perform transfer": 121071, "learning match": 90668, "multi task": 110301, "models equipped": 106139, "25 downstream": 829, "train data": 167756, "tuned model": 169951, "trained downstream": 167904, "achieve sota": 3745, "sota using": 153368, "conduct analysis": 29024, "baselines demonstrate": 16305, "learning additionally": 90184, "additionally observe": 5095, "observe consistent": 115363, "instructions finally": 78259, "previous results": 127645, "chatgpt preserving": 23209, "preserving data": 126685, "chatgpt dialogue": 22854, "dialogue text": 41533, "care delivery": 20762, "models useful": 109574, "humanlike dialogue": 71261, "challenges using": 22092, "enable utilization": 48134, "framework preserves": 61354, "user privacy": 173471, "ground task": 67834, "task addressing": 161173, "texts demonstrate": 165698, "demonstrate viability": 38611, "generations results": 65288, "helpful relevant": 69216, "chatbot arena": 22563, "chat assistants": 22524, "broad capabilities": 19171, "inadequacy existing": 74277, "benchmarks measuring": 17302, "preferences address": 126032, "judges evaluate": 81314, "models openended": 108355, "including position": 74671, "position verbosity": 124269, "limited reasoning": 92831, "multiturn question": 111285, "battle platform": 16474, "platform results": 123391, "strong llm": 156410, "gpt4 match": 67073, "achieving 80": 4133, "additionally benchmark": 5028, "benchmark traditional": 17111, "benchmarks complement": 17192, "variants llama": 175632, "conversations human": 31945, "robust detection": 145256, "detection language": 40536, "text chatgpt": 164878, "proposes methodology": 132468, "developing evaluating": 40992, "chatgpt detectors": 22849, "text focus": 165091, "focus investigating": 60005, "investigating robustness": 80618, "involves translating": 80768, "translating english": 169427, "english dataset": 49044, "training classifier": 168181, "translated data": 169418, "detectors effectively": 40675, "detect chatgptgenerated": 40348, "chatgptgenerated text": 23470, "attack techniques": 13670, "indomain settings": 75802, "contexts highlighting": 31023, "detecting adversarial": 40392, "adversarial text": 6235, "text study": 165493, "study emphasizes": 157304, "caution applying": 21271, "testing results": 164750, "wider variety": 178447, "opensource resources": 116675, "generalist agent": 63086, "generalist agents": 63087, "instructions complete": 78215, "complete complex": 27273, "tasks website": 163471, "datasets web": 37201, "agents use": 6756, "tasks collected": 162073, "sequences tasks": 148840, "provides necessary": 133181, "spectrum user": 154371, "interaction patterns": 79159, "patterns based": 120518, "conduct initial": 29151, "initial exploration": 77027, "llms building": 94522, "websites large": 178052, "fed llms": 57618, "small lm": 152314, "improves effectiveness": 73994, "efficiency llms": 46486, "model seen": 104522, "seen substantial": 147711, "room improve": 145583, "agents opensource": 6674, "model implementation": 103823, "research building": 141623, "llm hallucinations": 93731, "hallucinations using": 68463, "context prompts": 30885, "highly sophisticated": 69958, "agents models": 6662, "suffer hallucinations": 158428, "hallucinations model": 68446, "fabricated information": 56506, "information addressing": 76270, "challenge crucial": 21612, "crucial particularly": 33831, "adopted various": 5608, "various sectors": 176160, "method recognize": 101059, "instances llms": 77837, "perform outside": 121000, "outside domain": 118149, "knowledge ensuring": 81949, "ensuring users": 49762, "users receive": 173759, "context combined": 30706, "models baseline": 105466, "promptresponse pairs": 131141, "data observed": 35430, "observed significant": 115433, "significant reduction": 150855, "reduction overall": 138620, "question prompts": 134920, "lastly evaluated": 89459, "eliminate hallucinations": 47064, "3d assets": 1124, "scene descriptions": 146730, "living room": 93271, "scene elements": 146732, "models accomplish": 105205, "translation present": 169499, "tool generate": 166980, "3d scenes": 1150, "objects scene": 115305, "creative freedom": 33370, "demonstrates using": 38913, "using foundation": 174216, "models communicate": 105687, "generation 3d": 64380, "metrics task": 102154, "semantics input": 148299, "scene description": 146729, "3d content": 1126, "policy violations": 123878, "minimal supervision": 102358, "networks pretrained": 112783, "revolutionized nlp": 144660, "using little": 174415, "little data": 93230, "called soft": 19672, "soft prompting": 152739, "identify hard": 71898, "hard prompt": 68655, "tasks prompt": 163022, "extractive explanations": 56378, "justify classification": 81396, "attains high": 13769, "accuracy little": 3293, "produces explanations": 129528, "remain consistent": 139916, "example specific": 52505, "specific class": 153956, "class separately": 23893, "scoring based": 147184, "product teams": 129582, "modifying factual": 109889, "llms store": 96685, "store extensive": 155854, "collections text": 25761, "text effectively": 165039, "crucial reliable": 33842, "approaches knowledge": 11816, "limitations despite": 92566, "measurements provide": 99911, "provide framework": 132800, "measure knowledge": 99850, "analyzing llms": 9376, "target knowledge": 161074, "accuracy comparison": 3181, "comparison previous": 27061, "methods surpassing": 101857, "exhibit limitations": 53069, "limitations capturing": 92547, "specific circumstances": 153953, "methods lastly": 101631, "applicability methods": 10263, "llms application": 94412, "learning make": 90663, "experiments paper": 54390, "reasoning problem": 137047, "abilities responding": 2009, "questions vietnamese": 135321, "examination vnhsge": 52361, "range subjects": 135704, "difficulty levels": 42219, "dataset included": 36356, "levels knowledge": 91543, "knowledge comprehension": 81826, "high application": 69396, "diverse mathematical": 43571, "mathematical concepts": 99558, "demonstrate chatgpts": 38269, "varies depending": 175680, "performed best": 122361, "best questions": 17743, "study shown": 157632, "questions subjects": 135292, "subjects including": 157876, "correctly answering": 32458, "questions topics": 135307, "topics including": 167356, "rates lower": 136033, "teaching tool": 163658, "work needed": 179135, "challenges presented": 22012, "presented questions": 126527, "learning medical": 90673, "analysis approaches": 8820, "supervised deep": 159100, "trained specific": 168081, "substantial amounts": 158029, "approach unlocks": 11626, "model mitigate": 104089, "curated medical": 34022, "inspired advances": 77710, "finetuned minimal": 59070, "minimal additional": 102312, "potential achieve": 124547, "models impressive": 106686, "recent performance": 137579, "extent serve": 56025, "issue applying": 80885, "applying gpt35": 10895, "problem human": 128273, "reasoning known": 136945, "elicit human": 47040, "spanning multiple": 153681, "multiple domains": 110899, "struggles capture": 156783, "successful performance": 158353, "performance qualitatively": 121972, "failure capture": 57005, "allows interesting": 8443, "comparisons human": 27079, "intelligence provides": 78882, "benchmarks future": 17254, "model distillation": 103479, "models poses": 108562, "poses challenge": 124195, "challenge deployment": 21619, "deployment various": 39311, "various devices": 175891, "growing emphasis": 68023, "methods compress": 101389, "current knowledge": 34139, "rely models": 139874, "intermediate layer": 79512, "layer features": 89629, "data respectively": 35664, "vocabulary usually": 177517, "neglected existing": 112550, "method performs": 101027, "simple surprisingly": 151531, "structure models": 156585, "labeled datasets": 82725, "labels based": 82787, "distribution word": 43407, "size instead": 152011, "25 stateoftheart": 832, "benchmark achieving": 16818, "score surpasses": 147102, "surpasses best": 159475, "framework leveraging": 61287, "abilities generative": 1918, "environmental social": 50052, "tasks objective": 162868, "articles based": 12606, "key issues": 81529, "focuses english": 60136, "pythia models": 133825, "augmentation techniques": 14316, "techniques utilize": 164053, "utilize various": 175091, "roberta deberta": 145143, "outcomes underscore": 117465, "underscore effectiveness": 170915, "methodology identifying": 101236, "findings contribute": 58648, "potential leveraging": 124820, "dataset framework": 36316, "framework benchmark": 60987, "models emerged": 106072, "approach achieving": 10959, "llm community": 93543, "accelerated development": 2783, "agents support": 6743, "support humanmachine": 159298, "humanmachine dialogue": 71304, "interaction natural": 79150, "processing human": 129167, "interaction world": 79194, "models gpt4v": 106548, "effectiveness handling": 46194, "support academic": 159254, "research best": 141618, "multimodal instruction": 110663, "evaluating mllms": 51344, "mllms specific": 102856, "execution enabling": 52948, "enabling seamless": 48347, "contribution threefold": 31485, "comprehensive dataset": 27990, "dataset benchmark": 36131, "cover wide": 33048, "range vision": 135728, "2d 3d": 928, "3d vision": 1152, "experiments validate": 54520, "effectiveness dataset": 46153, "detailed methodology": 40307, "constructing multimodal": 30200, "tuning datasets": 169988, "mllms enabling": 102818, "enabling rapid": 48341, "rapid scaling": 135906, "mllm research": 102803, "tasks modalities": 162808, "modalities provide": 102947, "provide baseline": 132683, "accelerate future": 2774, "significant promise": 150848, "source task": 153476, "learning prompt": 90870, "engineering shown": 48985, "effective eliciting": 45746, "knowledge llm": 82201, "knowledge embodied": 81920, "engineering mitigating": 48956, "mitigating limitations": 102667, "enabling agent": 48266, "agent acquire": 6411, "user preferences": 173469, "increase response": 75230, "space llms": 153592, "llms deploy": 94895, "select candidate": 147768, "responses produced": 142882, "llm approach": 93472, "responses llm": 142843, "achieves 100": 3935, "human oversight": 70944, "instruction simple": 78055, "potential automatic": 124610, "unexplored study": 171635, "potential usage": 125034, "largescale text": 89408, "text sampling": 165443, "method random": 101052, "evaluate effects": 50960, "data size": 35765, "text findings": 165087, "domainspecific corpora": 44568, "support use": 159342, "test perplexity": 164593, "perplexity baseline": 122506, "method pushes": 101048, "linguistic bias": 93007, "models perspective": 108507, "significantly shape": 151153, "linguistic landscape": 93044, "learning cycle": 90343, "amplify existing": 8722, "existing linguistic": 53412, "linguistic biases": 93008, "biases paper": 18297, "pervasive nature": 122773, "linguistic cognitive": 93014, "cognitive development": 25452, "development future": 41123, "reproduce biases": 141001, "implications potential": 72949, "bias amplification": 18096, "benefits ease": 17464, "need rigorous": 112382, "rigorous research": 144870, "research understand": 142132, "understand address": 170980, "improved model": 73702, "model transparency": 104807, "techniques development": 163869, "development methods": 41159, "methods distinguish": 101451, "text robust": 165439, "fairness bias": 57052, "bias evaluation": 18118, "ensure effective": 49680, "effective safe": 45880, "use powerful": 172804, "powerful technologies": 125336, "richness diversity": 144822, "diversity human": 43732, "social determinants": 152562, "determinants health": 40695, "health sdoh": 68973, "health record": 68964, "increasingly studied": 75443, "studied understand": 156943, "patient health": 120466, "health outcomes": 68956, "outcomes work": 117469, "work utilize": 179362, "annotation corpus": 9514, "annotated sdoh": 9490, "information explore": 76411, "explore automatic": 55155, "automatic extraction": 14675, "sdoh information": 147272, "formats using": 60571, "performance highperforming": 121627, "approach perform": 11444, "gpt4 method": 67078, "achieved overall": 3854, "n2c2 challenge": 111375, "knowledge retention": 82376, "models retain": 108977, "retain significant": 143957, "pretraining stage": 127444, "applied knowledgeintensive": 10772, "tasks prevalent": 162987, "understanding factual": 171235, "necessary build": 112140, "build responsible": 19346, "understand effect": 170998, "effect pretraining": 45669, "pretraining building": 127273, "building better": 19373, "paper utilize": 119384, "selection pretraining": 147879, "infuse knowledge": 76916, "knowledge model": 82232, "following steps": 60312, "measuring ability": 99941, "answer factual": 9711, "random tokens": 135545, "reproducibility code": 141011, "used paper": 173167, "translation large": 169474, "shift calls": 149901, "building generalpurpose": 19416, "taskspecific datasets": 163513, "plethora large": 123555, "vision recently": 176977, "seen rapid": 147701, "demonstrated improvements": 38715, "improvements downstream": 73896, "captioning visual": 20598, "work exploring": 178968, "exploring models": 55490, "task multimodal": 161553, "texttotext translation": 165872, "paper surveys": 119353, "surveys landscape": 159717, "summarize common": 158903, "datasets literature": 36964, "needed make": 112450, "progress multimodal": 129991, "video assistant": 176684, "assistant large": 13391, "enhanced ability": 49316, "conversational capabilities": 31854, "capabilities demonstrated": 19850, "emerged formidable": 47352, "applications recently": 10660, "developed purpose": 40909, "adaptation module": 4647, "model followed": 103685, "image language": 72284, "joint video": 81269, "video language": 176719, "widely explored": 178378, "aim develop": 7445, "capable comprehending": 20410, "video image": 176714, "language general": 83337, "framework achieve": 60915, "temporal modeling": 164271, "projection module": 130100, "designed bridge": 39828, "capabilities construct": 19834, "video instruction": 176717, "adopt twostage": 5586, "twostage tuning": 170276, "tuning procedure": 170094, "procedure train": 128711, "chatgpt facilitate": 22930, "facilitate construction": 56604, "encompassing various": 48559, "captions long": 20617, "long video": 97502, "video descriptions": 176700, "descriptions action": 39431, "action recognition": 4336, "causal relationship": 21221, "relationship inference": 139319, "align visual": 8040, "textual modalities": 165929, "instructionfollowing capability": 78177, "potential function": 124728, "effective video": 45925, "make complex": 98510, "complex video": 27641, "billions data": 18447, "autonomous workflow": 14955, "generate vast": 63779, "humans manage": 71432, "tasks considering": 162117, "considering large": 29718, "llms showcased": 96523, "showcased promising": 150093, "reasoning advocate": 136659, "process massive": 128917, "data displaying": 34924, "manner based": 98975, "sources end": 153503, "diverse human": 43541, "human demands": 70690, "acting like": 4301, "like experienced": 92265, "transforms raw": 169390, "results best": 143198, "match users": 99431, "interfaces tools": 79469, "response automatically": 142618, "users request": 173764, "interface design": 79424, "design deployment": 39601, "abundant data": 2701, "stock fund": 155832, "accurately respond": 3563, "respond diverse": 142591, "reliable ai": 139714, "automatic movie": 14715, "creation text": 33357, "powerful framework": 125275, "languages fully": 87014, "approach empowers": 11162, "users create": 173609, "simple text": 151540, "methods produce": 101729, "text detailed": 165013, "generation audio": 64438, "generate videos": 63783, "extend capabilities": 55617, "pretrained texttoimage": 127172, "texttoimage diffusion": 165811, "process firstly": 128839, "firstly employ": 59653, "finetuning bridge": 59185, "gap pretrained": 62708, "image model": 72289, "dataset subsequently": 36562, "subsequently introduce": 157981, "temporal learning": 164265, "object motion": 115148, "audio elements": 14171, "diverse scenes": 43641, "seamlessly fitting": 147299, "offering users": 115771, "immersive experience": 72609, "generated samples": 63969, "tradeoffs large": 167576, "practice employing": 125480, "human agents": 70561, "responses used": 142934, "assesses practical": 13161, "practical cost": 125405, "usefulness responses": 173366, "cost framework": 32678, "evaluating nlp": 51360, "models utility": 109599, "context existing": 30753, "compare strategies": 26733, "engineering finetuning": 48922, "distillation using": 43168, "usability models": 172431, "make large": 98560, "transformer module": 169187, "exhibit incontext": 53066, "abilities enable": 1898, "training contrast": 168203, "contrast traditional": 31331, "traditional adaptation": 167587, "adaptation approaches": 4601, "approaches finetuning": 11776, "examples existing": 52572, "engineering focus": 48923, "focus llms": 60019, "gap analysis": 62611, "representations contain": 140781, "contain sufficient": 30309, "sufficient information": 158486, "demonstrate performance": 38460, "gap exists": 62647, "probabilistic reasoning": 128097, "tasks raises": 163071, "llms actually": 94333, "capable learning": 20441, "learning reason": 90899, "trained transformerbased": 168103, "manner using": 99014, "modalities audio": 102917, "performance outperforms": 121884, "outperforms bloom": 117729, "engineering research": 48981, "improve software": 73628, "engineering se": 48983, "analysis synthesis": 9191, "interactions chatgpt": 79208, "chatgpt bring": 22750, "ethical challenges": 50794, "data security": 35715, "security risk": 147619, "risk generating": 144940, "biased potentially": 18236, "research aims": 141577, "research achieve": 141560, "achieve objective": 3695, "conducted literature": 29267, "principles empirically": 127859, "empirically evaluated": 47791, "questionnairebased survey": 135015, "se researchers": 147276, "researchers additionally": 142166, "approach analyze": 10990, "based decision": 15742, "decision model": 37376, "model conducted": 103342, "applied classification": 10740, "aim help": 7461, "researchers devise": 142199, "devise effective": 41327, "study establish": 157315, "establish benchmark": 50654, "benchmark incorporating": 17001, "incorporating chatgpt": 75086, "using adversarial": 173965, "adversarial training": 6238, "data assume": 34662, "text snippets": 165469, "examples present": 52661, "building agents": 19364, "agents large": 6639, "llms computer": 94683, "agent receives": 6495, "performs actions": 122426, "actions complete": 4368, "demonstrated benefits": 38623, "benefits incontext": 17471, "icl performance": 71690, "performance hindered": 121630, "hindered issues": 70140, "issues limited": 81028, "complex computer": 27380, "entire context": 49799, "highlevel plans": 69702, "multichoice questions": 110360, "longhorizon tasks": 97557, "agents rely": 6711, "state abstraction": 154978, "information raw": 76674, "context ii": 30789, "prompting prompts": 131052, "prompts llm": 131364, "llm complete": 93545, "actions improve": 4376, "improve multistep": 73529, "multistep decisionmaking": 111162, "memory stores": 100468, "similarity search": 151374, "standard task": 154882, "task suite": 161760, "achieves 992": 3952, "average success": 15315, "using demonstrations": 174130, "icl method": 71684, "remarkable data": 140189, "generate highfidelity": 63535, "data survey": 35834, "experimental data": 53930, "data widespread": 35966, "obtain human": 115479, "increase productivity": 75223, "concern conducted": 28738, "conducted case": 29213, "study prevalence": 157548, "amazon mechanical": 8618, "detection synthetic": 40628, "used llms": 173139, "llms completing": 94663, "completing task": 27317, "platforms researchers": 123415, "data remain": 35644, "using methodology": 174485, "questionanswering based": 134974, "augment pretrained": 14253, "search retrieval": 147408, "retrieval capabilities": 144019, "capabilities efficient": 19866, "specifically identify": 154222, "identify address": 71853, "efficiency costeffectiveness": 46437, "criteria evaluating": 33428, "systems conduct": 160302, "evaluation quantitative": 51811, "designs existing": 40017, "generating synthetic": 64350, "synthetic conversations": 160020, "conversations large": 31952, "phone calls": 122864, "significant value": 150911, "diverse fields": 43527, "healthcare law": 69003, "especially dealing": 50452, "dialogues work": 41574, "offline phase": 115880, "given list": 65931, "generating distribution": 64196, "synthetic sentences": 160074, "topic using": 167339, "model extracting": 103628, "online phase": 116119, "phase time": 122808, "time domain": 166381, "domain analysis": 44091, "paradigm provides": 119502, "provides accurate": 133103, "accurate efficient": 3452, "require labeled": 141128, "versatile approach": 176559, "approach applicable": 10993, "algorithm operates": 7836, "intelligence research": 78891, "research based": 141615, "based real": 16059, "images present": 72461, "work key": 179080, "ii training": 72111, "regarding data": 138864, "data introduce": 35256, "automatically assign": 14771, "involves employing": 80728, "extract entities": 56132, "model select": 104527, "labels paired": 82816, "image approach": 72178, "costly human": 32787, "billions imagetext": 18448, "dataset billion": 36137, "rich visual": 144813, "study different": 157286, "supervised pretraining": 159164, "pretraining contrastive": 127281, "contrastive pretraining": 31383, "pretraining multitask": 127395, "entity names": 49903, "experiments supervised": 54485, "finegrained entity": 58864, "effective image": 45776, "tasks multitask": 162829, "surpassing previous": 159522, "zeroshot linear": 180252, "outperforms clip": 117734, "trained original": 168033, "imagetext data": 72523, "data demonstrating": 34899, "dataset learning": 36390, "learning strong": 91028, "strong image": 156393, "compute efficient": 28442, "tuning deep": 169991, "propose practical": 132069, "optimization algorithm": 116974, "algorithm performs": 7841, "performs local": 122448, "local search": 97258, "search spaces": 147416, "black magic": 18617, "tuning results": 170111, "effectively solve": 46081, "procgen benchmark": 129365, "baseline ppo": 16251, "automated process": 14588, "process uses": 129027, "model agent": 103092, "answering framework": 9859, "llm dynamically": 93606, "utilization external": 174994, "tools investigate": 167188, "answers posed": 10063, "posed questions": 124190, "questions responding": 135264, "questions necessitate": 135204, "combinatorial search": 25864, "invoking apis": 80681, "analyzing responses": 9381, "responses making": 142848, "study collect": 157213, "instances human": 77834, "human decisionmaking": 70689, "dynamically determines": 45187, "key information": 81517, "information tool": 76811, "memory component": 100374, "acquired information": 4269, "information process": 76647, "process collected": 128756, "user behavior": 173378, "serves guide": 149041, "key ways": 81599, "decisions users": 37484, "set actions": 149125, "second use": 147513, "use examples": 172604, "examples user": 52722, "user decisionmaking": 173392, "provide llmpowered": 132877, "relevant contextual": 139585, "enhancing capacity": 49462, "model rescoring": 104463, "rescoring longform": 141554, "llm automated": 93485, "automated speech": 14609, "youtube videos": 180056, "use source": 172883, "longform asr": 97541, "reduction word": 138624, "wer english": 178199, "reduction 30": 138604, "model improved": 103830, "1best hypothesis": 566, "previous segments": 127647, "llms gains": 95335, "performance combination": 121263, "combination llms": 25831, "maximum entropy": 99695, "personal use": 122564, "current future": 34121, "works chatgpt": 179430, "increasingly significant": 75441, "iot devices": 80816, "potential producing": 124921, "producing complex": 129547, "method implementing": 100915, "paper details": 118848, "python implementation": 133833, "constrained environments": 30030, "assessing effectiveness": 13174, "effectiveness gpt3": 46190, "political statements": 123906, "spread misinformation": 154598, "stateoftheart machine": 155203, "employed various": 47905, "include use": 74344, "singh et": 151770, "achieved higher": 3824, "accuracy stateoftheart": 3397, "using carefully": 174018, "designed prompt": 39930, "prompt achieved": 130364, "provided evidence": 133051, "transparency models": 169585, "users verify": 173813, "verify validity": 176544, "geographical proximity": 65712, "exhibit similarities": 53103, "expectations content": 53741, "analysis individual": 8975, "objective develop": 115183, "facilitating automated": 56697, "automated verification": 14627, "present database": 126277, "database comprising": 35987, "rules manually": 145719, "literature furthermore": 93169, "analysis process": 9085, "users visualize": 173815, "additionally provided": 5125, "tools collection": 167125, "general multimodal": 63001, "multimodal assistant": 110590, "nlp ai": 113680, "llms planning": 96107, "models apis": 105368, "address general": 5244, "multimodal user": 110784, "queries despite": 134467, "diverse nature": 43587, "nature visual": 112039, "tasks diversity": 162247, "aspects reasoning": 12968, "reallife applications": 136334, "query planning": 134613, "usually required": 174915, "cases involves": 20978, "videos images": 176777, "image reference": 72316, "process generate": 128845, "results video": 143928, "video clips": 176692, "general cases": 62924, "cases propose": 21008, "reasoning approach": 136672, "integrate llms": 78498, "tools specifically": 167257, "capable using": 20482, "reasoning progress": 137069, "entire reasoning": 49813, "designed enable": 39858, "model autonomously": 103167, "discover optimal": 42737, "far complex": 57213, "agi computer": 6796, "algorithms known": 7936, "problem recently": 128374, "chat systems": 22553, "systems powered": 160537, "emerge rapidly": 47332, "rapidly promising": 135938, "direction achieve": 42426, "agi natural": 6805, "language signals": 86724, "paper start": 119335, "tasks chat": 162039, "important goal": 73140, "despite various": 40248, "integrates tasks": 78571, "tasks point": 162952, "paradigm learn": 119478, "accomplished task": 3016, "text world": 165578, "future frames": 62264, "tasks expect": 162353, "research engineering": 141754, "chatgpt prompt": 23219, "prompt injection": 130545, "crowdsourcing tasks": 33738, "learning training": 91090, "automatically answer": 14767, "surveys llms": 159718, "propose mechanism": 131912, "detect llmgenerated": 40365, "llmgenerated responses": 94203, "uses prompt": 173898, "mislead llms": 102504, "responses evaluate": 142778, "evaluate technique": 51115, "scenarios types": 146713, "effectiveness provide": 46279, "provide opensource": 132909, "opensource software": 116677, "detect llm": 40364, "responses work": 142947, "step ensuring": 155628, "document pretraining": 43844, "pretraining document": 127307, "entity retrieval": 49939, "broad applications": 19165, "ai publicly": 7179, "scarce tasks": 146479, "strict privacy": 156294, "privacy constraints": 127992, "high annotation": 69394, "annotation costs": 9517, "costs make": 32832, "make things": 98616, "things worse": 166131, "spaces different": 153635, "datasets hinder": 36911, "document types": 43861, "types paper": 170397, "weakly labeled": 177950, "benefit training": 17447, "does depend": 43973, "types entity": 170349, "incorporated pretraining": 75044, "classic fewshot": 23924, "settings recent": 149636, "reasoning plays": 137033, "implicit meanings": 72986, "essential development": 50600, "social agents": 152526, "agents paper": 6677, "reasoning situated": 137123, "works treat": 179515, "figurative expressions": 58317, "metaphor sarcasm": 100594, "turk amt": 170166, "multiturn dialogues": 111273, "propose tasks": 132158, "identification reasoning": 71802, "answering cqa": 9829, "results stateoftheart": 143812, "significant findings": 150708, "performance tackling": 122150, "comprehensive comprehension": 27984, "emerges critical": 47489, "interactions current": 79217, "policy learning": 123857, "information key": 76536, "data provides": 35585, "learn policy": 90031, "training utilizing": 168815, "mere language": 100521, "model bridging": 103227, "integrating data": 78588, "chess games": 23582, "games specifically": 62587, "specifically build": 154145, "language dataset": 83235, "dataset related": 36500, "leveraging dataset": 91831, "dataset showcase": 36536, "model examples": 103580, "validate model": 175327, "datasets effectiveness": 36808, "models unprecedented": 109556, "unprecedented performance": 172086, "llms necessitates": 95928, "llm abilities": 93423, "applicable evaluations": 10281, "llm assessment": 93479, "assessment benchmark": 13217, "design crucial": 39592, "crucial factors": 33800, "factors ability": 56785, "data ensure": 34983, "fair comparisons": 57031, "wikipedia corpus": 178498, "llms continuously": 94728, "capacity handle": 20509, "handle unseen": 68574, "unseen data": 172153, "knowledge evaluation": 81958, "adopt contrastive": 5568, "including overall": 74657, "scores better": 147126, "automatically evaluating": 14800, "evaluating knowledge": 51321, "opensource commercial": 116588, "openparticipation leaderboard": 116543, "leaderboard publicly": 89795, "provide references": 132950, "models teach": 109361, "improve students": 73634, "ability teach": 2392, "generating explanations": 64209, "explanations predictions": 54888, "good teachers": 66298, "agents address": 6533, "framework llm": 61294, "agents study": 6739, "data student": 35812, "improve student": 73633, "explaining data": 54762, "personalize explanations": 122583, "explanations better": 54820, "teacher llms": 163613, "student reasoning": 156827, "reasoning improve": 136909, "mind abilities": 102278, "teachers propose": 163630, "models student": 109252, "improving student": 74221, "student performance": 156824, "second model": 147495, "interactions teacher": 79271, "explained data": 54755, "data improves": 35193, "performance future": 121549, "data finally": 35052, "performance random": 121979, "applicability adaptability": 10249, "llms enabled": 95057, "enabled rapid": 48146, "rapid adoption": 135841, "adoption pretrained": 5650, "copyright infringement": 32129, "producing harmful": 129554, "model supply": 104691, "supply chains": 159251, "method investigate": 100939, "piece text": 122974, "pretrained base": 126755, "step address": 155594, "address open": 5328, "tracing origin": 167515, "origin given": 117306, "model consider": 103348, "different knowledge": 41809, "fine tuned": 58840, "learning experience": 90434, "experience students": 53845, "students teachers": 156905, "students learn": 156875, "learn teachers": 90066, "material teachers": 99503, "students refine": 156893, "instruction online": 78040, "student feedback": 156809, "feedback unstructured": 57814, "making challenging": 98711, "dataset studying": 36561, "studying problem": 157724, "massachusetts institute": 99338, "institute technology": 77916, "second develop": 147468, "feedback types": 57812, "using qualitative": 174636, "analysis methods": 9017, "methods powerful": 101714, "apply large": 10858, "overcome challenge": 118272, "classify comments": 24205, "correlation models": 32551, "interrater reliability": 79747, "demonstrate lower": 38415, "uncover useful": 170737, "exciting future": 52876, "using online": 174551, "feedback improving": 57708, "improving automated": 74110, "automated annotation": 14515, "better work": 18071, "laws large": 89612, "improvements overall": 73928, "worse task": 179666, "performance increased": 121666, "objective data": 115179, "data present": 35524, "analysis datasets": 8878, "literature identify": 93176, "potential causes": 124639, "preference repeat": 126025, "memorized sequences": 100351, "sequences following": 148818, "following incontext": 60279, "instructions ii": 78277, "data iii": 35172, "task lms": 161527, "real task": 136254, "task iv": 161499, "demonstrations task": 39048, "task release": 161686, "models previously": 108641, "needs data": 112469, "objectives training": 115265, "nlp demand": 113721, "massive gpu": 99355, "approaches focused": 11778, "adds small": 5491, "addressed challenge": 5393, "tuning parameters": 170075, "lowmemory optimization": 97873, "optimization lomo": 117009, "computation parameter": 28315, "parameter update": 119648, "existing memory": 53434, "memory saving": 100461, "techniques reduce": 164005, "108 compared": 202, "consequently approach": 29536, "enables parameter": 48238, "model single": 104585, "single machine": 151829, "rtx 3090": 145680, "evaluating efficacy": 51290, "diverse disciplines": 43510, "work conducts": 178864, "conducts comprehensive": 29329, "array research": 12526, "research disciplines": 141727, "analysis encompasses": 8904, "encompasses wide": 48542, "including computer": 74469, "mechanical engineering": 99966, "electrical engineering": 46983, "indicate significant": 75622, "significant variance": 150915, "chatgpt4s performance": 23457, "validity rate": 175396, "context retrieving": 30906, "narrowly defined": 111471, "accuracy diverse": 3207, "diverse research": 43633, "indicating potential": 75660, "model refinement": 104438, "refinement enhance": 138754, "capacities limitations": 20490, "aipowered tools": 7691, "scholarly research": 146822, "research emphasizing": 141748, "indispensable role": 75686, "validation leveraging": 175367, "models science": 109045, "advent chatgpt": 6164, "chatgpt openai": 23158, "extensive discourse": 55749, "potential implications": 124770, "science higher": 146877, "education primary": 45569, "primary focus": 127811, "focus limited": 60016, "limited empirical": 92756, "empirical research": 47717, "effects large": 46336, "llms llmbased": 95811, "llmbased chatbots": 94132, "research ai": 141571, "study focused": 157371, "legal considerations": 91283, "use findings": 172624, "highlight transformative": 69790, "transformative potential": 169073, "llms science": 96488, "analytical tasks": 9258, "tasks risks": 163191, "risks related": 145021, "related bias": 139149, "ai science": 7206, "helps identify": 69242, "future action": 62213, "relevance modeling": 139561, "modeling using": 105121, "expansion llms": 53715, "generate irrelevant": 63586, "use neural": 172778, "standard document": 154815, "ranking benchmarks": 135797, "methods evaluating": 101490, "superhuman models": 158984, "models consistency": 105754, "reasoning decisionmaking": 136797, "models decisions": 105857, "fail satisfy": 56981, "satisfy certain": 146171, "framework tasks": 61450, "hard evaluate": 68641, "abilities missing": 1961, "forecasting future": 60374, "events making": 52120, "making legal": 98774, "legal judgments": 91301, "models possibly": 108574, "tasks discover": 162238, "logical inconsistencies": 97362, "time ai": 166348, "considerations regarding": 29671, "education artificial": 45517, "scientific domains": 146957, "far mainly": 57228, "mainly utilized": 98302, "utilized enhance": 175100, "tutoring systems": 170199, "systems services": 160607, "support chatgpt": 159261, "chatgpt artificial": 22713, "artificial intelligencebased": 12783, "intelligencebased chatbot": 78929, "november 2022": 114764, "2022 rapidly": 678, "attention entire": 13871, "international community": 79575, "comprehensive systematic": 28140, "informative humanlike": 76875, "responses user": 142935, "input natural": 77292, "posed challenges": 124183, "potential issues": 124798, "issues concerns": 80992, "concerns raised": 28813, "raised regarding": 135472, "various scientific": 176156, "implications arising": 72904, "enrich understanding": 49615, "understanding generative": 171271, "examines transformative": 52439, "transformative role": 169077, "llms education": 95002, "education potential": 45568, "learning tools": 91086, "despite inherent": 40144, "inherent risks": 76972, "risks limitations": 145002, "authors propose": 14443, "approaches utilizing": 11953, "utilizing ai": 175168, "benefits risks": 17492, "risks aim": 144972, "help students": 69184, "practical strategies": 125454, "strategies designed": 155986, "designed mitigate": 39911, "output errors": 117924, "errors biases": 50338, "promote active": 130335, "critical assessment": 33463, "ais capabilities": 7697, "unique insights": 171844, "insights challenging": 77521, "challenging students": 22278, "students remain": 156895, "human loop": 70922, "aim enhance": 7447, "outcomes ensuring": 117448, "ensuring ai": 49727, "framework offers": 61328, "aiassisted learning": 7332, "structure language": 156577, "building theoretical": 19455, "ability predict": 2320, "explain behavior": 54694, "behavior systems": 16652, "systems investigate": 160443, "capabilities extracting": 19892, "extracting latent": 56235, "individual differences": 75712, "using combination": 174063, "factor analysis": 56776, "cognitive tasks": 25489, "evidence llm": 52196, "instead better": 77867, "high proportion": 69509, "variance model": 175609, "consistent structure": 29840, "capabilities different": 19857, "multifaceted nature": 110403, "nature capabilities": 111988, "abilities different": 1894, "different relationships": 41965, "model properties": 104374, "properties model": 131652, "size instruction": 152012, "help refine": 69170, "refine understanding": 138743, "ability simultaneously": 2371, "focusing tasks": 60201, "using embeddings": 174160, "embeddings large": 47247, "myriad tasks": 111360, "chatbots respond": 22635, "respond user": 142598, "providing informative": 133317, "incomplete knowledge": 74814, "knowledge areas": 81752, "science domains": 146863, "domains demonstrate": 44382, "software tools": 152851, "tools easily": 167145, "easily combined": 45306, "documents existing": 43906, "provide llm": 132876, "llm domainspecific": 93604, "embedding methods": 47180, "methods used": 101908, "used search": 173224, "llms suitable": 96727, "suitable use": 158710, "accelerating research": 2800, "research efforts": 141741, "drawn considerable": 44945, "attention general": 13884, "experts remarkable": 54680, "remarkable text": 140306, "diverse applications": 43459, "health work": 68985, "work examine": 178943, "health specifically": 68976, "areas biomedical": 12358, "answering medical": 9900, "summarization information": 158838, "extraction medical": 56322, "transformative power": 169076, "complexities biomedical": 27652, "domain presents": 44247, "challenges following": 21873, "field text": 58254, "recent rapid": 137609, "rapid progress": 135897, "methods hold": 101573, "accelerating discovery": 2790, "improving health": 74151, "concerns associated": 28765, "sensitive patient": 148433, "patient data": 120462, "data believe": 34714, "believe survey": 16792, "survey provide": 159672, "comprehensive timely": 28147, "timely overview": 166574, "biomedical researchers": 18573, "healthcare practitioners": 69006, "llms transforming": 96852, "fmri using": 59932, "abilities visual": 2040, "visual processing": 177247, "including image": 74559, "image recognition": 72315, "scene summarization": 146744, "efforts understand": 46939, "cognitive capacities": 25448, "understanding underlying": 171517, "brain decoding": 18943, "decoding techniques": 37605, "techniques led": 163951, "cognitive neuroscience": 25465, "challenges persist": 21990, "information article": 76284, "article propose": 12594, "captions generated": 20608, "generated based": 63800, "fmri data": 59931, "data gain": 35085, "neural correlates": 112841, "perception research": 120821, "research presents": 141982, "generate captions": 63409, "respectively evaluated": 142551, "demonstrating strong": 38960, "including understanding": 74769, "understanding neural": 171370, "neural mechanisms": 112877, "enhancing learning": 49506, "training processes": 168657, "autonomous gpt": 14940, "study inspired": 157414, "stateoftheart opensource": 155263, "application based": 10302, "based gpt4": 15849, "tool called": 166953, "conduct data": 29061, "collection processing": 25749, "processing analysis": 129110, "autonomous manner": 14943, "data variety": 35943, "june 2022": 81350, "identification salient": 71805, "relevant discourse": 139591, "insights public": 77633, "signifies transformative": 151185, "ai facilitating": 6990, "manner setting": 99009, "setting groundwork": 149463, "future aidriven": 62220, "global health": 66092, "shapley values": 149789, "effective identifying": 45775, "instances dataset": 77822, "constraints limit": 30098, "limit ability": 92480, "algorithm reduces": 7846, "efficient samplingbased": 46710, "method aggregates": 100666, "values computed": 175525, "experiments applying": 54148, "select data": 147772, "data increase": 35211, "increase language": 75209, "model autoregressive": 103168, "recent months": 137566, "weights public": 178123, "demonstrating impressive": 38940, "solving tasks": 153252, "tasks searching": 163207, "complex documents": 27404, "analysis providing": 9102, "problemsolving paper": 128668, "propose formalizing": 131830, "received little": 137309, "attention present": 13968, "present contribution": 126273, "algorithm sampling": 7852, "lms use": 97213, "use build": 172520, "build reliable": 19345, "language write": 86901, "hope shed": 70382, "light need": 92131, "encourage research": 48602, "comparative analysis": 26633, "human aigenerated": 70565, "learning resources": 90926, "students online": 156881, "online learning": 116113, "personalized learning": 122607, "great need": 67697, "llms appear": 94409, "rapid creation": 135861, "learning materials": 90669, "reducing burden": 138551, "instructors study": 78425, "study investigated": 157434, "investigated potential": 80537, "comparing quality": 27008, "llm created": 93571, "created students": 33272, "activity using": 4468, "students rated": 156891, "correctness helpfulness": 32492, "results quality": 143721, "resources serve": 142488, "serve viable": 149020, "certain contexts": 21374, "llms tend": 96781, "closely mirror": 24523, "exhibit greater": 53052, "specific syntax": 154096, "syntax features": 159919, "features used": 57598, "research exploring": 141780, "subject areas": 157826, "impact aigenerated": 72619, "cognitive ability": 25436, "llms adaptive": 94340, "perspective large": 122674, "shown humanlike": 150263, "standard test": 154884, "results traditional": 143872, "metrics accuracy": 101994, "accuracy recall": 3363, "recall f1": 137265, "way evaluating": 177805, "science perspective": 146901, "testing framework": 164714, "questions difficulty": 135104, "performance allows": 121147, "accurate estimation": 3454, "allows llms": 8451, "diagnostic reports": 41387, "reports chatgpt": 140585, "behaves like": 16557, "questions conduct": 135075, "conduct finegrained": 29138, "latest instructiontuned": 89553, "llms aspects": 94431, "outperform models": 117609, "different tests": 42046, "using efficient": 174158, "efficient adaptive": 46565, "preliminary tests": 126152, "interactive personalized": 79328, "experiences development": 53861, "interaction capabilities": 79105, "available platforms": 15178, "chatgpt suggest": 23367, "possibility developing": 124379, "chatbots using": 22645, "chatbot interactions": 22577, "examine chatgpts": 52376, "ability pursue": 2334, "multiple interconnected": 110949, "objectives adapt": 115237, "level education": 91464, "education ability": 45514, "ability use": 2406, "highly structured": 69961, "structured form": 156634, "lead unexpected": 89785, "role teacher": 145539, "provide initial": 132842, "issues facilitate": 81003, "llms exploit": 95200, "exploit finetuning": 55003, "finetuning technique": 59584, "technique adapt": 163736, "task specificity": 161742, "hand hand": 68487, "specialization llm": 153865, "address tasks": 5375, "usually finetuned": 174902, "enterprise knowledge": 49787, "augment domain": 14238, "reasoning goal": 136889, "combining llm": 25985, "novel neurosymbolic": 114614, "reasoning build": 136692, "task domainspecific": 161338, "crosslingual alignment": 33648, "alignment instruction": 8172, "remarkable prowess": 140281, "prowess language": 133418, "llms instructionfollowing": 95652, "instructionfollowing llms": 78192, "llms instruction": 95650, "preferences existing": 126037, "leading inferior": 89831, "performance nonenglish": 121848, "languages order": 87077, "languages necessary": 87070, "languagespecific training": 87165, "data foundation": 35078, "propose transfer": 132175, "instructionfollowing llm": 78191, "llm automatically": 93489, "instructing tuning": 77961, "tuning extensive": 170009, "assessments demonstrate": 13281, "performance gpt35turbo": 121606, "despite utilizing": 40247, "considerably smaller": 29650, "smaller parameter": 152430, "size 13": 151957, "results translation": 143878, "gpt4 automatic": 66921, "estimate performance": 50727, "general tasks": 63054, "multiturn instruction": 111274, "instruction test": 78063, "set called": 149145, "achieves 89": 3947, "demonstrates outstanding": 38870, "assessment chinese": 13220, "chinese gaokao": 23628, "llms demo": 94805, "theory mathematical": 166089, "current observation": 34198, "physical reality": 122907, "applies current": 10828, "networks including": 112761, "details model": 40335, "models constructed": 105762, "constructed complex": 30170, "light challenges": 92101, "intelligence following": 78819, "democratizing llms": 38199, "languages leveraging": 87046, "effectively perform": 46062, "unsupervised techniques": 172275, "llms observed": 95951, "elicit llms": 47043, "ability lowresource": 2269, "languages supervised": 87138, "data propose": 35569, "languages prompt": 87099, "llms translate": 96853, "translate language": 169407, "language english": 83286, "english prompts": 49098, "par supervised": 119421, "supervised fewshot": 159103, "translations english": 169554, "languages finetuning": 87011, "finetuning 7b": 59151, "generated method": 63922, "perform competitively": 120897, "model nonenglish": 104131, "outperforms supervised": 117874, "languages evaluated": 86995, "summarization method": 158847, "formal specifications": 60517, "shortcomings current": 150021, "instead humans": 77879, "data try": 35892, "raven iq": 136079, "iq test": 80825, "based rules": 16083, "objects attributes": 115275, "based induced": 15871, "solution test": 152985, "test propose": 164600, "provide formal": 132795, "formal specification": 60516, "task generative": 161432, "generative process": 65577, "process datasets": 128782, "attention impressive": 13898, "impressive natural": 73317, "capabilities crucial": 19840, "utilizing models": 175215, "utmost importance": 175246, "latest llms": 89562, "aims address": 7571, "gaps introducing": 62760, "llms crucial": 94764, "crucial areas": 33760, "toxicity bias": 167467, "toxicity language": 167474, "derived social": 39365, "extent bias": 56000, "toxicity values": 167482, "values different": 175529, "groups lastly": 67972, "models active": 105263, "tasks implementation": 162527, "enhance understanding": 49306, "models promote": 108682, "models ethical": 106161, "socially responsible": 152680, "transformer machine": 169165, "simulation complex": 151689, "model lead": 103937, "lead poor": 89767, "acceptance rates": 2840, "systematically improved": 160191, "method overcomes": 101022, "number layers": 114898, "simulating complex": 151676, "complex physical": 27515, "sequences complex": 148809, "complex events": 27415, "models reshaped": 108954, "reshaped natural": 142302, "versatility diverse": 176582, "tasks potential": 162962, "potential extends": 124717, "realize potential": 136328, "potential extending": 124716, "medical record": 100211, "datasets despite": 36785, "adoption foundation": 5633, "suitable tools": 158708, "tools model": 167212, "model construction": 103363, "construction evaluation": 30214, "opensource library": 116627, "library designed": 92038, "event sequences": 52093, "users build": 173589, "configuration file": 29379, "causal dependency": 21179, "capabilities evaluate": 19876, "models standardized": 109224, "standardized processes": 154907, "processes assess": 129052, "assess zeroshot": 13136, "new large": 113248, "code significantly": 25138, "model 13b": 102994, "1b tokens": 562, "pass1 accuracy": 120327, "surprising emergent": 159546, "350m parameters": 1062, "trained pipeline": 168037, "models exhibited": 106216, "exciting progress": 52883, "capabilities capturing": 19806, "sensitive applications": 148414, "applications healthcare": 10551, "end work": 48697, "proposes comprehensive": 132459, "diverse perspectives": 43599, "including toxicity": 74762, "bias adversarial": 18092, "robustness adversarial": 145346, "adversarial demonstrations": 6197, "privacy machine": 128011, "machine ethics": 98000, "ethics fairness": 50852, "fairness based": 57051, "based evaluations": 15781, "previously unpublished": 127751, "instance gpt": 77798, "easily misled": 45329, "toxic biased": 167451, "leak private": 89927, "private information": 128048, "conversation history": 31794, "gpt35 standard": 66856, "prompts potentially": 131408, "models sheds": 109090, "distribution modeling": 43373, "performance evaluating": 121469, "controlling models": 31668, "models desired": 105936, "desired attributes": 40039, "attributes remains": 14127, "challenge traditional": 21744, "traditional referencebased": 167687, "metrics bleu": 102019, "bleu rouge": 18686, "tasks similarly": 163248, "obtaining highquality": 115545, "highquality training": 70088, "nontrivial task": 114159, "parameter counts": 119601, "distributions known": 43424, "known superior": 82631, "superior quality": 159053, "quality measures": 134198, "generation evaluation": 64621, "evaluation paradigms": 51763, "generate indomain": 63566, "samples training": 146072, "directly uses": 42610, "experiments multiturn": 54374, "multiturn dialogue": 111271, "correlate better": 32514, "judgment existing": 81321, "existing automatic": 53286, "metrics tasks": 102155, "tasks highlighting": 162504, "performance generalizability": 121573, "methods exploring": 101506, "exploring new": 55492, "new frontiers": 113205, "investigating potential": 80609, "explores new": 55410, "corpora pretraining": 32241, "task semantic": 161714, "matching involves": 99465, "involves establishing": 80729, "data accomplish": 34575, "task utilizing": 161804, "utilizing external": 175185, "avenues exploration": 15244, "gptbased models": 67284, "shown strong": 150382, "baseline nlp": 16246, "concepts relationships": 28686, "additionally experiment": 5057, "expand scope": 53689, "scope research": 147020, "research include": 141846, "avenues future": 15246, "implications improving": 72935, "applications deep": 10470, "efficient network": 46685, "network training": 112703, "learning remarkable": 90916, "domains particularly": 44493, "particularly notable": 120232, "notable impact": 114228, "impact natural": 72696, "tasks challenges": 162037, "training deep": 168378, "llms need": 95929, "algorithms offer": 7952, "potential cost": 124660, "understood present": 171553, "present deep": 126279, "networks second": 112798, "propose theoretical": 132164, "analysis illustrate": 8963, "approach accelerates": 10941, "accelerates training": 2787, "process reduces": 128963, "surpassing traditional": 159530, "traditional training": 167712, "methods performance": 101708, "finally validate": 58541, "validate theoretical": 175336, "framework guides": 61189, "optimal use": 116961, "optimized training": 117096, "reduces training": 138539, "prompt sapper": 130657, "sapper llmempowered": 146143, "building ai": 19365, "emergence foundation": 47417, "opened numerous": 116483, "numerous possibilities": 115060, "possibilities various": 124374, "tasks people": 162938, "use foundation": 172633, "models chatbots": 105605, "models production": 108669, "ai services": 7213, "apis like": 10193, "llmbased application": 94120, "application development": 10313, "programming knowledge": 129828, "posing barrier": 124242, "concept ai": 28582, "ai chain": 6900, "chain engineering": 21453, "engineering methodology": 48954, "integrated development": 78520, "quality ai": 134033, "chains prompt": 21562, "promptbased ai": 130751, "services foundation": 149079, "requirement analysis": 141267, "visual programming": 177249, "demonstrated efficiency": 38651, "correctness prompt": 32497, "models deployed": 105924, "deployment introduce": 39277, "automatically identifies": 14829, "naturallanguage descriptions": 111968, "patterns model": 120550, "uncover systematic": 170735, "output prompts": 117982, "gpt4 systematic": 67192, "distinct inputs": 43228, "clip backbone": 24390, "backbone stateoftheart": 15419, "relevant specific": 139653, "selfdriving cars": 147983, "step evaluation": 155632, "chatgpt tool": 23397, "tool user": 167050, "user story": 173502, "story quality": 155899, "user stories": 173501, "play vital": 123474, "features facilitating": 57493, "facilitating communication": 56701, "communication collaboration": 26352, "development teams": 41233, "training nlp": 168607, "timeconsuming develop": 166538, "explores using": 55441, "chatgpt user": 23415, "evaluation compares": 51487, "evaluation aligns": 51429, "aligns human": 8269, "propose best": 131733, "best strategy": 17754, "improve output": 73537, "output stability": 118001, "ai implications": 7037, "nonexperts using": 114064, "understanding reliability": 171456, "reliability applicability": 139674, "applicability ai": 10250, "story evaluation": 155895, "evaluation offers": 51749, "offers recommendations": 115843, "recommendations future": 138245, "models advent": 105302, "llms vast": 96968, "data solve": 35773, "tasks list": 162742, "recent papers": 137577, "papers provide": 119401, "aspects linguistic": 12950, "proving llms": 133408, "llms learn": 95740, "properties including": 131648, "generally llms": 63317, "unable learn": 170604, "limits ability": 92905, "lms large": 97158, "large small": 89059, "means llms": 99816, "llms continue": 94723, "linguistic understanding": 93080, "understanding solving": 171480, "puzzle game": 133815, "game using": 62574, "response formats": 142645, "performance chainofthought": 121224, "evidence models": 52201, "generated rules": 63968, "generation remains": 65038, "joint prompt": 81262, "using variational": 174841, "variational inference": 175650, "llms seen": 96497, "layers language": 89671, "language network": 86441, "parameters natural": 119810, "layer obtain": 89642, "perform prompt": 121011, "inference prompts": 76081, "learned parameters": 90112, "distribution test": 43396, "single layer": 151821, "gpt4 llm": 67066, "llm network": 93845, "exhibit biases": 53028, "humans specifically": 71472, "science human": 146879, "analysis introduce": 8984, "psychological experiments": 133502, "experiments assess": 54155, "assess human": 13086, "examine types": 52416, "types biases": 170331, "biases observed": 18294, "effects findings": 46331, "problems involving": 128541, "word models": 178654, "models translating": 109505, "language thought": 86787, "thought does": 166223, "humans make": 71431, "leverage theory": 91672, "machines think": 98168, "propose rational": 132091, "computational framework": 28365, "combines neural": 25948, "models probabilistic": 108650, "architecture integrates": 12174, "probabilistic programs": 128096, "model meaning": 104074, "examples covering": 52548, "relational reasoning": 139278, "physical reasoning": 122908, "social reasoning": 152652, "inference generated": 76020, "generated programs": 63944, "robust commonsense": 145249, "extend framework": 55625, "framework integrate": 61229, "symbolic modules": 159815, "graphics engines": 67608, "planning algorithms": 123246, "algorithms provide": 7965, "interface language": 79439, "provide roadmap": 132963, "cognitive models": 25464, "systems synthesize": 160636, "generative multimodal": 65517, "entities knowledge": 49853, "base wikipedia": 15637, "methods mainly": 101653, "focus designing": 59967, "designing complex": 39990, "multimodal interaction": 110673, "parameters prohibitively": 119840, "costly difficult": 32783, "difficult scale": 42178, "directly generates": 42546, "adapt llms": 4539, "task advantage": 161177, "emergent incontext": 47481, "llms retrieving": 96447, "demonstrations extensive": 39003, "experiments 03": 54119, "results wellestablished": 143931, "77 accuracy": 1599, "88 accuracy": 1727, "mitigating popularity": 102673, "popularity bias": 124082, "bias llm": 18154, "common entities": 26135, "approach compatible": 11064, "offtheshelf language": 115909, "efficient general": 46628, "general solution": 63049, "utilizing llms": 175211, "stepbystep thinking": 155705, "thinking instructions": 166151, "humor generation": 71532, "generation artificial": 64431, "intelligence significant": 78897, "gpt3 demonstrating": 66675, "limitations comes": 92553, "require understanding": 141215, "mastering human": 99398, "strategies paper": 156048, "instructions addition": 78205, "addition explore": 4860, "explore role": 55292, "role cognitive": 145468, "driven large": 44983, "enrich human": 49613, "study aimed": 157142, "compare contrast": 26667, "comprehension capabilities": 27883, "humans llms": 71427, "conducted experiment": 29237, "small sample": 152352, "app reviews": 10210, "llms asked": 94430, "provide reasoning": 132947, "classification reasoning": 24065, "reasoning research": 137105, "indicated significant": 75633, "significant alignment": 150586, "chatgpt 35": 22658, "lower alignment": 97812, "alignment gpt4": 8156, "models showed": 109097, "showed higher": 150139, "comparison human": 27047, "human llms": 70920, "reasoning appears": 136671, "word choices": 178616, "components app": 27749, "llm collaboration": 93540, "continuously evaluate": 31265, "llms role": 96478, "ai humans": 7032, "answering external": 9847, "challenges hallucination": 21892, "llms questionanswering": 96277, "questionanswering abilities": 134971, "current evaluation": 34113, "designed faithfully": 39881, "process dataset": 128781, "specialized tools": 153915, "tools designed": 167138, "designed interaction": 39900, "order answer": 117173, "overlap benchmark": 118366, "enabling precise": 48337, "precise evaluation": 125582, "llms tooluse": 96812, "tooluse reasoning": 167294, "conducted indepth": 29262, "findings set": 58792, "available broader": 15078, "broader scientific": 19221, "community github": 26482, "model mllm": 104091, "powerful llm": 125301, "perform multimodal": 120983, "based image": 15863, "studies fully": 157007, "lacking comprehensive": 83035, "evaluation paper": 51755, "presenting comprehensive": 126538, "perception cognition": 120796, "cognition abilities": 25429, "total 14": 167410, "subtasks order": 158185, "avoid data": 15336, "data leakage": 35304, "manually designed": 99091, "instruction design": 77986, "fairly compare": 57046, "engineering instruction": 48937, "easily carry": 45305, "total 30": 167412, "advanced mllms": 5776, "mllms comprehensively": 102814, "comprehensively evaluated": 28172, "suggests existing": 158657, "reveals potential": 144444, "directions subsequent": 42499, "model optimization": 104157, "efficient online": 46689, "adoption deep": 5630, "classify human": 24209, "human actions": 70556, "medical scans": 100218, "experts large": 54664, "questions generate": 135139, "code write": 25218, "continually increasing": 31177, "sizes computational": 152089, "computational complexities": 28340, "models evident": 106174, "instead pursuing": 77895, "network efficiency": 112645, "efficiency specifically": 46531, "aspects online": 12959, "online inference": 116106, "spatiotemporal data": 153821, "pretrained weights": 127249, "architectural modifications": 12113, "benefit online": 17444, "used network": 173158, "including 3d": 74403, "large source": 89063, "models drawing": 106029, "adapter networks": 4714, "structured pruning": 156665, "pruning adapters": 133451, "superior predictive": 159052, "using significantly": 174713, "weights compared": 178103, "comparing efficacy": 26982, "explore fewshot": 55207, "learning control": 90332, "control problems": 31578, "involves learning": 80747, "relatively underexplored": 139424, "underexplored despite": 170767, "despite relevance": 40192, "robotics control": 145205, "control applications": 31519, "environment given": 50002, "investigate alternative": 80368, "family methods": 57199, "pretrain single": 126743, "data recent": 35616, "especially data": 50451, "evaluate extent": 50967, "proposing simple": 132504, "soft actorcritic": 152732, "ii finetuning": 72091, "finetuning base": 59176, "behavioral cloning": 16666, "baseline competitive": 16202, "able imitate": 2521, "policies trained": 123823, "variations original": 175658, "original environment": 117331, "importantly proposed": 73228, "approach practical": 11452, "easy implement": 45357, "need complex": 112246, "release open": 139488, "mujoco environments": 110297, "associated pretrained": 13502, "pretrained target": 127168, "learning offline": 90786, "feedback natural": 57741, "feedback offers": 57748, "rich insights": 144785, "insights user": 77664, "used refine": 173209, "specific examples": 153991, "examples introduce": 52621, "feedback use": 57815, "use feedback": 172621, "feedback formalize": 57685, "produce better": 129373, "metric design": 101964, "ii language": 72097, "refining model": 138785, "improving search": 74216, "generation demonstrating": 64561, "feedback combination": 57651, "feedback results": 57780, "written ones": 179787, "ones underlying": 116021, "importance human": 73037, "building systems": 19453, "token selection": 166735, "selection attention": 147835, "underlying attention": 170829, "understood especially": 171548, "nonconvex optimization": 114031, "optimization dynamics": 116991, "selection mechanism": 147868, "applicable general": 10283, "general data": 62933, "precisely characterize": 125601, "provide broader": 132695, "based labels": 15898, "theoretical findings": 166030, "bring data": 19122, "realistic data": 136288, "data imperative": 35183, "ensure model": 49692, "client requests": 24305, "current evaluations": 34117, "evaluations approach": 51940, "approach problem": 11460, "small domainspecific": 152288, "distribution data": 43350, "set lead": 149232, "lead misleading": 89761, "framework selfsupervised": 61399, "llms analyzing": 94397, "analyzing sensitivity": 9384, "text selfsupervised": 165449, "evaluation directly": 51548, "evaluation strategies": 51873, "strong correlations": 156373, "data retrieving": 35675, "supporting evidence": 159372, "llms generated": 95385, "answers current": 10009, "including opendomain": 74651, "hallucinate incorrect": 68331, "face value": 56556, "value paper": 175493, "simple experiment": 151452, "generated answer": 63793, "answer query": 9755, "query corpus": 134571, "question generated": 134879, "answer present": 9748, "llm combination": 93541, "answer prompting": 9750, "answering stack": 9959, "based llm": 15929, "large fraction": 87257, "questions llm": 135184, "verifying generated": 176548, "detect hallucinations": 40361, "quality metric": 134199, "demonstrates llms": 38863, "capable large": 20439, "llms focus": 95285, "focus scaling": 60048, "size quality": 152062, "quality pretraining": 134225, "data important": 35184, "training powerful": 168641, "nebulous concept": 112128, "use recently": 172844, "formal aspects": 60496, "measure diversity": 99840, "available pretraining": 15180, "theoretical lower": 166040, "lower upper": 97847, "addition build": 4843, "available llm": 15159, "used build": 172986, "context fewshot": 30765, "learning currently": 90340, "fixed pretrained": 59716, "finetuning final": 59270, "indepth empirical": 75531, "empirical examination": 47694, "model agnostic": 103094, "work emphasize": 178926, "using architecture": 173974, "rigorous statistical": 144872, "effect size": 45675, "determine practical": 40713, "practical significance": 125449, "diversity dataset": 43721, "size low": 152029, "metalearning model": 100577, "experiments consider": 54205, "learning dataset": 90348, "model vs": 104883, "model formal": 103690, "learning combining": 90305, "knowledge distributed": 81894, "words form": 178723, "capture common": 20635, "tokens words": 166902, "phrases sentences": 122889, "sentences large": 148585, "tasks designed": 162205, "tokens recent": 166869, "shown llms": 150308, "training inputs": 168501, "associated diverse": 13476, "hallucination phenomenon": 68400, "capture meaning": 20667, "set welldefined": 149349, "contexts llms": 31032, "outputs propose": 118109, "novel ensemble": 114486, "combines llm": 25944, "knowledge representations": 82363, "representations input": 140819, "distinct advantage": 43201, "llm context": 93558, "model facilitating": 103631, "models inconsistent": 106723, "report improved": 140534, "current sota": 34239, "enhanced model": 49350, "model interpretability": 103893, "interpretability large": 79644, "facilitated development": 56666, "swin transformer": 159780, "prediction problems": 125847, "problems natural": 128573, "decisionmaking reinforcement": 37436, "problems typically": 128642, "issues involving": 81019, "partial observability": 119978, "observability recent": 115318, "especially transformer": 50557, "numerous approaches": 115026, "notable effectiveness": 114220, "effectiveness generalizability": 46184, "survey presents": 159668, "overview recent": 118442, "solving sequential": 153246, "categorizing based": 21147, "improve effectiveness": 73451, "theoretical foundations": 166032, "algorithms efficient": 7922, "training systems": 168773, "design tools": 39788, "risks large": 144998, "efforts llms": 46925, "science tools": 146919, "ability support": 2388, "work llms": 179109, "lower barriers": 97813, "expand capabilities": 53681, "enable creation": 48070, "substantially worse": 158144, "seen date": 147690, "agents make": 6654, "interventions help": 79801, "models effectiveness": 106050, "access tools": 2915, "mitigating risks": 102679, "generation hardware": 64711, "systems typically": 160650, "need techniques": 112406, "techniques support": 164034, "security verification": 147631, "capturing design": 20722, "design intent": 39661, "formal verification": 60520, "emerging large": 47515, "assertion generation": 13030, "generation security": 65072, "primarily natural": 127786, "code comments": 24713, "systemverilog assertions": 160677, "focus attention": 59949, "attention popular": 13964, "characterize ability": 22478, "ability write": 2421, "levels prompt": 91549, "framework generates": 61183, "variety prompts": 175750, "prompts create": 131212, "create benchmark": 33173, "realworld hardware": 136459, "want generate": 177690, "recent impressive": 137514, "impressive accomplishments": 73258, "generation dialogue": 64577, "writing large": 179731, "state information": 155005, "addition model": 4881, "length batch": 91350, "size paper": 152039, "approach implementing": 11287, "computing attention": 28528, "tokens heavy": 166823, "heavy hitters": 69052, "strongly correlates": 156498, "tokens text": 166891, "text ii": 165226, "based insights": 15879, "insights propose": 77631, "problem prove": 128368, "prove mild": 132626, "mild assumptions": 102205, "algorithm help": 7813, "accuracy algorithm": 3141, "opt llama": 116909, "llama gptneox": 93315, "improves throughput": 74093, "inference systems": 76112, "reduce latency": 138440, "stepbystep chainofthought": 155694, "prompting lets": 130994, "models verbalize": 109623, "lead dramatic": 89739, "models 125m": 105149, "benefit chainofthought": 17421, "prompting achieve": 130851, "introduce symbolic": 80118, "method train": 101146, "smaller student": 152444, "significantly larger": 151066, "experiments commonsense": 54177, "commonsense benchmarks": 26253, "settings especially": 149566, "distillation student": 43164, "judged humans": 81310, "despite orders": 40166, "magnitude fewer": 98202, "parameters test": 119872, "test hypotheses": 164562, "hypotheses regarding": 71615, "release corpus": 139455, "samples code": 145996, "llm dialog": 93595, "step reasoning": 155675, "starting single": 154970, "synthesizing prompt": 160011, "steps taken": 155773, "algorithm derived": 7792, "logic engine": 97326, "patterns llms": 120547, "instance used": 77812, "minimal model": 102347, "results reasoning": 143731, "process applications": 128738, "causal explanations": 21186, "explanations recommendation": 54894, "literature language": 93178, "models weak": 109678, "weak learners": 177932, "classifiers achieve": 24179, "performance given": 121592, "data small": 35768, "small margin": 152319, "methods boosting": 101352, "work illustrate": 179029, "illustrate promptbased": 72156, "promptbased large": 130772, "operate effectively": 116735, "specifically illustrate": 154223, "applied tabular": 10812, "distribution text": 43397, "samples llms": 146038, "produce summary": 129467, "samples serves": 146063, "task incorporate": 161464, "llm outperform": 93861, "particularly tasks": 120263, "potential promptbased": 124923, "promptbased llms": 130784, "llms function": 95309, "larger machine": 89220, "learning pipelines": 90825, "experiment using": 53919, "improve moral": 73527, "particular moral": 120099, "scenarios task": 146707, "performing tasks": 122418, "gpt3 work": 66778, "teach language": 163599, "results framework": 143422, "framework elicits": 61101, "counterfactual questions": 32952, "answers model": 10051, "turn helps": 170173, "helps improve": 69243, "compared direct": 26785, "parameters need": 119812, "visual pretraining": 177246, "benefit largescale": 17440, "novel design": 114466, "aimed augmenting": 7510, "leverage dynamic": 91582, "furthermore extend": 62075, "concept language": 28604, "enhance inference": 49212, "speed experiments": 154504, "shown superiority": 150391, "llama code": 93297, "grounding multimodal": 67911, "world introduce": 179562, "grounding text": 67929, "text visual": 165571, "world specifically": 179619, "specifically represent": 154280, "markdown text": 99216, "location tokens": 97303, "multimodal corpora": 110613, "construct largescale": 30146, "data grounded": 35139, "model addition": 103076, "existing capabilities": 53309, "capabilities mllms": 20054, "general modalities": 62997, "modalities following": 102927, "instructions performing": 78322, "performing incontext": 122403, "including multimodal": 74626, "multimodal grounding": 110650, "phrase grounding": 122883, "ii multimodal": 72105, "expression generation": 55589, "perceptionlanguage tasks": 120832, "tasks iv": 162652, "work lays": 179091, "foundation development": 60715, "big convergence": 18374, "perception action": 120790, "action world": 4345, "modeling key": 105021, "key step": 81571, "multifaceted approach": 110398, "approach supporting": 11583, "underresourced language": 170909, "address scarcity": 5367, "scarcity annotated": 146484, "romanized form": 145576, "annotation consistency": 9513, "consistency experimental": 29759, "different tokenization": 42052, "showcase value": 150089, "dependency parsing": 39152, "research make": 141900, "way creating": 177788, "underrepresented language": 170904, "alternative conventional": 8552, "finetuning parameterefficient": 59426, "method adapt": 100650, "learned dataset": 90092, "dataset underlying": 36599, "underlying pretrained": 170865, "model remains": 104451, "remains unchanged": 140082, "diverse skills": 43660, "integrating different": 78591, "specifically define": 154169, "addition negation": 4884, "approach requires": 11509, "highly flexible": 69919, "apply different": 10843, "extend approach": 55616, "based llama": 15926, "llama empirical": 93300, "produces new": 129536, "modules significantly": 110002, "existing ones": 53507, "tasks classifying": 162047, "binary classifiers": 18470, "determine final": 40703, "type task": 170319, "task experiment": 161373, "experiment approaches": 53879, "approaches using": 11948, "model identify": 103817, "task questionanswering": 161673, "questionanswering approach": 134973, "approach identifying": 11285, "better baselines": 17815, "baselines proposed": 16360, "proposed dataset": 132271, "performing worse": 122423, "text generative": 165206, "data era": 34985, "models sparked": 109187, "facilitated training": 56671, "implementation llms": 72849, "ongoing relevance": 116070, "analysis using": 9223, "coding widely": 25416, "method determining": 100786, "requires researchers": 141434, "chatgpt class": 22778, "quickly evolving": 135344, "evolving ai": 52304, "perform range": 121018, "processing reasoning": 129282, "llms reduce": 96356, "time takes": 166514, "analysis outline": 9045, "sets assess": 149358, "gpt35 performs": 66845, "overall gpt35": 118195, "perform deductive": 120920, "comparable human": 26581, "refine prompts": 138740, "codes llm": 25305, "help assess": 69087, "vs human": 177598, "implications future": 72925, "coding related": 25404, "years language": 179902, "used multiple": 173153, "computing hpc": 28544, "support paper": 159314, "paper design": 118845, "analyses optimizations": 8776, "datasets ai": 36643, "framework built": 60995, "components different": 27752, "learning software": 91004, "software stack": 152846, "apis using": 10200, "using representative": 174670, "evaluated prototype": 51206, "framework results": 61389, "evaluate set": 51101, "set stateoftheart": 149317, "generate insightful": 63573, "human conversations": 70668, "conversations individuals": 31948, "relevant regions": 139642, "specific regions": 154071, "ability dialogue": 2129, "dialogue remains": 41507, "current multimodal": 34188, "spatial coordinate": 153782, "architecture consists": 12136, "encoder alignment": 48406, "alignment layer": 8186, "llm designed": 93586, "need extra": 112291, "naturally handle": 111974, "captioning vqa": 20602, "furthermore enables": 62055, "enables numerous": 48232, "exciting applications": 52871, "similarities code": 151330, "aligned neural": 8070, "models tuned": 109519, "helpful harmless": 69205, "respond helpfully": 142592, "refuse answer": 138846, "adversarial users": 6241, "users construct": 173602, "alignment work": 8261, "remain aligned": 139911, "inputs designed": 77395, "attack aligned": 13630, "aligned text": 8076, "attacks fail": 13709, "fail adversarial": 56945, "adversarial inputs": 6206, "brute force": 19258, "result failure": 143034, "current attacks": 34073, "inputs recent": 77440, "largescale ml": 89353, "models allow": 105342, "influence text": 76223, "easily attacked": 45304, "unaligned behavior": 170621, "behavior adversarial": 16561, "adversarial perturbation": 6217, "improved nlp": 73705, "understanding social": 171479, "integrated everyday": 78526, "everyday lives": 52161, "comprehend human": 27848, "human mental": 70927, "critical ensuring": 33490, "ensuring effective": 49736, "attempts assess": 13812, "tom reasoning": 166917, "degree models": 38018, "models align": 105328, "human tom": 71063, "results previous": 143682, "previous evaluations": 127587, "validity existing": 175393, "evaluation methodologies": 51697, "framework procedurally": 61356, "templates using": 164242, "new social": 113411, "reasoning benchmark": 136681, "llms consists": 94707, "quality benchmark": 134053, "evaluate social": 51103, "variety llms": 175721, "llms compare": 94652, "suggest gpt4": 158542, "mirror human": 102451, "reliable llms": 139733, "feedback human": 57702, "human tutors": 71067, "positive impact": 124292, "impact learning": 72681, "learning providing": 90883, "providing learners": 133327, "feedback presents": 57759, "complex nuanced": 27506, "responses present": 142878, "realtime feedback": 136378, "effective praise": 45842, "demonstrates considerable": 38834, "considerable accuracy": 29602, "corrective feedback": 32454, "feedback effective": 57666, "responses notably": 142861, "progress enhanced": 129961, "approach providing": 11482, "feedback using": 57817, "involves leveraging": 80748, "augmentation improve": 14284, "accuracy developing": 3203, "learning scientific": 90967, "advanced recently": 5804, "recently different": 137864, "science engineering": 146869, "engineering objective": 48962, "objective integrate": 115206, "problem formulation": 128260, "analysis time": 9204, "industrial applications": 75847, "applications digital": 10485, "integrate various": 78508, "various stages": 176183, "simple prompts": 151516, "prompts user": 131515, "fields various": 58309, "facilitate broader": 56597, "interface includes": 79436, "summary report": 158943, "handle diverse": 68541, "mechanics design": 99970, "design optimization": 39707, "scientific computing": 146940, "tasks involved": 162641, "using research": 174671, "research assistant": 141605, "educational tool": 45631, "fluid mechanics": 59920, "future versions": 62398, "mechanics materials": 99971, "materials science": 99513, "systems biology": 160275, "biology bioinformatics": 18521, "physics exams": 122938, "exams large": 52731, "models emergence": 106075, "emergence advanced": 47411, "raised concerns": 135462, "universities regarding": 171922, "completion paper": 27333, "10 distinct": 116, "2018 2022": 645, "undergraduate postgraduate": 170809, "conditions including": 29007, "scored average": 147113, "respectively suggesting": 142582, "scores gpt4": 147147, "contrary expectations": 31287, "factbased questions": 56756, "did significantly": 41597, "significantly impact": 151016, "ai performance": 7147, "gpt4 findings": 67012, "suggest current": 158526, "physics questions": 122947, "automated ai": 14513, "novel deep": 114464, "induce sparsity": 75824, "optimization process": 117032, "sound theoretical": 153380, "need code": 112243, "code modifications": 25021, "modifications making": 109872, "universally adaptable": 171916, "tool wide": 167058, "evaluations benchmark": 51944, "proposes innovative": 132465, "pytorch tensorflow": 133860, "appropriately designed": 12004, "study represents": 157594, "step forward": 155636, "forward evolution": 60664, "models setting": 109085, "future exploration": 62261, "highlevel vision": 69720, "local optima": 97254, "network demonstrate": 112638, "effectiveness applicability": 46119, "models guiding": 106576, "experiments finally": 54287, "demonstrate effect": 38287, "network structures": 112697, "knowledge improve": 82108, "attributed training": 14099, "generators various": 65645, "explored different": 55344, "data generally": 35093, "generally rely": 63324, "rely simple": 139883, "data inherit": 35227, "llm investigate": 93780, "investigate training": 80503, "prompts specifying": 131482, "specifying attributes": 154349, "attributes like": 14120, "potential yield": 125077, "prompts outperform": 131395, "study data": 157261, "vital aspects": 177405, "aspects like": 12949, "like bias": 92208, "highlight key": 69752, "observations firstly": 115338, "significant biases": 150626, "biases regional": 18311, "regional bias": 138926, "performance lastly": 121729, "prompts achieve": 131144, "performance simple": 122070, "prompts utilizing": 131521, "age large": 6395, "models querying": 108754, "rise adoption": 144886, "framework interactive": 61236, "llms proposal": 96244, "proposal aims": 131688, "intent understanding": 79022, "language refined": 86700, "intent natural": 79016, "profound implications": 129711, "supervised signals": 159173, "signals collected": 150527, "experiments open": 54384, "interactive query": 79333, "understanding framework": 171240, "framework chatgpt": 61006, "chatgpt biomedical": 22748, "expert exploring": 54569, "exploring zeroshot": 55522, "performance current": 121349, "models biomedical": 105525, "tasks assessed": 161977, "performance commercial": 121265, "commercial large": 26075, "llms gpt35turbo": 95430, "gpt35turbo gpt4": 66877, "gpt4 tasks": 67194, "tasks 2023": 161872, "2023 bioasq": 688, "bioasq challenge": 18495, "systems remarkably": 160587, "achieved simple": 3898, "simple zeroshot": 151551, "learning grounded": 90513, "qa setting": 133928, "list answers": 93121, "answers task": 10089, "retrieval query": 144115, "expansion zeroshot": 53722, "models fell": 106319, "compared systems": 26946, "systems code": 160290, "agents actions": 6529, "verbal communication": 176435, "actions using": 4398, "using information": 174322, "information infer": 76517, "plan model": 123216, "agent principal": 6488, "assistant using": 13401, "likelihood function": 92439, "bayesian inverse": 16480, "inverse planning": 80338, "instructions computing": 78220, "assumption agents": 13561, "agents act": 6527, "human goal": 70836, "closely correlate": 24511, "goal inference": 66173, "inference highlighting": 76029, "cooperative agents": 32073, "agents leveraging": 6646, "leveraging gpt4": 91859, "guidance development": 68142, "need develop": 112267, "develop automated": 40758, "improving effectiveness": 74135, "automated text": 14620, "summarization ability": 158796, "assessment remains": 13260, "unclear study": 170703, "approach iterative": 11325, "effectively efficiently": 45981, "multiturn interaction": 111275, "interaction specifically": 79179, "respectively provided": 142575, "turns refine": 170191, "generated summary": 63994, "professionals evaluation": 129636, "progressively improved": 130046, "process gpt4": 128852, "chatgpt evaluated": 22901, "generated gpt4": 63879, "reference summary": 138676, "supported gpt4": 159360, "consistency results": 29790, "product development": 129573, "states medical": 155431, "medical licensing": 100195, "licensing examination": 92054, "chatgpt rapid": 23246, "certain domains": 21382, "analysis focuses": 8938, "focuses chatgpts": 60132, "education particularly": 45566, "delivers accurate": 38077, "answers crucial": 10008, "cases makes": 20992, "makes significant": 98686, "mathematical errors": 99562, "understanding mathematics": 171351, "rely visual": 139895, "comprehension additionally": 27879, "teacher students": 163622, "calibration error": 19632, "pareto optimal": 119931, "applications reducing": 10662, "erroneous responses": 50266, "responses remains": 142901, "remains major": 140039, "potential errors": 124705, "errors facilitate": 50358, "important source": 73196, "available low": 15161, "coverage paper": 33061, "framework leverage": 61275, "risk score": 144963, "score llm": 147078, "additional manual": 4975, "manual efforts": 99038, "model align": 103102, "llm output": 93863, "higher risk": 69630, "responses facilitate": 142791, "correction experiments": 32436, "extraction classification": 56270, "score highly": 147070, "highly correlated": 69904, "rate using": 136019, "using dynamic": 174155, "dynamic prompting": 45154, "strategy based": 156108, "offtheshelf llms": 115917, "gpt35 results": 66850, "results past": 143659, "past stateoftheart": 120393, "supervision model": 159208, "generation digital": 64583, "automated grading": 14556, "input work": 77370, "particular chatgpt": 120056, "chatgpt address": 22684, "issue using": 80967, "prior study": 127939, "study learning": 157469, "responses investigate": 142832, "investigate chatgpts": 80387, "correctness students": 32504, "students answers": 156846, "answers results": 10076, "chatgpt respond": 23275, "conceptual questions": 28717, "addition able": 4837, "accurately assess": 3513, "assess correctness": 13066, "highquality feedback": 70027, "feedback similar": 57795, "human instructors": 70857, "chatgpts strengths": 23509, "extending use": 55683, "benchmarking large": 17146, "model pipelines": 104280, "model adapted": 103068, "tasks autoregressive": 161993, "autoregressive plms": 15006, "like fewshot": 92268, "generation instead": 64746, "ubiquitous use": 170551, "use generation": 172646, "quality language": 134178, "models rarely": 108792, "evaluated models": 51191, "additionally unclear": 5140, "unclear existing": 170691, "existing generation": 53377, "used compare": 173000, "systems high": 160419, "work discuss": 178913, "plms provide": 123634, "limitations capabilities": 92546, "results plms": 143665, "data regimes": 35633, "generalization multiple": 63199, "task setup": 161722, "taken consideration": 160965, "benchmarking generation": 17138, "highquality synthetic": 70080, "conversations paper": 31958, "llms cooperation": 94740, "evaluated automatic": 51147, "medical concept": 100142, "furthermore conducted": 62035, "conducted comparative": 29216, "analysis investigates": 8988, "potential utilizing": 125054, "naturallanguage tasks": 111970, "tasks applications": 161954, "promising new": 130275, "understand concepts": 170990, "conceptual consistency": 28707, "discuss paper": 42919, "concept extraction": 28595, "text concept": 164947, "concept graph": 28598, "graph extraction": 67529, "concept learning": 28609, "conceptual knowledge": 28712, "textonly llms": 165667, "hand capable": 68481, "knowledge discuss": 81877, "llms major": 95841, "extraction image": 56304, "learning uses": 91111, "particularly valuable": 120273, "valuable llm": 175444, "robust multilingual": 145291, "multilingual zeroshot": 110571, "method achieving": 100648, "datasets challenging": 36692, "trainingfree approach": 168832, "robust speech": 145324, "chatbased large": 22556, "selection correction": 147841, "available largescale": 15156, "noise level": 113979, "method dataset": 100772, "emerging task": 47538, "enhanced visual": 49376, "visual instruction": 177196, "understanding instruction": 171303, "llm interact": 93774, "furthermore recent": 62152, "collecting responses": 25721, "models comprehend": 105711, "images work": 72515, "use publicly": 172833, "dataset prompt": 36470, "texts image": 165731, "vqa datasets": 177572, "datasets 20": 36627, "20 accuracy": 588, "achieving accuracy": 4136, "instructionfollowing evaluation": 78182, "improvement model": 73822, "natural images": 111535, "reasoning writing": 137241, "based latest": 15918, "images make": 72445, "35 chatgpt": 1049, "chatgpt 40": 22660, "bing ai": 18485, "factchecking study": 56766, "aimed evaluate": 7516, "evaluate proficiency": 51071, "35 40": 1048, "ai discerning": 6959, "conditions responses": 29018, "classified categories": 24144, "based accuracy": 15643, "facts provided": 56843, "showed moderate": 150144, "moderate proficiency": 109763, "proficiency models": 129670, "models average": 105436, "performance human": 121631, "human factcheckers": 70791, "information findings": 76451, "ai domain": 6961, "cognitive skills": 25483, "advancements ai": 5863, "finally experimental": 58453, "available kaggle": 15144, "text synthesis": 165522, "gan model": 62598, "generator discriminator": 65618, "application image": 10332, "image synthesis": 72330, "synthesis extensively": 159942, "tokens generator": 166820, "based reward": 16079, "way adversarial": 177765, "training causing": 168178, "causing data": 21267, "reproduce training": 141006, "framework similar": 61415, "space generative": 153579, "generate continuous": 63439, "learning does": 90383, "overcome data": 118285, "adopting novel": 5623, "synthesize new": 159993, "new sentences": 113404, "showing potential": 150184, "potential unsupervised": 125033, "research combining": 141641, "generalization simple": 63230, "arithmetic problems": 12481, "key ingredients": 81520, "reasoning great": 136893, "cases work": 21033, "solving arithmetic": 153195, "model acquires": 103060, "skill learning": 152136, "accurately solve": 3564, "cases significantly": 21018, "learning gpt4": 90510, "gpt4 medical": 67074, "medical summarization": 100223, "summarization challenging": 158809, "unstructured nature": 172218, "medical conversations": 100149, "conversations use": 31966, "use medical": 172763, "medical terminology": 100227, "gold summaries": 66244, "summaries need": 158774, "need identify": 112313, "information multiple": 76584, "process selecting": 128981, "dialogues using": 41572, "examples gpt4": 52599, "use similar": 172871, "place task": 123179, "4th place": 1285, "highlight effectiveness": 69736, "effectiveness fewshot": 46177, "prompting task": 131098, "promptingbased approaches": 131130, "approaches compare": 11715, "finetuned baselines": 58988, "baselines gpt4": 16328, "gpt4 summaries": 67182, "summaries abstractive": 158754, "harnessing llms": 68831, "design using": 39796, "gpt4 support": 67184, "gpt4 automatically": 66923, "objectives los": 115252, "discussions opportunities": 43014, "study models": 157493, "capabilities supporting": 20203, "course design": 33006, "challenging time": 22302, "carefully crafted": 20799, "analyzed generated": 9348, "blooms taxonomy": 18752, "level sophistication": 91509, "analysis showed": 9164, "largely operate": 89162, "different nature": 41871, "levels results": 91554, "stateoftheart generative": 155149, "efforts large": 46921, "text rankers": 165400, "documents prompt": 43933, "practical problem": 125438, "problem limited": 128311, "limited success": 92858, "datasets analyze": 36648, "listwise ranking": 93144, "methods argue": 101315, "llms fully": 95308, "fully understand": 61790, "nature llms": 112016, "reduce burden": 138405, "burden llms": 19517, "new technique": 113457, "prompting prp": 131055, "results literature": 143570, "stateoftheart ranking": 155320, "benchmarks using": 17389, "opensourced llms": 116700, "model 20b": 103001, "20b parameters": 739, "best approach": 17657, "approach literature": 11365, "literature based": 93157, "based blackbox": 15690, "estimated model": 50734, "gpt4 solution": 67166, "metrics outperforming": 102121, "ranking metrics": 135813, "propose variants": 132209, "prp improve": 133444, "efficiency possible": 46503, "possible achieve": 124393, "discuss benefits": 42871, "generation scoring": 65070, "input ordering": 77294, "classifierfree guidance": 24176, "guidance cfg": 68137, "generation lightweight": 64795, "used broadly": 172985, "models array": 105390, "qa reasoning": 133920, "translation achieving": 169437, "achieving sota": 4216, "model twice": 104814, "like chainofthought": 92210, "yielding improvements": 180001, "used increase": 173109, "demonstration retrieval": 38982, "fewshot nlp": 58007, "allows leverage": 8448, "knowledge adapt": 81731, "adapt quickly": 4558, "quickly large": 135348, "overcome issue": 118289, "retrieval use": 144159, "retriever retrieve": 144260, "demonstrations example": 39000, "parameterefficient models": 119676, "generalize larger": 63259, "tasks construct": 162120, "work combine": 178844, "models retrieve": 108983, "retrieve demonstrations": 144215, "tasks simultaneously": 163254, "outperforms variety": 117888, "nli text": 113672, "models probing": 108652, "llms beliefs": 94481, "burns et": 19530, "argue llms": 12413, "questions surrounding": 135294, "conclude suggesting": 28884, "work far": 178978, "model 100": 102988, "recognition medical": 138091, "domain recent": 44266, "advancements language": 5904, "lms led": 97161, "emergence powerful": 47442, "t5 large": 160713, "exceptional capabilities": 52811, "tasks entity": 162311, "remains uncertain": 140080, "medical ner": 100200, "needs high": 112475, "lms medical": 97167, "medical fewshot": 100174, "answer far": 9713, "effective entity": 45749, "entity recognizer": 49930, "ner performance": 112599, "based extensive": 15794, "conducted 16": 29205, "ner models": 112595, "models spanning": 109186, "2023 findings": 701, "clearly indicate": 24286, "outperform slms": 117626, "slms fewshot": 152245, "fewshot medical": 57992, "ner tasks": 112605, "encounter challenges": 48563, "findings introduce": 58713, "finding relevant": 58620, "relevant examples": 139600, "process experimental": 128823, "baselines open": 16354, "medical benchmark": 100137, "feedback language": 57719, "feedback nlf": 57743, "align large": 8012, "diversity information": 43735, "effective feedback": 45759, "opinion piece": 116805, "feedback framework": 57687, "framework llms": 61295, "various characteristics": 175850, "feedback content": 57654, "taxonomy based": 163574, "based variables": 16170, "offers general": 115812, "demonstrate impact": 38374, "different feedback": 41771, "new unexplored": 113485, "community providing": 26510, "designed trained": 39966, "response various": 142715, "types input": 170369, "input including": 77262, "prompts images": 131314, "images audio": 72394, "bidirectional autoregressive": 18339, "autoregressive architecture": 14972, "efficiently capture": 46766, "capture complex": 20636, "generation dialog": 64575, "left right": 91270, "right left": 144834, "effectively reducing": 46073, "fixed memory": 59711, "model hallucinations": 103781, "hallucinations training": 68462, "parameter expansion": 119611, "learning ai": 90189, "ai human": 7029, "improving models": 74171, "alignment performance": 8209, "adaptive training": 4787, "nigerian pidgin": 113634, "processing systems": 129306, "systems lowresource": 160473, "challenges lack": 21927, "resources finetuning": 142441, "work target": 179337, "classification translation": 24132, "corpus propose": 32341, "framework crosslingual": 61056, "training includes": 168487, "continual task": 31173, "task adaptive": 161167, "training adapt": 168142, "adapt base": 4511, "base pretrained": 15626, "model lowresource": 104049, "languages studies": 87136, "english pretrained": 49095, "tool generating": 166981, "crucial software": 33858, "development processes": 41194, "settings effective": 149562, "effective tools": 45906, "tools available": 167111, "available generating": 15121, "graph generate": 67530, "developed tool": 40921, "qualitative feedback": 134000, "smallscale user": 152464, "software projects": 152838, "results mixed": 143609, "highlighting challenges": 69805, "nonfunctional requirements": 114071, "capabilities capable": 19805, "generating fluent": 64218, "fluent humanlike": 59902, "susceptibility hallucinations": 159725, "cope challenges": 32100, "extraction capability": 56267, "generate rich": 63690, "federated learning": 57626, "agents achieve": 6525, "obtain diversified": 115473, "finally uses": 58538, "models finally": 106336, "patterns used": 120572, "guide model": 68195, "generating diversified": 64198, "protecting data": 132563, "knowledge improving": 82110, "improving quality": 74198, "provides effective": 133137, "generation capability": 64473, "make better": 98493, "applied field": 10760, "field intelligent": 58182, "intelligent dialogue": 78949, "efficient compression": 46586, "underpin large": 170890, "subtle semantic": 158194, "information significantly": 76758, "patterns associated": 120517, "high dimensionality": 69447, "introduces considerable": 80178, "model storage": 104659, "matrix product": 99644, "distributed manner": 43326, "results gpt2": 143441, "gpt2 demonstrate": 66523, "approach embedding": 11154, "evolution generative": 52260, "ai genai": 7007, "genai models": 62879, "models highlight": 106604, "digital transformation": 42298, "capability critical": 20276, "critical understand": 33565, "use genai": 172640, "genai tools": 62882, "privacy implications": 128002, "risks opportunities": 145009, "privacy work": 128035, "vulnerabilities chatgpt": 177612, "chatgpt exploited": 22922, "exploited malicious": 55024, "malicious users": 98851, "information bypassing": 76302, "example attacks": 52467, "attacks like": 13722, "like jailbreaks": 92325, "injection attacks": 77110, "attacks chatgpt": 13693, "tools developing": 167141, "cyber attacks": 34464, "explore scenarios": 55293, "social engineering": 152571, "engineering attacks": 48887, "phishing attacks": 122861, "attacks automated": 13690, "hacking attack": 68311, "defense techniques": 37912, "security measures": 147603, "cyber defense": 34465, "threat intelligence": 166270, "generation detection": 64571, "developing ethical": 40991, "ethical guidelines": 50807, "malware detection": 98859, "discuss social": 42947, "implications chatgpt": 72908, "conclusion paper": 28899, "trustworthy ethical": 169867, "event knowledge": 52082, "order construct": 117181, "graphs kg": 67626, "nontrivial problems": 114156, "different subtasks": 42023, "subtasks including": 158184, "including named": 74629, "entityrelation triple": 49955, "triple extraction": 169775, "extraction ee": 56288, "mechanism llms": 100013, "llms assistant": 94439, "provide lower": 132880, "interaction human": 79132, "ability allows": 2063, "existing tools": 53618, "evaluation quantitatively": 51812, "improves annotation": 73974, "efficiency stability": 46533, "scenarios recently": 146685, "recently increase": 137910, "dangerous capabilities": 34544, "scenarios goal": 146609, "goal better": 66151, "lead undesirable": 89784, "undesirable behaviors": 171582, "behaviors paper": 16720, "scenarios evaluate": 146588, "gpt4 claude": 66941, "simple pattern": 151507, "matching dataset": 99456, "prompt consistent": 130403, "behaviour different": 16732, "demonstrate simple": 38552, "study provides": 157567, "insights behaviour": 77512, "scenarios evaluations": 146591, "works attribute": 179426, "models implicitly": 106681, "internal model": 79555, "model linear": 103966, "overhead makes": 118358, "intractable work": 79824, "complex models": 27478, "models internally": 106804, "inference pretrained": 76075, "introduce innovative": 79982, "techniques allow": 163833, "125 million": 296, "million parameter": 102236, "parameter transformer": 119646, "common transformer": 26207, "design ideas": 39648, "ideas improve": 71763, "conduct endtoend": 29077, "finetuning procedure": 59467, "opt125m model": 116914, "average compared": 15275, "facilitate work": 56662, "modular extensible": 109905, "understand ai": 170981, "ai progress": 7170, "promise tackling": 130200, "pressing societal": 126717, "chatgpt highly": 23050, "capabilities ai": 19773, "unstructured data": 172211, "led negative": 91232, "negative sentiments": 112534, "ai methods": 7086, "factor contributing": 56777, "perception llms": 120811, "provide solutions": 132978, "hallucinations reasoning": 68453, "crucial address": 33754, "possibly erroneous": 124477, "llms time": 96805, "time reduce": 166482, "negative attitudes": 112506, "attitudes ai": 14028, "public llm": 133583, "llm constraints": 93556, "effective usage": 45915, "highlevel concepts": 69686, "ai llms": 7073, "llms followed": 95293, "chatgpt creating": 22817, "including high": 74554, "improved interaction": 73695, "interaction quality": 79168, "llm reduced": 93947, "better grasp": 17895, "leading unsatisfactory": 89865, "aim explore": 7454, "approach controlled": 11084, "prompting elicits": 130907, "knowledge identified": 82104, "identified integrated": 71824, "models extensively": 106276, "extensively pretrained": 55989, "serve comprehensive": 148970, "source external": 153442, "method augments": 100696, "avoids need": 15365, "models required": 108943, "required conventional": 141226, "cotbased methods": 32918, "available benchmarks": 15076, "benchmarks various": 17392, "paper delves": 118836, "focusing use": 60202, "explicit reasoning": 54954, "generated prompting": 63946, "like search": 92395, "user intents": 173432, "explore concept": 55173, "tool providing": 167019, "analysis characterize": 8845, "conversation designed": 31783, "preferred response": 126086, "explore possibilities": 55252, "using direct": 174143, "direct comparison": 42376, "recommendation domain": 138198, "highly realistic": 69944, "realistic text": 136306, "able express": 2504, "represent wide": 140662, "range sentiments": 135693, "valence arousal": 175290, "using predictors": 174591, "dramatically alter": 44886, "predictions generate": 125908, "implications results": 72953, "mediqasum 2023": 100255, "models augmented": 105418, "augmented synthetic": 14374, "synthetic dialogue": 160042, "medical records": 100212, "patientdoctor dialogues": 120479, "records proposed": 138317, "framework relies": 61385, "relies domainspecific": 139797, "domainspecific pretraining": 44612, "trained taskspecific": 168096, "taskspecific natural": 163536, "natural data": 111525, "data augmented": 34695, "generated blackbox": 63803, "llm limited": 93811, "approach ranked": 11490, "submissions task": 157893, "task challenge": 161238, "challenge code": 21598, "approach chatgpt": 11047, "llms text": 96791, "research demonstrated": 141687, "demonstrated high": 38676, "numerous nlp": 115055, "tasks opensource": 162889, "gaining attention": 62494, "transparency reproducibility": 169588, "superior data": 158999, "data protection": 35575, "approaches different": 11735, "different temperature": 42041, "temperature parameters": 164202, "findings chatgpt": 58644, "demonstrate competitive": 38273, "chatgpt specific": 23344, "comparison large": 27050, "chatgpt microsoft": 23124, "bing chat": 18486, "bard paper": 15566, "presents performance": 126618, "dataset performance": 36454, "bard chatgpt": 15554, "respectively results": 142577, "officially available": 115868, "language proficiency": 86662, "study contribute": 157245, "contribute understanding": 31422, "llms english": 95072, "language education": 83274, "school level": 146833, "efficient transformers": 46737, "famous examples": 57204, "limitations handling": 92595, "handling long": 68599, "promising solutions": 130319, "limited paper": 92811, "novel simple": 114692, "simple architecture": 151406, "architecture capable": 12129, "derive new": 39348, "gpt4 displayed": 66973, "exceptional multimodal": 52819, "openended instructions": 116493, "instructions given": 78269, "images performance": 72460, "models heavily": 106590, "relies design": 139796, "extensively discussed": 55978, "discussed literature": 42962, "systematic comprehensive": 160110, "study quantitatively": 157578, "quantitatively qualitatively": 134395, "models implement": 106678, "controlled settings": 31646, "structures compare": 156691, "llm backbones": 93494, "impact data": 72634, "instructions explore": 78256, "explore influence": 55220, "set including": 149218, "video tasks": 176740, "existing opensourced": 53515, "address challenging": 5195, "challenging multiagent": 22216, "multiagent cooperation": 110312, "cooperation problems": 32071, "embodied environments": 47310, "shared observations": 149818, "generation prowess": 64985, "prowess llms": 133419, "embodied language": 47313, "language agent": 83138, "communicate cooperate": 26337, "accomplish longhorizon": 3008, "efficiently experiments": 46777, "effective communication": 45712, "communication current": 26364, "like llama2": 92338, "achieve promising": 3713, "conducted user": 29294, "effectively humans": 46016, "research underscores": 142129, "underscores potential": 170951, "llms future": 95314, "research multiagent": 141914, "articles chatgpt": 12607, "health science": 68972, "science communication": 146855, "discussed research": 42966, "prompted chatgpt": 130810, "create structured": 33232, "results surprisingly": 143853, "suggesting future": 158614, "analyze comprehend": 9278, "comprehend information": 27849, "information various": 76843, "multimodel large": 110811, "promising zeroshot": 130332, "text recognition": 165412, "understanding specifically": 171483, "specifically construct": 154158, "unified instruction": 171724, "tuning strategy": 170128, "strategy build": 156112, "better compare": 17829, "understanding experimental": 171229, "understanding specific": 171482, "exploring multimodal": 55491, "speech transcript": 154481, "audio data": 14170, "common form": 26140, "understanding expression": 171232, "ad patients": 4501, "investigates various": 80583, "database proposed": 36001, "models graph": 106558, "detection data": 40474, "including synonym": 74744, "used address": 172953, "data introduced": 35257, "used extract": 173064, "audio features": 14175, "fused text": 62188, "converting speech": 32003, "using contrastive": 174086, "experiments analysis": 54142, "using speech": 174743, "speech audio": 154382, "data analyzing": 34632, "aims analyze": 7578, "openai context": 116333, "evaluated accuracy": 51144, "chatgpt answering": 22704, "answering challenging": 9822, "goal assess": 66148, "tool medical": 167011, "medicine results": 100246, "students achieved": 156842, "achieved scores": 3887, "showcase chatgpt": 150070, "answers relevant": 10073, "questions text": 135306, "text alignment": 164825, "efficient unified": 46743, "unified model": 171734, "typically designed": 170478, "formulation tasks": 60640, "tasks demanding": 162168, "extreme scale": 56422, "efficient models": 46680, "despite versatile": 40251, "sizes paper": 152106, "model wide": 104897, "range crucial": 135603, "crucial tasks": 33874, "text entailment": 165056, "pair texts": 118527, "measures degree": 99923, "degree alignment": 38009, "alignment information": 8170, "alignment model": 8198, "finetuning roberta": 59521, "parameters using": 119886, "size extensive": 151996, "models efficiency": 106053, "flant5 models": 59758, "2x 10x": 945, "applied evaluate": 10756, "evaluate factual": 50968, "consistency language": 29768, "23 datasets": 791, "improves various": 74099, "various baselines": 175827, "including larger": 74586, "gpt35 question": 66849, "improving average": 74112, "match em": 99412, "mechanism temporal": 100030, "temporal understanding": 164288, "llms extraordinary": 95229, "agi systems": 6810, "systems recognize": 160577, "overcome context": 118280, "window limitation": 178525, "importantly create": 73219, "interaction paper": 79153, "llms adaptable": 94336, "architecture particularly": 12202, "demonstrate various": 38609, "effectiveness architecture": 46133, "furthermore temporal": 62170, "times effective": 166583, "vector database": 176377, "updating knowledge": 172360, "knowledge previously": 82301, "previously stored": 127744, "memory demonstrate": 100389, "education large": 45552, "models rapid": 108778, "rapid advances": 135858, "chatgpt revolutionizing": 23287, "stateoftheart tools": 155397, "tools streamline": 167258, "streamline complex": 156230, "complex processes": 27528, "processes result": 129099, "data scientists": 35708, "assessing managing": 13186, "analyses performed": 8778, "ais evolution": 7700, "education pedagogy": 45567, "place greater": 123176, "greater emphasis": 67763, "programming llms": 129854, "personalized education": 122595, "challenges directions": 21830, "transformative technology": 169081, "calls careful": 19682, "repetitive tasks": 140447, "era data": 50222, "llms fostering": 95300, "rise llms": 144902, "llms heralds": 95484, "heralds transformative": 69276, "transformative period": 169072, "paper seeks": 119317, "seeks shed": 147678, "light emerging": 92112, "emerging trends": 47547, "uncharted territory": 170687, "importance learning": 73044, "learning retrieval": 90932, "augmentation enables": 14274, "models advantage": 105301, "knowledge example": 81961, "answering data": 9831, "data imputation": 35197, "performance retrievalaugmented": 122028, "retrieval corpus": 144030, "propose algorithm": 131704, "key contribution": 81482, "polynomial time": 123924, "utility function": 174951, "set data": 149169, "corpus using": 32365, "models pruning": 108735, "tasks allows": 161939, "outperform gpt35": 117599, "benchmark deep": 16921, "deep text": 37828, "given document": 65875, "document prior": 43845, "benchmarks recent": 17344, "major limitations": 98439, "hand require": 68494, "knowledge leads": 82179, "knowledge coverage": 81844, "results narrow": 143623, "space overcome": 153600, "new challenging": 113106, "previous benchmarks": 127575, "specifically utilize": 154306, "annotators large": 9633, "use labels": 172696, "test stateoftheart": 164638, "strongest baseline": 156482, "various knowledge": 175988, "knowledge domains": 81899, "skills learning": 152172, "success strategy": 158297, "based preliminary": 16014, "effective control": 45718, "supervision required": 159217, "technology artificial": 164124, "ai augmented": 6878, "reality ar": 136313, "opportunities various": 116882, "witnessed substantial": 178579, "substantial progress": 158094, "promising application": 130219, "involve complex": 80685, "objects physical": 115295, "world generating": 179556, "gpt language": 66436, "optimize user": 117084, "performance offering": 121865, "tasks provides": 163048, "provides interactive": 133172, "unity game": 171889, "facilitating seamless": 56719, "answer research": 9770, "users complete": 173598, "data suggests": 35828, "ai teaching": 7265, "gpt4 exhibit": 66996, "tasks basic": 161997, "trained extensive": 167917, "extensive text": 55960, "explicitly encoded": 54969, "random initialization": 135526, "efficiently learn": 46796, "addition multiplication": 4883, "functions like": 61914, "square root": 154647, "using nexttoken": 174533, "objective demonstrate": 115180, "data effective": 34946, "changes significantly": 22390, "building prior": 19441, "style data": 157742, "accuracy sample": 3383, "speed study": 154514, "examine effects": 52381, "scale additionally": 146266, "additionally discuss": 5047, "challenges work": 22100, "importance highquality": 73036, "particular characteristics": 120055, "work set": 179284, "resources common": 142429, "common causes": 26126, "perspective result": 122688, "result provides": 143059, "answers critical": 10007, "critical open": 33527, "2023 enhancing": 699, "subjectivity detection": 157867, "training materials": 168572, "different styles": 42017, "extended training": 55667, "set finetune": 149199, "experiments english": 54273, "demonstrate different": 38285, "languages addition": 86942, "addition observe": 4886, "introduce approach": 79914, "proof concept": 131580, "unveiling potential": 172311, "chatgpt enhancing": 22893, "detection social": 40618, "emerged critical": 47344, "activities important": 4463, "addressing issue": 5454, "having access": 68870, "timeconsuming resourceintensive": 166560, "furthermore models": 62118, "models face": 106288, "challenges accurately": 21757, "accurately identifying": 3540, "avoid detection": 15338, "study leveraging": 157473, "chatgpt detect": 22847, "media propose": 100109, "propose analytical": 131707, "analytical framework": 9254, "prompts serve": 131468, "carlo dropout": 20822, "performance interpretability": 121691, "baseline language": 16225, "accuracy showing": 3388, "proposed prompts": 132422, "effectively identify": 46018, "implications research": 72952, "importance incorporating": 73041, "public safety": 133604, "traditional llmbased": 167648, "experiment recent": 53902, "advances development": 5998, "tools instance": 167186, "offer natural": 115671, "complex queries": 27537, "queries provide": 134523, "direct responses": 42405, "responses time": 142931, "provided llmbased": 133074, "llmbased tools": 94178, "tools potential": 167227, "online experiments": 116099, "investigate llmbased": 80444, "traditional search": 167694, "output participants": 117972, "decision tasks": 37387, "different products": 41930, "randomly assigned": 135561, "experiment participants": 53899, "participants using": 120028, "tool able": 166928, "able complete": 2477, "tasks quickly": 163070, "quickly using": 135356, "queries used": 134554, "used traditional": 173271, "participants reported": 120018, "satisfying experience": 146180, "experience llmbased": 53836, "tool information": 166991, "presented llm": 126518, "using tool": 174807, "comparable level": 26587, "information llm": 76564, "randomly assigning": 135562, "users simple": 173780, "responses overall": 142867, "accuracy overall": 3331, "supply chain": 159250, "variety complex": 175696, "complex decision": 27393, "making problems": 98797, "greatly benefited": 67782, "manual processing": 99056, "operators need": 116800, "need spend": 112394, "spend substantial": 154537, "substantial efforts": 158054, "human comprehension": 70659, "input queries": 77323, "outcomes framework": 117452, "combinatorial optimization": 25861, "importantly design": 73221, "proprietary data": 132511, "llms privacy": 96193, "privacy concern": 127986, "circumstances demonstrate": 23780, "general evaluation": 62951, "benchmark used": 17116, "accuracy llm": 3294, "word experts": 178642, "experts bidirectional": 54644, "selfattention positional": 147941, "mlm objective": 102863, "emerged key": 47364, "component modern": 27740, "studies examined": 156992, "statistical model": 155502, "model bidirectional": 103216, "sets apart": 149357, "explore questions": 55285, "paper key": 119062, "bag words": 15475, "multiple heads": 110932, "heads multiple": 68922, "multiple layers": 110964, "layers equivalent": 89666, "reveals distinct": 144420, "distinct use": 43262, "aligns practical": 8272, "practical effectiveness": 125410, "word analogies": 178613, "present word": 126503, "assumptions exhibit": 13568, "assessing efficacy": 13175, "efficacy large": 46387, "generating accurate": 64127, "teacher responses": 163619, "use nlp": 172783, "building educational": 19393, "educational applications": 45599, "generation teacher": 65189, "educational dialogues": 45604, "task study": 161753, "study attempt": 157176, "present extensive": 126311, "evaluation benchmarking": 51452, "gpt4 fewshot": 67008, "finetuned dialogpt": 59007, "additionally optimize": 5097, "finetuned flant5": 59019, "flant5 model": 59757, "gpt4 finetuned": 67015, "models measured": 108161, "measured using": 99896, "using bertscore": 174007, "bertscore dialogrpt": 17648, "dataset characteristics": 36148, "challenges finetuning": 21870, "finally note": 58495, "distribution models": 43374, "invariant representations": 80326, "representations visual": 140911, "learning modern": 90740, "modern image": 109801, "directly predicting": 42586, "contain information": 30299, "recently work": 138013, "work visionlanguage": 179366, "descriptions image": 39464, "typically focuses": 170490, "focuses providing": 60157, "providing single": 133369, "humans understanding": 71486, "understanding multiple": 171361, "multiple visual": 111086, "features class": 57459, "regression using": 138968, "augmented visual": 14380, "generates multiple": 64083, "class large": 23881, "llm uses": 94081, "set visual": 149347, "image finally": 72255, "select relevant": 147786, "relevant subset": 139655, "subset features": 158000, "features classify": 57460, "core approach": 32151, "descriptive features": 39521, "shift traditional": 149924, "traditional image": 167628, "vlm training": 177447, "explicitly designed": 54968, "compression scheme": 28230, "outofdistribution performance": 117531, "summarization requires": 158873, "datasets train": 37160, "generation transfer": 65214, "offers viable": 115862, "identify suitable": 71971, "suitable model": 158703, "architecture use": 12238, "generaldomain pretraining": 63077, "finetuning context": 59209, "leading novel": 89848, "indomain examples": 75796, "indicate large": 75597, "model domainspecific": 103492, "neural information": 112849, "overcome lack": 118294, "tasks generalization": 162448, "creation synthetic": 33356, "synthetic indomain": 160050, "approach methods": 11386, "demonstrated potential": 38735, "llms synthetic": 96750, "suffer lack": 158437, "lack annotated": 82882, "training scripts": 168722, "scripts based": 147256, "tpus widely": 167497, "accessible code": 2947, "proprietary llm": 132521, "llm publicly": 93933, "fully realize": 61778, "widespread research": 178474, "resources need": 142459, "need accessible": 112208, "generation research": 65046, "research includes": 141847, "filtering training": 58364, "evaluation additionally": 51422, "libraries widely": 92032, "community support": 26524, "inpars method": 77204, "provides plugandplay": 133194, "llms exploring": 95205, "methods finetuning": 101534, "finetuning various": 59606, "reranker models": 141524, "generated work": 64051, "datasets beir": 36676, "demonstrate gpt35": 38363, "evidencebased answers": 52231, "cited papers": 23803, "reducing risk": 138593, "risk hallucinations": 144943, "evaluated dataset": 51164, "questions covering": 135085, "covering 20": 33070, "annotators results": 9643, "produce comprehensive": 129382, "relevant scientific": 139648, "present article": 126227, "arise ai": 12451, "outside field": 118150, "limitations ai": 92537, "technology current": 164131, "context popular": 30870, "discourse ai": 42700, "foundation large": 60727, "volume research": 177536, "research researchers": 142049, "researchers technology": 142264, "field research": 58240, "highlight number": 69763, "llms doing": 94966, "arise limitations": 12454, "risks individuals": 144992, "comprehensive methodology": 28075, "methodology utilizing": 101261, "llm study": 94028, "study develops": 157284, "effectiveness performance": 46257, "performance chatbot": 121232, "chatbot systems": 22588, "applying proposed": 10921, "relevant responses": 139647, "responses study": 142924, "versatility methodology": 176590, "applicability chatgpt": 10252, "underlying principles": 170866, "form core": 60449, "utilization various": 175020, "various llmbased": 176016, "llmbased systems": 94170, "approach opens": 11414, "empowering developers": 48011, "developers enhance": 40944, "performance functionality": 121545, "decisionmaking large": 37419, "intelligence emerged": 78809, "hope given": 70357, "models studied": 109254, "order explore": 117196, "explore gap": 55211, "gap humans": 62659, "models informal": 106764, "paper constructs": 118816, "questions gathered": 135138, "accessible online": 2960, "improvement models": 73823, "ability restricted": 2357, "prompt framework": 130512, "framework mimics": 61304, "mimics human": 102275, "require model": 141157, "greatly outperforms": 67797, "sota language": 153347, "lowest score": 97861, "emergent cognitive": 47477, "cognitive synergy": 25486, "synergy large": 159873, "collaboration different": 25583, "yield superior": 179986, "superior outcomes": 159016, "outcomes compared": 117447, "individuals work": 75784, "llm cognitive": 93539, "agent collaboratively": 6427, "combines multiple": 25947, "personas based": 122641, "unleashes potential": 171981, "potential cognitive": 124646, "synergy llms": 159876, "personas llms": 122642, "llms improves": 95560, "abilities compared": 1886, "compared using": 26962, "single fixed": 151797, "fixed number": 59713, "types unlike": 170433, "works chainofthought": 179429, "effectively reduces": 46072, "factual hallucination": 56873, "maintains strong": 98397, "capabilities additionally": 19763, "comparative experiments": 26646, "models gpt35turbo": 106539, "analogy human": 8741, "development code": 41067, "data prompts": 35567, "solutions using": 153084, "paper approach": 118749, "task reasoning": 161679, "automatically annotate": 14765, "generation methodology": 64828, "methodology generate": 101232, "generate structured": 63730, "analysis evaluate": 8912, "examine effectiveness": 52380, "human programming": 70986, "aiding llms": 7377, "problems effectively": 128491, "effectively experimental": 45992, "codecontests dataset": 25243, "comparable gpt4": 26580, "texts context": 165694, "models meticulously": 108185, "models foundational": 106390, "designed intelligent": 39898, "dataset encompasses": 36255, "effectively handle": 46009, "tasks related": 163113, "sentence segmentation": 148529, "recognition automatic": 138048, "automatic translation": 14756, "exhibited exceptional": 53131, "validation tasks": 175381, "datasets research": 37084, "research findings": 141794, "highlight efficacy": 69738, "methods train": 101881, "using classical": 174051, "classical text": 23948, "tasks worth": 163489, "initial model": 77036, "significant influence": 150760, "cater diverse": 21159, "developed distinct": 40870, "distinct categories": 43208, "comprising total": 28265, "total model": 167417, "foundational language": 60836, "texts facilitate": 165711, "literary works": 93152, "contribute global": 31402, "technology acceptance": 164119, "acceptance model": 2838, "model research": 104464, "presents findings": 126579, "objective studies": 115224, "assess chatgpts": 13059, "response rates": 142695, "responses aligned": 142726, "achieving 71": 4132, "study items": 157456, "model studies": 104669, "discriminant validity": 42831, "despite high": 40123, "high correlations": 69430, "reveal potential": 144365, "biases generated": 18266, "particularly regarding": 120250, "responses constructs": 142753, "investigation needed": 80643, "needed address": 112433, "variations prompts": 175661, "secondary students": 147518, "complete writing": 27295, "task chatgpt": 161242, "support english": 159285, "crafting appropriate": 33154, "writing appropriate": 179710, "appropriate prompt": 11984, "users suffer": 173790, "trialanderror process": 169740, "quality quantity": 134234, "students used": 156909, "time complete": 166359, "presents case": 126547, "process different": 128792, "combinations prompt": 25857, "prompt content": 130412, "need provide": 112371, "education context": 45531, "efl writing": 46943, "classroom students": 24231, "students individual": 156867, "variety prompt": 175747, "support writing": 159356, "young children": 180053, "children using": 23596, "algorithm used": 7871, "sets large": 149379, "testing approach": 164696, "approach combined": 11056, "create narrative": 33214, "game players": 62568, "improve evaluation": 73459, "task enhancing": 161352, "enhancing clip": 49466, "prompt augmentation": 130373, "zeroshot approaches": 180119, "approaches visual": 11955, "task english": 161350, "matching candidate": 99453, "clip text": 24413, "text encoder": 165051, "limited abilities": 92691, "capturing compositionality": 20718, "sentences contain": 148567, "context phrase": 30869, "diffusion generate": 42230, "multiple images": 110936, "images given": 72428, "images match": 72447, "paired text": 118536, "text preliminary": 165365, "logic powerful": 97338, "handle situations": 68566, "underlying application": 170826, "domains realizing": 44509, "fails account": 56994, "information domains": 76367, "generalized pretrained": 63281, "sequence analysis": 148728, "potential extracting": 124718, "dna sequences": 43793, "modalities remains": 102948, "challenge address": 21579, "prediction comprehensive": 125774, "sequence numerical": 148777, "region recognition": 138923, "designed specific": 39946, "designed model": 39913, "model graph": 103771, "graph data": 67513, "data understanding": 35902, "online job": 116111, "job recommendations": 81232, "recommendations large": 138250, "tasks demonstrating": 162186, "domains potential": 44497, "graph understanding": 67585, "unexplored paper": 171631, "understanding enhance": 171214, "framework harnesses": 61193, "provided large": 133069, "analyze behavior": 9269, "uncover underlying": 170736, "underlying patterns": 170863, "patterns relationships": 120561, "prompt constructor": 130409, "leverages llm": 91750, "design corresponding": 39588, "bias introduced": 18139, "sequence input": 148747, "leveraging capability": 91811, "individual users": 75751, "users evaluate": 173643, "approach comprehensive": 11067, "improve relevance": 73607, "quality research": 134248, "research sheds": 142073, "untapped potential": 172287, "developing advanced": 40974, "contribute growing": 31403, "growing field": 68025, "processing offer": 129270, "offer practical": 115687, "implications enhancing": 72920, "enhancing job": 49497, "best examples": 17670, "architecture explore": 12166, "predict word": 125714, "text able": 164813, "tasks displaying": 162242, "exploring ai": 55449, "ai tool": 7282, "tool large": 166998, "designed generate": 39885, "language conversations": 83219, "conversations trained": 31965, "text internet": 165255, "broad understanding": 19193, "domains ai": 44352, "tool provide": 167017, "provide information": 132838, "engage conversations": 48815, "tasks offer": 162874, "excel capturing": 52765, "capturing longrange": 20734, "dependencies text": 39148, "text making": 165294, "languagerelated tasks": 86939, "tasks ai": 161929, "largest powerful": 89446, "llms date": 94783, "date work": 37222, "presents overview": 126616, "overview ai": 118419, "responses various": 142940, "responses ai": 142724, "experts corresponding": 54648, "validate performance": 175330, "study help": 157386, "uses ai": 173831, "tool interaction": 166995, "pattern results": 120509, "study ai": 157139, "informative engaging": 76871, "produce incorrect": 129432, "nonsensical answers": 114132, "information ai": 76272, "tool provides": 167018, "reliable sources": 139752, "new tool": 113469, "potential used": 125039, "penetration testing": 120706, "techniques using": 164051, "created using": 33277, "detailed responses": 40314, "chatgpt add": 22681, "information security": 76751, "security information": 147593, "security practice": 147609, "benefit chatgpt": 17424, "testing research": 164749, "study methodology": 157485, "methodology explore": 101227, "explore investigate": 55226, "uses chatgpt": 173833, "provide types": 133011, "domain names": 44230, "operating systems": 116753, "tools techniques": 167267, "techniques guide": 163916, "discover potential": 42738, "software components": 152780, "testing techniques": 164761, "tasks success": 163307, "led large": 91231, "research contributions": 141673, "encompass diverse": 48524, "architectural innovations": 12112, "strategies context": 155980, "llms robotics": 96475, "datasets benchmarking": 36678, "development techniques": 41234, "considerably challenging": 29642, "llms imperative": 95542, "able benefit": 2471, "concise comprehensive": 28842, "developments field": 41279, "provides overview": 133192, "overview existing": 118432, "llms discusses": 94950, "relevant background": 139574, "concepts covering": 28645, "frontier research": 61652, "llms review": 96452, "systematic survey": 160159, "reference researchers": 138668, "draw insights": 44914, "train gain": 167772, "models computation": 105717, "research efficient": 141739, "algorithms designed": 7918, "designed improve": 39895, "batch selection": 16462, "efficient optimizers": 46691, "optimizers lion": 117102, "fixed computation": 59707, "downstream gains": 44724, "define evaluation": 37931, "evaluation protocol": 51798, "machine reference": 98100, "logic llms": 97334, "adaptation task": 4664, "recognition research": 138123, "innovative application": 77155, "loss training": 97702, "training leverage": 168544, "generate logic": 63598, "logic rules": 97345, "adaptation unseen": 4673, "action labels": 4323, "dataset observe": 36430, "models adaptability": 105267, "novel action": 114345, "slight decrease": 152223, "decrease performance": 37663, "light potential": 92134, "challenges incorporating": 21913, "terms top1": 164485, "recognition accuracy": 138042, "zeroshot detection": 180156, "knowledge learned": 82181, "quality textual": 134286, "capable detecting": 20413, "detecting classifying": 40400, "reasoning existing": 136843, "existing automated": 53285, "generate video": 63782, "sufficient quality": 158494, "quality support": 134277, "engineering experiments": 48915, "experiments chatgpt": 54170, "chatgpt knowledge": 23080, "provide structured": 132984, "flexible transparent": 59829, "collaborative way": 25635, "way organizing": 177858, "organizing knowledge": 117300, "knowledge data": 81853, "form representation": 60486, "terms effectiveness": 164409, "effectiveness knowledge": 46209, "graph structures": 67577, "web technologies": 178023, "interfaces applications": 79456, "applications recent": 10659, "chatgpt explore": 22923, "potential supporting": 125009, "present selection": 126441, "selection experiments": 147848, "assist development": 13344, "bootstrapping multilingual": 18867, "align pretrained": 8027, "llms representing": 96412, "alternative endtoend": 8555, "scratch prohibitively": 147227, "highquality english": 70022, "english imagetext": 49062, "monolingual english": 110065, "english llms": 49076, "pretraining resulting": 127428, "comparatively smaller": 26657, "limited multilingual": 92803, "multilingual image": 110484, "multilingual corpora": 110474, "corpora work": 32268, "efficient manner": 46669, "consumer hardware": 30262, "hardware using": 68701, "examples leveraging": 52631, "multilingual llm": 110500, "llm end": 93628, "english llm": 49075, "llm new": 93846, "leverage multilingual": 91633, "multilingual data": 110478, "data mix": 35370, "data 95": 34563, "results competitive": 143246, "scratch obtain": 147225, "context compression": 30710, "model propose": 104377, "propose incontext": 131871, "compress long": 28189, "context short": 30915, "directly conditioned": 42524, "llm various": 94088, "autoencoding language": 14477, "modeling objectives": 105059, "accurately comprehensively": 3520, "data producing": 35558, "desirable responses": 40033, "various prompts": 176128, "prompts experiments": 131262, "demonstrate lightweight": 38403, "parameters effectively": 119742, "memory cost": 100384, "potential scalability": 124966, "implications addressing": 72899, "research llm": 141891, "context management": 30844, "management data": 98874, "application frozen": 10322, "vl pretraining": 177435, "pretraining current": 127289, "current paradigm": 34201, "paradigm uses": 119527, "guide language": 68182, "focus determining": 59969, "relevant visual": 139665, "features corresponding": 57464, "language component": 83200, "identifying optimal": 72020, "prompts align": 131157, "features introduce": 57521, "model predicts": 104308, "ideal prompts": 71749, "linguistic data": 93024, "bypassing need": 19571, "process additional": 128726, "stage experiments": 154734, "reveal framework": 144333, "importantly framework": 73224, "application video": 10398, "using varied": 174843, "modules code": 109973, "noisy inputs": 114001, "significantly limited": 151067, "contexts crucial": 31013, "crucial ensure": 33796, "stable llm": 154698, "predictions consistent": 125894, "predictions llm": 125919, "local region": 97256, "adding noise": 4829, "input model": 77289, "model prediction": 104302, "depends largely": 39180, "performance corrupted": 121341, "corrupted data": 32624, "direct application": 42369, "llms remains": 96388, "inputs llms": 77427, "works like": 179466, "llm method": 93826, "method enjoys": 100832, "better efficiency": 17851, "efficiency flexibility": 46462, "models tokenization": 109408, "critical modern": 33523, "nlp pipelines": 113788, "based statistical": 16111, "features propose": 57561, "linguistically motivated": 93085, "shows comparable": 150417, "compared openai": 26867, "performance glue": 121593, "benchmark various": 17119, "various prompt": 176120, "embedding benchmark": 47155, "considerable margin": 29624, "margin despite": 99183, "despite trained": 40239, "trained half": 167934, "half training": 68323, "training iterations": 168511, "multilayer perceptron": 110452, "research wireless": 142149, "wireless communication": 178545, "tradeoff developing": 167556, "systems research": 160592, "promoting use": 130359, "dl models": 43786, "generalization compression": 63157, "relevance context": 139554, "wireless communications": 178547, "using emerging": 174161, "llms finally": 95263, "finally summarize": 58532, "proposed evaluation": 132287, "evaluation guidelines": 51632, "enhance research": 49284, "research impact": 141840, "dl research": 43787, "public goods": 133573, "stack overflow": 154708, "overflow large": 118345, "efficiently provide": 46808, "provide users": 133021, "users information": 173680, "presenting potential": 126543, "searching web": 147448, "people help": 120719, "online users": 116152, "drastically reduce": 44903, "available humangenerated": 15138, "humangenerated data": 71184, "present significant": 126447, "significant problem": 150828, "data future": 35084, "chatgpt changed": 22766, "leading online": 89849, "online qa": 116123, "qa platform": 133914, "russian chinese": 145771, "access chatgpt": 2849, "similar forums": 151237, "overflow significantly": 118349, "time larger": 166432, "posts chatgpt": 124520, "suggest users": 158595, "languages training": 87146, "chatgpt efficient": 22874, "efficient solving": 46717, "data people": 35479, "people models": 120729, "lowresource named": 97922, "recognition data": 138052, "augmentation widely": 14326, "used lowresource": 173140, "problem data": 128215, "knowledge manual": 82217, "effort address": 46829, "propose robust": 132106, "performs entity": 122442, "context augmentation": 30690, "lowquality samples": 97881, "direct utilization": 42413, "samples extensive": 146011, "benchmarks different": 17220, "improves strong": 74087, "baselines outperforms": 16355, "data included": 35202, "science led": 146887, "intelligence recent": 78884, "advances machine": 6031, "technological innovation": 164071, "pattern recognition": 120508, "difficult access": 42123, "general large": 62981, "represent opportunity": 140647, "opportunity augment": 116887, "quantitative models": 134364, "investigate aspects": 80374, "closedloop approach": 24478, "generation openended": 64903, "autonomous exploration": 14939, "aidriven automation": 7379, "practice science": 125498, "mitigate current": 102598, "replication findings": 140503, "requires vision": 141469, "ai coupled": 6936, "ai approaches": 6870, "approaches able": 11678, "able deal": 2486, "aspects causality": 12924, "causality analysis": 21231, "discovery enabling": 42765, "hold promise": 70252, "ais potential": 7704, "fundamental structure": 61978, "structure world": 156619, "world human": 179559, "push boundaries": 133794, "challenges facing": 21867, "graph large": 67541, "especially scenarios": 50537, "scenarios requiring": 146690, "requiring deep": 141478, "partially addressed": 119982, "treats llm": 169649, "agent interactively": 6456, "implement paradigm": 72826, "paradigm introducing": 119469, "welldesigned experiments": 178151, "experiments examine": 54279, "better deep": 17847, "deep reasoning": 37816, "expert feedback": 54570, "plugandplay framework": 123661, "llms kgs": 95699, "cost performance": 32725, "small llm": 152312, "llm models": 93832, "large llm": 88892, "certain scenarios": 21413, "cost llm": 32703, "trainingfree method": 168835, "better generality": 17883, "sota datasets": 153342, "datasets previous": 37042, "previous sotas": 127652, "rely additional": 139828, "compressed large": 28193, "models parameterefficient": 108427, "explored recent": 55364, "pet modules": 122781, "sufficient knowledge": 158487, "tasks pet": 162946, "built frozen": 19481, "avoiding redundant": 15361, "computational bottleneck": 28332, "propose effective": 131789, "pet framework": 122779, "compressed llms": 28196, "llms named": 95920, "mainstream llm": 98309, "llm compression": 93548, "restore knowledge": 142993, "loss caused": 97664, "techniques experimental": 163893, "modules original": 109998, "original version": 117397, "directly applying": 42517, "pet methods": 122780, "developmental psychologists": 41267, "abilities human": 1922, "human culture": 70681, "research social": 142084, "interactive agents": 79283, "multiagent setting": 110333, "argue ai": 12402, "psychology study": 133518, "discuss theories": 42950, "tool including": 166990, "procedurally generated": 128690, "main motivation": 98254, "engage ai": 48812, "social intelligence": 152587, "provide tool": 133009, "steps direction": 155733, "refer project": 138647, "website code": 178048, "code additional": 24654, "remains significant": 140069, "lms llms": 97164, "method efficiently": 100813, "existing mathematical": 53431, "mathematical problem": 99577, "problem datasets": 128219, "considers various": 29743, "formats different": 60563, "leverages training": 91788, "input questions": 77326, "questions models": 135198, "diverse formats": 43531, "results strategy": 143814, "model outperform": 104166, "approaches utilize": 11951, "established baselines": 50685, "promising generalization": 130263, "views datasets": 176832, "capability learn": 20332, "data hope": 35159, "studies machine": 157038, "machine reasoning": 98099, "attention computation": 13855, "powered advanced": 125228, "advanced deep": 5724, "various languagerelated": 175996, "llms excelled": 95126, "excelled tasks": 52786, "classification language": 24019, "proven highly": 132643, "effective capturing": 45705, "capturing complex": 20717, "understanding context": 171171, "context generating": 30780, "generating coherent": 64161, "coherent contextually": 25525, "contextually relevant": 31149, "architecture large": 12179, "fundamental component": 61946, "component enables": 27732, "capture utilize": 20694, "utilize contextual": 175029, "effectively making": 46047, "speed llms": 154510, "llms computation": 94681, "computational advantages": 28326, "advantages compared": 6131, "classical machine": 23935, "quantum computing": 134437, "aid llm": 7364, "llm work": 94098, "focus utilizing": 60077, "efficiently achieve": 46757, "classical method": 23940, "method attention": 100693, "extra lowrank": 56113, "lowrank structure": 97898, "algorithm llms": 7827, "llms additionally": 94344, "modeling discourse": 104991, "individual sentences": 75737, "fundamental challenging": 61940, "challenging aspect": 22116, "aspect natural": 12914, "nlp existing": 113734, "benchmarks primarily": 17334, "focus evaluation": 59977, "overlook critical": 118375, "discourse phenomena": 42714, "covering understanding": 33089, "understanding translation": 171516, "analysis design": 8885, "diagnostic test": 41388, "target models": 161088, "discourse knowledge": 42707, "indomain commercial": 75787, "architectures large": 12272, "necessity evaluation": 112196, "pretraining based": 127270, "discourse information": 42706, "release datasets": 139464, "datasets pretrained": 37039, "models leaderboard": 106934, "significantly facilitate": 151006, "student learning": 156813, "difficult assess": 42131, "usage existing": 172445, "questions focus": 135131, "course materials": 33011, "pedagogical implications": 120652, "method developed": 100787, "method utilizing": 101170, "utilizing gpt4": 175193, "gpt4 task": 67193, "automatically assessing": 14770, "assessing multiplechoice": 13189, "method correctly": 100766, "correctly detected": 32462, "identified human": 71823, "effectiveness methods": 46242, "methods identifying": 101575, "identifying common": 71991, "method accurately": 100624, "efficiently evaluate": 46776, "going existing": 66233, "existing metrics": 53476, "metrics account": 101993, "questions finally": 135129, "models open": 108340, "giant models": 65793, "present comparative": 126246, "models brief": 105544, "methods discuss": 101450, "scenarios small": 146701, "unleashing potential": 171983, "contribute significantly": 31421, "great potentials": 67711, "assist scientific": 13360, "paper attempts": 118764, "attempts address": 13809, "address following": 5228, "following questions": 60306, "current generation": 34124, "push frontier": 133797, "propose promising": 132077, "quantum chemistry": 134434, "finance tasks": 58558, "demonstrate limited": 38405, "search methods": 147376, "highlighting limitations": 69817, "time additionally": 166347, "applications llm": 10595, "lightweight framework": 92176, "highquality code": 69999, "generation utilizing": 65248, "utilizing transformerbased": 175243, "transformerbased generative": 169238, "generate functional": 63515, "code according": 24650, "according requirements": 3052, "developers recent": 40956, "research revealed": 142054, "revealed automatically": 144385, "generated source": 63985, "codes contain": 25287, "contain vulnerabilities": 30317, "attempts enhance": 13815, "enhance code": 49171, "models retraining": 108978, "retraining finetuning": 143977, "models timeconsuming": 109403, "transformerbased code": 169231, "includes static": 74389, "make generated": 98543, "based quality": 16053, "quality score": 134262, "java code": 81209, "including newly": 74642, "80 prompts": 1657, "java python": 81214, "vision large": 176946, "performance broad": 121211, "broad array": 19166, "array applications": 12511, "applications traditional": 10706, "traditional language": 167637, "data effectiveness": 34948, "environments requiring": 50108, "remarkable scalability": 140286, "fault tolerance": 57320, "showcase potential": 150079, "intelligent traffic": 78959, "traffic management": 167734, "developments ai": 41271, "database research": 36004, "overview challenges": 118420, "opportunities emerging": 116843, "emerging field": 47509, "roadmap future": 145127, "exploration development": 55062, "chatgpt code": 22781, "generation debugging": 64558, "emerged groundbreaking": 47357, "questionanswering conversational": 134981, "different deep": 41724, "architectures transformers": 12302, "vast corpora": 176329, "predict sentences": 125703, "sentences based": 148559, "given queries": 65967, "queries llms": 134504, "openai ushered": 116382, "tackle diverse": 160818, "intricate mathematical": 79851, "versatile applications": 176558, "applications enabled": 10502, "enabled chatgpt": 48137, "offer immense": 115656, "immense value": 72604, "value users": 175508, "users assessing": 173584, "assessing performance": 13194, "chatgpts output": 23497, "particularly scenarios": 120257, "relies heavily": 139799, "stark contrast": 154948, "closedended questions": 24474, "questions mathematical": 135190, "delves efficacy": 38110, "efficacy chatgpt": 46367, "solving programming": 153239, "correctness efficiency": 32486, "research reveals": 142055, "overall success": 118246, "problems chatgpt": 128466, "cases present": 21005, "strengths structured": 156270, "linear correlation": 92957, "improve solutions": 73629, "pointing potential": 123734, "potential shortcomings": 124977, "debugging tasks": 37320, "capabilities areas": 19787, "examines efficacy": 52430, "sota large": 153348, "exhibits proficiency": 53212, "conduct comparative": 29030, "analysis academic": 8798, "achievements various": 3931, "biology history": 18523, "geography civic": 65719, "civic education": 23810, "education results": 45584, "study suggest": 157649, "literature chatgpt": 93158, "exhibits better": 53182, "utilizes advanced": 175121, "advanced gpt4": 5743, "chatgpt built": 22753, "built gpt35": 19484, "reasoning generation": 136883, "generation creative": 64545, "informative text": 76884, "retrieval large": 144078, "dense embeddings": 39086, "largescale public": 89394, "recently researchers": 137982, "models hard": 106583, "guarantee good": 68111, "good quality": 66289, "generated weak": 64049, "tackle propose": 160847, "soft prompttuning": 152744, "pairs train": 118627, "train taskspecific": 167838, "select highquality": 147777, "prompt improve": 130539, "quality weak": 134297, "queries best": 134454, "knowledge prior": 82303, "work utilizing": 179364, "unsupervised baselines": 172236, "proposed llmsbased": 132327, "augmentation method": 14295, "depressive symptom": 39324, "mental disorder": 100493, "diagnosis relies": 41371, "reliability issues": 139690, "issues objective": 81037, "approaches needed": 11852, "diagnosing depression": 41356, "potential gpt": 124750, "gpt technology": 66501, "ability simulate": 2370, "investigate influence": 80428, "experiments simulated": 54466, "gpt responses": 66486, "expected results": 53760, "assess understanding": 13132, "depressive symptoms": 39325, "results gpts": 143448, "scoring criteria": 147185, "higher sensitivity": 69636, "conclusion gpt": 28897, "cases gpt": 20970, "gpt performs": 66474, "potential developing": 124672, "abilities interacting": 1932, "interacting humans": 79087, "language especially": 83288, "abilities incorporating": 1929, "incorporating multimodal": 75121, "inputs including": 77417, "video speech": 176736, "speech despite": 154400, "despite effectiveness": 40094, "effectiveness generating": 46188, "generating precise": 64296, "precise detailed": 125580, "detailed language": 40306, "understanding given": 171273, "ability ground": 2211, "text modalities": 165308, "improve user": 73656, "help expand": 69114, "expand application": 53680, "perform crossmodal": 120914, "vision audio": 176890, "audio language": 14181, "language providing": 86675, "finegrained understanding": 58899, "modalities result": 102949, "specific location": 154036, "object image": 115133, "image generating": 72258, "generating response": 64320, "grounding module": 67910, "module based": 109922, "entities sentence": 49872, "understanding experiments": 171231, "grounding abilities": 67884, "foundation architecture": 60710, "achieving training": 4236, "allows training": 8476, "representation enables": 140684, "memory sacrificing": 100459, "sacrificing performance": 145795, "representation facilitates": 140688, "efficient longsequence": 46668, "longsequence modeling": 97577, "summarizing chunks": 158923, "scaling results": 146447, "intriguing properties": 79878, "properties make": 131651, "explain human": 54698, "decisions llms": 37469, "llms explain": 95193, "enable humans": 48091, "infer models": 75948, "outputs diverse": 118047, "answers yes": 10097, "explanation birds": 54776, "humans infer": 71409, "answer yes": 9805, "generated diverse": 63856, "automatically using": 14873, "used metrics": 173147, "tasks multihop": 162822, "reward modeling": 144702, "modeling llms": 105035, "does correlate": 43971, "optimizing human": 117114, "sufficient solution": 158496, "review popular": 144532, "like openai": 92368, "openai google": 116336, "google deepmind": 66317, "deepmind anthropic": 37862, "anthropic stated": 10099, "stated goal": 155032, "building artificial": 19369, "agi ai": 6791, "systems perform": 160524, "humans wide": 71492, "tasks increasing": 162590, "increasing concerns": 75314, "pose catastrophic": 124147, "catastrophic risks": 21078, "drastically improve": 44901, "risk management": 144950, "management practices": 98883, "efforts paper": 46927, "paper reviews": 119311, "companies use": 26546, "risk identification": 144944, "risk analysis": 144926, "evaluation techniques": 51895, "matrices paper": 99631, "paper explains": 118900, "risk assessments": 144930, "technique use": 163813, "step reviewing": 155679, "rapid exploration": 135888, "propose enhanced": 131804, "approach rapid": 11492, "limitations heavy": 92596, "heavy reliance": 69054, "precise descriptions": 125579, "approach leverage": 11347, "akin traditional": 7718, "traditional reinforcement": 167688, "introduces additional": 80173, "additional layer": 4972, "leading robust": 89859, "robust efficient": 145259, "agent performance": 6484, "approach advantage": 10977, "seamless integration": 147286, "integration existing": 78651, "finetuning comparative": 59198, "certain cases": 21370, "execution time": 52970, "time enhancing": 166392, "applicability diverse": 10254, "set scenarios": 149302, "behavior changing": 16572, "llm services": 93994, "march 2023": 99171, "june 2023": 81351, "gpt4 diverse": 66975, "tasks math": 162785, "opinion surveys": 116808, "questions generating": 135145, "medical license": 100194, "gpt4 vary": 67213, "vary greatly": 176269, "time example": 166398, "example gpt4": 52481, "gpt4 march": 67070, "poor questions": 123954, "interestingly gpt35": 79410, "answer sensitive": 9777, "sensitive questions": 148442, "survey questions": 159676, "gpt4 performed": 67110, "mistakes code": 102545, "gpt4s ability": 67232, "llm service": 93992, "relatively short": 139415, "highlighting need": 69822, "need continuous": 112252, "continuous monitoring": 31244, "tasks wide": 163473, "need ability": 112204, "individuals health": 75773, "health status": 68977, "step creating": 155610, "creating multimodal": 33312, "data developing": 34909, "health large": 68950, "understanding enables": 171211, "learning encoder": 90415, "maps llms": 99163, "llms token": 96808, "like tabular": 92415, "features addition": 57442, "data estimate": 34991, "using tabular": 174782, "outperforms performs": 117815, "downstream uses": 44852, "health wellness": 68984, "transformers propose": 169345, "modeling model": 105051, "utilizes autoregressive": 175123, "networks specifically": 112802, "learn joint": 89998, "joint probability": 81260, "logical operators": 97369, "training unsupervised": 168810, "pretraining pretraining": 127410, "efficiently compute": 46768, "decoding directly": 37567, "number logical": 114901, "algorithms require": 7967, "small code": 152275, "models error": 106148, "noise results": 113983, "provides significantly": 133213, "better decoding": 17846, "decoding accuracy": 37556, "general applied": 62916, "furthermore leverages": 62109, "leverages parallelization": 91760, "parallelization capabilities": 119590, "simultaneous decoding": 151741, "approach sheds": 11529, "modern computational": 109790, "popularity field": 124085, "nlp extensively": 113736, "tasks multimodal": 162824, "gpt4 paper": 67106, "method enhance": 100827, "enhance explainability": 49195, "transformerbased image": 169240, "improve trust": 73649, "classification results": 24073, "focuses extracting": 60141, "classspecific information": 24235, "information intermediate": 76526, "layers enabling": 89664, "relevant features": 139606, "module performs": 109951, "visual explainability": 177169, "validate method": 175325, "method extensive": 100859, "quantitative experiments": 134348, "experiments imagenet": 54313, "conduct large": 29153, "explainability method": 54731, "improvement previous": 73836, "contributions module": 31499, "overall effectiveness": 118187, "approach text": 11607, "models ngram": 108298, "calculated based": 19606, "individual tokens": 75746, "increase perplexity": 75220, "highly probable": 69940, "given perplexity": 65952, "scalar value": 146260, "relatively good": 139402, "token text": 166741, "equally likely": 50164, "research proposes": 142005, "proposes simple": 132487, "simple algorithm": 151402, "values based": 175523, "based ngram": 15977, "consider previously": 29582, "single vector": 151875, "research image": 141839, "recently significant": 137998, "highquality visual": 70091, "content based": 30443, "inputs despite": 77396, "despite ongoing": 40162, "measure quality": 99870, "humanbased evaluations": 71143, "different generative": 41782, "generative methods": 65466, "methods introduce": 101608, "assess consistency": 13065, "image corresponding": 72218, "process inspired": 128879, "combines strengths": 25953, "strengths large": 156255, "llms visual": 96985, "cognitive process": 25468, "process quality": 128956, "quality assessment": 134046, "brave new": 18973, "image evaluation": 72247, "evaluation process": 51786, "process preliminary": 128940, "door new": 44660, "evaluation significant": 51863, "generation image": 64728, "image target": 72332, "editing tasks": 45489, "tasks sophisticated": 163265, "learning il": 90557, "learning powerful": 90834, "works able": 179418, "works deeply": 179435, "investigate role": 80492, "resulted increasingly": 143081, "increasingly capable": 75379, "capable llms": 20443, "demonstrate findings": 38343, "game nethack": 62565, "procedural generation": 128684, "longterm dependencies": 97599, "training computeoptimal": 168196, "size number": 152035, "learning challenging": 90293, "challenging domain": 22151, "capable agents": 20398, "literature search": 93202, "research yields": 142156, "essential tool": 50642, "knowledge clinical": 81812, "clinical biomedical": 24316, "recent improvements": 137517, "improvements artificial": 73875, "clinicians researchers": 24387, "response present": 142682, "present survey": 126469, "survey literature": 159650, "tools tailored": 167265, "tailored general": 160919, "specific information": 154012, "efficiently fulfill": 46782, "pubmed search": 133707, "continued challenges": 31207, "catering specific": 21167, "evidencebased medicine": 52233, "genetic variants": 65684, "practical considerations": 125402, "tools finally": 167164, "perspective future": 122665, "considering recent": 29730, "survey provides": 159674, "available tools": 15216, "retrieval meets": 144087, "meets large": 100296, "community research": 26520, "field information": 58179, "evolved significantly": 52300, "significantly expanding": 151004, "meet diverse": 100276, "diverse user": 43690, "generation knowledge": 64765, "knowledge inference": 82122, "exciting avenues": 52873, "ir research": 80835, "generative retrieval": 65587, "offer improved": 115658, "solutions user": 153083, "user understanding": 173532, "interactions importantly": 79232, "synergistic relationship": 159860, "ir models": 80833, "new technical": 113456, "provide realtime": 132944, "knowledge humans": 82103, "reliability information": 139689, "limitations ethical": 92574, "thoroughly discuss": 166204, "discuss transformative": 42952, "llms ir": 95689, "research chinese": 141634, "community conducted": 26458, "yielding valuable": 180005, "insights paper": 77617, "outcomes including": 117454, "mutual enhancement": 111337, "enhancement llms": 49383, "origin llms": 117307, "llms evolutionary": 95113, "tree graph": 169660, "llms prominent": 96221, "prominent llms": 130155, "hundreds new": 71541, "new llms": 113264, "settings training": 149650, "methods families": 101521, "llms available": 94463, "using ngrams": 174535, "methods successfully": 101848, "successfully identify": 158383, "subgroups present": 157824, "public web": 133612, "rapidly generates": 135928, "word clouds": 178618, "available following": 15113, "following link": 60293, "generating mathematical": 64272, "help identify": 69126, "identify models": 71928, "potentially support": 125136, "mathematical discovery": 99559, "discovery paper": 42785, "engine generate": 48858, "scale investigate": 146299, "employ incontext": 47830, "learning gpt": 90507, "finetune range": 58966, "compare robustness": 26730, "specialised models": 153858, "results finetuned": 143415, "sensitive perturbations": 148437, "involving unseen": 80806, "lesser extent": 91427, "inclusion incorrect": 74791, "incorrect irrelevant": 75156, "evaluating mathematical": 51343, "general properties": 63023, "finegrained reasoning": 58888, "demonstrates training": 38911, "capabilities larger": 20003, "larger llms": 89218, "current metrics": 34181, "appropriately assessing": 12002, "mathematical text": 99602, "ubiquitous machine": 170546, "fast pace": 57275, "difficult identify": 42155, "challenges fruitful": 21876, "set open": 149257, "ml researchers": 102792, "state quickly": 155014, "categories large": 21106, "short survey": 149998, "tools natural": 167213, "summary various": 158948, "various llm": 176013, "financial llms": 58571, "language llms": 83494, "llms biomedical": 94502, "biomedical clinical": 18536, "llms vision": 96977, "models comparison": 105697, "chatbots virtual": 22647, "intelligence resolving": 78893, "purpose study": 133758, "information future": 76464, "directions chatgpt": 42462, "chatgpt digital": 22856, "forensic investigation": 60398, "topic discussion": 167319, "gpts llama": 67317, "prompts users": 131516, "assesses impact": 13154, "impact chatgpt": 72626, "chatgpt field": 22942, "digital forensics": 42283, "latest pretrained": 89566, "gpt4 series": 67154, "cases including": 20974, "number general": 114870, "general conclusions": 62929, "conclusions drawn": 28908, "require sufficient": 141203, "knowledge topic": 82460, "tool identify": 166987, "identify incorrect": 71902, "behavior impact": 16595, "social bots": 152534, "online social": 116139, "traditional tasks": 167706, "evolution social": 52279, "researchers begun": 142177, "llms driving": 94994, "decisionmaking social": 37442, "social content": 152548, "systematic research": 160144, "behavioral characteristics": 16665, "curated data": 34011, "bots ability": 18882, "influence online": 76213, "toxic behaviors": 167450, "existing detection": 53344, "subject certain": 157827, "addressing data": 5441, "research outcomes": 141946, "insights research": 77640, "posts twitter": 124523, "twitter social": 170233, "political polarization": 123901, "public dialogue": 133565, "political views": 123908, "contribute increased": 31407, "individual user": 75750, "civil comments": 23812, "dataset collecting": 36163, "twitter users": 170234, "including political": 74668, "predict user": 125711, "toxic content": 167453, "users engage": 173638, "wider array": 178434, "clustering algorithm": 24595, "algorithm similar": 7858, "shown encode": 150229, "rich knowledge": 144786, "inherent knowledge": 76957, "making external": 98739, "knowledge necessary": 82242, "existing information": 53389, "retrieval techniques": 144150, "techniques costly": 163858, "conduct retrieval": 29172, "retrieval necessary": 144104, "necessary achieve": 112137, "goal propose": 66191, "knowledge solve": 82408, "representation distribution": 140681, "distribution small": 43391, "instances extensive": 77829, "achieve significantly": 3739, "naive usage": 111390, "usage external": 172446, "tasks 26": 161873, "knowledgeenhanced lms": 82546, "lms limited": 97163, "computation latency": 28308, "latency costs": 89479, "identify social": 71962, "bias prompting": 18185, "applications continue": 10457, "continue expand": 31194, "important build": 73103, "measuring mitigating": 99955, "evaluating instruction": 51317, "bias zeroshot": 18221, "including chainofthought": 74441, "llama instruction": 93316, "finetuned versions": 59140, "alpaca 7b": 8504, "bias identification": 18133, "demonstrate scaling": 38540, "llm size": 94006, "mitigation framework": 102687, "updating work": 172368, "work results": 179270, "indirect prompt": 75679, "generates adversarial": 64054, "user asks": 173374, "text andor": 164832, "identifying interpretable": 72010, "representations propose": 140871, "explanation using": 54804, "features image": 57507, "captioning dataset": 20574, "like clip": 92251, "clip word": 24419, "humanunderstandable concepts": 71504, "interpretation using": 79715, "eliminate spurious": 47071, "present technique": 126478, "linear transformation": 92984, "transformation code": 169055, "speech synthesizer": 154477, "expressive speech": 55608, "synthesis models": 159959, "speaking styles": 153840, "order control": 117182, "control various": 31601, "speech generate": 154415, "generate desired": 63457, "codec language": 25239, "structure generative": 156563, "gpt3 proposed": 66744, "text sentences": 165453, "sentences prompt": 148593, "prompt audio": 130372, "controllable speech": 31622, "controlling attributes": 31662, "produce diverse": 129393, "diverse voices": 43696, "identify tokens": 71974, "attributes emotion": 14108, "emotion speaking": 47573, "models global": 106507, "accuracy generated": 3251, "generated sentences": 63973, "sentences comparing": 148564, "generated speech": 63987, "observe changes": 115360, "trained tokens": 168102, "demonstrates competitive": 38830, "models audio": 105415, "tasks accurately": 161889, "accurately evaluating": 3531, "evaluating ability": 51257, "instructions remains": 78342, "focus common": 59958, "align model": 8020, "necessarily imply": 112131, "ability instruction": 2228, "protocol called": 132580, "aligning model": 8105, "highly aligned": 69891, "examine models": 52403, "datasets employing": 36814, "different families": 41768, "families scales": 57190, "strongest gpt4": 156484, "struggles perform": 156788, "better random": 17997, "continued advancements": 31206, "improving code": 74116, "text vice": 165566, "methods solving": 101834, "strengths different": 156251, "different problems": 41929, "difficult users": 42188, "use paper": 172794, "weaknesses method": 177968, "176b parameter": 506, "performant method": 122357, "method 30": 100619, "making model": 98778, "model easier": 103501, "easier use": 45294, "use improve": 172676, "performance related": 122007, "related distinct": 139160, "improving ability": 74105, "ablation analyses": 2429, "generates data": 64063, "multiple methods": 110975, "hope evidence": 70350, "evidence paper": 52204, "explore ways": 55330, "nucleotide sequences": 114812, "sequences human": 148821, "human genes": 70835, "ones obtained": 116006, "colossal success": 25801, "unexplored best": 171624, "knowledge consequently": 81831, "autoregressive generative": 14980, "carry study": 20847, "scale focusing": 146288, "1d sequences": 571, "simple techniques": 151538, "promising beneficial": 130235, "languages understand": 87151, "unlike natural": 172010, "language essential": 83289, "using reallife": 174647, "classical metrics": 23942, "metrics perplexity": 102126, "furthermore checking": 62022, "nature models": 112017, "language minimal": 83507, "language make": 83499, "problem easier": 128237, "did provide": 41596, "change data": 22339, "llm benchmarks": 93510, "reasoning focus": 136864, "problems grounded": 128525, "systematically examine": 160185, "capabilities required": 20160, "required solving": 141256, "expansive benchmark": 53725, "curated dataset": 34012, "problems mathematics": 128563, "domains based": 44360, "based dataset": 15740, "study representative": 157593, "representative opensource": 140936, "opensource proprietary": 116668, "llms fall": 95246, "short delivering": 149963, "satisfactory performance": 146160, "overall score": 118235, "categorize errors": 21137, "errors llms": 50376, "strategy significantly": 156205, "demonstrate improvements": 38384, "llms ultimately": 96871, "ai ranging": 7185, "recently despite": 137855, "effective diverse": 45741, "course large": 33009, "nature deep": 111992, "millions billions": 102251, "hidden units": 69342, "novel high": 114537, "sample task": 145966, "task unique": 161796, "methods following": 101537, "basic observations": 16428, "qa require": 133923, "knowledge rely": 82357, "information assistance": 76288, "knowledge including": 82113, "able perceive": 2537, "knowledge boundaries": 81800, "augmentation study": 14313, "present initial": 126338, "boundaries llms": 18910, "llms opendomain": 95984, "specially focus": 153928, "focus primary": 60037, "primary research": 127820, "respond questions": 142596, "questions accuracy": 135021, "responses furthermore": 142799, "proves effective": 132659, "approach enhancing": 11183, "enhancing llms": 49511, "llms awareness": 94465, "awareness knowledge": 15375, "additionally llms": 5090, "llms propensity": 96241, "quality results": 134254, "significantly impacts": 151018, "work available": 178818, "standardized evaluation": 154905, "evaluation long": 51681, "recently growing": 137905, "extending context": 55673, "length large": 91372, "llms aiming": 94380, "aiming effectively": 7545, "effectively process": 46065, "process long": 128908, "long inputs": 97457, "extended context": 55652, "addressing key": 5457, "dataset construction": 36192, "metrics hand": 102077, "encompassing diverse": 48552, "tokens hand": 166822, "matching metrics": 99473, "metrics generally": 102071, "strongly advocate": 156492, "study popular": 157533, "opensource counterparts": 116594, "benchmark empirical": 16937, "useful insights": 173333, "lay groundwork": 89619, "principled evaluation": 127846, "provide immediate": 132827, "immediate feedback": 72590, "solve challenges": 153096, "model ensuring": 103552, "chatgpt api": 22706, "learning used": 91107, "real practice": 136243, "answers chatgpt": 10000, "method align": 100672, "use additional": 172487, "discusses design": 42972, "design implementation": 39650, "implementation proposed": 72856, "detection incontext": 40527, "humanlevel fluency": 71226, "fluency text": 59894, "generation making": 64812, "humanwritten llmgenerated": 71517, "llmgenerated texts": 94210, "texts poses": 165756, "growing risk": 68050, "risk misuse": 144953, "identify llmgenerated": 71916, "existing detectors": 53346, "lack robustness": 83003, "robustness attacks": 145351, "malicious user": 98850, "evade detectors": 50879, "detectors based": 40673, "framework improves": 61211, "improves robustness": 74077, "output framework": 117937, "examples incontext": 52613, "harder detect": 68666, "experiments domain": 54259, "domain student": 44302, "essays proposed": 50573, "proposed detector": 132278, "improves detection": 73991, "furthermore proposed": 62140, "stateoftheart detection": 155126, "finally proposed": 58512, "degrades performance": 38003, "performance detectors": 121378, "paraphrasing method": 119921, "evading detection": 50882, "detection question": 40601, "decomposition improves": 37639, "modelgenerated reasoning": 104959, "verify correctness": 176525, "correctness safety": 32502, "safety behavior": 145842, "approach help": 11275, "reasoning having": 136898, "generate stepbystep": 63727, "check process": 23527, "process models": 128922, "stated reasoning": 155037, "models actual": 105264, "actual reasoning": 4485, "reasoning case": 136727, "improve faithfulness": 73464, "decomposing questions": 37631, "methods achieve": 101272, "improving faithfulness": 74143, "faithfulness models": 57093, "greatly increase": 67793, "gains cot": 62515, "results possible": 143673, "safety llm": 145874, "behavior domain": 16585, "model empirical": 103523, "driving domain": 45008, "expert systems": 54595, "effort domain": 46845, "using enormous": 174166, "engineering llm": 48948, "chatgpt assess": 22718, "framework empirically": 61106, "domain present": 44246, "present key": 126348, "domain ontology": 44240, "ontology construction": 116170, "possible human": 124431, "early intervention": 45252, "efficiency output": 46497, "butterfly effect": 19555, "develop webbased": 40853, "knowledgebased systems": 82535, "domains llm": 44467, "human large": 70907, "llms lately": 95735, "consumers alike": 30267, "linguistic capabilities": 93009, "studied extensively": 156927, "investigating cognitive": 80589, "examine gpt3": 52388, "models cognitive": 105665, "recognition abilities": 138040, "range generative": 135626, "tasks abstractive": 161883, "paper extend": 118946, "allowing perform": 8386, "perform speech": 121046, "prepending sequence": 126177, "embeddings text": 47287, "asr used": 13013, "open sourced": 116305, "monolingual baselines": 110061, "baselines 18": 16275, "perform multilingual": 120982, "multilingual speech": 110551, "recognition despite": 138055, "llama trained": 93338, "text furthermore": 165100, "furthermore perform": 62126, "investigate llm": 80443, "maintain original": 98326, "original capabilities": 117318, "capabilities scaling": 20167, "embeddings results": 47280, "studies multilingual": 157046, "multilingual asr": 110463, "llm frozen": 93690, "opening possibility": 116528, "llms operate": 95996, "profiles challenges": 129697, "method detecting": 100784, "detecting fake": 40406, "establishing connections": 50708, "private sensitive": 128052, "manually using": 99107, "dearth large": 37279, "linkedin dataset": 93102, "paradigm assess": 119431, "static contextualized": 155455, "contextualized word": 31135, "roberta suggested": 145160, "embeddings addition": 47212, "promising accuracy": 130212, "accuracy identifying": 3266, "identifying llmgenerated": 72013, "accuracy approximately": 3149, "design single": 39757, "pose estimation": 124155, "understanding important": 171292, "effective humanrobot": 45772, "humanrobot interaction": 71332, "social robots": 152657, "robots able": 145214, "able interpret": 2526, "humans paper": 71439, "addresses key": 5418, "achieving good": 4178, "order tackle": 117244, "challenges overcome": 21981, "image features": 72253, "body parts": 18776, "strategy called": 156113, "robust visual": 145336, "valuable training": 175461, "feedback memory": 57737, "identified crucial": 71819, "crucial human": 33805, "allows retention": 8468, "visual linguistic": 177226, "retrieved address": 144230, "realworld challenges": 136416, "complex ai": 27352, "realization artificial": 136323, "intelligence despite": 78807, "prevalence large": 127503, "comprehension generation": 27905, "generation interaction": 64757, "constraints context": 30067, "integration knowledge": 78662, "doing introduces": 44050, "central approach": 21336, "based multiple": 15959, "based complexity": 15712, "response human": 142662, "feedback comprehensive": 57653, "evaluation methodology": 51700, "conducted using": 29296, "indicate stateoftheart": 75626, "solutions including": 153033, "approach efficient": 11147, "efficient compared": 46585, "processing text": 129337, "text llms": 165285, "llms source": 96644, "chatgpt flant5": 22952, "biomedical natural": 18561, "namedentity recognition": 111420, "llms begin": 94476, "begin approach": 16525, "models zero": 109733, "scenarios tasks": 146708, "examples tasks": 52707, "model medical": 104078, "llm outperforms": 93862, "studied tasks": 156942, "processing demonstrated": 129140, "range educational": 135616, "educational learning": 45615, "critical provide": 33536, "tend produce": 164317, "policy interventions": 123850, "currently exists": 34315, "responses possibly": 142873, "provide responses": 132957, "controversial topics": 31677, "malicious actors": 98835, "llms assessing": 94434, "assessing large": 13180, "ai holds": 7028, "enormous potential": 49608, "scenarios leveraging": 146639, "leveraging generative": 91853, "humans benefit": 71352, "enhancing ability": 49451, "decisions consider": 37454, "potential outcomes": 124891, "carry social": 20846, "bard bing": 15552, "behavioral patterns": 16670, "nonetheless gpt4": 114051, "gpt4 consistently": 66950, "bias significant": 18201, "ai developers": 6955, "developers users": 40964, "business contexts": 19536, "contexts social": 31054, "social conflict": 152546, "retrieval augmented": 144000, "learning emergence": 90407, "learning related": 90909, "showcasing remarkable": 150120, "comprehending generating": 27870, "generating manipulating": 64271, "conventional usage": 31737, "limitations terms": 92675, "terms context": 164400, "context constraints": 30714, "constraints external": 30082, "information retrieved": 76740, "effectively addresses": 45939, "addresses critical": 5409, "critical challenges": 33467, "challenges firstly": 21871, "circumvents need": 23789, "method alleviates": 100674, "retraining llms": 143978, "tasks impractical": 162532, "restricted access": 143002, "model computational": 103333, "computational intensity": 28367, "additionally seamlessly": 5133, "mitigating hallucinations": 102663, "potentially damaging": 125092, "research agenda": 141570, "outlined paper": 117501, "paper potential": 119102, "impact field": 72652, "democratizing access": 38197, "access utilization": 2920, "llms wide": 97001, "planning long": 123294, "understanding program": 171422, "achieved better": 3792, "generalization sample": 63228, "automation performance": 14906, "agent learns": 6465, "tasks real": 163080, "decomposing instructions": 37630, "html documents": 70482, "python programs": 133850, "generated design": 63849, "grounded code": 67854, "using local": 174452, "global attention": 66086, "improves success": 74088, "higher success": 69639, "offline task": 115887, "task planning": 161619, "evaluation use": 51912, "introduces large": 80190, "llm highly": 93738, "highly versatile": 69971, "applicable broad": 10273, "analysis critical": 8871, "llms transform": 96846, "students researchers": 156897, "researchers limited": 142233, "limited programming": 92823, "programming experience": 129819, "offers simple": 115848, "introduction llms": 80257, "analysis research": 9127, "research project": 141997, "steps analyzing": 155715, "analysis prompt": 9087, "results illustrative": 143482, "use challenging": 172542, "political texts": 123907, "multilevel large": 110459, "progress past": 130007, "groups paper": 67976, "models linked": 107013, "user personal": 173466, "linking large": 93106, "regions brain": 138931, "achieve complex": 3611, "behavior human": 16594, "level models": 91491, "models user": 109575, "achieve efficient": 3630, "protect users": 132556, "users privacy": 173742, "reduce redundancy": 138466, "tasks professional": 163011, "prompting shown": 131072, "empirically improve": 47792, "understanding cot": 171177, "work addressed": 178775, "understanding critical": 171179, "deployment address": 39256, "influence input": 76200, "tokens model": 166843, "specifically probe": 154265, "tokens results": 166876, "attributed semantically": 14098, "semantically relevant": 148273, "standard fewshot": 154822, "increases robustness": 75290, "empower model": 47995, "context comprehension": 30709, "recently emergence": 137873, "numerous large": 115046, "irrespective models": 80862, "growing demand": 68020, "enhanced comprehension": 49324, "relatively smaller": 139422, "smaller sizes": 152441, "models encounter": 106114, "comprehension capacity": 27890, "responses recent": 142896, "attempt address": 13777, "focus models": 60026, "models unable": 109529, "paper thoroughly": 119370, "thoroughly investigate": 166212, "nature information": 112008, "information transfer": 76815, "novel technique": 114712, "called attention": 19648, "empowers models": 48034, "impact generation": 72658, "generation fluency": 64664, "context token": 30940, "token length": 166716, "length ranging": 91388, "demonstrate achieve": 38219, "achieve substantial": 3770, "improvements compared": 73887, "results evaluated": 143389, "reasoning answering": 136670, "faithful explanation": 57076, "process answering": 128737, "question investigate": 134894, "paraphrasing models": 119922, "does come": 43967, "suggest cot": 158525, "size task": 152071, "task carefully": 161231, "carefully chosen": 20793, "potential autonomous": 124613, "agents manage": 6655, "language commands": 83194, "leading disconnect": 89810, "agents perform": 6681, "create environment": 33195, "fully functional": 61767, "domains ecommerce": 44389, "collaborative software": 25632, "development content": 41071, "set benchmark": 149140, "correctness task": 32505, "tasks benchmark": 162000, "benchmark diverse": 16934, "diverse longhorizon": 43570, "designed emulate": 39857, "baseline agents": 16191, "agents integrating": 6633, "integrating recent": 78625, "recent techniques": 137697, "agent achieves": 6410, "endtoend task": 48768, "lower human": 97825, "highlight need": 69761, "need development": 112270, "agents current": 6573, "far perfect": 57230, "taxonomy existing": 163579, "research current": 141677, "current challenges": 34085, "challenges possible": 22005, "possible future": 124424, "launch november": 89588, "2022 shown": 681, "writing challenges": 179717, "challenges concerns": 21806, "provide taxonomy": 132997, "analyze existing": 9291, "common approaches": 26122, "approaches employed": 11741, "healthcare marketing": 69005, "financial services": 58581, "academic scientific": 2757, "writing research": 179745, "science natural": 146896, "applications gain": 10539, "chatgpt addressing": 22685, "addressing realworld": 5474, "related chatgpt": 139151, "including biases": 74435, "furthermore identify": 62092, "research proposing": 142006, "solutions current": 153007, "fully leveraging": 61775, "advancements conversational": 5875, "impacts society": 72770, "investigation use": 80651, "chatgpt support": 23371, "support systems": 159336, "various subjects": 176191, "subjects using": 157879, "using general": 174225, "study assesses": 157175, "different versions": 42082, "tool results": 167024, "helpful responses": 69217, "potential tool": 125022, "tool enhancing": 166970, "need users": 112423, "users remain": 173763, "responses despite": 142764, "despite limitations": 40152, "chatgpt valuable": 23424, "tool teaching": 167043, "models quality": 108749, "data impacts": 35182, "given fixed": 65887, "tasks develop": 162217, "simple hypothesis": 151474, "just humans": 81371, "set skills": 149311, "skills training": 152193, "utilized improved": 175106, "dataefficient training": 36055, "skill sets": 152141, "enables advanced": 48158, "skills learned": 152171, "learned data": 90091, "second using": 147515, "framework introduce": 61238, "introduce online": 80080, "sampling algorithm": 146083, "continual pretraining": 31172, "finetuning regimes": 59502, "objective efficiently": 115188, "learn multiple": 90012, "validation loss": 175368, "data associated": 34661, "framework recent": 61375, "lm achieving": 97049, "achieving higher": 4183, "augmentation propose": 14306, "method semantically": 101088, "feature spaces": 57433, "work built": 178831, "training visual": 168823, "data given": 35129, "transfers pretrained": 169037, "pretrained text": 127170, "useful augment": 173314, "visual representation": 177300, "samples class": 145994, "imbalance distribution": 72554, "scarce data": 146472, "tasks process": 163007, "process finetuning": 128838, "llms requires": 96416, "annotation work": 9565, "text graph": 165214, "setting specifically": 149508, "evaluate gpt3": 50980, "demonstrate generative": 38360, "fluent coherent": 59897, "text achieving": 164817, "achieving bleu": 4156, "struggle understanding": 156780, "text hallucinations": 165220, "detect machinegenerated": 40367, "macrof1 scores": 98184, "scores text": 147174, "generated generative": 63869, "exponential growth": 55529, "growth data": 68079, "data necessitates": 35417, "necessitates efficient": 112174, "efficient automated": 46581, "information resources": 76700, "challenging process": 22246, "process analyze": 128736, "analyze llms": 9312, "progress diverse": 129958, "domains publicly": 44507, "tailored llm": 160924, "llm addressing": 93445, "addressing gap": 5446, "knowledge generalpurpose": 82029, "generalpurpose llm": 63356, "llm tailored": 94041, "benchmark comprising": 16872, "models marking": 108142, "better serve": 18025, "harnessing collective": 68824, "knowledge good": 82039, "study open": 157516, "field conversational": 58149, "bard recently": 15569, "handle visual": 68578, "alongside text": 8500, "prompts conversations": 131210, "handling textual": 68610, "understanding interpreting": 171312, "interpreting visual": 79740, "images conditioned": 72403, "conditioned text": 28987, "text questions": 165398, "vision problems": 176974, "problems demand": 128478, "demand accurate": 38124, "accurate visual": 3510, "study focus": 157370, "15 diverse": 409, "task scenarios": 161707, "scenarios encompassing": 146582, "sensing data": 148408, "data comprehensively": 34809, "performance primary": 121943, "finding indicates": 58608, "scenarios highlighting": 146615, "highlighting significant": 69837, "understanding needs": 171369, "leading enhanced": 89813, "enhanced capabilities": 49321, "data project": 35563, "project released": 130084, "probing large": 128155, "text make": 165291, "information learned": 76556, "demographic bias": 38201, "bias based": 18100, "growing body": 68008, "work considered": 178867, "removing information": 140367, "contribute body": 31393, "work proposing": 179229, "formal definition": 60497, "models representation": 108932, "space propose": 153610, "approach avoids": 11019, "failure mode": 57012, "controlled generation": 31638, "half total": 68322, "concept information": 28600, "framework causal": 61004, "controlled intervention": 31639, "development evaluation": 41107, "evaluation domainspecific": 51556, "domainspecific language": 44591, "presents development": 126569, "intricate field": 79844, "competencies large": 27128, "study endeavors": 157311, "dedicated model": 37679, "model yield": 104914, "outputs relevant": 118114, "pretraining instructiontuning": 127349, "dataset dataset": 36218, "strategy designed": 156125, "designed ensure": 39866, "knowledge effectively": 81908, "effectively address": 45938, "address user": 5381, "user inquiries": 173423, "datasets universal": 37171, "models parallel": 108425, "parallel decoding": 119566, "endtoend generation": 48740, "generation latency": 64784, "major causes": 98415, "high generation": 69463, "humans propose": 71455, "guides llms": 68267, "12 llms": 271, "improve answer": 73412, "initial attempt": 77011, "efficiency underscores": 46547, "potential pushing": 124929, "llms think": 96802, "think like": 166134, "human answer": 70592, "quality critical": 134087, "critical review": 33543, "models sensitivity": 109073, "specialized ai": 153871, "examines comparative": 52428, "data presents": 35526, "presents critical": 126566, "llms addressing": 94354, "bias sensitivity": 18198, "specialized training": 153916, "company descriptions": 26551, "descriptions dataset": 39447, "dataset offers": 36434, "broader coverage": 19210, "account task": 3080, "task requirements": 161694, "complexity transparency": 27705, "versatility llms": 176589, "use specialized": 172885, "models suggested": 109291, "precision accuracy": 125608, "study concludes": 157228, "encouraging research": 48624, "balance capabilities": 15490, "domainspecific expertise": 44580, "challenge reinforcement": 21724, "agent needs": 6479, "optimal policy": 116946, "textbased game": 165590, "environments action": 50060, "action space": 4341, "nonplayer characters": 114117, "characters npcs": 22502, "potentially help": 125107, "train rl": 167821, "incorporate information": 75020, "skills language": 152165, "models major": 108124, "major driver": 98427, "ai products": 7167, "new skills": 113410, "emerge language": 47329, "parameter set": 119638, "mathematical analysis": 99554, "training difficult": 168391, "current paper": 34200, "paper takes": 119366, "different approach": 41655, "using famous": 174193, "empirical scaling": 47741, "llms simple": 96611, "loss llms": 97681, "llms competence": 94658, "tasks mathematical": 162789, "strong form": 156382, "bias allows": 18095, "allows pretrained": 8464, "competence executing": 27120, "elementary skills": 47012, "llms received": 96320, "received increasing": 137305, "attention complexity": 13854, "task graph": 161438, "graph generates": 67531, "generates natural": 64084, "language evaluation": 83292, "graph evaluate": 67527, "reasoning memory": 136984, "llms respectively": 96427, "respectively large": 142563, "ensure llms": 49691, "llms tested": 96789, "learned evaluation": 90096, "fairness evaluation": 57058, "feedback key": 57717, "involves instruction": 80742, "tuning helps": 170022, "helps align": 69234, "align models": 8021, "impressive learning": 73310, "major approaches": 98408, "produce best": 129372, "improve accessibility": 73401, "accessibility llms": 2933, "development efforts": 41096, "alpaca vicuna": 8514, "accessibility languages": 2932, "world recent": 179609, "explore instruction": 55221, "tuning llms": 170051, "used approach": 172963, "instructiontune llms": 78380, "languages left": 87045, "raised important": 135468, "important questions": 73180, "multilingual instruction": 110485, "datasets enable": 36815, "enable evaluation": 48079, "languages experiments": 87003, "demonstrate advantages": 38226, "advantages rlhf": 6153, "different base": 41670, "datasets framework": 36884, "benchmarking multimodal": 17153, "comprehension based": 27881, "based powerful": 16007, "recent generative": 137510, "mllms gained": 102823, "pivotal research": 123150, "remarkable capability": 140184, "address evaluation": 5225, "comprehension mllms": 27917, "mllms preliminary": 102843, "preliminary step": 126145, "models introducing": 106818, "consists 19k": 29958, "questions accurate": 135023, "accurate human": 3462, "evaluation dimensions": 51547, "comprehension image": 27907, "video modality": 176722, "modality develop": 102967, "pipeline generating": 123061, "target specific": 161105, "specific evaluation": 153989, "manual verification": 99068, "verification processes": 176494, "questions groundtruth": 135150, "groundtruth options": 67939, "options derived": 117141, "derived human": 39355, "annotation enables": 9524, "enables objective": 48233, "efficient assessment": 46576, "assessment model": 13249, "human gpt": 70837, "gpt intervention": 66432, "intervention evaluation": 79789, "evaluation evaluate": 51569, "models 12": 105148, "dimensions covering": 42327, "understanding revealing": 171466, "revealing limitations": 144402, "limitations existing": 92579, "consistently maintain": 29886, "model capability": 103243, "agents significantly": 6728, "building general": 19411, "modalities unified": 102957, "models flamingo": 106367, "datasets support": 37143, "modalities current": 102919, "imagetext videotext": 72535, "possible build": 124403, "model support": 104692, "answer propose": 9751, "images video": 72510, "efficiently pretrained": 46803, "pretrained tasks": 127169, "task balancing": 161216, "videotext tasks": 176795, "despite pretrained": 40178, "model merging": 104080, "merging weight": 100532, "weight interpolation": 178073, "showing benefits": 150162, "finally motivate": 58494, "weights code": 178102, "exhibit impressive": 53060, "capabilities generating": 19915, "generating realistic": 64310, "text diverse": 165030, "diverse subjects": 43666, "utilized produce": 175112, "produce fake": 129404, "patterns current": 120522, "stateoftheart llm": 155182, "content classifiers": 30448, "discriminate human": 42833, "human accounts": 70553, "generation multiplechoice": 64866, "plausible incorrect": 123432, "llms multiplechoice": 95916, "propose strategy": 132147, "guiding llms": 68279, "question bank": 134834, "examples evaluate": 52568, "llmbased solutions": 94168, "assessment existing": 13228, "existing test": 53612, "quality annotations": 134039, "annotations human": 9595, "average 53": 15263, "generated distractors": 63855, "comparing zeroshot": 27022, "zeroshot chatgpt": 180140, "chatgpt fewshot": 22941, "fewshot chatgpt": 57891, "longterm action": 97594, "action anticipation": 4307, "videos better": 176771, "anticipation lta": 10122, "lta task": 97966, "aims predict": 7647, "sequences crucial": 148811, "interaction propose": 79167, "propose formulate": 131831, "bottomup approach": 18901, "approach predicts": 11454, "actions autoregressively": 4365, "modeling temporal": 105107, "temporal dynamics": 164259, "topdown approach": 167309, "hypothesize large": 71634, "procedure text": 128710, "potential help": 124759, "help provide": 69167, "possible actions": 124395, "infer goal": 75939, "goal given": 66168, "leverage llms": 91627, "propose twostage": 132181, "actions performed": 4386, "llm predict": 93897, "conditioned generation": 28977, "prompting empirical": 130909, "ego4d lta": 46948, "v1 v2": 175267, "perspectives challenges": 122703, "opportunities advent": 116822, "marks revolutionary": 99271, "breakthrough artificial": 19006, "models dramatically": 106027, "performances understanding": 122344, "interaction humans": 79133, "information filtering": 76448, "filtering large": 58354, "present foundation": 126320, "new foundation": 113198, "personalized information": 122603, "providing personalized": 133347, "personalized services": 122622, "models generalpurpose": 106439, "generalpurpose interface": 63345, "execute plans": 52915, "integrate tools": 78507, "today large": 166665, "right time": 144837, "address llms": 5319, "perspective paper": 122681, "following aspects": 60252, "newly emerged": 113535, "emerged capabilities": 47341, "ways making": 177911, "models personalization": 108505, "personalization benchmark": 122576, "benchmark understanding": 17113, "dialogue safety": 41513, "support dialogue": 159278, "safety remains": 145888, "pervasive challenge": 122770, "challenge opendomain": 21692, "interaction existing": 79119, "datasets detecting": 36786, "harmful responses": 68749, "deemed acceptable": 37705, "casual conversations": 21045, "limitations paper": 92631, "aims develop": 7597, "develop theoretically": 40846, "factually grounded": 56926, "additionally create": 5038, "benchmark corpus": 16879, "finegrained labels": 58875, "detect understand": 40378, "unsafe responses": 172137, "responses context": 142756, "support study": 159335, "reveals chatgpt": 144417, "model proves": 104383, "proves suitable": 132661, "serve valuable": 149013, "valuable benchmarks": 175405, "research dialogue": 141705, "agents realworld": 6703, "emerged large": 47366, "currently forefront": 34317, "forefront intertwining": 60386, "systems human": 160423, "communication everyday": 26372, "everyday life": 52160, "aligning human": 8086, "great importance": 67695, "human operators": 70940, "ability bypass": 2084, "strategies study": 156077, "experiments showing": 54462, "able understand": 2569, "utilizing chainofthought": 175174, "nascent field": 111482, "machine psychology": 98094, "models ontology": 108339, "utilizes large": 175138, "demonstrating ability": 38916, "patterns different": 120524, "effectively apply": 45948, "apply language": 10856, "involves automatically": 80719, "automatically extracting": 14805, "additionally evaluations": 5054, "ontological knowledge": 116161, "knowledge umls": 82483, "chatgpt teaching": 23380, "chatgpt implementation": 23060, "implementation application": 72833, "application large": 10336, "initial release": 77049, "researchers exploring": 142211, "exploring ways": 55520, "practical benefits": 125398, "chatgpt realworld": 23250, "researchers investigated": 142229, "programming mathematics": 129856, "clinical decision": 24324, "decision support": 37384, "support limited": 159306, "given application": 65832, "aims bridge": 7584, "science course": 146860, "perspectives students": 122720, "education findings": 45541, "associated incorporating": 13489, "science curriculum": 146861, "chatgpt way": 23435, "increasingly sophisticated": 75442, "sophisticated problems": 153322, "problems software": 128626, "challenge seeking": 21736, "process studying": 128997, "context software": 30923, "feedback challenging": 57648, "circumvent challenge": 23782, "correction process": 32446, "questions technical": 135302, "technical training": 163729, "study utilized": 157704, "utilized chatgpt": 175097, "chatgpt correct": 22813, "identifying semantic": 72030, "semantic details": 148136, "metrics observe": 102117, "matter experts": 99650, "given chatgpt": 65850, "gpt4 assisted": 66917, "gpt4 context": 66952, "offer accessible": 115632, "improve efficacy": 73453, "gpt4 reformulate": 67136, "responses potentially": 142875, "autonomously engage": 14958, "engage discussions": 48816, "opens avenues": 116549, "months release": 110100, "papers emerged": 119393, "scope capabilities": 147015, "information fed": 76446, "networks natural": 112777, "language drawing": 83269, "agent multiple": 6477, "experiments analyzing": 54145, "user language": 173450, "model gained": 103705, "tool complex": 166958, "complex problemsolving": 27525, "problemsolving information": 128662, "concerns arise": 28763, "data study": 35814, "study address": 157131, "attacks increase": 13712, "creating novel": 33316, "novel bias": 114426, "bias potential": 18178, "potential amplify": 124574, "biases contribute": 18257, "information bubbles": 76301, "empathetic response": 47611, "incorporate commonsense": 75003, "causes emotions": 21260, "experiences feelings": 53865, "systems perspective": 160529, "approach diverse": 11129, "intentions reactions": 79035, "enhance chatgpts": 49170, "field software": 58244, "software security": 152845, "security testing": 147628, "requires high": 141383, "levels expertise": 91538, "manual testing": 99066, "testing analysis": 164694, "analysis steps": 9177, "steps paper": 155758, "virtual machine": 176865, "lowlevel actions": 97866, "llm analyze": 93460, "machine state": 98101, "attack vectors": 13674, "discuss promising": 42934, "promising initial": 130266, "avenues improvement": 15250, "cognitive bias": 25441, "bias recent": 18188, "studies instruction": 157021, "tuning learning": 170047, "biases arise": 18250, "evidence finetuned": 52181, "examine extent": 52385, "decoy effect": 37660, "influence human": 76199, "decisionmaking reasoning": 37433, "reasoning findings": 136863, "presence biases": 126207, "undergone instruction": 170797, "flant5 gpt35": 59752, "development reliable": 41207, "ancient chinese": 9404, "translation dataset": 169453, "collect clean": 25653, "model perspective": 104277, "various existing": 175932, "exhibits remarkable": 53216, "remarkable zeroshot": 140308, "performance domains": 121422, "results ernie": 143385, "ernie bot": 50253, "subsequent finetuning": 157948, "finetuning shows": 59539, "transfer capability": 168902, "llms novel": 95946, "novel type": 114734, "empowers llms": 48032, "problems harder": 128529, "harder ones": 68667, "easytohard generalization": 45365, "generalization critical": 63159, "humanlike intelligence": 71264, "intelligence current": 78805, "form reasoning": 60485, "instructs llms": 78435, "resolve complex": 142342, "problems crucial": 128475, "demonstrate skills": 38553, "prompting context": 130886, "capabilities notably": 20079, "solve unseen": 153163, "unseen problems": 172176, "range challenging": 135594, "tasks intriguingly": 162623, "context results": 30903, "unseen complex": 172150, "prompting able": 130850, "challenging mathematical": 22203, "innovative multimodal": 77185, "systems benefit": 160270, "integrating visual": 78633, "information resulting": 76703, "highquality response": 70070, "generation current": 64548, "struggle effectively": 156744, "utilize information": 175052, "pretraining generative": 127337, "textimage matching": 165637, "module maps": 109947, "texts unified": 165795, "module preserves": 109952, "preserves pretraining": 126678, "pretraining visual": 127477, "multimodal feature": 110633, "alignment generative": 8154, "multimodal fusion": 110640, "module produce": 109953, "insightful responses": 77504, "generating contextually": 64175, "furthermore adopt": 62007, "frameworks robust": 61524, "capabilities novel": 20080, "novel domains": 114476, "possible automatically": 124401, "complicated problems": 27715, "nonlinear thinking": 114094, "strongest llms": 156485, "mistakes address": 102543, "able recognize": 2548, "resorting external": 142367, "propose selfcheck": 132112, "zeroshot verification": 180367, "performance conducting": 121324, "weighted voting": 178092, "multiple solutions": 111045, "solutions question": 153066, "question test": 134946, "datasets gsm8k": 36902, "turn increases": 170175, "structural embeddings": 156513, "state large": 155007, "incorporation external": 75141, "tools lack": 167189, "allow llms": 8342, "operate external": 116736, "tool utilization": 167053, "directed acyclic": 42416, "acyclic graph": 4495, "graph dag": 67512, "aim paper": 7473, "graph based": 67492, "future propose": 62304, "framework guide": 61188, "increasing numbers": 75342, "graph encoded": 67523, "large unstructured": 89095, "unstructured textual": 172226, "data medical": 35357, "including content": 74474, "impressive performances": 73357, "mitigate problems": 102630, "generation rag": 65002, "allows easily": 8427, "llms applications": 94413, "field medical": 58203, "education discussed": 45534, "extractive abstractive": 56376, "proposed lisa": 132323, "reasoning segmentation": 137117, "perception systems": 120823, "systems remarkable": 160586, "advancements recent": 5956, "explicit human": 54937, "target objects": 161091, "tasks systems": 163331, "ability actively": 2053, "implicit user": 72993, "user intentions": 173431, "intentions work": 79036, "new segmentation": 113402, "segmentation task": 147750, "task designed": 161315, "segmentation mask": 147739, "given complex": 65854, "query text": 134632, "furthermore establish": 62058, "intricate reasoning": 79859, "reasoning world": 137240, "evaluation purposes": 51808, "language instructed": 83441, "capabilities multimodal": 20063, "ability produce": 2327, "produce segmentation": 129459, "segmentation masks": 147740, "handle cases": 68527, "cases involving": 20979, "robust zeroshot": 145338, "datasets addition": 36637, "pairs results": 118614, "results performance": 143662, "unlocks new": 172047, "new reasoning": 113376, "referring segmentation": 138714, "interference human": 79478, "university california": 171925, "risks introduced": 144994, "rapid changes": 135859, "directly apply": 42516, "apply foundation": 10848, "sharing model": 149840, "measures implemented": 99928, "understanding emergent": 171208, "paramount importance": 119898, "applicability work": 10271, "arithmetic computations": 12476, "good testbed": 66299, "purpose require": 133756, "require small": 141194, "small vocabulary": 152383, "successfully trained": 158398, "extrapolation capabilities": 56411, "internal information": 79548, "support hypothesis": 159299, "value space": 175499, "survey stateoftheart": 159697, "building reliable": 19446, "robust ai": 145236, "safetycritical applications": 145903, "shown modern": 150313, "possess high": 124339, "high predictive": 69503, "poorly calibrated": 123964, "produce unreliable": 129476, "study model": 157488, "model calibration": 103236, "stateoftheart calibration": 155094, "calibration methods": 19640, "root causes": 145600, "introduce key": 79991, "key metrics": 81538, "methods roughly": 101800, "regularization methods": 138987, "methods uncertainty": 101896, "uncertainty estimation": 170668, "discuss open": 42914, "open issues": 116240, "issues challenges": 80990, "code comprehension": 24728, "evaluate 10": 50885, "10 opensource": 125, "instructed llms": 77939, "llms representative": 96409, "representative code": 140921, "specifically finetuned": 154203, "tasks second": 163208, "setting adding": 149418, "adding demonstration": 4824, "better code": 17824, "shot selection": 150060, "outperforms basic": 117724, "selection generation": 147852, "generation problems": 64956, "problems finetuning": 128513, "setting finetuning": 149458, "finetuning improve": 59297, "downstream code": 44710, "addition finetuned": 4861, "present practical": 126412, "recommendation performance": 138219, "future direction": 62247, "exploring psychology": 55501, "legal reasoning": 91310, "issues models": 81036, "models unreliable": 109561, "capabilities currently": 19844, "paper employ": 118879, "employ methods": 47846, "methods psychology": 101750, "probe gpt4s": 128138, "gpt4 humans": 67047, "moral foundations": 110113, "judgments high": 81332, "correlations human": 32560, "human ai": 70563, "ai responses": 7196, "discussion philosophical": 43001, "philosophical implications": 122851, "unprecedented opportunities": 172083, "reasoning collaboration": 136753, "systems humans": 160427, "essential develop": 50598, "way designing": 177791, "structured interactions": 156643, "purpose introduce": 133742, "modular design": 109904, "simplifies process": 151598, "process creating": 128777, "implemented using": 72876, "framework including": 61215, "including prior": 74676, "humanai interactions": 71116, "interactions prompt": 79261, "gpt4 struggles": 67179, "suggest structured": 158589, "points terms": 123769, "solve rate": 153152, "research introduce": 141862, "library available": 92036, "data flows": 35066, "models scales": 109039, "revolutionized various": 144666, "applications artificial": 10425, "translation matching": 169481, "matching surpassing": 99483, "accessible efficient": 2951, "efficient costeffective": 46590, "rlhf reinforcement": 145096, "feedback training": 57811, "training pipeline": 168635, "particularly training": 120269, "training scale": 168715, "making accessible": 98702, "key capabilities": 81466, "optimizations training": 117059, "efficiency scalability": 46527, "enabling training": 48354, "models hundreds": 106650, "parameters record": 119847, "record time": 138305, "access advanced": 2847, "fostering innovation": 60701, "autoregressive visionlanguage": 15018, "ongoing effort": 116066, "models seven": 109087, "visionlanguage datasets": 177023, "average 80": 15265, "performance technical": 122165, "report describes": 140516, "data hyperparameters": 35163, "hyperparameters evaluation": 71602, "game called": 62550, "models 18": 105158, "ability ai": 2059, "autonomous ai": 14927, "ai predicting": 7157, "frameworks mofs": 61522, "gpt4 gpt35turbo": 67037, "eliminating necessity": 47079, "structured queries": 156667, "core components": 32160, "components agent": 27747, "data retrieval": 35671, "property prediction": 131676, "memory management": 100425, "agents recent": 6705, "recent advent": 137433, "agents chatgpt": 6563, "information ongoing": 76606, "conversation provide": 31803, "responses contextually": 142757, "relevant user": 139664, "agents limited": 6649, "parts conversation": 120297, "conversation strategies": 31808, "manage conversational": 98864, "poor mental": 123950, "mental model": 100505, "model conversational": 103380, "design probe": 39721, "llmpowered agents": 94225, "memories data": 100326, "delves integration": 38111, "agent systems": 6501, "systems evaluating": 160364, "unique strengths": 171858, "rate 98": 135975, "consists different": 29961, "simulated household": 151660, "household environment": 70464, "emphasizing significance": 47660, "highlight chatgpts": 69730, "holy grail": 70309, "years ago": 179883, "constraint programming": 30051, "getting closer": 65781, "user know": 173449, "challenge lies": 21676, "expertise required": 54628, "combinatorial problems": 25863, "limits wider": 92933, "wider adoption": 178431, "investigate possible": 80467, "possible approach": 124399, "problem descriptions": 128226, "descriptions specifically": 39500, "approach gpt": 11260, "clinical narratives": 24347, "untapped resource": 172290, "complex diseases": 27402, "chatgpt previously": 23211, "previously developed": 127719, "narratives using": 111453, "narrative prompt": 111445, "data manually": 35351, "95 ci": 1796, "engineering needed": 48961, "improve chatgpt": 73421, "chatgpt output": 23167, "models create": 105816, "create diverse": 33188, "present intuitive": 126347, "intuitive interface": 80295, "interface information": 79437, "information require": 76697, "require careful": 141073, "unpredictable errors": 172099, "enhanced reasoning": 49363, "tasks primarily": 162998, "small scales": 152354, "improving training": 74226, "efficiency paper": 46498, "pipeline efficiently": 123049, "efficiently trains": 46824, "baby language": 15398, "leveraging chain": 91812, "llms pipeline": 96104, "using gpt35turbo": 174267, "texts language": 165739, "dataset roberta": 36517, "evaluations benchmarks": 51946, "vanilla roberta": 175582, "showing superior": 150199, "superior ability": 158988, "ability extract": 2162, "extract contextual": 56124, "pretrained small": 127160, "achieve improved": 3675, "developing complex": 40983, "objects locations": 115291, "locations using": 97306, "virtual scenarios": 176870, "prompts generated": 131288, "generated stories": 63991, "play evaluate": 123452, "evaluate agent": 50899, "agent successfully": 6500, "play designed": 123446, "designed text": 39964, "agent interact": 6454, "scaling relationship": 146446, "relationship learning": 139325, "models mathematical": 108154, "reasoning challenging": 136743, "llms scaling": 96485, "llm capacity": 93522, "data influence": 35221, "influence reasoning": 76217, "augment data": 14235, "samples improving": 146025, "effort propose": 46866, "propose apply": 131709, "sampling finetuning": 146095, "uses supervised": 173912, "datasets augmented": 36668, "brings improvement": 19143, "furthermore combine": 62024, "llm evaluators": 93646, "quality responses": 134250, "task particularly": 161607, "particularly comes": 120158, "comes evaluating": 26014, "evaluating response": 51383, "response aligned": 142617, "human preference": 70965, "llm make": 93821, "multiple independent": 110937, "neurons neuron": 113029, "research deep": 141682, "lead fairer": 89744, "evaluations specifically": 52027, "specifically inspired": 154228, "detecting different": 40402, "specific llm": 154034, "comprehensive features": 28055, "locally learned": 97289, "information obtain": 76602, "obtain comprehensive": 115469, "evaluation result": 51826, "network design": 112639, "academic paper": 2746, "paper reviewing": 119310, "method construct": 100761, "largest diverse": 89433, "15 tasks": 417, "tasks abilities": 161877, "wider network": 178437, "best improving": 17679, "correlation coefficient": 32536, "chinese llms": 23643, "evaluation time": 51900, "cost saving": 32739, "remarkable 93": 140114, "domain specificity": 44300, "queries users": 134555, "search traditional": 147427, "solutions perform": 153056, "method address": 100658, "address lack": 5299, "network learn": 112672, "user query": 173480, "efficient solution": 46715, "solution shows": 152975, "quality synthetic": 134279, "data powerful": 35511, "datasets artificial": 36660, "article examines": 12575, "impact artificial": 72622, "specifically regarding": 154279, "chatgpt enable": 22884, "efficient analysis": 46571, "chatgpt utilized": 23421, "overall article": 118177, "data application": 34641, "computational linguistic": 28371, "answers stack": 10083, "overflow questions": 118348, "qa platforms": 133915, "platforms crucial": 123399, "crucial online": 33829, "online helpseeking": 116102, "helpseeking behavior": 69266, "behavior programmers": 16635, "programmers recent": 129780, "popularity chatgpt": 124083, "despite popularity": 40170, "conducted evaluate": 29233, "answers programming": 10067, "programming questions": 129874, "gap conducted": 62627, "questions stack": 135286, "correctness consistency": 32485, "answers furthermore": 10027, "largescale linguistic": 89347, "analysis user": 9221, "study understand": 157688, "understand characteristics": 170988, "participants preferred": 120015, "preferred chatgpt": 126078, "language style": 86747, "raise awareness": 135445, "awareness risks": 15383, "seemingly correct": 147681, "program large": 129738, "current discourse": 34108, "led paradigm": 91234, "day new": 37244, "primary objective": 127816, "effectiveness models": 46245, "prompting models": 131019, "exercise tasks": 53007, "past exams": 120385, "domains showcase": 44528, "65 billion": 1474, "parameter variant": 119653, "openended responses": 116507, "responses openended": 142864, "tool instructors": 166992, "assessing student": 13209, "encouraging critical": 48620, "feedback responses": 57779, "timeconsuming task": 166561, "formats like": 60564, "like multiplechoice": 92358, "questions provide": 135238, "present tool": 126485, "personalized feedback": 122599, "feedback enabling": 57668, "enabling students": 48350, "quickly test": 135354, "test knowledge": 164571, "knowledge identify": 82105, "llms hold": 95503, "enhance student": 49294, "methodologies ai": 101188, "ai literature": 7071, "timeconsuming laborintensive": 166545, "streamline process": 156231, "comprehensive literature": 28073, "review tool": 144559, "power open": 125207, "content articles": 30440, "retrieval text": 144151, "graphical user": 67603, "interface gui": 79434, "features integrated": 57518, "interaction query": 79169, "optimize process": 117076, "process literature": 128905, "review academic": 144475, "models master": 108147, "fundamental importance": 61953, "modeling stochastic": 105097, "stochastic dynamical": 155819, "exponential increase": 55533, "increase number": 75218, "number possible": 114929, "state space": 155017, "space study": 153622, "design promptbased": 39734, "initial conditions": 77017, "input contexts": 77218, "form train": 60491, "using policy": 174581, "algorithm reinforcement": 7847, "rewards provided": 144724, "observe high": 115373, "findings establish": 58666, "single pretrained": 151847, "programming generative": 129822, "computing education": 28537, "education automatically": 45521, "generating personalized": 64291, "education scenarios": 45585, "scenarios works": 146723, "works considered": 179434, "considered textbased": 29701, "perform visual": 121087, "programming domains": 129811, "question study": 134940, "models advanced": 105290, "domains various": 44551, "using expertbased": 174183, "expertbased annotations": 54599, "using reference": 174661, "reference tasks": 138678, "hour code": 70449, "maze challenge": 99706, "challenge codedotorg": 21600, "programming skills": 129877, "provide exciting": 132773, "exciting directions": 52874, "work developing": 178908, "developing techniques": 41028, "programming paradigm": 129860, "systems gpt3": 160413, "systems make": 160476, "purpose technology": 133759, "paper summarize": 119347, "led rise": 91242, "pressing issues": 126713, "ai gpt4": 7020, "gpt4 reliable": 67139, "evaluating consistency": 51281, "consistency gpt4": 29765, "ratings generated": 136043, "gpt4 stateoftheart": 67176, "stateoftheart artificial": 155080, "multiple iterations": 110953, "time spans": 166507, "stylistic variations": 157790, "tasks higher": 162502, "content style": 30626, "style statistical": 157764, "reliability consistency": 139680, "style results": 157762, "revealed high": 144390, "scores ranging": 147166, "gpt4 capable": 66937, "llm effectively": 93611, "effectively distinguishes": 45978, "criteria evaluation": 33429, "research necessary": 141920, "necessary assess": 112139, "reliability ai": 139672, "cases chatgpt": 20947, "benchmarking llms": 17152, "retrieval general": 144056, "data ubiquitous": 35898, "information spread": 76774, "necessitates specialized": 112180, "idea research": 71741, "current widely": 34301, "providing information": 133316, "information research": 76699, "research benchmark": 141617, "openais gpt35turbo": 116417, "reasonable understanding": 136600, "gpt4 multiplechoice": 67084, "questions mcq": 135191, "furthermore evaluated": 62060, "synthesis techniques": 159970, "outperformed zeroshot": 117664, "approaches achieving": 11682, "modelbased chatbot": 104930, "intelligent education": 78950, "support personalized": 159316, "answering essay": 9841, "socratic teaching": 152728, "based existing": 15789, "learn domainspecific": 89974, "various skills": 176170, "finetuning designed": 59223, "designed prompts": 39932, "opensource project": 116666, "project code": 130073, "demonstration capabilities": 38970, "capabilities online": 20083, "llms intelligent": 95661, "tested chatgpt": 164664, "chatgpt argue": 22712, "reasoning skill": 137124, "gpt4 master": 67072, "reasoning problemsolving": 137049, "involving steps": 80803, "certain set": 21415, "set hypotheses": 149215, "reasoning propose": 137074, "simple tests": 151539, "tests types": 164795, "apply chatgpt": 10840, "type reasoning": 170317, "virtual agents": 176859, "agents powered": 6689, "demo paper": 38180, "domain conversations": 44120, "13 different": 329, "platform allows": 123379, "users customize": 173611, "agents personality": 6683, "providing rich": 133363, "interaction experience": 79120, "meeting user": 100291, "communication skills": 26414, "paper illustrates": 118973, "health communication": 68934, "learning education": 90394, "additionally consider": 5036, "consider ethical": 29568, "representations potential": 140864, "challenges ensuring": 21847, "ensuring responsible": 49753, "models industrial": 106757, "industrial control": 75852, "models possessing": 108572, "rich prior": 144794, "obtained pretraining": 115527, "proper prompts": 131616, "control example": 31537, "language game": 83336, "selected demonstrations": 147794, "demonstrations current": 38995, "experiments answer": 54146, "gpt4 control": 66953, "generalize different": 63245, "context affect": 30683, "general gpt4": 62956, "rl methods": 145063, "potential directly": 124681, "applying foundation": 10890, "chatgpt machine": 23113, "translation arabic": 169442, "insufficiently explored": 78458, "chatgpt encompassing": 22886, "covers diverse": 33104, "modern standard": 109836, "standard arabic": 154801, "arabic msa": 12068, "indicates llms": 75638, "llms encounter": 95064, "datasets exist": 36840, "better translators": 18054, "existing commercial": 53314, "commercial systems": 26094, "systems google": 160411, "study scrutinize": 157608, "recent model": 137564, "collectively findings": 25772, "findings underscore": 58821, "remain far": 139919, "ability cater": 2090, "linguistic cultural": 93022, "cultural intricacies": 33959, "diverse communities": 43483, "embeddingbased retrieval": 47207, "retrieval llm": 144082, "llm effective": 93610, "field limited": 58195, "number structured": 114948, "explored using": 55371, "general pretrained": 63018, "methodology involves": 101241, "involves text": 80766, "followed llm": 60241, "transform structured": 169051, "comparison existing": 27036, "methods approach": 101313, "achieves consistently": 4005, "accuracy benchmark": 3156, "maintaining efficiency": 98348, "vlms shown": 177481, "comparing finetuned": 26986, "finetuned performance": 59089, "tasks leads": 162696, "future improvement": 62270, "improvement prior": 73837, "various probing": 176114, "methods zeroshot": 101936, "setting detect": 149441, "limitations examine": 92578, "vlms using": 177488, "general datasets": 62937, "applications vlms": 10729, "usually applied": 174889, "applied specific": 10809, "domains given": 44421, "paper comprehensively": 118786, "comprehensively investigate": 28177, "popular vlms": 124074, "domain end": 44136, "caption dataset": 20564, "food images": 60337, "accompanied detailed": 2995, "finegrained attributes": 58856, "shape color": 149775, "better analyze": 17803, "proposed datasets": 132272, "domain compared": 44111, "domain furthermore": 44172, "food items": 60338, "items different": 81084, "different geographic": 41784, "geographic regions": 65705, "diverse probing": 43602, "methods evaluate": 101488, "belonging different": 16805, "hope study": 70385, "researchers attention": 142176, "limitations applying": 92540, "strategies large": 156022, "tasks efficacy": 162269, "inconsistent behaviors": 74830, "unfaithful reasoning": 171641, "content promising": 30584, "techniques leveraging": 163953, "llm external": 93664, "way make": 177849, "feedback paper": 57753, "review emerging": 144499, "class techniques": 23895, "strategies including": 156015, "discussing future": 42980, "directions challenges": 42461, "questions incontext": 135163, "incorrect options": 75161, "designed target": 39957, "largely remained": 89172, "laborintensive process": 82859, "teachers learning": 163628, "designers limited": 39981, "limited scalability": 92844, "scalability work": 146227, "explore task": 55301, "task automated": 161209, "message generation": 100539, "simple incontext": 151476, "incontext learningbased": 74987, "learningbased solution": 91168, "generative aibased": 65369, "quality feedback": 134128, "feedback messages": 57738, "improvement automated": 73756, "findings outline": 58741, "work chatgpt": 178839, "chatgpt read": 23248, "citations used": 23800, "used generative": 173093, "chatgpt resulted": 23279, "widespread discussion": 178468, "data textual": 35865, "textual sources": 165952, "sources present": 153531, "suitable tool": 158707, "references large": 138698, "unable prove": 170608, "prove chatgpt": 132616, "chatgpt access": 22671, "strongly indicates": 156501, "base data": 15596, "people diverse": 120714, "various situations": 176167, "situations social": 151950, "revised responses": 144601, "cooperative behavior": 32074, "early realization": 45259, "modelbased ai": 104925, "planning tool": 123328, "tool usage": 167045, "tools various": 167284, "various realworld": 176135, "applications despite": 10478, "prove insufficient": 132625, "necessitate combination": 112162, "combination task": 25845, "planning usage": 123335, "propose structured": 132148, "llmbased ai": 94117, "agents discuss": 6583, "crucial capabilities": 33770, "tackling intricate": 160873, "problems framework": 128515, "framework design": 61068, "design distinct": 39607, "types agents": 170322, "process subsequently": 128998, "evaluate task": 51113, "usage tptu": 172476, "tptu abilities": 167492, "highlighting key": 69816, "challenges goal": 21891, "resource researchers": 142394, "practitioners leverage": 125536, "potential models": 124867, "need investigation": 112326, "enhancing chinese": 49465, "chinese medical": 23644, "model expert": 103603, "remarkable breakthroughs": 140146, "understanding responding": 171461, "expertise domains": 54610, "domains chinese": 44365, "chinese medicine": 23645, "efforts incorporate": 46920, "medicine llms": 100242, "dialogue data": 41459, "proactive inquiry": 128073, "responses experts": 142787, "continuous pretraining": 31246, "pretraining sft": 127437, "additionally construct": 5037, "construct chinese": 30124, "chinese multiturn": 23649, "multiturn medical": 111279, "complex dialogue": 27401, "given unique": 66043, "domain extensive": 44159, "baselines various": 16385, "various capacities": 175844, "chatgpt abilities": 22661, "despite 100x": 40068, "safety code": 145849, "study investigating": 157451, "method deriving": 100780, "sentence used": 148542, "text sentence": 165452, "compute pairwise": 28447, "vectors embedding": 176404, "matrix based": 99635, "based distance": 15761, "different embedding": 41754, "different sentences": 41988, "knowledge integration": 82139, "integration language": 78664, "continue grow": 31197, "grow size": 67999, "face significant": 56550, "lack efficient": 82936, "domainspecific understanding": 44636, "specialized fields": 153890, "model relevant": 104447, "pertinent knowledge": 122743, "knowledge performance": 82271, "model greatly": 103772, "achieving comparable": 4157, "knowledgeinfused model": 82556, "stateoftheart knowledge": 155163, "knowledge infusion": 82124, "achieving 15": 4130, "15 times": 418, "times improvement": 166589, "match scores": 99425, "aviation domain": 15330, "drastic performance": 44898, "knowledge mitigating": 82230, "mitigating noise": 102672, "noise addition": 113974, "addition release": 4903, "release curated": 139458, "curated datasets": 34013, "research specialized": 142089, "multihop questionanswering": 110428, "dataset constructed": 36191, "text extracted": 165076, "national transportation": 111495, "transportation safety": 169610, "safety board": 145845, "reports research": 140607, "contributes advancing": 31430, "advancing field": 6086, "showcases potential": 150100, "potential knowledge": 124799, "models questionanswering": 108759, "cost analysis": 32650, "analysis generative": 8946, "models influence": 106763, "llms likely": 95790, "likely used": 92468, "scale influence": 146296, "regarding economic": 138868, "economic value": 45398, "constructs model": 30247, "model costs": 103389, "generation scale": 65065, "llms optimal": 96002, "choosing multiple": 23734, "source llms": 153458, "llms conducting": 94697, "need produce": 112368, "outputs relatively": 118113, "relatively low": 139409, "potential reduction": 124938, "generation costs": 64543, "quite high": 135362, "highly reliable": 69949, "reliable model": 139741, "model monitoring": 104100, "limited cost": 92738, "addition results": 4905, "training custom": 168220, "custom llms": 34371, "use influence": 172682, "gpt4 released": 67138, "previously best": 127714, "model powered": 104295, "chatgpt despite": 22846, "nature reasoning": 112026, "performance currently": 121352, "small collection": 152276, "21 diverse": 749, "problems performs": 128588, "evaluation gpt4s": 51628, "performance problems": 121946, "assistance large": 13372, "systems software": 160614, "challenge approach": 21586, "question arises": 134830, "arises llms": 12461, "knowledge detecting": 81871, "article explores": 12577, "explores question": 55426, "utilizing bert": 175172, "berts ability": 17640, "produce multiple": 129442, "optimal number": 116943, "striking balance": 156318, "effectively identifying": 46019, "noise present": 113982, "predictions second": 125934, "second contribution": 147464, "machine learningbased": 98091, "reduce noise": 138452, "predictions effectively": 125900, "simpler baselines": 151554, "baselines identifying": 16330, "reduces noise": 138527, "effectiveness tool": 46302, "models geometry": 106495, "high fidelity": 69461, "crucial aspects": 33762, "analysis available": 8824, "generative machine": 65461, "models act": 105262, "data representation": 35649, "layer learn": 89633, "forward reverse": 60668, "nearly indistinguishable": 112115, "ai factchecking": 6991, "establishing trust": 50713, "generated contents": 63831, "identify novel": 71930, "novel uses": 114743, "chatgpt claims": 22777, "aim achieve": 7420, "aggregate level": 6769, "methods adopted": 101293, "networks approach": 112716, "enables systematic": 48250, "graphs constructed": 67621, "approximately 200000": 12022, "pubmed abstracts": 133705, "constructed dataset": 30173, "dataset generated": 36324, "chatgpt35 turbo": 23450, "turbo model": 170158, "records chatgpt": 138310, "chatgpt dataset": 22826, "1000 simulated": 169, "computational process": 28395, "gene regulatory": 62905, "study demonstrated": 157272, "consistent pattern": 29824, "new biological": 113096, "simple synthetic": 151533, "data reduces": 35629, "undesirable behavior": 171581, "users view": 173814, "behavior set": 16645, "statements correct": 155042, "scaling instruction": 146403, "palm models": 118663, "parameters second": 119858, "wrong language": 179800, "models agree": 105314, "public nlp": 133586, "encourages models": 48618, "user opinions": 173461, "tasks adding": 161903, "data lightweight": 35315, "code generating": 24865, "data intervention": 35254, "process new": 128927, "solution enable": 152925, "retraining scratch": 143982, "typically results": 170517, "degraded performance": 37999, "data taking": 35849, "taking step": 161010, "step efficient": 155619, "efficient continual": 46588, "examine effect": 52379, "efficiency training": 46545, "warmup phase": 177704, "300b tokens": 980, "tokens following": 166816, "decay schedule": 37335, "architecture evaluate": 12163, "performance validation": 122229, "upstream downstream": 172391, "downstream dataset": 44712, "toolaugmented llms": 167073, "tools transforming": 167274, "existing frameworks": 53374, "holistic evaluation": 70296, "agents simple": 6729, "simple configurations": 151419, "integrating various": 78630, "task formats": 161408, "formats prompting": 60566, "prompting modules": 131020, "unified paradigm": 171742, "agents agents": 6535, "thoroughly evaluate": 166205, "diverse aspects": 43466, "safety robustness": 145891, "robustness efficiency": 145377, "approaches understanding": 11940, "communication technologies": 26418, "process sifting": 128986, "specification documents": 154309, "builds recent": 19467, "advancements foundation": 5894, "consists key": 29968, "extracted database": 56185, "technical specifications": 163727, "feedback data": 57661, "dataset queries": 36487, "reference responses": 138672, "responses created": 142760, "relevant accurate": 139572, "score bertscore": 147046, "corresponding values": 32613, "method gpt2": 100893, "valuable task": 175456, "processing nlpbased": 129269, "applications particularly": 10632, "particularly field": 120191, "represent range": 140648, "model iterative": 103905, "augmented sentences": 14372, "better evaluate": 17857, "method realworld": 101055, "containing diverse": 30332, "proposed data": 132269, "unified data": 171703, "unlimited data": 172030, "data inputs": 35229, "audio text": 14197, "algorithm leverages": 7825, "advancements multiple": 5933, "object tracking": 115165, "data correction": 34860, "video input": 176715, "sequential document": 148873, "processed large": 129044, "chatgpt enabling": 22885, "quality datasets": 134090, "based video": 16175, "instructions recent": 78339, "advancements multimodal": 5929, "mllms utilizing": 102859, "prompt generators": 130525, "features tokens": 57593, "tokens llms": 166840, "llms recognize": 96352, "achieved training": 3915, "based training": 16146, "visual contents": 177142, "consisting multiple": 29951, "interleaved multimodal": 79496, "multimodal instructions": 110671, "demonstrate required": 38531, "task address": 161172, "introduce generic": 79972, "missing details": 102528, "instructions propose": 78329, "strategy finetune": 156147, "need supervised": 112400, "instructions evaluation": 78251, "evaluation build": 51460, "trained proposed": 168048, "proposed strategy": 132438, "significantly stronger": 151163, "supporting healthcare": 159377, "healthcare services": 69016, "10 years": 142, "technology potential": 164157, "potential enhancing": 124700, "interaction chatbots": 79106, "humanhuman interaction": 71193, "chatbots used": 22644, "patient support": 120476, "clinical trial": 24373, "lack trust": 83025, "regarding patient": 138880, "patient safety": 120475, "benefits healthcare": 17470, "healthcare workers": 69021, "professionals patients": 129638, "comparison humans": 27048, "raised bar": 135461, "trusted patient": 169843, "safety medical": 145877, "thorough rigorous": 166196, "narrow domain": 111458, "enable deployment": 48072, "safe use": 145817, "medical community": 100141, "training development": 168389, "wider community": 178436, "unsupervised alignment": 172233, "alignment large": 8181, "gpt shown": 66493, "ability accurately": 2049, "human perceptual": 70953, "response patterns": 142681, "patterns humans": 120535, "correlation humans": 32546, "llms reasonably": 96311, "reasonably high": 136604, "alignment method": 8194, "study compare": 157218, "gpt4 examining": 66993, "alignment methods": 8196, "methods reveal": 101796, "ai trustworthy": 7301, "ai popular": 7153, "popular current": 123992, "current approach": 34066, "approach ai": 10979, "consists large": 29971, "trained produce": 168047, "produce outputs": 129448, "outputs plausible": 118100, "reasoning leading": 136959, "limitations associated": 92544, "knowledge rules": 82390, "rules thumb": 145727, "enabling inference": 48305, "inference engine": 75996, "produced way": 129516, "way trustworthy": 177883, "interpretable stepbystep": 79693, "language expressive": 83308, "fully represent": 61782, "symbolic ai": 159802, "ways overcome": 177913, "able reason": 2547, "higher order": 69616, "order logic": 117213, "ai need": 7125, "bootstrapping approach": 18864, "world develop": 179541, "impressive feats": 73294, "symbolic approaches": 159804, "domains generative": 44420, "generative ais": 65371, "social alignment": 152527, "gaps challenges": 62755, "ai mainstream": 7077, "based foundation": 15821, "aims produce": 7648, "common ground": 26142, "information test": 76802, "multidisciplinary research": 110382, "object recognition": 115159, "manipulation computational": 98940, "models hierarchical": 106599, "hierarchical planning": 69369, "need adapted": 112211, "embodied learning": 47314, "reading writing": 136204, "high standards": 69545, "approach make": 11377, "make creation": 98515, "benchmarking llm": 17151, "llm powered": 93895, "methods metrics": 101662, "agents chatbots": 6562, "chatbots increasingly": 22617, "provide support": 132990, "especially ones": 50520, "like large": 92328, "end end": 48657, "answers provided": 10069, "benchmark available": 16842, "observe proposed": 115390, "benchmark better": 16846, "metrics proved": 102131, "evaluating chatbots": 51272, "qa large": 133892, "shown outstanding": 150317, "substantial parameter": 158084, "size pretraining": 152057, "extensive corpus": 55740, "corpus llms": 32330, "capabilities tackling": 20204, "guide inference": 68181, "investigate possibility": 80465, "possibility transferring": 124388, "framework separates": 61401, "processes generating": 129065, "method enables": 100822, "use rationales": 172839, "inference stage": 76106, "performance scientific": 122045, "shot setting": 150061, "setting data": 149437, "data videos": 35950, "data visualizations": 35954, "effectively various": 46109, "videos provide": 176786, "provide intuitive": 132865, "understanding narratives": 171363, "visual elements": 177157, "audio visual": 14203, "simplify process": 151604, "generating dynamic": 64201, "technical barriers": 163689, "visualizations text": 177365, "input specifically": 77350, "extracts data": 56396, "data tables": 35846, "semantic connections": 148123, "connections text": 29498, "text visuals": 165573, "design knowledge": 39668, "expert interviews": 54574, "unseen questions": 172179, "questions smaller": 135278, "generation dense": 64562, "shown exhibit": 150238, "ability challenging": 2093, "tasks questions": 163069, "evaluate methods": 51018, "methods improvement": 101583, "rationales generated": 136065, "longer contexts": 97524, "contexts created": 31012, "multihop dense": 110414, "involves training": 80767, "model score": 104512, "retrieved contexts": 144234, "sources using": 153535, "second method": 147494, "datasets developed": 36788, "2023 train": 717, "smaller reasoning": 152436, "model proficient": 104356, "utilising relevant": 174939, "longer text": 97534, "frequently contain": 61614, "results single": 143803, "prior baselines": 127883, "generally outperform": 63318, "outperform direct": 117582, "stablevicuna 13b": 154705, "transfer improve": 168917, "llms software": 96630, "require llms": 141147, "llms generalize": 95350, "transfer approach": 168897, "approach guides": 11267, "guides llm": 68266, "ability unseen": 2405, "unseen knowledge": 172171, "approach software": 11556, "tasks api": 161950, "inference code": 75974, "code example": 24814, "inference transfer": 76130, "transfer strategy": 168994, "architecture key": 12176, "method findings": 100873, "cot prompt": 32881, "tasks suggest": 163311, "suggest knowledge": 158546, "generation automatic": 64443, "lead good": 89745, "substantial data": 158046, "model presents": 104315, "costeffective approach": 32759, "received limited": 137307, "present automatic": 126232, "optimization approach": 116982, "uses iterative": 173866, "iterative optimization": 81133, "changes prompt": 22387, "replacing tokens": 140476, "generation focus": 64665, "compare manually": 26693, "prompts act": 131149, "optimized prompts": 117092, "macroaverage f1": 98179, "seed prompts": 147642, "security failures": 147583, "software systems": 152847, "resulted significant": 143083, "financial data": 58563, "underlining need": 170822, "need stronger": 112396, "prevent future": 127534, "automated support": 14613, "reduce costs": 138414, "costs allow": 32814, "study assessed": 157174, "assessed ability": 13138, "llms replicate": 96401, "llms categorize": 94552, "accuracy 68": 3116, "accuracy 58": 3111, "context study": 30927, "differential equation": 42099, "learning incontext": 90569, "learning shown": 90986, "building foundation": 19406, "data inference": 35220, "human insight": 70850, "address present": 5332, "paradigm particular": 119495, "expressed natural": 55572, "directly finetune": 42539, "effectiveness multimodal": 46247, "learning enhancing": 90418, "enhancing performance": 49541, "new path": 113327, "improves understanding": 74097, "llms consistent": 94703, "taskspecific performance": 163538, "design recent": 39738, "improving understanding": 74231, "abilities study": 2024, "strategy inspired": 156163, "processes using": 129104, "insights experiments": 77561, "prevalent llms": 127516, "llms llama2": 95805, "llama2 vicuna": 93373, "palm gpt35": 118659, "span various": 153659, "various general": 175953, "superglue benchmarks": 158978, "consistently excels": 29871, "excels tasks": 52804, "approaches performance": 11858, "including standard": 74732, "llms highlights": 95495, "highlights benefits": 69846, "trustworthy llms": 169868, "llms survey": 96743, "alignment refers": 8222, "refers making": 138718, "models behave": 105470, "behave accordance": 16550, "accordance human": 3024, "critical task": 33555, "gpt4 release": 67137, "challenge faced": 21642, "practitioners lack": 125535, "outputs align": 118022, "align social": 8034, "survey key": 159642, "dimensions crucial": 42328, "crucial consider": 33780, "assessing llm": 13183, "seven major": 149697, "major categories": 98414, "reliability safety": 139705, "safety fairness": 145859, "designed conducted": 39840, "conducted widelyused": 29302, "widelyused llms": 178420, "measurement results": 99907, "aligned models": 8069, "tend perform": 164315, "better terms": 18046, "effectiveness alignment": 46118, "varies different": 175681, "finegrained analyses": 58851, "improvements llm": 73914, "llm alignment": 93457, "insights guidance": 77575, "practitioners field": 125531, "understanding addressing": 171115, "addressing concerns": 5437, "crucial achieving": 33749, "achieving reliable": 4207, "ethically sound": 50850, "applications adaptive": 10406, "rank adaptation": 135768, "gpt4 metas": 67075, "metas llama": 100602, "llama googles": 93310, "shift advent": 149898, "sam exhibited": 145936, "realworld objects": 136480, "billion masks": 18428, "11 million": 229, "million images": 102233, "general object": 63009, "object segmentation": 115163, "intrinsic ability": 79885, "ability detect": 2125, "salient objects": 145932, "resulting suboptimal": 143136, "approach adaptively": 10966, "structure inherent": 156569, "inherent deep": 76949, "learning comprehensive": 90313, "comprehensive qualitative": 28100, "quantitative evaluations": 134345, "wolfram alpha": 178600, "code interpreter": 24952, "problems report": 128618, "school college": 146829, "problems having": 128530, "having said": 68890, "failures like": 57025, "central challenge": 21337, "challenge making": 21682, "models comparative": 105691, "logical errors": 97356, "errors complex": 50346, "protocols challenging": 132586, "challenging recognizing": 22257, "provide foundation": 132798, "ai based": 6882, "accuracy error": 3221, "detection ai": 40439, "identify fundamental": 71895, "instance ai": 77795, "dependent variable": 39160, "complex errors": 27413, "acc 60": 2768, "poses greater": 124208, "greater challenge": 67755, "explores utility": 55443, "learning like": 90647, "reasoning boost": 136691, "capabilities foundation": 19906, "capacity address": 20495, "address complex": 5200, "cot technique": 32910, "technique widely": 163816, "methods enhancing": 101483, "enhancing reasoning": 49557, "ability foundation": 2171, "process cot": 128775, "solving general": 153214, "problems contrary": 128472, "reasoning multimodal": 136991, "motivation paper": 110205, "construct reasoning": 30155, "reasoning paradigm": 137020, "connect various": 29473, "relationships inspired": 139343, "paper innovatively": 118980, "proposes multimodal": 132469, "paradigm enables": 119447, "paths achieve": 120444, "inference furthermore": 76019, "furthermore devise": 62047, "graph learning": 67545, "lower model": 97830, "models analyzing": 105355, "analyzing network": 9378, "network topologies": 112698, "approach leads": 11341, "learning curve": 90341, "approach facilitate": 11223, "management experience": 98878, "utilizing large": 175203, "generate taskspecific": 63748, "queries method": 134507, "tackles challenges": 160859, "code eliminating": 24799, "need share": 112386, "network data": 112637, "llms concentrating": 94686, "techniques design": 163865, "design evaluate": 39623, "prototype using": 132600, "applications showcasing": 10686, "costeffectiveness potential": 32770, "potential enhancements": 124699, "novel exploration": 114495, "interaction generative": 79127, "models visualization": 109644, "narrative generation": 111444, "gpt case": 66395, "question does": 134860, "domains drawing": 44388, "different plugins": 41911, "techniques investigate": 163937, "form content": 60448, "dataset stories": 36559, "diffusion using": 42261, "descriptions prompts": 39489, "employ simple": 47861, "application used": 10393, "models reality": 108801, "role generative": 145496, "virtual world": 176872, "rich dynamic": 144777, "dynamic interactive": 45137, "power generative": 125177, "exploration generative": 55074, "enhancing conversational": 49471, "conversational interfaces": 31879, "dalle midjourney": 34527, "creating visually": 33330, "diverse content": 43487, "potential 3d": 124540, "3d model": 1135, "generation technologies": 65193, "technologies like": 164099, "offering insights": 115746, "user control": 173390, "control ai": 31518, "ai automation": 6881, "automation paper": 14905, "study guide": 157384, "ai creating": 6937, "framework zeroshot": 61502, "introduced innovative": 80158, "innovative methods": 77179, "analysis information": 8977, "limited text": 92866, "text visualization": 165572, "information remains": 76694, "remains constrained": 139996, "zeroshot texttovideo": 180357, "videos methods": 176781, "generated audio": 63799, "hindering effectiveness": 70149, "audiodriven talking": 14206, "method employed": 100819, "produce compelling": 129380, "audio generated": 14177, "presents comparative": 126552, "identifying promising": 72025, "approach future": 11244, "text knowledge": 165260, "graph noisy": 67562, "reference text": 138679, "kgtotext generation": 81654, "aims generating": 7620, "given knowledge": 65918, "progress task": 130020, "exploiting power": 55035, "appropriate graph": 11978, "graph structureaware": 67576, "text especially": 165060, "contains additional": 30358, "text given": 165211, "presence noisy": 126213, "framework incorporates": 61219, "core ideas": 32170, "firstly utilize": 59659, "utilize contrastive": 175031, "learning enhance": 90417, "ability differentiate": 2131, "hallucinated information": 68344, "level hallucination": 91473, "hallucination generated": 68377, "generation technique": 65191, "testing crucial": 164702, "crucial industrial": 33809, "industrial practice": 75856, "ensuring security": 49760, "automation extensive": 14900, "required human": 141237, "human professionals": 70984, "research evaluate": 141761, "testing tasks": 164760, "robust benchmark": 145242, "benchmark created": 16882, "test machines": 164581, "reveal llms": 144350, "demonstrate proficiency": 38483, "specific subtasks": 154095, "testing tools": 164764, "subsequent actions": 157944, "encounter difficulties": 48569, "understanding overall": 171388, "testing scenario": 164752, "insights introduce": 77593, "abundant domain": 2702, "inherent llms": 76966, "meticulously designed": 101950, "individual subtasks": 75740, "context loss": 30841, "benchmark targets": 17103, "effective tackling": 45895, "opensourced github": 116693, "community engagement": 26469, "value impact": 175488, "impact academic": 72615, "years shown": 179935, "businesses organizations": 19552, "examples software": 52699, "enhancing software": 49569, "2023 researchers": 710, "government agencies": 66359, "challenges software": 22066, "open discussions": 116226, "discussions enabled": 43012, "light common": 92102, "common challenges": 26128, "provide summary": 132989, "security analysis": 147559, "unauthorized access": 170636, "ensuring integrity": 49740, "formidable task": 60583, "task owing": 161593, "inherent intricacies": 76955, "llms exemplified": 95132, "exemplified chatgpt": 52991, "openai bard": 116323, "bard google": 15558, "showcased remarkable": 150094, "remarkable proficiency": 140265, "proficiency various": 129683, "including security": 74714, "security vulnerability": 147633, "vulnerability detection": 177639, "map relevant": 99129, "common weakness": 26213, "security policies": 147607, "framework implemented": 61208, "multiple chatgpt": 110859, "specifications provided": 154321, "provided experimental": 133054, "tasks ecommerce": 162265, "recently instructionfollowing": 137913, "instructionfollowing large": 78187, "llms represented": 96410, "represented chatgpt": 140951, "tasks unique": 163412, "ecommerce data": 45384, "tailored specifically": 160939, "capabilities pressing": 20114, "atomic tasks": 13619, "basic data": 16415, "product information": 129576, "user reviews": 173489, "tasks defined": 162165, "tasks implicitly": 162528, "final task": 58407, "tasks developed": 162218, "different parameter": 41892, "parameter scales": 119636, "scales training": 146381, "model bloomz": 103223, "capabilities acquired": 19762, "capabilities extensive": 19889, "systems search": 160600, "integrated daily": 78518, "systems serve": 160606, "recommender systems": 138273, "integration advanced": 78637, "complex contextual": 27384, "potentially inaccurate": 125114, "requires combination": 141342, "sparse retrieval": 153741, "llms typified": 96870, "gpt4 revolutionized": 67147, "generation generalization": 64685, "consequently recent": 29552, "research sought": 142087, "given rapid": 65974, "rapid evolution": 135879, "evolution research": 52278, "consolidate existing": 29991, "existing methodologies": 53436, "nuanced insights": 114797, "delve confluence": 38087, "additionally explore": 5062, "search agents": 147312, "posed significant": 124191, "demanding substantial": 38150, "llms researchers": 96421, "researchers explored": 142210, "explored llms": 55356, "potential alternatives": 124573, "alternatives human": 8593, "gap current": 62635, "evaluation quality": 51809, "processes involve": 129073, "multiple human": 110934, "multiagentbased approach": 110339, "expertise enhance": 54611, "handling intricate": 68595, "discuss evaluate": 42887, "dialogue prompting": 41501, "learning promptbased": 90873, "fewshot natural": 58002, "expert knowledge": 54576, "knowledge design": 81869, "set identify": 149216, "identify highquality": 71900, "highquality prompts": 70063, "costly inefficient": 32789, "existing continuous": 53323, "performance learning": 121732, "gradient information": 67390, "cost low": 32706, "low readability": 97783, "address research": 5364, "method design": 100781, "dialogue alignment": 41448, "alignment strategy": 8239, "set generation": 149205, "gpt4 furthermore": 67018, "efficient prompt": 46700, "finally construct": 58429, "based policy": 16004, "training policy": 168639, "policy network": 123861, "sota method": 153353, "subsequent experiments": 157947, "ability semantic": 2365, "loss neural": 97684, "improved loss": 73700, "task writing": 161816, "writing natural": 179735, "networks current": 112726, "standalone models": 154795, "gpt codex": 66400, "network optimization": 112682, "evaluating sentence": 51392, "calculate loss": 19603, "output sentence": 117994, "prediction training": 125881, "propose combine": 131748, "process compared": 128759, "report improvement": 140535, "vast majority": 176341, "lexical richness": 91993, "gpt generative": 66425, "chatgpt triggered": 23404, "text significant": 165460, "focusing specific": 60197, "specific aspect": 153938, "language words": 86898, "chatgpt increase": 23067, "increase reduce": 75227, "used lexical": 173134, "words included": 178728, "content tend": 30629, "work perform": 179160, "perform initial": 120969, "humans performing": 71441, "questions used": 135311, "used analysis": 172961, "chatgpt tends": 23385, "use fewer": 172622, "words lower": 178738, "humans results": 71466, "results preliminary": 143678, "additional datasets": 4949, "datasets chatgpt": 36693, "extract general": 56137, "conclusions research": 28911, "needed understand": 112457, "understand use": 171092, "types text": 170429, "prior art": 127880, "research threads": 142117, "challenging significant": 22274, "synthesis llms": 159954, "novel computational": 114443, "graphs llms": 67639, "llms expand": 95174, "structure generated": 156560, "future design": 62241, "historical analysis": 70195, "inherent human": 76952, "information pursuit": 76665, "interactions web": 79280, "users satisfaction": 173772, "quality ranking": 134237, "benefits development": 17461, "web experience": 178006, "experience survey": 53847, "tasks remarkable": 163136, "size computational": 151969, "challenges practical": 22009, "especially resourceconstrained": 50535, "resourceconstrained environments": 142405, "challenges increasingly": 21914, "field model": 58206, "emerged pivotal": 47377, "alleviate limitations": 8293, "survey navigates": 159656, "specifically llms": 154248, "addressing imperative": 5449, "imperative need": 72798, "delve various": 38101, "methodologies encompassing": 101193, "quantization pruning": 134418, "pruning knowledge": 133458, "techniques highlight": 163919, "innovative approaches": 77162, "evolving landscape": 52312, "research furthermore": 141807, "strategies evaluation": 155997, "insights latest": 77595, "survey serves": 159691, "serves invaluable": 149044, "invaluable resource": 80313, "aims facilitate": 7616, "enhanced efficiency": 49334, "efficiency realworld": 46514, "realworld applicability": 136392, "foundation future": 60717, "llms medical": 95875, "potential unified": 125032, "evaluation criterion": 51516, "medical llms": 100198, "llms hindering": 95502, "medical treatment": 100232, "scenarios current": 146568, "interactions llms": 79243, "dialogues human": 41559, "establish evaluation": 50662, "assess diagnostic": 13069, "diagnostic capabilities": 41380, "based original": 15995, "problem develop": 128230, "conversations llms": 31956, "llms utilize": 96934, "utilize chatgpt": 175026, "dialogues automatically": 41549, "manual evaluation": 99040, "steering language": 155568, "generation harnessing": 64712, "expert guidance": 54571, "negative prompting": 112527, "coherent diverse": 25529, "diverse synthetic": 43668, "hold immense": 70247, "data high": 35152, "numerous applications": 115025, "applications downstream": 10494, "struggle produce": 156768, "produce coherent": 129378, "logit distributions": 97417, "finetuned base": 58984, "base language": 15605, "models emphasised": 106084, "order ensure": 117192, "real synthetic": 136252, "negative prompts": 112528, "prompts model": 131376, "semantic text": 148237, "llms strike": 96689, "ensuring semantic": 49761, "semantic fidelity": 148147, "demonstrates improved": 38859, "better balance": 17812, "balance data": 15493, "generation toxic": 65209, "toxic nontoxic": 167460, "highlighting versatility": 69843, "human characters": 70632, "entities like": 49855, "humanlike interactions": 71266, "behaviors various": 16730, "various contexts": 175874, "enhanced user": 49372, "abilities remains": 2007, "benchmarks encompassing": 17230, "encompassing arithmetic": 48545, "reasoning leveraging": 136964, "prompting consistently": 130885, "consistently surpasses": 29927, "surpasses standard": 159499, "standard zeroshot": 154894, "quality reasoning": 134241, "step demonstrate": 155612, "effective cot": 45721, "samples diverse": 146005, "majority voting": 98472, "forward reasoning": 60667, "backward reasoning": 15464, "reasoning verify": 137231, "candidate answers": 19712, "answers specifically": 10082, "ask llm": 12849, "candidate answer": 19711, "using forward": 174215, "standard mathematical": 154846, "sets llms": 149381, "reasoning demonstrating": 136805, "reasoning better": 136689, "better existing": 17863, "existing verification": 53626, "methods showing": 101816, "proposed combination": 132265, "learn context": 89968, "novel concepts": 114445, "responses essential": 142777, "unseen images": 172165, "understanding novel": 171381, "trainingfree manner": 168834, "limited tasks": 92861, "cause effect": 21245, "goes traditional": 66231, "set query": 149288, "providing demonstrations": 133280, "causal links": 21203, "guides model": 68268, "underlying causal": 170833, "effectively facilitate": 45998, "facilitate evaluation": 56611, "evaluation novel": 51747, "learning extensive": 90448, "mllms code": 102812, "core competency": 32158, "survey evaluation": 159627, "nlp witnessed": 113928, "gains wide": 62534, "practical uses": 125462, "improvement llms": 73818, "llms extremely": 95230, "tasks inadequate": 162540, "secondly existing": 147522, "applications realworld": 10657, "problems existing": 128499, "proposed various": 132452, "summarize core": 158904, "llm including": 93748, "including reasoning": 74694, "knowledge reliability": 82356, "benchmarks metrics": 17306, "tasks combined": 162075, "reflect corresponding": 138791, "tasks easily": 162264, "direction llms": 42441, "llms evaluation": 95107, "solving challenging": 153197, "gpt4 code": 66943, "gpt4 palm2": 67105, "particular openais": 120102, "math datasets": 99526, "code enhancing": 24808, "different constraints": 41704, "usage frequency": 172448, "largely attributed": 89145, "skills generating": 152161, "generating executing": 64206, "executing code": 52929, "evaluating output": 51362, "output code": 117904, "code execution": 24818, "outputs based": 118028, "based insight": 15878, "insight propose": 77498, "reasoning potential": 137036, "encourage use": 48607, "use code": 172552, "rectifying errors": 138343, "solution improve": 152946, "effectiveness majority": 46230, "achieve impressive": 3671, "accuracy math": 3304, "teach llms": 163606, "approach inspired": 11306, "writing education": 179725, "personalized text": 122626, "particular domain": 120070, "features models": 57542, "approach personalized": 11447, "llms inspired": 95646, "practice writing": 125504, "framework teach": 61451, "llms personalized": 96098, "personalized generation": 122600, "writing instruction": 179730, "integrating information": 78602, "generation consists": 64528, "generation addition": 64397, "helps model": 69253, "ability inspired": 2226, "education students": 45591, "proficiency writing": 129687, "approach public": 11483, "datasets covers": 36748, "covers different": 33103, "different representative": 41968, "representative domain": 140923, "improvements variety": 73961, "variety baselines": 175693, "baselines emerging": 16312, "exploring impact": 55471, "ai platforms": 7149, "quantitative finance": 134349, "platforms chatgpt": 123396, "questions various": 135318, "chatgpt scored": 23292, "30 percent": 968, "challenges inaccurate": 21908, "helping students": 69231, "score 90": 147040, "serves basis": 149034, "communication research": 26410, "shows students": 150484, "students struggle": 156903, "comprehension analysis": 27880, "tasks academic": 161885, "academic texts": 2761, "texts despite": 165700, "despite central": 40084, "central importance": 21342, "reading task": 136200, "timeconsuming difficult": 166539, "result attain": 143022, "understanding papers": 171395, "engagement understanding": 48840, "field humancomputer": 58175, "power chatgpt": 125162, "analysis questions": 9111, "questions academic": 135018, "goal facilitating": 66165, "generalization evaluation": 63171, "models deploying": 105925, "desired models": 40052, "models generalizable": 106431, "cases knowledge": 20980, "metrics performance": 102125, "calculation metrics": 19613, "production settings": 129594, "settings feasible": 149574, "possible paper": 124444, "propose objectives": 132049, "need carefully": 112240, "substantial investments": 158076, "technology propose": 164161, "insights intricacies": 77592, "management large": 98879, "operation large": 116758, "suffer issues": 158436, "underexplored work": 170780, "llms integration": 95660, "integration expert": 78652, "proficiency generating": 129656, "generating fabricated": 64210, "fabricated content": 56505, "competence merely": 27122, "involves extracting": 80731, "preserving general": 126686, "modeling mathematical": 105044, "fundamental abilities": 61927, "language modeldriven": 83972, "agentbased modeling": 6511, "programming building": 129795, "computers propose": 28524, "build previous": 19341, "support learning": 159305, "support conversations": 159273, "natural programming": 111938, "provide userfriendly": 133019, "novice learners": 114772, "main elements": 98238, "elements design": 47014, "design intelligent": 39660, "conversational interface": 31878, "support creative": 159274, "creative expression": 33369, "educational purposes": 45622, "multiagent conversation": 110311, "developers build": 40936, "build llm": 19328, "applications multiple": 10614, "accomplish tasks": 3014, "human inputs": 70848, "agent interaction": 6455, "interaction behaviors": 79104, "language computer": 83209, "used program": 173193, "llm capacities": 93521, "example applications": 52464, "applications domains": 10492, "concretely leverage": 28928, "knowledge retrievers": 82388, "strategies tailored": 156081, "retrieval strategies": 144141, "strategies include": 156014, "generation furthermore": 64676, "furthermore incorporate": 62096, "strategy reduce": 156200, "llm inferences": 93761, "boosts retrieval": 18858, "zeroshot outofdomain": 180277, "retrieval abilities": 143986, "abilities making": 1960, "widely applicable": 178361, "llms tremendous": 96859, "understanding successfully": 171494, "successfully adopted": 158365, "adopted domains": 5594, "domains computer": 44374, "robotics reinforcement": 145210, "work apply": 178803, "apply llms": 10859, "llms image": 95537, "tasks directly": 162236, "generating virtual": 64373, "image present": 72302, "llm convert": 93562, "description format": 39410, "way construct": 177787, "based offtheshelf": 15989, "offtheshelf llm": 115915, "llm pretrained": 93904, "corpus finetuning": 32309, "finetuning new": 59404, "capabilities create": 19839, "paired textual": 118538, "object types": 115166, "detect classify": 40350, "classify objects": 24212, "pioneering work": 123023, "investigates performance": 80574, "chatgpt35 gpt4": 23449, "gpt4 solving": 67169, "solving introductory": 153216, "assessment formats": 13233, "llms derived": 94898, "derived analysis": 39352, "novice programmers": 114773, "input llms": 77280, "generated replies": 63958, "unit tests": 171872, "addition general": 4862, "general availability": 62921, "results high": 143450, "high scores": 69539, "incorporate llms": 75025, "llms programming": 96217, "education assessment": 45519, "laborious manual": 82866, "required extract": 141234, "extract key": 56141, "pathology reports": 120442, "method automate": 100697, "automate data": 14496, "extraction using": 56368, "using pathology": 174577, "rulebased approach": 145696, "learning program": 90863, "program test": 129759, "processing transformerbased": 129346, "gptx models": 67331, "revolutionized landscape": 144654, "challenges handling": 21894, "handling tasks": 68609, "tasks differ": 162224, "learning emerged": 90406, "emerged valuable": 47407, "valuable technique": 175457, "allowing llms": 8379, "llms adapt": 94334, "minimal taskspecific": 102359, "strategy known": 156169, "known chainofthought": 82586, "empowering model": 48020, "iteratively generate": 81152, "code formulate": 24848, "generation test": 65196, "test examples": 164553, "erroneous code": 50262, "code associated": 24670, "experiments observed": 54383, "techniques significantly": 164022, "effectiveness including": 46200, "humaneval dataset": 71171, "general endtoend": 62947, "answering multihop": 9905, "involves finding": 80732, "multiple relevant": 111023, "retrieval modules": 144098, "selecting relevant": 147823, "owing limited": 118465, "methods selecting": 101805, "irrelevant passages": 80853, "retrieval framework": 144053, "approach maintains": 11375, "classification heads": 24010, "combined loss": 25909, "zeroshot gpt35": 180203, "achieves nearly": 4035, "nearly 50": 112108, "50 improvement": 1301, "baselines challenging": 16295, "hotpotqa 2wikimultihopqa": 70442, "providing highquality": 133309, "highquality context": 70004, "role various": 145549, "ecommerce applications": 45383, "property protection": 131677, "product search": 129580, "methods treat": 101887, "purely visual": 133728, "notable issue": 114231, "textual knowledge": 165927, "leverages textual": 91787, "mllms demonstrated": 102816, "textual understanding": 165962, "understanding valuable": 171528, "visual assistants": 177115, "observation proposed": 115329, "aims utilize": 7684, "mllms enhance": 102819, "mllms improve": 102826, "knowledge types": 82480, "types prompts": 170407, "enable image": 48092, "supplementary knowledge": 159236, "use image": 172674, "similar traditional": 151321, "traditional inference": 167629, "experiments realworld": 54429, "learns generalized": 91179, "comprehensive ablation": 27942, "improvements resulting": 73940, "involve training": 80696, "separate models": 148693, "framework consolidates": 61046, "generation additionally": 64398, "task visual": 161810, "datasets derived": 36782, "samples single": 146065, "framework capable": 60997, "vqa visual": 177584, "recognition visual": 138151, "demonstrating comparable": 38921, "highquality audio": 69994, "audio video": 14201, "sound effects": 153377, "visual queries": 177261, "finding right": 58621, "difficult timeconsuming": 42183, "heavily quality": 69043, "quality completeness": 134070, "text metadata": 165299, "video frame": 176705, "reliance text": 139786, "barrier entry": 15575, "inthewild videos": 79816, "given video": 66051, "foundational visionlanguage": 60852, "video create": 176695, "pairs resulting": 118613, "resulting highly": 143104, "highly scalable": 69952, "scalable automatic": 146232, "curation pipeline": 34037, "pipeline using": 123102, "visual encoders": 177165, "train contrastive": 167755, "contrastive learningbased": 31374, "automatic data": 14654, "pipeline significantly": 123091, "baselines trained": 16380, "inthewild data": 79815, "retrieval video": 144161, "data outperforming": 35453, "outperforming baselines": 117668, "baselines dataset": 16303, "67 time": 1495, "determine impact": 40708, "choices downstream": 23714, "science knowledge": 146881, "base enables": 15598, "materials discovery": 99508, "discovery language": 42771, "demonstrated capability": 38625, "answer domainspecific": 9700, "domainspecific questions": 44620, "materials domain": 99510, "domain evaluate": 44138, "evaluate understanding": 51121, "concepts language": 28665, "curate dataset": 33997, "challenging questions": 22248, "based structure": 16115, "solving questions": 153243, "zeroshot chain": 180134, "observed gpt4": 115411, "gives best": 66055, "contrast general": 31306, "improvement accuracy": 73750, "accuracy observed": 3324, "observed chain": 115400, "prompting evaluate": 130921, "conceptual errors": 28710, "llms hope": 95510, "dataset analysis": 36109, "performed work": 122385, "domainspecific llms": 44601, "llms strategies": 96687, "platform individuals": 123388, "media mining": 100098, "discourse context": 42704, "analysis offer": 9037, "treatment options": 169640, "presents paradigm": 126617, "events events": 52113, "categories defined": 21092, "reddit posts": 138382, "health concern": 68935, "event dataset": 52072, "dataset analyze": 36110, "events related": 52127, "based type": 16156, "events establish": 52109, "establish strong": 50675, "score task": 147103, "task employing": 161347, "learning classifiers": 90299, "finally thoroughly": 58535, "task providing": 161667, "llms capabilities": 94525, "online llms": 116114, "llms proxies": 96266, "released large": 139520, "lead new": 89763, "challenges cybersecurity": 21813, "researchers shown": 142259, "generate malicious": 63604, "malicious content": 98840, "content directly": 30476, "loop study": 97630, "dissemination malicious": 43111, "present general": 126323, "approach essential": 11191, "attack success": 13662, "highlights significant": 69877, "significant cybersecurity": 150675, "strategies enhancing": 155995, "models graphbased": 106560, "verification approach": 176467, "approach large": 11333, "showcased impressive": 150091, "impressive reasoning": 73366, "capabilities particularly": 20099, "prompts complex": 131195, "chainofthought approach": 21483, "llms studies": 96706, "suggest integration": 158545, "integration llm": 78675, "verifier boost": 176514, "boost reasoning": 18826, "reasoning accuracy": 136651, "necessitating additional": 112184, "additional model": 4979, "paper follow": 118958, "method augment": 100694, "llms posit": 96129, "llm represented": 93959, "reasoning graph": 136892, "logical connections": 97350, "propose reasoning": 132092, "verify solutions": 176540, "llms evaluating": 95105, "models yield": 109725, "yield accurate": 179958, "accurate reliable": 3484, "verification method": 176489, "enhances reasoning": 49440, "llms outperforms": 96016, "terms improving": 164432, "enables extraction": 48183, "information massive": 76573, "works suggested": 179509, "classification named": 24035, "complex model": 27475, "datasets study": 37136, "develop generative": 40785, "pipelines complex": 123110, "complex architectures": 27361, "models replaced": 108926, "designs prompt": 40024, "documents achieving": 43886, "reliability compared": 139679, "ner task": 112604, "performance shows": 122064, "annotations findings": 9591, "terms reliability": 164462, "extraction scientific": 56352, "language crucial": 83228, "introduce endtoend": 79953, "sota image": 153346, "segmentation models": 147743, "furthermore experiment": 62068, "different transformerbased": 42061, "experiments explore": 54284, "vision encoders": 176913, "gpt2 decoder": 66522, "additionally apply": 5024, "apply extensive": 10847, "augmentation resulting": 14309, "rate cer": 135980, "google cloud": 66315, "transforming llms": 169381, "llms hpc": 95512, "code easier": 24796, "easier access": 45286, "access powerful": 2894, "growing trend": 68054, "ai software": 7220, "larger larger": 89213, "address variety": 5384, "variety programming": 175746, "llms applied": 94414, "training design": 168387, "large llms": 88893, "languages programming": 87098, "tasks line": 162740, "question design": 134857, "domains domainspecific": 44387, "specifically start": 154285, "domain propose": 44258, "novel tokenizer": 114717, "human semantics": 71034, "code structures": 25156, "structures completely": 156693, "fortran code": 60654, "code corpus": 24735, "mined github": 102300, "github evaluate": 65813, "conventional llms": 31704, "completion accuracy": 27320, "perplexity score": 122515, "score research": 147094, "research opens": 141941, "catering unique": 21168, "unique demands": 171837, "demands hpc": 38159, "tasks biomedgpt": 162012, "challenges confronted": 21808, "domainspecific problems": 44613, "access proprietary": 2905, "various biological": 175841, "molecules proteins": 110037, "language life": 83488, "gap language": 62670, "free text": 61552, "modalities natural": 102940, "alignment finetuning": 8151, "outperforms par": 117813, "human significantly": 71038, "generalpurpose foundation": 63342, "task demonstrates": 161306, "demonstrates promising": 38880, "tasks greatly": 162483, "accelerate discovery": 2773, "discovery new": 42782, "based llama2": 15927, "domain commercial": 44108, "opensourced research": 116707, "meticulously curated": 101948, "models codes": 105659, "codes datasets": 25297, "combining fast": 25973, "reasoning emerges": 136823, "emerges promising": 47496, "llmbased planning": 94161, "provides flexibility": 133150, "better interpretability": 17922, "research limited": 141888, "tradeoff accuracy": 167553, "issue employing": 80902, "employing fast": 47922, "generation adopt": 64402, "need efficiency": 112275, "processes propose": 129095, "propose hierarchical": 131861, "datasets developing": 36789, "evaluating performance": 51364, "performance efficiency": 121442, "code release": 25091, "graph thoughts": 67581, "introduce graph": 79975, "thoughts got": 166246, "framework advances": 60934, "prompting capabilities": 130871, "arbitrary llm": 12084, "thoughts enhancing": 166245, "feedback loops": 57733, "offers advantages": 115784, "reducing costs": 138561, "prompting schemes": 131070, "schemes work": 146813, "closer human": 24537, "healthcare decision": 68991, "study presents": 157542, "presents innovative": 126593, "chatgpt approach": 22711, "approach introduces": 11315, "include task": 74340, "feature description": 57393, "novelty work": 114761, "work lies": 179105, "interpretable ml": 79680, "knowledge ai": 81739, "diagnostic tool": 41390, "additionally research": 5130, "llms comparing": 94656, "comparing performance": 27001, "chatgpt traditional": 23399, "traditional supervised": 167701, "supervised ml": 159156, "insights effectiveness": 77553, "effectiveness prompt": 46265, "varied data": 175668, "paper bridges": 118771, "gap ai": 62610, "ai healthcare": 7024, "methodology llms": 101245, "highlights transformative": 69882, "design domain": 39608, "approaches enhancing": 11748, "enhancing automated": 49459, "automated decisionmaking": 14536, "dataset paper": 36446, "paper create": 118827, "results performing": 143663, "performing crosslingual": 122397, "transfer using": 169004, "encoderonly model": 48475, "model additionally": 103078, "results prompting": 143692, "cognitive architectures": 25439, "explores integration": 55399, "development artificial": 41055, "agents exhibit": 6602, "intelligent behavior": 78942, "llms cognitive": 94625, "integration approaches": 78639, "approaches grounded": 11792, "theoretical models": 166043, "models supported": 109313, "preliminary empirical": 126118, "augmented llms": 14363, "llms common": 94641, "common model": 26159, "simulation theory": 151722, "cognitive levels": 25456, "driven llms": 44988, "neurosymbolic approach": 113038, "approach takes": 11595, "takes inspiration": 160984, "llm layer": 93796, "utilizes symbolic": 175161, "direct prompt": 42400, "aim harness": 7460, "advancing development": 6081, "systems discuss": 160341, "discuss tradeoffs": 42951, "associated approach": 13462, "logical fallacies": 97357, "fallacious arguments": 57135, "diagnostic benchmark": 41379, "involves agents": 80716, "assesses potential": 13157, "llms change": 94563, "reasoning used": 137221, "opinion reasoning": 116806, "work publicly": 179248, "universal adversarial": 171893, "diffusion sd": 42260, "greatly enhancing": 67787, "enhancing flexibility": 49485, "allow individuals": 8339, "specific styles": 154091, "copyrighted images": 32141, "concerns potential": 28807, "potential copyright": 124659, "images different": 72412, "context trained": 30943, "synthetic images": 160049, "images produced": 72465, "produced large": 129497, "images preserving": 72462, "models experimental": 106236, "human observers": 70938, "simple multimodal": 151496, "llm better": 93512, "extend large": 55628, "llm incorporating": 93752, "openended visual": 116512, "accurately interpret": 3544, "interpret images": 79627, "images infused": 72435, "text common": 164932, "common occurrence": 26169, "standard procedures": 154868, "information images": 76501, "embeddings designed": 47225, "used soft": 173234, "prompt inputs": 130550, "process limited": 128904, "token count": 166696, "context improve": 30790, "augmented version": 14378, "visual assistant": 177114, "capture intricate": 20661, "process empirical": 128804, "evidence demonstrates": 52176, "demonstrates model": 38865, "vqa benchmarks": 177568, "visual spatial": 177312, "overall improvement": 118200, "comprehensive multimodal": 28080, "llm benchmark": 93509, "comparing baseline": 26976, "significant capability": 150634, "capability decoding": 20279, "realworld images": 136462, "demonstrate broad": 38258, "industry applications": 75870, "diverse categories": 43477, "categories code": 21090, "learning inner": 90580, "inner monologues": 77133, "require ai": 141070, "comprehend reason": 27856, "reason visual": 136585, "content driven": 30480, "driven power": 44993, "methods emerged": 101468, "llms visionlanguage": 96982, "vlms visual": 177489, "alignment language": 8179, "endtoend fashion": 48733, "decent performance": 37342, "data lacks": 35280, "lacks interpretability": 83048, "interpretability tackle": 79656, "dilemma propose": 42311, "inner monologue": 77132, "language problems": 86482, "processes cognitive": 129055, "llms vlms": 96989, "interact natural": 79069, "language conversation": 83217, "conversation propose": 31802, "popular tasks": 124060, "approach enhance": 11176, "fusion vision": 62206, "models importantly": 106684, "wider applicability": 178432, "models lacking": 106859, "data struggle": 35811, "perform diverse": 120928, "diverse retrieval": 43635, "different retrieval": 41971, "directly perform": 42583, "tasks harnessing": 162495, "leveraging foundation": 91851, "instructions furthermore": 78264, "novel llm": 114570, "llm guided": 93729, "guided instruction": 68229, "iterative training": 81148, "strategy iteratively": 156168, "advancement large": 5845, "experiments beir": 54159, "descriptions specific": 39499, "designed taskspecific": 39961, "editing large": 45465, "remarkable potential": 140261, "conditioning prompts": 28997, "prompts quality": 131434, "prompts leads": 131357, "performance improving": 121659, "improving prompts": 74196, "prompts usually": 131519, "necessitates considerable": 112172, "considerable human": 29618, "pace llms": 118487, "enable automatic": 48065, "actorcritic algorithm": 4475, "prompt specific": 130677, "exhibits notable": 53208, "notable efficacy": 114221, "remain including": 139920, "including opensource": 74652, "struggle certain": 156733, "types practical": 170399, "context classification": 30704, "classes models": 23911, "using datasets": 174120, "datasets distinct": 36797, "political party": 123900, "misinformation detection": 102484, "lead improved": 89751, "counterparts finetuning": 32973, "greater performance": 67770, "performance datasets": 121358, "compared generative": 26816, "hard tasks": 68660, "importance model": 73046, "selection based": 147836, "robust image": 145273, "overly relying": 118393, "spuriously correlated": 154620, "labels training": 82835, "dataset images": 36351, "learning spurious": 91015, "spurious correlation": 154613, "dataset synthetic": 36567, "supervision existing": 159196, "existing examples": 53366, "features textual": 57592, "languageguided image": 86915, "including challenging": 74442, "improves classification": 73987, "accuracy prior": 3343, "code soon": 25151, "recent surge": 137690, "research applying": 141592, "embedded llms": 47144, "llms growing": 95456, "llms custom": 94774, "tasks resourceintensive": 163171, "accessible api": 2940, "weights remaining": 178128, "emphasizes growing": 47639, "need new": 112353, "new methodologies": 113272, "allow learning": 8341, "agent agent": 6414, "agent autonomously": 6417, "extracts knowledge": 56397, "collection training": 25757, "decisions empirical": 37457, "learning efficacy": 90399, "consistent enhancement": 29811, "explore emerging": 55197, "learning potential": 90832, "qualitative observations": 134008, "additional experiments": 4958, "testing domain": 164707, "need pretraining": 112366, "model contains": 103365, "build large": 19324, "domain standard": 44301, "knowledge introduce": 82148, "introduce incremental": 79980, "inject knowledge": 77102, "method handling": 100900, "handling structured": 68608, "scanned documents": 146462, "overcome problem": 118308, "problem machine": 128315, "worth mentioning": 179679, "paper technical": 119368, "version report": 176612, "specific experimental": 153993, "problem existing": 128246, "feedback prompt": 57761, "engineering guided": 48926, "instead investigate": 77881, "specified natural": 154333, "steering vectors": 155574, "method instead": 100933, "result pairs": 143052, "prompts demonstrate": 131218, "approach yields": 11671, "properties output": 131657, "requires far": 141375, "language specification": 86737, "remarkable multimodal": 140216, "gpt4 sparked": 67170, "significant development": 150682, "llms primary": 96189, "research objective": 141937, "current methodologies": 34177, "datasets construct": 36735, "training purposes": 168672, "llms datasets": 94782, "datasets exhibit": 36839, "models effort": 106061, "dialogues visual": 41573, "approach harnesses": 11272, "abilities chatgpt": 1883, "chatgpt texttoimage": 23394, "texttoimage generative": 165818, "diverse controllable": 43489, "content additionally": 30426, "greater flexibility": 67764, "methodologies significantly": 101203, "enhances model": 49422, "capabilities research": 20161, "includes comprehensive": 74361, "conducted various": 29299, "assessed capabilities": 13140, "multimodal benchmarks": 110593, "benchmarks good": 17256, "good large": 66277, "outofdistribution detection": 117518, "detection outofdistribution": 40578, "ood detection": 116179, "enhancing reliability": 49562, "llms catalyzed": 94551, "ml community": 102776, "showcasing exceptional": 150111, "capabilities diverse": 19861, "research probed": 141990, "transformers like": 169328, "stark differences": 154949, "paper embarks": 118871, "pioneering empirical": 123015, "empirical investigation": 47710, "domain llms": 44221, "llama series": 93336, "ranging 7b": 135744, "7b 65b": 1623, "finetuning scenarios": 59525, "scenarios notably": 146656, "finetuning generative": 59282, "finetuning aligning": 59162, "objective llms": 115214, "findings unveil": 58832, "cosine distance": 32636, "detector demonstrates": 40666, "superior efficacy": 159001, "detectors provide": 40682, "provide intriguing": 132861, "explanation phenomenon": 54797, "bert family": 17532, "enhances understanding": 49445, "llms detect": 94908, "data enhancing": 34981, "enhancing adaptability": 49455, "adaptability reliability": 4582, "dynamic environments": 45126, "environments scaling": 50111, "black boxes": 18616, "necessitating research": 112190, "processes recent": 129096, "dalvi et": 34534, "representation analysis": 140671, "latent spaces": 89515, "limited small": 92853, "paper studies": 119338, "algorithms order": 7954, "larger datasets": 89203, "propose metrics": 131927, "metrics assessing": 102007, "enhances efficiency": 49406, "efficiency maintaining": 46487, "quality obtained": 134213, "discovery llms": 42778, "novel artificial": 114406, "experiences ai": 53858, "gap textual": 62740, "ability formulate": 2170, "human interpretations": 70873, "equally valid": 50166, "specifically multimodal": 154253, "extract meaningful": 56147, "meaningful information": 99795, "modalities primarily": 102945, "questionanswering using": 135004, "zeroshot methodology": 180260, "outperformed best": 117653, "weighted f1": 178089, "overall f1": 118189, "llm goal": 93720, "view language": 176813, "human concepts": 70662, "significant advancement": 150566, "advancement development": 5836, "systems opening": 160503, "modalities enhancing": 102923, "natural conversational": 111523, "conversational approach": 31846, "onesizefitsall model": 116040, "llm optimization": 93858, "enhancing proficiency": 49548, "proficiency understanding": 129679, "user specifications": 173499, "task specification": 161740, "pushing limits": 133809, "current promptbased": 34217, "promptbased techniques": 130796, "techniques research": 164012, "encompasses various": 48541, "study marks": 157482, "optimization processes": 117033, "promoting sustainable": 130356, "demonstrated commendable": 38632, "performance myriad": 121829, "answering sqa": 9958, "task necessitates": 161567, "precise alignment": 125573, "features address": 57443, "llms initially": 95641, "questions followed": 135133, "pairs cover": 118560, "cover various": 33047, "propose lightweight": 131902, "significant results": 150862, "frameworks capability": 61508, "capability handling": 20314, "tasks empirical": 162284, "llms aptitude": 94424, "development universal": 41247, "universal multimodal": 171908, "reasoning study": 137156, "integration generative": 78656, "technology engineering": 164136, "mathematics stem": 99620, "stem education": 155582, "educational experience": 45608, "subsequently converted": 157968, "examine efficacy": 52382, "test assessing": 164513, "learning gains": 90491, "potential applying": 124595, "models educational": 106041, "harnessing ais": 68818, "potential empower": 124693, "techniques code": 163852, "capabilities generate": 19913, "accurate code": 3440, "costs making": 32833, "making impractical": 98752, "environments particularly": 50102, "particularly models": 120229, "parameters address": 119710, "challenges previous": 22013, "llm generative": 93715, "taskspecific prompt": 163540, "prompt examples": 130495, "examples icl": 52608, "peft techniques": 120685, "specialize llms": 153867, "llms taskspecific": 96775, "study peft": 157521, "automated code": 14528, "generation scenario": 65066, "scenario comprehensive": 146506, "llms reveals": 96451, "reveals superiority": 144452, "extended capabilities": 55651, "capabilities peft": 20100, "furthermore study": 62164, "significant reductions": 150856, "study opens": 157517, "opens opportunities": 116561, "engineering scenarios": 48982, "models success": 109278, "surge generative": 159428, "tuning tuning": 170138, "contrastive visionlanguage": 31385, "unexplored existing": 171629, "metrics benchmarks": 102015, "benchmarks focus": 17251, "contrastive models": 31378, "methods suitable": 101853, "addition current": 4847, "bias propose": 18186, "novel llmbased": 114571, "evaluate robustness": 51099, "task new": 161569, "facilitating future": 56708, "framework developing": 61082, "models retrievalaugmented": 108980, "provide highlevel": 132820, "sufficient transparency": 158501, "generation address": 64399, "evaluation optimization": 51752, "develop evaluate": 40780, "handcrafted prompts": 68509, "prompts assessing": 131165, "knowledgeintensive generation": 82560, "dataset advancing": 36103, "rise popularity": 144906, "gpt4 significantly": 67164, "significantly accelerated": 150923, "cuttingedge models": 34443, "scarcity opensource": 146497, "opensource data": 116595, "response paper": 142679, "collected wide": 25705, "significant advantages": 150585, "evaluations compared": 51950, "data accessed": 34572, "incomplete information": 74812, "information lateral": 76553, "lateral thinking": 89531, "refinement llms": 138764, "llms endowed": 95070, "impressive logical": 73312, "thinking capabilities": 166148, "abilities following": 1911, "assesses models": 13156, "interactive framework": 79309, "aspects quality": 12967, "capability integrate": 20317, "integrate information": 78489, "interactions example": 79225, "advanced model": 5777, "noticeable gap": 114317, "distinctive task": 43270, "task crucial": 161291, "crucial effective": 33788, "effective ai": 45686, "implicit differentiation": 72974, "requires significantly": 141439, "operate work": 116743, "conventional lms": 31705, "lm using": 97077, "algorithms using": 7982, "allows design": 8422, "mechanism critical": 99984, "critical developing": 33480, "convergence average": 31749, "distillation based": 43143, "based technique": 16131, "teacher train": 163623, "train student": 167836, "architecture primary": 12207, "architecture proposed": 12210, "proposed paper": 132409, "paper motivated": 119081, "potentially extended": 125102, "extended different": 55656, "kinds llms": 81664, "modern computing": 109791, "property ip": 131673, "integration multiple": 78682, "inherent vulnerabilities": 76979, "compromising security": 28289, "validation procedure": 175374, "security properties": 147614, "approaches requires": 11897, "requires expert": 141366, "process address": 128728, "dedicated hardware": 37678, "hardware design": 68683, "technique trained": 163809, "using sentences": 174702, "hacking competition": 68312, "random word": 135549, "clip zeroshot": 24420, "detection paper": 40581, "visuallanguage model": 177374, "efforts developing": 46904, "potential industrial": 124785, "difficulty acquiring": 42202, "training existing": 168435, "models normal": 108311, "discrepancies distribution": 42792, "model object": 104135, "object category": 115110, "training requirement": 168693, "classification image": 24015, "manner method": 99000, "prompt ensembling": 130492, "object categories": 115109, "overcome issues": 118292, "propose leveraging": 131901, "encoder clip": 48409, "prompts include": 131324, "generated words": 64050, "words prompts": 178748, "prompts enables": 131246, "samples using": 146076, "embeddings training": 47292, "feedforward neural": 57834, "network learns": 112673, "extract features": 56135, "embeddings result": 47278, "obtained training": 115536, "sensitivity order": 148459, "order options": 117225, "options multiplechoice": 117145, "sensitive prompt": 148440, "prompt wording": 130745, "llms robustness": 96477, "task multiplechoice": 161555, "commonly adopted": 26221, "llms investigating": 95685, "sensitivity llms": 148455, "questions demonstrate": 135096, "considerable performance": 29626, "different benchmarks": 41675, "demonstrations fewshot": 39004, "uncertain prediction": 170659, "depending question": 39169, "positional bias": 124271, "bias identify": 18134, "strategy involves": 156167, "mitigate bias": 102590, "predictions leading": 125918, "improvement different": 73778, "translation study": 169521, "chatgpt translate": 23403, "language variety": 86883, "needs people": 112484, "selected texts": 147806, "public authorities": 133544, "texts based": 165677, "different criteria": 41715, "correctness readability": 32498, "syntactic complexity": 159886, "models hugging": 106634, "models suit": 109295, "urgent need": 172416, "learning frameworks": 90484, "incredible power": 75460, "model library": 103954, "optimal selection": 116951, "library based": 92037, "predict downstream": 125681, "using objective": 174545, "function integrates": 61840, "predictions user": 125938, "goals including": 66220, "include code": 74327, "gpt35 turbo": 66863, "dynamic model": 45140, "optimal model": 116942, "35 turbo": 1057, "systems maximize": 160479, "model ecosystem": 103504, "engineering students": 48992, "principles prompt": 127866, "engineering help": 48928, "improve education": 73450, "education medical": 45560, "just prompt": 81384, "engineering critical": 48898, "getting good": 65782, "ai critical": 6939, "students think": 156906, "healthcare field": 68998, "analyzes multiple": 9355, "good prompt": 66288, "models students": 109253, "engineering applied": 48881, "demonstrated effective": 38639, "similar large": 151260, "language ai": 83143, "need clear": 112242, "order fully": 117200, "using identical": 174312, "contains multiple": 30385, "multiple examples": 110906, "key takeaways": 81581, "implementing prompt": 72887, "engineering learning": 48944, "process provides": 128953, "approach ensure": 11184, "graph prompting": 67564, "pretrain prompt": 126739, "prompt predict": 130630, "predict paradigm": 125696, "works explore": 179444, "answering mdqa": 9899, "task demanding": 161303, "thorough understanding": 166198, "understanding logical": 171343, "documents crucial": 43899, "crucial gap": 33803, "consists graph": 29966, "multiple documents": 110898, "structural relations": 156524, "design llmbased": 39681, "llmbased graph": 94150, "agent navigates": 6478, "assisting llms": 13446, "constructed graph": 30177, "serves global": 149040, "agent acts": 6413, "pertinent context": 122740, "quality extensive": 134123, "underscore efficacy": 170916, "enhancing prompt": 49553, "design llms": 39682, "access knowledge": 2867, "bases large": 16398, "processing struggle": 129304, "struggle issues": 156760, "issues regarding": 81056, "connecting llms": 29485, "kbs remains": 81418, "remains understudied": 140100, "comprehensive framework": 28057, "bridge llms": 19069, "retrieval process": 144113, "code format": 24847, "predefined functions": 125650, "store knowledge": 155856, "user demands": 173393, "demands extensive": 38158, "experiments integrating": 54321, "range questions": 135681, "requiring world": 141518, "knowledge compared": 81823, "vanilla llms": 175576, "llms utilizing": 96936, "akin enhancing": 7715, "llms generalizable": 95347, "unseen scenes": 172181, "existing attempts": 53282, "scene representation": 146741, "feedforward inference": 57827, "idea large": 71734, "demonstrated superior": 38806, "overall model": 118210, "essential generalizable": 50609, "experimentally shown": 54103, "results transferring": 143875, "crossscene generalization": 33702, "rewriting large": 144737, "nonetheless large": 114052, "large sizes": 89058, "make impractical": 98548, "impractical ondevice": 73244, "ondevice inference": 115965, "presents formidable": 126580, "new instruction": 113234, "approach building": 11034, "rewriting model": 144741, "strategies enable": 155992, "propose heuristic": 131860, "framework substantially": 61432, "substantially enhances": 158117, "performance requiring": 122017, "preference data": 126004, "bridge performance": 19072, "server model": 149026, "rewriting tasks": 144743, "tasks mobile": 162807, "scenarios introduce": 146627, "focuses text": 60164, "instructions empirical": 78243, "surpasses current": 159478, "notably proposed": 114290, "performance exploring": 121493, "exploring effectiveness": 55464, "knowledge test": 82452, "models proficient": 108671, "data limitation": 35318, "limitation renders": 92523, "confronted questions": 29441, "questions employing": 135112, "included training": 74354, "methodology includes": 101238, "constructing prompt": 30201, "integration context": 78648, "answers using": 10093, "method controlled": 100764, "test scenario": 164612, "scenario using": 146518, "achieved 96": 3783, "questions contrast": 135080, "context models": 30853, "examined impact": 52422, "context format": 30774, "improvements gpt": 73906, "serves essential": 149038, "particular linguistic": 120094, "inherent approach": 76938, "associated cost": 13471, "depending model": 39168, "challenge rely": 21727, "llama llama2": 93321, "llama2 models": 93367, "domain problems": 44253, "prove ineffective": 132624, "scenarios involving": 146628, "given large": 65922, "required represent": 141252, "methodology named": 101249, "successfully addresses": 158363, "model validate": 104863, "portuguese text": 124139, "new tokenizer": 113467, "reduction number": 138618, "tasks achieved": 161892, "achieved similar": 3897, "7b models": 1635, "causal consistency": 21177, "consistency llms": 29775, "remains longstanding": 140037, "inference existing": 76001, "methods primarily": 101724, "autonomously plan": 14963, "plan solve": 123219, "addressing conceptual": 5436, "multiagent collaboration": 110305, "collaboration present": 25599, "propose employ": 131798, "employ multiple": 47850, "multiple intelligent": 110947, "work collaboratively": 178841, "providing solutions": 133374, "answering commonsense": 9825, "outperforms compared": 117737, "instructions intrinsic": 78287, "intrinsic human": 79892, "values survey": 175560, "alignment goals": 8155, "models big": 105516, "models exemplified": 106196, "typically pretrained": 170507, "data comprised": 34811, "parameters obtain": 119818, "obtain significantly": 115503, "poses potential": 124218, "efforts align": 46885, "align llms": 8018, "satisfy human": 146176, "trace evolution": 167500, "identify essential": 71888, "related works": 139227, "alignment evaluation": 8146, "encompasses distinct": 48535, "distinct levels": 43230, "value orientation": 175492, "values alignment": 175520, "enhanced llms": 49348, "intrinsic value": 79901, "value alignment": 175466, "collection available": 25726, "alignment big": 8127, "languages recently": 87114, "surge multimodal": 159433, "learning terms": 91073, "imagetotext texttoimage": 72541, "success typically": 158301, "limited english": 92757, "languages largely": 87044, "languages highly": 87022, "challenging lowresource": 22200, "lowresource nature": 97925, "nonenglish multimodal": 114043, "data lack": 35278, "highquality imagetext": 70035, "paradigm training": 119521, "models nonenglish": 108306, "based strong": 16113, "generalize languages": 63257, "surpassing models": 159519, "native languages": 111508, "languages taking": 87141, "opensource performance": 116662, "performance chinese": 121242, "research opensource": 141942, "opensource codes": 116587, "codes model": 25306, "instruction position": 78044, "response considering": 142632, "risk instruction": 144946, "instruction forgetting": 78019, "enhancing instructionfollowing": 49494, "llms shifting": 96521, "straightforward method": 155923, "learning focus": 90467, "training instructionfollowing": 168508, "various model": 176038, "scales 1b": 146361, "1b 7b": 560, "7b 13b": 1620, "13b different": 362, "performance conditional": 121320, "zeroshot translation": 180365, "analysis llm": 9004, "llm generated": 93705, "industrial automation": 75848, "efficiency automatically": 46425, "automation control": 14896, "control systems": 31592, "involves modeling": 80755, "design problem": 39722, "constraints techniques": 30114, "stochastic optimization": 155823, "analysis used": 9220, "provable regret": 132611, "effectiveness reliability": 46283, "generated systems": 63997, "systems industrial": 160438, "implementation evaluation": 72841, "faithfulness using": 57094, "pivotal issue": 123147, "issue especially": 80903, "contextually grounded": 31148, "possible answers": 124397, "evaluate faithfulness": 50970, "text computing": 164946, "supported context": 159359, "metrics correlate": 102034, "prevailing stateoftheart": 127496, "metric faithfulness": 101971, "metrics summarization": 102149, "dataset different": 36241, "finally compare": 58420, "compare popular": 26719, "llms faithfulness": 95244, "metric release": 101984, "model evaluating": 103567, "evaluating faithfulness": 51300, "power diffusion": 125168, "potential remains": 124939, "solve general": 153118, "autoregressive counterparts": 14976, "counterparts paper": 32976, "scaling diffusion": 146392, "wrt data": 179809, "sizes tasks": 152117, "effectively make": 46046, "make strong": 98608, "knowledge massive": 82221, "finetuning instruction": 59312, "versatility solving": 176595, "finetuning elicit": 59242, "help tackle": 69187, "advanced challenging": 5715, "protect copyright": 132552, "data optimization": 35446, "copyrighted data": 32140, "llms built": 94523, "mathematical computation": 99557, "softmax function": 152750, "function paper": 61853, "training optimization": 168617, "regression problem": 138962, "regression function": 138955, "function generating": 61835, "data establishes": 34990, "theoretical method": 166041, "data simple": 35760, "better large": 17926, "potential smaller": 124985, "research perform": 141965, "reality check": 136314, "times using": 166612, "datasets usefulness": 37178, "improving llm": 74164, "increasing compute": 75312, "tokens possible": 166851, "corpora training": 32259, "leads consistent": 89882, "effect data": 45651, "careful data": 20777, "speed training": 154515, "accuracy 16": 3104, "scale furthermore": 146289, "repeating data": 140438, "baseline training": 16270, "single epoch": 151794, "data possible": 35508, "models past": 108445, "discovery chatgpt": 42760, "chatgpt ai": 22689, "openai paper": 116370, "generated outputs": 63932, "outputs chatgpt": 118031, "chatgpt demonstrate": 22829, "new improved": 113225, "gpt4 combines": 66946, "gpt ai": 66385, "use builtin": 172521, "demonstration language": 38979, "gpt4 generates": 67026, "potential humanai": 124760, "designing systems": 40011, "systems effectively": 160346, "effectively integrate": 46032, "capabilities human": 19942, "decisionmaking agent": 37399, "efforts develop": 46903, "llms agents": 94373, "executing intricate": 52933, "applications existing": 10515, "approaches llmbased": 11834, "guide decisionmaking": 68171, "scenarios prior": 146677, "making imperative": 98749, "fosters development": 60705, "framework involving": 61244, "elo scores": 47100, "decision steps": 37383, "scores guide": 147148, "process derive": 128786, "achieving 10": 4128, "pass rate": 120323, "rate diverse": 135984, "tasks offers": 162878, "higherquality solutions": 69657, "highlighting effectiveness": 69809, "models interpretable": 106808, "interpretable predictions": 79684, "making interpretable": 98760, "interpretable queries": 79686, "builtin interpretability": 19510, "requires data": 141355, "tasks manual": 162781, "work extend": 178969, "twostep process": 170284, "process leveraging": 128903, "similarity concept": 151340, "generated concept": 63824, "concept set": 28622, "models cbms": 105589, "step removing": 155677, "concepts good": 28655, "good interpretability": 66274, "set proposed": 149285, "require type": 141214, "concept filtering": 28596, "generated concepts": 63825, "generating efficient": 64203, "sets finally": 149370, "concept sets": 28623, "rapid increase": 135894, "increase development": 75201, "distribution large": 43368, "llms industry": 95619, "attention safety": 13984, "threats vulnerabilities": 166286, "vulnerabilities llms": 177626, "context potentially": 30872, "criminal activities": 33418, "llms misused": 95889, "malware authors": 98858, "problem ai": 128177, "ai alignment": 6860, "alignment important": 8165, "important developers": 73121, "identifying mitigating": 72016, "mitigating threats": 102683, "work hope": 179024, "llms light": 95761, "light security": 92149, "experienced developers": 53854, "model concept": 103337, "gpt4 stable": 67172, "specific keywords": 154020, "challenges conventional": 21809, "game world": 62575, "technical design": 163697, "objective enhance": 115189, "optimization models": 117014, "wide applications": 178246, "applications fields": 10527, "fields economics": 58271, "problem making": 128318, "making best": 98707, "best decision": 17669, "satisfying set": 146182, "set requirements": 149295, "requirements constraints": 141281, "models practice": 108584, "helping practitioners": 69230, "practitioners understand": 125545, "satisfies constraints": 146169, "constraints existing": 30079, "systems necessitating": 160492, "necessitating significant": 112191, "significant background": 150621, "optimization paper": 117019, "interactive conversations": 79297, "provide natural": 132893, "optimization model": 117013, "built gpt4": 19485, "minimal subset": 102357, "learning expert": 90440, "prompts enhance": 131248, "identify sources": 71964, "structural semantic": 156526, "semantic alignment": 148098, "alignment largescale": 8185, "vlms proven": 177476, "effective zeroshot": 45930, "classification despite": 23984, "source supervision": 153472, "openworld scenario": 116728, "scenario paper": 146515, "challenging setting": 22271, "annotation instead": 9533, "framework extracts": 61155, "framework adopts": 60933, "data derive": 34900, "includes iterative": 74374, "models discern": 105985, "alignment finally": 8150, "clip image": 24403, "teacherstudent learning": 163636, "strategy comprehensive": 156118, "offers substantial": 115853, "average codes": 15274, "prompts publicly": 131433, "understanding localization": 171342, "text reading": 165404, "series set": 148950, "largescale visionlanguage": 89423, "models lvlms": 108109, "lvlms designed": 97980, "texts images": 165732, "records generalist": 138314, "generalist models": 63097, "benchmarks image": 17269, "settings zeroshot": 149665, "benchmarks instructiontuned": 17277, "chatbots code": 22607, "demo models": 38177, "constructing knowledge": 30196, "using instruction": 174329, "processing enabling": 129148, "applications key": 10575, "bases kb": 16395, "facilitating information": 56710, "retrieval inference": 144067, "llama architecture": 93289, "perform parameter": 121003, "005 parameters": 8, "parameters base": 119715, "using low": 174458, "lora technique": 97651, "retrieval dpr": 144045, "answer relevant": 9769, "object entities": 115126, "entities given": 49850, "given subject": 66018, "lmkbc challenge": 97083, "iswc 2023": 81070, "2023 conference": 698, "knowledgeintensive question": 82563, "equipped chainofthought": 50180, "llms come": 94636, "incorrect unfaithful": 75179, "tasks kbqa": 162656, "modify reasoning": 109887, "knowledge overcome": 82258, "llms interact": 95663, "knowledge produce": 82312, "structured cot": 156627, "llms facilitated": 95237, "learning demonstrations": 90361, "augmentation train": 14320, "retrieving knowledge": 144284, "achieving significant": 4211, "dynamic facial": 45128, "facial expression": 56585, "expression recognition": 55592, "recognition paper": 138112, "temporal model": 164270, "inputs textual": 77448, "related classes": 139152, "descriptions generated": 39458, "contrast works": 31333, "textual description": 165898, "introduce learnable": 80003, "training extensive": 168442, "current supervised": 34275, "feature generation": 57409, "generation recommendation": 65029, "recommendation paper": 138217, "generate game": 63517, "uses word": 173921, "features entities": 57484, "generator model": 65626, "new features": 113189, "features users": 57599, "generated finetuned": 63867, "game features": 62560, "majority votes": 98471, "model outperformed": 104167, "outperformed human": 117658, "design assistant": 39552, "conceptual level": 28713, "level large": 91484, "bard gpt4": 15559, "traffic safety": 167736, "safety research": 145889, "research extracting": 141784, "analysis common": 8853, "practice recent": 125494, "llm useful": 94078, "llm interfaces": 93776, "explore study": 55299, "study used": 157695, "used popular": 173174, "popular publicly": 124050, "interfaces chatgpt": 79457, "gpt4 study": 67180, "answering queries": 9934, "queries related": 134528, "investigation capabilities": 80626, "assessed responses": 13149, "responses queries": 142891, "questions overall": 135212, "similarity llms": 151356, "llms 70": 94246, "direct questions": 42403, "questions compare": 135070, "llms similar": 96608, "suggests using": 158677, "related information": 139172, "specific large": 154027, "natural science": 111948, "tools bring": 167119, "work field": 178980, "traditional manual": 167657, "processes driven": 129060, "add new": 4807, "science enabling": 146868, "series tailored": 148953, "chemistry material": 23573, "material science": 99501, "incorporating structured": 75132, "structured unstructured": 156684, "correctness finetuning": 32488, "introduce scientific": 80098, "scientific instruction": 146965, "model automating": 103164, "automating instruction": 14884, "extraction domainspecific": 56286, "scientific tasks": 146994, "ability llm": 2255, "science community": 146856, "ensemble approach": 49630, "writing experts": 179728, "phrase word": 122884, "words characters": 178717, "financial experts": 58569, "write complex": 179697, "complex financial": 27419, "financial concepts": 58562, "times day": 166582, "models traditional": 109413, "create endtoend": 33194, "provide personalised": 132918, "autocomplete suggestions": 14456, "efficiency proposed": 46511, "efficient personalized": 46694, "leverages multiple": 91757, "specific data": 153966, "provide relevant": 132951, "expert confidence": 54555, "based suggestions": 16118, "symbolic knowledge": 159806, "kgs play": 81648, "applications search": 10677, "search question": 147399, "answering recommendation": 9950, "contemporary language": 30412, "data gained": 35086, "researchers extensively": 142213, "extensively explored": 55985, "volume training": 177538, "data enhances": 34980, "topological semantic": 167390, "semantic attributes": 148106, "processes work": 129106, "provide exhaustive": 132774, "exhaustive evaluation": 53017, "sizes capabilities": 152088, "benchmarks encompass": 17229, "attributes including": 14115, "metrics tailored": 102152, "attributes extensive": 14110, "evaluation various": 51931, "lms shows": 97199, "considerable potential": 29628, "kgs remains": 81650, "remains significantly": 140073, "significantly constrained": 150967, "metrics reliable": 102139, "metrics lastly": 102101, "benchmarks challenge": 17184, "challenge common": 21602, "smaller counterparts": 152387, "despite superior": 40234, "hard generate": 68643, "logic according": 97324, "according given": 3036, "task difficulties": 161324, "freeform texts": 61569, "texts paper": 165753, "logic language": 97329, "models valid": 109605, "capture information": 20659, "information natural": 76588, "instructions construct": 78222, "generate logical": 63599, "graphs language": 67632, "models convergence": 105795, "convergence experimental": 31752, "approach generate": 11246, "instructional texts": 78153, "mechanism language": 100003, "intelligence paradigm": 78869, "paradigm emerged": 119446, "purpose foundation": 133739, "models prompting": 108693, "prompting solve": 131076, "model problem": 104348, "initially trained": 77085, "models quite": 108762, "quite limited": 135363, "study capabilities": 157200, "chatgpt models": 23129, "gpt35 13": 66788, "computing problems": 28552, "aspect extraction": 12904, "extraction aspect": 56259, "polarity classification": 123799, "extraction sentiment": 56354, "analysis sentiment": 9156, "suicide tendency": 158681, "tendency detection": 164325, "detection toxicity": 40643, "measurement personality": 99905, "personality assessment": 122570, "detection introduce": 40533, "ranking classification": 135799, "compare chatgpt": 26665, "nlp methods": 113763, "methods endtoend": 101480, "problems gpt35": 128524, "especially gpt4": 50484, "sentiment emotions": 148651, "detection improving": 40526, "models loss": 108103, "tuning use": 170140, "reduce size": 138472, "size complexity": 151968, "project investigates": 130079, "various techniques": 176227, "improve knowledge": 73495, "distillation including": 43147, "transformer layer": 169160, "methods tuning": 101888, "loss evaluate": 97669, "goal work": 66208, "enabling development": 48286, "development efficient": 41095, "accurate models": 3475, "particular products": 120110, "specific issues": 154019, "concise narrative": 28847, "elements like": 47017, "like reasoning": 92387, "content topic": 30633, "finegrained details": 58863, "sequence events": 148735, "work facilitate": 178975, "important dimensions": 73124, "introduce multimodal": 80021, "multimodal multilingual": 110731, "multilingual benchmark": 110464, "sources explore": 153505, "demonstrate leveraging": 38401, "modalities including": 102934, "including audio": 74422, "video text": 176741, "models leads": 106936, "opensourced large": 116695, "survey language": 159643, "nlp remarkable": 113801, "tasks extend": 162376, "multimodal domains": 110627, "domains despite": 44384, "gpt4 face": 67006, "face inherent": 56535, "considerable size": 29638, "size high": 152003, "regarding responsible": 138886, "development usage": 41248, "models arises": 105389, "retaining high": 143961, "performance survey": 122146, "survey paper": 159661, "models facilitate": 106293, "extensive survey": 55955, "survey aim": 159599, "inspiring development": 77780, "models cater": 105584, "community advance": 26449, "continuously updating": 31272, "tracing tool": 167518, "interpretability seeks": 79654, "understand neural": 171049, "mechanisms enable": 100040, "specific behaviors": 153943, "behaviors large": 16707, "neural circuits": 112833, "spans text": 153692, "text capture": 164870, "capture factual": 20650, "knowledge remain": 82358, "remain unusable": 139951, "models adapting": 105271, "visionlanguage domain": 177024, "domain requires": 44270, "requires considerable": 141349, "adapt unimodal": 4565, "enable study": 48129, "mechanisms underlying": 100058, "imageconditioned text": 72372, "representations tokens": 140895, "furthermore release": 62153, "impact number": 72701, "areas like": 12376, "like text": 92418, "paradigm train": 119520, "train generative": 167774, "model maximum": 104072, "approximate target": 12018, "distribution target": 43394, "objective generative": 115202, "expect generative": 53734, "inject new": 77103, "new objectives": 113301, "flexibility incorporate": 59792, "incorporate human": 75018, "bias multiple": 18167, "adversarial learning": 6207, "learned reward": 90128, "trending research": 169713, "limits generative": 92915, "design application": 39543, "review surveys": 144554, "aims shed": 7671, "provide rigorous": 132962, "sufficient coverage": 158483, "conclude survey": 28886, "chatgpt received": 23252, "enormous attention": 49601, "attention past": 13959, "past year": 120400, "millions people": 102255, "adoption technology": 5658, "naturally raises": 111981, "questions possible": 135222, "possible biases": 124402, "exhibit work": 53124, "work tested": 179340, "range cognitive": 135596, "llms prone": 96236, "prone human": 131567, "presented gpt3": 126515, "realworld experiments": 136455, "finally speculate": 58528, "speculate possible": 154373, "learning important": 90561, "challenge machine": 21680, "analysis recent": 9115, "finding optimal": 58615, "compiler optimization": 27233, "little domain": 93231, "specific study": 154089, "rl based": 145047, "deep rl": 37824, "search performance": 147389, "performance open": 121869, "framework tool": 61459, "observe average": 115357, "133 improvement": 344, "speech corpus": 154396, "field controllable": 58148, "studies relied": 157069, "specific style": 154090, "based acoustic": 15644, "requirements generating": 141298, "emerged new": 47373, "challenge arises": 21587, "scarcity highquality": 146491, "highquality speech": 70077, "speech datasets": 154399, "datasets natural": 36996, "style prompt": 157760, "tts models": 169929, "models light": 106964, "light propose": 92141, "largescale speech": 89402, "speech emotion": 154404, "emotion dataset": 47565, "annotated rich": 9488, "rich text": 144808, "text attributes": 164843, "dataset comprises": 36177, "prompt natural": 130610, "speech samples": 154470, "prompt programming": 130642, "programming approach": 129785, "effectively utilizes": 46107, "need generating": 112300, "generating audio": 64145, "style diversity": 157743, "diversity propose": 43750, "text controllable": 164964, "audio codec": 14168, "codec codes": 25238, "successfully demonstrate": 158374, "performance controllable": 121337, "task audio": 161208, "alignment objective": 8202, "emotional expressions": 47578, "methods depend": 101427, "emotional labels": 47581, "introduce technique": 80127, "technique presents": 163792, "terms flexibility": 164423, "alignment dataset": 8139, "automatic annotation": 14639, "supported large": 159362, "encodes text": 48501, "semantically aligned": 148261, "style embeddings": 157745, "limited diversity": 92748, "emotions existing": 47600, "expression prompt": 55591, "illustrate method": 72153, "method accomplishes": 100623, "animation generation": 9427, "generation offers": 64901, "offers enhanced": 115799, "desired style": 40058, "llms bringing": 94513, "closer reality": 24542, "efficacy realworld": 46412, "scenarios demand": 146571, "llms believed": 94483, "believed hold": 16796, "teachers capable": 163627, "acquisition introduce": 4286, "language knowledge": 83470, "influence various": 76226, "techniques zero": 164063, "cot think": 32912, "llms 20": 94244, "distinct models": 43233, "good understanding": 66301, "understanding concepts": 171168, "limitations reasoning": 92651, "realworld problems": 136481, "capabilities chat": 19811, "study draws": 157295, "problems presented": 128598, "presented results": 126528, "work revealed": 179271, "using bayesian": 174000, "information representation": 76696, "representation paper": 140727, "chatgpt remarkably": 23266, "ai deception": 6943, "risks potential": 145015, "solutions paper": 153052, "humans define": 71370, "competitive situations": 27201, "problems posed": 128592, "posed ai": 124182, "regulatory frameworks": 139017, "relevant research": 139645, "detect ai": 40344, "make ai": 98480, "public work": 133613, "major technical": 98454, "capabilities incontext": 19953, "generation editing": 64593, "new attacks": 113073, "existing attacks": 53281, "attacks paper": 13728, "reports findings": 140591, "workshop held": 179521, "university university": 171929, "genai paper": 62881, "shortterm longterm": 150049, "longterm goals": 97602, "point discussion": 123704, "important topic": 73209, "interesting problems": 79400, "community work": 26528, "uncovering hidden": 170741, "hidden cost": 69322, "growing significance": 68051, "efficiency research": 46523, "computational burden": 28334, "goal model": 66180, "capable matching": 20446, "model sparsity": 104638, "learning effects": 90398, "remain unclear": 139939, "study addresses": 157132, "addresses gap": 5413, "adversely affects": 6261, "transfer particularly": 168982, "scenarios furthermore": 146607, "influence sparsity": 76222, "calibration downstream": 19631, "empirical exploration": 47702, "nuanced understanding": 114801, "understanding accuracy": 171108, "accuracy sparse": 3392, "opening avenues": 116521, "research visual": 142146, "advances pretrained": 6053, "plms heavily": 123609, "depend large": 39133, "amounts taskspecific": 8697, "access privacy": 2899, "plms fewshot": 123599, "prompting knowledge": 130971, "knowledge transferred": 82474, "tasks purpose": 163056, "mutual reinforcement": 111346, "novel transferable": 114727, "framework fewshot": 61159, "tasks employ": 162290, "employ multitask": 47851, "task type": 161791, "prompt capture": 130377, "embeddings multiple": 47260, "debiasing techniques": 37312, "techniques designed": 163866, "adapted specific": 4692, "initialization extensive": 77067, "multiple nlp": 110985, "recursively summarizing": 138369, "enabling engage": 48291, "given long": 65934, "long conversation": 97448, "past information": 120389, "generate inconsistent": 63564, "inconsistent responses": 74834, "responses address": 142721, "recursively generate": 138367, "llms memorize": 95879, "dialogue contexts": 41457, "using previous": 174605, "contexts finally": 31018, "finally chatbot": 58416, "consistent response": 29836, "memory evaluate": 100393, "method open": 100999, "closed llms": 24458, "widelyused public": 178425, "consistent responses": 29837, "conversation strategy": 31809, "performance notably": 121851, "method potential": 101030, "enable llm": 48104, "context code": 30705, "released later": 139521, "agent using": 6507, "llms combining": 94635, "expressions using": 55601, "llm develop": 93589, "engaging conversation": 48845, "highly expressive": 69918, "using verbal": 174851, "conversations providing": 31960, "task decomposition": 161299, "breaking complex": 18995, "planning wedding": 123342, "individual steps": 75739, "steps contribute": 155726, "achieving task": 4234, "temporal dependencies": 164256, "important component": 73110, "planning tools": 123332, "challenge commonsense": 21603, "reasoning systems": 137161, "introduce highquality": 79977, "baselines experiments": 16318, "tasks individual": 162597, "improvement 15": 73741, "performance relative": 122008, "improvement 37": 73748, "pairwise temporal": 118649, "various visual": 176250, "recognizing common": 138170, "common objects": 26167, "objects extensive": 115284, "hinders effectiveness": 70158, "normal abnormal": 114176, "restricts practical": 143013, "practical implementation": 125421, "implementation paper": 72852, "explore utilization": 55323, "generate training": 63762, "image employ": 72233, "image decoder": 72223, "provide finegrained": 132791, "finegrained semantic": 58892, "design prompt": 39732, "realm embodied": 136351, "embodied artificial": 47304, "intelligence reasoning": 78883, "role effective": 145483, "llms uses": 96915, "impact code": 72628, "data improvement": 35192, "capabilities remains": 20156, "underexplored address": 170764, "reasoning score": 137116, "structural logical": 156521, "correlation code": 32535, "code reasoning": 25086, "abstract syntax": 2659, "syntax tree": 159927, "information calculate": 76303, "cyclomatic complexity": 34488, "complexity empirical": 27669, "data complexity": 34808, "understood llms": 171550, "algorithm apply": 7778, "apply instruction": 10853, "extensive results": 55945, "results demonstrates": 143345, "approaches applied": 11694, "smart grid": 152477, "increasing prevalence": 75350, "trustworthiness ml": 169855, "severe issue": 149710, "issue addressed": 80884, "grid applications": 67821, "applied context": 10744, "power systems": 125221, "attack defense": 13637, "defense methods": 37909, "security review": 147618, "work security": 179277, "power ml": 125202, "review compare": 144491, "compare existing": 26675, "finally future": 58464, "directions discussed": 42470, "potential vulnerability": 125070, "vulnerability large": 177642, "applications overall": 10624, "researchers contribute": 142188, "speech model": 154432, "visionlanguage multimodal": 177077, "speech important": 154419, "generalpurpose assistant": 63337, "assistant able": 13384, "able follow": 2506, "instructions work": 78377, "propose large": 131894, "endtoend trained": 48773, "capable following": 20423, "large speech": 89068, "following dataset": 60270, "years remarkable": 179930, "advancements performance": 5947, "domains llms": 44468, "llms deployed": 94896, "complex domains": 27406, "need follow": 112297, "generate longer": 63601, "failure llms": 57009, "pretraining schemes": 127431, "training sequences": 168729, "fixed length": 59710, "struggle generate": 156751, "coherent texts": 25548, "common solutions": 26196, "finetuning longer": 59368, "careful training": 20789, "design efficiently": 39618, "theoretically empirically": 166057, "problem inspired": 128285, "diagnosis propose": 41370, "attention mask": 13923, "updates learning": 172350, "learning applicable": 90212, "applicable variety": 10288, "efficient time": 46728, "128k tokens": 308, "decoding speedup": 37599, "make codes": 98508, "years generative": 179899, "field generative": 58169, "years numerous": 179916, "provide general": 132804, "general overview": 63011, "delve recent": 38100, "recent theoretical": 137702, "exploring profound": 55499, "jensenshannon divergence": 81219, "framework efficiency": 61098, "variants model": 175633, "newly developed": 113534, "reveal issues": 144346, "research outlines": 141947, "field enhancing": 58159, "llm possesses": 93893, "possesses capability": 124359, "capability handle": 20313, "current mllms": 34183, "begin using": 16530, "multiple subtasks": 111056, "llms integrate": 95657, "obtain results": 115500, "dealing large": 37272, "large projects": 89025, "solutions results": 153072, "solution result": 152972, "best possible": 17730, "study considers": 157240, "considers selecting": 29742, "models optimal": 108366, "mllm specifically": 102805, "based distinct": 15762, "distinct evaluation": 43218, "corresponding subtask": 32607, "finally results": 58520, "best result": 17745, "conducted study": 29289, "humanannotated datasets": 71125, "scalable benchmark": 146233, "engineering field": 48919, "critical need": 33524, "benchmarking framework": 17137, "framework focused": 61164, "focused knowledge": 60107, "challenges addressing": 21766, "syntax error": 159917, "generation useful": 65229, "tool llms": 167007, "graph generation": 67532, "statistical data": 155486, "engineering model": 48957, "speech large": 154426, "current speech": 34241, "models build": 105550, "semantic tokens": 148241, "speech tokens": 154480, "tokens specifically": 166888, "designed speech": 39949, "tokens building": 166784, "models established": 106158, "established benchmark": 50686, "semantic acoustic": 148096, "purpose propose": 133754, "residual vector": 142320, "vector quantization": 176385, "aspects speech": 12975, "speech information": 154421, "furthermore construct": 62037, "zeroshot texttospeech": 180356, "rankers using": 135792, "llm query": 93936, "vocabulary mismatch": 177509, "mismatch problem": 102514, "queries typically": 134552, "llms initial": 95640, "initial investigations": 77035, "investigations using": 80657, "approaches generate": 11787, "tackle inherent": 160822, "vocabulary gap": 177505, "gap work": 62751, "utility llms": 174961, "text ranking": 165401, "tasks inherent": 162602, "large inference": 87286, "surprisingly effective": 159561, "use relevant": 172850, "use llmbased": 172740, "llmbased query": 94163, "ranker finetuned": 135787, "rewritten queries": 144746, "instead original": 77890, "queries training": 134551, "offers significant": 115847, "passage ranking": 120333, "labour market": 82872, "instructionbased finetuning": 78157, "finetuning prompttuning": 59484, "extraction entities": 56290, "entities important": 49851, "largescale annotated": 89268, "human domain": 70700, "effectiveness promptbased": 46267, "applications results": 10671, "applications introducing": 10570, "model layers": 103936, "lvlms recently": 97982, "witnessed rapid": 178566, "rapid advancements": 135852, "understanding processing": 171421, "processing visual": 129355, "connecting visual": 29486, "direct evaluation": 42380, "conversational skills": 31925, "various abilities": 175787, "abilities lvlms": 1957, "construct comprehensive": 30125, "categories abilities": 21086, "integrating detailed": 78590, "image annotations": 72177, "effectively transform": 46098, "input content": 77216, "llms enables": 95058, "employ advanced": 47814, "directly evaluating": 42536, "quality multimodal": 134207, "demonstrate powerful": 38473, "score dialogue": 147059, "quality leveraging": 134186, "leveraging textual": 91957, "preferences hope": 126044, "work serve": 179282, "way building": 177781, "risk ai": 144925, "computer programs": 28481, "plain english": 123197, "modern languages": 109805, "tools powerful": 167232, "relatively accurate": 139398, "provide broad": 132693, "knowledge individual": 82120, "using paper": 174569, "presents series": 126634, "explore tools": 55303, "outputs situations": 118124, "information limited": 76562, "problem complex": 128202, "reason infer": 136564, "false statements": 57174, "statements hallucinations": 155046, "paper adopts": 118711, "critical approach": 33456, "chatgpt showing": 23312, "rarely present": 135956, "data rarely": 35604, "formulas using": 60612, "need test": 112407, "solutions simple": 153074, "common language": 26150, "language technical": 86781, "size deep": 151984, "models continues": 105780, "continues grow": 31219, "memory computation": 100376, "blocks neural": 18729, "computational load": 28374, "scalable solution": 146256, "harness inherent": 68789, "various dimensions": 175892, "inference training": 76129, "shared parameters": 149819, "main model": 98251, "probabilistic manner": 128088, "single round": 151854, "utilize novel": 175071, "gradient accumulation": 67377, "efficiency furthermore": 46464, "training leads": 168542, "approach demonstrated": 11098, "results efficacy": 143371, "achieving efficient": 4167, "training approaches": 168162, "approaches findings": 11773, "simultaneously showcasing": 151764, "token limits": 166721, "limits large": 92918, "context input": 30797, "strategy improving": 156157, "efficiency batch": 46426, "batch data": 16458, "data token": 35867, "lead worse": 89788, "performance loss": 121767, "loss propose": 97688, "early stopping": 45266, "technique comprehensive": 163753, "striking margin": 156320, "margin range": 99188, "range popular": 135671, "including question": 74687, "llm calls": 93517, "size 32": 151959, "using just": 174339, "number llm": 114899, "906 909": 1756, "context measuring": 30847, "awareness llms": 15380, "llms aim": 94379, "aim better": 7431, "awareness large": 15376, "llms model": 95894, "model recognize": 104425, "testing deployment": 164705, "safety alignment": 145834, "llm exploit": 93658, "safety tests": 145896, "way better": 177777, "foresee emergence": 60401, "abilities necessary": 1978, "reasoning experimentally": 136848, "examples demonstrations": 52555, "demonstrations test": 39049, "model pass": 104224, "pass test": 120325, "llms succeed": 96716, "works apply": 179422, "size findings": 151998, "offer foundation": 115651, "secondpass rescoring": 147528, "additional contextual": 4942, "list fewshot": 93125, "serve additional": 148960, "propose multitask": 131943, "maximum sequence": 99700, "propose dynamic": 131788, "select likely": 147781, "class using": 23897, "using class": 174049, "prediction use": 125883, "contexts token": 31059, "wer evaluation": 178200, "biasing lists": 18326, "asr multitask": 13003, "training dynamic": 168403, "113 relative": 242, "relative wer": 139391, "wer improvement": 178201, "models linking": 107014, "science business": 146853, "business government": 19539, "promise improving": 130182, "noisy datasets": 113997, "datasets domains": 36801, "string matching": 156327, "easily extended": 45313, "methods deep": 101420, "learning general": 90492, "lines code": 92995, "repository pretrained": 140631, "similarity models": 151366, "easy integration": 45358, "model hugging": 103806, "comprehensive tools": 28149, "tuning facilitate": 170012, "provide required": 132954, "accuracy finally": 3242, "reproducibility extensibility": 141013, "easy users": 45362, "users contribute": 173605, "aims democratize": 7593, "significant application": 150593, "llms shaping": 96513, "capabilities healthcare": 19938, "llm integration": 93771, "llm api": 93465, "api usage": 10176, "data context": 34849, "used alongside": 172959, "domainspecific llm": 44600, "context filter": 30766, "information necessary": 76591, "necessary answer": 112138, "queries paper": 134515, "key sentences": 81568, "closely aligned": 24507, "introduce reinforcement": 80094, "learning technique": 91063, "based query": 16055, "reduced using": 138502, "using free": 174222, "free open": 61551, "source text": 153478, "text reduction": 165413, "context reduction": 30893, "prominent datasets": 130143, "arxiv papers": 12819, "cost reductions": 32734, "rouge1 score": 145625, "summarization additionally": 158798, "context human": 30787, "context enhance": 30744, "enhance accuracy": 49144, "behavior alignment": 16562, "speech modality": 154431, "modality alignment": 102964, "alignment speech": 8236, "current solutions": 34238, "cascaded approach": 20862, "used inputs": 173117, "limits potential": 92927, "modeling alignment": 104968, "endtoend approach": 48725, "data difficult": 34915, "difficult collect": 42135, "collect large": 25664, "lightweight modality": 92184, "ensuring llm": 49744, "llm exhibits": 93648, "obtaining text": 115551, "signals train": 150540, "endtoend manner": 48746, "manner demonstrate": 98980, "demonstrate straightforward": 38562, "straightforward process": 155925, "speech enabling": 154407, "recognition speech": 138127, "speech translation": 154484, "translation spoken": 169518, "capabilities comprehend": 19829, "unleash power": 171978, "llms accomplish": 94279, "accomplish complex": 3003, "tooluse abilities": 167291, "apis work": 10201, "framework realworld": 61372, "applications based": 10432, "llms controllers": 94735, "provides userfriendly": 133242, "userfriendly library": 173554, "design support": 39773, "integration model": 78680, "equip llms": 50175, "framework proposed": 61362, "tool retrieval": 167026, "retrieval tool": 144153, "customized model": 34408, "evaluation practical": 51778, "practical realworld": 125440, "applications finally": 10528, "framework able": 60908, "zeroshot recommendation": 180324, "ai propose": 7172, "numerical representations": 115011, "computing semantic": 28558, "content items": 30534, "recommendation performed": 138220, "environment inputs": 50005, "knowledge prompting": 82317, "driven object": 44991, "detection aims": 40444, "object instances": 115135, "image challenge": 72199, "available task": 15212, "set object": 149256, "propose explore": 131816, "common attributes": 26124, "different objects": 41886, "models contains": 105769, "visual attributes": 177117, "exploit knowledge": 55008, "knowledge benefit": 81794, "methods consistently": 101399, "objects detected": 115281, "emerging trend": 47546, "set tools": 149332, "tools libraries": 167196, "range data": 135604, "preprocessing techniques": 126192, "engineering methods": 48955, "selection algorithms": 147831, "algorithms conversational": 7912, "automlgpt employs": 14921, "employs advanced": 47954, "advanced techniques": 5810, "achieves optimal": 4045, "performance effectively": 121440, "effectively manages": 46049, "complexity machine": 27684, "learning pipeline": 90824, "guiding users": 68288, "knowledge experimental": 81969, "datasets demonstrated": 36778, "reduces time": 138535, "ability leverage": 2251, "leverage vast": 91683, "vast knowledge": 176335, "encoded large": 48395, "potential pitfalls": 124904, "suggest effective": 158531, "solutions common": 153003, "challenges faced": 21865, "jailbreaking large": 81185, "llms designed": 94900, "safe responses": 145811, "align user": 8038, "manipulate llms": 98929, "llms outputs": 96018, "purposes paper": 133774, "algorithm ga": 7809, "adversarial prompt": 6219, "prompt combined": 130391, "harmful outputs": 68745, "approach systematically": 11590, "responses deviate": 142766, "deviate expected": 41292, "expected behavior": 53749, "contributing ongoing": 31463, "discussion responsible": 43005, "evaluating enhancing": 51291, "enhancing alignment": 49457, "alignment llms": 8190, "human intent": 70861, "jailbreak attack": 81178, "attack concepts": 13634, "progress agi": 129939, "agi artificial": 6793, "statistical ai": 155480, "chatgpt stable": 23350, "clear path": 24279, "expedite development": 53765, "development agi": 41045, "crucial understand": 33884, "efforts specifically": 46933, "results offers": 143646, "offers direct": 115793, "effectiveness chatgptbased": 46141, "given commands": 65853, "chatgpt capacity": 22758, "deliver useful": 38068, "useful feedback": 173326, "effectiveness compared": 46145, "texts produced": 165757, "learned english": 90095, "using bleu": 174013, "overall translation": 118253, "examine linguistic": 52398, "lexicon syntax": 92005, "findings revealed": 58789, "score terms": 147104, "particularly enhancing": 120185, "proved effective": 132632, "incorrect usage": 75180, "passive voice": 120368, "outcomes indicate": 117455, "indicate chatgpts": 75576, "methods translation": 101886, "just incontext": 81374, "exhibited emergent": 53128, "abilities demonstrating": 1893, "emergence abilities": 47410, "direction research": 42447, "nlp especially": 113729, "models prevalent": 108634, "challenge evaluation": 21638, "evaluation abilities": 51416, "arise models": 12456, "models alternative": 105348, "techniques incontext": 163930, "learning instruction": 90584, "comprehensive examination": 28031, "conduct rigorous": 29173, "tests set": 164789, "set 18": 149120, "parameter range": 119634, "million 175": 102218, "extensive series": 55947, "compelling evidence": 27106, "abilities providing": 1998, "mechanisms driving": 100038, "models immense": 106675, "data recipe": 35626, "opensource tools": 116683, "tools llm": 167205, "uncover potential": 170732, "incorporate data": 75006, "sources improve": 153510, "performance build": 121213, "new named": 113291, "efficiently generate": 46783, "data mixtures": 35374, "different traditional": 42056, "faces unique": 56578, "possible data": 124410, "developers need": 40951, "timely feedback": 166572, "loop llm": 97629, "distributed computing": 43319, "computing data": 28535, "notable improvements": 114230, "averaged score": 15323, "win rate": 178515, "gpt4 evaluations": 66991, "evaluations data": 51956, "research training": 142123, "conveys information": 32021, "text word": 165576, "information compared": 76319, "speech prompts": 154442, "descriptions userfriendly": 39509, "face main": 56540, "onetomany problem": 116047, "described text": 39386, "availability text": 15064, "prompts speech": 131483, "speech work": 154488, "network provide": 112691, "network predicts": 112685, "prompt representation": 130651, "representation prompt": 140734, "pipeline generates": 123060, "attributes gender": 14111, "formulate text": 60626, "prompts based": 131173, "recognition results": 138124, "hours speech": 70458, "speech dataset": 154398, "prompts supports": 131492, "sampling diverse": 146090, "pipeline produces": 123082, "produces highquality": 129534, "labeling cost": 82753, "contrastive instruction": 31352, "method better": 100715, "better instruction": 17914, "lvlms significantly": 97983, "thanks success": 165991, "llm visionlanguage": 94092, "insufficient understanding": 78456, "understanding vision": 171530, "language modalities": 83509, "vlms generate": 177459, "information doing": 76365, "applications example": 10513, "address hallucination": 5245, "phenomenon hand": 122830, "pipeline leverages": 123073, "annotated imagetext": 9480, "dataset coupled": 36201, "pairs evaluation": 118571, "evaluation hallucination": 51633, "pairs corresponding": 118558, "hallucination issues": 68384, "existing vlms": 53632, "datasets cognitive": 36705, "control flows": 31543, "prompt chaining": 130381, "grounding reasoning": 67925, "agents achieved": 6526, "substantial empirical": 158055, "organize existing": 117293, "agents plan": 6684, "developments paper": 41289, "intelligence propose": 78881, "memory components": 100375, "internal memory": 79554, "external environments": 56048, "generalized decisionmaking": 63279, "choose actions": 23724, "actions use": 4396, "todays language": 166674, "robot assistance": 145171, "fundamental significant": 61977, "language inaccessible": 83417, "highly specialized": 69959, "establish effective": 50661, "work rely": 179262, "gesture language": 65776, "instructions leveraging": 78300, "humanrobot collaboration": 71331, "tabletop manipulation": 160774, "demonstrate effective": 38288, "users achieving": 173575, "achieving 70": 4131, "baseline demonstrate": 16205, "36 different": 1074, "81 success": 1675, "finding correct": 58603, "scientific hypotheses": 146963, "hypotheses discovery": 71610, "reasoning type": 137214, "propose hypotheses": 131864, "hypotheses explain": 71611, "explain observations": 54706, "past research": 120392, "constrained setting": 30039, "setting ground": 149462, "knowledge making": 82215, "making task": 98813, "recent social": 137643, "science publications": 146906, "corpus contains": 32290, "develop research": 40830, "research hypotheses": 141834, "goal create": 66157, "systems automatically": 160258, "generate valid": 63776, "hypotheses given": 71612, "corpus different": 32298, "settings new": 149617, "opendomain data": 116451, "base framework": 15601, "framework finally": 61160, "finally framework": 58463, "exhibits superior": 53228, "reflecting reality": 138810, "vulnerabilities llmintegrated": 177625, "serve essential": 148974, "infrastructure given": 76908, "llmintegrated web": 94218, "web apps": 177994, "arbitrary code": 12076, "prompt injections": 130548, "vulnerabilities existing": 177615, "conducted systematic": 29290, "detect vulnerabilities": 40382, "scenarios gap": 146608, "novel strategies": 114697, "including static": 74735, "code framework": 24850, "framework detect": 61075, "detect potential": 40372, "including 12": 74399, "framework developers": 61081, "sql injection": 154635, "issues corresponding": 80995, "direct interaction": 42389, "lastly propose": 89463, "improving security": 74217, "app developers": 10209, "llms search": 96493, "graphs large": 67634, "solve different": 153112, "generalizability llms": 63111, "like graph": 92305, "networks gnns": 112753, "gnns trained": 66142, "mitigate problem": 102628, "problem lacking": 128297, "knowledge incorporating": 82117, "incorporating additional": 75080, "need retraining": 112381, "abilities fully": 1914, "utilized retrieval": 175114, "paradigm termed": 119517, "essential knowledge": 50614, "strong generalizability": 156386, "knowledge ability": 81721, "manner additionally": 98969, "explainability llms": 54730, "datasets commonsenseqa": 36713, "commonsenseqa openbookqa": 26335, "intelligence csi": 78804, "method enabling": 100824, "enabling large": 48315, "large human": 87281, "human groups": 70844, "novel use": 114741, "simultaneously enables": 151746, "enables local": 48216, "groups global": 67970, "conversational content": 31858, "combines benefits": 25926, "largescale collective": 89280, "collective intelligence": 25768, "gpt solve": 66495, "typically assumed": 170468, "accurately perform": 3551, "aims challenge": 7587, "billionparameter language": 18444, "100 accuracy": 144, "accuracy data": 3192, "significantly surpassing": 151169, "surpassing gpt4": 159516, "dataset additional": 36097, "text achieves": 164816, "math problem": 99528, "problem test": 128419, "set code": 149154, "data public": 35589, "response need": 142677, "agent based": 6418, "analytical process": 9257, "process requiring": 128975, "requiring minimal": 141499, "detailed stepbystep": 40320, "tasks rigorous": 163190, "robustness adaptability": 145345, "genome sequencing": 65688, "spatial transcriptomics": 153814, "processes based": 129053, "underscores versatility": 170960, "versatility compared": 176580, "tool offering": 167014, "adaptability complex": 4572, "analysis base": 8825, "essential large": 50615, "llms interactive": 95665, "noticeable lack": 114318, "languages construct": 86966, "dataset expanding": 36280, "datasets apply": 36655, "dataset japanese": 36374, "model performed": 104265, "lora tuning": 97652, "japanese english": 81203, "dataset evaluated": 36264, "datasets confirmed": 36731, "small llms": 152313, "llms performances": 96094, "tasks improved": 162536, "tuning instruction": 170031, "implementation publicly": 72858, "extraction large": 56310, "uncertainty open": 170675, "aims extracting": 7615, "structured facts": 156633, "typically form": 170492, "subject relation": 157841, "chatgpt general": 22972, "general task": 63053, "lag stateoftheart": 83060, "struggle distinguish": 156743, "model second": 104519, "generates responses": 64104, "predicted relations": 125725, "lack confidence": 82908, "particularly propose": 120243, "strategies enhance": 155993, "ability demonstration": 2122, "module enhance": 109932, "enhance confidence": 49177, "confidence generated": 29348, "datasets approach": 36656, "established supervised": 50698, "methods quantitatively": 101753, "transforming way": 169386, "information conduct": 76323, "highperforming llms": 69984, "progress opensource": 129999, "longer sequence": 97530, "key requirement": 81562, "context address": 30679, "7b parameter": 1638, "models 8k": 105170, "instructional data": 78148, "data creating": 34870, "research advancements": 141566, "applications evaluation": 10511, "evaluation standard": 51869, "benchmarks shows": 17365, "llms targeted": 96767, "targeted evaluation": 161132, "llms social": 96628, "media influence": 100091, "platforms enable": 123402, "rise new": 144904, "social influence": 152586, "shape public": 149779, "users online": 173723, "online communication": 116080, "discourse large": 42708, "generate targeted": 63745, "indistinguishable humanwritten": 75694, "humanwritten content": 71512, "intersection llms": 79766, "llms influence": 95625, "mitigation measures": 102692, "highlighted enhancing": 69797, "models latest": 106926, "ai deep": 6944, "learning led": 90638, "led breakthrough": 91214, "breakthrough large": 19007, "gpt4 commercial": 66947, "agent development": 6435, "development tools": 41241, "humanlike conversation": 71257, "conversation paper": 31800, "design development": 39604, "llms aid": 94378, "generating training": 64364, "data extracting": 35030, "extracting entities": 56226, "llms assist": 94437, "demonstrate scenarios": 38541, "practical example": 125413, "agents llms": 6651, "llms entirely": 95084, "need deep": 112259, "approach llms": 11368, "llms integrated": 95658, "save time": 146191, "privacy safeguards": 128024, "safeguards existing": 145823, "open llm": 116250, "llm train": 94059, "nlp multimodal": 113773, "cost ii": 32688, "objective evaluations": 115192, "solution significantly": 152976, "reduce llm": 138441, "tokens trained": 166895, "evaluations existing": 51968, "existing evaluations": 53364, "evaluations focus": 51974, "evaluations include": 51984, "explicit biases": 54920, "recently showcased": 137989, "generate fitting": 63502, "biases trained": 18318, "responses instance": 142829, "used tune": 173286, "tune llm": 169939, "specific political": 154056, "political bias": 123893, "bias current": 18110, "work seeks": 179280, "potentially biased": 125083, "biased answers": 18224, "aim make": 7472, "make explicit": 98533, "demo users": 38182, "finetuned text": 59131, "text representing": 165423, "model identified": 103815, "identified 11": 71814, "different biases": 41678, "biases political": 18299, "answer written": 9803, "written members": 179784, "model showcases": 104562, "serve common": 148969, "llms vulnerable": 96993, "empirical analyses": 47667, "llms benchmarks": 94486, "benchmarks pinpoint": 17326, "bias primarily": 18181, "id tokens": 71718, "debiasing method": 37310, "remaining samples": 139968, "samples demonstrate": 146003, "demonstrate achieves": 38220, "computational efficiency": 28360, "draw broader": 44911, "broader research": 19219, "decoding contrasting": 37564, "contrasting layers": 31339, "improves factuality": 74000, "hallucinations generating": 68432, "generating content": 64173, "content deviates": 30474, "facts seen": 56847, "reducing hallucinations": 138571, "conditioning retrieved": 28998, "additional finetuning": 4960, "approach obtains": 11411, "later layers": 89527, "layers vocabulary": 89686, "particular transformer": 120133, "layers dola": 89663, "better surface": 18040, "knowledge reduce": 82349, "generation incorrect": 64739, "incorrect facts": 75150, "tasks openended": 162886, "llama family": 93304, "making llms": 98777, "set analysis": 149128, "text citations": 164880, "generated similar": 63977, "similar names": 151276, "50 cases": 1294, "verified human": 176510, "positions llms": 124282, "fast scalable": 57277, "ondevice large": 115967, "inference generative": 76022, "mobile applications": 102897, "directly mobile": 42569, "mobile devices": 102900, "heavily depends": 69041, "devices presents": 41315, "designed efficient": 39852, "generative natural": 65518, "tasks core": 162134, "identified errors": 71822, "incorporates novel": 75070, "instead generating": 77877, "generating candidate": 64147, "candidate tokens": 19737, "sequential manner": 148878, "llm construct": 93557, "token tree": 166746, "tree encompassing": 169657, "larger llm": 89217, "llm efficiently": 93613, "verification process": 176493, "generates tokens": 64119, "computeio pipeline": 28468, "pipeline extensive": 123056, "showcases impressive": 150098, "generation speed": 65098, "existing inference": 53387, "inference engines": 75997, "static datasets": 155457, "datasets deep": 36760, "llms progress": 96219, "requirements evaluation": 141291, "llms dynamic": 94997, "dynamic realworld": 45158, "widely exists": 178377, "costly timeconsuming": 32803, "realworld domains": 136445, "domains evaluated": 44399, "interaction llms": 79141, "elaborately designed": 46968, "designed evaluation": 39873, "llms scale": 96484, "years data": 179888, "typically acquired": 170464, "datasets comprised": 36724, "datasets higher": 36906, "relied handcrafted": 139790, "heuristics encoded": 69318, "quality used": 134294, "used systematically": 173257, "systematically measure": 160197, "rigorous comparison": 144854, "simple data": 151423, "used rank": 173202, "subsequently compare": 157966, "compare llms": 26692, "datasets surprisingly": 37145, "surprisingly simple": 159577, "scoring methods": 147192, "little 30": 93219, "work sets": 179285, "sets foundation": 149374, "strategies automatically": 155966, "engineering management": 48950, "natural environments": 111527, "affect human": 6303, "human animal": 70572, "health past": 68957, "subsequent analysis": 157946, "acquire information": 4254, "provide data": 132735, "temporal resolution": 164283, "tools technologies": 167268, "climate change": 24308, "framework realtime": 61371, "cyberphysical systems": 34473, "definitive answer": 37970, "sota nlp": 153360, "systems achieved": 160226, "applications users": 10716, "categories questions": 21119, "definitive answers": 37971, "instance provide": 77808, "corresponding qa": 32602, "question answered": 134681, "data formulate": 35077, "formulate evaluation": 60614, "experiments sota": 54467, "performance baseline": 121188, "findings overall": 58742, "research important": 141842, "help develop": 69104, "current best": 34082, "approaches looking": 11836, "efforts spent": 46934, "implementation based": 72836, "consuming errorprone": 30272, "experiment students": 53914, "students essential": 156859, "conferences journals": 29339, "engineering chatgpt": 48891, "chatgpt report": 23270, "report experiments": 140527, "future open": 62295, "work raises": 179252, "raises ethical": 135484, "learning hybrid": 90533, "text tables": 165524, "addressing task": 5481, "task question": 161671, "hybrid data": 71562, "images challenging": 72398, "recently rise": 137986, "popular way": 124075, "way solve": 177876, "solve qa": 153150, "framework addressing": 60932, "addressing problems": 5471, "llms leverage": 95758, "powerful performance": 125320, "baselines methods": 16349, "dataset achieving": 36093, "retrieval crucial": 144031, "explaining understanding": 54770, "understanding events": 171225, "holistic view": 70304, "identify semantically": 71959, "metric called": 101958, "metrics focus": 102067, "provides granular": 133156, "created comprehensive": 33252, "37 higher": 1088, "traditional text": 167708, "directly measure": 42568, "effectiveness comparing": 46146, "strategies given": 156006, "given blackbox": 65836, "blackbox access": 18620, "access language": 2869, "generation neural": 64881, "allow user": 8352, "text systems": 165523, "present methods": 126368, "ability discover": 2134, "strategy used": 156215, "detecting generated": 40407, "text additionally": 164819, "process discovering": 128793, "biases caused": 18255, "decoding settings": 37598, "models predicted": 108589, "perform attack": 120869, "production systems": 129595, "semantic queries": 148199, "typical method": 170452, "text queries": 165394, "maps using": 99167, "issues semantic": 81060, "redundancy ambiguity": 138628, "mapping brain": 99142, "images hand": 72429, "hand large": 68488, "potential tasks": 125015, "displaying high": 43077, "existing challenges": 53310, "llms basic": 94475, "complex query": 27538, "mapping model": 99149, "queries semantic": 134540, "activation patterns": 4414, "undirected graphical": 171598, "graphical model": 67601, "labeling problem": 82760, "graph theory": 67580, "crf layer": 33413, "variables word": 175603, "capitalize powerful": 20554, "provide rich": 132960, "contextual semantic": 31112, "knowledge latent": 82176, "sequence use": 148797, "powerful obtains": 125314, "obtains new": 115558, "including outperforming": 74655, "outperforming recent": 117692, "recent advanced": 137337, "f1 points": 56481, "generalization inference": 63181, "inference performance": 76069, "performance respectively": 122020, "models difficulty": 105976, "models aid": 105320, "enhance proficiency": 49264, "identifying content": 71992, "closely align": 24504, "proficiency level": 129668, "content approach": 30439, "distinctive characteristics": 43268, "content traditional": 30634, "linguistic complexity": 93016, "content derived": 30469, "derived video": 39367, "video captions": 176691, "technology enable": 164134, "enable learners": 48102, "continuously adapting": 31264, "content align": 30433, "content diversity": 30478, "diversity large": 43739, "led surge": 91255, "collaborative writing": 25636, "writing model": 179734, "model assistance": 103145, "users incorporate": 173675, "model risk": 104492, "potentially limiting": 125121, "controlled experiment": 31633, "base llm": 15614, "develop set": 40834, "instructgpt gpt3": 77944, "reduces overall": 138529, "lexical content": 91978, "remains unaffected": 140078, "recent improvement": 137516, "improvement generation": 73803, "adapting models": 4749, "content evaluating": 30489, "models development": 105956, "development highly": 41131, "fluent large": 59905, "capabilities investigate": 19975, "abilities solve": 2017, "format content": 60544, "llms unique": 96887, "reasoning biases": 136690, "assessing ai": 13167, "peer review": 120662, "evaluating research": 51382, "field cybersecurity": 58151, "doubleblind peer": 44675, "defacto standard": 37875, "standard paper": 154863, "reviewing academic": 144568, "comparing results": 27010, "obtained human": 115520, "human reviewers": 71027, "facilitate study": 56652, "prediction capabilities": 125768, "chatgpt twostage": 23406, "evaluation review": 51837, "outcome prediction": 117441, "achieves accuracy": 3955, "accuracy 90": 3127, "analyzing experimental": 9367, "process benefit": 128746, "irreplaceable role": 80858, "human intellect": 70858, "smaller transformerbased": 152451, "10 million": 122, "coherent english": 25530, "model python": 104398, "python coding": 133830, "coding performance": 25395, "performance close": 121249, "close stateoftheart": 24453, "data way": 35959, "way enhance": 177800, "traditional web": 167716, "data follow": 35068, "language create": 83223, "tasks gradeschool": 162478, "llms good": 95408, "good ability": 66252, "ability think": 2395, "step perform": 155668, "including hallucinations": 74549, "biased generations": 18227, "data opensource": 35442, "llm recently": 93946, "fall prey": 57119, "produce content": 129383, "content multiple": 30555, "people various": 120741, "delivering content": 38072, "endtoend generalpurpose": 48739, "different diffusion": 41736, "videos audio": 176769, "leveraging existing": 91839, "encoders decoders": 48479, "small parameter": 152345, "projection layers": 130098, "layers benefits": 89658, "training facilitates": 168447, "potential modalities": 124865, "curate highquality": 33998, "understanding content": 171170, "showcases promising": 150103, "possibility building": 124376, "capable modeling": 20450, "modeling universal": 105118, "way humanlike": 177825, "humanlike ai": 71244, "capability pretrained": 20358, "models nowadays": 108318, "versatile capabilities": 176560, "llms attracted": 94444, "vertical domains": 176633, "comprehensive capabilities": 27972, "network operations": 112681, "designed evaluating": 39872, "inference ability": 75954, "multilingual context": 110473, "like llama": 92335, "llama demonstrate": 93299, "diverse sources": 43664, "sources large": 153515, "reasoning consistently": 136771, "approach pinpoint": 11448, "injections llm": 77120, "prompts propose": 131426, "mechanism allows": 99976, "critical llm": 33517, "inference enabling": 75995, "enabling llm": 48321, "additional relevant": 4993, "information inference": 76518, "memory injection": 100408, "layer increase": 89632, "increase probability": 75222, "effective proxy": 45861, "proxy human": 133436, "scores large": 147156, "generalize large": 63258, "number nlp": 114911, "applications imperative": 10555, "time time": 166520, "setting human": 149465, "demonstrate ensemble": 38325, "scores work": 147179, "fewshot finetuned": 57909, "finetuned settings": 59106, "settings evaluation": 149570, "measured human": 99892, "llm source": 94012, "labels results": 82822, "languages domains": 86982, "domains disagreement": 44386, "scores provide": 147164, "provide better": 132690, "estimation model": 50757, "performance mean": 121792, "mean average": 99747, "average error": 15280, "error mae": 50305, "better using": 18067, "humans identify": 71404, "identify underlying": 71978, "work evaluated": 178939, "directly prompting": 42591, "tasks performs": 162944, "hypotheses multiple": 71614, "llm propose": 93923, "propose multiple": 131941, "programs programs": 129927, "novel inputs": 114548, "generation stateoftheart": 65101, "llms consider": 94700, "llm summarize": 94031, "ask human": 12844, "select subset": 147788, "automated pipeline": 14586, "summaries achieves": 158755, "accuracy significantly": 3390, "outperforming direct": 117672, "prompting baseline": 130865, "baseline accuracy": 16188, "performance boosted": 121208, "bound performance": 18905, "approach filtering": 11230, "program representations": 129747, "representations beneficial": 140769, "beneficial llms": 17412, "tasks studying": 163302, "advancements witnessed": 5979, "field language": 58186, "data extracted": 35029, "accessible allowing": 2939, "allowing users": 8397, "text various": 165563, "trained diverse": 167902, "platforms like": 123407, "future training": 62392, "generated previous": 63941, "previous iterations": 127600, "development research": 41210, "artificial text": 12795, "model roberta": 104494, "roberta pretrained": 145158, "chatgpt employed": 22882, "potential gender": 124737, "bias using": 18217, "demonstrate utilization": 38604, "tasks gender": 162444, "conclusion findings": 28896, "does yield": 44040, "yield substantial": 179985, "chatbots common": 22609, "software enables": 152796, "chatbots studied": 22640, "chatbots potential": 22627, "engage users": 48831, "important address": 73078, "mitigate issues": 102618, "service product": 149065, "user satisfaction": 173490, "society paper": 152708, "identifies gaps": 71843, "path forward": 120428, "model science": 104509, "work use": 179351, "accelerate research": 2778, "problem important": 128276, "theoretical computer": 166023, "science mathematics": 146894, "propose socratic": 132138, "reasoning general": 136877, "framework promotes": 61358, "encourages llms": 48616, "llms recursively": 96355, "shows gpt4": 150430, "gpt4 successfully": 67181, "dialogue turns": 41538, "zhou 2023": 180388, "llms shedding": 96517, "llm science": 93981, "model deep": 103413, "hypothesize strong": 71640, "learned process": 90119, "solves optimization": 153188, "context layer": 30812, "performance synthetic": 122148, "modeling experiments": 105000, "weights trained": 178130, "trained transformers": 168104, "forgetting crosslingual": 60417, "tuning strategies": 170127, "technique solve": 163806, "languages empirical": 86984, "compare finetuning": 26680, "approaches combined": 11714, "combined zeroshot": 25924, "models crosslingual": 105824, "strategies compare": 155974, "parameterefficient adapter": 119657, "adapter methods": 4711, "uses language": 173868, "phase finetuning": 122798, "finetuning assess": 59174, "assess success": 13126, "language crosslingual": 83227, "previously acquired": 127709, "knowledge lost": 82211, "results different": 143354, "different classification": 41688, "classification problems": 24056, "speech detection": 154401, "datasets languages": 36944, "english compared": 49036, "evaluating catastrophic": 51270, "transfers visual": 169038, "expansion task": 53719, "everincreasing volume": 52153, "taxonomies existing": 163569, "focus exclusively": 59978, "textual semantics": 165948, "integrates textual": 78572, "produce finegrained": 129410, "semantics method": 148305, "method evaluated": 100839, "evaluated datasets": 51165, "datasets obtain": 37010, "results specifically": 143809, "taxonomy dataset": 163578, "accuracy 875": 3126, "model serving": 104553, "serving large": 149099, "systems struggle": 160626, "keyvalue cache": 81608, "cache memory": 19589, "size address": 151961, "algorithm inspired": 7819, "virtual memory": 176866, "systems build": 160278, "llm serving": 93995, "throughput popular": 166309, "temporal data": 164255, "remarkable generalization": 140201, "individuals increasingly": 75774, "increasingly use": 75450, "use personal": 172801, "llms employ": 95048, "break text": 18990, "text smaller": 165468, "struggle understand": 156779, "patterns context": 120521, "discuss recent": 42937, "works employ": 179440, "humancentric tasks": 71151, "health sensing": 68974, "solutions prompt": 153061, "embedding layers": 47172, "bridge modality": 19070, "capability language": 20319, "minimal finetuning": 102328, "underscores fact": 170941, "presents significant": 126636, "challenging issue": 22181, "issue large": 80922, "llms predominant": 96159, "predominant focus": 125974, "diverse prompting": 43607, "structure reasoning": 156597, "processes llms": 129082, "decoderonly causal": 37533, "potentially missing": 125123, "missing rich": 102532, "strategy termed": 156210, "human learning": 70911, "embedded input": 47140, "intricate patterns": 79855, "series reasoning": 148948, "benchmarks serve": 17360, "generality method": 63103, "approach seamlessly": 11521, "seamlessly integrates": 147303, "integrates various": 78574, "underscoring versatility": 170973, "realm llms": 136358, "augmentation using": 14324, "distributional robustness": 43411, "art models": 12553, "body research": 18777, "improvements quality": 73935, "quality access": 134031, "influence performance": 76214, "performance qa": 121971, "datasets varying": 37194, "varying amounts": 176278, "help achieve": 69077, "pairs augment": 118547, "learning predict": 90838, "determine optimal": 40711, "set concepts": 149161, "concepts natural": 28674, "natural sentence": 111951, "sentences conduct": 148566, "model consistently": 103353, "study finetuned": 157367, "finetuned using": 59135, "concepts appear": 28641, "multiple evaluation": 110904, "llms variants": 96942, "lms task": 97207, "interestingly human": 79411, "annotators significantly": 9644, "manually writing": 99109, "provides best": 133110, "lm used": 97076, "generation outperforming": 64908, "like mathematics": 92346, "llms diverse": 94960, "poses great": 124205, "great challenges": 67688, "result extraction": 143033, "extraction evaluation": 56292, "llms instead": 95648, "degrees difficulty": 38023, "method extract": 100862, "metrics including": 102087, "including accuracy": 74408, "worst best": 179672, "annotation evaluation": 9528, "using covid19": 174096, "presented significant": 126529, "industry society": 75887, "annotation large": 9535, "expensive study": 53809, "supervision identify": 159201, "goldstandard dataset": 66248, "used gpt4": 173094, "gpt4 provide": 67129, "text encoders": 165053, "knowledge leveraging": 82193, "semantic textual": 148238, "similarity sts": 151378, "maintaining strong": 98382, "sts benchmarks": 156793, "sts models": 156794, "models characterizing": 105604, "texts complex": 165689, "complex semantic": 27581, "knowledge validate": 82499, "models newly": 108290, "newly collected": 113529, "domains health": 44423, "media content": 100078, "performance closedsource": 121252, "average generative": 15288, "baselines average": 16290, "average 223": 15261, "sts tasks": 156795, "knowledge results": 82375, "suggest generative": 158540, "strategies achieve": 155952, "complex domainspecific": 27407, "domainspecific sts": 44625, "developers data": 40941, "prompts executable": 131258, "openais api": 116390, "ai assistance": 6873, "settings complex": 149540, "individual tool": 75747, "unified approach": 171701, "integration challenging": 78646, "library api": 92035, "prompt evaluation": 130493, "offline inverse": 115874, "inverse rl": 80342, "study aim": 157140, "optimization identify": 117000, "issue absence": 80883, "absence effective": 2590, "evaluate prompts": 51074, "prompts inference": 131331, "concurrently learning": 28933, "learning interactions": 90590, "resourceintensive address": 142411, "inverse reinforcement": 80340, "demonstration data": 38972, "optimization objective": 117015, "objective achieved": 115173, "llms subsequently": 96711, "prompt experimental": 130497, "evaluations various": 52036, "tools fail": 167162, "data subsequently": 35821, "entries data": 49960, "data queried": 35595, "bias comparing": 18109, "comparing sentiment": 27011, "sentiment large": 148656, "summary original": 158935, "original article": 117313, "advantages approach": 6128, "requires labelled": 141401, "labelled data": 82770, "sentiment results": 148661, "politically charged": 123910, "charged words": 22506, "method facilitates": 100866, "facilitates extraction": 56687, "understanding bias": 171137, "evidence scientific": 52213, "studies social": 157089, "best guess": 17677, "existing evidence": 53365, "relevant literature": 139616, "number scientific": 114945, "related given": 139169, "llms discern": 94944, "evidence support": 52222, "text scientific": 165445, "share novel": 149800, "task scientific": 161709, "benchmarks highlight": 17261, "opportunities future": 116849, "efficient large": 46657, "explores tradeoffs": 55432, "performance computational": 121314, "explores novel": 55411, "parts model": 120301, "reducing total": 138599, "number unique": 114977, "parameters required": 119853, "approach ensures": 11185, "language structures": 86745, "structures study": 156715, "insights tools": 77659, "tools creating": 167131, "creating efficient": 33297, "effective llms": 45803, "llms contributing": 94732, "accessible future": 2953, "provides natural": 133180, "approaches demonstrated": 11728, "results applying": 143175, "amounts indomain": 8688, "paired data": 118531, "hinders development": 70157, "collect paper": 25667, "indomain dialogues": 75793, "conversational queries": 31901, "queries given": 134485, "performance fullysupervised": 121543, "generation increasingly": 64741, "demonstrate stronger": 38568, "stronger language": 156471, "capabilities memory": 20049, "generally requires": 63326, "data individual": 35218, "tasks whilst": 163472, "collection cost": 25727, "consider realworld": 29586, "applications work": 10730, "focus parameterefficient": 60031, "peft methods": 120684, "freeze parameters": 61581, "parameters fewshot": 119758, "footprint training": 60355, "cost labeling": 32697, "cost reduced": 32732, "scenarios providing": 146680, "comprehensive comparison": 27981, "existing peft": 53517, "methods reveals": 101797, "reveals certain": 144415, "performance modest": 121817, "dialogue emotion": 41467, "emotion detection": 47566, "detection emotion": 40490, "critical technology": 33557, "extensively employed": 55980, "knowledge proven": 82321, "existing emotion": 53355, "challenges human": 21902, "human agency": 70560, "human emotions": 70714, "unrelated words": 172120, "hidden variables": 69344, "variables model": 175600, "recognition introduce": 138078, "causal directed": 21180, "emotional information": 47579, "personal attributes": 122553, "irrelevant ones": 80852, "ones specifically": 116017, "dynamic temporal": 45168, "information conversation": 76335, "test approach": 164511, "approach popular": 11449, "display remarkable": 43073, "capabilities logical": 20043, "reasoning allowing": 136666, "abilities emerge": 1897, "task nexttoken": 161571, "present theoretical": 126481, "framework studying": 61431, "models linear": 107009, "predictors trained": 125964, "cot data": 32861, "function efficiently": 61834, "complexity measure": 27687, "length complexity": 91354, "measures number": 99932, "cot sequence": 32904, "target function": 161067, "experimentally simple": 54104, "perceptrons mlps": 120845, "nontrivial performance": 114153, "models attributed": 105413, "particular choice": 120057, "foundational step": 60850, "step development": 155615, "relevant evaluation": 139598, "metaphor detection": 100593, "existing tasks": 53609, "community firstly": 26478, "secondly demonstrate": 147521, "method obtain": 100995, "underresourced languages": 170910, "alongside task": 8499, "task conduct": 161268, "challenging nature": 22223, "nature tasks": 112034, "expedited progress": 53767, "progress order": 130005, "fast adaptation": 57261, "network dnn": 112642, "partially known": 119983, "need train": 112412, "data originating": 35451, "specific distribution": 153976, "distribution underlying": 43402, "parameters require": 119852, "parameter tuning": 119647, "blackbox nature": 18652, "nature dnns": 111995, "difficult propose": 42173, "hypernetwork generate": 71587, "state estimation": 154999, "estimation performance": 50760, "performance continuous": 121333, "continuous range": 31251, "limited noise": 92808, "highquality images": 70034, "research suggests": 142102, "insufficient generalization": 78446, "data captions": 34735, "effective mitigation": 45816, "strategies remain": 156066, "score measures": 147082, "employ large": 47835, "llm generalize": 93697, "captions propose": 20622, "enhancement approach": 49378, "approach mitigate": 11387, "model maintaining": 104056, "diversity quality": 43751, "generations code": 65276, "transformers significantly": 169359, "internal mechanisms": 79552, "novel geometric": 114531, "geometric perspective": 65726, "transformer operations": 169196, "primary contribution": 127808, "latent features": 89504, "representation words": 140751, "parameter gpt2": 119615, "model findings": 103656, "reveal clear": 144321, "build prior": 19342, "prior observations": 127917, "observations regarding": 115351, "processes model": 129085, "outputs large": 118075, "llms primarily": 96186, "primarily trained": 127795, "textbased datasets": 165587, "executing complex": 52931, "linguistic instructions": 93037, "instructions text": 78361, "modality conversion": 102966, "images suffer": 72492, "capable accommodating": 20393, "specific image": 154009, "comprehending complex": 27868, "textbased llm": 165595, "instructions consequently": 78221, "adapted llm": 4686, "various offtheshelf": 176084, "requires immense": 141392, "llm traditional": 94058, "instruction benchmark": 77968, "diverse modality": 43577, "outputs experiment": 118052, "reveal minimal": 144354, "used contexts": 173010, "contexts use": 31060, "capturing context": 20719, "plms specific": 123642, "underdeveloped area": 170756, "area introduce": 12325, "maximize potential": 99678, "finetuning propose": 59485, "modeling extract": 105003, "datasets plms": 37030, "nature different": 111993, "prompts effectiveness": 131239, "augmented training": 14377, "capabilities scale": 20166, "text conditioned": 164948, "conditioned prompt": 28985, "prompt work": 130746, "augment training": 14257, "performance slms": 122077, "setup various": 149681, "generators data": 65635, "consistently enhances": 29865, "furthermore performance": 62127, "terms surface": 164481, "augmented models": 14365, "lower entropy": 97821, "assigning importance": 13323, "based agents": 15649, "level ai": 91446, "considered promising": 29700, "agents artificial": 6541, "artificial entities": 12647, "make decisions": 98523, "decisions actions": 37452, "agents mainly": 6652, "enhance specific": 49292, "particular tasks": 120128, "agents adapt": 6532, "diverse scenarios": 43640, "regarded potential": 138855, "potential sparks": 125000, "researchers leveraged": 142232, "leveraged llms": 91703, "llms foundation": 95301, "foundation build": 60711, "build ai": 19301, "progress paper": 130006, "ai explain": 6988, "explain llms": 54703, "comprising main": 28262, "action framework": 4319, "tailored different": 160911, "explore extensive": 55202, "extensive applications": 55717, "applications llmbased": 10596, "multiagent scenarios": 110332, "agents social": 6733, "emerge agent": 47327, "human society": 71041, "related papers": 139192, "enhanced large": 49343, "llms grown": 95458, "grown exponentially": 68067, "popularity llms": 124096, "utilize extensive": 175040, "extensive background": 55723, "knowledge task": 82449, "information incontext": 76513, "learning vlms": 91130, "vlms struggle": 177484, "downstream visionlanguage": 44855, "approach allow": 10987, "including mme": 74619, "mme mmbench": 102879, "analysis demonstrates": 8883, "effectively tackles": 46087, "tackles challenge": 160858, "challenge complex": 21604, "multimodal prompt": 110746, "prompt understanding": 130734, "impressive icl": 73302, "icl ability": 71655, "ability furthermore": 2175, "common issue": 26147, "vital component": 177406, "virtual reality": 176868, "reality despite": 136315, "motion quality": 110155, "physical plausibility": 122906, "development userfriendly": 41252, "presents unified": 126652, "inspired strong": 77769, "interaction types": 79186, "contact regions": 30286, "constitutes large": 30016, "llm planner": 93887, "planner translate": 123231, "task plans": 161626, "evaluation collect": 51482, "plans generated": 123359, "based diverse": 15763, "framework versatile": 61495, "assessment chatgpt": 13219, "log data": 97314, "applied wide": 10822, "range software": 135698, "analysis potential": 9069, "generation analysis": 64418, "analysis current": 8873, "logs generated": 97429, "generated largescale": 63907, "largescale software": 89400, "systems complex": 160296, "crucial information": 33810, "information subject": 76783, "current capabilities": 34083, "tasks log": 162755, "lack consistency": 82910, "responses scalability": 142912, "scalability issues": 146216, "issues outline": 81038, "llms log": 95817, "possible steps": 124466, "steps improve": 155745, "improve current": 73439, "llms area": 94425, "area believe": 12317, "work contribute": 178874, "contribute future": 31400, "future academic": 62211, "research address": 141561, "identified issues": 71825, "realworld vulnerabilities": 136541, "role daily": 145476, "quality security": 134264, "security software": 147624, "automated program": 14590, "program repair": 129743, "sought automatically": 153372, "automatically detect": 14789, "detect fix": 40358, "fix bugs": 59698, "datadriven techniques": 36047, "sophisticated deep": 153298, "methods applied": 101309, "benchmarks training": 17385, "focus single": 60051, "lack diversity": 82927, "quality bug": 134054, "datasets low": 36968, "typically use": 170525, "commit messages": 26105, "messages explanations": 100543, "explanations address": 54810, "opensource repositories": 116672, "design metrics": 39693, "filter highquality": 58346, "pairs furthermore": 118579, "modelbased approach": 104927, "highquality vulnerability": 70092, "explanations key": 54869, "approach collect": 11054, "collect highquality": 25662, "pairs generate": 118581, "dataset collect": 36161, "experts confirm": 54647, "framework produces": 61357, "like web": 92427, "achieving decent": 4164, "examples guide": 52601, "handle challenging": 68529, "challenging scenarios": 22267, "mistakes leading": 102550, "model interactive": 103890, "interactive task": 79342, "predefined set": 125658, "performing actions": 122390, "formulation enables": 60638, "enables flexible": 48189, "navigation task": 112066, "increasingly crucial": 75388, "making progress": 98799, "massive llms": 99361, "impactful applications": 72751, "challenging llms": 22197, "method abstractive": 100622, "abstractive summaries": 2679, "summaries generating": 158770, "summaries long": 158773, "documents create": 43898, "create challenging": 33177, "setting llms": 149474, "long contexts": 97445, "challenging setup": 22273, "setup llms": 149674, "llms shows": 96581, "shows performance": 150460, "performance gaps": 121567, "gaps llms": 62761, "alpaca llama": 8512, "llama opensource": 93330, "context generated": 30779, "original document": 117328, "drop significantly": 45036, "objectives transformers": 115266, "focuses improving": 60145, "using unsupervised": 174838, "data make": 35341, "applications introduce": 10569, "introduce alternative": 79913, "instead masking": 77888, "original token": 117392, "values results": 175554, "time maintaining": 166443, "tasks align": 161934, "reducing need": 138585, "paragraph document": 119548, "pretraining starting": 127445, "roberta electra": 145144, "answer sentence": 9778, "especially pronounced": 50527, "limited annotation": 92702, "proposed objectives": 132405, "various benchmark": 175831, "dev set": 40744, "quality summaries": 134275, "easily integrated": 45323, "integrated methods": 78539, "structure transformer": 156611, "versatile various": 176577, "reward engineering": 144684, "engineering generating": 48925, "generating answer": 64135, "verify models": 176535, "models true": 109512, "issue particularly": 80942, "particularly pronounced": 120242, "introduce carefully": 79927, "engineering method": 48952, "method reinforcement": 101065, "multiple reward": 111028, "aggregation methods": 6782, "light promising": 92139, "potential rl": 124959, "research proposed": 142004, "evaluation traditional": 51906, "task field": 161393, "effective benchmarks": 45704, "benchmarks assess": 17175, "context traditional": 30942, "scarcity comprehensive": 146487, "diverse benchmarks": 43473, "benchmarks evaluate": 17233, "dataset address": 36100, "leverage existing": 91585, "datasets tailored": 37148, "evaluate language": 50994, "chinese benchmarks": 23606, "encompass wide": 48528, "including contextual": 74475, "questionanswering summarization": 134999, "understanding proposed": 171426, "proposed benchmarks": 132262, "offer comprehensive": 115640, "proprietary model": 132524, "model benchmarks": 103205, "highlight model": 69758, "comparable gpt35": 26578, "evaluated capabilities": 51151, "opensourced benchmark": 116689, "generative query": 65582, "study methods": 157486, "lms query": 97189, "techniques universally": 164047, "settings particular": 149623, "types answer": 170324, "strong negative": 156421, "negative correlation": 112510, "weaker models": 177944, "trend holds": 169699, "set expansion": 149190, "expansion techniques": 53720, "techniques datasets": 163861, "diverse distribution": 43512, "provide extra": 132785, "extra information": 56110, "information potentially": 76630, "improving recall": 74205, "additional noise": 4983, "target dataset": 161051, "received significant": 137315, "spectrum diverse": 154357, "industrial academic": 75845, "domains thanks": 44539, "achieved deep": 3800, "gpt diffusion": 66409, "quantization error": 134407, "models showcased": 109095, "notable success": 114247, "diffusion modelbased": 42241, "noise different": 113977, "error mse": 50309, "robust outofdistribution": 145299, "models instructionfollowing": 106784, "abilities revolutionized": 2011, "tackle various": 160852, "performance heavily": 121619, "following introduce": 60285, "models multiturn": 108262, "multiturn multimodal": 111280, "multimodal instructionresponse": 110670, "conversations language": 31951, "interleaved imagetext": 79494, "imagetext inputs": 72527, "architecture seamlessly": 12214, "integrates image": 78557, "model demo": 103418, "breakthroughs various": 19031, "various industrial": 175975, "help enhance": 69111, "enhance information": 49213, "probability occurrence": 128120, "scheme outperforms": 146794, "improvement terms": 73859, "byte pair": 19577, "pair encoding": 118516, "systems particular": 160519, "rules constructed": 145710, "crosslingual textual": 33672, "pieces text": 122980, "nlp including": 113743, "annotators label": 9632, "span level": 153654, "given piece": 65953, "piece information": 122972, "information new": 76597, "real information": 136237, "set approaches": 149132, "approaches problem": 11866, "including classic": 74452, "entailment methods": 49769, "short human": 149974, "pairs expensive": 118572, "textonly data": 165662, "shallow fusion": 149764, "architecture modifications": 12193, "training schemes": 168720, "provide audio": 132679, "information encoder": 76386, "prediction used": 125884, "used prompts": 173197, "prompts decoder": 131217, "decoderonly model": 37546, "decoder architecture": 37508, "architecture autoregressive": 12123, "autoregressive lm": 14998, "lm simple": 97073, "model leveraging": 103953, "training experimental": 168436, "augmentation training": 14321, "training reduced": 168683, "error rates": 50320, "switchboard callhome": 159785, "conventional encoderdecoder": 31699, "similar parameter": 151284, "training scenarios": 168717, "introductory collegelevel": 80260, "evaluated chatgpt": 51157, "problems given": 128523, "selected set": 147804, "chatgpt solve": 23338, "interpreter able": 79723, "problems tested": 128639, "time major": 166444, "findings observations": 58734, "provide recommendations": 132949, "level multimodal": 91492, "tools efficiently": 167149, "divideandconquer strategy": 43768, "strategy enabling": 156138, "questions particular": 135216, "singlehop subquestions": 151892, "corresponding tools": 32611, "llm answers": 93464, "answers llm": 10048, "singlehop question": 151891, "efficiently finetune": 46781, "llm assess": 93478, "approach conduct": 11070, "evaluation recently": 51819, "complex questionanswering": 27542, "questionanswering datasets": 134984, "solutions indicating": 153034, "layers large": 89672, "inference leveraging": 76045, "approach boosts": 11029, "model efficiency": 103515, "need multiple": 112352, "unlock power": 172036, "layers transformers": 89684, "components original": 27771, "model minimizing": 104088, "storage requirements": 155850, "costs different": 32821, "method demonstrated": 100774, "tune llama": 169938, "llama 13b": 93274, "results superior": 143847, "usage inference": 172456, "really help": 136341, "product openai": 129577, "language based": 83168, "based chatbot": 15695, "field computational": 58139, "learning modeling": 90704, "modeling feature": 105004, "extraction paper": 56335, "focuses potential": 60155, "influence positive": 76215, "compared fields": 26808, "bias issues": 18141, "coding assistance": 25367, "cases code": 20948, "code writing": 25219, "chatgpt perspective": 23187, "perspective computational": 122654, "hypothesis testing": 71629, "testing evaluating": 164711, "evaluating outputs": 51363, "tools basic": 167117, "basic prompting": 16431, "focus narrow": 60028, "responses models": 142854, "support tasks": 159337, "selection prompt": 147883, "template design": 164211, "early development": 45243, "including realworld": 74693, "limited evaluation": 92760, "gpt4 automated": 66920, "active area": 4425, "spite limited": 154556, "human graders": 70842, "carefully trained": 20819, "studied performance": 156938, "student answer": 156801, "reference answer": 138651, "worse pretrained": 179664, "llms specialized": 96653, "applications assist": 10428, "healthcare providers": 69010, "suffer limited": 158440, "information loss": 76567, "powerful natural": 125311, "natural conversation": 111522, "summarization capability": 158808, "role communication": 145469, "needs opportunities": 112482, "opportunities llms": 116866, "asynchronous communication": 13602, "communication based": 26350, "designed interactive": 39901, "convenience accessibility": 31682, "assistants vas": 13437, "information collection": 76316, "built llmbased": 19492, "present important": 126334, "evaluate usability": 51122, "facilitate communication": 56600, "process enrich": 128811, "information collected": 76315, "efforts time": 46937, "work initial": 179041, "exploration llms": 55084, "interpersonal communication": 79607, "models soft": 109170, "rely spurious": 139885, "correlations data": 32559, "following research": 60308, "truth labels": 169886, "data specifically": 35789, "debiasing framework": 37306, "model hard": 103785, "used smooth": 173231, "soft labels": 152734, "new ground": 113210, "robust student": 145327, "improves outofdistribution": 74039, "maintaining satisfactory": 98377, "accuracy augmenting": 3150, "augmenting text": 14401, "models spoken": 109219, "domains represented": 44517, "represented training": 140964, "data expensive": 35011, "existing textual": 53617, "ways generate": 177903, "performance 30": 121113, "respectively second": 142578, "consider setting": 29590, "text available": 164854, "corpora propose": 32242, "generate unpaired": 63770, "experiments examples": 54280, "llama 20": 93276, "improves em": 73996, "14 26": 373, "26 absolute": 859, "respectively chatgpt": 142539, "actually exist": 4488, "using collection": 174062, "evidence form": 52182, "investigate different": 80398, "prompts impact": 131315, "answers evidence": 10018, "evidence chatgpt": 52172, "provides correct": 133127, "half cases": 68316, "insights generated": 77571, "references chatgpt": 138693, "generates reference": 64102, "provided model": 133076, "support claims": 159263, "claims chatgpt": 23835, "suggest model": 158567, "quality information": 134168, "answers unable": 10090, "result files": 143035, "pretraining domainspecific": 127309, "influences large": 76233, "models revealing": 108988, "improves ability": 73968, "method transforming": 101152, "texts raw": 165763, "series tasks": 148954, "related content": 139156, "content method": 30546, "method highly": 100907, "corpora consistently": 32212, "domains biomedicine": 44362, "finance law": 58555, "7b language": 1626, "larger scales": 89248, "benchmarks showing": 17364, "potential develop": 124671, "general model": 62998, "model domains": 103491, "available httpsgithubcommicrosoftlmops": 15132, "tasks modeled": 162813, "learning require": 90919, "train effective": 167765, "data sufficient": 35826, "research addresses": 141562, "paradigm called": 119437, "called zeroshot": 19675, "generation powerful": 64937, "prompted task": 130837, "generate labeled": 63590, "instance llm": 77802, "movie reviews": 110230, "overall sentiment": 118237, "train binary": 167751, "binary sentiment": 18477, "llm teacher": 94046, "teacher smaller": 163620, "opensource python": 116671, "python toolkit": 133856, "generation workflows": 65266, "researchers conducting": 142186, "practitioners apply": 125523, "classification evaluation": 23993, "benchmark existing": 16968, "compared western": 26966, "western languages": 178208, "research rarely": 142032, "rarely paid": 135954, "paid attention": 118507, "attention issue": 13909, "explicit implicit": 54940, "related propositions": 139198, "evaluate chinese": 50926, "classification ability": 23952, "ability existing": 2154, "explore limitations": 55237, "limitations conduct": 92556, "conduct evaluations": 29081, "including rulebased": 74708, "modeling semantic": 105087, "information issues": 76534, "transcription tasks": 168885, "tasks lacking": 162672, "nuanced user": 114802, "processing organic": 129271, "interactions possible": 79258, "mechanisms models": 100047, "capabilities remain": 20155, "remain underexplored": 139941, "data perspective": 35485, "perspective introduce": 122668, "introduce instructionfollowing": 79987, "execute diverse": 52908, "interprets executes": 79744, "instructions requiring": 78345, "pretrained speech": 127163, "options based": 117140, "providing additional": 133261, "privacy safety": 128025, "models speaker": 109192, "analysis automated": 8822, "analysis study": 9182, "qlora efficient": 133952, "debates results": 37297, "light capabilities": 92099, "models automating": 105426, "analysis political": 9065, "political discourse": 123895, "development semantic": 41218, "systems openai": 160502, "tax law": 163563, "law example": 89597, "wrong answer": 179797, "dialogue response": 41509, "components component": 27751, "created knowledge": 33264, "valid invalid": 175294, "responses dialogue": 142767, "responses second": 142915, "twostep procedure": 170283, "predict natural": 125694, "training response": 168699, "conditioned predicted": 28984, "require reinforcement": 141182, "range metrics": 135647, "achieves relative": 4060, "57 time": 1385, "chatgpt know": 23079, "able comprehend": 2479, "chatgpt expected": 22916, "impact society": 72726, "study domainspecific": 157292, "answering capabilities": 9819, "capabilities perform": 20102, "perform systematic": 121056, "abilities answer": 1880, "engineering domains": 48905, "chatgpt participants": 23173, "assessed quality": 13148, "using systematic": 174780, "scheme results": 146796, "chatgpt average": 22730, "significantly decreases": 150971, "knowledge critical": 81847, "critical attitude": 33464, "social data": 152557, "qualitative methods": 134006, "richer data": 144817, "interactive chatbots": 79290, "improving user": 74233, "response quality": 142692, "processing methods": 129193, "rulebased chatbot": 145697, "differences user": 41641, "llmbased dynamic": 94139, "produces significant": 129538, "qualitative measures": 134004, "measures user": 99938, "just examples": 81365, "engineering powerful": 48967, "llms closedsource": 94615, "outperforms opensource": 117809, "similar size": 151306, "like mmlu": 92356, "mmlu cmmlu": 102887, "domains medicine": 44471, "agent behavior": 6419, "agents robots": 6720, "robots increasingly": 145220, "realworld safetycritical": 136491, "safetycritical settings": 145906, "settings vital": 149657, "vital agents": 177401, "reasoning decisions": 136799, "decisions human": 37460, "human counterparts": 70673, "counterparts behavior": 32968, "behavior produced": 16631, "produced uninterpretable": 129511, "uninterpretable models": 171809, "networks propose": 112784, "explanations agents": 54811, "behavior based": 16565, "observations states": 115353, "agnostic underlying": 6820, "model representation": 104455, "compact representation": 26540, "behavior learned": 16610, "produce plausible": 129449, "explanations minimal": 54876, "minimal hallucination": 102329, "hallucination affording": 68350, "affording user": 6358, "interaction pretrained": 79163, "studies empirical": 156986, "generates explanations": 64069, "expert enabling": 54563, "enabling beneficial": 48273, "beneficial interactions": 17407, "interactions clarification": 79209, "clarification counterfactual": 23853, "counterfactual queries": 32951, "ai vs": 7317, "weaknesses modern": 177969, "cognitive systems": 25487, "focusing llms": 60191, "bard llama": 15562, "careful attention": 20773, "substantial differences": 158050, "lacks basic": 83044, "systems built": 160279, "incremental improvement": 75467, "llms viable": 96970, "viable approach": 176646, "approach working": 11667, "practical terms": 125458, "resources does": 142432, "does imply": 43987, "experimenting llms": 54117, "llms form": 95295, "architectures incorporate": 12269, "incorporate ideas": 75019, "regarding llms": 138875, "care taken": 20769, "need social": 112388, "llms quite": 96280, "different case": 41681, "learning teaching": 91062, "exploring potential": 55493, "assistants recent": 13427, "investigate practicality": 80477, "education examining": 45538, "subgoal learning": 157815, "environment compare": 49989, "perception ai": 120794, "betweensubject study": 18078, "study 20": 157127, "solve programming": 153148, "tasks faster": 162395, "terms speed": 164476, "guidelines better": 68246, "design utilize": 39797, "iterative enhancement": 81122, "capabilities processing": 20123, "processing understanding": 129347, "applications educational": 10497, "enhances learning": 49417, "questions creating": 135089, "question crucial": 134853, "step helps": 155644, "students understand": 156907, "promotes deeper": 130351, "related concepts": 139155, "concepts difficult": 28649, "craft effective": 33139, "solution explanations": 152932, "understanding help": 171280, "present evaluate": 126298, "evaluate framework": 50972, "explanations given": 54857, "model explanation": 103606, "quality rating": 134238, "generate higher": 63532, "findings represent": 58770, "systems best": 160272, "capture true": 20690, "preferences users": 126071, "useful approach": 173313, "produce large": 129436, "user needs": 173459, "study real": 157580, "direct feedback": 42382, "label quality": 82696, "data derived": 34901, "deploying language": 39239, "illustrate data": 72146, "good human": 66271, "systematic changes": 160108, "prompts make": 131369, "make difference": 98525, "measure agreement": 99828, "needs highquality": 112476, "gold labels": 66240, "notably better": 114261, "models transformed": 109492, "years machine": 179914, "training increasingly": 168490, "selfsupervised language": 148056, "predictive capabilities": 125945, "powerful generalpurpose": 125277, "provides novel": 133186, "learning example": 90429, "trained primarily": 168044, "instructing model": 77960, "improved incontext": 73691, "achieving impressive": 4189, "techniques zeroshot": 164064, "learning standard": 91020, "prompting experimental": 130928, "improvements settings": 73944, "models improvements": 106693, "improvements observed": 73926, "observed various": 115441, "reasoning gsm8k": 136895, "gsm8k svamp": 68103, "tasks average": 161994, "comprehension tasks": 27934, "investigate factors": 80413, "technique enhances": 163768, "enhances incontext": 49411, "various baseline": 175825, "baseline prompting": 16252, "analysis ai": 8808, "ai especially": 6981, "especially largescale": 50500, "research delves": 141685, "process conducted": 128766, "study identify": 157400, "identify challenges": 71868, "chatgpt qualitative": 23239, "significant connection": 150665, "connection ai": 29488, "research insights": 141857, "understanding data": 171184, "627b tokens": 1453, "tokens extensive": 166811, "analysis designed": 8886, "fundamental characteristics": 61943, "associated employing": 13477, "emerged global": 47356, "vs local": 177603, "performance trained": 122192, "slimpajama dataset": 152239, "best configuration": 17666, "configuration outperforms": 29381, "tokens significant": 166882, "total 80": 167413, "mixed precision": 102722, "crucial global": 33804, "understand verify": 171096, "data analyses": 34621, "analyses data": 8757, "analysis challenging": 8844, "assistants powered": 13422, "instructions code": 78212, "lead incorrect": 89756, "range backgrounds": 135587, "expertise understand": 54631, "develop design": 40773, "verification workflows": 176506, "workflows using": 179388, "explanations code": 54825, "common data": 26131, "data operations": 35444, "qualitative user": 134021, "using probe": 174610, "common patterns": 26171, "additionally highlight": 5076, "opportunities improving": 116856, "improving future": 74146, "document information": 43833, "localization large": 97273, "improving stateoftheart": 74220, "extraction core": 56275, "document processing": 43846, "processing workflows": 129358, "consists extracting": 29964, "extracting key": 56231, "visually rich": 177387, "rich document": 144776, "predefined target": 125660, "target schema": 161099, "llm adoption": 93446, "task absence": 161154, "llms critical": 94763, "quality extraction": 134126, "lack grounding": 82950, "grounding mechanism": 67907, "mechanism ensuring": 99989, "arbitrary llms": 12085, "extraction singular": 56356, "palm 2s": 118654, "enables creation": 48169, "joint modeling": 81254, "potential constructing": 124657, "constructing ai": 30190, "ai spoken": 7230, "closely aligns": 24508, "production process": 129591, "cascade pipeline": 20860, "possess significant": 124350, "capabilities jointly": 19977, "jointly model": 81280, "response wide": 142716, "llmbased approach": 94123, "approach promising": 11465, "building unified": 19459, "achieved amazing": 3785, "especially text": 50552, "size llms": 152028, "llms leads": 95739, "training online": 168614, "online deployment": 116092, "builds multitask": 19466, "1b parameters": 561, "commonalities differences": 26216, "order support": 117243, "support domainspecific": 159281, "domainspecific applications": 44561, "applications specifically": 10696, "architecture underlying": 12237, "proposed optimize": 132408, "adapters small": 4728, "cost experimental": 32673, "method achieve": 100625, "domains design": 44383, "reasoning math": 136979, "methods designing": 101433, "conventional natural": 31718, "cot various": 32916, "various program": 176117, "impact programming": 72716, "language program": 86663, "language extensive": 83309, "superior effectiveness": 159000, "offers greater": 115816, "greater diversity": 67759, "diversity generally": 43729, "generally achieve": 63299, "performance python": 121970, "choice language": 23690, "coding style": 25407, "sequence alignment": 148727, "alignment using": 8256, "alignment involves": 8176, "reference genome": 138656, "process crucial": 128778, "crucial various": 33886, "variant calling": 175618, "tackle challenge": 160799, "efficient search": 46712, "encoding text": 48519, "embeddings distance": 47228, "distance metric": 43121, "captures semantic": 20709, "efforts explored": 46912, "sequences models": 148829, "classification short": 24092, "performance sequence": 122053, "sequence classification": 148729, "does translate": 44037, "successfully align": 158366, "task framework": 161414, "encoder model": 48431, "generates representations": 64103, "introduces contrastive": 80179, "representations facilitating": 140807, "vector store": 176393, "global scale": 66105, "human reference": 71013, "model baselines": 103194, "shows task": 150488, "approach assessing": 11005, "study 13": 157123, "13 diverse": 331, "framework consistent": 61039, "pretrained word": 127250, "represent syntax": 140656, "vectors large": 176409, "models really": 108802, "wordlevel perturbations": 178704, "swift advancement": 159770, "tools variety": 167283, "pursuit better": 133788, "certain prompt": 21408, "rely traditional": 139892, "datasets predefined": 37036, "capabilities contemporary": 19835, "reward models": 144703, "models diagnostic": 105959, "diagnostic tools": 41391, "conversation generated": 31791, "challenging open": 22228, "comprehensive grasp": 28059, "grasp language": 67669, "words letters": 178733, "innovative method": 77177, "robustness llm": 145402, "llm furthermore": 93691, "frequently exhibit": 61619, "exhibit vulnerability": 53120, "language usage": 86866, "sft rlhf": 149747, "enabling language": 48313, "modelling research": 105131, "research different": 141707, "designed empower": 39856, "empower researchers": 47996, "comparisons based": 27076, "class notably": 23887, "notably approach": 114260, "floatingpoint operations": 59855, "existing academic": 53248, "recurrent model": 138346, "model form": 103689, "gpt baseline": 66391, "fewer training": 57874, "tokens achieve": 166773, "decrease test": 37664, "results intersection": 143537, "answering despite": 9834, "llms limitations": 95791, "memorizing world": 100359, "knowledge especially": 81952, "especially long": 50503, "kg knowledge": 81632, "representations textual": 140894, "representations end": 140803, "approach transform": 11615, "approach propose": 11475, "kgqa benchmarks": 81643, "benchmarks proposed": 17338, "advancements pretrained": 5950, "paved way": 120589, "development numerous": 41174, "encoderonly decoderonly": 48472, "decoderonly architectures": 37532, "roberta gpt": 145146, "remains scarcity": 140067, "pairs paper": 118606, "breaks new": 19002, "corpora specifically": 32253, "models subject": 109267, "subject comprehensive": 157829, "answering findings": 9857, "contribution models": 31477, "evidence generative": 52185, "answering current": 9830, "languagebased tasks": 86911, "simple experiments": 151453, "validate generated": 175322, "base experiments": 15599, "experiments questions": 54426, "retrieval pipeline": 144110, "retrieval neural": 144105, "experiment validate": 53920, "granular level": 67475, "prompting llm": 130995, "llm extract": 93666, "list factual": 93124, "make necessary": 98572, "edits using": 45508, "manual assessment": 99026, "random sample": 135539, "sample questions": 145956, "questions reveals": 135268, "process reduce": 128962, "reduce hallucinations": 138431, "model machine": 104052, "text blocks": 164863, "text assigned": 164840, "text output": 165334, "prompts flexible": 131280, "readily adapted": 136170, "finetuning making": 59373, "making generalpurpose": 98742, "way future": 177816, "future scaling": 62378, "chatbots llms": 22623, "storytelling large": 155910, "enhance social": 49291, "interactions introduce": 79235, "engineering transform": 49003, "engineering process": 48971, "challenges seek": 22061, "communication community": 26353, "enabling interaction": 48309, "employed llm": 47891, "reduces hallucination": 138518, "generation plausible": 64930, "unsolved issue": 172201, "study ability": 157129, "correct mistakes": 32400, "model drafts": 103496, "generates final": 64072, "response experiments": 142642, "multimodal comprehension": 110606, "creation paper": 33347, "versatile multimodal": 176567, "frequently overlooked": 61626, "synergy multimodal": 159877, "fundamental principles": 61966, "multimodal space": 110766, "space approach": 153551, "feature extractors": 57408, "interleaved documents": 79492, "image contents": 72216, "joint multimodal": 81256, "multimodal distributions": 110625, "effectively result": 46076, "content comprehensive": 30454, "enhanced learning": 49346, "matching table": 99486, "form large": 60468, "enterprise data": 49786, "data lake": 35281, "lake data": 83074, "limit access": 92481, "limit application": 92483, "retrieval analysis": 143993, "need solutions": 112389, "utilize available": 175025, "data labels": 35276, "enables use": 48255, "use available": 172515, "column names": 25805, "vector embeddings": 176380, "approaches need": 11851, "manual labeling": 99051, "combination simple": 25844, "complex long": 27463, "design generic": 39643, "manual tuning": 99067, "complex relations": 27570, "methods utilize": 101918, "utilize llms": 175065, "llms ways": 96998, "generating additional": 64131, "directly infer": 42554, "results effectiveness": 143369, "methods llm": 101648, "guided inductive": 68228, "knowledge included": 82112, "data acquired": 34588, "interaction real": 79170, "world existing": 179551, "decompose reasoning": 37615, "employing automated": 47913, "automated reasoning": 14600, "reasoning techniques": 137200, "dynamic planning": 45145, "problem decomposition": 128220, "tools tools": 167270, "set problems": 149278, "conversational setting": 31923, "prompt attack": 130370, "safety evaluation": 145857, "llms presents": 96171, "generating harmful": 64235, "applications blackbox": 10435, "attack methods": 13650, "change behaviour": 22337, "behaviour llms": 16740, "induce llms": 75822, "generate unexpected": 63767, "researchers interested": 142226, "evaluate abilities": 50886, "attack paper": 13653, "introduce pipeline": 80084, "pipeline construct": 123043, "construct highquality": 30137, "chinese prompt": 23659, "attack dataset": 13636, "aim induce": 7467, "unexpected outputs": 171617, "widely concerned": 178369, "previous datasets": 127583, "construct prompts": 30154, "prompts considering": 131199, "attacking llms": 13683, "llms responses": 96431, "responses easily": 142772, "popular chinese": 123991, "results prompts": 143693, "prompts significantly": 131472, "rate gpt35": 135993, "framework development": 61083, "hindered complexity": 70139, "overfit specific": 118335, "task discriminative": 161328, "framework generative": 61185, "significant contributions": 150670, "contributions firstly": 31492, "introduces simple": 80217, "high semantic": 69540, "similarity furthermore": 151347, "alignment tasks": 8244, "speaker identification": 153830, "emotion prediction": 47570, "dialogue role": 41512, "models achieves": 105255, "erc datasets": 50250, "datasets extensive": 36853, "analysis parameterefficient": 9050, "empirical guidance": 47708, "practical scenarios": 125445, "blind review": 18700, "understanding ai": 171120, "burgeoning field": 19523, "nlp offers": 113779, "offers opportunity": 115832, "metrics machine": 102106, "proposes paradigm": 132482, "framework hinges": 61200, "approach benchmarking": 11025, "llamabased models": 93402, "represent revolution": 140651, "interact computers": 79052, "allowing construction": 8361, "construction complex": 30208, "statements use": 155053, "use restricted": 172853, "execution study": 52968, "based 13": 15639, "models subjected": 109268, "quantization process": 134417, "koala vicuna": 82638, "vicuna evaluate": 176668, "database containing": 35989, "average 13": 15258, "took approximately": 166926, "approximately 20": 12021, "20 50": 586, "process queries": 128957, "embedding classification": 47156, "scalable costeffective": 146234, "costeffective method": 32764, "method finetune": 100876, "efficiency prompt": 46508, "tuning baselines": 169969, "multilabel text": 110448, "limitations applied": 92539, "multiple tokens": 111072, "tokens generated": 166818, "generated labels": 63894, "permutation invariance": 122493, "sensitive order": 148432, "order provided": 117237, "provided labels": 133068, "confidence scores": 29363, "slightly improves": 152233, "head classification": 68904, "reducing computational": 138556, "industrial application": 75846, "application training": 10391, "data skewed": 35767, "methods domainspecific": 101454, "benchmarking dataset": 17133, "highquality conversational": 70005, "conversational datasets": 31863, "datasets crucial": 36752, "successful development": 158339, "development intelligent": 41140, "systems utilize": 160666, "common strategy": 26198, "strategy creating": 156123, "creating datasets": 33294, "subjects like": 157877, "complex calculations": 27367, "presents impressive": 126588, "tackle limitation": 160833, "limitation introduce": 92504, "design design": 39602, "simulated gpt4": 151659, "subsequent response": 157955, "approach notably": 11404, "notably enhances": 114268, "enhances quality": 49439, "synthetic conversation": 160017, "datasets especially": 36826, "matter expert": 99649, "expert evaluations": 54568, "enhances accuracy": 49398, "accuracy computational": 3184, "responses code": 142742, "share emotions": 149794, "typically learn": 170497, "skills present": 152180, "state machine": 155009, "dialogue track": 41537, "carrying freeform": 20850, "freeform conversations": 61560, "discuss opportunities": 42917, "opportunities leveraging": 116865, "chatbots support": 22641, "present large": 126353, "mixed reality": 102723, "leverages novel": 91759, "ideal training": 71751, "requires synthesis": 141455, "internal dynamics": 79547, "scene understanding": 146746, "rate demonstrate": 135983, "evaluate variety": 51128, "tasks produce": 163009, "diverse objects": 43595, "revealed participants": 144394, "reversal curse": 144458, "trained fail": 167921, "fail learn": 56962, "surprising failure": 159547, "reverse direction": 144461, "basic failure": 16417, "failure logical": 57010, "prevalent pattern": 127518, "robust model": 145289, "correctly answers": 32460, "79 time": 1615, "conflict resolution": 29410, "access effective": 2855, "training feedback": 168449, "expand access": 53679, "counterfactual scenarios": 32955, "scenarios identify": 146617, "learn feedback": 89980, "apply specific": 10874, "users utilize": 173809, "handling variety": 68611, "conflict scenarios": 29411, "generate utterances": 63775, "utterances grounded": 175258, "evaluation 40": 51414, "40 participants": 1175, "participants engaged": 120002, "compared control": 26769, "simulated training": 151670, "potential effectiveness": 124688, "effectiveness language": 46211, "approaches generative": 11789, "widespread availability": 178465, "availability generative": 15051, "intelligence exemplified": 78813, "students previously": 156888, "technology including": 164143, "privacy copyright": 127993, "explore generative": 55212, "ai social": 7218, "perspective examining": 122661, "models inherent": 106766, "biases potential": 18302, "detecting aigenerated": 40393, "aigenerated writing": 7416, "critical examination": 33492, "offer promise": 115689, "ai enhance": 6979, "efficiency addressing": 46422, "issues like": 81025, "like long": 92341, "compromise integrity": 28268, "review process": 144535, "outcomes human": 117453, "human peer": 70950, "review systems": 144555, "related problems": 139195, "attention use": 14002, "social cultural": 152556, "cultural societal": 33967, "epistemic norms": 50147, "appropriate conduct": 11972, "community regard": 26516, "ethical practices": 50825, "discussion emphasizes": 42992, "need critically": 112254, "critically assess": 33577, "benefits downsides": 17462, "ethical regulatory": 50829, "impact conversational": 72631, "generating ideas": 64252, "ideas producing": 71768, "aims enable": 7600, "realtime dialog": 136375, "small local": 152316, "simultaneously enabling": 151747, "content propagation": 30585, "intelligence study": 78902, "people using": 120740, "results participants": 143658, "standard chat": 154809, "active vs": 4444, "finally large": 58488, "promising technology": 130326, "challenges large": 21931, "shot performance": 150058, "application use": 10392, "creating high": 33301, "work probe": 179192, "gpt4 used": 67208, "automating data": 14881, "annotation processes": 9544, "potential save": 124965, "manually labelling": 99103, "replacement human": 140465, "annotators low": 9637, "systems highlighting": 160421, "unique opportunities": 171848, "challenges additionally": 21763, "augmented versions": 14379, "evaluation generated": 51616, "datasets foundation": 36883, "effectiveness healthcare": 46195, "healthcare delivery": 68992, "patient care": 120461, "interactive conversational": 79296, "various services": 176163, "including diagnosis": 74494, "burden healthcare": 19516, "nature healthcare": 112004, "healthcare applications": 68988, "establishing unified": 50714, "metrics proposed": 102129, "generic large": 65657, "demonstrate lack": 38390, "explore stateoftheart": 55295, "stateoftheart llmbased": 155185, "llmbased evaluation": 94140, "metrics specifically": 102147, "models healthcare": 106589, "subsequently present": 157985, "metrics designed": 102044, "thoroughly assess": 166201, "processing abilities": 129108, "conversations finally": 31943, "metrics particular": 102123, "particular emphasis": 120073, "confounding factors": 29433, "target audience": 161042, "prompt techniques": 130689, "involved evaluation": 80705, "improving reasoning": 74201, "llm humans": 93741, "tools traditionally": 167271, "presented human": 126516, "new variants": 113493, "models presented": 108605, "important differences": 73123, "devise strategies": 41333, "induce better": 75817, "implications challenges": 72907, "intelligence cognitive": 78795, "generation conventional": 64538, "overlap generated": 118368, "simple metrics": 151492, "metrics insufficient": 102093, "requires generating": 141381, "questions answerable": 135038, "developing sophisticated": 41026, "metric remains": 101985, "urgent problem": 172420, "novel automatic": 114412, "metric assess": 101953, "assess generated": 13084, "qg tasks": 133949, "results reliable": 143741, "conventional metrics": 31715, "qg model": 133946, "answerable questions": 9807, "tailored exercise": 160917, "experts present": 54672, "planning leveraging": 123291, "various constraints": 175873, "language facilitating": 83312, "facilitating creation": 56704, "suit specific": 158684, "foundational principles": 60849, "plan using": 123222, "design opportunities": 39705, "opportunities ai": 116826, "hci research": 68901, "lived experience": 93260, "experience using": 53850, "chatgpt focus": 22953, "consideration future": 29657, "future implications": 62269, "raise questions": 135457, "global south": 66110, "perspective work": 122696, "technological development": 164069, "hybrid prompt": 71571, "numerical questions": 115004, "task recently": 161683, "attention nlp": 13950, "prompting particularly": 131036, "particularly popular": 120238, "popular research": 124054, "topics field": 167354, "ability retrieval": 2359, "compared fullysupervised": 26812, "dataset fewshot": 36299, "label smoothing": 82701, "generates new": 64087, "linear combinations": 92955, "combinations different": 25854, "different original": 41889, "original samples": 117382, "reduce influence": 138439, "samples prediction": 146053, "additional trainable": 5008, "problem high": 128271, "high resource": 69524, "methods sentence": 101809, "results smaller": 143805, "smaller computational": 152386, "methods text": 101873, "datasets providing": 37056, "ways improve": 177904, "based attention": 15670, "mechanism bert": 99978, "albert roberta": 7749, "personalized support": 122624, "reading articles": 136181, "questions complexity": 135073, "results students": 143820, "challenging align": 22111, "comprehension ability": 27877, "ability leveraging": 2253, "offered large": 115721, "novel personalized": 114631, "including reading": 74692, "prediction question": 125854, "enhance reading": 49271, "comprehension instruction": 27909, "algorithm predict": 7842, "using historical": 174299, "historical data": 70199, "questions appropriate": 135045, "level difficulty": 91462, "prompt patterns": 130627, "generation automated": 64441, "integrating personalized": 78621, "validated experiments": 175344, "broadly aligned": 19229, "multiagent framework": 110322, "diverse llm": 43567, "enhances collaborative": 49401, "collaborative reasoning": 25628, "agents multiple": 6665, "agents improve": 6627, "answers employing": 10016, "discussion prompt": 43003, "prompt consists": 130405, "answers explanations": 10021, "surpassing prior": 159526, "singleagent multiagent": 151879, "incorporates different": 75050, "agents including": 6628, "improvement math": 73819, "math finally": 99527, "analyze individual": 9304, "individual components": 75709, "models critical": 105821, "data commons": 34796, "data open": 35438, "census bureau": 21318, "intergovernmental panel": 79484, "panel climate": 118682, "change ipcc": 22344, "policy makers": 123858, "researchers different": 142200, "different disciplines": 41739, "combining data": 25969, "requires user": 141466, "user data": 173391, "data goal": 35132, "help make": 69141, "make public": 98584, "data accessible": 34574, "understand data": 170994, "use solve": 172881, "processed data": 129042, "widely available": 178367, "distributed network": 43332, "single knowledge": 151816, "graph knowledge": 67539, "questions utilizing": 135317, "generate validate": 63777, "apply user": 10877, "data reveal": 35677, "analyzing user": 9392, "data easy": 34944, "especially emerging": 50466, "forms web": 60607, "data need": 35418, "large dynamic": 87246, "datasets propose": 37048, "solution using": 152987, "relevant concepts": 139580, "descriptions examples": 39454, "generate user": 63774, "quality llmgenerated": 134190, "pipeline uses": 123098, "analysis log": 9007, "uncovering new": 170744, "purposedriven user": 133765, "validation method": 175369, "provides new": 133182, "markup language": 99278, "language mathematical": 83506, "reasoning utilizing": 137226, "llms mathematical": 95868, "reasoning addressing": 136658, "addressing errors": 5443, "present generated": 126325, "crucial challenge": 33772, "integrates chainofthought": 78548, "seamlessly integrate": 147301, "cot external": 32865, "undesired behaviors": 171591, "utilize python": 175083, "rectify errors": 138341, "problems demonstrated": 128480, "combining cot": 25968, "llms write": 97027, "language perform": 86463, "advanced mathematical": 5771, "commonsense reasoners": 26300, "models presents": 108607, "challenges specific": 22068, "potentially compromise": 125088, "compromise models": 28270, "furthermore stateoftheart": 62162, "tailored tasks": 160944, "set novel": 149255, "evidence generation": 52184, "generation chainofthought": 64483, "knowledge diverse": 81896, "demonstrate better": 38257, "50 time": 1309, "achieved improvement": 3835, "respectively furthermore": 142559, "furthermore generated": 62084, "generated chainofthought": 63809, "improve interpretability": 73493, "interpretability model": 79647, "model surpassing": 104702, "prompts explore": 131267, "potentials pitfalls": 125153, "important breakthroughs": 73099, "evaluated various": 51217, "inference text": 76118, "analysis zeroshot": 9242, "chatgpt llama2": 23107, "llama2 claude2": 93355, "stateoftheart finetuned": 155138, "resources pose": 142464, "pose challenges": 124150, "revealed specific": 144397, "models distillation": 106002, "reasoning prior": 137046, "llms tailored": 96760, "022 billion": 21, "distilled data": 43174, "data achieves": 34585, "traditionally finetuned": 167723, "like gpt35turbo": 92294, "scientific tabletotext": 146992, "generation dataset": 64555, "framework case": 61000, "refers process": 138724, "process finding": 128836, "costeffective means": 32763, "competitive advantage": 27158, "problem formulations": 128261, "expertise needed": 54625, "developing llm": 41008, "token limitations": 166720, "requirement training": 141271, "llm scratch": 93982, "paper adopt": 118710, "limitations introduce": 92605, "limits llms": 92921, "design performance": 39715, "assessing accuracy": 13166, "accuracy quality": 3351, "quality problem": 134227, "approach synthesize": 11587, "large problem": 89024, "semantic communications": 148117, "design approaches": 39546, "semantics previous": 148316, "improve semantic": 73625, "semantic extraction": 148143, "levels considering": 91531, "focuses integrating": 60146, "effectiveness semantic": 46289, "levels using": 91560, "universal knowledge": 171905, "models balance": 105444, "balance performance": 15503, "complexity comparing": 27662, "approaches employ": 11740, "issues field": 81004, "field need": 58220, "textimage retrieval": 165639, "reference resolution": 138670, "discourse processing": 42715, "finetuning causal": 59188, "causal large": 21200, "definite descriptions": 37958, "linguistic context": 93018, "vlm identify": 177444, "descriptions zeroshot": 39519, "descriptions based": 39438, "context windows": 30970, "userdefined criteria": 173543, "generative applications": 65372, "llms refine": 96360, "prototypes products": 132604, "prompts evaluating": 131255, "manually evaluating": 99095, "subjective criteria": 157852, "refining prompts": 138786, "criteria natural": 33435, "systems llmbased": 160471, "llmbased evaluator": 94143, "based evaluators": 15782, "study n12": 157499, "reach satisfactory": 136117, "augment model": 14252, "evaluation alignment": 51428, "developers experiences": 40945, "software engineers": 152815, "like stack": 92408, "rise generative": 144894, "adopted ai": 5590, "recognizing potential": 138176, "developers integrate": 40948, "realworld coding": 136421, "coding experiences": 25384, "chatgpt offers": 23157, "fast clear": 57263, "clear comprehensive": 24261, "comprehensive responses": 28108, "chatgpts reliability": 23506, "overly confident": 118391, "answering yesno": 9990, "understand work": 171098, "set 1000": 149115, "contexts extracted": 31017, "reviews stateoftheart": 144593, "chatgpt better": 22741, "texts performance": 165755, "gains achieved": 62509, "building robust": 19447, "opensource toolkit": 116682, "pretraining speech": 127443, "speech models": 154433, "volumes data": 177543, "data achieved": 34583, "success openai": 158275, "openai whisper": 116385, "multilingual multitask": 110519, "data generalizes": 35092, "various speech": 176181, "recognition translation": 138146, "translation benchmarks": 169445, "training publicly": 168671, "researchers improve": 142221, "efficiency robustness": 46525, "bias work": 18220, "efficient train": 46730, "training logs": 168557, "promote open": 130342, "design guidelines": 39645, "respond queries": 142595, "leading interactions": 89833, "area large": 12326, "textbased interactions": 165592, "llms enrich": 95081, "using chatgptpowered": 174047, "scenarios medical": 146647, "patterns vary": 120575, "vary tasks": 176275, "versatility notably": 176591, "notably llms": 114284, "intent recognition": 79020, "potential harnessing": 124758, "llms resilient": 96424, "interactions provide": 79263, "provide design": 132741, "tailoring llms": 160953, "shift computer": 149903, "abilities mllms": 1962, "perception understanding": 120828, "understanding address": 171114, "holistic benchmark": 70294, "visual description": 177151, "visual quality": 177260, "ability construct": 2111, "images equipped": 72418, "measure correctness": 99835, "ability mllms": 2280, "outputs mllms": 118088, "ability align": 2061, "human opinion": 70941, "enables mllms": 48219, "mllms predict": 102842, "scores evaluate": 147137, "mllms possess": 102841, "skills skills": 152190, "indicating need": 75658, "hope benchmark": 70347, "benchmark encourage": 16942, "potentials mllms": 125152, "communication llms": 26386, "llms close": 94613, "close paper": 24449, "paper rethink": 119306, "users communicate": 173596, "present architecture": 126226, "architecture achieve": 12115, "achieve llmbased": 3682, "discuss research": 42941, "interesting directions": 79392, "advancements widely": 5976, "domains unfortunately": 44544, "concern llms": 28743, "focused aligning": 60082, "inappropriate content": 74286, "jailbreaking prompts": 81190, "robust alignment": 145238, "expensive retraining": 53807, "original llm": 117351, "experiments opensource": 54386, "reducing attack": 138543, "nearly 100": 112106, "demonstrated large": 38717, "llm recent": 93945, "integrate ai": 78479, "agents enhance": 6596, "paper explored": 118924, "agents specifically": 6737, "advantages llmbased": 6143, "agents handling": 6622, "knowledge storage": 82421, "analysis key": 8991, "including planning": 74663, "planning memory": 123295, "memory tool": 100469, "memory paper": 100441, "paper introduced": 119005, "classification scheme": 24077, "methods providing": 101745, "providing fresh": 133300, "fresh perspective": 61633, "design ai": 39540, "firmly believe": 59642, "indepth research": 75547, "research understanding": 142133, "solid foundation": 152879, "field hope": 58174, "researchers field": 142217, "mixed methods": 102721, "humanities social": 71209, "capacities large": 20486, "present unprecedented": 126492, "unprecedented opportunity": 172084, "qualitative analytic": 133984, "analytic tasks": 9248, "tasks previously": 162995, "framework harness": 61192, "transparency replicability": 169587, "studies showcased": 157077, "lexical semantic": 91994, "semantic change": 148109, "change detection": 22340, "political stance": 123905, "stance text": 154789, "network inference": 112659, "augmentation multimodal": 14300, "focus english": 59974, "emerging llm": 47521, "smaller languages": 152401, "requiring expert": 141481, "agreement rate": 6831, "statistical modeling": 155503, "previously requiring": 127743, "complex computational": 27378, "importantly approach": 73218, "intended replace": 78979, "ability pose": 2319, "document question": 43847, "models consist": 105753, "images large": 72440, "llm helps": 93737, "questions image": 135159, "effectiveness instructiontuned": 46205, "remarkable adaptability": 140133, "adaptability new": 4579, "tasks end": 162299, "end explore": 48660, "explore following": 55208, "aspects work": 12982, "approach document": 11130, "directly instructiontuned": 42558, "instructiontuned llm": 78396, "thorough quantitative": 166193, "analysis feasibility": 8930, "feasibility approach": 57348, "encompasses diverse": 48536, "datasets utilizing": 37185, "llms varying": 96965, "varying scales": 176302, "llm yields": 94103, "framework serve": 61402, "guiding resource": 68283, "selecting appropriate": 147809, "datasets future": 36887, "research endeavors": 141753, "layout image": 89703, "systems deep": 160325, "applied problems": 10797, "job scheduling": 81236, "adaptation deep": 4607, "understanding decisionmaking": 171187, "decisionmaking deep": 37408, "challenging learned": 22192, "service developers": 149060, "perform debugging": 120918, "relevant legal": 139615, "legal frameworks": 91298, "build trust": 19356, "naturallanguage explanations": 111969, "explanations compared": 54827, "include better": 74326, "increased user": 75277, "user acceptance": 173370, "acceptance trust": 2841, "dedicated prompt": 37681, "compared earlier": 26790, "explanations using": 54909, "using adaptive": 173960, "manipulation language": 98951, "store vast": 155863, "knowledge logical": 82207, "remains questionable": 140062, "ability manipulate": 2271, "attribute classification": 14075, "observe pretrained": 115388, "excel knowledge": 52771, "simple classification": 151415, "thoughts cots": 166244, "inference perform": 76068, "knowledge search": 82393, "inherent weaknesses": 76980, "weaknesses language": 177966, "manipulate knowledge": 98927, "instruct finetuning": 77928, "audio speech": 14194, "include speech": 74339, "recognition understanding": 138147, "audio events": 14174, "build machine": 19330, "universal audio": 171895, "perception module": 120815, "understand spoken": 171080, "design challenges": 39568, "challenges llm": 21945, "interfaces large": 79461, "comprehend complex": 27843, "complex ambiguous": 27355, "limited grasp": 92772, "executing actions": 52928, "interaction models": 79146, "execution evaluation": 52952, "evaluation address": 51423, "clear intentions": 24271, "knowing llms": 81716, "instruct llm": 77931, "llm task": 94043, "llms output": 96017, "finally make": 58491, "size hidden": 152002, "dimension number": 42318, "accelerating llm": 2796, "tensor parallelism": 164356, "pipeline parallelism": 123080, "model depth": 103435, "application needs": 10356, "sequence llm": 148767, "sequence parallelism": 148778, "works sequence": 179492, "limiting scalability": 92899, "effective methodology": 45811, "data sequence": 35732, "collective communication": 25765, "communication analysis": 26348, "length increases": 91366, "furthermore experimental": 62069, "length existing": 91362, "existing method": 53435, "sota baseline": 153340, "llms exploded": 95198, "exploded popularity": 54995, "array natural": 12522, "received recent": 137314, "little research": 93247, "investigating llms": 80607, "perform content": 120911, "evaluate suite": 51111, "prompting gpt35": 130950, "gpt35 effective": 66802, "accuracy 64": 3114, "gpt4 gemini": 67020, "gemini pro": 62864, "pro llama": 128068, "outperform currently": 117581, "currently widespread": 34345, "toxicity classifiers": 167471, "classifiers recent": 24196, "potential performance": 124901, "performance plateau": 121911, "tasks conclude": 162104, "conclude outlining": 28876, "work studying": 179321, "studying llms": 157720, "llms content": 94717, "chatgpt performance": 23180, "standardized testing": 154910, "solving capabilities": 153196, "prospective applications": 132539, "standardized test": 154908, "test preparation": 164596, "chatgpt academic": 22669, "performs various": 122466, "impacts accuracy": 72756, "accuracy specifically": 3394, "perform answering": 120866, "100 randomly": 155, "questions collected": 135068, "chatgpts accuracy": 23483, "accuracy results": 3380, "accuracy applying": 3147, "prompts original": 131393, "questions chatgpt": 135061, "modified prompts": 109878, "prompts compared": 131194, "prompt modifications": 130608, "aligning large": 8095, "rlhf large": 145091, "models lmm": 108049, "hallucination generating": 68378, "generating textual": 64362, "information context": 76329, "task visionlanguage": 161809, "simulated human": 151662, "rewards propose": 144723, "new alignment": 113055, "information image": 76500, "multichoice options": 110358, "reward hacking": 144687, "performance enhance": 121456, "data vision": 35951, "vision instruction": 176927, "previously available": 127712, "pairs improve": 118587, "improve general": 73469, "scenarios develop": 146578, "special focus": 153852, "trained rlhf": 168064, "rlhf approach": 145089, "best methods": 17701, "learning factual": 90451, "llms aims": 94381, "need parameter": 112360, "performance icl": 121641, "icl core": 71665, "learned llms": 90108, "knowledge derived": 81866, "examples knowledge": 52623, "output generation": 117939, "examples high": 52605, "knowledge relevance": 82354, "results based": 143188, "based prior": 16030, "gptstyle models": 67324, "models promptlearning": 108697, "paradigm efficient": 119444, "domainspecific text": 44633, "faces challenge": 56567, "challenge scarce": 21735, "parameters offer": 119819, "classification specifically": 24099, "promptbased model": 130789, "finetuning possible": 59448, "220m parameters": 778, "approximately 75": 12027, "75 accuracy": 1574, "accuracy limited": 3291, "data 15": 34560, "shows great": 150431, "promptlearning based": 131136, "sampling ensemble": 146093, "promptlearning pipeline": 131137, "accuracy exceeding": 3226, "optimized prompt": 117090, "underscore promise": 170927, "ensemble strategies": 49644, "strategies fewshot": 156001, "importance prompt": 73050, "platform engaging": 123385, "especially generative": 50480, "use help": 172666, "popularity generative": 124089, "development phases": 41182, "marginalized group": 99200, "inaccurate predictions": 74268, "algorithms systems": 7977, "systems various": 160668, "workshop paper": 179522, "building generative": 19418, "main contributors": 98235, "cultural backgrounds": 33947, "approach decisionmaking": 11092, "modeling reasoning": 105078, "models tutorial": 109520, "devices users": 41319, "computing enabled": 28540, "enabled wide": 48151, "innovative applications": 77156, "contexts make": 31033, "actions accordingly": 4360, "intelligence technologies": 78906, "representations context": 140783, "model contexts": 103367, "perform context": 120912, "prompts autonomous": 131169, "works related": 179488, "field computing": 58145, "paradigm users": 119526, "reading data": 136194, "given text": 66030, "plan actions": 123205, "planning trip": 123333, "contextaware personalized": 30981, "errors language": 50369, "behavior transformerbased": 16657, "incorrect text": 75178, "propose modeling": 131933, "satisfaction problems": 146154, "framework investigate": 61242, "factual constraints": 56863, "constraints specifically": 30112, "discover strong": 42740, "llama2 family": 93360, "scales 7b": 146362, "13b 70b": 361, "patterns predict": 120556, "identification approach": 71784, "approach findings": 11234, "demonstrate using": 38602, "mechanistic understanding": 100064, "factuality llms": 56916, "modeling based": 104972, "based lowrank": 15935, "shown superior": 150389, "limit practical": 92491, "lowrank decomposition": 97895, "parameters inserted": 119778, "interfaces powered": 79464, "interfaces support": 79468, "transparency verifiability": 169592, "editing llm": 45469, "llm present": 93901, "document edited": 43824, "edited llms": 45440, "introduce factual": 79964, "information help": 76489, "search allow": 147315, "studies confirm": 156967, "confirm effectiveness": 29393, "llmbased chat": 94130, "chat interfaces": 22537, "efficient editing": 46600, "improved user": 73731, "ability adapt": 2054, "training align": 168155, "embeddings methods": 47256, "methods computationally": 101390, "expensive requires": 53806, "method combining": 100741, "solve vqa": 153168, "language represent": 86702, "images llm": 72444, "llm understand": 94068, "different decoding": 41723, "strategies generating": 156005, "textual representation": 165944, "representation image": 140695, "image evaluate": 72246, "solving nlp": 153231, "developments large": 41284, "promise enhancing": 130173, "enhancing capabilities": 49460, "nlp despite": 113722, "research dedicated": 141681, "area present": 12339, "present unique": 126491, "questions spanning": 135281, "spanning various": 153686, "nlp topics": 113925, "final exams": 58379, "includes questions": 74385, "including multiple": 74627, "answer math": 9734, "palm2 llama2": 118668, "strategies like": 156029, "cot treeofthought": 32914, "shortcomings llms": 150023, "llms scientific": 96489, "reasoning notably": 137005, "results generative": 143434, "generative speech": 65590, "recognition error": 138062, "correction large": 32439, "rescoring error": 141552, "focus instruction": 60003, "combining prompting": 25995, "achieve error": 3633, "generalization power": 63214, "llms deep": 94792, "deep model": 37793, "model fusion": 103702, "emerging technique": 47539, "predictions multiple": 125922, "biases errors": 18261, "performance deep": 121362, "models faces": 106292, "attention potential": 13965, "potential solve": 124993, "lack complete": 82901, "complete detailed": 27276, "detailed survey": 40322, "survey research": 159684, "fusion method": 62200, "survey summarize": 159700, "summarize recent": 158911, "specifically categorize": 154147, "categorize existing": 21138, "fusion methods": 62201, "better initialization": 17913, "units neural": 171887, "create better": 33176, "models obtain": 108328, "obtain accurate": 115460, "learning combines": 90304, "technique improving": 163780, "accuracy robustness": 3381, "final model": 58383, "addition analyze": 4840, "analyze challenges": 9273, "fusion propose": 62204, "directions model": 42490, "understanding correlation": 171176, "application methods": 10351, "noninvasive brain": 114083, "brain recordings": 18946, "important scientific": 73195, "brain signals": 18947, "quality semantic": 134266, "visual images": 177183, "desired language": 40049, "language semantic": 86717, "semantic direction": 148137, "evaluate contributions": 50937, "visual properties": 177259, "semantics experiments": 148296, "word sequences": 178682, "information essential": 76398, "essential details": 50597, "identifying risks": 72028, "chatgpt plugins": 23191, "rich set": 144803, "set capabilities": 149149, "capabilities amplify": 19781, "leaking private": 89946, "financial losses": 58572, "laborintensive necessitating": 82858, "agents complex": 6568, "risks address": 144970, "tool execution": 166973, "tools scenarios": 167250, "automatic safety": 14731, "safety evaluator": 145858, "risks test": 145025, "evaluator human": 52047, "initial benchmark": 77014, "potentially severe": 125134, "severe outcomes": 149714, "time according": 166342, "statements despite": 155043, "detector requires": 40668, "highly accurate": 69888, "setting prompting": 149494, "llm architectures": 93475, "reallife scenarios": 136336, "detection zeroshot": 40660, "fewshot video": 58084, "answering multimodal": 9908, "driven largescale": 44987, "challenges combining": 21798, "combining multimodal": 25990, "frozen experiments": 61656, "experiments video": 54538, "performance parameter": 121896, "performance planning": 121910, "particularly questionanswering": 120244, "context dialogue": 30731, "single turn": 151872, "llms conceptual": 94687, "tools introduce": 167187, "process distinct": 128794, "distinct roles": 43250, "context user": 30951, "user emotions": 173402, "planner generates": 123230, "generates executable": 64067, "executable plans": 52898, "plans different": 123353, "response structured": 142702, "structured approach": 156624, "enhances explainability": 49408, "explainability controllability": 54723, "handle realworld": 68564, "realworld dialogue": 136442, "dialogue interactions": 41484, "complicated tool": 27722, "tool learning": 167003, "connecting human": 29479, "chain api": 21449, "api recommendation": 10168, "recommendation methods": 138213, "keyword matching": 81615, "question templates": 134945, "recommendation leverages": 138207, "utilize llm": 175064, "clarification questions": 23855, "questions options": 135209, "api knowledge": 10160, "entity relationships": 49935, "process approach": 128740, "performance resulting": 122024, "respectively approach": 142534, "way bridge": 177778, "gap large": 62673, "llms acquired": 94329, "domains study": 44532, "dive deep": 43438, "understanding alignment": 171121, "actual performance": 4484, "exploit models": 55012, "extract llms": 56146, "confidence responses": 29359, "responses findings": 142794, "instances models": 77839, "high confidence": 69425, "confidence answer": 29343, "low confidence": 97741, "underscore need": 170920, "need deeper": 112261, "llms selfassessment": 96500, "counterfactual explanations": 32946, "explanations general": 54854, "general user": 63063, "systems machine": 160474, "interpretability address": 79634, "suggestions users": 158649, "users addition": 173577, "ml systems": 102793, "preferences particular": 126061, "need customized": 112256, "models maintaining": 108123, "models change": 105602, "validated user": 175347, "preferences group": 126043, "conditions lead": 29010, "generate robust": 63692, "systems compared": 160295, "demonstrated humanlevel": 38681, "performance vast": 122283, "vast spectrum": 176354, "especially increasingly": 50491, "education study": 45592, "explore implications": 55219, "subsequently generate": 157979, "data llm": 35324, "manipulation techniques": 98962, "brought great": 19242, "time steps": 166512, "steps proposed": 155764, "control conditions": 31529, "paradigm achieve": 119426, "flexible general": 59807, "general efficient": 62946, "evaluations results": 52025, "results superiority": 143849, "proving effectiveness": 133405, "effectiveness versatility": 46319, "versatility approach": 176579, "training stage": 168761, "stage does": 154729, "help llms": 69140, "success code": 158221, "llms naturally": 95927, "introducing code": 80228, "reasoning end": 136825, "different stages": 42008, "introduce code": 79933, "llms comprehensively": 94676, "fairly evaluated": 57048, "text significantly": 165461, "endows llms": 48717, "strategy code": 156114, "learn reasoning": 90040, "training insights": 168502, "deepen understanding": 37835, "llms regarding": 96365, "scientific question": 146984, "answering legal": 9894, "legal support": 91319, "framework reinforcement": 61380, "rl research": 145077, "research application": 141587, "algorithm implementations": 7816, "toolkit developing": 167083, "developing algorithms": 40977, "perspective providing": 122686, "providing large": 133326, "algorithm development": 7795, "framework build": 60992, "build complete": 19309, "evaluation deployment": 51540, "hub large": 70495, "model llmempowered": 104038, "engineering practice": 48968, "llms pressing": 96174, "need comprehensive": 112247, "llm leaderboards": 93799, "settings prompts": 149631, "prompts inadvertently": 131323, "earlier models": 45234, "models offers": 108334, "including technical": 74751, "details like": 40334, "like adding": 92193, "adding code": 4823, "aspects llm": 12952, "alignment tax": 8245, "analysis sheds": 9161, "questions aiming": 135033, "aiming improve": 7555, "improve transparency": 73648, "stress testing": 156284, "models report": 108928, "effectiveness chainofthought": 46139, "prompting improving": 130959, "improving multistep": 74173, "impact types": 72736, "correct values": 32424, "predicting correct": 125737, "answers incorrect": 10038, "value based": 175469, "deepens understanding": 37839, "questions regarding": 135247, "regarding capability": 138861, "identification chatgpt": 71787, "chatgpt misuse": 23127, "chatgpt complete": 22792, "complete programming": 27281, "programming task": 129879, "generating solution": 64337, "address new": 5325, "chatgpt terms": 23386, "completion time": 27345, "manually identify": 99098, "chatgpt student": 23358, "perspective chatgpt": 122653, "chatgpt survey": 23373, "experiment asked": 53880, "asked complete": 12868, "divided groups": 43771, "complete test": 27292, "code highly": 24938, "uses complex": 173835, "structures like": 156705, "based survey": 16122, "survey results": 159687, "chatgpt beneficial": 22739, "needed validate": 112459, "presented chatgpt": 126511, "multimodal analysis": 110586, "comprehension large": 27911, "prediction previous": 125844, "employ deep": 47822, "visual text": 177321, "proficient solving": 129690, "solving visual": 153261, "appears particularly": 10241, "particularly challenging": 120155, "provides experimental": 133146, "experimental insights": 53951, "improvement multimodal": 73824, "provide assistance": 132678, "experiment design": 53890, "introduction generative": 80252, "gpt particularly": 66473, "particularly gpt4": 120200, "offers solution": 115849, "employs gpt": 47961, "models robots": 109014, "analyzed 500": 9347, "500 articles": 1314, "articles identified": 12612, "produced accurate": 129484, "mean square": 99754, "square error": 154645, "error rmse": 50324, "validation potential": 175373, "prompt evolution": 130494, "prompts given": 131294, "given domain": 65876, "just improving": 81373, "planandsolve prompting": 123224, "classification benchmarking": 23962, "benchmarking abilities": 17127, "rdf knowledge": 136101, "graph creation": 67511, "comprehension llms": 27916, "llms advancing": 94365, "rapid pace": 135895, "improvements natural": 73921, "ability work": 2420, "work formal": 178997, "languages representing": 87120, "representing data": 140970, "specifically realm": 154277, "remains underinvestigated": 140099, "llms created": 94756, "tasks probe": 163005, "probe ability": 128136, "ability parse": 2305, "parse understand": 119944, "understand analyze": 170982, "analyze create": 9281, "tasks embodying": 162278, "complexity able": 27655, "able scale": 2556, "integrated automated": 78515, "claude 20": 24237, "analysis offers": 9040, "offers indepth": 115817, "strengths shortcomings": 156268, "llms relation": 96371, "engineering workflows": 49005, "output formatting": 117936, "constraints crucial": 30069, "crucial requirement": 33843, "guide large": 68184, "model decoding": 103410, "training recent": 168677, "aim augment": 7428, "value function": 175484, "work domains": 178918, "domains pretrained": 44501, "llm does": 93602, "serve effective": 148973, "domains require": 44520, "require longhorizon": 141150, "longhorizon planning": 97555, "planning address": 123242, "llms termed": 96785, "learned value": 90139, "function guide": 61838, "llm decoding": 93577, "distinguishes key": 43294, "llm empirical": 93617, "models coding": 105664, "selfconsistency large": 147952, "solutions hold": 153030, "hold paper": 70249, "propose multiperspective": 131940, "multiple perspectives": 110996, "diverse outputs": 43598, "information graph": 76485, "optimal choice": 116935, "including humaneval": 74558, "llms behavior": 94479, "llms decision": 94785, "retrievalaugmented generation": 144169, "target scenario": 161098, "tasks distinguish": 162244, "distinguish llms": 43283, "llms behave": 94478, "corresponding metrics": 32591, "reveal varying": 144383, "role play": 145522, "styles different": 157781, "present distinct": 126287, "optimize models": 117073, "rag models": 135436, "according quality": 3049, "informative context": 76869, "explorations gpt4vision": 55115, "models lmms": 108050, "understanding achieve": 171109, "achieve stronger": 3768, "model gpt4vision": 103769, "gpt4vs capabilities": 67269, "approach exploring": 11213, "samples spanning": 146067, "tasks observations": 162869, "unprecedented ability": 172077, "capabilities make": 20046, "unique capability": 171824, "visual markers": 177227, "new humancomputer": 113219, "interaction methods": 79144, "visual referring": 177296, "referring prompting": 138713, "hope preliminary": 70370, "research nextgeneration": 141932, "nextgeneration multimodal": 113605, "solve realworld": 153153, "understanding multimodal": 171357, "innovative work": 77195, "modeling multimodal": 105053, "common paradigm": 26170, "various heuristics": 175968, "problem learning": 128307, "large uncurated": 89093, "dataset key": 36375, "distinct performance": 43238, "yield worse": 179988, "model low": 104047, "accuracy trained": 3410, "small highquality": 152296, "stateoftheart imagetext": 155158, "datasets specifically": 37129, "enables train": 48253, "train stateoftheart": 167834, "models compute": 105721, "dataset achieves": 36092, "transfer accuracy": 168895, "order facilitate": 117198, "research dataset": 141679, "dataset design": 36232, "design release": 39742, "feedback analysis": 57643, "analysis survey": 9190, "goals finding": 66218, "timeconsuming manual": 166551, "processing textual": 129340, "provide flexible": 132793, "flexible means": 59814, "achieving goals": 4177, "specialized machine": 153899, "sequences natural": 148830, "multilabel multiclass": 110446, "performed llm": 122375, "llm apply": 93471, "dataset 2500": 36082, "approach requiring": 11512, "examples labeled": 52624, "tasks reflecting": 163107, "education settings": 45589, "settings labeled": 149598, "applying effective": 10887, "gpt4 enabling": 66983, "typical goals": 170449, "llms chainofthought": 94558, "reasoning providing": 137079, "providing insight": 133319, "practice study": 125499, "study features": 157360, "features development": 57474, "development versatile": 41258, "set classification": 149153, "suitable various": 158711, "online hybrid": 116105, "insights survey": 77655, "survey text": 159704, "efficient streaming": 46719, "urgently needed": 172423, "decoding stage": 37600, "extensive memory": 55925, "texts training": 165793, "approach fails": 11225, "text length": 165276, "cache size": 19590, "attention sink": 13988, "initial tokens": 77061, "recover performance": 138323, "semantically important": 148269, "trained finite": 167924, "length attention": 91349, "lengths finetuning": 91400, "llama2 mpt": 93368, "mpt falcon": 110251, "addition discover": 4851, "models agent": 105312, "reality large": 136316, "handful examples": 68520, "execution environments": 52951, "llms virtual": 96976, "reality vr": 136320, "efficiency online": 46495, "online interactions": 116109, "interactions complex": 79212, "complex manipulation": 27467, "3d environments": 1128, "environments work": 50121, "signals textual": 150539, "textual commands": 165882, "entity extraction": 49889, "execution tasks": 52969, "environment feedback": 49998, "synthetic instruction": 160051, "optimizations learning": 117057, "generation facilitated": 64651, "generation rapidly": 65013, "growing research": 68048, "direction existing": 42434, "generate personalized": 63642, "generates personalized": 64092, "prompts sent": 131466, "sent llm": 148476, "takes initial": 160982, "initial prompts": 77046, "framework personalized": 61345, "critical components": 33472, "personal context": 122555, "context prompt": 30884, "chains supervised": 21566, "learning sl": 90999, "sl reinforcement": 152206, "rl rl": 145078, "outperform original": 117614, "original prompts": 117375, "prompts prompts": 131425, "optimized supervised": 117094, "learning reinforcement": 90907, "shows human": 150436, "human readable": 71001, "able guide": 2518, "limited resource": 92837, "learning train": 91088, "train prompt": 167813, "uncovering latent": 170743, "selfalignment large": 147928, "model aligned": 103103, "using handful": 174291, "general alignment": 62913, "discovering effective": 42752, "performance target": 122151, "target domains": 161061, "domains preliminary": 44499, "marginal effect": 99195, "expert domains": 54562, "domains performance": 44495, "performance remedy": 122013, "data labeled": 35270, "selfalignment process": 147930, "augmented retrieval": 14370, "retrieval reduce": 144126, "reduce hallucination": 138430, "offers effective": 115796, "llm different": 93596, "results biomedical": 143201, "outperforms base": 117707, "surpasses larger": 159487, "popular models": 124027, "efficiency terms": 46541, "intrinsic motivation": 79896, "intelligence feedback": 78816, "feedback exploring": 57679, "ones actions": 115985, "immensely challenging": 72606, "method interface": 100936, "based idea": 15862, "grounding llms": 67906, "interact environment": 79054, "preferences llm": 126053, "intrinsic reward": 79899, "agents reinforcement": 6709, "learning evaluate": 90426, "behavior challenging": 16570, "challenging openended": 22230, "algorithm directly": 7796, "directly trained": 42601, "environment reward": 50028, "demonstrations finally": 39005, "investigating efficacy": 80594, "assessment methods": 13247, "language analysis": 83149, "data allowing": 34615, "allowing identify": 8375, "words llms": 178736, "textrelated tasks": 165671, "challenges tasks": 22079, "tasks associated": 161981, "associated reasoning": 13504, "reasoning address": 136657, "chain thoughtcot": 21470, "proposed means": 132332, "llms proficiency": 96210, "proficiency complex": 129648, "solving math": 153223, "based logical": 15933, "argumentative reasoning": 12439, "primary aim": 127800, "aim research": 7489, "reflective essays": 138816, "medical students": 100222, "assessment specifically": 13263, "skills using": 152194, "contributions introduce": 31498, "essays dataset": 50572, "dataset previously": 36464, "previously trained": 127748, "use cot": 172568, "models carry": 105575, "models llama7b": 107020, "performs effectively": 122441, "superior model": 159015, "kappa score": 81411, "selected models": 147801, "pushing boundaries": 133808, "boundaries complex": 18907, "llms evolving": 95115, "unprecedented pace": 172085, "exhibited considerable": 53127, "realm natural": 136360, "typical nlp": 170453, "push boundary": 133795, "strategies transform": 156083, "transform llms": 169047, "work enhancing": 178934, "factuality faithfulness": 56909, "reliability reasoning": 139700, "taskagnostic approaches": 161823, "think outside": 166136, "outside box": 118146, "providing better": 133267, "better solutions": 18029, "orchestrating multiple": 117164, "substantially better": 158112, "results indepth": 143496, "method facilitating": 100867, "facilitating collaboration": 56700, "llms promoting": 96229, "relations language": 139297, "applications need": 10618, "concepts entities": 28650, "entities related": 49867, "kg large": 81633, "llm address": 93444, "alternative propose": 8571, "propose extract": 131818, "finetuned purpose": 59096, "purpose using": 133760, "captures relational": 20708, "finegrained way": 58902, "capable modelling": 20451, "training instance": 168504, "entities model": 49858, "trained lexical": 167984, "relations concepts": 139287, "concepts observed": 28678, "models orders": 108373, "comprehensive approach": 27959, "addressing catastrophic": 5429, "predeployment risk": 125665, "deployed models": 39215, "developers use": 40962, "behaviors use": 16727, "deployment provide": 39297, "framework ai": 60937, "control model": 31564, "downstream users": 44851, "approach use": 11628, "work applies": 178802, "api provide": 10164, "vector graphics": 176382, "using lowlevel": 174461, "generating directly": 64194, "difficult address": 42127, "highlevel commands": 69685, "conditional language": 28959, "model end": 103538, "captions finetune": 20607, "embeddings human": 47241, "llama outperform": 93332, "outperform commercial": 117573, "terms similarity": 164475, "datasets publicly": 37058, "available language": 15150, "tuning critical": 169981, "llms user": 96913, "investigate instruction": 80431, "changes specifically": 22393, "explanation methods": 54793, "techniques interpreting": 163934, "concepts selfattention": 28691, "impact instruction": 72667, "explanations derived": 54832, "derived pretrained": 39364, "pretrained instructiontuned": 126848, "provides internal": 133173, "perspective model": 122680, "level findings": 91469, "significant impacts": 150726, "instruction verbs": 78144, "tasks insights": 162608, "insights contribute": 77534, "optimizing llms": 117121, "remarkable versatility": 140307, "advance llms": 5688, "feedback novel": 57744, "learning processes": 90861, "process equips": 128815, "subsequently model": 157983, "model undergoes": 104821, "responses responses": 142906, "responses enhanced": 142776, "using enhanced": 174165, "enhanced data": 49330, "model apply": 103122, "improves response": 74073, "quality experiments": 134121, "accelerating llms": 2798, "growing training": 68053, "training length": 168543, "unprecedented advancements": 172078, "considerable computational": 29609, "incur significant": 75475, "significant costs": 150674, "costs alleviate": 32813, "llms method": 95883, "method progressively": 101037, "increases training": 75294, "larger number": 89238, "limited time": 92867, "shorter sequences": 150034, "resources extensive": 142439, "various stateoftheart": 176185, "llms revealed": 96450, "revealed models": 144393, "making practical": 98790, "practical solution": 125452, "outperformed chatgpt": 117654, "significant capabilities": 150632, "mind tasks": 102284, "chatgpt surpasses": 23372, "aiming uncover": 7565, "relative strengths": 139387, "linguistic dimensions": 93026, "dimensions fluency": 42336, "fluency accuracy": 59886, "writing contrast": 179722, "exhibited superior": 53160, "research pioneering": 141969, "robots navigating": 145227, "education recent": 45579, "reshaping computing": 142308, "effectively able": 45932, "urgent questions": 172421, "challenges leverage": 21938, "opportunities presented": 116872, "presented new": 126524, "working group": 179396, "undertake comprehensive": 171564, "make significant": 98597, "contributions provide": 31506, "detailed review": 40315, "llms computing": 94685, "report findings": 140530, "computing students": 28560, "attitudes llms": 14030, "indepth interviews": 75538, "computing educators": 28539, "issues raised": 81055, "models computing": 105724, "provide concrete": 132721, "educators students": 45639, "various computing": 175869, "datasets highlight": 36908, "extent capabilities": 56002, "report serve": 140558, "point researchers": 123724, "generating accessible": 64126, "information inaccessible": 76509, "blind low": 18698, "low vision": 97793, "perceive images": 120754, "layouts text": 89707, "create natural": 33215, "visually impaired": 177385, "steps use": 155777, "use computer": 172559, "vision techniques": 176992, "produce descriptions": 129389, "descriptions test": 39503, "qualitative metrics": 134007, "outcomes experiments": 117450, "model universal": 104828, "audio generation": 14178, "llm demonstrated": 93582, "handle variety": 68575, "llm techniques": 94047, "types audio": 170328, "including speech": 74731, "sounds music": 153384, "single sequence": 151862, "hours audio": 70454, "parameters based": 119716, "tasks aiming": 161932, "knowledge intrinsic": 82147, "intrinsic properties": 79898, "audio modalities": 14182, "model potential": 104294, "generation shows": 65086, "seamlessly support": 147308, "support new": 159311, "simple finetuning": 151456, "stateoftheart competitive": 155108, "results 11": 143144, "demo code": 38173, "does llm": 43998, "thirdparty libraries": 166167, "programmer productivity": 129772, "productivity software": 129608, "software quality": 152840, "number increased": 114879, "created tools": 33275, "tools mitigate": 167211, "library versions": 92044, "evidence demonstrate": 52175, "demonstrate library": 38402, "vulnerabilities lead": 177623, "order assess": 117175, "manually crafting": 99083, "attacks challenging": 13692, "insufficient tool": 78453, "tool support": 167040, "outperformed stateoftheart": 117663, "test generators": 164561, "tests achieving": 164770, "vulnerabilities possible": 177632, "code context": 24733, "research shed": 142071, "tests help": 164783, "developers create": 40940, "design secure": 39749, "applications generative": 10544, "intelligence genai": 78824, "genai large": 62875, "tools come": 167126, "targeted misinformation": 161138, "article serves": 12602, "research presented": 141981, "applications encounter": 10504, "factuality evaluation": 56907, "crucial research": 33844, "users potential": 173737, "guiding development": 68271, "evaluators assessing": 52052, "gauge progress": 62822, "models referred": 108879, "collect responses": 25674, "llms annotate": 94398, "labels finegrained": 82802, "finegrained manner": 58880, "studies primarily": 157052, "annotation based": 9511, "help pinpoint": 69158, "specific factual": 153994, "annotations supplemented": 9616, "support contradict": 159270, "performance llmbased": 121748, "including vanilla": 74777, "retrieval mechanisms": 144086, "chainofthought processes": 21514, "llms far": 95250, "far satisfactory": 57233, "detect factual": 40356, "curation tasks": 34040, "insights diverse": 77546, "diverse requirements": 43632, "applications different": 10482, "offtheshelf tools": 115927, "tools typically": 167275, "result data": 143027, "scientists develop": 147004, "develop domainspecific": 40776, "solutions tailored": 153079, "domainspecific code": 44564, "sufficient number": 158491, "present seed": 126440, "solutions large": 153038, "describes task": 39394, "data expected": 35010, "expected output": 53756, "code small": 25141, "access modules": 2887, "uses generated": 173856, "directly process": 42588, "possibly using": 124478, "assist llm": 13351, "llm solving": 94011, "validate new": 175329, "approach conducted": 11071, "datasets spanning": 37124, "spanning data": 153674, "generic counterparts": 65650, "approaching performance": 11964, "solutions use": 153081, "thousands labeled": 166256, "examples comparison": 52539, "data record": 35627, "stateoftheart comparable": 155107, "comparable fewshot": 26574, "reducing number": 138587, "unified sequence": 171746, "pretraining diverse": 127306, "diverse table": 43670, "table data": 160744, "tasks tables": 163333, "stored databases": 155866, "databases tables": 36027, "tables present": 160771, "present web": 126501, "web pages": 178012, "semistructured data": 148359, "table tasks": 160756, "significant degradation": 150678, "style llms": 157756, "t5 data": 160700, "pretraining selfsupervised": 127434, "models come": 105678, "specialized text": 153914, "text question": 165396, "improvement comes": 73769, "work attempt": 178813, "specific pretraining": 154059, "models comparing": 105696, "presents substantial": 126643, "substantial challenge": 158035, "processing data": 129137, "involves answering": 80717, "answering natural": 9913, "questions tabular": 135298, "data demanding": 34892, "data semantics": 35727, "analytical capabilities": 9252, "substantial volume": 158110, "range strategies": 135703, "including approaches": 74415, "custom models": 34373, "models nonetheless": 108308, "research landscape": 141876, "limited exploration": 92763, "interpreting complex": 79729, "errors generated": 50360, "inconsistent data": 74831, "sql python": 154636, "progressively enhance": 130045, "enhance data": 49181, "data representations": 35650, "questions greater": 135149, "greater ease": 67760, "finetuned approaches": 58982, "approaches particular": 11855, "particular outperforms": 120104, "best prior": 17736, "prior result": 127929, "finetuning compressed": 59204, "experimental study": 54095, "compressing large": 28203, "especially knowledgeintensive": 50494, "certain knowledge": 21396, "knowledge forgotten": 82010, "augmentation prompting": 14305, "prompting recover": 131061, "performance extensive": 121495, "comparison model": 27057, "effectively increase": 46030, "increase prompt": 75224, "prompt diversity": 130428, "inference overhead": 76062, "overhead experiments": 118356, "latency 60": 89476, "enable language": 48095, "implicitly learn": 73001, "openended nature": 116499, "improvement quality": 73841, "proposed enhance": 132283, "growing focus": 68026, "reducing reliance": 138591, "reliance extensive": 139776, "annotation efforts": 9523, "llms expensive": 95180, "expensive challenging": 53775, "provide necessary": 132896, "realworld complex": 136422, "implicitly learns": 73002, "goal human": 66169, "models extra": 106281, "extra human": 56109, "specifically reformulate": 154278, "objective reinforcement": 115220, "quality given": 134153, "reference response": 138671, "quantifying impact": 134327, "understanding outputs": 171387, "outputs machine": 118085, "improving transparency": 74230, "influence function": 76197, "cost makes": 32707, "challenging use": 22312, "practical largescale": 125431, "computation algorithms": 28292, "memory efficiency": 100390, "magnitude faster": 98201, "effectively identifies": 46017, "examples better": 52531, "scores help": 147149, "identify data": 71880, "generation lowresource": 64807, "enables generalize": 48190, "novel downstream": 114477, "tasks relatively": 163117, "require enormous": 141092, "enormous computational": 49604, "solve specific": 153159, "study synthetic": 157655, "finetuned teacher": 59130, "improve downstream": 73446, "leakage risks": 89941, "risks code": 144981, "given largescale": 65926, "opensource projects": 116667, "recent code": 137459, "critical software": 33550, "tasks program": 163012, "available source": 15203, "code opensource": 25037, "projects github": 130112, "data confidential": 34829, "companies contain": 26544, "personal information": 122563, "models raise": 108763, "new privacy": 113349, "concerns paper": 28799, "models risk": 109006, "data answer": 34640, "inference attack": 75966, "attack method": 13648, "method specifically": 101116, "specifically code": 154151, "investigate membership": 80447, "risk code": 144932, "data membership": 35360, "true positive": 169809, "low false": 97754, "architecture pretraining": 12205, "rate attacks": 135978, "leakage study": 89942, "attention understanding": 13999, "understanding privacy": 171419, "finetuning recent": 59496, "attention academia": 13831, "capabilities opensource": 20089, "trains llms": 168844, "responses guided": 142817, "guided natural": 68233, "sequence token": 148790, "limited label": 92789, "label space": 82702, "label prediction": 82695, "generating diverse": 64197, "responses prior": 142880, "outperform bert": 117569, "bert prompting": 17587, "representations llms": 140845, "llms supervised": 96734, "adaptation llms": 4637, "labels evaluate": 82797, "finetuned single": 59107, "loss model": 97683, "finetuned lowrank": 59064, "minimize loss": 102375, "intricate prompt": 79856, "llms times": 96807, "size scale": 152066, "baselines like": 16347, "work shed": 179287, "content users": 30643, "quality correctness": 134085, "help user": 69192, "tools complement": 167127, "output response": 117990, "response specific": 142701, "example paper": 52495, "ai quality": 7181, "quality important": 134160, "propose preliminary": 132070, "outline research": 117498, "brought remarkable": 19245, "prevalent assumption": 127511, "makes llms": 98668, "llms susceptible": 96744, "potentially resulting": 125131, "outcomes study": 117463, "recursive thinking": 138365, "produces initial": 129535, "additionally incorporate": 5081, "allows llm": 8449, "infer mental": 75945, "involves understanding": 80771, "agents mental": 6659, "mental state": 100507, "extra finetuning": 56108, "offer possible": 115681, "possible explanation": 124420, "llms terms": 96786, "terms safety": 164465, "speaking style": 153839, "style format": 157749, "subsequent research": 157953, "token representations": 166733, "critical problems": 33533, "models hallucination": 106578, "privacy leaks": 128010, "retrieved text": 144251, "reducing computation": 138555, "computation inference": 28303, "potential loss": 124849, "accuracy new": 3318, "techniques training": 164043, "experiments knowledgeintensive": 54331, "maintaining 95": 98339, "bias arises": 18098, "assume knowledge": 13549, "llms conjunction": 94698, "grounding object": 67917, "object detector": 115122, "generates detailed": 64064, "based detailed": 15753, "examples explicitly": 52577, "attributes learn": 14119, "negative pairs": 112524, "object attributes": 115104, "attributes experiments": 14109, "experiments demonstrated": 54244, "understanding addition": 171113, "mscoco flickr30k": 110269, "helps models": 69255, "scenarios compressing": 146561, "compressing llms": 28208, "memory footprints": 100400, "pruning quantization": 133468, "quantization llms": 134412, "llms achieving": 94326, "reducing bitwidth": 138547, "bitwidth bits": 18608, "bits weight": 18604, "weight negligible": 178076, "perplexity degradation": 122508, "uncompressed baseline": 170706, "baseline recent": 16256, "efforts focused": 46916, "work takes": 179334, "methods pruning": 101749, "pruning methods": 133466, "sparsity ratios": 153774, "nm sparsity": 113952, "quantization methods": 134414, "successful pruning": 158356, "pruned llms": 133447, "50 sparsity": 1307, "incontext retrieval": 74994, "retrieval summarization": 144144, "summarization systems": 158883, "generation incontext": 64736, "retrieval incontext": 144065, "foster development": 60682, "better llm": 17933, "methods related": 101765, "related codes": 139154, "consistency data": 29756, "data validation": 35941, "tests generated": 164782, "llms investigated": 95684, "experiments gpt35": 54300, "examining different": 52443, "temperature settings": 164206, "roles prompt": 145562, "scenarios asking": 146537, "provided data": 133045, "oneshot fewshot": 116030, "considered helpful": 29690, "experienced data": 53853, "returns use": 144300, "use fewshot": 172623, "learning explicit": 90443, "setting better": 149430, "better best": 17818, "best llm": 17696, "llm configurations": 93553, "underscores value": 170959, "preparation stages": 126166, "stages data": 154761, "representation engineering": 140685, "ai transparency": 7300, "transparency paper": 169586, "identify characterize": 71869, "emerging area": 47505, "engineering repe": 48979, "enhancing transparency": 49577, "insights cognitive": 77527, "highlevel cognitive": 69684, "techniques showing": 164018, "offer simple": 115703, "solutions improving": 153032, "control large": 31555, "models showcase": 109094, "research hope": 141830, "safety ai": 145832, "numerous research": 115065, "prompting despite": 130898, "despite efforts": 40095, "structure human": 156565, "cognition llms": 25431, "understand plan": 171058, "enabling extraction": 48293, "information complex": 76321, "contexts prior": 31043, "planning solutions": 123323, "according plan": 3047, "structure significantly": 156605, "significantly augments": 150944, "furthermore work": 62179, "techniques allowing": 163834, "integration methods": 78679, "accuracy cot": 3190, "enhancing user": 49581, "characters conversations": 22501, "content response": 30608, "llms public": 96268, "developers usually": 40967, "align language": 8009, "models refuse": 108883, "refuse generate": 138847, "models misused": 108191, "content work": 30653, "easily misguided": 45327, "idea directly": 71728, "content including": 30525, "harmful biased": 68723, "biased information": 18228, "finding highlights": 58606, "need advanced": 112220, "incremental knowledge": 75468, "limited instruction": 92785, "brittle errorprone": 19155, "parsing large": 119961, "integration using": 78691, "algorithmic framework": 7881, "interactive learning": 79319, "hierarchical task": 69376, "users interactions": 173693, "game setting": 62571, "users successfully": 173789, "task semantics": 161715, "popular method": 124021, "propose zeroshot": 132222, "method showing": 101092, "generalized various": 63284, "semantics multiple": 148307, "multiple source": 111046, "models enhance": 106125, "enhance generalizability": 49201, "sparse linear": 153731, "linear attention": 92951, "mask transformer": 99291, "modeling pairwise": 105063, "pairwise relationships": 118648, "struggle long": 156763, "quadratic complexity": 133962, "complexity attention": 27658, "approximating attention": 12035, "approaches straightforwardly": 11913, "distill knowledge": 43139, "matrix require": 99645, "require complete": 141077, "furthermore previous": 62132, "attention matrices": 13924, "sparse approximation": 153717, "selection perform": 147878, "previous linear": 127604, "interpretable attention": 79661, "complexity existing": 27670, "large practical": 88987, "practical impact": 125420, "impact opens": 72703, "running large": 145750, "resourcelimited devices": 142415, "devices memory": 41310, "models selfcorrect": 109065, "concerns persist": 28802, "persist regarding": 122528, "content contemporary": 30459, "issues building": 80989, "paper critically": 118828, "critically examines": 33582, "examines role": 52437, "based solely": 16104, "inherent capabilities": 76942, "external feedback": 56051, "responses external": 142789, "performance degrade": 121367, "drawing insights": 44929, "research practical": 141974, "model tells": 104729, "compression llms": 28218, "introduce adaptive": 79907, "footprint generative": 60351, "attention modules": 13938, "modules based": 109972, "local contexts": 97230, "tokens employing": 166803, "finetuning retraining": 59518, "substantial reduction": 158096, "memory consumption": 100383, "model automatic": 103161, "fixed context": 59708, "produce long": 129437, "solution current": 152913, "handle long": 68551, "long code": 97439, "tasks focus": 162421, "focus reading": 60041, "memory reduce": 100449, "new memories": 113268, "generation memory": 64822, "intermediate outputs": 79516, "managed control": 98869, "control unit": 31598, "memory reading": 100446, "effective interaction": 45788, "finite context": 59627, "producing code": 129545, "succeeds generating": 158213, "tasks coding": 162069, "coding methods": 25393, "methods fall": 101519, "user requirements": 173486, "science tasks": 146916, "great significance": 67725, "recently advances": 137825, "llms transformed": 96849, "domains current": 44377, "intricate nature": 79852, "alleviate issues": 8291, "framework automatically": 60971, "automatically obtain": 14842, "domain instruction": 44187, "generates instructions": 64077, "based multiagent": 15952, "shows higher": 150435, "level knowledge": 91482, "knowledge expertise": 81973, "embodied intelligence": 47311, "intelligence capabilities": 78792, "model webbased": 104887, "test automation": 164514, "relies accurately": 139795, "accurately finding": 3533, "methods compare": 101384, "grasp context": 67666, "context meaning": 30846, "abilities tasks": 2027, "llm enhanced": 93633, "localization approach": 97271, "selects likely": 147917, "accuracy experimental": 3229, "realworld web": 136542, "web applications": 177993, "execution times": 52971, "comparing effectiveness": 26981, "percent reduction": 120775, "time additional": 166346, "additional costs": 4945, "technology enhance": 164137, "positives potentially": 124321, "maintenance costs": 98399, "limitations practical": 92638, "gui testing": 68134, "model endtoend": 103539, "endtoend speech": 48765, "generate human": 63546, "instructions performance": 78321, "faced complex": 56562, "speech representation": 154467, "representation text": 140743, "space downstream": 153565, "finetuning adapter": 59155, "trained optimize": 168032, "optimize performance": 117074, "models establishing": 106159, "selection impact": 147853, "research open": 141940, "open code": 116219, "models review": 108990, "review empirical": 144500, "widespread concern": 178466, "conducted empirical": 29231, "study systematically": 157656, "java developers": 81212, "github projects": 65824, "projects mainly": 130115, "questions rqs": 135270, "chatgpt compare": 22785, "technical questions": 163714, "revising code": 144604, "relevance readability": 139563, "study 30": 157128, "assess compare": 13063, "10 pairs": 127, "pairs answers": 118546, "software maintenance": 152825, "reveals interesting": 144426, "better answers": 17804, "code correctly": 24736, "adoption chatgpt": 5629, "software industry": 152823, "performance enabling": 121454, "requiring taskspecific": 141512, "annotations zeroshot": 9625, "effective task": 45896, "argue order": 12415, "individual test": 75745, "unambiguous complete": 170626, "guidance task": 68163, "llm evaluated": 93640, "llm notably": 93848, "achieves absolute": 3953, "improvement 10": 73737, "outperforming conventional": 117671, "methods addition": 101287, "test instance": 164567, "adversarial prompting": 6220, "scientific contributions": 146943, "prize taskbot": 128061, "taskbot challenge": 161831, "2022 vision": 682, "guide users": 68218, "successful completion": 158338, "including voice": 74782, "zeroshot conversational": 180150, "unseen scenarios": 172180, "assistant capable": 13387, "tasks innovative": 162605, "innovative features": 77169, "provided users": 133094, "effective robust": 45879, "capable guiding": 20431, "intricate social": 79865, "collaborative intelligence": 25620, "intelligence multiagent": 78863, "multiple large": 110960, "practical experiments": 125414, "debate reflection": 37293, "evaluating multiagent": 51350, "agents navigate": 6670, "behaviors active": 16681, "optimize efficiency": 117063, "approaches results": 11899, "illustrate llm": 72151, "humanlike social": 71280, "collaboration llm": 25595, "catalyze research": 21060, "elicited large": 47049, "domains challenging": 44363, "demanding considerable": 38143, "different options": 41888, "various criteria": 175883, "formative study": 60560, "overview information": 118435, "information space": 76769, "tools struggle": 167259, "coldstart problem": 25567, "helping users": 69232, "users read": 173756, "navigate unfamiliar": 112047, "accurate highquality": 3461, "effectively improved": 46025, "overall comprehension": 118184, "experience large": 53832, "answer factoid": 9709, "method exploring": 100853, "based question": 16056, "question entities": 134865, "easily interpreted": 45325, "information transformerbased": 76816, "candidates extracted": 19743, "fail large": 56959, "generative conversational": 65406, "chatgpt serving": 23305, "assistants various": 13436, "stability reliability": 154678, "reliability responses": 139702, "mechanism reasoning": 100024, "benchmarks empirical": 17228, "results initial": 143529, "consistency various": 29799, "sampling temperature": 146121, "conducting indepth": 29317, "indepth error": 75532, "explore prompting": 55281, "unparalleled prowess": 172072, "generation images": 64729, "coherent textual": 25549, "textual narratives": 165931, "technique anchored": 163741, "approach characterized": 11046, "generation training": 65211, "training requires": 168695, "requires comprehensive": 141347, "comprehensive descriptions": 27993, "enhancing effectiveness": 49478, "highlighting efficacy": 69811, "efficacy diverse": 46371, "programaided language": 129762, "problems providing": 128607, "program structures": 129752, "generate better": 63403, "written programming": 179788, "language python": 86677, "input program": 77313, "given utility": 66047, "querying language": 134652, "model times": 104748, "best solution": 17752, "solution run": 152973, "set downstream": 149180, "programs significantly": 129932, "analyze variety": 9344, "strategies proposed": 156059, "search genetic": 147362, "genetic algorithms": 65682, "simulated annealing": 151652, "demonstrates modern": 38867, "experiments capable": 54166, "code improve": 24946, "llmpowered agent": 94224, "offer limited": 115668, "agent capabilities": 6423, "lacking multistep": 83038, "personalized conversations": 122592, "llmpowered framework": 94230, "framework empower": 61115, "agents generate": 6617, "personalized response": 122619, "response users": 142713, "healthcare queries": 69012, "queries framework": 134481, "enables developers": 48172, "integrate external": 78486, "models llmbased": 107051, "fosters interaction": 60706, "various ai": 175795, "illustrate frameworks": 72150, "proficiency handling": 129659, "complex healthcare": 27426, "healthcare tasks": 69020, "tasks demonstrations": 162194, "standard transformerbased": 154890, "scale poorly": 146326, "contexts propose": 31044, "models history": 106618, "experiments language": 54332, "retains capabilities": 143966, "compression ratio": 28227, "score 98": 147041, "achieving nearly": 4196, "encoding large": 48509, "users seek": 173775, "resources including": 142443, "tools suggest": 167261, "suggest actionable": 158514, "called question": 19666, "questions user": 135312, "produce toxic": 129474, "recent academic": 137333, "academic literature": 2744, "llms bard": 94466, "chatgpt develop": 22850, "times generate": 166587, "demonstrate average": 38253, "rate increases": 135999, "models partially": 108433, "responses revealed": 142911, "revealed llms": 144392, "susceptible providing": 159735, "chatgpt point": 23193, "improving automatic": 74111, "vqa evaluation": 177573, "models years": 109724, "primary metric": 127814, "metric automatic": 101955, "vqa accuracy": 177566, "openended generative": 116490, "ood evaluation": 116180, "evaluation new": 51746, "paradigm existing": 119451, "existing vqa": 53633, "serve proxy": 148998, "leverage incontext": 91605, "capabilities instructiontuned": 19971, "build better": 19307, "llm instructed": 93766, "score accuracy": 147043, "answers demonstrate": 10010, "metric better": 101957, "better correlates": 17837, "correlates human": 32526, "judgment compared": 81318, "wide adoption": 178242, "task plan": 161617, "code collected": 24710, "collected human": 25689, "convergence analysis": 31748, "markov decision": 99257, "processes mdps": 129083, "formal framework": 60499, "problems training": 128641, "infinite horizon": 76170, "optimal policies": 116945, "policies learned": 123817, "inherent structure": 76977, "gradient called": 67382, "called dynamic": 19654, "dynamic policy": 45146, "training better": 168175, "improved convergence": 73679, "improve productivity": 73591, "create novel": 33220, "idea create": 71726, "create userfriendly": 33243, "userfriendly platform": 173556, "engage humanlike": 48818, "text audio": 164845, "users prompted": 173746, "prompted provide": 130831, "serve ai": 148961, "assistant input": 13390, "set operations": 149258, "generated videos": 64047, "videos furthermore": 176776, "furthermore integration": 62097, "98 improvement": 1826, "compared initial": 26843, "mixture prompts": 102759, "mathematical questions": 99585, "current trend": 34288, "trend use": 169707, "tasks expand": 162352, "based target": 16128, "compression technique": 28231, "efficiency reasons": 46515, "task composition": 161261, "simultaneously mitigate": 151754, "prompt training": 130698, "multitask multisource": 111230, "data heterogeneity": 35149, "possible implications": 124432, "final perplexity": 58391, "capabilities achieved": 19759, "performances llms": 122333, "substantial human": 158065, "efforts recent": 46928, "optimization bo": 116983, "objective functions": 115199, "mainly limited": 98296, "gaussian process": 62835, "process gp": 128851, "surrogate model": 159582, "repeatedly shown": 140436, "shown neural": 150314, "especially pretrained": 50524, "possess strong": 124351, "model highly": 103802, "highly complex": 69898, "bandit algorithm": 15525, "algorithm allows": 7777, "hidden representation": 69331, "representation learned": 140706, "learned pretrained": 90116, "propose instruction": 131880, "perform instruction": 120970, "chatgpt use": 23411, "use extensive": 172616, "various instruction": 175982, "models warning": 109672, "contains examples": 30370, "examples harmful": 52602, "reader discretion": 136162, "discretion recommended": 42824, "open release": 116281, "release powerful": 139492, "development downstream": 41091, "ensure ai": 49670, "gpu hour": 67341, "safely aligned": 145827, "aligned llms": 8068, "new attack": 113072, "alignment utilizing": 8257, "models adapt": 105266, "harmful tasks": 68751, "sacrificing model": 145794, "model helpfulness": 103792, "respond appropriately": 142588, "llama2 falcon": 93358, "attack successfully": 13667, "fortify safety": 60651, "llms malicious": 95853, "malicious attackers": 98837, "llms intricate": 95672, "cot paradigm": 32877, "paradigm central": 119438, "lowrank approximation": 97894, "automatically select": 14857, "exemplars incontext": 52986, "queries query": 134525, "llm obtain": 93851, "question knowledge": 134897, "dimensionality reduction": 42321, "reduction techniques": 138622, "alignment input": 8171, "gpt4 enhancing": 66985, "outperforms retrievalbased": 117841, "approaches terms": 11925, "performance adaptability": 121127, "scenarios characterized": 146548, "boundaries incontext": 18908, "learning opens": 90790, "challenges release": 22041, "understanding diverse": 171196, "diverse classification": 43480, "employing large": 47929, "multitasking capabilities": 111246, "utilize prompts": 175082, "guide models": 68197, "performance taskspecific": 122162, "motivated ask": 110173, "build single": 19350, "model jointly": 103910, "perform various": 121083, "various spoken": 176182, "understanding slu": 171475, "slu tasks": 152266, "various task": 176195, "single multitask": 151838, "12 different": 264, "different speech": 42007, "tasks 17": 161870, "performance surpasses": 122143, "preliminary investigations": 126135, "prompts test": 131502, "capabilities new": 20075, "models broadly": 105548, "unique difficulties": 171838, "encoding scheme": 48517, "single token": 151870, "dedicated embedding": 37675, "approach strategy": 11568, "applications scientific": 10675, "evaluate proposal": 51076, "number synthetic": 114953, "synthetic realworld": 160071, "images context": 72404, "advancements texttoimage": 5968, "texttoimage t2i": 165828, "generation significant": 65087, "significant strides": 150887, "inputs especially": 77400, "especially involving": 50493, "involving multiple": 80799, "images remains": 72476, "aforementioned challenge": 6366, "clip using": 24418, "textual modality": 165930, "compositional instruction": 27815, "tuning curated": 169984, "demonstrates unique": 38912, "capability zeroshot": 20391, "generation notably": 64895, "score distillation": 147060, "tuning requires": 170110, "requires modifications": 141423, "allows seamless": 8471, "techniques ranging": 163999, "ranging finegrained": 135750, "personalized image": 122602, "llm assistant": 93480, "ask large": 12846, "assistants answer": 13404, "answer queries": 9754, "knowledge ask": 81753, "specific city": 153954, "stock prices": 155833, "specific locations": 154037, "require llm": 141145, "llm produce": 93908, "produce code": 129377, "invokes external": 80679, "apis answer": 10184, "answer users": 9793, "users question": 173753, "llms rarely": 96294, "iterative code": 81116, "code refinement": 25089, "execution results": 52964, "results addition": 143161, "addition using": 4915, "llm assistants": 93481, "components allows": 27748, "automatic code": 14646, "refine code": 138728, "code produce": 25061, "based execution": 15786, "results second": 143772, "stronger expensive": 156469, "solutions past": 153055, "demonstrations help": 39010, "offers distinct": 115794, "distinct advantages": 43202, "accuracy surpassing": 3400, "gpt4 10": 66897, "points success": 123767, "rate 50": 135965, "implicit representations": 72989, "representations knowledge": 140827, "investigate pretrained": 80479, "responsible encoding": 142967, "specific knowledge": 154021, "masking scheme": 99329, "remove specific": 140361, "minimizing adverse": 102385, "adverse effects": 6253, "method multiple": 100984, "suffers performance": 158469, "generation improve": 64732, "surge automating": 159425, "process including": 128866, "interactive qa": 79332, "rag involves": 135431, "paper designed": 118846, "prompts retrieve": 131456, "highquality opensource": 70057, "real student": 136251, "student questions": 156826, "humans prefer": 71447, "using rag": 174642, "rag responses": 135437, "rag able": 135419, "improve response": 73610, "math qa": 99533, "consider tradeoffs": 29595, "tradeoffs generating": 167574, "responses preferred": 142877, "responses closely": 142741, "closely matched": 24519, "resources language": 142445, "code debugging": 24777, "guide students": 68211, "students solving": 156902, "providing solution": 133373, "solution directly": 152920, "strategy substantially": 156207, "agents augment": 6542, "augment human": 14241, "instruction provide": 78051, "suitable data": 158692, "created dataset": 33255, "aimed helping": 7520, "simple computational": 151417, "computational problems": 28394, "used benchmarking": 172978, "ranging finetuning": 135751, "finetuning instructionbased": 59313, "instructionbased texttotext": 78162, "transformer flant5": 169125, "flant5 zeroshot": 59760, "ability dynamically": 2140, "dynamically adapt": 45180, "world work": 179633, "perform detailed": 120923, "study factuality": 157356, "factuality llmgenerated": 56915, "llmgenerated text": 94207, "current world": 34304, "novel dynamic": 114478, "benchmark encompassing": 16941, "answer types": 9789, "closed opensource": 24462, "procedure allows": 128694, "evaluations involving": 51989, "limitations models": 92625, "instance models": 77805, "models regardless": 108885, "questions involve": 135172, "knowledge false": 81998, "simple fewshot": 151455, "substantially boosts": 158114, "incorporating relevant": 75129, "relevant uptodate": 139662, "prompt experiments": 130499, "outperforms competing": 117738, "number retrieved": 114941, "llmgenerated answers": 94194, "answers additionally": 9995, "instructing llm": 77958, "generate concise": 63432, "direct answers": 42368, "helps reduce": 69258, "verbose answers": 176455, "answers facilitate": 10022, "task performances": 161615, "size threshold": 152072, "consistent task": 29842, "strategy theoretically": 156211, "decoding phase": 37585, "quantitative investigation": 134356, "contains parts": 30388, "task scaling": 161706, "remarkably able": 140314, "quantitatively identify": 134392, "examine hypothesis": 52390, "models asking": 105398, "recently applied": 137833, "issues applying": 80980, "tasks dialogue": 162223, "users implicit": 173672, "implicit intentions": 72980, "responses align": 142725, "llms update": 96898, "latest knowledge": 89556, "questions related": 135248, "users intention": 173686, "llms choose": 94606, "generation works": 65267, "context order": 30861, "questions construct": 135077, "dataset taskoriented": 36574, "outperformed llms": 117660, "parallelism distributed": 119582, "transformers increasing": 169316, "increasing context": 75315, "fundamentally new": 61992, "capabilities significantly": 20175, "hindering adoption": 70145, "adoption paper": 5647, "longcontext llms": 97515, "readily applicable": 136171, "varying numbers": 176299, "communication computation": 26356, "features novel": 57547, "attention evaluate": 13872, "lengths 32k": 91398, "endtoend speedup": 48766, "exploiting large": 55031, "llms tackle": 96758, "garnered growing": 62778, "growing attention": 68005, "challenging achieve": 22104, "achieve satisfactory": 3729, "satisfactory results": 146162, "facts rules": 56846, "intricate relationships": 79861, "relationships entities": 139339, "requiring multihop": 141502, "intuitive solution": 80301, "smaller subtasks": 152446, "chain multiple": 21455, "casual reasoning": 21046, "possibility making": 124385, "steps addition": 155714, "humans tend": 71480, "mind maps": 102283, "drawing conclusions": 44925, "novel reasoning": 114667, "efficiently identify": 46788, "llms organized": 96008, "reasoning stages": 137139, "aforementioned ones": 6370, "proofwriter prontoqa": 131592, "processing particularly": 129273, "particularly development": 120169, "pretrained vast": 127223, "amounts knowledge": 8690, "knowledge creating": 81846, "novel opportunities": 114621, "knowledge engineering": 81937, "particular leverage": 120093, "gpt4 generative": 67028, "variations incontext": 175653, "highlight promise": 69776, "promise approach": 130167, "approach value": 11661, "modifications potential": 109875, "obtaining sufficient": 115548, "learningbased natural": 91163, "data engineering": 34975, "billions people": 18453, "people engage": 120715, "express opinions": 55564, "domains field": 44410, "field content": 58147, "lack detailed": 82922, "implementation details": 72840, "specifically discuss": 154187, "explore benefits": 55159, "benefits utilizing": 17497, "models impact": 106676, "processing approaches": 129114, "research process": 141993, "process key": 128889, "hoping provide": 70415, "llms combined": 94634, "tasks successful": 163308, "characterized complex": 22482, "complex annotation": 27356, "guidelines task": 68254, "humans previous": 71451, "results unseen": 143893, "defending large": 37900, "models jailbreaking": 106829, "jailbreaking attacks": 81184, "claude palm": 24239, "attacks adversary": 13687, "targeted llm": 161137, "objectionable content": 115171, "content address": 30427, "address vulnerability": 5387, "algorithm designed": 7794, "corresponding predictions": 32600, "reduces attack": 138504, "numerous popular": 115059, "percentage point": 120779, "provable guarantees": 132610, "fewer queries": 57868, "queries existing": 134478, "instructs large": 78431, "general zeroshot": 63070, "build autonomous": 19304, "process large": 128893, "wide set": 178333, "generation classification": 64492, "reasoning method": 136985, "obtains stateoftheart": 115563, "margin including": 99185, "average increase": 15295, "tasks unfortunately": 163408, "unfortunately existing": 171665, "pipelines typically": 123114, "approach developing": 11120, "developing optimizing": 41018, "programming model": 129858, "computational graphs": 28366, "collecting demonstrations": 25710, "metric conduct": 101963, "studies showing": 157079, "problems tackle": 128638, "control agent": 31516, "programs compiled": 129897, "competitive approaches": 27160, "proprietary gpt35": 132513, "performing range": 122413, "following tasks": 60315, "fundamental challenges": 61939, "large openworld": 88978, "openworld tasks": 116730, "tasks variations": 163448, "web interfaces": 178008, "challenges leveraging": 21939, "subtasks solved": 158187, "new web": 113508, "tasks expressed": 162375, "policies propose": 123820, "framework hierarchical": 61197, "hierarchical llm": 69362, "prompts demonstrations": 131220, "highlevel tasks": 69715, "lowlevel policies": 97869, "policies evaluate": 123809, "interactions able": 79197, "automating human": 14883, "programming feedback": 129820, "feedback leveraging": 57728, "tutor model": 170194, "hint generation": 70177, "validation generative": 175361, "enhancing programming": 49549, "individualized feedback": 75756, "students investigate": 156871, "providing human": 133311, "buggy programs": 19283, "benchmarked stateoftheart": 17123, "deployment paper": 39293, "push limits": 133798, "highquality programming": 70062, "technique leverages": 163784, "leverages gpt4": 91728, "generative quality": 65581, "quality using": 134296, "failing test": 56991, "weaker model": 177943, "performs automatic": 122427, "automatic quality": 14723, "potential utility": 125053, "utility providing": 174970, "datasets python": 37060, "covering variety": 33090, "ranging basic": 135747, "using pandas": 174567, "pandas library": 118678, "llm ability": 93424, "concept using": 28626, "american association": 8660, "benchmark future": 16986, "api implemented": 10156, "head neck": 68908, "patients randomly": 120492, "tuning instructions": 170035, "instructions prompt": 78326, "evaluation structure": 51875, "names considered": 111424, "considered likely": 29692, "relevant studies": 139654, "utilizing structure": 175239, "patients results": 120493, "given accuracy": 65831, "presented work": 126534, "llms poised": 96118, "radiation oncology": 135400, "advancements llm": 5922, "capabilities likely": 20014, "interactive text": 79344, "texttotext generation": 165858, "according specific": 3056, "specific criteria": 153965, "linguistic styles": 93074, "retaining original": 143963, "original meaning": 117353, "length text": 91391, "useful applications": 173312, "simplification paraphrase": 151585, "generation style": 65113, "contrast text": 31330, "text completion": 164936, "constrained terms": 30042, "terms semantic": 164471, "targeted language": 161136, "language styles": 86748, "level control": 91458, "studying ability": 157717, "tasks interesting": 162620, "complex combinations": 27375, "lexical syntactical": 92000, "adherence factual": 5525, "overview stateoftheart": 118449, "research major": 141899, "models humanai": 106642, "showcase significant": 150085, "significant recent": 150852, "advances use": 6072, "approaches shift": 11902, "development new": 41171, "finegrained human": 58868, "framework growing": 61187, "realworld writing": 136544, "multiagent coordination": 110313, "contemporary ai": 30408, "develop agents": 40751, "agents proficient": 6696, "enabling effective": 48289, "effective collaboration": 45710, "collaboration humans": 25588, "humans systems": 71478, "llms notable": 95943, "humanlike manner": 71271, "various coordination": 175880, "coordination scenarios": 32094, "coordination games": 32093, "framework conduct": 61034, "situated reasoning": 151931, "llm infer": 93756, "llms coordinate": 94741, "complex longhorizon": 27464, "lastly test": 89467, "refers ability": 138716, "time spent": 166510, "underscores promising": 170956, "realworld agents": 136390, "agents multiagent": 6663, "users perceptions": 173730, "aimediated communication": 7528, "communication aimc": 26346, "aimc tools": 7506, "tools powered": 167228, "llms integral": 95656, "employing mixedmethods": 47939, "interview study": 79806, "communication shortterm": 26413, "lead potential": 89768, "communication confidence": 26359, "precise language": 125585, "cultural barriers": 33948, "barriers study": 15577, "study uncovers": 157679, "emotional intensity": 47580, "potential overreliance": 124893, "furthermore identified": 62091, "identified key": 71826, "users attitudes": 173585, "informal ones": 76256, "redundant information": 138633, "capabilities range": 20140, "especially reasoning": 50529, "reasoning cornerstone": 136779, "achieving artificial": 4138, "benchmarks fully": 17252, "scenarios address": 146526, "gap new": 62687, "task termed": 161770, "designed modified": 39915, "modified version": 109879, "contrasting performance": 31341, "achieved moderate": 3843, "standard qa": 154873, "llms handling": 95467, "suggests future": 158658, "focus incorporating": 59998, "integrated speech": 78542, "interface text": 79445, "based knowledge": 15894, "chatbot applications": 22562, "costly present": 32797, "addressed aforementioned": 5392, "aforementioned problem": 6371, "search framework": 147355, "framework augments": 60967, "context document": 30734, "keywords generated": 81623, "context set": 30914, "prompt tailored": 130686, "overall inference": 118202, "retrieval given": 144058, "reduction inference": 138613, "framework speech": 61426, "interface user": 79446, "input response": 77329, "coding design": 25377, "design gpt4": 39644, "driven development": 44982, "development generating": 41125, "chatgpt groundbreaking": 23039, "approach limitations": 11362, "limitations inherent": 92604, "inherent ambiguity": 76935, "ambiguity natural": 8634, "challenges complex": 21800, "complex software": 27591, "software designs": 152784, "accordingly research": 3069, "research offers": 141939, "work emphasizes": 178927, "significant contribution": 150668, "method particularly": 101025, "particularly model": 120228, "multiagent simulation": 110335, "second layer": 147487, "layer approach": 89624, "minimize model": 102376, "applied finetune": 10762, "finetune code": 58915, "code deployed": 24786, "concluding research": 28893, "autogenerated code": 14484, "complexity code": 27660, "code remains": 25096, "conditional distributions": 28953, "autoregressive sampling": 15010, "including sequence": 74721, "constrained generation": 30031, "distributions address": 43419, "limitation using": 92526, "achieved finetuning": 3810, "paradigm llm": 119483, "policy optimization": 123862, "problem demonstrate": 128222, "dataefficient adaptation": 36050, "planning language": 123283, "broad deployment": 19177, "deployment autonomous": 39262, "agents introduce": 6635, "synergizes capabilities": 159866, "planning acting": 123240, "modelbased reinforcement": 104935, "agents value": 6760, "gpt4 average": 66926, "web browsing": 177996, "gpt35 demonstrating": 66800, "relative positions": 139380, "improves long": 74028, "challenge extending": 21641, "process choice": 128754, "training limit": 168546, "models longer": 108099, "inputs propose": 77437, "novel functional": 114527, "theoretically prove": 166060, "position encodings": 124261, "empirically models": 47797, "contexts zeroshot": 31064, "text benchmarks": 164860, "finegrained natural": 58885, "captions visual": 20629, "central focus": 21339, "bias results": 18195, "moving conventional": 110237, "approaches introduce": 11812, "introduce datadriven": 79945, "datadriven method": 36040, "method semantic": 101087, "using brain": 174016, "utilizes pretrained": 175154, "generate interpretable": 63584, "method finegrained": 100875, "visual regions": 177298, "textconditioned image": 165616, "captions images": 20611, "images semantically": 72483, "semantically coherent": 148262, "perform exploratory": 120942, "representations brain": 140772, "unlike earlier": 171996, "text method": 165300, "llms pivotal": 96105, "closedsource llms": 24492, "llms employing": 95050, "employing incontext": 47928, "incontext prompting": 74991, "prompting instruction": 130967, "100 tasks": 161, "like code": 92252, "developed finetuning": 40875, "finetuning opensource": 59416, "llms mere": 95882, "long instructions": 97458, "tasks empirically": 162287, "efficacy different": 46370, "including code": 74457, "methods stateoftheart": 101838, "applications demanding": 10473, "raised significant": 135473, "challenges deployment": 21822, "deployment resourceconstrained": 39303, "resourceconstrained devices": 142404, "functions gelu": 61907, "relu activation": 139818, "activation llms": 4412, "negligible impact": 112560, "convergence performance": 31763, "weight transfer": 178081, "inference step": 76109, "sparsity patterns": 153773, "tokens leveraging": 166838, "leveraging insights": 91870, "substantially reduce": 158139, "inference computation": 75977, "computation times": 28322, "relu activations": 139820, "minimal performance": 102350, "previously collected": 127715, "satisfying performance": 146181, "environments offline": 50100, "offline dataset": 115872, "online environment": 116097, "multiagent rl": 110330, "rl marl": 145061, "setting distribution": 149445, "distinct behaviors": 43205, "adaptation nonstationary": 4649, "demonstrated surprising": 38811, "testing work": 164767, "training address": 168146, "transformer learns": 169162, "weaker variant": 177946, "nash equilibrium": 111488, "evaluate online": 51042, "random benchmark": 135515, "marl policies": 99280, "scientific document": 146954, "research ability": 141557, "effectively retrieve": 46077, "documents based": 43889, "based complex": 15711, "complex multifaceted": 27480, "required annotate": 141222, "queries address": 134448, "complex nature": 27494, "cases complex": 20951, "documents produced": 43932, "relevance scores": 139565, "significant labor": 150766, "expert annotation": 54551, "dataset annotation": 36114, "llm annotation": 93461, "reduction cost": 138610, "compromising quality": 28287, "quality furthermore": 134133, "dataset extended": 36290, "cases requiring": 21012, "recent retrieval": 137640, "traditional datasets": 167607, "datasets highlights": 36910, "need better": 112234, "better approaches": 17805, "llms affect": 94368, "core capabilities": 32153, "capabilities study": 20200, "study natural": 157501, "simply training": 151626, "smaller larger": 152402, "model refer": 104435, "llms recalling": 96319, "recalling facts": 137283, "processing information": 129171, "presented incontext": 126517, "incontext inference": 74854, "suite tasks": 158739, "tasks help": 162499, "capabilities striking": 20199, "ability recall": 2342, "recall facts": 137269, "largely preserves": 89166, "model process": 104349, "process incontext": 128869, "incontext information": 74855, "information ranging": 76672, "functions incontext": 61910, "incontext exemplars": 74851, "exhibit behavior": 53024, "instruction grounding": 78024, "ui task": 170566, "task automation": 161213, "llms opened": 95985, "numerous ai": 115022, "apis llms": 10195, "despite vast": 40250, "vast numbers": 176344, "comprehensively cover": 28166, "user interfaces": 173444, "interfaces uis": 79470, "work build": 178828, "ground natural": 67830, "ui screenshots": 170565, "grounding model": 67908, "decoder pretrained": 37520, "spatial information": 153785, "way facilitate": 177811, "knowledge follow": 82008, "sequence tokens": 148791, "based algorithm": 15652, "clear margin": 24278, "shows potential": 150461, "prompting better": 130867, "better architectures": 17806, "recently exhibited": 137880, "consequently crucial": 29538, "employ model": 47847, "model aligns": 103106, "approach denoted": 11104, "outcomes produced": 117461, "produced gpt4": 129490, "strategy boost": 156111, "search efficiency": 147333, "rigorous experimentation": 144860, "attaining performance": 13760, "provide precise": 132929, "llms deliver": 94800, "critic model": 33446, "serve reliable": 149000, "introduce unified": 80137, "develop benchmark": 40761, "3k highquality": 1161, "highquality natural": 70055, "queries corresponding": 134461, "corresponding model": 32592, "correctness responses": 32501, "cover tasks": 33045, "problemsolving code": 128659, "completion question": 27338, "answering evaluate": 9842, "llms collected": 94631, "models sufficiently": 109289, "struggle achieve": 156724, "tend lower": 164311, "accuracy problems": 3346, "aims inform": 7630, "development proficient": 41196, "models application": 105370, "perspective knowledge": 122670, "structured representations": 156672, "knowledge widely": 82510, "survey evolution": 159632, "kgs techniques": 81651, "techniques knowledge": 163940, "extraction reasoning": 56343, "reasoning furthermore": 136876, "study financial": 157363, "financial analysis": 58561, "analysis finally": 8934, "engineering including": 48934, "including potential": 74672, "potential combining": 124647, "combining power": 25992, "power knowledge": 125183, "llms evolution": 95112, "multimodal visionlanguage": 110789, "vlms enable": 177455, "enable powerful": 48119, "ui tasks": 170568, "paper adapt": 118697, "recipe generating": 138024, "paired textimage": 118537, "data vlms": 35955, "llm unlike": 94070, "art method": 12550, "applied dataset": 10745, "generate dataset": 63451, "tasks assess": 161975, "showcase applicability": 150066, "navigation planning": 112064, "critical study": 33553, "search generative": 147360, "multibillion dollar": 110352, "subscription model": 157939, "models ultimately": 109528, "brand product": 18963, "engine results": 48865, "blur line": 18761, "results making": 143586, "awareness potential": 15381, "potential development": 124673, "study analyzing": 157161, "related topics": 139220, "models pass": 108443, "comprehensive test": 28144, "multilingual texts": 110558, "abilities realworld": 2001, "mainly evaluated": 98290, "evaluated based": 51148, "based english": 15776, "datasets assessing": 36665, "hindered lack": 70141, "suitable datasets": 158694, "understanding benchmark": 171133, "benchmark indonesian": 17003, "questions primary": 135229, "education levels": 45558, "questions focusing": 135132, "knowledge local": 82206, "local languages": 97245, "indonesia empirical": 75808, "evaluations gpt35": 51979, "models bloomz": 105533, "falcon perform": 57112, "llms impact": 95541, "impact modern": 72693, "methodology finetuning": 101231, "finetuning evaluating": 59251, "domainspecific skills": 44624, "methodology main": 101246, "specialized capabilities": 153874, "designing comprehensive": 39991, "tailored assess": 160908, "business impact": 19540, "training influence": 168498, "guide efficient": 68173, "resource allocation": 142373, "design data": 39595, "techniques results": 164015, "proposed frameworks": 132311, "insights effectively": 77550, "effectively adapting": 45936, "specialized contexts": 153877, "intend make": 78970, "questions respective": 135263, "coherent reasoning": 25538, "reasoning chain": 136733, "shows impressive": 150438, "strategy large": 156172, "research lacks": 141875, "lacks systematic": 83050, "systematic summary": 160158, "analysis factors": 8928, "prompting introduce": 130968, "applications discussions": 10487, "provide overall": 132914, "script learning": 147249, "sequences key": 148824, "steps described": 155732, "video demonstrations": 176699, "subsequent steps": 157959, "steps crucial": 155728, "crucial modern": 33826, "humans complete": 71359, "learning rely": 90912, "images limited": 72443, "domain resulting": 44272, "user scenarios": 173491, "script generation": 147246, "input consists": 77214, "task video": 161808, "descriptions text": 39504, "based demonstration": 15747, "demonstration video": 38985, "single text": 151869, "videos text": 176789, "establish baseline": 50652, "propose knowledgeguided": 131892, "taskrelated knowledge": 161858, "knowledge prompted": 82316, "prompted large": 130822, "issue hallucination": 80907, "emerged byproduct": 47340, "recent endeavors": 137495, "identify mitigate": 71926, "mitigate different": 102601, "types hallucination": 170362, "mitigation methods": 102694, "hallucination based": 68356, "define overarching": 37939, "categorize hallucination": 21139, "using 15": 173941, "15 contemporary": 404, "finally establish": 58446, "rank llms": 135777, "based vulnerability": 16181, "producing hallucinations": 129553, "hallucinations propose": 68451, "propose hallucination": 131858, "value tool": 175502, "tool wider": 167060, "wider nlp": 178438, "community potential": 26505, "serve rubric": 149002, "rubric airelated": 145683, "airelated policymaking": 7695, "solution strategies": 152980, "strategies mitigating": 156040, "knowledge does": 81897, "does help": 43983, "impact original": 72704, "responses occasionally": 142863, "better make": 17939, "use internal": 172686, "investigate eliciting": 80407, "ability recognize": 2347, "know know": 81705, "method let": 100957, "previously encountered": 127722, "demonstrate outperforms": 38456, "achieving satisfactory": 4210, "settings pretraining": 149628, "equipped llms": 50184, "need finetuned": 112294, "results paper": 143654, "finetuning improving": 59301, "framework opendomain": 61333, "qa based": 133870, "based approximate": 15661, "unsupervised question": 172266, "transform raw": 169050, "connections different": 29494, "apply graph": 10852, "graph algorithms": 67486, "algorithms identify": 7932, "minimal set": 102356, "set sentences": 149306, "generate qa": 63665, "results baselines": 143190, "extracting relations": 56240, "relations text": 139312, "data parameter": 35470, "work focuses": 178994, "study exploring": 157354, "exploring llms": 55489, "analyze drawbacks": 9286, "existing prompts": 53541, "benchmarks settings": 17363, "settings investigate": 149595, "zeroshot specifically": 180348, "specifically following": 154209, "following findings": 60276, "ii zeroshot": 72115, "competitive superior": 27206, "iii llms": 72119, "performance extracting": 121499, "different relations": 41964, "relations different": 139291, "chatgpt palm": 23169, "palm demonstrated": 118657, "capabilities complex": 19828, "reasoning intricate": 136929, "intricate knowledge": 79848, "knowledge utilization": 82497, "effectiveness prompts": 46268, "steering llms": 155570, "generating desired": 64191, "building insights": 19424, "potential largescale": 124813, "models iteratively": 106828, "iteratively enhance": 81151, "correctness response": 32500, "new solution": 113414, "solution experimental": 152930, "results datasets": 143275, "problems validate": 128650, "framework achieving": 60921, "achieving substantial": 4228, "baselines study": 16374, "integrating pretrained": 78623, "tailored prompts": 160933, "prompts iterative": 131341, "refinement processes": 138768, "inspired nlp": 77740, "design threestep": 39786, "generation generation": 64692, "generation adversarial": 64404, "highquality annotations": 69992, "annotations assess": 9572, "models enrich": 106128, "semantic contextual": 148129, "stateoftheart instruction": 155161, "commonsense language": 26283, "human model": 70929, "stimulate work": 155801, "extraction information": 56305, "methods relied": 101766, "techniques leverage": 163952, "finegrained benchmark": 58858, "dataset tailored": 36571, "rules output": 145723, "output formats": 117935, "examples extensive": 52580, "evaluations observe": 52010, "perform generalizing": 120951, "exhibits greater": 53198, "greater adaptability": 67751, "forms results": 60606, "highlight significance": 69783, "diversity learning": 43743, "detection machinegenerated": 40551, "codes work": 25317, "approach detection": 11117, "detection llmsgenerated": 40548, "knowledge research": 82370, "investigate zeroshot": 80524, "techniques applied": 163837, "applied code": 10742, "text detectors": 165022, "ineffective detecting": 75895, "unique statistical": 171857, "properties code": 131635, "detection method": 40555, "mitchell et": 102584, "whitebox model": 178236, "model estimate": 103562, "tokens allowing": 166776, "identify code": 71872, "snippets generated": 152513, "python codes": 133829, "effectiveness achieving": 46113, "textdavinci003 gpt35": 165621, "method exhibits": 100845, "revision attacks": 144606, "java codes": 81211, "information documents": 76364, "exploration universal": 55109, "understanding based": 171129, "based multimodal": 15953, "shallow text": 149769, "recognition ability": 138041, "ability mllm": 2279, "finetuned wide": 59141, "instruction format": 78020, "enhance visual": 49312, "text semantic": 165450, "auxiliary tasks": 15042, "tasks format": 162427, "key points": 81554, "points generation": 123754, "tasks design": 162204, "encoder processing": 48435, "highresolution images": 70096, "tables charts": 160765, "datasets released": 37077, "multiple expert": 110908, "expert agents": 54549, "agents using": 6758, "various novel": 176078, "convert input": 31991, "actions form": 4373, "program similar": 129749, "ghost minecraft": 65789, "environmental feedback": 50045, "feedback order": 57750, "order guide": 117203, "achieves 50": 3942, "actions able": 4359, "solve large": 153127, "facts large": 56836, "improvements range": 73936, "tasks factual": 162388, "acquired pretraining": 4273, "pretraining instruction": 127347, "answering language": 9887, "generation unlike": 65226, "obsolete time": 115451, "llms designing": 94901, "designing benchmark": 39988, "span different": 153651, "compose multiple": 27788, "reason multiple": 136573, "multiple pieces": 110999, "facts identify": 56833, "resist adversarial": 142328, "types llms": 170384, "knowledge suffer": 82439, "trustworthy artificial": 169864, "intelligence dataset": 78806, "challenges era": 21848, "garnered immense": 62780, "mark significant": 99214, "generation exhibit": 64629, "propensity generate": 131609, "generate false": 63496, "misleading content": 102506, "content commonly": 30450, "llms exploited": 95201, "applications generating": 10543, "scale poses": 146327, "risks explore": 144985, "news organizations": 113569, "research policy": 141972, "viable solutions": 176654, "scoring aes": 147182, "scores feedback": 147142, "overall scores": 118236, "pipeline help": 123065, "english writing": 49124, "detailed feedback": 40296, "education experts": 45539, "content organization": 30563, "second component": 147463, "augmentation strategy": 14312, "accuracy baseline": 3154, "strategy uses": 156216, "uses scores": 173907, "effectiveness new": 46253, "quantitatively significant": 134396, "improvements models": 73918, "lastly evaluate": 89458, "writing class": 179718, "rated generated": 136025, "optimizing large": 117116, "conduct assessment": 29025, "execute tasks": 52919, "tasks interactive": 162619, "optimization step": 117040, "step llm": 155656, "new solutions": 113415, "generated solutions": 63981, "solutions values": 153085, "values new": 175547, "solutions evaluated": 153015, "assessment task": 13267, "various perspectives": 176103, "offer advantage": 115634, "optimization tasks": 117047, "sensitive variations": 148449, "variations test": 175664, "observe llms": 115381, "influenced factors": 76228, "underscoring importance": 170964, "models empower": 106099, "specific demographic": 153969, "demographic groups": 38205, "specific personas": 154055, "biases biases": 18252, "biases harmful": 18269, "investigate persona": 80462, "dataset encompassing": 36256, "benchmarking different": 17135, "underscore pressing": 170924, "ensure safe": 49702, "safe application": 145799, "complex logic": 27459, "logic paper": 97337, "logical reasoner": 97373, "behave like": 16554, "like random": 92384, "capability paper": 20352, "training simpler": 168747, "paradigm allows": 119428, "training furthermore": 168461, "general logical": 62990, "logical tasks": 97398, "capacity solve": 20545, "necessity taskspecific": 112200, "finetuning relies": 59509, "task exemplars": 161369, "framework formally": 61167, "complex natural": 27490, "offers explanatory": 115801, "practical models": 125435, "different behaviors": 41672, "providing support": 133384, "conceptual spaces": 28720, "meaning concepts": 99764, "quality dimensions": 134099, "perceptual features": 120847, "learned human": 90099, "spaces experiments": 153636, "learning meaningful": 90670, "able match": 2531, "abilities including": 1928, "including math": 74609, "opensource community": 116591, "community explored": 26474, "capabilities proprietary": 20134, "study specifically": 157643, "specifically focuses": 154207, "generation general": 64684, "intriguing research": 79880, "various factors": 175936, "ratio model": 136046, "reveal distinct": 144329, "improve increasing": 73486, "data general": 35089, "samples observe": 146045, "observe data": 115366, "appears enhance": 10239, "enhance various": 49310, "data plentiful": 35492, "influences performance": 76238, "sequentially learning": 148893, "strategy offers": 156189, "sustainability reports": 159743, "reports large": 140598, "publicly listed": 133672, "listed companies": 93133, "social governance": 152579, "governance esg": 66355, "challenge efficiently": 21635, "framework derive": 61066, "social responsibility": 152654, "paradigm extract": 119452, "analyses revealed": 8783, "criteria cover": 33427, "considered existing": 29687, "factors impact": 56796, "esg disclosure": 50421, "data potential": 35509, "firstyear computer": 59673, "computer engineering": 28474, "chatgpt version": 23429, "model solving": 104633, "solving probability": 153233, "introductory computer": 80261, "engineering exams": 48913, "based criteria": 15734, "criteria used": 33439, "students results": 156899, "spanish english": 153664, "encountered difficulties": 48576, "operations experiments": 116781, "solution form": 152938, "approach overcoming": 11438, "overcoming limitations": 118319, "summary results": 158944, "exhibits limitations": 53206, "ability deliver": 2121, "serve learning": 148994, "accelerated inference": 2784, "astonishing capabilities": 13584, "capabilities advancements": 19770, "prompting incontext": 130963, "prompts fed": 131274, "exceeding tens": 52750, "thousands tokens": 166261, "accelerate model": 2775, "compression method": 28219, "high compression": 69408, "compression ratios": 28228, "algorithm better": 7784, "distribution alignment": 43344, "showing proposed": 150189, "yields stateoftheart": 180040, "little performance": 93246, "exploring user": 55516, "perceptions using": 120841, "conversational assistant": 31851, "conversational assistants": 31852, "assisting people": 13447, "users realworld": 173758, "remain unexplored": 139947, "scenario investigate": 146508, "llmbased ca": 94129, "extensive information": 55912, "responses users": 142937, "actively involved": 4451, "personal assistant": 122551, "questions visionlanguage": 135322, "tasks handled": 162494, "little training": 93250, "training zero": 168826, "fewshot manner": 57991, "input presented": 77311, "particular inputs": 120084, "result incorrect": 143041, "like missing": 92353, "grounded information": 67866, "changing way": 22407, "salient details": 145928, "details image": 40332, "image using": 72355, "propose modifications": 131934, "modifications original": 109874, "original question": 117377, "question use": 134951, "function select": 61857, "likely improve": 92456, "performance focusing": 121536, "absolute increase": 2613, "increase zeroshot": 75248, "point increase": 123708, "additionally using": 5145, "answers oracle": 10058, "candidate selection": 19733, "selection achieves": 147829, "demonstrate outputs": 38457, "attention ability": 13829, "highquality samples": 70073, "tasks incorporate": 162588, "flexible model": 59816, "simple training": 151545, "models empowered": 106100, "insight learning": 77491, "probabilistic model": 128089, "multiple intermediate": 110951, "training provide": 168669, "learning error": 90424, "error demonstrate": 50291, "noise model": 113980, "topological structure": 167391, "time present": 166469, "mechanism named": 100015, "address computational": 5204, "computational challenges": 28339, "growing complexity": 68016, "complexity long": 27683, "contexts used": 31061, "parameters measure": 119804, "detecting removing": 40428, "entries use": 49961, "use finegrained": 172625, "parameters capture": 119721, "problem despite": 128227, "despite previous": 40180, "lower bounds": 97815, "parameters small": 119864, "design easily": 39612, "locality sensitive": 97265, "hashing lsh": 68855, "identify large": 71914, "solutions like": 153042, "makes inference": 98658, "50 faster": 1297, "32k context": 1018, "length perplexity": 91383, "speedup single": 154527, "single attention": 151779, "understanding commonsense": 171163, "synergistic capabilities": 159857, "vlms large": 177461, "commonsense understanding": 26329, "commonsense inference": 26264, "pretrained vlms": 127247, "crossdataset generalization": 33619, "vlms face": 177458, "vlms provide": 177477, "perception results": 120822, "results image": 143483, "identify challenge": 71867, "leading incorrect": 89829, "llms mitigate": 95890, "issue suggest": 80964, "collaborative approach": 25607, "reasoning actively": 136655, "commonsense inferences": 26265, "differently based": 42116, "based problem": 16034, "problem classification": 128198, "classification visual": 24137, "vlms perform": 177469, "understanding evaluate": 171218, "embeddings improve": 47243, "improve instruction": 73490, "finetuning improved": 59298, "improved dramatically": 73683, "adds noise": 5490, "noise embedding": 113978, "finetuning llama27b": 59355, "llama27b using": 93384, "using alpaca": 173969, "using noisy": 174538, "agent finetuning": 6444, "lms external": 97137, "reason act": 136554, "rely fewshot": 139843, "techniques offtheshelf": 163974, "variety base": 175692, "agents consistently": 6569, "consistently improved": 29880, "example finetuning": 52476, "trajectories generated": 168859, "gpt4 leads": 67062, "methods having": 101563, "diverse finetuning": 43529, "improve agents": 73407, "findings regarding": 58769, "generalization efficiency": 63169, "benefits finetuning": 17467, "provides initial": 133165, "initial set": 77053, "experimental designs": 53935, "insights open": 77614, "chatgpt applied": 22709, "applied reasoning": 10802, "experiments use": 54507, "including arithmetic": 74418, "theorem prover": 166005, "logic output": 97336, "study benchmark": 157186, "puzzles dataset": 133818, "dataset challenging": 36147, "crafted prompts": 33149, "second output": 147497, "forms basis": 60592, "models identified": 106659, "annotated answers": 9446, "chatgpt corresponding": 22815, "chatgpt answer": 22703, "answer manually": 9733, "need developing": 112269, "developing software": 41025, "software using": 152853, "discussion paper": 43000, "paper release": 119302, "tools github": 167172, "ai does": 6960, "help programmers": 69165, "statements potentially": 155050, "skills required": 152186, "required develop": 141229, "develop software": 40836, "report experiment": 140524, "computational thinking": 28415, "ability develop": 2127, "tools results": 167248, "results ability": 143149, "discuss approach": 42870, "tools propose": 167237, "electronic devices": 46995, "task incorporating": 161465, "design flow": 39635, "security solutions": 147625, "provide effective": 132760, "llms celebrated": 94555, "reasoning program": 137066, "synthesis tasks": 159969, "leveraging emergent": 91837, "existing gaps": 53376, "aiming efficient": 7546, "possibilities challenges": 124365, "ensure security": 49705, "security increasingly": 147592, "demonstrates comprehensive": 38833, "emotional speech": 47586, "expressions present": 55600, "model existing": 103591, "corpora lack": 32229, "lack proper": 82990, "method produce": 101036, "produce emotional": 129394, "sentiment polarity": 148660, "coverage generated": 33057, "generated candidate": 63804, "scripts assistance": 147254, "language fluency": 83325, "fluency scores": 59893, "corpora benchmark": 32209, "emotional texttospeech": 47591, "synthesis using": 159972, "using discrete": 174146, "discrete codes": 42800, "exists gap": 53660, "gap performance": 62701, "performance synthesizing": 122147, "speech emotional": 154406, "makes task": 98692, "task harder": 161443, "challenges task": 22078, "relevant works": 139669, "generates scripts": 64108, "models optimus": 108371, "problems pervasive": 128589, "problems solved": 128629, "optimization tools": 117050, "agent designed": 6432, "mathematical models": 99574, "models writing": 109720, "code developing": 24790, "mixed integer": 102716, "integer linear": 78470, "programming milp": 129857, "problems experiments": 128502, "nearly twice": 112120, "does prompt": 44010, "affect chatgpt": 6299, "applications ranging": 10653, "healthcare ecommerce": 68995, "solutions required": 153069, "highly dependent": 69909, "known llms": 82612, "llms pose": 96122, "pose risks": 124172, "risks quality": 145019, "socalled prompt": 152523, "systematic experimental": 160126, "far paper": 57229, "nature results": 112029, "affect quality": 6314, "metrics dataset": 102039, "understanding various": 171529, "employ human": 47828, "llama gpt": 93311, "evaluation employ": 51562, "ensemble refinement": 49643, "refinement techniques": 138772, "techniques combine": 163853, "capabilities prompting": 20128, "llms selected": 96499, "ability achieve": 2050, "earlier generalpurpose": 45231, "highest performance": 69668, "performance suggests": 122134, "graduate education": 67425, "processing technology": 129336, "purpose ai": 133734, "communication natural": 26394, "actual human": 4483, "difficult realize": 42175, "results allowing": 143168, "case language": 20878, "method significant": 101094, "played central": 123479, "unprecedented results": 172092, "initial predictions": 77041, "reported results": 140568, "results learning": 143563, "learning vast": 91122, "amounts textual": 8703, "learning instance": 90582, "operations performed": 116792, "learning enabling": 90414, "complex images": 27434, "images corresponding": 72405, "using vast": 174848, "data report": 35647, "cuttingedge nlp": 34444, "additionally examples": 5056, "leading current": 89807, "models second": 109055, "information better": 76297, "training directly": 168393, "typically improves": 170494, "finetuning schemes": 59527, "architectures based": 12249, "pooling strategies": 123938, "embeddings compare": 47219, "detailed comparisons": 40277, "pretrained causal": 126763, "experiments librispeech": 54340, "85 wer": 1709, "improvements finally": 73903, "rich context": 144767, "systems dialogue": 160337, "desirable able": 40029, "requires expensive": 141365, "present preliminary": 126413, "showing method": 150177, "attacks exploit": 13707, "dynamic power": 45148, "power consumption": 125163, "leak sensitive": 89929, "mitigating potential": 102675, "primarily focuses": 127781, "analysis required": 9125, "vulnerabilities improve": 177616, "based graph": 15851, "networks gnn": 112752, "registertransfer level": 138946, "level rtl": 91504, "controldata flow": 31606, "flow graphs": 59873, "graphs use": 67651, "uses largelanguage": 173877, "design code": 39577, "algorithms like": 7945, "accuracy 100": 3102, "explainability analysis": 54720, "gnn model": 66137, "maintaining comparable": 98343, "design cycle": 39594, "design cost": 39589, "promise generative": 130180, "including questionanswering": 74689, "tasks practical": 162966, "deployment faces": 39271, "challenges notably": 21969, "hallucination models": 68395, "generate plausiblesounding": 63649, "information issue": 76533, "particularly critical": 120165, "critical medical": 33521, "potential social": 124986, "involved paper": 80707, "paper analyses": 118742, "phenomenon hallucination": 122829, "hallucination medical": 68393, "medical generative": 100179, "using widely": 174869, "answers specific": 10081, "specific emphasis": 153985, "methodology incorporates": 101239, "incorporates knowledge": 75059, "generation feedback": 64656, "enhances factuality": 49409, "answers experimental": 10019, "results automatic": 143182, "hallucination reduction": 68410, "reduction compared": 138608, "sampling step": 146116, "language poses": 86468, "risk information": 144945, "token represent": 166731, "vocabulary paper": 177511, "embedding representation": 47185, "representation address": 140667, "step llms": 155660, "offers advantage": 115783, "broader spectrum": 19225, "modification model": 109868, "superiority robustness": 159074, "alternative language": 8565, "language communication": 83196, "crossdomain texttosql": 33631, "texttosql large": 165843, "texttosql task": 165853, "examples greatly": 52600, "greatly enhance": 67785, "paper delve": 118835, "examples contribute": 52546, "contribute improvement": 31405, "improvement explore": 73793, "explore harness": 55214, "annotations based": 9574, "demonstration selection": 38983, "selection framework": 147851, "construct demonstrations": 30129, "retrieving demonstrations": 144279, "leverages advantages": 91710, "showcasing effectiveness": 150109, "approaches crossdomain": 11722, "improvements 11": 73870, "points execution": 123748, "accuracy respectively": 3376, "service robot": 149069, "intelligent decisionmaking": 78948, "decisionmaking service": 37441, "tasks integrating": 162615, "integrating task": 78627, "conversation agent": 31775, "derived large": 39359, "learned vast": 90140, "vast corpus": 176330, "corpus general": 32311, "generating dialogue": 64193, "robots conversational": 145218, "measured dimensions": 99891, "aligned language": 8058, "tasks concerns": 162103, "potential generating": 124746, "generating malicious": 64269, "content emerged": 30481, "explore power": 55274, "power incontext": 125180, "alignment ability": 8115, "demonstrations finetuning": 39006, "llms manipulated": 95856, "malicious prompts": 98844, "incontext attack": 74841, "icd methods": 71651, "model purposes": 104397, "harmful prompts": 68747, "increasing reducing": 75353, "icl influence": 71679, "influence llm": 76209, "behavior provide": 16637, "perspective enhancing": 122659, "enhancing safety": 49565, "traits users": 168857, "users draft": 173629, "creating user": 33329, "proposed workflow": 132456, "task possible": 161631, "capabilities recently": 20149, "llm allows": 93459, "thousand tokens": 166251, "prompting creation": 130891, "offers details": 115792, "details performing": 40338, "proposed process": 132418, "process existing": 128821, "capture user": 20692, "input perturbation": 77304, "problems llms": 128558, "llms unified": 96886, "filling task": 58337, "increasing capabilities": 75307, "performance commonlyused": 121269, "fails accurately": 56995, "reliability robustness": 139704, "applied realworld": 10800, "task systematically": 161763, "evaluate dialogue": 50945, "dialogue understanding": 41539, "scenarios specifically": 146703, "perturbation evaluation": 122748, "contains types": 30395, "perturbation types": 122750, "data furthermore": 35083, "furthermore utilize": 62177, "sentence levels": 148510, "construct candidate": 30123, "data pool": 35497, "design ways": 39801, "demonstration construction": 38971, "construction strategies": 30234, "aim assess": 7427, "assess various": 13135, "various robustness": 176148, "perform realworld": 121021, "scenarios experiments": 146596, "robustness performance": 145416, "based experimental": 15790, "chatgpt feedback": 22940, "2022 chatgpt": 666, "transformative effect": 169064, "help homework": 69123, "homework assignments": 70316, "includes using": 74393, "tool writing": 167065, "evaluated quality": 51209, "regarding coherence": 138863, "essays written": 50575, "written english": 179777, "feedback evaluation": 57672, "evaluation used": 51913, "positive reinforcement": 124305, "problem statement": 128412, "according types": 3061, "analysis feedback": 8933, "types evaluation": 170352, "highly abstract": 69886, "concrete suggestions": 28923, "suggestions improvement": 158641, "accuracy detecting": 3201, "efficacy numerous": 46403, "tasks led": 162701, "led integration": 91230, "research mainly": 141897, "enhancing semantic": 49567, "understanding pretrained": 171415, "models optimizing": 108369, "optimizing single": 117128, "prompts established": 131253, "representations align": 140762, "topic distributions": 167320, "leveraging semistructured": 91952, "efficiency experimental": 46454, "stateoftheart retrieval": 155346, "established facts": 50689, "past events": 120384, "planning decisionmaking": 123261, "reasoning facilitate": 136853, "facilitate investigation": 56629, "investigation introduce": 80637, "test counterfactual": 164538, "capabilities modern": 20057, "modern multimodal": 109822, "boolean queries": 18805, "data representing": 35651, "dataset revealed": 36515, "vision reasoning": 176976, "dataset serve": 36528, "serve vital": 149022, "unit commitment": 171868, "power flow": 125174, "require powerful": 141171, "powerful robust": 125329, "ml algorithm": 102772, "training problems": 168645, "including training": 74764, "training gpt3": 168470, "paper designs": 118847, "overcome challenging": 118278, "systems ranging": 160565, "released opensource": 139532, "combination information": 25826, "texts structured": 165784, "tables various": 160772, "advances reasoning": 6058, "tasks paradigm": 162927, "performance incontext": 121661, "selection procedure": 147880, "considering diversity": 29711, "crucial work": 33887, "method selecting": 101085, "linear program": 92971, "diversity constraints": 43714, "attributes capacity": 14105, "capacity constraints": 20500, "prompt size": 130675, "provided capacity": 133040, "realworld benchmarks": 136411, "framework autonomous": 60973, "development adoption": 41042, "adoption generative": 5635, "chatgpt claude": 22779, "greatly increased": 67794, "machines paper": 98166, "architecture enabling": 12159, "enabling machines": 48326, "machines software": 98167, "software agents": 152769, "agents operate": 6675, "operate independently": 116737, "framework presents": 61353, "architectures model": 12281, "designed harness": 39888, "harness capabilities": 68783, "capabilities latest": 20006, "latest generative": 89546, "technologies including": 164089, "agent model": 6475, "control task": 31593, "distinct role": 43249, "setting moral": 149477, "strategic thinking": 155948, "thinking task": 166162, "enhancing robustness": 49563, "framework proposes": 61363, "open dataset": 116222, "dataset highquality": 36338, "text growing": 165218, "quality carefully": 134056, "tokens code": 166790, "role improving": 145501, "require quantitative": 141176, "known open": 82617, "datasets employ": 36812, "preserve mathematical": 126668, "web documents": 178005, "inspired works": 77776, "method extracting": 100863, "latex content": 89576, "additionally run": 5132, "showing models": 150179, "face hub": 56534, "help spur": 69182, "spur advances": 154609, "model representations": 104456, "capabilities prone": 20129, "developed techniques": 40920, "truth training": 169889, "internal activations": 79543, "visualizations llm": 177361, "causal evidence": 21185, "evidence obtained": 52203, "overall present": 118218, "models linearly": 107010, "truth falsehood": 169881, "mistral 7b": 102555, "7b outperforms": 1636, "outperforms llama": 117796, "evaluated benchmarks": 51150, "llama 34b": 93279, "mathematics code": 99611, "handle sequences": 68565, "sequences arbitrary": 148805, "arbitrary length": 12083, "length reduced": 91389, "instruct surpasses": 77933, "chat model": 22544, "human automated": 70605, "automated benchmarks": 14522, "benchmarks models": 17309, "released apache": 139503, "apache 20": 10137, "20 license": 600, "teaching language": 163643, "models hallucinate": 106577, "synthetic tasks": 160078, "documentbased questionanswering": 43877, "summarization clinical": 158811, "included context": 74349, "challenging hallucination": 22168, "hallucination hard": 68381, "work reducing": 179256, "optimizes llms": 117104, "tasks realistic": 163082, "study sentence": 157618, "tests require": 164788, "require multiple": 141160, "school year": 146840, "tests study": 164792, "used assess": 172966, "ability time": 2396, "time generate": 166409, "highquality parallel": 70060, "simulated responses": 151667, "llm filter": 93673, "items based": 81083, "generating parallel": 64288, "responses evaluation": 142781, "generated test": 64000, "students grades": 156865, "produces test": 129540, "test scores": 164614, "scenarios prompt": 146678, "scenarios large": 146634, "challenges higher": 21898, "performance studies": 122120, "information question": 76668, "question relevant": 134931, "llms perception": 96063, "perception key": 120807, "information simultaneously": 76760, "challenges conduct": 21807, "evaluation wide": 51933, "range long": 135643, "summarization synthetic": 158881, "fewer tokens": 57871, "tokens input": 166828, "285 274": 900, "1000 samples": 167, "benchmark respectively": 17075, "endtoend latency": 48742, "knowledge cognitive": 81817, "cognitive agents": 25437, "capabilities far": 19897, "inference capabilities": 75971, "architecture capabilities": 12127, "work area": 178806, "area llms": 12330, "agents supported": 6744, "testing paper": 164740, "tools automate": 167108, "supporting specific": 159382, "present prompt": 126421, "assess extent": 13079, "threat landscape": 166271, "llms accelerating": 94275, "capabilities report": 20159, "report promising": 140552, "promising concerning": 130241, "cyber threats": 34467, "threats llms": 166281, "capabilities deal": 19847, "deal complex": 37263, "sensitivity prompts": 148461, "prompting reduces": 131062, "prediction error": 125789, "error large": 50301, "level proficiency": 91498, "tom tasks": 166918, "unobservable mental": 172063, "human social": 71039, "humans artificial": 71349, "errors llm": 50374, "context ai": 30685, "ai tutor": 7303, "storing retrieving": 155891, "retrieving facts": 144282, "cases llm": 20990, "learn users": 90074, "theories human": 166062, "opportunities associated": 116829, "modeling user": 105119, "psychology propose": 133515, "propose ways": 132217, "ways mitigate": 177912, "possible directions": 124413, "jailbreak opensource": 81181, "llms exploiting": 95202, "significantly advancing": 150937, "advancing ai": 6076, "extensive efforts": 55753, "efforts model": 46926, "helpfulness harmlessness": 69222, "carefully aligned": 20791, "models manipulated": 108134, "known jailbreaks": 82607, "triggered specific": 169759, "propose generation": 131853, "methods exploiting": 101504, "exploiting different": 55028, "generation strategies": 65105, "methods increase": 101600, "increase misalignment": 75213, "misalignment rate": 102462, "rate 95": 135972, "including llama2": 74596, "cost finally": 32676, "effective alignment": 45688, "method explores": 100852, "diverse generation": 43533, "rate attack": 135977, "alignment procedures": 8216, "advocating comprehensive": 6287, "better alignment": 17799, "releasing models": 139548, "graphs pretrained": 67647, "yield promising": 179973, "results knowledge": 143547, "limited quality": 92827, "popular entities": 123995, "works pretrained": 179478, "reranking generated": 141530, "based types": 16157, "semantic word": 148258, "exploration physical": 55093, "crucial attributes": 33766, "everyday objects": 52163, "objects address": 115273, "physics reasoning": 122948, "domainspecific adaptation": 44559, "benchmark present": 17054, "present pipeline": 126409, "enable researchers": 48125, "benchmark customized": 16886, "providing foundation": 133299, "160k qa": 463, "curated using": 34030, "investigate physical": 80464, "mainstream language": 98307, "highlight capabilities": 69727, "llms physical": 96103, "reasoning compared": 136762, "50 vs": 1312, "enhancing language": 49498, "models paving": 108451, "physically grounded": 122919, "technology various": 164176, "meticulous analysis": 101938, "time especially": 166395, "stage software": 154752, "evaluation platforms": 51774, "short terms": 150004, "terms automatic": 164387, "automatic coding": 14649, "tool designed": 166962, "harnesses capabilities": 68804, "gpt api": 66386, "manual coding": 99029, "datasets verify": 37195, "linguistic sense": 93062, "disambiguation finegrained": 42641, "finegrained multimodal": 58883, "multimodal retrieval": 110758, "encouraging progress": 48623, "persist including": 122526, "order overcome": 117226, "consider information": 29572, "capability leveraging": 20334, "instructions provided": 78332, "enhanced information": 49340, "operations large": 116784, "immense opportunities": 72595, "intricate challenges": 79834, "like mistral": 92354, "7b llm": 1632, "access llm": 2879, "jin et": 81227, "2023 paper": 707, "forth framework": 60644, "new world": 113512, "risks inherent": 144993, "role autonomous": 145465, "xie et": 179834, "hendrycks et": 69269, "thesis delves": 166122, "delves intricate": 38112, "intricate dynamics": 79843, "references recent": 138700, "findings research": 58771, "ai information": 7044, "information campaigns": 76304, "provides foundational": 133154, "holistic understanding": 70303, "face rapid": 56547, "rapid technological": 135908, "technological advancement": 164066, "mental illness": 100503, "remains critical": 139997, "requires highlevel": 141387, "conduct deep": 29062, "reasoning analysis": 136668, "models believe": 105477, "develop ai": 40752, "propose diagnosis": 131782, "diagnosis patients": 41368, "reasoning elicit": 136822, "schemas generated": 146777, "highquality rationales": 70068, "transformers neural": 169338, "models attempts": 105408, "obtain knowledge": 115484, "obtain highquality": 115478, "highquality knowledge": 70047, "especially scratch": 50540, "scratch paper": 147226, "method building": 100722, "crowdworkers large": 33741, "used method": 173144, "method build": 100721, "require domain": 141089, "using long": 174454, "contexts poses": 31041, "generated contexts": 63833, "processed llm": 129047, "llm existing": 93649, "context processing": 30882, "caching intermediate": 19595, "features text": 57590, "keyvalue kv": 81609, "distributional properties": 43410, "sizes datasets": 152092, "compared recent": 26907, "recent methods": 137560, "methods handle": 101560, "maintaining similar": 98381, "generators large": 65639, "community concerns": 26456, "light introduce": 92123, "comprehensive knowledge": 28069, "designed systematically": 39955, "systematically automatically": 160174, "automatically evaluate": 14796, "evaluate generated": 50976, "generated knowledge": 63893, "knowledge important": 82107, "relevance coherence": 139552, "knowledgegrounded dialogue": 82552, "significantly hinder": 151013, "outputs important": 118067, "small factual": 152289, "factual mistakes": 56893, "designing strategies": 40010, "strategies prompt": 156056, "engineering knowledge": 48939, "selection evaluation": 147845, "code llmgenerated": 24989, "released facilitate": 139511, "models wireless": 109697, "shift realm": 149918, "realm artificial": 136344, "systems ai": 160236, "future wireless": 62399, "article outline": 12590, "new family": 113187, "probabilistic generative": 128082, "performance key": 121701, "process denoising": 128785, "generating samples": 64323, "based case": 15692, "studies presented": 157051, "propose denoising": 131780, "30 improvement": 963, "improvement achieved": 73751, "performance empirical": 121449, "models chinese": 105622, "llms artificial": 94427, "release llms": 139480, "process research": 128977, "instructiontuning llms": 78415, "llms chinese": 94605, "paper makes": 119077, "valuable findings": 175412, "customizing llms": 34417, "instructions specifically": 78354, "impact llm": 72682, "llm bases": 93505, "methods instruction": 101603, "conduct experiment": 29085, "experiment study": 53915, "impact factors": 72650, "chainofthought data": 21505, "study make": 157479, "make modest": 98571, "open chinese": 116214, "chinese version": 23669, "knowledge review": 82389, "quickly outdated": 135353, "maintaining uptodate": 98385, "pressing concern": 126711, "concern current": 28739, "current era": 34112, "knowledge retraining": 82377, "research works": 142155, "indepth comparisons": 75525, "discuss existing": 42888, "challenges highlight": 21899, "field release": 58239, "significant milestone": 150781, "domains effectiveness": 44391, "somewhat constrained": 153267, "topological data": 167386, "analysis tda": 9197, "garnered substantial": 62792, "coding proficiency": 25400, "work endeavors": 178933, "gap theoretical": 62741, "coding skills": 25405, "skills effectively": 152153, "code computational": 24729, "using established": 174171, "examples specific": 52700, "explore application": 55145, "enabling real": 48342, "real applications": 136218, "logical deductions": 97354, "meticulously examines": 101951, "examines simple": 52438, "simple transformer": 151546, "transformer trained": 169214, "extending prior": 55682, "research enhance": 141755, "enhance comprehension": 49174, "paper elucidates": 118870, "causal decisionmaking": 21178, "layer depth": 89628, "suite large": 158728, "particularly artificial": 120149, "operations aiops": 116774, "stable operation": 154700, "operation existing": 116757, "new trend": 113477, "root cause": 145598, "cause analysis": 21240, "information performance": 76622, "designed llms": 39909, "scenarios different": 146579, "comprehensive performance": 28094, "current leading": 34155, "techniques affect": 163829, "discussed findings": 42959, "including model": 74622, "manually review": 99105, "time opensourced": 166455, "eliminate issue": 47066, "constructed online": 30183, "newly emerging": 113536, "emerging llms": 47522, "leaderboard public": 89794, "llms continues": 94726, "emerged scalable": 47399, "alternative human": 8561, "investigates efficacy": 80559, "efficacy llm": 46393, "given instruction": 65914, "llm evaluator": 93645, "outputs authors": 118025, "pairs outputs": 118605, "adhering instructions": 5528, "highestscoring ones": 69676, "improvement present": 73835, "gap llm": 62676, "offer insight": 115660, "better instructionfollowing": 17915, "understanding spatial": 171481, "openvocabulary descriptions": 116713, "grounding llm": 67905, "llm paradigm": 93867, "employs novel": 47975, "novel powerful": 114639, "integrates discrete": 78552, "jointly represent": 81285, "image extract": 72251, "adept handling": 5496, "sparsity different": 153764, "different shapes": 41994, "dataset including": 36358, "hierarchical spatial": 69373, "spatial knowledge": 153786, "negative data": 112511, "promote model": 130341, "performance classical": 121244, "grounding tasks": 67928, "improved capability": 73675, "capability describing": 20280, "describing image": 39397, "image details": 72227, "object hallucination": 115128, "hallucination code": 68361, "range settings": 135694, "mobile phones": 102905, "diverse inference": 43545, "palm llama": 118661, "sizes significant": 152114, "latency cost": 89478, "cost accuracy": 32649, "designed offer": 39923, "effectiveness different": 46159, "modalities language": 102937, "speculative decoding": 154377, "selfconsistency improves": 147951, "ranking large": 135804, "bias use": 18216, "context especially": 30748, "ranking list": 135808, "prompt produce": 130641, "prompt pass": 130626, "prompt order": 130621, "biases process": 18305, "robustness method": 145404, "random perturbations": 135538, "passage reranking": 120334, "reranking approach": 141529, "llama v2": 93341, "parameters limits": 119794, "limits effectiveness": 92913, "effectiveness instruction": 46203, "tuning zeroshot": 170148, "generalization work": 63239, "pretrained retrieval": 127149, "retrieval specifically": 144139, "43b gpt": 1227, "tokens notably": 166845, "demonstrating significant": 38955, "significant scaling": 150874, "potential method": 124858, "improvement instruction": 73809, "specifically average": 154143, "shortform qa": 150045, "tasks 10": 161862, "longform qa": 97545, "tasks 16": 161869, "tasks surprisingly": 163327, "better gpt": 17892, "gpt decoder": 66404, "pretraining retrieval": 127429, "tuning code": 169972, "code checkpoints": 24703, "classification potential": 24053, "models superior": 109300, "performance associated": 121172, "associated significant": 13508, "time investment": 166425, "researchers recently": 142255, "recently explored": 137884, "approach effectiveness": 11146, "data supporting": 35832, "understand factors": 171005, "instance level": 77801, "negatively associated": 112540, "data conclude": 34820, "discussing implications": 42982, "implications work": 72964, "work potential": 179168, "llm synthetic": 94038, "inference explanation": 76006, "explanation large": 54787, "despite limited": 40154, "knowledge systems": 82446, "numerous complex": 115032, "including creative": 74477, "advanced applications": 5704, "explanation present": 54799, "using generalpurpose": 174227, "datasets form": 36882, "usually associated": 174890, "model augment": 103156, "augment knowledge": 14243, "knowledge outperform": 82257, "range benchmark": 135589, "predicting molecular": 125743, "molecular properties": 110029, "model explain": 103604, "avenues ai": 15241, "development propose": 41201, "automate game": 14498, "mitigate concerns": 102596, "mitigate hallucination": 102606, "phases furthermore": 122813, "achieve code": 3600, "agent intelligent": 6453, "techniques text": 164039, "digital interactions": 42288, "features developed": 57473, "process making": 128913, "model acquire": 103059, "need data": 112257, "learn various": 90075, "prediction techniques": 125877, "task merely": 161541, "finetuned gpt35": 59032, "requiring costly": 141477, "task prompting": 161653, "expertise prompt": 54626, "engineering address": 48877, "designed engage": 39859, "complex prompts": 27535, "tailored meet": 160926, "meet specific": 100283, "specific needs": 154044, "needs offering": 112481, "solution challenge": 152906, "challenge conducted": 21608, "tasks half": 162489, "participants used": 120027, "domain question": 44261, "chat gpt": 22532, "information transmission": 76817, "sources approach": 153493, "similar concept": 151223, "llm need": 93843, "need make": 112346, "evaluation llm": 51669, "propose question": 132089, "dataset compiled": 36171, "demonstrate dataset": 38282, "xlmr performance": 179845, "chat gpt35": 22533, "experiment indicate": 53893, "evidenced higher": 52238, "scores compared": 147129, "instruction context": 77971, "context concludes": 30712, "domain especially": 44137, "problems iterative": 128542, "intrigued claims": 79871, "paper set": 119323, "set investigate": 149223, "evaluate planning": 51065, "llms plan": 96106, "generation verification": 65252, "verification findings": 176479, "especially compared": 50441, "systems external": 160379, "notable number": 114239, "number false": 114866, "nature feedback": 112000, "results cast": 143209, "cast doubt": 21037, "framework planning": 61347, "attention module": 13937, "transformerbased llms": 169257, "footprint inference": 60352, "latency work": 89488, "propose plugandplay": 132067, "plugandplay approach": 123660, "span tokens": 153658, "reducing memory": 138580, "cost processing": 32728, "experiments indomain": 54319, "zeroshot openended": 180276, "demonstrate advantage": 38225, "approach sparse": 11561, "baselines terms": 16378, "multiclass classification": 110362, "policy documents": 123834, "automate text": 14509, "far achieved": 57211, "work test": 179339, "performance alternative": 121148, "alternative strategy": 8582, "requires human": 141390, "human involvement": 70878, "involvement manual": 80713, "use gpt": 172656, "openai pretrained": 116371, "congressional bills": 29454, "topics propose": 167363, "usecase scenarios": 172944, "overall accuracies": 118172, "model employed": 103529, "scenarios aims": 146532, "human interference": 70869, "accuracy human": 3264, "surprisingly high": 159564, "achieved 83": 3781, "accuracy 65": 3115, "automated coding": 14530, "given dataset": 65867, "accuracy reducing": 3369, "exploring cognitive": 55460, "knowledge structure": 82430, "assessing capabilities": 13170, "cognitive research": 25477, "structure llms": 156582, "lacking paper": 83039, "paper based": 118767, "method conduct": 100748, "meticulously annotated": 101943, "human test": 71056, "taxonomy aim": 163572, "knowledge structures": 82433, "structures llms": 156706, "llms gain": 95317, "research emphasizes": 141747, "emphasizes significance": 47648, "cognitive patterns": 25467, "light models": 92130, "researchers advance": 142168, "development utilization": 41255, "llms informed": 95635, "effective manner": 45806, "models universal": 109549, "embedding key": 47170, "various systems": 176192, "systems example": 160367, "english natural": 49084, "unified embedding": 171704, "model dedicated": 103412, "make initial": 98555, "step goal": 155643, "languages natural": 87068, "programming pretrained": 129863, "finetuned limited": 59050, "embedding tasks": 47199, "data benchmarks": 34716, "multilingual classification": 110471, "classification code": 23973, "code search": 25132, "search models": 147378, "models supervision": 109308, "building powerful": 19438, "factors cause": 56789, "consequently llms": 29547, "dataset seen": 36522, "seen finetuning": 147693, "sizes finetuning": 152097, "finetuning suggest": 59571, "biased samples": 18239, "debiased finetuning": 37304, "finetuning allows": 59164, "finetuning research": 59513, "help build": 69093, "reliable language": 139728, "errors code": 50342, "information create": 76340, "relational data": 139269, "facilitating question": 56715, "answering information": 9873, "called knowledge": 19658, "conference 2023": 29336, "tasks focused": 162422, "focused constructing": 60086, "track challenge": 167521, "constrained maximum": 30036, "model offers": 104144, "extend vocabulary": 55646, "multitoken prediction": 111255, "prediction address": 125757, "models vocabulary": 109666, "vocabulary preserving": 177512, "newly added": 113526, "approaches framework": 11783, "hidden test": 69340, "adopts lightweight": 5663, "prompts directly": 131229, "enabling direct": 48287, "multitoken entities": 111254, "signifying substantial": 151188, "chainofthought fewshot": 21506, "aims convert": 7590, "need developed": 112268, "methods heavily": 101564, "inspired chainofthought": 77713, "problem generation": 128267, "logical forms": 97361, "account characteristics": 3071, "complicated questions": 27716, "outperforms prompting": 117835, "prompting baselines": 130866, "baselines evaluated": 16315, "surpass existing": 159454, "meteor rougel": 100612, "robust multimodal": 145292, "learning autonomous": 90238, "agents llm": 6650, "llm serves": 93991, "multistep task": 111194, "multimodal agents": 110582, "diverse ai": 43456, "complex challenges": 27371, "challenges current": 21811, "predefined taskspecific": 125661, "traditional model": 167663, "methods incompatible": 101597, "agent scenarios": 6498, "dependencies subtasks": 39147, "runtime overhead": 145765, "robustness multimodal": 145408, "designed investigate": 39902, "challenge multimodal": 21686, "enables dynamic": 48175, "considering user": 29735, "process code": 128755, "science propose": 146905, "propose instructionbased": 131881, "helps alleviate": 69235, "alleviate scarcity": 8305, "relevant highquality": 139609, "model specialized": 104641, "trustworthiness generated": 169850, "prompting multiple": 131024, "verifier module": 176516, "dataset multiple": 36420, "data iteratively": 35264, "tasks iterative": 162650, "iterative improvement": 81125, "refinement study": 138770, "study quality": 157577, "evaluation analyze": 51431, "code relevant": 25094, "llms operating": 95997, "revolutionized ai": 144638, "ai constrained": 6930, "extended conversations": 55654, "document analysis": 43810, "context limited": 30831, "hierarchical memory": 69363, "systems traditional": 160645, "data movement": 35402, "order effectively": 117188, "effectively provide": 46069, "provide extended": 132782, "user evaluate": 173404, "design domains": 39610, "domains limited": 44466, "able analyze": 2465, "underlying llms": 170850, "create conversational": 33180, "remember reflect": 140339, "development visionlanguage": 41261, "compositional image": 27814, "understanding introduce": 171314, "datasets domainspecific": 36802, "weather conditions": 177986, "datasets consisting": 36734, "extensive zeroshot": 55973, "identifying certain": 71989, "reveal model": 144355, "marginal gains": 99196, "performance largest": 121728, "vlms like": 177465, "finding points": 58616, "vlms excel": 177457, "models incorporating": 106732, "significant enhancement": 150702, "task aim": 161181, "reflection large": 138812, "capacity planning": 20533, "planning executing": 123269, "works require": 179490, "examples task": 52706, "task supervised": 161761, "autonomously learn": 14962, "control computer": 31527, "agent perform": 6483, "problem zeroshot": 128440, "zeroshot agent": 180117, "agent requires": 6496, "given expert": 65884, "plans executable": 123354, "executable actions": 52896, "observed environment": 115405, "learning mistakes": 90689, "structured thought": 156682, "management easy": 98876, "agent outperforms": 6482, "outperforms recent": 117839, "tasks complexity": 162095, "agent performs": 6485, "tasks transformer": 163389, "work mechanistic": 179122, "behaviors language": 16705, "circuit analysis": 23771, "analysis contribute": 8869, "level work": 91520, "evidence insights": 52188, "findings specific": 58798, "findings general": 58674, "study circuit": 157210, "indirect object": 75676, "object identification": 115129, "identification ioi": 71796, "process underlying": 129020, "underlying tasks": 170874, "heads middle": 68921, "explain large": 54702, "behavior terms": 16654, "terms relatively": 164460, "dataset composition": 36174, "advancements pretraining": 5953, "influence blind": 76187, "performance training": 122194, "mono multilingual": 110059, "studies highlight": 157010, "particular common": 120058, "predictive model": 125953, "proxy models": 133440, "furthermore multilingual": 62119, "multilingual tokenizers": 110560, "european languages": 50868, "languages require": 87121, "applied training": 10817, "inefficient tokenization": 75907, "models vital": 109646, "nlp achieving": 113678, "deployment expensive": 39270, "effectiveness paper": 46255, "reproduce compare": 141002, "transfer various": 169005, "transfer based": 168898, "study effectiveness": 157299, "method various": 101172, "generally best": 63302, "best option": 17714, "casebased reasoning": 20935, "reasoning cbr": 136730, "use appropriate": 172504, "appropriate computational": 11971, "developments deep": 41277, "breakthroughs ai": 19019, "used provide": 173198, "molecular property": 110030, "prediction incontext": 125807, "important approach": 73082, "rapidly adapt": 135910, "underpinning incontext": 170896, "learning develop": 90368, "algorithm fewshot": 7807, "approach learns": 11345, "predict molecular": 125692, "properties context": 131636, "molecule property": 110035, "adapts new": 4800, "prediction benchmarks": 125765, "algorithms small": 7970, "competitive best": 27164, "groundbreaking advancements": 67849, "produced impressive": 129493, "supervision stateoftheart": 159219, "demanding extensive": 38144, "input domain": 77229, "strong reliance": 156440, "significant hurdle": 150720, "ai innovation": 7045, "autonomously generating": 14960, "unsupervised reinforcement": 172267, "employs key": 47964, "generates novel": 64090, "novel content": 114448, "content following": 30501, "critic evaluates": 33443, "content offering": 30560, "tasks addressing": 161919, "explore open": 55248, "world recently": 179611, "studies leveraged": 157035, "leveraged large": 91698, "decisionmaking planning": 37425, "nonetheless capacity": 114049, "continuously acquire": 31263, "world remains": 179612, "approach spur": 11564, "tasksolving capabilities": 163505, "llms actively": 94332, "actively select": 4456, "select appropriate": 147766, "guided feedback": 68223, "feedback information": 57710, "information environment": 76394, "facilitates exploration": 56686, "llms maintaining": 95840, "combinatorial nature": 25860, "tasks enabling": 162294, "training based": 168168, "based acquired": 15645, "efficiency llm": 46485, "llm exploring": 93660, "data showing": 35750, "costs compared": 32818, "search decoding": 147332, "detection large": 40538, "generate misinformation": 63610, "approach address": 10969, "knowledge finetune": 82004, "unfortunately method": 171670, "high training": 69550, "cause catastrophic": 21241, "models overcome": 108396, "text aligned": 164824, "aligned reference": 8074, "reference knowledge": 138661, "montecarlo tree": 110094, "guidance propose": 68156, "novel tokenlevel": 114718, "inflection point": 76181, "demonstrate strength": 38563, "effectively reduce": 46071, "score rank": 147091, "rank set": 135779, "predictions introduce": 125912, "new trainingfree": 113476, "approach casts": 11042, "develop computational": 40767, "applied large": 10775, "comprehension commonsense": 27893, "consistently substantially": 29923, "decoding procedures": 37588, "benchmarks observe": 17317, "outperforms larger": 117793, "consistency lms": 29776, "evaluating machine": 51341, "machine perception": 98093, "tools trained": 167273, "indigenous people": 75674, "various roles": 176149, "generating analyzing": 64134, "multiple scenarios": 111035, "offers unique": 115854, "societal biases": 152686, "biases related": 18312, "insights broader": 77517, "broader implications": 19215, "agents humanlike": 6624, "humanlike chatbots": 71251, "necessitate use": 112168, "use commonsense": 172556, "reasoning order": 137012, "effectively comprehend": 45966, "comprehend respond": 27857, "implicit information": 72979, "key evidence": 81496, "multiple turns": 111077, "turns conversation": 170189, "multiple hops": 110933, "distillation framework": 43146, "provides reliable": 133205, "enhancing dialogue": 49475, "improves quality": 74064, "manipulation proposed": 98959, "neural ir": 112851, "domains training": 44542, "data explore": 35023, "scenarios zeroshot": 146724, "supervised trained": 159179, "adaptation addition": 4599, "adaptation effective": 4615, "applying supervised": 10928, "open large": 116245, "data mediumsized": 35358, "questions persist": 135217, "integrate commonsense": 78480, "llms extended": 95211, "reason physical": 136577, "sensors actuators": 148469, "levels llms": 91545, "chatgpt representative": 23271, "representative example": 140924, "tasks physical": 162947, "llms traditional": 96815, "enables new": 48230, "ways incorporating": 177907, "systems efficient": 160348, "al 2023b": 7737, "groups address": 67965, "providing efficient": 133286, "multiple inputs": 110941, "potentially different": 125095, "single input": 151813, "consider linear": 29576, "space satisfies": 153616, "gives rise": 66058, "fusion layer": 62198, "inspired design": 77717, "input design": 77224, "second design": 147467, "applications language": 10577, "fairness natural": 57061, "generation gpt2": 64701, "forms existing": 60595, "approaches primarily": 11865, "labels train": 82834, "human rewrites": 71028, "lack sufficient": 83012, "information optimal": 76608, "propose utilizing": 132205, "enabling generation": 48299, "query rewrites": 134628, "qrecc dataset": 133959, "dataset demonstrates": 36229, "improved retrieval": 73719, "sparse retrievers": 153742, "evaluating generalization": 51302, "encoded knowledge": 48392, "knowledge systematically": 82445, "knowledge abilities": 81719, "abilities generalize": 1915, "spectrum knowledge": 154359, "progressively complex": 130044, "knowledgeintensive benchmark": 82558, "benchmark comprehensively": 16869, "increasing complexity": 75311, "blank filling": 18671, "openended knowledge": 116494, "knowledge generation": 82035, "generalization evaluate": 63170, "opensource blackbox": 116573, "domains extensive": 44407, "knowledge qa": 82324, "settings contexts": 149544, "employing domainspecific": 47919, "facts present": 56841, "variations performance": 175659, "domains task": 44535, "understand evaluate": 171001, "transformers reason": 169347, "llms relational": 96372, "long studied": 97489, "trained require": 168062, "tasks symbolic": 163329, "embedding dimension": 47158, "ii propose": 72107, "adding trainable": 4835, "models solely": 109174, "solely using": 152873, "using imagelevel": 174314, "imagelevel labels": 72379, "attention existing": 13878, "highquality pseudo": 70064, "pseudo labels": 133478, "labels utilizing": 82843, "significantly size": 151155, "size available": 151964, "dataset limited": 36393, "current labeled": 34140, "prompts process": 131418, "labels provide": 82821, "control information": 31550, "prompts leading": 131355, "leading generation": 89819, "diverse backgrounds": 43470, "information tokens": 76810, "transformer vit": 169224, "ability downstream": 2138, "clearly surpasses": 24287, "methods effect": 101460, "method assessing": 100690, "assessing reliability": 13203, "bases strong": 16403, "typically evaluated": 170484, "using accuracy": 173957, "does capture": 43963, "vulnerability llms": 177643, "prompt context": 130413, "produce factually": 129403, "metric designed": 101965, "designed directly": 39850, "factual reliability": 56900, "fact using": 56748, "comprehensive range": 28104, "reliability llms": 139696, "maintaining low": 98364, "overhead addition": 118352, "test corpus": 164537, "research line": 141889, "attacks recently": 13739, "powerful general": 125276, "capabilities increasingly": 19958, "integrated various": 78543, "various web": 176254, "ensure generated": 49684, "content aligns": 30435, "content like": 30541, "applications current": 10467, "prompts prevent": 131416, "attack instructions": 13644, "instructions multiple": 78312, "elicit harmful": 47037, "content realworld": 30593, "harmful instructions": 68737, "instruction attacks": 77966, "making impossible": 98751, "methods known": 101620, "safety assessment": 145840, "harmful prompt": 68746, "achieves attack": 3958, "chatgpt gpt35turbo": 23007, "reveals vulnerability": 144454, "contributing significantly": 31466, "llm security": 93985, "offensive upsetting": 115628, "upsetting content": 172389, "seen considerable": 147688, "llms previous": 96183, "mechanisms model": 100046, "inference improve": 76031, "llms stepbystep": 96682, "proximal policy": 133427, "optimization ppo": 117023, "help discern": 69107, "solution paths": 152961, "generation end": 64606, "heuristic greedy": 69307, "greedy search": 67811, "reasoning pathways": 137024, "enhanced results": 49366, "like gsm8k": 92306, "gsm8k math": 68102, "reward dataset": 144682, "observed similar": 115436, "similar improved": 151249, "roleplaying large": 145553, "agents simulate": 6730, "behaviors given": 16701, "provide highquality": 132822, "highquality generated": 70028, "texts ability": 165675, "form simple": 60488, "simple human": 151472, "train agent": 167744, "agent profile": 6489, "emotional states": 47588, "specific person": 154054, "limited prompts": 92825, "instruct chatgpt": 77927, "api work": 10179, "method focuses": 100881, "build test": 19355, "evaluates agents": 51224, "build future": 19316, "plays significant": 123536, "network ann": 112624, "quantification uq": 134308, "estimating probability": 50745, "medical diagnostics": 100157, "models thanks": 109398, "high computing": 69423, "remains unexplored": 140101, "compared deterministic": 26783, "demonstrates clear": 38828, "quantifying uncertainty": 134331, "benign malignant": 17501, "scene graph": 146735, "research recently": 142036, "fullysupervised approach": 61812, "costly annotations": 32778, "image regions": 72317, "formation process": 60556, "leading insufficient": 89832, "insufficient supervision": 78452, "datasets showing": 37113, "language modelempowered": 83973, "modelempowered agents": 104943, "agents simulating": 6732, "digital economy": 42281, "datadriven modeling": 36043, "modeling abm": 104965, "recently advanced": 137824, "agents existing": 6605, "challenges endowing": 21846, "humanlike decisionmaking": 71259, "decisionmaking including": 37414, "llms macroeconomic": 95835, "simulation presents": 151710, "presents opportunity": 126614, "limitations work": 92689, "early step": 45264, "decisionmaking adaptability": 37397, "economic environment": 45392, "abilities perception": 1984, "decisionmaking address": 37398, "address abovementioned": 5153, "simulation experiments": 151695, "agents work": 6764, "potential simulate": 124984, "llm humanlike": 93740, "disparate areas": 43056, "areas knowledge": 12372, "da vinci": 34499, "advent artificial": 6158, "intelligence explore": 78815, "explore relationships": 55290, "use generalpurpose": 172642, "llm foundation": 93686, "computational experiments": 28364, "capacity knowledge": 20512, "generation versions": 65254, "billion 70": 18423, "70 billion": 1524, "reaching context": 136136, "augmented strategies": 14373, "strategies agentbased": 155958, "data literature": 35323, "web searches": 178020, "automated software": 14605, "gpt4 different": 66971, "prompting engineering": 130918, "techniques basic": 163843, "taskspecific prompting": 163541, "analysis prompting": 9088, "strategies suggests": 156080, "tasks comment": 162079, "generation gpt4": 64703, "gpt4 best": 66933, "different translation": 42063, "graduate students": 67427, "analysis gpt4": 8951, "conversational prompts": 31898, "human provides": 70989, "feedback instructions": 57711, "strategies observe": 156045, "observe participants": 115386, "participants tend": 120023, "suggests current": 158656, "automated prompt": 14594, "task computer": 161264, "vision aims": 176887, "aims enhancing": 7602, "extracting essential": 56227, "essential features": 50608, "features subsequent": 57581, "vision applications": 176888, "applications traditionally": 10707, "designing models": 40004, "focuses developing": 60135, "developing largescale": 41007, "reduces reliance": 138532, "models yielding": 109730, "predominantly concentrated": 125980, "propose universal": 132190, "universal model": 171907, "model general": 103706, "image feature": 72252, "unifies diverse": 171762, "diverse image": 43543, "tasks universal": 163413, "universal framework": 171900, "nlp question": 113795, "employ visual": 47869, "image pair": 72295, "qa problem": 133916, "crossdomain tasks": 33629, "using provided": 174625, "visual prompts": 177258, "need taskspecific": 112403, "finetuning methodology": 59379, "methodology offers": 101250, "demonstrated certain": 38629, "capability research": 20368, "fully explore": 61761, "powerful emergent": 125272, "integrated human": 78532, "recent texttoimage": 137700, "like stable": 92406, "proves highly": 132660, "offers series": 115846, "robust language": 145278, "noisy visual": 114006, "descriptions represent": 39494, "relying human": 139900, "annotations images": 9596, "meaningful highquality": 99794, "highquality image": 70032, "experts providing": 54678, "providing powerful": 133349, "backbone downstream": 15410, "music video": 111317, "video caption": 176689, "generation use": 65227, "use probabilistic": 172822, "human versus": 71085, "english speakers": 49108, "coordinate actions": 32084, "actions based": 4367, "knowledge uncertainty": 82484, "assessed human": 13142, "ability estimate": 2149, "investment advice": 80662, "gpt4 openai": 67091, "openai large": 116360, "probability estimates": 128110, "estimates probability": 50740, "medical contexts": 100146, "context contrast": 30717, "human gpt4": 70841, "mastering task": 99399, "task open": 161583, "models consistent": 105755, "aims extract": 7612, "natural texts": 111958, "capabilities question": 20137, "arises task": 12464, "problem constructing": 128208, "environment llms": 50014, "distribution llm": 43370, "llm test": 94051, "establish reasoning": 50670, "bells whistles": 16801, "results standard": 143811, "carb benchmark": 20745, "supervised method": 159153, "score experiments": 147064, "tacred ace05": 160881, "method naturally": 100990, "generalize information": 63254, "scores respectively": 147168, "shown significantly": 150378, "enhance students": 49296, "difficult adopt": 42128, "provide automated": 132680, "support teachers": 159338, "teachers use": 163633, "evaluation involving": 51654, "students perceive": 156882, "fostering growth": 60700, "results promise": 143688, "feedback teachers": 57807, "broadly llms": 19231, "supporting students": 159384, "demonstrate benefit": 38254, "largescale human": 89315, "students mathematical": 156880, "scaling highquality": 146400, "math teachers": 99538, "strategy address": 156100, "incorporates information": 75054, "information evaluate": 76399, "mistakes providing": 102552, "simplify problem": 151603, "problem leads": 128305, "75 improvement": 1576, "improvement response": 73845, "using current": 174102, "recent rise": 137641, "require creativity": 141085, "initial investigation": 77034, "step bridging": 155604, "specifically conduct": 154156, "comprehensive case": 27974, "notably gpt4": 114273, "models excelled": 106191, "capabilities advanced": 19766, "techniques fall": 163903, "decisionmaking recent": 37434, "works propose": 179484, "propose utilize": 132204, "searches efficient": 147441, "solve single": 153158, "flexible need": 59820, "designs natural": 40023, "programs generate": 129905, "demonstrate process": 38482, "concept called": 28589, "trajectories using": 168861, "capable llm": 20442, "games demonstrate": 62580, "huge improvements": 70517, "33 compared": 1020, "attain comparable": 13751, "llama approach": 93288, "approach yield": 11670, "greater improvement": 67766, "ones finetuned": 115995, "llama27b llama213b": 93382, "planning abilities": 123236, "multiagent collaborations": 110307, "text game": 165101, "performance multiagent": 121820, "collaborative behaviors": 25609, "highorder theory": 69976, "mind capabilities": 102280, "reveal limitations": 144349, "limitations llmbased": 92619, "hallucination task": 68415, "use explicit": 172612, "explicit belief": 54918, "belief state": 16755, "tom inferences": 166916, "demonstrations need": 39034, "paraphrasing using": 119924, "better alternative": 17802, "content removal": 30603, "environment supervised": 50034, "help preserve": 69160, "meaning intent": 99771, "usability paper": 172432, "assist practitioners": 13355, "practitioners developing": 125529, "developing usable": 41037, "exploring incontext": 55472, "outputs specific": 118126, "specific queries": 154068, "focuses key": 60148, "order demonstrations": 117185, "paraphrase dataset": 119903, "just 10": 81361, "advent powerful": 6180, "llm provides": 93931, "new conversational": 113125, "embeddings highly": 47240, "specialized academic": 153869, "evaluate demonstrate": 50943, "assisting researchers": 13448, "types documents": 170347, "search interfaces": 147367, "interfaces digital": 79459, "search evaluate": 147352, "conversational style": 31927, "performance main": 121779, "main types": 98278, "llms semantic": 96502, "tasks applied": 161955, "large textual": 89075, "specific research": 154076, "research projects": 141998, "networks efficient": 112735, "transformers reduce": 169351, "unifies various": 171763, "feedforward blocks": 57826, "insights framework": 77563, "work compares": 178849, "moes dense": 110023, "properly evaluate": 131624, "competitive dense": 27170, "resource efficient": 142383, "utilizes incontext": 175135, "predictions large": 125915, "prompts crucial": 131215, "sampled large": 145973, "volume annotated": 177530, "prompt result": 130653, "costs address": 32812, "aims minimize": 7640, "minimize annotation": 102372, "quality incontext": 134163, "method select": 101084, "subset largescale": 158003, "directed graph": 42423, "graph constructed": 67498, "diffusion process": 42259, "iteratively selects": 81163, "theoretical support": 166051, "support experiments": 159289, "lower time": 97845, "time consumption": 166369, "page available": 118501, "study second": 157609, "regarding impact": 138874, "impact human": 72661, "standards study": 154919, "investigates role": 80580, "role chatgpt": 145467, "using case": 174023, "study approach": 157170, "study employs": 157308, "lens understanding": 91421, "understanding writing": 171541, "writing samples": 179747, "logs results": 97431, "various writing": 176257, "enhance academic": 49142, "offers critical": 115790, "segmentation image": 147738, "witnessed paradigm": 178564, "transformative influence": 169068, "presenting novel": 126542, "containing subjective": 30345, "prompt query": 130648, "approach extracts": 11222, "robust features": 145264, "features prompt": 57560, "representations novel": 140856, "novel feature": 114498, "feature interaction": 57411, "interaction module": 79147, "point prompts": 123721, "image generated": 72257, "utilized guide": 175104, "guide segment": 68208, "model segment": 104525, "target object": 161090, "method stands": 101119, "solution experiments": 152931, "pascal voc": 120310, "segmentation using": 147753, "work pioneers": 179165, "models openworld": 108362, "openworld understanding": 116731, "used field": 173072, "llms expands": 95177, "benchmarks exist": 17239, "require proper": 141175, "proper understanding": 131619, "understanding subject": 171492, "subject question": 157840, "test abilities": 164506, "uniquely capable": 171862, "capable evaluating": 20419, "present evaluation": 126299, "assessing llms": 13185, "ones experiments": 115993, "best llms": 17697, "benchmark demonstrating": 16925, "gap existing": 62646, "social dynamics": 152568, "covid19 vaccine": 33117, "information dissemination": 76361, "significantly expanded": 151003, "offering realtime": 115765, "realtime interactions": 136380, "online platforms": 116121, "invaluable tools": 80317, "significant events": 150705, "events unfold": 52133, "environment study": 50033, "discourse digital": 42705, "digital platforms": 42292, "12 million": 273, "posts news": 124521, "articles related": 12621, "collected multiple": 25695, "platforms including": 123404, "including twitter": 74767, "twitter facebook": 170227, "reflect specific": 138802, "specific features": 153995, "target audiences": 161043, "various public": 176130, "perceptions regarding": 120839, "regarding topics": 138892, "studied lastly": 156928, "unique patterns": 171850, "despite technological": 40238, "explain study": 54716, "including sentiment": 74719, "summarization furthermore": 158835, "models instructiontuned": 106787, "produce helpful": 129418, "explanations response": 54896, "analyzing sentiment": 9385, "movie review": 110229, "review model": 144525, "question task": 134943, "task sentiment": 161716, "analysis feature": 8931, "experiments chatgpts": 54172, "perform par": 121001, "traditional ones": 167676, "addition identified": 4867, "llms entity": 95085, "step data": 155611, "enabler ecommerce": 48153, "drawbacks models": 44920, "hosted llms": 70431, "llms opensource": 95993, "llms run": 96479, "run locally": 145743, "zeroshot scenario": 180331, "sensitivity models": 148457, "ii generation": 72092, "experiments best": 54165, "reach similar": 136118, "exhibit higher": 53058, "higher robustness": 69631, "robustness unseen": 145441, "unseen entities": 172160, "cases training": 21024, "data shared": 35746, "given small": 66012, "datadriven solutions": 36046, "tools address": 167095, "industrial tasks": 75862, "decisionmaking datacentric": 37407, "costs terms": 32848, "computational time": 28416, "time resources": 166491, "delves potential": 38115, "foundational elements": 60833, "including heterogeneous": 74553, "taskrelated data": 161855, "tools explore": 167158, "domainspecific requirements": 44622, "generate professional": 63657, "knowledge past": 82268, "tackle new": 160839, "quantitative investment": 134357, "investment research": 80663, "typical example": 170446, "quantitative research": 134378, "answering zeroshot": 9992, "qa requires": 133924, "approaches finetune": 11774, "equip models": 50176, "qa context": 133876, "context current": 30723, "current qa": 34218, "protocols introduce": 132589, "generate ungrammatical": 63768, "false negative": 57164, "refinement approach": 138753, "including llms": 74599, "chatgpt expert": 22920, "utilising large": 174937, "support open": 159313, "research rapidly": 142030, "lack quality": 82993, "technologies artificial": 164076, "rapidly recently": 135941, "recently systems": 138005, "capabilities certain": 19809, "llms costeffective": 94746, "costeffective annotation": 32758, "gpt35 prompts": 66846, "prompts designed": 131223, "demonstrating promising": 38951, "performance automatic": 121177, "performance categories": 121221, "information available": 76294, "time incontext": 166418, "method harnesses": 100902, "harnesses large": 68805, "quantifying language": 134328, "prompt formatting": 130509, "llms adopted": 94360, "technologies crucial": 164082, "crucial accurately": 33748, "characterize performance": 22480, "behavior design": 16580, "using modern": 174499, "modern pretrained": 109831, "focus llm": 60018, "subtle changes": 158191, "76 accuracy": 1590, "number fewshot": 114868, "tuning analysis": 169963, "single format": 151798, "comparing models": 26998, "arbitrarily chosen": 12071, "format facilitate": 60545, "analysis propose": 9091, "sampled set": 145979, "set plausible": 149265, "expected performance": 53757, "testing essential": 164710, "proactively identify": 128075, "defense mechanisms": 37907, "recent advancement": 137338, "advancement realm": 5859, "insight capabilities": 77483, "capabilities challenges": 19810, "benchmark utilizing": 17118, "introduce llmguided": 80007, "evaluating different": 51287, "benchmark analyze": 16829, "challenging areas": 22115, "maintaining focus": 98351, "focus testing": 60067, "method unleash": 101156, "lmms gpt4v": 97091, "employ offtheshelf": 47853, "study validate": 157709, "finegrained vision": 58900, "vision multimodal": 176962, "segmentation model": 147742, "inherently encode": 76983, "wealth knowledge": 177975, "parameters pretraining": 119838, "extensive corpora": 55739, "detection editing": 40488, "remains ambiguous": 139971, "understanding regarding": 171450, "scales paper": 146376, "transfer larger": 168929, "llms lora": 95825, "module used": 109963, "extracted knowledge": 56188, "benchmarks validate": 17390, "highlight critical": 69731, "critical factors": 33496, "characterizing evaluating": 22489, "llm simulations": 94003, "capture nuances": 20672, "nuances human": 114806, "responses particular": 142871, "settings like": 149606, "like social": 92403, "science experiments": 146873, "concern llm": 28742, "failing capture": 56990, "bridge gaps": 19063, "framework characterize": 61005, "simulations using": 151732, "using dimensions": 174142, "context model": 30851, "evaluate level": 51002, "work llm": 179108, "certain demographics": 21380, "groups topics": 67984, "topics general": 167355, "highly susceptible": 69964, "evaluating incontext": 51314, "possess remarkable": 124348, "linguistic expressions": 93029, "enabling learn": 48319, "new words": 113509, "words understand": 178759, "knowledge cutoff": 81852, "learn novel": 90021, "systematically analyse": 160166, "llms acquire": 94327, "acquire novel": 4262, "texttosql semantic": 165851, "parsing framework": 119958, "incorporates diverse": 75051, "realworld complexity": 136424, "exhibit surprisingly": 53115, "surprisingly robust": 159575, "long conversations": 97449, "need improvements": 112317, "particularly interpreting": 120211, "composing multiple": 27801, "multiple novel": 110987, "recency bias": 137331, "questionanswering benchmarks": 134976, "evaluate knowledge": 50993, "generic domains": 65652, "framework systematically": 61443, "generates set": 64112, "facts stored": 56848, "questions systematically": 135296, "question complexity": 134843, "agents humans": 6625, "daily interactions": 34507, "interactions crucial": 79216, "systems abilities": 160220, "abilities realm": 2000, "environment simulate": 50030, "complex social": 27590, "agents evaluate": 6600, "environment agents": 49982, "variety scenarios": 175760, "simulate roleplay": 151647, "task space": 161736, "space evaluate": 153570, "intelligence identify": 78839, "challenging models": 22212, "models subset": 109273, "completion rate": 27340, "strategic communication": 155940, "descriptive sentences": 39524, "biomedical corpus": 18539, "exploration systems": 55108, "systems retrieve": 160595, "relational graph": 139274, "graph enabling": 67522, "related biomedical": 139150, "synthesis model": 159957, "information reducing": 76685, "human reading": 71003, "effort researchers": 46871, "researchers easily": 142204, "highlevel knowledge": 69698, "areas drug": 12363, "drug repurposing": 45051, "selective prediction": 147904, "prediction llms": 125820, "use highstakes": 172669, "highstakes decisionmaking": 70118, "decisionmaking scenarios": 37440, "limited potential": 92817, "technique used": 163814, "llms allowing": 94388, "making predictions": 98791, "idea using": 71744, "using parameterefficient": 174571, "adapt llm": 4535, "selfevaluation evaluate": 147989, "method variety": 101171, "variety questionanswering": 175751, "prediction methods": 125824, "benchmark method": 17028, "storage retrieval": 155851, "retrieval technique": 144149, "database used": 36008, "highdimensional data": 69568, "data characterized": 34749, "approximate nearest": 12015, "neighbor search": 112577, "vector databases": 176378, "comprehensively review": 28178, "review relevant": 144544, "approaches present": 11864, "step natural": 155664, "understanding chainofthought": 171153, "guides large": 68262, "tasks multistep": 162828, "reasoning intermediate": 136925, "steps natural": 155754, "perform smallscale": 121041, "hierarchical classification": 69350, "classification relation": 24070, "baselines achieves": 16277, "shown possess": 150323, "crucial concerns": 33779, "responses primary": 142879, "llms presented": 96169, "generating hallucinatory": 64234, "strong indications": 156399, "query representation": 134623, "light spatial": 92150, "spatial organization": 153791, "models pave": 108449, "development improved": 41136, "techniques better": 163845, "generation particularly": 64920, "interface accessible": 79417, "researchers using": 142271, "generated various": 64044, "interactions research": 79268, "research participants": 141960, "data server": 35736, "model speaker": 104639, "speaker recognition": 153832, "provide output": 132913, "integrates popular": 78568, "analysis software": 9172, "time current": 166375, "audio file": 14176, "texts large": 165740, "existing text": 53614, "scaling methods": 146423, "texts require": 165768, "data develop": 34908, "recognition capabilities": 138049, "uses prompts": 173899, "texts generate": 165717, "ways similar": 177916, "guidance human": 68149, "human coder": 70639, "recognition problem": 138116, "pairwise compare": 118637, "using bradleyterry": 174014, "bradleyterry model": 18939, "use approach": 172503, "strongly human": 156499, "additional labeled": 4969, "create stateoftheart": 33231, "models multiplechoice": 108260, "settings focus": 149581, "datasets english": 36823, "2019 2023": 647, "2023 evaluate": 700, "novel highquality": 114539, "dataset providing": 36480, "providing structured": 133378, "focus predicting": 60036, "question given": 134889, "question evaluation": 134867, "wellknown llms": 178173, "dataset shows": 36539, "vietnamese dataset": 176802, "demonstrate excellent": 38326, "large scales": 89053, "scales make": 146374, "task parameterefficient": 161603, "direction tackle": 42450, "models categorize": 105582, "techniques types": 164045, "techniques directly": 163871, "introduce significant": 80104, "complexities training": 27653, "architecture unchanged": 12236, "technique achieves": 163735, "compared sota": 26921, "peft lora": 120681, "using textonly": 174802, "scaling training": 146451, "survey gpt3": 159639, "llms special": 96652, "obtained scaling": 115532, "computation llms": 28309, "data exhibit": 35002, "remarkable performances": 140259, "training natural": 168595, "llms started": 96676, "gpt4 gpt3": 67033, "strong need": 156420, "guide research": 68202, "start survey": 154960, "concepts like": 28671, "domains multiple": 44475, "languages discuss": 86980, "discuss data": 42883, "paper serve": 119318, "serve good": 148981, "good resource": 66294, "resource academic": 142371, "academic industry": 2736, "stay updated": 155531, "updated latest": 172344, "latest research": 89568, "research related": 142041, "doesnt know": 44042, "wide spread": 178339, "iterative selfcritique": 81142, "effectiveness iterative": 46208, "problem related": 128378, "verifying correctness": 176546, "correctness candidate": 32481, "proposed solutions": 132436, "cases analyze": 20942, "analyze content": 9279, "performance study": 122121, "modes llms": 109857, "llmgenerated solutions": 94205, "observed increase": 115417, "increase effectiveness": 75202, "results question": 143722, "question claims": 134839, "art llms": 12549, "llms shifted": 96520, "interactions recent": 79267, "requirements human": 141299, "research needs": 141929, "applications largescale": 10587, "real user": 136257, "gap tasks": 62739, "users frequently": 173661, "research example": 141769, "design planning": 39716, "benchmarks investigate": 17280, "practical challenges": 125400, "challenges pose": 21999, "roadmap make": 145133, "better aligned": 17797, "learning inference": 90577, "inference especially": 75998, "information implicitly": 76504, "implicitly explicitly": 72999, "explicitly conveyed": 54967, "remarkable advances": 140140, "reasoning information": 136920, "present context": 126270, "task difficulty": 161325, "information gap": 76468, "process mitigate": 128920, "gap investigate": 62667, "samples experiments": 146010, "suggest negative": 158573, "samples help": 146021, "attack prompt": 13656, "attacks induce": 13713, "content previous": 30579, "attack prompts": 13657, "manual automatic": 99027, "automatic methods": 14706, "methods limitations": 101643, "cost quality": 32731, "combines manual": 25946, "considering impressive": 29714, "emerged llms": 47370, "propose attack": 131721, "attack framework": 13643, "llms mimic": 95887, "humangenerated prompts": 71185, "prompts incontext": 131326, "propose defense": 131778, "defense framework": 37906, "framework finetunes": 61161, "iterative interactions": 81127, "enhance safety": 49286, "llms validate": 96937, "proposed attack": 132255, "datasets named": 36995, "evaluation enhancement": 51567, "automatic hallucination": 14682, "transferable adversarial": 169018, "tuning retrieval": 170112, "augmentation remains": 14308, "challenging measure": 22206, "adversarial machine": 6209, "develop method": 40800, "framework use": 61471, "use prompting": 172826, "generate transferable": 63765, "questionanswering examples": 134985, "understand extent": 171004, "hallucination behaviors": 68357, "llms implement": 95543, "chatgpt evaluate": 22900, "evaluate resulting": 51096, "questionanswering dataset": 134983, "settings generated": 149583, "accuracy drops": 3215, "questionanswering scenarios": 134998, "knowledge expressed": 81980, "prompt complex": 130394, "method transferable": 101151, "model making": 104060, "lost translation": 97711, "multimodal techniques": 110776, "exciting possibilities": 52882, "possibilities models": 124370, "audio image": 14179, "like gpt4v": 92304, "complex text": 27626, "image tasks": 72333, "tasks numerous": 162865, "analyses focus": 8764, "focus evaluating": 59976, "performance modality": 121803, "crossmodal interactions": 33686, "interactions specifically": 79269, "models execute": 106195, "tasks consistently": 162118, "study draw": 157293, "models crossmodal": 105826, "datasets designed": 36784, "evaluations findings": 51972, "perform consistently": 120909, "modalities tasks": 102954, "trustworthiness results": 169860, "vision modality": 176952, "problemsolving large": 128664, "llms driven": 94993, "exhibiting impressive": 53170, "aims identify": 7624, "theoretical guarantees": 166036, "challenge identifying": 21654, "identifying suitable": 72033, "policy model": 123860, "problemsolving performance": 128669, "performance validate": 122227, "efficacy experiments": 46376, "benchmarks gsm8k": 17258, "methods highlighting": 101571, "used language": 173123, "lms typically": 97211, "dataset text": 36582, "finetuning alignment": 59163, "alignment stage": 8237, "desired behaviors": 40041, "framework derived": 61067, "preferences introduce": 126048, "sampling distribution": 146089, "tends improve": 164337, "behavioral traits": 16678, "training finally": 168453, "finetuning lm": 59365, "models ensembling": 106130, "models essentially": 106156, "improves helpfulness": 74009, "falcon families": 57110, "mixing language": 102744, "available various": 15223, "sizes configurations": 152090, "api providers": 10166, "lms based": 97106, "correctness outputs": 32495, "selfverification mechanism": 148089, "outputs requiring": 118116, "baselines improving": 16333, "serves crucial": 149037, "influences models": 76237, "new dimension": 113146, "sft data": 149736, "motivated intuition": 110182, "acquired llm": 4271, "models disparate": 105996, "data appropriate": 34652, "loss based": 97663, "utilizing data": 175178, "method provides": 101046, "provides nuanced": 133190, "approach allowing": 10988, "alignment data": 8138, "ensuring optimal": 49748, "learning efficiency": 90400, "data employing": 34965, "capabilities conversational": 19838, "efficacy adaptability": 46358, "realworld forecasting": 136458, "predicting future": 125739, "capabilities artificial": 19790, "probabilistic predictions": 128094, "remains nascent": 140041, "openais stateoftheart": 116432, "october 2023": 115602, "big tech": 18387, "probabilistic forecasts": 128081, "significantly differ": 150977, "strategy assigning": 156105, "question explore": 134870, "overall gpt4": 118196, "significantly underperforms": 151175, "predictive tasks": 125960, "forecasting tournaments": 60381, "prediction unlike": 125882, "answers memorized": 10050, "memorized training": 100353, "generalized reasoning": 63282, "reasoning prediction": 137039, "going forward": 66234, "forward solving": 60669, "using graphbased": 174281, "transformer gptbased": 169146, "possesses excellent": 124360, "gpt structure": 66498, "structure uses": 156613, "limited accuracy": 92695, "multiplication operations": 111116, "operations developed": 116778, "human insights": 70851, "design artificial": 39549, "intelligence algorithms": 78784, "systems developed": 160336, "developed used": 40924, "ai rapid": 7186, "progress ai": 129940, "sparked renewed": 153701, "systems work": 160672, "ongoing research": 116071, "systems help": 160418, "gained traction": 62489, "demonstrated unprecedented": 38817, "unprecedented robustness": 172093, "robustness respect": 145430, "data far": 35043, "work bridge": 178825, "gap probing": 62711, "representation spaces": 140740, "various backbones": 175824, "pretraining sets": 127435, "directions models": 42491, "space demonstrate": 153561, "model pruning": 104390, "impacts model": 72766, "insights pave": 77618, "fields model": 58289, "generation ranking": 65012, "finetuning unfortunately": 59602, "unfortunately performance": 171672, "llms greatly": 95451, "influenced quality": 76230, "quality instructions": 134172, "instructions manually": 78308, "writing effective": 179726, "instructions task": 78359, "automatically improve": 14832, "provided llms": 133075, "leverages inherent": 91736, "inherent generative": 76951, "task ranks": 161675, "using scoring": 174691, "experiments 118": 54122, "humanwritten instructions": 71516, "instructions existing": 78255, "llms incorporated": 95590, "incorporated training": 75046, "proposed conversational": 132268, "model generative": 103741, "chatgpt far": 22939, "ai focusing": 6999, "algorithms second": 7969, "paper concentrate": 118789, "existing legal": 53409, "applied problem": 10796, "brief description": 19103, "description approach": 39404, "proposed eu": 132284, "intelligence act": 78715, "effect chatgpt": 45649, "led promising": 91237, "performance discriminative": 121402, "candidate labels": 19722, "humanwritten text": 71528, "humans cognitive": 71358, "labels prompt": 82819, "prompt ii": 130537, "ii chatgpt": 72086, "additional insights": 4966, "insights building": 77518, "transformer need": 169189, "used simulate": 173228, "systems lattice": 160456, "essential simulate": 50629, "model reduces": 104432, "reduces risk": 138533, "attention used": 14003, "architecture apply": 12119, "apply proposed": 10872, "proposed new": 132402, "rate large": 136000, "models transformers": 109500, "evidence retrieval": 52210, "passages large": 120346, "short task": 149999, "tackle task": 160849, "manner introduce": 98995, "accommodate new": 2985, "transition new": 169398, "new models": 113285, "task built": 161228, "built llms": 19493, "modality separately": 102977, "dataset improving": 36355, "improving f1": 74139, "supervised baseline": 159090, "baseline improving": 16223, "points significantly": 123764, "significantly closes": 150963, "gap supervised": 62737, "achieved notable": 3848, "despite ability": 40071, "ability memorize": 2275, "memorize vast": 100344, "tasks suboptimal": 163305, "capacity transfer": 20546, "knowledge target": 82447, "having limited": 68883, "unlabeled test": 171958, "capabilities smaller": 20180, "filtering lowquality": 58357, "inaccurate labels": 74266, "improvements benchmark": 73882, "robustness diverse": 145373, "enabling lms": 48325, "tailored learning": 160923, "impressive emergent": 73291, "abilities natural": 1973, "huge computation": 70509, "closedsource nature": 24496, "research advancing": 141569, "advancing opensource": 6092, "distilling knowledge": 43187, "knowledge blackbox": 81799, "llms obtained": 95953, "rarely explored": 135953, "propose tailored": 132155, "ability smaller": 2373, "exploit potential": 55013, "potential llm": 124828, "interactive multiround": 79325, "paradigm paradigm": 119494, "provide customized": 132734, "lm propose": 97069, "tailored students": 160940, "learning status": 91023, "method code": 100735, "contributing factors": 31459, "llms development": 94916, "scenarios presents": 146675, "challenges review": 22055, "explores issue": 55403, "issue domain": 80898, "knowledge forgetting": 82009, "forgetting arises": 60416, "balance old": 15501, "old new": 115941, "phenomenon reveals": 122839, "reveals llms": 144433, "lacking depth": 83036, "furthermore knowledge": 62106, "information outputs": 76611, "data algorithmic": 34611, "enhance transparency": 49304, "fairness training": 57071, "model personalization": 104275, "llms prioritize": 96192, "transparency ethics": 169579, "uphold high": 172376, "moral ethical": 110112, "ethical standards": 50841, "tuning using": 170141, "llama using": 93340, "gpt4 proven": 67128, "behaviors human": 16702, "better responses": 18010, "finetuning instructiontuned": 59319, "likelihood generating": 92440, "responses teacher": 142928, "llm hand": 93733, "learning contextual": 90324, "model refine": 104437, "distribution using": 43405, "using contextual": 174082, "stronger llms": 156473, "furthermore apply": 62015, "llm resulting": 93971, "test tasks": 164646, "tasks vicuna": 163460, "baselines code": 16297, "available url": 15221, "llms size": 96618, "processing brain": 129123, "interactions physical": 79255, "social environment": 152573, "growth large": 68081, "lives increasingly": 93265, "increasingly necessary": 75418, "inspired cognitive": 77716, "cognitive theories": 25490, "theories propose": 166065, "size comparison": 151967, "poorly zeroshot": 123974, "augmentation furthermore": 14280, "information internal": 76527, "formats report": 60568, "bias different": 18113, "objects results": 115303, "results realworld": 143727, "form prompts": 60482, "human behaviours": 70621, "teacherstudent framework": 163635, "small mediumsized": 152322, "mediumsized enterprises": 100262, "enterprises smes": 49790, "cost creating": 32659, "creating large": 33306, "datasets cost": 36742, "thirdparty services": 166168, "llms services": 96508, "calls llms": 19685, "previous llm": 127606, "local model": 97252, "llm methodology": 93827, "criteria measure": 33434, "tradeoff performance": 167565, "classifier multilayer": 24160, "tasks intent": 162617, "prompting analyze": 130855, "gap stateoftheart": 62732, "reduce gap": 138428, "ability approach": 2067, "achieve using": 3778, "model interact": 103887, "interact llms": 79065, "llms collect": 94630, "collect feedback": 25661, "interactive experience": 79306, "experience learning": 53835, "employ smaller": 47862, "llm student": 94027, "number user": 114978, "process term": 129006, "requests processed": 141056, "llm subsequently": 94029, "focus classification": 59956, "consider range": 29584, "learningbased selection": 91167, "selection criteria": 147842, "bring consistent": 19121, "delves capabilities": 38104, "induced generate": 75827, "framework establish": 61138, "convergence rate": 31765, "true language": 169807, "theoretical justification": 166038, "correct sequence": 32415, "demanding reasoning": 38149, "skills improving": 152164, "abilities multilingual": 1965, "models xlmr": 109723, "mt5 shown": 110288, "languages particularly": 87086, "effective crosslingual": 45722, "potentially mitigated": 125125, "work level": 179096, "pos tags": 124145, "target main": 161083, "new powerful": 113342, "unlocking secrets": 172045, "public large": 133578, "llms chatgptgpt4": 94604, "tools promoting": 167236, "experience ai": 53822, "models mllm": 108198, "modality inputs": 102972, "joint semantic": 81266, "success achieved": 158215, "achieved llms": 3838, "llms mllms": 95892, "generalpurpose training": 63372, "model specially": 104642, "understanding general": 171243, "standard protocol": 154872, "adapting generalpurpose": 4736, "domainspecific experts": 44581, "valuable data": 175410, "research academic": 141558, "undergraduate students": 170810, "used support": 173253, "chatgpts effectiveness": 23490, "influence learning": 76208, "skill gaps": 152134, "education enhancing": 45537, "fundamental understanding": 61985, "soft skills": 152745, "incorporating ai": 75083, "stresses need": 156286, "need balanced": 112232, "balanced approach": 15509, "application various": 10397, "address specific": 5371, "enables rapid": 48244, "insights generating": 77572, "generating insights": 64259, "insights human": 77580, "key method": 81535, "groups members": 67975, "technology enables": 164135, "enables realtime": 48245, "larger group": 89206, "platform called": 123380, "candidate selected": 19732, "group members": 67956, "provides qualitative": 133201, "focus groups": 59990, "advancements technology": 5967, "field called": 58130, "collaboration chatgpt": 25582, "technology gained": 164141, "analysis analyze": 8813, "revealed relatively": 144395, "relatively high": 139403, "including entire": 74508, "copyright laws": 32134, "limited use": 92875, "copyrighted material": 32142, "models lens": 106953, "verbatim memorization": 176453, "present experiments": 126308, "examination potential": 52359, "impact future": 72656, "processing ensure": 129149, "process semantic": 128982, "especially regarding": 50533, "degree similarity": 38021, "processing compared": 129129, "compared transformer": 26958, "heads gpt2": 68920, "processing ability": 129109, "collectively contribute": 25771, "performance detecting": 121377, "models embedded": 106068, "detect distribution": 40352, "biases cause": 18254, "capacity model": 20526, "model especially": 103558, "especially important": 50490, "considering wide": 29738, "pretrained foundational": 126815, "behavior remains": 16639, "remains poorly": 140059, "learning tl": 91083, "dataset pretrained": 36460, "different representations": 41967, "curated test": 34028, "shift occurred": 149917, "measure generalization": 99847, "hamper performance": 68473, "probes pretrained": 128146, "representations robust": 140880, "overall finetuning": 118192, "model interpretation": 103895, "generate suitable": 63734, "suitable responses": 158706, "prompts randomly": 131438, "prompt refinement": 130650, "instances llm": 77836, "current prompt": 34216, "edits prompt": 45506, "edit history": 45429, "llm hard": 93735, "important llm": 73154, "cases experimental": 20962, "methods instance": 101601, "task logical": 161529, "logical fallacy": 97358, "fallacy detection": 57137, "multilingual nlp": 110525, "representations inspired": 140820, "shift nlp": 149916, "llms examine": 95116, "ask following": 12842, "possible prompt": 124449, "complement current": 27242, "approaches end": 11746, "study zeroshot": 157715, "prompting unsupervised": 131114, "set seed": 149303, "pairs llm": 118595, "finetuning standard": 59558, "finetuning smaller": 59549, "llms experiment": 95183, "experiment 18": 53876, "18 opensource": 518, "parameters standard": 119867, "covering range": 33085, "pairs conduct": 118554, "analyses ablation": 8749, "database management": 35996, "management systems": 98889, "systems 20": 160219, "produced past": 129507, "data intensive": 35245, "notably large": 114280, "models demand": 105879, "data coupled": 34863, "scalable query": 146254, "variety new": 175736, "management techniques": 98891, "survey thoroughly": 159705, "identifying main": 72014, "similarity large": 151352, "vectors high": 176408, "lack natural": 82982, "led new": 91233, "approaches query": 11879, "processing storage": 129303, "query optimization": 134611, "scores query": 147165, "compression quantization": 28225, "new operators": 113308, "native systems": 111514, "systems specialized": 160618, "systems incorporate": 160432, "benchmarks finally": 17248, "challenges point": 21995, "direction future": 42436, "finetuning ift": 59296, "powerful paradigm": 125319, "llmbased metrics": 94155, "practical industrial": 125424, "industrial settings": 75860, "insights realworld": 77634, "deployment language": 39278, "gaining popularity": 62501, "understand better": 170985, "better communication": 17826, "unfortunately previous": 171673, "datasets target": 37149, "filtering pipeline": 58359, "text explanations": 165071, "videos cover": 176773, "necessitate multimodal": 112166, "content develop": 30473, "automatic scores": 14732, "evaluations prompting": 52017, "verification fact": 176476, "verification systems": 176501, "systems assess": 160253, "consideration designing": 29654, "explanations accurately": 54808, "works focused": 179450, "operates directly": 116746, "directly natural": 42574, "language capturing": 83180, "capturing semantic": 20740, "claim evidence": 23823, "rely substantial": 139887, "substantial resources": 158098, "training available": 168167, "languages end": 86988, "use question": 172836, "advantage generalization": 6108, "annotated training": 9496, "inference fewshot": 76009, "demonstrates robustness": 38888, "performance counterfactual": 121345, "counterfactual dataset": 32944, "evaluation indicates": 51646, "previous natural": 127621, "systems prompt": 160557, "engineering lens": 48945, "lens optimal": 91419, "control prompt": 31580, "tasks importance": 162529, "highlighted potential": 69800, "interaction tasks": 79183, "tasks grow": 162485, "grow increasingly": 67995, "complex recent": 27568, "methods extended": 101508, "multiround interactions": 111141, "interactions allows": 79202, "propose optimal": 132055, "control framework": 31544, "unified mathematical": 171731, "scope applicability": 147013, "insights existing": 77560, "methods highlight": 101570, "warrant future": 177722, "effective interpretable": 45789, "success recently": 158296, "recently used": 138007, "recently llms": 137937, "llms rapid": 96292, "new level": 113256, "industrial domains": 75854, "intelligence particularly": 78871, "particularly areas": 120148, "like software": 92404, "engineering natural": 48959, "trustworthiness concerns": 169848, "characteristics llms": 22468, "cnns rnns": 24619, "quality analysis": 134036, "lacks universal": 83052, "designed general": 39884, "general extensible": 62952, "leverage data": 91580, "construct abstract": 30119, "construction methods": 30229, "methods assess": 101317, "model collect": 103302, "analysis applications": 8815, "dataset augmentation": 36120, "designed detect": 39847, "detect malicious": 40369, "insufficient training": 78454, "security domain": 147574, "samples positive": 146052, "class train": 23896, "classifier study": 24168, "application natural": 10354, "gap multiple": 62683, "tasks variety": 163450, "purpose consider": 133737, "consider particular": 29579, "stateoftheart classifiers": 155102, "review fraud": 144509, "fraud detection": 61535, "augmentation strategies": 14311, "strategies outperform": 156047, "using basic": 173999, "common usage": 26210, "substantial benefits": 158031, "severe limitations": 149711, "using openly": 174561, "assistance generative": 13370, "explorative study": 55117, "challenges traditional": 22086, "ai security": 7211, "items introduce": 81086, "physics problems": 122946, "access problem": 2902, "dramatically impact": 44890, "lead widespread": 89787, "tested hypothesis": 164672, "problems drawn": 128487, "highest difficulty": 69664, "problem type": 128424, "item response": 81079, "response theory": 142707, "analysis types": 9213, "problems highly": 128532, "exploratory factor": 55124, "aims group": 7621, "event mentions": 52084, "scoring framework": 147186, "furthermore current": 62038, "events event": 52112, "introduce auxiliary": 79919, "demonstrate reasoning": 38521, "model make": 104058, "make final": 98539, "predictions experimental": 125902, "chatgpt thematic": 23395, "chatgpt advanced": 22687, "processing tool": 129342, "growing applications": 68001, "medical research": 100217, "method identify": 100911, "patterns data": 120523, "explores utilization": 55444, "analysis medical": 9015, "medical context": 100145, "interview transcripts": 79807, "purposes assess": 133767, "assess strengths": 13124, "chatgpt roles": 23290, "highlighting areas": 69804, "intervention remains": 79793, "analysis offering": 9039, "offering additional": 115727, "tuned large": 169949, "despite numerous": 40161, "numerous recent": 115064, "studies examine": 156991, "performance instructiontuned": 121686, "remains lack": 140018, "lack comprehensive": 82902, "meaning embedded": 99767, "present sparrow": 126454, "primary categories": 127804, "datasets encompass": 36817, "12 language": 269, "writing scripts": 179749, "llms bloomz": 94507, "reveals existing": 144422, "opensource instruction": 116615, "baseline cases": 16199, "llms falls": 95248, "significant enhancements": 150703, "abilities instruction": 1931, "tuning achieving": 169959, "focused finetuning": 60100, "finetuning medical": 59374, "extensive array": 55718, "scope tasks": 147021, "tasks instructions": 162614, "adversely affecting": 6260, "affecting performance": 6321, "domain paper": 44242, "using 52k": 173950, "general medicalspecific": 62992, "strong medical": 156412, "medical proficiency": 100203, "generalizability compared": 63108, "domains provide": 44505, "development project": 41198, "hallucinate resulting": 68335, "designed human": 39891, "hallucination issue": 68383, "llms repurposed": 96413, "study performs": 157529, "reliance llms": 139783, "llms highquality": 95499, "developing trustworthy": 41035, "large search": 89054, "search model": 147377, "search stack": 147417, "llms modern": 95899, "engines built": 49013, "different components": 41699, "components including": 27757, "answering components": 9828, "components optimized": 27770, "novel conceptual": 114446, "called large": 19659, "conventional search": 31729, "search tasks": 147423, "llm tasks": 94045, "problems allowing": 128453, "customization tasks": 34396, "prompts proposed": 131428, "capitalizes strong": 20557, "llms offering": 95965, "offering potential": 115757, "quality simultaneously": 134270, "feasibility framework": 57353, "experiments discuss": 54252, "associated implementing": 13488, "systems generative": 160406, "studies provided": 157061, "gpt pretrained": 66476, "gap presenting": 62707, "related queries": 139201, "approach conducting": 11073, "conducting comparative": 29304, "highly promising": 69942, "propose coarsetofine": 131746, "steps llms": 155753, "learn acquire": 89958, "essential concepts": 50593, "knowledge intermediate": 82143, "settings conversational": 149545, "conversational recommender": 31912, "recommender large": 138270, "provide appropriate": 132677, "systems crss": 160317, "learn user": 90072, "user representation": 173482, "accurate recommendations": 3482, "recommendations based": 138238, "knowledge accurate": 81723, "effectiveness combining": 46143, "llm llm": 93815, "impact collaborative": 72629, "collaborative approaches": 25608, "framework prompting": 61360, "reasoning thoughts": 137206, "feedback external": 57681, "allowing dynamically": 8365, "popular math": 124020, "analyze strengths": 9334, "suggest framework": 158535, "single reasoning": 151851, "methods generalise": 101547, "questions retrievalaugmented": 135267, "questions opendomain": 135208, "approach handling": 11271, "possible interpretations": 124438, "generate longform": 63602, "comprehensive response": 28107, "corresponding knowledge": 32590, "metrics surpassing": 102151, "fullysupervised baselines": 61813, "cornerstone language": 32197, "modeling evaluation": 104998, "landscape large": 83095, "llama mistral": 93323, "tasks domainspecific": 162258, "fundamental linguistic": 61957, "tests valuable": 164797, "tool assessing": 166940, "evaluate seven": 51102, "uncover surprising": 170734, "lexical knowledge": 91987, "knowledge findings": 82003, "llm word": 94096, "representations learning": 140840, "mechanisms performance": 100049, "variations models": 175657, "detection leverages": 40544, "provide condensed": 132722, "model instructed": 103874, "completely new": 27303, "use linguistic": 172735, "methods yield": 101935, "variety data": 175699, "data studies": 35813, "learning setup": 90984, "role prompt": 145525, "llms technique": 96779, "prompting advanced": 130853, "advanced methodologies": 5773, "chainofthought treeofthoughts": 21547, "treeofthoughts prompting": 169681, "prompting paper": 131033, "external assistance": 56031, "assist task": 13361, "retrieving external": 144281, "prospective directions": 132540, "artificial intelligencegenerated": 12785, "intelligencegenerated content": 78931, "aigc tools": 7397, "tools discuss": 167142, "information application": 76280, "engineering fields": 48920, "fields education": 58272, "potential comprehensive": 124651, "world llms": 179587, "focus enhancing": 59975, "aspects propose": 12964, "enforce consistency": 48803, "distributions investigate": 43423, "ability outofdistribution": 2301, "lms proposed": 97185, "unsupervised knowledge": 172249, "ability scale": 2363, "prior experimental": 127892, "evaluate popular": 51066, "careful evaluation": 20781, "despite size": 40214, "size capabilities": 151965, "achieve fully": 3647, "provide solid": 132976, "earlier approaches": 45230, "lms particular": 97173, "gpt3 enables": 66680, "90 precision": 1747, "encode vast": 48386, "swaths internet": 159765, "internet data": 79584, "data risk": 35683, "capturing information": 20730, "dominant groups": 44644, "certain countries": 21375, "demonstrate consistent": 38276, "range llms": 135642, "llms discover": 94946, "using custom": 174106, "crosslingual prompting": 33663, "reasoning languages": 136951, "explicitly generate": 54972, "attracting increasing": 14062, "cot achieves": 32854, "improvements wide": 73965, "success zeroshot": 158321, "existing zeroshot": 53657, "single language": 151818, "development work": 41264, "introduce crosslingual": 79942, "consists main": 29973, "alignment prompting": 8218, "aligning representations": 8111, "representations different": 140790, "prompting used": 131116, "task addition": 161168, "ensemble different": 49632, "work inspire": 179044, "models share": 109088, "gpt4 zeroshot": 67221, "human dialogues": 70699, "using effective": 174157, "prompting gpt4": 130951, "gpt4 achieving": 66907, "additionally uncover": 5141, "framework augment": 60965, "released publication": 139536, "classification efficient": 23988, "user generated": 173414, "content zeroshot": 30654, "classification critical": 23978, "zeroshot predictions": 180296, "produces domainspecific": 129527, "accurate comprehensive": 3444, "comprehensive results": 28109, "16 million": 456, "map score": 99131, "meet new": 100281, "domains existing": 44403, "benchmarks adequately": 17167, "adequately measure": 5517, "measure models": 99862, "especially faced": 50471, "handle new": 68560, "important challenging": 73107, "world propose": 179607, "existing entity": 53357, "attributes relationships": 14126, "relationships resulting": 139353, "distinct realworld": 43245, "realworld entities": 136448, "assess llms": 13095, "abilities knowledge": 1934, "reveals performance": 144441, "performance face": 121500, "particularly reasoning": 120248, "reasoning new": 137003, "understanding entity": 171216, "entity knowledge": 49893, "contextual entities": 31087, "need caution": 112241, "scenarios new": 146655, "range potential": 135673, "potential bias": 124624, "misinformation llms": 102492, "use humangenerated": 172673, "corpus introduce": 32321, "task documentlevel": 161334, "realworld llms": 136474, "llm seen": 93986, "document training": 43860, "propose procedure": 132076, "evaluation documentlevel": 51553, "inference llms": 76048, "release date": 139465, "academic papers": 2747, "approach outperform": 11419, "sentencelevel membership": 148548, "inference attacks": 75967, "attacks used": 13747, "results accurate": 143155, "increasing transparency": 75368, "technology poised": 164155, "poised change": 123785, "produce meaningful": 129440, "useful analysis": 173311, "laborintensive timeconsuming": 82861, "timeconsuming recently": 166558, "replicate humanlike": 140495, "particular llms": 120095, "humanllm collaboration": 71299, "icl framework": 71673, "prompt frame": 130511, "using survey": 174772, "listening experience": 93140, "studies proposed": 157059, "framework yields": 61500, "recently reached": 137968, "linguistic capability": 93011, "studies exist": 156994, "heart human": 69029, "language like": 83489, "close gaps": 24446, "conducting rigorous": 29322, "varied languages": 175673, "uncontaminated datasets": 170717, "datasets examined": 36837, "systems particularly": 160520, "particularly english": 120184, "results lens": 143564, "light linguistic": 92128, "chatgpt suggesting": 23368, "claims humanlike": 23839, "improves large": 74016, "user constraints": 173388, "multiple aspects": 110841, "lack coherence": 82896, "challenging natural": 22219, "tasks consists": 162119, "llm modules": 93836, "decomposition task": 37646, "task multiple": 161554, "multiple parallel": 110992, "independently solve": 75508, "method tasks": 101138, "evaluation constrained": 51506, "effectiveness multiple": 46248, "vicuna llama2chat": 176669, "consistency llm": 29774, "llm enhancing": 93634, "reducing length": 138576, "position biases": 124256, "outperform gpt4": 117600, "improves coherence": 73990, "generate engaging": 63475, "questions data": 135091, "relevant particular": 139630, "questions aim": 135032, "method reliably": 101069, "information proposed": 76656, "coherence automatic": 25505, "metrics bertscore": 102016, "generating dataset": 64185, "attacks large": 13718, "models safety": 109028, "llms compromised": 94679, "jailbreak attacks": 81179, "automatic adversarial": 14635, "attacks recent": 13738, "defending attacks": 37899, "attacks possible": 13731, "attacks generate": 13710, "gibberish prompts": 65796, "necessity human": 112198, "human creativity": 70678, "allows easy": 8428, "paper solutions": 119332, "introduce autodan": 79915, "adversarial attack": 6190, "attack types": 13672, "prompts bypass": 131179, "high attack": 69397, "notably prompts": 114289, "using gradients": 174276, "interpretable diverse": 79664, "diverse emerging": 43518, "strategies commonly": 155973, "commonly seen": 26232, "data single": 35764, "proxy model": 133439, "autodan automatically": 14464, "using customized": 174107, "objective work": 115233, "great strides": 67727, "capabilities like": 20013, "longcontext understanding": 97516, "process longer": 128910, "acquired certain": 4268, "certain capabilities": 21369, "100k tokens": 182, "humans reliably": 71463, "evaluation synthetic": 51889, "invisible llms": 80668, "llms mitigating": 95891, "set contamination": 149167, "users control": 173606, "control dataset": 31533, "dataset allowing": 36108, "allowing systematically": 8394, "systematically probe": 160200, "probe llm": 128139, "length varying": 91394, "analysis uncover": 9214, "insights including": 77585, "located middle": 97294, "trends model": 169723, "combining language": 25979, "truth value": 169890, "task artificial": 161201, "intelligence wide": 78923, "proposed enable": 132282, "enable large": 48097, "reasoning effectively": 136821, "unpredictable ways": 172101, "llm acts": 93439, "premises conclusions": 126158, "language expressions": 83307, "performs deductive": 122438, "approach observe": 11407, "experimental conditions": 53929, "reveals methods": 144437, "methods average": 101333, "modes provide": 109859, "provide promising": 132934, "promising evidence": 130254, "analysis diverse": 8895, "incontextlearning icl": 75000, "icl tasks": 71696, "demonstrated task": 38812, "changes context": 22367, "zeroshot natural": 180267, "collected test": 25702, "models layers": 106929, "information sufficient": 76786, "semantic vector": 148255, "new complex": 113115, "tasks taken": 163336, "taken findings": 160967, "variety contexts": 175698, "ensemble foundational": 49633, "understanding visionlanguage": 171533, "query video": 134636, "used enrich": 173045, "labels enhancing": 82796, "features considered": 57462, "considered paper": 29695, "pretrained discriminative": 126791, "vlms pretrained": 177472, "feature enhancement": 57401, "descriptions contain": 39444, "contain vital": 30316, "objects present": 115296, "additional semantic": 4997, "knowledge vlms": 82506, "enhance zeroshot": 49313, "performance second": 122046, "representations specifically": 140890, "introduce prompt": 80091, "names offering": 111432, "action context": 4311, "context additional": 30676, "approach video": 11664, "understanding different": 171194, "different zeroshot": 42095, "settings video": 149656, "video action": 176681, "videototext texttovideo": 176799, "texttovideo retrieval": 165875, "output constrained": 117907, "llm learn": 93800, "learn mapping": 90006, "states world": 155446, "body evidence": 18773, "learning output": 90795, "set finally": 149197, "present heuristic": 126330, "output llm": 117961, "claims llm": 23845, "models epistemic": 106136, "models age": 105311, "increasingly central": 75382, "growing prevalence": 68046, "training documents": 168397, "crucial ability": 33747, "effectively combine": 45962, "space introduce": 153584, "questionanswering benchmark": 134975, "benchmark tailored": 17102, "coherent consistent": 25523, "prevailing training": 127498, "consequently advocate": 29535, "approach knowledge": 11329, "knowledge consolidation": 81834, "gpt4 effective": 66977, "challenge human": 21651, "evaluation requires": 51824, "costly automatic": 32780, "captions paper": 20619, "investigates using": 80582, "captions original": 20618, "caption based": 20562, "potential aid": 124566, "given relevant": 65984, "used zeroshot": 173308, "kendall correlation": 81434, "converting feedback": 31999, "prompting promising": 131048, "approach users": 11636, "steering chatbots": 155567, "outputs prompt": 118106, "support users": 159344, "converting natural": 32001, "explore enable": 55198, "users interactively": 173694, "interactively refine": 79353, "refine model": 138734, "set principles": 149277, "classified different": 24145, "findings developed": 58661, "converting user": 32005, "negative feedback": 112516, "feedback automatically": 57645, "prompt user": 130737, "study 14": 157124, "14 participants": 381, "better guide": 17896, "responses model": 142853, "model feedback": 103646, "feedback specific": 57796, "findings inform": 58707, "answers include": 10037, "suggest paper": 158575, "unknown large": 171934, "far solving": 57236, "recognized effective": 138162, "way aligning": 177766, "llms private": 96195, "need exploration": 112285, "exploration paper": 55092, "underlying mechanism": 170858, "perform empirical": 120937, "perspectives representation": 122717, "representation functional": 140690, "layers llms": 89675, "size expands": 151994, "potentially significant": 125135, "significant changes": 150658, "inspired observations": 77744, "trainingfree strategy": 168837, "derive improved": 39343, "parameters furthermore": 119764, "investigate optimal": 80458, "optimal solutions": 116954, "demonstrate linear": 38406, "stateofthe art": 155059, "queries information": 134489, "tasks solved": 163263, "abilities task": 2026, "task current": 161292, "rising concerns": 144918, "factual incorrectness": 56878, "dataset measuring": 36403, "approach acquiring": 10960, "common failure": 26137, "dimensions information": 42340, "information popularity": 76627, "constraint types": 30055, "types context": 170340, "results absence": 143150, "satisfying constraints": 146179, "constraints identifying": 30086, "source contributions": 153433, "api public": 10167, "number applications": 114823, "popular usage": 124072, "usage models": 172464, "leveraging incontext": 91864, "ability generating": 2202, "given user": 66046, "queries leveraging": 134502, "problem deploying": 128224, "retrieved context": 144233, "propose token": 132169, "method applies": 100683, "using selfinstruct": 174698, "varying lengths": 176289, "reduce token": 138476, "size removing": 152065, "removing words": 140374, "lower impact": 97826, "adequately evaluate": 5514, "food recommendation": 60340, "flexible way": 59831, "performance reduce": 122002, "16 accuracy": 449, "process elimination": 128802, "lms capable": 97113, "capable conducting": 20412, "present process": 126418, "elimination poe": 47091, "options second": 117148, "experiments reasoning": 54433, "tasks illustrate": 162519, "method especially": 100835, "data plays": 35489, "role natural": 145515, "demonstrate zeroshot": 38613, "comparable exceeding": 26571, "exceeding human": 52747, "annotators llms": 9636, "scalability limited": 146219, "work leveraged": 179102, "llms complementary": 94661, "work best": 178823, "objectives propose": 115260, "uncertainty estimate": 170666, "llms annotation": 94399, "effective means": 45807, "baseline code": 16201, "prevention large": 127556, "crowd work": 33716, "llms prevalent": 96182, "llms raising": 96287, "yields highquality": 180025, "harm research": 68719, "crowdsourced data": 33725, "llms summaries": 96729, "likely change": 92449, "tools users": 167281, "using crowdsourcing": 174099, "provide critical": 132733, "llms inevitably": 95621, "propose tuningfree": 132180, "learning previous": 90851, "mistakes considering": 102546, "considering data": 29707, "llms gradually": 95443, "incorrect cases": 75147, "utilized llms": 175109, "llms avoid": 94464, "avoid making": 15343, "design strategies": 39770, "improves recent": 74071, "recent baselines": 137449, "lightweight large": 92180, "evaluations domain": 51965, "domain applications": 44093, "marking significant": 99249, "intelligence general": 78828, "develop lightweight": 40792, "llms scarcity": 96486, "billion billion": 18426, "construction model": 30230, "evaluation applications": 51432, "applications insights": 10566, "consistently matches": 29887, "models public": 108740, "benchmarks introduce": 17278, "efficiently explore": 46778, "domains law": 44453, "factual recall": 56899, "memorized pretraining": 100350, "pretraining new": 127399, "context sources": 30924, "competition model": 27147, "queries knowledge": 134494, "lm behavior": 97050, "measure proportion": 99869, "use counterfactual": 172569, "using counterfactual": 174095, "identify individual": 71903, "individual attention": 75706, "answer new": 9738, "method increase": 100928, "rate generating": 135992, "single head": 151809, "contributes body": 31433, "behaviors specific": 16725, "specific components": 153959, "methods control": 101406, "strategic prompting": 155946, "efficient dialogue": 46596, "trained augmented": 167868, "substantially surpasses": 158143, "dialogues based": 41550, "help clinical": 69097, "clinical documentation": 24330, "algorithm solving": 7860, "abilities specific": 2022, "specific setting": 154086, "unifying framework": 171782, "framework understand": 61468, "transformers exhibit": 169305, "language designed": 83250, "designed computational": 39838, "computational model": 28383, "input lengths": 77277, "tasks parity": 162930, "parity addition": 119935, "simple example": 151451, "correctly predict": 32470, "small visual": 152382, "mllms recently": 102847, "given great": 65893, "potential broad": 124629, "broad use": 19194, "limitations dealing": 92564, "dealing different": 37271, "investigate mllms": 80450, "small details": 152286, "details large": 40333, "accuracy answering": 3144, "questions sensitive": 135274, "observing human": 115447, "significantly mitigate": 151073, "automatic visual": 14759, "methods leveraging": 101637, "localization models": 97276, "mechanisms improve": 100041, "performance mllms": 121802, "effectiveness popular": 46259, "suggest mllms": 158566, "web interface": 178007, "software tasks": 152848, "approaches reinforcement": 11885, "document object": 43838, "model dom": 103489, "generating small": 64336, "programs based": 129892, "current observations": 34199, "use incontext": 172679, "learning benefiting": 90256, "provided example": 133052, "benchmark incontext": 16999, "llms equipped": 95087, "prompting demonstrated": 130895, "robustly complex": 145341, "complex settings": 27586, "settings evaluating": 149569, "dataset evaluating": 36265, "tasks specified": 163279, "generation algorithm": 64412, "llms released": 96377, "second dataset": 147466, "text narratives": 165318, "domains reasoning": 44510, "reasoning makes": 136977, "accuracy evaluate": 3224, "evaluate range": 51088, "understanding sentence": 171473, "information states": 76776, "critical ability": 33452, "essential particular": 50620, "consistent coherent": 29809, "ai previous": 7162, "identified certain": 71816, "llms extent": 95221, "domain explored": 44158, "systematic testing": 160160, "dynamics model": 45211, "understand underlying": 171091, "underlying causes": 170834, "performance patterns": 121901, "patterns apply": 120516, "stateoftheart chatbot": 155098, "simplicity task": 151580, "followup analyses": 60331, "overall chatgpt": 118182, "chatgpt currently": 22819, "equipped robust": 50186, "comes risks": 26021, "reproducing test": 141028, "test environment": 164548, "prompts api": 131160, "api responses": 10169, "opportunities large": 116861, "employed data": 47879, "llmpowered chatbots": 94228, "mixedmethods study": 102739, "study including": 157407, "issues faced": 81002, "code local": 24993, "design recommendations": 39739, "keeping large": 81424, "data inherently": 35226, "avoid prohibitive": 15352, "prohibitive costs": 130057, "exacerbated lack": 52330, "benchmarks baselines": 17179, "training visionlanguage": 168821, "pairs spanning": 118618, "use benchmarks": 172518, "evaluations measure": 51998, "robustness existing": 145383, "clip trained": 24415, "data 2020": 34561, "study efficiently": 157302, "continues training": 31226, "training checkpoint": 168180, "reduces compute": 138513, "25times compared": 856, "standard practice": 154866, "todays world": 166685, "offer realtime": 115694, "leading user": 89866, "role technology": 145541, "technology understanding": 164174, "patterns introduce": 120543, "introduce twostage": 80133, "framework utilizing": 61490, "highlight enhanced": 69740, "advanced machine": 5768, "usercentric design": 173540, "scientific accuracy": 146933, "stance classification": 154785, "difficult achieve": 42125, "traditional media": 167658, "media bias": 100075, "bias ratings": 18187, "ratings work": 136044, "create multilingual": 33211, "corpus news": 32335, "german spanish": 65768, "written chatgpt": 179774, "mechanistically interpreting": 100066, "attention head": 13889, "retrieval mechanism": 144085, "reverse engineering": 144463, "mechanisms llms": 100045, "arrive final": 12535, "specific role": 154079, "prediction propose": 125851, "tool enables": 166968, "mechanism neural": 100016, "capturing precise": 20738, "precise knowledge": 125584, "knowledge subject": 82438, "theoretical approach": 166019, "neural tangent": 112983, "mechanisms specifically": 100056, "features acquire": 57440, "insights internal": 77590, "fundamental models": 61959, "instance use": 77811, "introduce bias": 79925, "limitations learning": 92615, "findings experiments": 58668, "tasks regarded": 163109, "fundamental components": 61947, "components large": 27760, "broader understanding": 19227, "comprehensive accurate": 27945, "models allows": 105345, "allows effective": 8430, "mitigation risks": 102695, "methodology based": 101214, "based benchmarks": 15684, "tasks falls": 162392, "varying performance": 176301, "inputs existing": 77402, "concerns reliability": 28826, "reliability validity": 139711, "challenges suggest": 22073, "measurement provides": 99906, "provides rigorous": 133208, "rigorous methodology": 144866, "identifying measuring": 72015, "practice finally": 125482, "explore future": 55210, "future opportunities": 62296, "opportunities integrating": 116859, "systems decoding": 160324, "models vs": 109667, "human solvers": 71042, "davinci2 davinci3": 37234, "davinci3 gpt35turbo": 37237, "gpt4 human": 67045, "participants findings": 120007, "excel solving": 52774, "surpass human": 159457, "humans exhibit": 71384, "insights enhancing": 77555, "enhancing problemsolving": 49545, "graph agent": 67485, "graphs graph": 67625, "methods graph": 101557, "graph transformers": 67583, "contributed development": 31426, "reasoning algorithms": 136664, "algorithms various": 7985, "interpretability explainability": 79641, "requiring explicit": 141483, "modules longterm": 109991, "integrates aspects": 78547, "existing graph": 53379, "provide innovative": 132843, "approach complex": 11066, "complex graph": 27425, "tasks converting": 162133, "structures textual": 156716, "humaninterpretable explanations": 71196, "explanations effectiveness": 54836, "node classification": 113962, "reached stateoftheart": 136130, "cora pubmed": 32148, "various graph": 175962, "strategic planning": 155945, "detailed instructions": 40303, "automating generation": 14882, "prompts remains": 131446, "methods tend": 101870, "tend overlook": 164313, "knowledge struggle": 82435, "struggle efficiently": 156746, "explore vast": 55328, "vast space": 176353, "prompts addressing": 131155, "handcrafted experts": 68505, "planning problem": 123307, "problem employs": 128240, "space inspired": 153582, "errors generating": 50361, "error feedback": 50298, "allows agent": 8404, "refine based": 138727, "based error": 15778, "future rewards": 62377, "paths leading": 120448, "leading expert": 89816, "practical domains": 125408, "showing significantly": 150194, "baselines extensive": 16321, "efficiency generalizability": 46466, "models transformerbased": 109495, "length demonstrate": 91358, "demonstrate notable": 38452, "notable limitations": 114235, "window length": 178524, "extrapolation methods": 56412, "window training": 178529, "applications address": 10409, "llms generalise": 95345, "scaling factor": 146397, "constraints current": 30070, "desired context": 40044, "performance practical": 121923, "practical tasks": 125457, "seamlessly incorporated": 147300, "incorporated llms": 75043, "rotary position": 145613, "effectively extend": 45995, "benchmark model": 17031, "exhibits competitive": 53188, "trained context": 167882, "datasets suffer": 37139, "generate helpful": 63528, "specific fields": 153997, "promptcompletion pairs": 130804, "dialogues covering": 41552, "categories systematically": 21122, "based occupation": 15988, "question ensure": 134864, "comprehensive coverage": 27986, "exhibits balanced": 53178, "balanced distribution": 15513, "real estate": 136229, "containing realworld": 30342, "llama variants": 93342, "professional questions": 129628, "evaluations notably": 52009, "high win": 69559, "improving diversity": 74131, "representation large": 140702, "challenge generative": 21647, "llms diversity": 94964, "implicit assumptions": 72967, "responses certain": 142738, "certain demographic": 21378, "critique responses": 33593, "responses goal": 142813, "handcrafted examples": 68503, "evaluations proposed": 52019, "gpt4vs performance": 67271, "manually construct": 99079, "carefully evaluate": 20814, "results gpt4v": 143446, "findings follows": 58672, "gpt4v exhibits": 67248, "performance english": 121455, "chinese texts": 23668, "gpt4v shows": 67257, "refusal behavior": 138844, "race age": 135384, "worse results": 179665, "api language": 10161, "benchmarks visual": 17393, "images solve": 72489, "tasks similar": 163247, "modalities image": 102929, "reveal ability": 144314, "insights application": 77509, "models noisy": 108304, "noisy context": 113995, "produce inaccurate": 129430, "inaccurate results": 74271, "context fully": 30775, "investigated existing": 80532, "studies utilize": 157110, "limited effect": 92753, "novel prompting": 114652, "context specifically": 30926, "perform key": 120972, "sentence extraction": 148504, "interaction perform": 79161, "hints guide": 70182, "interaction experiments": 79122, "average reasoning": 15308, "method solving": 101113, "solving reasoning": 153244, "context chatgpt": 30702, "task achieved": 161160, "understudied question": 171559, "chatgpt conduct": 22800, "shows unique": 150491, "unique preferences": 171852, "outputs llm": 118083, "explore novel": 55247, "llms consisting": 94706, "role description": 145479, "llm ii": 93744, "set instructions": 149222, "training scratch": 168721, "mt tasks": 110284, "discover gpt4": 42731, "performance architecture": 121159, "mean absolute": 99741, "absolute error": 2605, "distilled small": 43183, "retain performance": 143955, "cases performance": 21002, "algorithm nas": 7833, "sound meaning": 153378, "particularly salient": 120256, "associations language": 13538, "domain work": 44323, "investigate inherent": 80429, "method demonstrating": 100777, "understanding nature": 171366, "available exploring": 15107, "capabilities gpt4vision": 19932, "recognition table": 138136, "structure recognition": 156598, "recognition information": 138074, "evaluation reveals": 51835, "reveals gpt4v": 144423, "gpt4v performs": 67255, "recognizing understanding": 138180, "multilingual scenarios": 110542, "recognition endtoend": 138059, "pair extraction": 118518, "extraction document": 56281, "image based": 72181, "necessity continued": 112194, "research value": 142144, "handling diverse": 68590, "models fully": 106401, "problem study": 128414, "reference future": 138655, "pipeline results": 123088, "discrete diffusion": 42802, "diffusion modeling": 42242, "tasks diffusion": 162233, "fallen short": 57140, "wellestablished theory": 178158, "score matching": 147081, "empirical gains": 47707, "entropy novel": 49965, "integrates seamlessly": 78569, "language diffusion": 83257, "compared autoregressive": 26743, "generates faithful": 64071, "better generative": 17890, "similar quality": 151296, "enables controllable": 48168, "sampling quality": 146114, "right prompting": 144836, "generalization safety": 63227, "new safety": 113393, "safety issues": 145869, "existing safety": 53565, "classifiers generalize": 24186, "classifier detect": 24153, "violations paper": 176851, "learning llmbased": 90653, "text safety": 165440, "peft combined": 120680, "examples prior": 52665, "baselines rely": 16363, "gptneox opt": 67311, "distinguishing humangenerated": 43298, "humangenerated texts": 71188, "synthetic tweets": 160088, "shallow learning": 149766, "classification algorithms": 23955, "naive bayes": 111386, "06 08": 54, "especially using": 50561, "generation resulting": 65050, "lower temperature": 97843, "transformerbased classifiers": 169230, "successfully evade": 158378, "bertbased classifiers": 17628, "focuses enhancing": 60137, "attracted considerable": 14039, "prone problems": 131570, "text contamination": 164959, "words multimodal": 178741, "shared semantic": 149820, "understanding end": 171213, "task establishing": 161357, "languages design": 86976, "method multimodal": 100983, "translation visual": 169545, "questionanswering pairs": 134992, "translation mmt": 169485, "inputs complete": 77390, "interaction image": 79134, "information redundancy": 76686, "proposed generate": 132312, "generate parallel": 63640, "interaction using": 79190, "llms explicitly": 95196, "model probing": 104347, "introduced incorporate": 80157, "results widelyused": 143937, "effectiveness novel": 46254, "ai academic": 6844, "ai writing": 7321, "model humanai": 103811, "assistance writing": 13382, "types levels": 170381, "building framework": 19410, "framework effective": 61096, "editing strategies": 45486, "ai ultimately": 7304, "promote diversity": 130337, "efficient llms": 46665, "llms hundreds": 95523, "time sparsity": 166508, "cost existing": 32672, "costly retraining": 32799, "time speedup": 166509, "speedup modern": 154525, "sparsity small": 153775, "input address": 77208, "accurately predicted": 3553, "ability based": 2079, "inference validate": 76136, "2x compared": 946, "quality code": 134064, "multiobject tracking": 110819, "based endtoend": 15775, "endtoend models": 48751, "demands models": 38164, "training deployment": 168386, "architectural components": 12109, "shorter training": 150038, "demonstrates significantly": 38895, "reduced training": 138500, "hardware requirements": 68692, "introduces promising": 80216, "enhanced performance": 49354, "performance resource": 122018, "resource efficiency": 142382, "efficiency language": 46476, "entities context": 49841, "context correctly": 30722, "correctly use": 32476, "example given": 52479, "mechanism solving": 100028, "causal interventions": 21193, "id vectors": 71719, "corresponding entities": 32580, "providing step": 133377, "step understanding": 155688, "incontext reasoning": 74993, "cultural adaptation": 33943, "considerable advances": 29604, "demanding nuanced": 38147, "goes simple": 66230, "culture introduce": 33980, "translation cultural": 169452, "support investigation": 159303, "dataset enriched": 36260, "traditional machine": 167650, "translation information": 169468, "analysis includes": 8968, "includes automatic": 74358, "metrics gpt4": 102073, "abilities adapting": 1877, "lags human": 83068, "anticipate insights": 10113, "significantly contribute": 150968, "models practical": 108583, "culturally diverse": 33976, "irrelevant documents": 80850, "feasibility zeroshot": 57372, "addresses challenges": 5405, "cost need": 32717, "proper answer": 131611, "selection experimental": 147846, "scenarios enhancing": 146585, "furthermore unlike": 62174, "demonstrate outstanding": 38458, "modelbased agents": 104924, "agents complete": 6567, "tasks personal": 162945, "personal assistance": 122550, "event planning": 52088, "planning work": 123343, "collaboration agents": 25579, "society economy": 152704, "economy paper": 45405, "behaviors llmbased": 16714, "agents propose": 6699, "implement practical": 72827, "environment using": 50038, "reveal interesting": 144344, "ranging social": 135762, "social learning": 152598, "strategies training": 156082, "submission babylm": 157888, "babylm challenge": 15401, "initial pretraining": 77042, "music data": 111310, "sequences training": 148845, "tokens target": 166890, "subtasks overall": 158186, "training short": 168740, "performance marginally": 121786, "llms small": 96620, "needed explore": 112443, "judges evaluating": 81315, "llms openended": 95990, "comprehensively address": 28160, "finetune llms": 58944, "llms scalable": 96483, "llms efficiently": 95013, "comprehensive largescale": 28071, "containing task": 30346, "13b 33b": 359, "parameters conduct": 119731, "bias knowledge": 18142, "knowledge bias": 81798, "format bias": 60541, "benchmark proposed": 17059, "a100 gpus": 1852, "exceeding 90": 52746, "multiturn chat": 111265, "tasks popular": 162957, "network modules": 112679, "modules transformer": 110006, "plays central": 123509, "models vit": 109645, "vision bert": 176892, "gpt natural": 66467, "effectiveness transformer": 46305, "mechanism study": 100029, "softmax operation": 152755, "different feature": 41769, "feature dimensions": 57396, "feature dimension": 57395, "different implementations": 41795, "analyze impacts": 9302, "arena benchmark": 12397, "demonstrating advantage": 38917, "faster speed": 57300, "mode collapse": 102983, "responding patient": 142608, "messages large": 100546, "documentation burden": 43866, "ability care": 2089, "electronic medical": 47003, "chatbots utility": 22646, "models assisting": 105404, "draft responses": 44868, "realistic synthetic": 136305, "common medical": 26154, "58 time": 1393, "cases physicians": 21004, "patient education": 120463, "promise ai": 130165, "monitoring model": 110056, "interaction remains": 79176, "remains crucial": 139999, "crucial safe": 33857, "safe implementation": 145806, "dominated small": 44651, "dimensions exceedingly": 42332, "exceedingly high": 52753, "investigate finetuning": 80418, "occur pretraining": 115588, "rate results": 136013, "educational value": 45632, "expertise existing": 54612, "existing conversational": 53324, "systems crs": 160316, "users lack": 173699, "lack background": 82887, "knowledge focusing": 82007, "focusing solely": 60196, "preferences work": 126075, "work define": 178888, "new problem": 113350, "agents aim": 6536, "dialog introduce": 41421, "facilitates simulation": 56691, "build salesbot": 19348, "framework comprehensive": 61026, "professional performance": 129626, "recommendation quality": 138225, "truthful information": 169892, "information highlighting": 76494, "llmbased predictions": 94162, "test comparing": 164536, "surprisal estimates": 159533, "predictions using": 125939, "finergrained analysis": 58909, "analysis points": 9064, "points potential": 123761, "results involving": 143542, "suggestions using": 158650, "suggestion systems": 158632, "systems offer": 160499, "tasks reach": 163079, "explore opportunities": 55249, "context including": 30793, "users behavior": 173587, "partial success": 119980, "intelligence gai": 78823, "questions arise": 135046, "accuracy statistical": 3398, "statistical methods": 155501, "applied synthetic": 10811, "compared raw": 26905, "data article": 34655, "article introduces": 12587, "framework framework": 61170, "highfidelity synthetic": 69678, "models tabular": 109346, "diffusion generative": 42232, "enhanced insights": 49341, "studies knowledge": 157031, "discovery framework": 42767, "statistical method": 155500, "additional synthetic": 5002, "specific error": 153988, "error metrics": 50308, "analysis texts": 9201, "predictive modeling": 125954, "modeling structured": 105099, "framework traditional": 61460, "underline potential": 170818, "gradient boosting": 67381, "underscoring transformative": 170969, "potential synthetic": 125010, "targeted data": 161129, "techniques aiming": 163832, "aiming generate": 7552, "added noise": 4812, "noise paper": 113981, "multistep prompting": 111173, "utilizing llm": 175210, "require specific": 141198, "broadening applicability": 19199, "method known": 100944, "ensuring reliable": 49752, "labels assess": 82783, "assess techniques": 13129, "tasks superglue": 163319, "finetune various": 58976, "encoderdecoder decoderonly": 48455, "sets evaluation": 149367, "better trained": 18052, "incorporating instruction": 75107, "tuning performance": 170079, "data vs": 35958, "demonstrates similar": 38896, "similar higher": 151245, "dataset complexity": 36172, "complexity diversity": 27667, "diversity furthermore": 43728, "furthermore synthetic": 62169, "aligns closely": 8266, "yields impressive": 180026, "openllm leaderboard": 116534, "points hope": 123756, "generation reducing": 65031, "efforts create": 46895, "sentences zero": 148601, "settings unlike": 149652, "relying llms": 139905, "example entities": 52473, "templates manually": 164237, "incorporate llm": 75024, "template generation": 164215, "direct llm": 42390, "dataset best": 36132, "models knowing": 106838, "potential natural": 124876, "llms reliability": 96379, "utilization paper": 175014, "method detect": 100783, "does know": 43996, "prone generate": 131560, "textual expressions": 165914, "expressions given": 55596, "corresponding answers": 32571, "answers identify": 10035, "questions model": 135197, "llms referring": 96359, "method recently": 101058, "released llms": 139523, "llms vicuna": 96974, "dataset sentiment": 36526, "linguistic phenomenon": 93052, "languages mixed": 87060, "mixed text": 102726, "datasets build": 36687, "codemixing common": 25275, "common observe": 26168, "languages datasets": 86974, "codemixed data": 25272, "languages bangla": 86951, "bangla english": 15535, "english hindi": 49060, "carry comprehensive": 20834, "utilization generative": 174996, "meticulous planning": 101941, "seamless transition": 147293, "tasks major": 162777, "major drawback": 98426, "softprompt tuning": 152765, "tuning presents": 170086, "prompts steer": 131486, "model fit": 103679, "methods ignore": 101576, "propose multilevel": 131937, "method machine": 100972, "prompt focus": 130504, "focus information": 60001, "information domain": 76366, "generator incorporates": 65621, "contextrelated knowledge": 30997, "knowledge prompt": 82315, "generation enhance": 64610, "enhance contextual": 49178, "way model": 177852, "internet contains": 79581, "generated groups": 63881, "features form": 57497, "data lms": 35327, "activation space": 4415, "generated finetuning": 63868, "topics using": 167375, "crucial model": 33825, "exploit hierarchical": 55004, "hierarchical structures": 69375, "structures data": 156695, "framework opensource": 61334, "column type": 25806, "existing deeplearning": 53340, "deeplearning approaches": 37853, "approaches semantic": 11901, "annotation cta": 9518, "rely semantic": 139881, "semantic types": 148243, "costs performance": 32840, "evaluated novel": 51198, "novel datasets": 114462, "datasets types": 37165, "exhibited strong": 53158, "model querying": 104404, "provide consistent": 132724, "new domainspecific": 113157, "domainspecific benchmarks": 44562, "benchmarks release": 17349, "weights future": 178110, "models grant": 106557, "widespread access": 178452, "research human": 141833, "understanding providing": 171427, "harm models": 68715, "continued model": 31210, "model weight": 104888, "likely help": 92455, "organized hackathon": 117295, "hackathon participants": 68308, "llama270b model": 93378, "model typically": 104818, "information needed": 76594, "future capable": 62233, "users direct": 173623, "direct control": 42379, "consistent relevant": 29835, "performing image": 122402, "clustering based": 24596, "based userspecified": 16168, "method image": 100914, "paradigm image": 119462, "degree human": 38013, "images various": 72509, "criteria human": 33430, "human action": 70555, "navigation using": 112069, "navigation tasks": 112067, "context representation": 30897, "efficacy approach": 46360, "opensource llama2": 116628, "prove effective": 132619, "effective realtime": 45864, "realtime environmental": 136376, "feedback overall": 57752, "research llmdriven": 141893, "llms increases": 95597, "society does": 152703, "safeguards place": 145825, "uphold ethical": 172375, "technologies recent": 164110, "recent events": 137496, "introduce test": 80128, "safe robust": 145813, "robust prompting": 145310, "evaluates outputs": 51245, "gpt4 opt": 67096, "opt llama2": 116910, "overhead making": 118359, "models safe": 109027, "medical applications": 100135, "attention numerous": 13952, "domains order": 44486, "problem task": 128418, "tasks realworld": 163085, "realworld medical": 136477, "medical scenarios": 100219, "diversity results": 43753, "results suboptimal": 143825, "suboptimal finetuning": 157909, "time computational": 166362, "simultaneously propose": 151760, "novel parameterefficient": 114627, "framework multitask": 61318, "applications called": 10438, "benefits moe": 17484, "learning lora": 90657, "lora parameterefficient": 97647, "multiple experts": 110909, "pair lowrank": 118520, "parameters various": 119888, "tasks validate": 163445, "effectiveness practicality": 46261, "practicality proposed": 125470, "medical dataset": 100152, "methods implementation": 101577, "urban region": 172408, "models urban": 109567, "importance urban": 73066, "urban planning": 172407, "sustainable development": 159747, "fields especially": 58273, "research visionlanguage": 142145, "image textual": 72346, "introduced modality": 80164, "fundamental questions": 61972, "modality enhance": 102968, "integrates knowledge": 78559, "detailed textual": 40325, "satellite image": 146151, "language supervision": 86751, "learning jointly": 90597, "loss language": 97678, "results predicting": 143677, "methods code": 101370, "representations autoregressive": 140766, "models considering": 105752, "distribution possible": 43379, "finetuning applicable": 59168, "vectorbased representations": 176397, "representations model": 140849, "logical entailment": 97355, "relations using": 139313, "automata theory": 14490, "theory knowledge": 166086, "knowledge applied": 81748, "methods semantic": 101806, "finally extend": 58458, "personalized assistant": 122589, "rapidly expanding": 135927, "analysis tools": 9206, "tools presents": 167233, "users complex": 173599, "environment address": 49981, "built large": 19487, "chatbot provides": 22584, "provides personalized": 133193, "personalized contextaware": 122591, "chatbot offers": 22580, "new standard": 113420, "research communication": 141645, "holistic endtoend": 70295, "endtoend multitask": 48753, "learning usually": 91115, "based labeled": 15896, "studies related": 157067, "everevolving nature": 52146, "nature field": 112001, "review existing": 144503, "theory framework": 166083, "methods guiding": 101559, "llm fool": 93684, "recent applications": 137439, "llms machine": 95833, "systems shown": 160609, "use shortcuts": 172870, "emerged potential": 47382, "potential threat": 125020, "edit text": 45433, "text mislead": 165306, "edited text": 45442, "llms analysing": 94393, "observe capable": 115358, "highlight inherent": 69749, "framework future": 61173, "gpt4 augment": 66919, "unbalanced data": 170647, "categories introduces": 21103, "introduces uncertainty": 80220, "meet challenge": 100272, "unbalanced datasets": 170648, "datasets automatic": 36669, "studentwritten responses": 156917, "answers particularly": 10062, "performance assessed": 121169, "assessed using": 13152, "data examine": 35000, "average maximum": 15298, "notably using": 114292, "data led": 35310, "led substantial": 91254, "varied depending": 175670, "obtain stable": 115505, "stable improvement": 154697, "effectiveness data": 46152, "techniques utilizing": 164055, "automated assessment": 14520, "incontext ability": 74839, "ability transfer": 2399, "decomposition complex": 37636, "complex qa": 27536, "existing supervised": 53602, "unsupervised approaches": 172235, "certain task": 21420, "training recently": 168679, "tackle wide": 160854, "existing promptbased": 53535, "annotations experts": 9590, "incontext samples": 74995, "llms careful": 94547, "careful selection": 20788, "approach selecting": 11524, "transfer data": 168905, "convincingly outperforms": 32031, "solutions involving": 153035, "gpt4 reliably": 67140, "reliably evaluate": 139766, "various configurations": 175872, "able evaluate": 2496, "assessments conducted": 13279, "opportunity test": 116893, "test domain": 164546, "evaluate generalizability": 50974, "predominantly designed": 125981, "american countries": 8661, "performed extremely": 122370, "substantially outperforming": 158133, "grading process": 67419, "enable wider": 48135, "wider usage": 178446, "turn improve": 170174, "school management": 146834, "teaching practice": 163657, "level importantly": 91476, "use low": 172757, "making feasible": 98741, "lower resource": 97839, "language identification": 83405, "datasets performing": 37029, "languages available": 86949, "extraction biomedical": 56265, "extraction systems": 56359, "aim automatically": 7430, "entities current": 49842, "current unified": 34292, "unified information": 171722, "sentences furthermore": 148580, "absence highquality": 2592, "impedes progress": 72788, "progress developing": 129955, "systems tackle": 160637, "novel retrievalbased": 114677, "database using": 36009, "head entity": 68906, "tail entity": 160903, "relation types": 139266, "types experimental": 170353, "standard biomedical": 154808, "reasoning generate": 136879, "model actually": 103064, "potential way": 125071, "llm encode": 93626, "reasoning generated": 136881, "text way": 165574, "trained make": 167993, "methodology enables": 101222, "enables evaluation": 48181, "successfully prevents": 158392, "bits information": 18603, "neural networkbased": 112912, "despite immense": 40129, "immense promise": 72600, "promise performing": 130195, "tasks theoretical": 163370, "study generalization": 157379, "properties unseen": 131665, "randomly initialized": 135566, "tangent kernel": 161029, "kernel ntk": 81446, "closed form": 24457, "evidence corroborates": 52174, "makes approach": 98632, "infeasible practice": 75933, "regression classification": 138952, "cases shown": 21017, "addition providing": 4899, "providing theoretical": 133389, "grounding using": 67930, "framework suggests": 61437, "performance classification": 121245, "conventional approach": 31692, "adaptive learning": 4781, "rise powerful": 144907, "smaller opensourced": 152428, "approach neglects": 11402, "model inspired": 103870, "inspired modern": 77739, "principles design": 127857, "distillation process": 43161, "process student": 128995, "instead feeding": 77873, "learning student": 91031, "learns examples": 91177, "makes mistakes": 98672, "solution code": 152908, "distillation data": 43144, "pass1 humaneval": 120328, "intelligence software": 78899, "tools increasingly": 167183, "prevalent software": 127523, "notable examples": 114223, "examples tools": 52711, "tools include": 167180, "chatgpt github": 22990, "copilot amazon": 32104, "amazon codewhisperer": 8617, "publications explored": 133619, "understanding current": 171182, "current development": 34104, "development applications": 41053, "challenges remains": 22047, "practical software": 125450, "usage scenarios": 172475, "explore adoption": 55139, "partial automation": 119975, "automation support": 14910, "software implementation": 152822, "engineering software": 48986, "design software": 39758, "implementing genai": 72879, "data accessibility": 34573, "transparency sustainability": 169589, "bringing significant": 19135, "changes field": 22371, "state research": 155016, "holds significance": 70278, "practitioners current": 125527, "selfcorrection mechanism": 147968, "mechanism large": 100005, "models feedback": 106318, "feedback drawing": 57664, "llms emulate": 95054, "humans engage": 71382, "domains enhance": 44396, "enhance trustworthiness": 49305, "consistently observe": 29889, "improvements llms": 73915, "llms reducing": 96357, "correcting factual": 32430, "linguistic categories": 93012, "tasks generalpurpose": 162452, "pretraining existing": 127318, "llm layers": 93797, "lower layers": 97828, "layers better": 89659, "different linguistic": 41830, "categories llms": 21110, "focusing syntax": 60200, "crosslingual experiments": 33651, "understanding involves": 171315, "intentions beliefs": 79033, "beliefs desires": 16760, "excel generating": 52770, "limitation hinders": 92502, "hinders practical": 70161, "tasks thoroughly": 163371, "thoroughly examining": 166209, "key features": 81503, "metrics limitations": 102103, "limitations furthermore": 92586, "expanding capabilities": 53696, "structure study": 156607, "decoding batching": 37561, "gpt stateoftheart": 66496, "inherently sequential": 76992, "low hardware": 97759, "modern gpus": 109799, "improve gpu": 73477, "gpu hardware": 67339, "utilization llm": 175005, "extensive characterization": 55732, "models gpu": 106552, "architectures observe": 12284, "decoding schemes": 37596, "assessment aigenerated": 13214, "propose fully": 131839, "evaluate correctness": 50938, "symbolic execution": 159805, "assess aigenerated": 13043, "assess stateoftheart": 13123, "assembly code": 13023, "baseline solutions": 16263, "including output": 74656, "chatgpt aipowered": 22693, "code similar": 25139, "evaluation considered": 51503, "average finally": 15285, "automated solution": 14607, "solution does": 152921, "assessment code": 13221, "probing language": 128153, "models illuminate": 106666, "method counterfactual": 100767, "models mbert": 108156, "linear classifier": 92953, "classifier binary": 24150, "task classify": 161244, "tokens language": 166831, "use classifier": 172550, "classifier weights": 24173, "language evaluate": 83290, "task given": 161433, "given template": 66027, "template language": 164216, "systematically increases": 160192, "probability language": 128115, "control language": 31553, "does specifically": 44034, "minimal effect": 102326, "results evidence": 143392, "rich structure": 144807, "structure massive": 156583, "massive multilingual": 99362, "applied multilingual": 10787, "generation numerous": 64897, "prove helpful": 132623, "testing furthermore": 164715, "furthermore question": 62151, "model aid": 103096, "burden creating": 19515, "research finetuned": 141796, "dataset generate": 36323, "questions addition": 135026, "questions effectively": 135109, "using llama": 174416, "questions compared": 135071, "questions squad": 135285, "squad dataset": 154641, "play werewolf": 123476, "werewolf game": 178203, "potential wide": 125074, "domains complex": 44371, "tasks pure": 163055, "tend exhibit": 164302, "intrinsic bias": 79886, "bias choice": 18107, "choice actions": 23684, "inherited models": 76997, "performance develop": 121382, "language actions": 83129, "decisionmaking abilities": 37395, "abilities propose": 1995, "popular social": 124056, "social deduction": 152558, "deduction game": 37689, "challenging testbed": 22300, "actions agents": 4364, "set action": 149124, "rl policy": 145071, "policy trained": 123874, "existing llmbased": 53418, "daytoday interactions": 37249, "norms different": 114203, "provides test": 133228, "bed evaluating": 16520, "reasoning data": 136790, "common mistakes": 26157, "samples makes": 146040, "instead just": 77882, "models 100b": 105145, "indicate data": 75580, "augmented datasets": 14339, "datasets opensource": 37016, "verification large": 176485, "zeroshot query": 180309, "systems better": 160274, "better represent": 18005, "represent users": 140660, "needs additional": 112464, "additional query": 4992, "terms existing": 164413, "studies task": 157095, "usually propose": 174912, "propose expand": 131813, "contextual documents": 31083, "types methods": 170385, "clear limitations": 24276, "limitations retrievalbased": 92661, "methods documents": 101453, "generationbased methods": 65274, "methods existing": 101497, "corpus lack": 32322, "novel large": 114561, "based mutual": 15960, "verification framework": 176480, "aforementioned limitations": 6369, "pipeline effectively": 123048, "leverage contextual": 91579, "encoded llms": 48398, "generated retrieved": 63967, "knowledge generated": 82032, "generated documents": 63858, "allows retrieved": 8469, "model applying": 103123, "detection existing": 40499, "methods predict": 101717, "multiturn dialog": 111270, "color shape": 25793, "shape categories": 149774, "perception abilities": 120787, "making competitive": 98717, "training specific": 168758, "detection requires": 40609, "requires tremendous": 141462, "data massive": 35353, "massive computation": 99346, "detection highquality": 40520, "specifically adopt": 154134, "experts tokens": 54686, "intelligible large": 78967, "experts introduce": 54662, "adapter bridge": 4704, "propose vision": 132213, "tokens according": 166772, "performs favorably": 122445, "settings provide": 149634, "layers encoding": 89665, "prominent feature": 130144, "lack explicit": 82940, "models poorly": 108555, "turn using": 170179, "trained corpus": 167884, "leading improvements": 89825, "tasks finding": 162403, "impressive achievements": 73260, "gan generative": 62597, "quantum hardware": 134438, "provide highly": 132821, "performance techniques": 122166, "attempt determine": 13786, "calibration language": 19637, "model considered": 103349, "probability estimate": 128109, "output correct": 117910, "detecting mitigating": 40416, "lack flexibility": 82945, "postprocessing methods": 124513, "candidate generations": 19720, "trainingbased methods": 168829, "increasing sizes": 75366, "single linear": 151825, "linear layer": 92962, "output logits": 117963, "adding original": 4830, "parameters evaluation": 119749, "evaluation construct": 51509, "consisting text": 29955, "responses ranging": 142894, "improves calibration": 73985, "popular opensourced": 124038, "following key": 60286, "findings larger": 58720, "models family": 106308, "better calibration": 17820, "gptfamily models": 67287, "superior calibration": 158991, "calibration compared": 19629, "compared llama": 26850, "vicuna models": 176672, "model llama": 103968, "limited purpose": 92826, "worse calibration": 179656, "importance finetuning": 73033, "finetuning setups": 59532, "calibrating lms": 19627, "dialogue recommendation": 41506, "humanlike capabilities": 71249, "playing essential": 123495, "role assisting": 145462, "variety everyday": 175710, "systems respond": 160593, "respond human": 142593, "recommendations tailored": 138263, "tailored user": 160949, "used dialogue": 173031, "capability using": 20385, "inference capability": 75972, "capability dialogue": 20283, "dialogue ability": 41444, "effectiveness improving": 46198, "improving factual": 74140, "consistency text": 29797, "hallucinations text": 68460, "make fewer": 98536, "effect adding": 45646, "hallucinations challenging": 68423, "challenging detect": 22142, "methods poses": 101712, "llms way": 96997, "execute instructions": 52911, "enhanced abilities": 49315, "hallucinations experimental": 68428, "improves reliability": 74072, "summarization based": 158805, "wireless generative": 178548, "outstanding achievements": 118160, "ai gained": 7005, "substantial attention": 158030, "attention various": 14005, "including hardware": 74550, "quantization errors": 134408, "performance respect": 122019, "respect different": 142503, "tree model": 169662, "network intrusion": 112662, "intrusion detection": 80282, "detection network": 40571, "systems leverage": 160460, "practice used": 125501, "used detect": 173027, "decision trees": 37392, "performance simplicity": 122071, "knowledge machine": 82212, "unable provide": 170609, "information certain": 76310, "features important": 57509, "classification work": 24138, "additional background": 4925, "knowledge decision": 81857, "decision tree": 37390, "systems introduce": 160440, "new human": 113216, "questions measure": 135193, "measure human": 99848, "finally llm": 58490, "correlate highly": 32515, "highly human": 69922, "quality use": 134293, "knowledge simultaneously": 82403, "decision boundaries": 37365, "capabilities broad": 19801, "tasks attracted": 161983, "doubleedged sword": 44679, "harmful misleading": 68739, "progress llms": 129983, "potential emergence": 124691, "safeguards effectively": 145822, "survey endeavors": 159625, "perspective evaluation": 122660, "knowledge capability": 81805, "capability evaluation": 20290, "review evaluation": 144502, "methodologies benchmarks": 101190, "performance specialized": 122093, "discuss construction": 42880, "construction comprehensive": 30209, "evaluations capabilities": 51947, "capabilities alignment": 19778, "goal making": 66178, "making evaluation": 98737, "guiding responsible": 68284, "societal benefit": 152684, "minimizing potential": 102396, "processing bionlp": 129122, "introducing domainspecific": 80232, "domainspecific instruction": 44586, "dataset examining": 36271, "examining impact": 52447, "combined multitask": 25911, "learning principles": 90853, "gpt4 language": 67053, "curated instructions": 34020, "instructions employed": 78244, "finetuning evaluated": 59250, "llms bionlp": 94504, "bionlp tasks": 18585, "categories question": 21118, "information extractionie": 76440, "generation instructions": 64749, "comparing llms": 26995, "marked performance": 99220, "instructiontuned llama": 78395, "model competitive": 103317, "gain significantly": 62450, "finetuning conducted": 59207, "suggesting synergies": 158630, "dataset serves": 36531, "serves valuable": 149057, "bionlp applications": 18584, "applications examples": 10514, "selection large": 147864, "icl icl": 71677, "icl efficient": 71668, "require parameter": 141169, "trained llm": 167989, "input llm": 77279, "approach icl": 11283, "model uncertain": 104819, "performs semantic": 122456, "improves overall": 74040, "effectiveness uncertainty": 46308, "uncertainty sampling": 170680, "dynamically adapts": 45182, "greedy algorithms": 67807, "datasets seven": 37108, "44 accuracy": 1229, "uniformly random": 171773, "icl examples": 71671, "scheme large": 146789, "aspects daily": 12930, "models impacted": 106677, "impacted numerous": 72748, "enhancing productivity": 49547, "architectures poses": 12288, "challenge scaling": 21734, "models processing": 108660, "long textual": 97496, "lengthy texts": 91410, "texts use": 165796, "inference recent": 76090, "recent study": 137679, "polynomial sketching": 123923, "paper offer": 119085, "offer theoretical": 115709, "expressive capabilities": 55603, "polynomial attention": 123921, "attention study": 13991, "designed datasets": 39844, "includes feature": 74372, "larger value": 89258, "value compared": 175472, "sufficiently high": 158507, "separate datasets": 148691, "analysis underscores": 9216, "greater effectiveness": 67761, "large values": 89099, "intricate linguistic": 79850, "emerging issues": 47514, "understand issues": 171029, "conducted controlled": 29223, "characteristics compared": 22453, "performance completing": 121307, "help ai": 69082, "similar independent": 151255, "identifier names": 71837, "given proper": 65965, "correctness solutions": 32503, "systems driven": 160344, "promising abilities": 130210, "abilities solving": 2020, "tasks collaborative": 162070, "manner work": 99016, "fundamental problem": 61967, "problem multiagent": 128329, "work interested": 179049, "state agent": 154980, "agent numerical": 6480, "numerical value": 115016, "primarily use": 127796, "work analyzes": 178800, "agent personality": 6486, "process findings": 128837, "reported work": 140570, "understanding behaviors": 171132, "llmdriven multiagent": 94185, "systems solving": 160616, "task application": 161194, "achieve zeroshot": 3779, "autonomous planning": 14946, "multirobot collaboration": 111134, "tasks project": 163017, "zeroshot information": 180214, "ranked list": 135784, "list relevant": 93129, "access labeled": 2868, "popular paradigms": 124040, "generationaugmented retrieval": 65271, "retrieval gar": 144055, "generate additional": 63390, "query retrieve": 134627, "obtain zeroshot": 115509, "reranking models": 141533, "typically need": 170502, "overcomes challenges": 118312, "existing paradigms": 53516, "improves retrieval": 74076, "stage improves": 154742, "zeroshot passage": 180278, "benchmarks beir": 17180, "method establishes": 100836, "metrics datasets": 102040, "17 relative": 484, "gpt4 pass": 67107, "bestperforming gpt4": 17777, "falling short": 57144, "sufficient pass": 158492, "test participants": 164590, "llms did": 94919, "despite known": 40146, "known limitations": 82610, "limitations test": 92676, "test intelligence": 164570, "societal consequences": 152688, "multilingual mathematical": 110506, "observations existing": 115337, "research predominantly": 141979, "predominantly focuses": 125985, "efficacy multilingual": 46401, "context bridge": 30699, "paper pioneers": 119100, "llms firstly": 95280, "construct multilingual": 30147, "reasoning instruction": 136921, "encompassing distinct": 48551, "issue training": 80965, "build powerful": 19339, "notably outperform": 114287, "outperform conventional": 117578, "parallel corpora": 119562, "languages significantly": 87127, "vital strategy": 177416, "strategy enhancing": 156141, "counterparts trained": 32978, "digital human": 42285, "ai digital": 6958, "digital humans": 42286, "expected achieve": 53748, "generation combined": 64506, "development efficiency": 41094, "speech image": 154417, "human video": 71086, "human driving": 70705, "techniques finally": 163905, "enhance user": 49307, "evaluation experimental": 51575, "related code": 139153, "spatial awareness": 153780, "capability multimodal": 20346, "extension large": 55700, "llm equipped": 93636, "data spatial": 35785, "skills related": 152185, "related understanding": 139223, "spatial relationships": 153801, "relationships objects": 139347, "smart healthcare": 152479, "capabilities mllm": 20053, "human needs": 70936, "needs address": 112465, "proposes using": 132492, "information objects": 76601, "task utilize": 161803, "information scene": 76744, "graphs obtain": 67644, "scene details": 146731, "based information": 15873, "conducted benchmarks": 29212, "mme mmvet": 102880, "results thoroughly": 143870, "method enhancing": 100831, "information access": 76261, "ir applications": 80829, "humanlike texts": 71290, "systems llms": 160472, "llms era": 95089, "influence ir": 76202, "systems pressing": 160545, "question work": 134957, "models scenarios": 109042, "neural retrieval": 112972, "documents higher": 43911, "biases neural": 18293, "analysis perspective": 9057, "text compression": 164945, "understand semantic": 171075, "objective experimental": 115194, "severe concerns": 149707, "community facilitate": 26476, "future explorations": 62262, "ir llm": 80832, "benchmarks codes": 17187, "policy using": 123877, "datasets realworld": 37066, "rl particularly": 145067, "highlights crucial": 69852, "crucial components": 33777, "employing lora": 47938, "lora finetuning": 97640, "knowledge lms": 82205, "indomain knowledge": 75797, "instead linear": 77885, "generate embeddings": 63474, "prediction loss": 125821, "lms retain": 97194, "retain original": 143954, "original abilities": 117310, "abilities languages": 1940, "method demonstrates": 100775, "performance scenarios": 122043, "defining new": 37956, "recent explosion": 137500, "shift fields": 149908, "status quo": 155528, "analysis new": 9034, "challenging problems": 22245, "problems learning": 128553, "interdisciplinary applications": 79377, "safety finetuning": 145861, "finetuning llama": 59353, "llama 2chat": 93277, "13b llama": 364, "2chat collection": 924, "collection large": 25738, "models meta": 108175, "bad actors": 15467, "capabilities malicious": 20048, "demonstrate possible": 38465, "possible effectively": 124417, "undo safety": 171601, "capabilities results": 20162, "weights released": 178127, "given future": 65890, "greater ability": 67749, "developers address": 40934, "finetuning considering": 59208, "multitask generative": 111208, "brain data": 18942, "data stateoftheart": 35797, "require new": 141166, "data autoregressive": 34702, "handle intricacies": 68545, "scales linearly": 146372, "process arbitrary": 128741, "arbitrary number": 12087, "number modalities": 114902, "adaptable downstream": 4589, "behavior trained": 16655, "simulated datasets": 151655, "underlying neural": 170862, "neural responses": 112971, "model predicted": 104300, "learning directly": 90372, "boosted performance": 18833, "performance highlighting": 121624, "highlighting models": 69819, "ability associate": 2074, "behavioral neural": 16669, "datasets emergent": 36810, "informing development": 76899, "models hypotheses": 106655, "sensitive tasks": 148445, "tasks instruction": 162612, "tuning achieves": 169958, "generalization results": 63225, "llms massive": 95862, "massive diverse": 99354, "select new": 147783, "tasks lead": 162694, "framework identify": 61205, "models selected": 109063, "selected tasks": 147805, "perturbed prompts": 122763, "uncertainty prediction": 170676, "tasks improves": 162538, "selection instruction": 147858, "tuning efficient": 169998, "humanai coordination": 71114, "developing intelligent": 40999, "step achieving": 155593, "intelligence existing": 78814, "set policies": 149269, "human models": 70930, "behavior present": 16629, "systems constrained": 160305, "capacity high": 20510, "data readily": 35606, "available realworld": 15192, "scenarios study": 146704, "actions making": 4383, "building observation": 19435, "propose employing": 131799, "generate comprehensive": 63431, "parties involved": 120276, "formulation problem": 60639, "problem subproblems": 128415, "employed human": 47886, "conducted overcookedai": 29273, "overcookedai environment": 118328, "utilizing human": 175195, "human proxy": 70992, "highlight superior": 69787, "existing learningbased": 53408, "learningbased approaches": 91155, "real humans": 136234, "humans method": 71433, "contrastconsistent search": 31335, "aims recover": 7662, "new loss": 113265, "function leads": 61843, "higher test": 69642, "promise large": 130184, "address paper": 5329, "similar prompts": 151295, "highresource language": 70098, "models mplms": 108237, "evaluation highlights": 51636, "augmented prompts": 14366, "prompts bring": 131178, "steady improvements": 155538, "models reliable": 108907, "evaluation capabilities": 51461, "immense attention": 72593, "study delve": 157266, "delve potential": 38098, "llms reliable": 96380, "consistency summaries": 29795, "textgeneration models": 165630, "models initially": 106769, "assessment using": 13276, "llms entails": 95083, "employing singular": 47947, "singular llm": 151913, "efficacy various": 46415, "measures human": 99927, "initial expectations": 77022, "indicate lack": 75595, "significant correlations": 150672, "observed gpt35": 115410, "consistent findings": 29812, "factual error": 56866, "fundamental limitation": 61955, "accurately gauge": 3535, "presents information": 126591, "main points": 98261, "points findings": 123751, "finetuning longcontext": 59367, "longcontext utilization": 97517, "utilization capability": 174988, "design investigating": 39664, "t5 family": 160704, "closer look": 24539, "longer input": 97527, "alignment strategies": 8238, "scaling findings": 146399, "mind language": 102281, "model hierarchical": 103796, "progress struggle": 130017, "struggle challenging": 156734, "problems current": 128476, "approaches address": 11689, "capabilities making": 20047, "space work": 153630, "unleash llms": 171976, "llms creative": 94761, "creative potential": 33374, "multiple diverse": 110897, "framing llm": 61530, "proposes multiple": 132470, "highlevel instruction": 69696, "answer approach": 9678, "problems math": 128561, "conversations online": 31957, "accurate estimate": 3453, "provide possible": 132924, "labeling extensive": 82756, "extensive datasets": 55747, "use label": 172694, "plms exhibited": 123594, "exhibited substantial": 53159, "tasks capacity": 162024, "capacity plms": 20534, "underexplored domain": 170768, "automated generation": 14555, "selection strategies": 147890, "abilities vast": 2039, "interpreting user": 79739, "knowledge user": 82494, "limit potential": 92490, "overcomes limitations": 118313, "user request": 173483, "sequence discrete": 148734, "actions actions": 4362, "actions used": 4397, "information interact": 76524, "interact user": 79077, "tree llm": 169661, "decide action": 37352, "action action": 4306, "action set": 4340, "capabilities support": 20202, "critical requirements": 33540, "flexible scalable": 59824, "user preference": 173468, "code api": 24666, "open fridge": 116233, "references using": 138701, "benchmark 50": 16814, "home tasks": 70312, "rate significantly": 136014, "existing llmenabled": 53420, "security llm": 147602, "growing popularity": 68041, "models github": 106500, "important ensure": 73128, "ensure code": 49673, "generated tools": 64029, "generate insecure": 63571, "llms adequately": 94358, "competitive programming": 27195, "code produced": 25062, "potential security": 124970, "evaluating security": 51390, "security generated": 147586, "second existing": 147471, "code ignoring": 24942, "security considerations": 147570, "bleu codebleu": 18683, "neglecting security": 112555, "light research": 92147, "research gaps": 141812, "abilities generate": 1916, "test generated": 164558, "code novel": 25032, "performance perspective": 121908, "technologies practice": 164108, "speech better": 154386, "better understood": 18061, "work shares": 179286, "designed accommodate": 39810, "struggle generalizing": 156750, "expert linguistic": 54583, "knowledge enable": 81924, "scalable number": 146250, "way approach": 177773, "approach facilitates": 11224, "language rules": 86715, "assist various": 13364, "suggestions work": 158651, "propose learn": 131898, "learn rules": 90047, "described natural": 39380, "discovery algorithm": 42757, "local regions": 97257, "space prior": 153609, "prior human": 127895, "iterative contrastive": 81117, "rules human": 145715, "method lead": 100952, "lead accurate": 89726, "separately learn": 148702, "knowledge scope": 82392, "capabilities enabling": 19871, "answer wide": 9799, "produce responses": 129455, "responses contain": 142754, "mitigating issue": 102665, "llms refuse": 96364, "answer challenging": 9681, "questions order": 135210, "errors propose": 50393, "solution called": 152905, "utilize structured": 175085, "llms understanding": 96884, "world enabling": 179545, "enabling provide": 48340, "gold knowledge": 66239, "questions outside": 135211, "expanding knowledge": 53698, "llms qualitative": 96275, "enhances controllability": 49404, "learning support": 91043, "integrated circuit": 78516, "includes evaluation": 74369, "evaluation reflection": 51821, "study shed": 157621, "light benefits": 92098, "way innovative": 177832, "innovative learning": 77175, "education sector": 45588, "twostage paradigm": 170263, "paradigm pretraining": 119498, "processing realworld": 129281, "labels noisy": 82815, "noisy labels": 114003, "plms using": 123651, "clean noisy": 24251, "samples provides": 146059, "supplementary information": 159235, "information noisy": 76599, "plms extensive": 123597, "llms gpts": 95442, "great impact": 67694, "better suit": 18033, "remains completely": 139994, "completely solved": 27304, "associated text": 13514, "text sample": 165441, "despite promise": 40182, "aligned knowledge": 8057, "core technique": 32183, "llms manages": 95854, "llms predicting": 96156, "model broadly": 103230, "inputs address": 77384, "task assessing": 161204, "llms manually": 95858, "manually creating": 99086, "questions release": 135249, "suggested prior": 158604, "qa accuracy": 133866, "building evaluating": 19401, "factual qa": 56895, "prediction predicting": 125841, "question evaluating": 134866, "baselines results": 16365, "paradigm release": 119505, "facto approach": 56770, "application field": 10319, "network approaches": 112626, "construction chinese": 30207, "task significantly": 161727, "leverage user": 91680, "feedback optimize": 57749, "optimize model": 117071, "optimizing model": 117123, "novel reward": 114678, "method eliminates": 100816, "surpasses gpt4": 159484, "assistance compared": 13369, "performance exhibits": 121477, "exhibits enhanced": 53191, "enhanced robustness": 49367, "robustness scalability": 145432, "classification legal": 24026, "domain machine": 44222, "research evaluates": 141763, "best solutions": 17753, "aspects overlooked": 12961, "consumption carbon": 30277, "llms extensively": 95217, "extensively adopted": 55975, "adopted address": 5589, "address nlp": 5326, "detailed quantitative": 40310, "account performance": 3078, "alternative metrics": 8569, "consumption cost": 30281, "follow different": 60211, "resources results": 142485, "llms low": 95827, "low power": 97777, "additional evaluations": 4956, "driven natural": 44989, "aims synthesize": 7677, "ability directly": 2132, "directly control": 42527, "require excessive": 141095, "limited adaptability": 92696, "annotations work": 9624, "tts model": 169928, "model minimal": 104087, "annotations approach": 9571, "utterances based": 175253, "style prompts": 157761, "raw input": 136088, "text natural": 165319, "selected reference": 147803, "semantic inference": 148157, "results synthetic": 143855, "effect scaling": 45674, "limited tendency": 92863, "inconsistent answers": 74829, "answers semantically": 10078, "lm retrieval": 97071, "corpus results": 32352, "models strategies": 109236, "especially comes": 50438, "tasks systematically": 163330, "capabilities evaluation": 19877, "addressing tasks": 5482, "singleanswer grading": 151882, "using gpt4v": 174269, "gpt4v notably": 67254, "promising agreement": 130214, "methods demonstrating": 101426, "llms evaluators": 95111, "limitations like": 92616, "detailed explanations": 40294, "universal automatic": 171896, "automatic evaluator": 14672, "visual instructions": 177202, "instructions synthesizing": 78356, "reasoning instructions": 136923, "proposed recently": 132425, "enabling mllms": 48327, "mllms achieve": 102808, "surprising results": 159556, "mllms paper": 102840, "aim investigate": 7469, "investigate fundamental": 80419, "benchmarks building": 17183, "building finding": 19404, "automatically creating": 14784, "instructions approach": 78207, "paradigm leveraging": 119481, "leveraging multiple": 91909, "gradually increase": 67423, "increase complexity": 75196, "guaranteeing quality": 68117, "quality based": 134052, "approach create": 11086, "finetune mllms": 58946, "mllms improving": 102827, "available link": 15157, "adaptation traditional": 4668, "paradigm various": 119531, "effectiveness pretrained": 46263, "holding potential": 70261, "field medicine": 58204, "medicine particularly": 100245, "yields suboptimal": 180042, "primarily challenges": 127772, "challenges like": 21941, "knowledge unique": 82487, "furthermore effectiveness": 62050, "domains traditional": 44540, "novel domain": 114474, "adaptation approach": 4600, "corpus specifically": 32357, "general corpus": 62930, "lora freezes": 97641, "models weights": 109682, "rank decomposition": 135771, "decomposition matrices": 37641, "train specific": 167833, "finetuning efficiently": 59241, "models relative": 108897, "respectively best": 142537, "represents pioneering": 140989, "domain release": 44268, "facilitate interdisciplinary": 56627, "nlp serving": 113806, "serving foundation": 149095, "reducing complexity": 138554, "analysis pipelines": 9060, "pipelines large": 123112, "datasets offer": 37011, "automatic parallelization": 14716, "large compute": 87217, "languages address": 86944, "scientific workflows": 146999, "domains evaluate": 44398, "scenarios suggest": 146705, "suggest future": 158536, "efficient blackbox": 46582, "trained detect": 167893, "detect given": 40359, "investigate simple": 80496, "detectors results": 40683, "results especially": 143386, "evaluation rapidly": 51815, "methodologies remains": 101202, "historical trajectory": 70211, "alan turing": 7740, "llms distinct": 94958, "mimic humanlike": 102262, "humanlike behaviors": 71247, "traditional evaluation": 167616, "need unified": 112418, "evaluation given": 51621, "collaboratively address": 25639, "evaluation ensuring": 51568, "ensuring reliability": 49751, "abilities scientific": 2013, "range visionlanguage": 135730, "tasks comes": 162078, "little idea": 93237, "grounded theory": 67877, "establish rigorous": 50672, "rigorous framework": 144863, "evaluation natural": 51742, "processing use": 129350, "alt text": 8531, "relationships method": 139345, "make information": 98552, "intelligence healthcare": 78835, "potential ethical": 124706, "especially highstakes": 50488, "resolve issues": 142346, "used synthesize": 173256, "synthesize images": 159990, "gaps current": 62756, "systematic scoping": 160153, "scoping review": 147024, "relevant existing": 139601, "research healthcare": 141822, "healthcare reduce": 69013, "readily integrated": 136176, "enhance generative": 49207, "research used": 142136, "generative aipowered": 65370, "capabilities powerful": 20110, "progress development": 129956, "development vision": 41260, "handle tasks": 68569, "additional modalities": 4977, "modalities speech": 102951, "challenge dealing": 21617, "modalities address": 102916, "handle different": 68539, "enabling better": 48277, "better adaptation": 17794, "tasks preserving": 162977, "model secondly": 104520, "control contribution": 31531, "representation addition": 140666, "addition improvements": 4870, "capabilities experimental": 19886, "approach exhibits": 11200, "compared mainstream": 26853, "modality fusion": 102969, "access code": 2850, "cost efficient": 32669, "modality large": 102974, "resulting multimodal": 143122, "llm contextual": 93559, "speech comprehension": 154392, "speech transcriptions": 154482, "parameters little": 119795, "speechtotext tasks": 154494, "response unseen": 142711, "speechtotext translation": 154495, "setting evaluate": 149451, "fewshot domain": 57899, "instructiontuning data": 78406, "tell model": 164194, "humanwritten articles": 71510, "interacting large": 79090, "userspecified information": 173825, "methods constrained": 101400, "approach method": 11385, "read text": 136153, "text userspecified": 165553, "subset attention": 157996, "applied inference": 10769, "time does": 166379, "changing model": 22403, "instructions integrate": 78286, "integrate new": 78503, "llama7b code": 93396, "boosting code": 18835, "llms multitask": 95918, "multitask finetuning": 111205, "enhancing models": 49530, "coding capabilities": 25375, "previous finetuning": 127593, "tasks scenarios": 163201, "task requiring": 161698, "requiring extensive": 141484, "resources posing": 142466, "deployment maintenance": 39291, "furthermore approaches": 62017, "leverage inherent": 91608, "finetuning multiple": 59397, "tasks incorporating": 162589, "incorporating various": 75138, "varying difficulty": 176284, "demonstrated multitask": 38724, "single tasks": 151868, "offers efficient": 115798, "efficient data": 46591, "resulting significantly": 143135, "speed compared": 154500, "mainstream opensource": 98314, "pass1 score": 120330, "benchmark surpassing": 17099, "conduct qualitative": 29165, "evaluations popular": 52016, "framework contains": 61050, "achieve certain": 3597, "respectively performance": 142574, "zeroshot method": 180259, "works code": 179432, "selftraining methods": 148086, "rely limited": 139868, "generate domainspecific": 63470, "parsing introduce": 119959, "grammar rules": 67446, "establish criteria": 50660, "pseudo instances": 133476, "instances experimental": 77824, "performance crossdomain": 121348, "llms extend": 95210, "extend zeroshot": 55648, "tasks introduced": 162628, "introduced negative": 80165, "overlooked previous": 118384, "extensible framework": 55697, "mllms specifically": 102857, "representative peft": 140937, "20 improvement": 595, "design various": 39798, "various 2d": 175785, "available soon": 15202, "understanding largescale": 171327, "model gpt4v": 103768, "gpt4v takes": 67258, "detection crucial": 40472, "domains data": 44379, "domains modalities": 44473, "modalities study": 102953, "explores use": 55434, "tasks generic": 162464, "investigate application": 80371, "application gpt4v": 10329, "video point": 176723, "cloud time": 24566, "series data": 148913, "multiple application": 110836, "video 3d": 176680, "localization tasks": 97280, "additional cues": 4946, "effective detecting": 45735, "semantic patterns": 148192, "enables accurate": 48157, "evaluations study": 52030, "future evaluation": 62259, "interactions incorporating": 79233, "exhibits promising": 53213, "new avenue": 113077, "complex cognitive": 27373, "complexity lack": 27679, "including propagation": 74685, "propagation misinformation": 131601, "selfcorrection capabilities": 147965, "trustworthiness llms": 169854, "focusing key": 60187, "truthfulness toxicity": 169900, "nature task": 112031, "task interestingly": 161486, "process introducing": 128882, "set challenges": 149152, "answering prior": 9922, "175b parameter": 501, "humans work": 71494, "work enable": 178931, "assessed automatic": 13139, "distinct properties": 43244, "accuracy improves": 3272, "better supervised": 18036, "qualitative improvements": 134001, "improvement quantitative": 73842, "llms metrics": 95886, "given intricate": 65916, "single scalar": 151856, "quantify compare": 134314, "improvement process": 73839, "vast datasets": 176332, "data setups": 35743, "setups work": 149688, "metrics automated": 102008, "uses powerful": 173893, "novel flexible": 114504, "absolute performance": 2616, "challenging dialogue": 22144, "dialogue task": 41531, "technique model": 163787, "evaluation improvement": 51642, "extraction aims": 56252, "knowledge entities": 81950, "brings challenges": 19140, "methods taskspecific": 101867, "schemas complex": 146776, "code typical": 25194, "language capable": 83178, "capabilities transforming": 20226, "llms called": 94524, "information texts": 76804, "generate codes": 63422, "appropriate examples": 11975, "example retrieval": 52500, "powerful ai": 125253, "tools generate": 167170, "comprehend natural": 27854, "text complex": 164938, "key terms": 81593, "offers precise": 115838, "precise consistent": 125577, "consistent way": 29849, "identify strengths": 71966, "establish conditions": 50657, "prompting implications": 130955, "implications methods": 72945, "research avenues": 141614, "results crucial": 143269, "crucial advancing": 33755, "build generative": 19319, "safe reliable": 145810, "fair robust": 57041, "especially domains": 50458, "engineering language": 48940, "super mario": 158964, "models free": 106396, "free lunch": 61550, "lms acquire": 97103, "randomly drops": 135564, "remaining ones": 139965, "approximate original": 12017, "original embeddings": 117329, "parameters multiple": 119809, "models mitigating": 108194, "model parameter": 104213, "encoder decoderbased": 48416, "parameter value": 119651, "typically small": 170521, "multiple taskspecific": 111065, "diverse capabilities": 43476, "ranks models": 135837, "models billion": 105519, "llm leaderboard": 93798, "configurable knobs": 29377, "determining appropriate": 40720, "database community": 35986, "categorical values": 21083, "tuning costs": 169980, "yield suboptimal": 179983, "extensive domain": 55751, "runtime feedback": 145763, "feedback benchmark": 57647, "benchmark evaluations": 16966, "utilize domain": 175036, "limited way": 92879, "way propose": 177869, "llmbased pipeline": 94159, "pipeline collect": 123037, "heterogeneous knowledge": 69302, "prompt ensemble": 130491, "space optimization": 153599, "value range": 175496, "optimization framework": 116995, "achieves 30": 3941, "30 performance": 969, "higher throughput": 69644, "bestperforming alternative": 17774, "approaches powered": 11861, "generative nature": 65520, "makes generated": 98649, "generative entity": 65417, "linking knowledge": 93105, "capability proposed": 20363, "work including": 179038, "ii novel": 72106, "based lightweight": 15921, "previous generative": 127596, "points gain": 123753, "gain average": 62432, "training compute": 168195, "remains persistent": 140057, "llms proposed": 96247, "proposed recent": 132423, "years including": 179900, "opensource ones": 116661, "faces issues": 56573, "forgetting issues": 60423, "issues addressed": 80975, "comprehensively analyzing": 28162, "use pretraining": 172820, "data learning": 35309, "leveraging data": 91830, "llama2 foundation": 93361, "benchmarks especially": 17232, "entities relationships": 49871, "compositional abilities": 27809, "correctly represent": 32472, "represent visual": 140661, "llm explicitly": 93657, "relationships text": 139354, "network achieve": 112620, "tokens llm": 166839, "llm dynamic": 93605, "token generated": 166710, "following visual": 60324, "relevant sentence": 139649, "fed llm": 57617, "framework seamlessly": 61396, "seamlessly bridges": 147297, "gap visual": 62750, "accuracy achieve": 3134, "grounding large": 67899, "vision domain": 176903, "responses recently": 142897, "generate visually": 63785, "single object": 151844, "corresponding object": 32597, "interact model": 79067, "visual domains": 177155, "domains lack": 44445, "benchmarks novel": 17316, "grounded conversation": 67858, "introduce comprehensive": 79934, "grounded conversations": 67860, "grounded concepts": 67856, "natural scenes": 111947, "densely annotated": 39114, "unique concepts": 171833, "effectively downstream": 45980, "uncertainty natural": 170673, "tools highstakes": 167176, "prompting works": 131126, "works claim": 179431, "key tokens": 81595, "tokens serve": 166881, "explanations llm": 54874, "reflect llms": 138798, "llms end": 95067, "uncertainty generated": 170670, "involves prompting": 80760, "express confidence": 55559, "model perturbations": 104279, "uncertainty empirical": 170665, "datasets reveals": 37096, "uncertainty estimates": 170667, "corresponding explanations": 32584, "uncertainty llm": 170671, "llm explanations": 93655, "broader discussion": 19212, "trustworthiness foundation": 169849, "models fuzzy": 106414, "relational databases": 139271, "imprecise language": 73247, "language introducing": 83464, "set certain": 149151, "paper combines": 118782, "data relational": 35637, "provide mathematical": 132882, "mathematical foundation": 99569, "describing various": 39401, "various useful": 176244, "language linear": 83492, "user perception": 173463, "education using": 45596, "using partial": 174576, "integration artificial": 78640, "development chatbots": 41064, "landscape online": 83105, "dynamic environment": 45125, "creating significant": 33321, "literature gap": 93170, "gap study": 62734, "hypotheses achieve": 71607, "achieve objectives": 3696, "positively associated": 124312, "perceived ease": 120760, "perceived usefulness": 120766, "negatively affecting": 112538, "future technology": 62389, "factors influencing": 56804, "concepts represented": 28687, "represented linearly": 140958, "space answer": 153550, "word representation": 178672, "model steering": 104657, "respectively make": 142567, "identify particular": 71935, "sense make": 148392, "vectors using": 176412, "counterfactual pairs": 32948, "pairs experiments": 118574, "llama2 demonstrate": 93357, "demonstrate existence": 38330, "linear representations": 92977, "fundamental role": 61976, "results numerous": 143638, "frameworks techniques": 61527, "resources memory": 142455, "memory efficient": 100391, "performance vary": 122282, "choose best": 23726, "perspectives benchmark": 122702, "benchmark endtoend": 16944, "endtoend performance": 48758, "performance pretraining": 121937, "serving llms": 149104, "13 70": 319, "parameters 7b": 119696, "dive deeper": 43439, "including computing": 74472, "benchmark findings": 16980, "help better": 69088, "different optimization": 41887, "inference frameworks": 76018, "hardware platforms": 68691, "choosing configurations": 23733, "optimize runtime": 117080, "dynamic sparse": 45164, "labeling problems": 82761, "sequencetosequence format": 148850, "knowledge structured": 82432, "effectively propose": 46067, "fraction parameters": 60886, "approach mitigates": 11388, "mitigates impact": 102647, "settings offering": 149619, "compared incontext": 26841, "learning parameterefficient": 90812, "comparably better": 26628, "ecommerce search": 45388, "directly impacts": 42550, "impacts user": 72771, "important technique": 73205, "bridge semantic": 19075, "inherent semantic": 76973, "matching process": 99479, "attached wide": 13626, "effectively optimize": 46058, "alleviate phenomenon": 8295, "semantic gap": 148149, "framework bridges": 60991, "comprises stages": 28251, "supervised fine": 159107, "tuning sft": 170117, "feedback objective": 57745, "alignment construct": 8137, "llm supervised": 94032, "supervised fashion": 159102, "welltrained llm": 178191, "multiple candidate": 110853, "method highlight": 100905, "experiments prove": 54412, "prove effectiveness": 132620, "bridging semantic": 19098, "online ab": 116076, "reveal method": 144353, "popular online": 124033, "online shopping": 116138, "platforms china": 123397, "human memory": 70926, "llms huge": 95513, "use generating": 172645, "generating semantically": 64329, "semantically consistent": 148263, "requires form": 141379, "properties llms": 131650, "characteristics human": 22461, "model follow": 103684, "llm architecture": 93474, "genai offers": 62880, "potential advancing": 124559, "research existing": 141770, "focused conventional": 60087, "conventional machinelearning": 31709, "systems little": 160469, "work delves": 178891, "researchers chatgpt": 142180, "coding efficiency": 25378, "offering granular": 115740, "nonnative speakers": 114107, "concerns trustworthiness": 28834, "consistency limited": 29773, "interface integration": 79438, "mechanisms reinforcement": 100051, "models guided": 106575, "investigate principles": 80480, "llms apply": 94419, "uses reinforcement": 173902, "final policy": 58393, "tasks statistically": 163285, "sequence prediction": 148780, "reverse engineer": 144462, "analyzing comparing": 9361, "techniques identify": 163921, "related sequences": 139208, "shared computational": 149808, "enables better": 48165, "better prediction": 17980, "interpretable language": 79673, "models enhancing": 106127, "enhancing llm": 49508, "llm intelligence": 93772, "memory retrieval": 100458, "llms smart": 96627, "shown capable": 150216, "humanlevel intelligence": 71227, "humans frozen": 71388, "improve time": 73642, "knowledge learn": 82180, "intelligence llms": 78854, "llms include": 95565, "based problemsolving": 16035, "2022 building": 665, "building bigger": 19374, "bigger sophisticated": 18404, "2023 methods": 705, "requiring substantial": 141511, "use retrieval": 172856, "lewis et": 91969, "generation learns": 64788, "subsequent retrieval": 157957, "positive influence": 124293, "prompt question": 130649, "impacts quality": 72769, "quality response": 134249, "llms systematic": 96752, "systematic method": 160136, "better comprehend": 17831, "underdeveloped paper": 170757, "expand questions": 53687, "responses single": 142919, "approach serves": 11527, "introduce twostep": 80135, "facilitates effective": 56681, "combined cot": 25896, "contributes enhancing": 31439, "rules large": 145716, "important able": 73076, "able specify": 2560, "reliable manner": 139735, "manner model": 99001, "rules model": 145720, "abusive content": 2712, "jailbreaking techniques": 81192, "techniques evaluating": 163890, "manual review": 99061, "methods development": 101441, "development address": 41040, "evaluation scenarios": 51843, "consists 15": 29957, "text scenarios": 165444, "set rules": 149300, "rules natural": 145721, "interacting human": 79086, "determine model": 40710, "attack strategies": 13660, "suites test": 158747, "categories various": 21127, "models susceptible": 109330, "evaluate open": 51043, "significant vulnerabilities": 150918, "vulnerabilities propose": 177634, "new setting": 113406, "llms thoughts": 96804, "language sequences": 86721, "key perspectives": 81551, "perspectives performance": 122714, "attributes address": 14103, "search mcts": 147374, "enabling generalize": 48297, "framework approach": 60961, "approach autonomously": 11018, "highquality comprehensive": 70001, "interactions additionally": 79198, "problems multiple": 128570, "llm showcasing": 93997, "proficiency addressing": 129644, "relationships realworld": 139350, "relationships events": 139340, "events mentioned": 52121, "yield impressive": 179967, "reasoning assessment": 136678, "causal understanding": 21228, "contains finegrained": 30376, "event timelines": 52094, "task motivated": 161551, "classical causal": 23933, "causal principles": 21214, "principles analyze": 127854, "analyze causal": 9272, "reasoning events": 136838, "complex causal": 27368, "structures compared": 156692, "make dataset": 98521, "using retrievalaugmented": 174677, "researchers face": 142215, "challenges keeping": 21926, "findings field": 58671, "manual approaches": 99025, "coding expertise": 25385, "represents innovative": 140981, "automate literature": 14501, "review tasks": 144556, "interface researchers": 79442, "users simply": 173781, "api keys": 10159, "potential expedite": 124714, "tools expand": 167156, "evaluating effectiveness": 51289, "dramatic progress": 44883, "hallucinations retrievalaugmented": 68455, "help trace": 69189, "provided knowledge": 133067, "multiple model": 110980, "usefulness retrieved": 173367, "document passages": 43843, "passages findings": 120343, "evidence leveraging": 52194, "scientific corpus": 146944, "corpus pretraining": 32339, "data does": 34935, "alleviate risk": 8304, "intermediate variables": 79538, "algorithms implement": 7933, "syntactic properties": 159896, "tools make": 167208, "automatically uncovers": 14871, "targeted ablation": 161126, "parameters apply": 119712, "model tracking": 104755, "effective existing": 45753, "field multimodal": 58207, "understanding leading": 171330, "order enhance": 117191, "comprehension recent": 27931, "representing object": 140972, "object bounding": 115107, "series text": 148956, "object location": 115141, "demonstrate capability": 38262, "grounding region": 67926, "grounded reasoning": 67874, "reasoning comprehensive": 136765, "region caption": 138922, "standard multiplechoice": 154853, "set based": 149136, "incorrect plausible": 75166, "generating good": 64232, "criteria challenging": 33426, "task content": 161278, "content creators": 30465, "assessment metrics": 13248, "metrics quality": 102136, "comprehension tests": 27935, "tests specifically": 164791, "quality terms": 134281, "distractor options": 43313, "models interpretation": 106809, "tokenize embed": 166762, "efficiently model": 46801, "model interactions": 103889, "interactions multimodal": 79245, "inputs generation": 77412, "input modality": 77288, "joint embedding": 81250, "modalities specifically": 102950, "learnable embedding": 90082, "tokens autoregressively": 166781, "textual llms": 165928, "based predicted": 16010, "audio textual": 14198, "maintain high": 98324, "performance textual": 122179, "multimodal generations": 110643, "data corpus": 34859, "shown success": 150388, "success diverse": 158231, "inference understanding": 76134, "stage llms": 154744, "babylm shared": 15402, "work pretrain": 179188, "learn contextual": 89969, "set baselines": 149139, "changes performance": 22385, "roberta baseline": 145141, "baseline given": 16219, "observe training": 115397, "training robustness": 168706, "hyperparameter selection": 71597, "ad hoc": 4500, "generative information": 65428, "response information": 142663, "types responses": 170420, "essential evaluating": 50606, "established evaluation": 50688, "experimentation required": 54112, "required paper": 141248, "paper survey": 119351, "survey relevant": 159682, "retrieval natural": 144101, "tasks architectures": 161965, "architectures generative": 12265, "develop corresponding": 40769, "user model": 173454, "provides foundation": 133153, "insights evaluation": 77557, "meaningful text": 99803, "respond instructions": 142594, "training necessary": 168599, "used scientific": 173223, "developed pipeline": 40902, "obtained results": 115528, "experiments large": 54334, "number participants": 114926, "participants collected": 119997, "data narratives": 35411, "furthermore order": 62122, "works showcased": 179493, "prompts like": 131361, "personalization llms": 122581, "behavior simulation": 16647, "effect llms": 45664, "unclear gap": 170694, "extensive study": 55953, "perform basic": 120873, "basic reasoning": 16438, "llms harbor": 95468, "bias various": 18218, "explicitly asked": 54964, "black people": 18618, "asked answer": 12864, "knowledge generally": 82028, "result substantial": 143065, "experiments chatgpt35": 54171, "datasets performance": 37028, "especially harmful": 50487, "certain groups": 21390, "datasets overall": 37021, "exhibit bias": 53027, "bias varying": 18219, "single hidden": 151810, "encode information": 48377, "ask given": 12843, "position input": 124263, "linear approximation": 92950, "evaluate degree": 50942, "accuracy respect": 3375, "present future": 126322, "methods create": 101411, "new view": 113496, "view transformer": 176819, "models collective": 105672, "decisionmaking various": 37450, "various work": 176256, "project planning": 130083, "diverse individual": 43544, "individual preferences": 75730, "power dynamics": 125170, "facilitate group": 56621, "performance novel": 121852, "conducting user": 29324, "study results": 157596, "time ensuring": 166394, "equitable way": 50194, "survey study": 159699, "involving human": 80787, "participants assess": 119996, "assess systems": 13127, "performance dimensions": 121400, "dimensions large": 42341, "trained nextword": 168027, "representations linguistic": 140843, "support diverse": 159280, "particular test": 120129, "layers key": 89670, "metric present": 101981, "ii models": 72104, "given linguistic": 65930, "sequences generated": 148819, "model lower": 104048, "consistent relationship": 29834, "lower surprisal": 97842, "exhibit behaviors": 53025, "possible mechanism": 124441, "prediction prompt": 125849, "inference present": 76073, "context key": 30803, "frequently occurring": 61625, "evaluate prompt": 51073, "cpubased inference": 33131, "inference maintaining": 76050, "maintaining output": 98371, "query model": 134610, "answer using": 9796, "methods decoder": 101419, "issue proposing": 80958, "template way": 164221, "providing reasoning": 133359, "leading better": 89805, "idea enabling": 71729, "existing autoregressive": 53290, "generation optimizing": 64905, "benchmarking tasks": 17160, "including state": 74733, "general question": 63037, "answering facilitate": 9852, "tasks open": 162879, "astonishing success": 13586, "llms disruptive": 94956, "continue make": 31200, "evaluation automated": 51440, "human argue": 70593, "work reduce": 179255, "approaches zeroshot": 11959, "models internals": 106805, "insights model": 77604, "framework translates": 61467, "given model": 65935, "language requiring": 86710, "training consider": 168201, "context visual": 30957, "receives task": 137323, "inputs llm": 77426, "regions input": 138935, "training allows": 168159, "attention maps": 13922, "evaluate novel": 51041, "textual explanation": 165912, "explanation datasets": 54781, "performances zeroshot": 122354, "lowresourced languages": 97942, "exciting opportunity": 52881, "including unsupervised": 74771, "knowledge closely": 81813, "languages train": 87145, "train encoder": 167766, "language transfer": 86795, "pivot language": 123136, "need handcrafted": 112304, "performed experiments": 122367, "families observed": 57188, "improvement stateoftheart": 73851, "stateoftheart method": 155205, "method outperformed": 101004, "model extended": 103616, "language family": 83314, "pairs training": 118628, "dataset building": 36139, "cognitively inspired": 25494, "current conversational": 34096, "agents ca": 6556, "improvement conversational": 73773, "conversational quality": 31900, "problems resulting": 128623, "answers generative": 10030, "generative agents": 65302, "adhere social": 5522, "problem introduction": 128290, "address technical": 5376, "technical social": 163726, "social problems": 152649, "understanding mobile": 171354, "smartphone users": 152488, "requires carefully": 141340, "designed mobile": 39912, "selection feature": 147850, "requires expertise": 141368, "expertise multiple": 54624, "domains furthermore": 44417, "construction data": 30212, "representation design": 140679, "strategies approach": 155964, "approach validated": 11660, "field mobile": 58205, "gpt4 finetuning": 67016, "llms increased": 95596, "increased capabilities": 75253, "reduce harmful": 138433, "used reinforcement": 173210, "llm vendors": 94089, "susceptible finetuning": 159730, "finetuning attacks": 59175, "rate training": 136018, "does decrease": 43972, "providing evidence": 133288, "results need": 143630, "trust chatgpt": 169832, "crosssectional survey": 33704, "trust chat": 169831, "understand nuances": 171051, "insights improve": 77582, "improve future": 73468, "adoption strategies": 5657, "similar technologies": 151315, "february 2023": 57611, "understand relationships": 171071, "survey responses": 159686, "significant negative": 150784, "chatgpt trust": 23405, "underscore importance": 170917, "importance ensuring": 73027, "aibased applications": 7336, "reduce workload": 138483, "increasing user": 75371, "trust context": 169833, "combating misinformation": 25816, "misinformation age": 102480, "llms opportunities": 95999, "misinformation fake": 102487, "news rumors": 113579, "public trust": 133609, "llms doubleedged": 94979, "promising opportunities": 130278, "knowledge strong": 82429, "question utilize": 134955, "leveraged generate": 91693, "misinformation scale": 102497, "scale important": 146294, "llmgenerated misinformation": 94202, "systematically review": 160202, "review history": 144512, "llms illustrate": 95536, "current efforts": 34111, "present outlook": 126401, "respectively goal": 142560, "paper facilitate": 118949, "employs unified": 47985, "modular architecture": 109901, "architecture based": 12124, "consists distinct": 29962, "distinct modules": 43235, "grounding execution": 67893, "task series": 161719, "actions subsequently": 4392, "executed execution": 52921, "tools apis": 167100, "train modules": 167801, "modules effectively": 109977, "problems leveraging": 128554, "stateoftheart agents": 155068, "key advantages": 81457, "math tasks": 99537, "capable effectively": 20417, "specialized agents": 153870, "challenging crucial": 22135, "task optimizing": 161585, "optimizing performance": 117124, "requires complex": 141345, "reasoning examine": 136840, "guidance complex": 68140, "descriptions context": 39446, "resulting method": 143114, "showcases remarkable": 150104, "make targeted": 98615, "prompts induce": 131330, "multistep plans": 111169, "tasks longhorizon": 162759, "understanding role": 171469, "game avalon": 62547, "play critical": 123440, "dialogues multiple": 41563, "tasks pose": 162958, "easily mislead": 45328, "especially longhorizon": 50504, "objective introduce": 115207, "carefully collected": 20794, "collected labeled": 25693, "human players": 70961, "multimodal integration": 110672, "reach human": 136112, "performance making": 121785, "benchmark investigate": 17005, "investigate decisionmaking": 80394, "decisionmaking languageprocessing": 37417, "languageprocessing capabilities": 86936, "deep natural": 37795, "language feature": 83315, "learning interpretable": 90591, "method break": 100720, "task set": 161720, "fashion using": 57256, "labels automatically": 82785, "automatically obtained": 14843, "main task": 98274, "training bert": 168172, "reach better": 136104, "better performances": 17974, "classifier used": 24171, "like decision": 92262, "tasks detecting": 162214, "systematic literature": 160134, "offer alternatives": 115636, "important evaluate": 73130, "chatgpt standard": 23354, "supervised machine": 159149, "classification conduct": 23975, "custom prompts": 34374, "dataset tweets": 36596, "simple binary": 151410, "binary text": 18478, "science concepts": 146859, "significant variation": 150916, "tasks supervised": 163321, "supervised classifiers": 159093, "challenges poses": 22004, "advise using": 6274, "tasks social": 163260, "environment recent": 50023, "generating plans": 64293, "executing subtasks": 52935, "struggle task": 156775, "execute subtask": 52917, "approach explicitly": 11207, "plans decomposes": 123351, "decomposes complex": 37624, "adapt task": 4563, "demonstrate adapt": 38221, "outperforms established": 117749, "achieving success": 4229, "novel compositional": 114441, "introduce extensive": 79960, "adapt dynamically": 4523, "complexity leveraging": 27681, "humanlabeled training": 71215, "training pairs": 168621, "pairs limited": 118594, "multilingual retrieval": 110541, "far training": 57240, "scarcely available": 146481, "available multiple": 15167, "generation promising": 64968, "generates textual": 64117, "generating informative": 64257, "queries target": 134549, "explore synthetic": 55300, "finetuning multilingual": 59392, "models called": 105557, "data trends": 35891, "survey taxonomy": 159703, "data domainspecific": 34938, "order address": 117171, "challenges researchers": 22053, "primary strategies": 127823, "augmentation enhance": 14275, "llms incorporating": 95592, "notable absence": 114210, "absence comprehensive": 2588, "applications addition": 10407, "addition conduct": 4845, "future hope": 62267, "hope survey": 70388, "survey offers": 159658, "overview research": 118448, "methods improving": 101585, "use highly": 172667, "highly technical": 69965, "given access": 65830, "prompt case": 130378, "set 100": 149114, "commercial platforms": 26090, "platforms used": 123418, "default settings": 37879, "settings applied": 149531, "order establish": 117193, "set outputs": 149261, "rag approach": 135421, "approach outperformed": 11422, "approach fake": 11226, "llms really": 96302, "growing awareness": 68007, "concerns large": 28786, "sparked considerable": 153698, "safety current": 145852, "llms substantial": 96712, "substantial discrepancy": 158051, "discrepancy performance": 42796, "questions inspired": 135169, "attack patterns": 13654, "mismatched generalization": 102516, "generalization llm": 63191, "unable solve": 170611, "refer phenomenon": 138646, "llms fake": 95245, "previous evaluation": 127586, "evaluation protocols": 51800, "forms evaluation": 60594, "performance estimates": 121466, "aligned practice": 8072, "practice work": 125503, "alignment methodologies": 8195, "methodologies large": 101199, "scientific discoveries": 146949, "driven progress": 44994, "progress human": 129972, "literature data": 93163, "data created": 34869, "interdisciplinary knowledge": 79381, "foster new": 60687, "sets based": 149359, "control visibility": 31602, "subsequently evaluate": 157974, "evaluate hypothesis": 50984, "settings including": 149588, "llmbased multiagent": 94157, "cooperative framework": 32077, "tools enhance": 167151, "capabilities related": 20153, "related generating": 139168, "llms surprisingly": 96742, "potentially enhancing": 125099, "enhancing zeroshot": 49584, "capabilities findings": 19902, "strongly support": 156506, "discoveries guide": 42749, "guide exploration": 68174, "openworld multitask": 116726, "agents memoryaugmented": 6658, "planning control": 123259, "observations open": 115345, "potentially infinite": 125115, "lack capability": 82890, "game time": 62573, "perceive multimodal": 120755, "observations human": 115339, "plans perform": 123365, "perform embodied": 120936, "embodied control": 47307, "popular challenging": 123989, "models map": 108137, "map visual": 99134, "plans plans": 123367, "knowledge actual": 81730, "agent minecraft": 6474, "capable completing": 20409, "using control": 174089, "observation space": 115330, "tasks range": 163073, "tasks obtaining": 162873, "obtaining diamond": 115543, "nearly perfect": 112119, "performance classic": 121243, "reliability current": 139681, "exploring generative": 55469, "responses physics": 142872, "question prompt": 134919, "engineering fewshot": 48917, "student written": 156834, "responses providing": 142890, "feedback substantial": 57803, "substantial time": 158106, "write feedback": 179698, "feedback student": 57798, "responses conceptual": 142748, "questions prompt": 135235, "used small": 173230, "iteratively train": 81164, "humanwritten feedback": 71515, "feedback included": 57709, "responses versions": 142942, "students asked": 156847, "gpt results": 66487, "rate feedback": 135990, "useful additionally": 173310, "based extent": 15796, "minor modification": 102425, "demonstrated feasibility": 38669, "generating feedback": 64216, "extraction meaningful": 56321, "meaning syntactic": 99781, "generative linguistics": 65456, "intersection artificial": 79760, "engines llms": 49017, "opinions statements": 116817, "potential transformative": 125028, "llms democratic": 94806, "democratic societies": 38187, "regarding difficulty": 138867, "distinguishing chatgptgenerated": 43297, "texts human": 165729, "human output": 70943, "human capacity": 70631, "overreliance llms": 118402, "llms central": 94556, "adversely affect": 6257, "risks suggest": 145024, "skills children": 152149, "machinegenerated output": 98150, "augmenting human": 14387, "human capacities": 70630, "efficiently adapting": 46762, "despite demonstrating": 40092, "good generalizability": 66267, "parameters high": 119774, "orthogonal matrices": 117418, "fast fourier": 57268, "algorithm enables": 7801, "language chatgpt": 83185, "analyzing users": 9393, "users perspectives": 173733, "developments artificial": 41272, "ai big": 6890, "artificial intelligent": 12788, "agents like": 6647, "like open": 92366, "classroom learning": 24228, "erroneous information": 50263, "accurate understanding": 3504, "crucial study": 33864, "related educational": 139164, "using nlp": 174536, "lda topic": 89722, "results majority": 143584, "usefulness chatgpt": 173361, "models personalized": 108506, "applications benefit": 10433, "tailored users": 160950, "users preferences": 173740, "goals knowledge": 66221, "improved search": 73723, "novel general": 114528, "approach augments": 11009, "llm relevant": 93956, "users interaction": 173692, "interaction histories": 79131, "entitycentric knowledge": 49951, "knowledge store": 82422, "user based": 173376, "leverages existing": 91719, "existing search": 53568, "mitigating privacy": 102677, "privacy compliance": 127985, "associated building": 13464, "user profiles": 173475, "users current": 173610, "experiments based": 54157, "smart agentbased": 152470, "offer robust": 115698, "exploring complex": 55461, "particularly impactful": 120207, "agents emulate": 6590, "methodology illuminating": 101237, "phenomena modeling": 122822, "behaviors individual": 16703, "mathematical equations": 99560, "framework smart": 61420, "modeling sabm": 105086, "building concept": 19384, "smart agents": 152473, "entities characterized": 49834, "methodology present": 101251, "studies source": 157091, "modeling realworld": 105077, "realworld systems": 136522, "cast vision": 21039, "redefine boundaries": 138385, "enabling profound": 48338, "profound understanding": 129714, "systems relation": 160580, "models completion": 105704, "identification potential": 71801, "concrete example": 28919, "overlooked topic": 118386, "task created": 161290, "dataset extracted": 36293, "extracted literature": 56195, "new sampler": 113395, "balance diversity": 15495, "set important": 149217, "important given": 73139, "given resourceintensive": 65988, "resourceintensive nature": 142412, "output labels": 117951, "framing task": 61531, "task fewshot": 161392, "addition evaluation": 4857, "evaluation fewshot": 51586, "settings explore": 149573, "potential open": 124888, "purpose evaluated": 133738, "synthetic abstracts": 160013, "provide best": 132689, "corpus size": 32356, "validated diverse": 175341, "humanauthored text": 71139, "gap focusing": 62654, "corpora using": 32264, "using suite": 174768, "corpora pubmed": 32245, "parameter sizes": 119642, "model expand": 103592, "outputs future": 118056, "precision agriculture": 125609, "analytics study": 9262, "processing pipeline": 129275, "potential bring": 124628, "bring benefits": 19117, "need informed": 112322, "close collaboration": 24442, "experts field": 54657, "field data": 58152, "technology providers": 164162, "work argue": 178807, "provides intuitive": 133174, "allowing user": 8396, "learn adapt": 89960, "entire database": 49800, "visualize results": 177368, "network different": 112641, "response chatgpt": 142629, "insights recommendations": 77635, "modular approaches": 109900, "decomposition modular": 37643, "simultaneously introduce": 151751, "llmbased code": 94133, "generation build": 64459, "execute paper": 52914, "additional performance": 4989, "blip2 model": 18708, "conduct controlled": 29060, "controlled study": 31648, "using taskagnostic": 174787, "retains performance": 143967, "decomposition strategy": 37644, "significantly benefit": 150945, "language instead": 83440, "code chatgpt": 24702, "chatgpts abilities": 23480, "performance highresource": 121628, "capacity predict": 20535, "level analysis": 91448, "languages perform": 87088, "worse english": 179658, "study far": 157357, "confidence calibration": 29344, "order study": 117242, "study aspects": 157172, "languages nlp": 87072, "value answer": 175468, "results selected": 143775, "preference alignment": 126001, "answering recently": 9949, "recently development": 137860, "attracted wide": 14054, "llms real": 96299, "scenarios key": 146630, "key directions": 81491, "directions current": 42465, "industry paper": 75880, "incorporates domain": 75052, "addressing important": 5450, "important direction": 73125, "direction llm": 42440, "llm application": 93469, "application realworld": 10375, "properly generate": 131625, "adequately address": 5511, "model preference": 104309, "problem needs": 128335, "needs align": 112467, "humans achieve": 71338, "achieve practical": 3708, "application introduce": 10333, "knowledge preference": 82283, "issues design": 80998, "objective align": 115175, "llm preference": 93900, "preference human": 126011, "train better": 167750, "domainspecific qa": 44617, "experiments comprehensive": 54183, "ood test": 116188, "generalization ood": 63205, "transfer settings": 168991, "settings analyzing": 149530, "data assess": 34658, "counterfactually augmented": 32957, "data cad": 34733, "shown benefit": 150214, "setting finally": 149457, "reviews evaluate": 144580, "amazon product": 8621, "performance decline": 121360, "decline observed": 37498, "language improve": 83415, "language ii": 83408, "newly proposed": 113540, "prompting enhancing": 130920, "models documentlevel": 106014, "extraction study": 56357, "icl documentlevel": 71667, "largescale labeled": 89330, "develop prompting": 40824, "validate llms": 175324, "demonstrations icl": 39011, "approach transforms": 11618, "inspired analogical": 77711, "new situations": 113409, "documentlevel eae": 43884, "datasets additionally": 36638, "shows effectiveness": 150425, "like sentiment": 92398, "broad adaptability": 19160, "criticized generating": 33587, "raising concerns": 135499, "verification study": 176500, "prompts performance": 131406, "tasks bestperforming": 162008, "analysis designing": 8887, "fever dataset": 57857, "insights crosslingual": 77535, "crosslingual retrievalaugmented": 33666, "retrievalaugmented incontext": 144179, "challenges generation": 21889, "performance dynamics": 121438, "chatgpt integration": 23074, "avenue enhancing": 15235, "enhancing humanrobot": 49491, "humanrobot interactions": 71333, "interactions time": 79273, "news reports": 113578, "reports generated": 140592, "ai gaining": 7006, "media communication": 100077, "paper novel": 119082, "novel proposed": 114659, "pepper robot": 120750, "robots natural": 145224, "capabilities offers": 20082, "comprehensive pipeline": 28097, "context analysis": 30687, "framework experiments": 61149, "conducted involving": 29265, "robots responses": 145228, "criteria including": 33431, "despite identified": 40127, "identified limitations": 71827, "contributes field": 31440, "showcasing potential": 150117, "capabilities robots": 20164, "robots enabling": 145219, "webscale corpora": 178039, "sources varying": 153536, "reliability paper": 139699, "content produced": 30582, "face uncertainty": 56555, "protocol evaluating": 132583, "offer detailed": 115644, "considerations including": 29665, "including response": 74703, "bias prompt": 18184, "boosting large": 18841, "abilities unseen": 2031, "sizes ranging": 152110, "demand substantial": 38137, "resources making": 142454, "making training": 98815, "requirements finetuning": 141296, "tuning additionally": 169962, "potential address": 124551, "introduce pretrained": 80087, "enables efficiently": 48180, "requiring llm": 141496, "finetuning access": 59152, "llms orders": 96006, "performance advanced": 121140, "multitask llm": 111226, "llm flant5": 93680, "flant5 large": 59755, "margin furthermore": 99184, "finetuning incontext": 59303, "learning offering": 90784, "target generating": 161068, "characters online": 22503, "visual appearance": 177111, "achieve leverage": 3680, "llms personality": 96097, "algorithms variety": 7984, "matching based": 99452, "description automatically": 39406, "recent popular": 137580, "popular texttoimage": 124063, "process generating": 128848, "users able": 173572, "current generative": 34129, "motion generation": 110148, "generation faces": 64650, "possess humanlike": 124342, "ood samples": 116185, "guidance infuse": 68150, "metrics built": 102021, "speech content": 154393, "visual abilities": 177104, "abilities multimodality": 1970, "natural human": 111531, "instructions model": 78310, "shown exciting": 150237, "vast number": 176343, "human feedbacks": 70829, "detailed description": 40279, "detailed human": 40298, "images diverse": 72414, "questions design": 135099, "instructionresponse pairs": 78200, "pairs experimental": 118573, "models anticipate": 105365, "evaluate visual": 51131, "human dataset": 70685, "visuallanguage tasks": 177378, "particularly image": 120206, "alignment pretraining": 8213, "following capability": 60257, "process requirements": 128973, "number visual": 114980, "visual embeddings": 177159, "llm preserving": 93903, "introduce straightforward": 80111, "adapter module": 4712, "demonstrate preserving": 38478, "beneficial tasks": 17415, "recent mllms": 137563, "model opensource": 104152, "model utilizing": 104862, "stands cornerstone": 154929, "cornerstone natural": 32199, "distinct subtasks": 43255, "singular model": 151914, "model addressing": 103082, "analysis named": 9025, "marks instance": 99267, "performance integrated": 121687, "mixed datasets": 102715, "datasets significantly": 37119, "word classification": 178617, "llm framework": 93688, "framework specialized": 61423, "teaching large": 163645, "reliable reasoning": 139745, "domains high": 44425, "depending human": 39167, "investigates llms": 80570, "humancrafted demonstrations": 71159, "demonstrations propose": 39039, "outperform using": 117645, "speech embeddings": 154403, "data rich": 35682, "paralinguistic information": 119555, "information important": 76505, "traditional large": 167639, "text current": 164979, "text audiovisual": 164848, "data streams": 35806, "language audio": 83164, "data requiring": 35658, "audio stream": 14195, "prediction time": 125879, "audio processing": 14184, "framework transfer": 61465, "consistent improvement": 29818, "great power": 67713, "tasks considered": 162116, "tasks understand": 163406, "understand task": 171088, "focus problem": 60039, "ability blackbox": 2082, "automated framework": 14553, "framework help": 61195, "better adapt": 17793, "openvocabulary video": 116718, "detection video": 40654, "performance utilizing": 122226, "categories test": 21124, "data unseen": 35906, "studies attempt": 156954, "attempt tackle": 13800, "unseen anomalies": 172145, "focuses predicting": 60156, "having ability": 68869, "ability essential": 2148, "essential building": 50588, "aim leverage": 7471, "injection module": 77117, "introduce semantic": 80099, "design novel": 39700, "synthesis module": 159961, "knowledge synthesis": 82444, "capability detecting": 20282, "inverse problem": 80339, "prompts key": 131344, "great effort": 67692, "engineering prompts": 48974, "particular behaviors": 120053, "user intervention": 173446, "intervention demonstrate": 79787, "prompts discover": 131231, "prompts transfer": 131505, "combine multiple": 25881, "complex multiagent": 27479, "developed prompt": 40904, "prompts stateoftheart": 131484, "textbased misinformation": 165598, "permeates online": 122482, "ability discern": 2133, "game data": 62552, "conflicting objectives": 29413, "language cues": 83229, "truth detection": 169880, "access potential": 2893, "model employs": 103530, "framework learn": 61270, "model detects": 103450, "accurate language": 3469, "llms quickly": 96279, "adapt target": 4561, "tasks expensive": 162355, "strategies boost": 155969, "generate explanation": 63484, "explanation prediction": 54798, "neglect potential": 112548, "fully unleash": 61793, "explanations propose": 54893, "ensemble framework": 49634, "design techniques": 39782, "improve consistency": 73433, "explanations final": 54848, "compress large": 28187, "model small": 104625, "reach reasonable": 136116, "submitted search": 157898, "compressed language": 28192, "fit model": 59682, "model assigned": 103142, "high number": 69491, "performance low": 121768, "low number": 97773, "propose elastic": 131797, "basic idea": 16421, "idea introduce": 71733, "compute specifically": 28457, "retrieval reranking": 144129, "offline evaluation": 115873, "conducted language": 29266, "benchmark glue": 16991, "competitively compared": 27212, "baselines furthermore": 16324, "systematic generation": 160131, "longtail knowledge": 97588, "guided search": 68238, "models failure": 106302, "cases usually": 21030, "longtail distribution": 97587, "model assign": 103141, "distribution current": 43349, "creating longtail": 33310, "framework construct": 61047, "spanning domains": 153679, "domains human": 44426, "effective generating": 45765, "challenge models": 21684, "chatgpt gpt4s": 23034, "gpt4s capability": 67236, "distribution compared": 43347, "requires image": 141391, "image comprehension": 72214, "recognition work": 138152, "llmbased approaches": 94124, "approaches addressing": 11690, "problem address": 128175, "address concern": 5206, "pipeline achieved": 123030, "study llm": 157474, "helpful knowledge": 69213, "knowledge vqa": 82507, "bottleneck llm": 18893, "vqa problems": 177579, "worth noting": 179682, "mllms comprehend": 102813, "information provides": 76663, "train mllm": 167796, "causal inference": 21191, "script knowledge": 147247, "knowledge recently": 82347, "superior language": 159011, "zeroshot causal": 180133, "unclear extent": 170692, "capabilities similar": 20176, "ones study": 116018, "processing event": 129151, "story causally": 155894, "depends previous": 39183, "text conducted": 164951, "selfpaced reading": 148022, "experiment showed": 53912, "exhibit significantly": 53100, "significantly longer": 151069, "reading times": 136202, "tested variety": 164686, "models replicate": 108927, "behavior experiments": 16590, "gpt3 vicuna": 66777, "fail predict": 56968, "indicating llms": 75655, "llms difficulties": 94931, "hallucination augmented": 68355, "models attribution": 105414, "key concept": 81479, "concept large": 28605, "improve attribution": 73413, "datasets reward": 37097, "models recall": 108816, "grounded given": 67864, "increase f1": 75203, "dataset leads": 36388, "leads significantly": 89912, "using humanannotated": 174308, "smaller datasets": 152388, "consistent various": 29846, "including multihop": 74624, "effect knowledge": 45661, "models users": 109576, "engineering improve": 48933, "focus crafting": 59964, "crafting prompt": 33157, "prompt little": 130593, "strategies address": 155956, "based literature": 15925, "accessible dataset": 2948, "users use": 173803, "low knowledge": 97764, "knowledge regarding": 82352, "user dissatisfaction": 173398, "enhancing usability": 49580, "predictions posthoc": 125925, "underlying reasoning": 170868, "work designed": 178902, "explanations work": 54910, "contributions threefold": 31508, "view model": 176815, "model explainability": 103605, "constructing comparative": 30192, "time compares": 166358, "existing tests": 53613, "open llms": 116252, "finegrained measure": 58881, "test llm": 164578, "compare llm": 26691, "bringing closer": 19132, "tests code": 164774, "order knowledge": 117211, "data biases": 34722, "models comprehension": 105712, "particularly evident": 120187, "prevalent use": 127525, "models nexttoken": 108296, "solely focus": 152866, "focus tokens": 60070, "tokens preceding": 166852, "autoregressive blank": 14973, "blank infilling": 18672, "access entire": 2856, "better resilience": 18007, "mitigate reversal": 102634, "optimization task": 117046, "accuracy original": 3327, "attention focused": 13882, "addressing inherent": 5452, "level intelligence": 91481, "incar conversational": 74301, "llms poses": 96125, "llmbased applications": 94121, "key performance": 81548, "performance indicators": 121671, "indicators kpis": 75669, "necessitates profound": 112178, "industry existing": 75874, "metrics prove": 102130, "systems unique": 160654, "systems answers": 160244, "domain highlight": 44181, "metrics address": 101998, "set kpis": 149225, "tailored evaluating": 160915, "simulate diverse": 151636, "individuals different": 75770, "different backgrounds": 41669, "editing multimodal": 45477, "neurons pretrained": 113030, "transformer multimodal": 169188, "llm achieved": 93432, "understanding recent": 171445, "interpret different": 79625, "method identifying": 100912, "critical properties": 33535, "editing method": 45472, "understanding mechanisms": 171352, "structure introduce": 156572, "framework creating": 61055, "multilingual universal": 110567, "argument structure": 12434, "data arabic": 34653, "german russian": 65767, "word cooccurrence": 178619, "measured perplexity": 99894, "models mlm": 108216, "replicate findings": 140493, "performance declines": 121361, "data majority": 35340, "accuracy question": 3353, "enterprise applications": 49785, "questions databases": 135092, "given absence": 65829, "texttosql benchmarks": 165840, "benchmarks tailored": 17381, "enterprise settings": 49788, "settings additionally": 149525, "additionally potential": 5103, "kgs enhance": 81646, "context understood": 30948, "understood study": 171554, "aims evaluate": 7605, "systems context": 160307, "domain range": 44265, "define knowledge": 37934, "accuracy increases": 3279, "provides higher": 133160, "systems comprehensive": 160299, "evaluation gpt4v": 51630, "emergence multimodal": 47437, "capabilities realm": 20142, "deep comprehension": 37711, "evaluation perspectives": 51770, "knowledge tests": 82453, "showcasing proficiency": 150119, "knowledge decisionmaking": 81858, "capability provide": 20364, "deeper analysis": 37841, "analysis interpretability": 8983, "indicate gpt4v": 75592, "gpt4v achieves": 67243, "gpt4v demonstrates": 67246, "demonstrates enhanced": 38843, "using composite": 174070, "images fewshot": 72422, "severe hallucinations": 149709, "need advancements": 112221, "media analysis": 100071, "engine recent": 48864, "offered insights": 115720, "extraordinary capabilities": 56402, "lmms various": 97095, "general vision": 63065, "perform specialized": 121042, "inherently multimodal": 76988, "audio understanding": 14200, "analysis select": 9152, "detection fake": 40505, "review results": 144546, "gpt4vs potential": 67272, "potential understanding": 125031, "multimodal social": 110764, "remarkable efficacy": 140193, "efficacy tasks": 46413, "showcasing strengths": 150124, "contextual cultural": 31077, "cultural awareness": 33945, "knowledge despite": 81870, "media domain": 100085, "notable challenges": 114217, "struggles tasks": 156789, "multilingual social": 110550, "comprehension difficulties": 27900, "difficulties generalizing": 42197, "generate erroneous": 63478, "context evolving": 30751, "known hallucination": 82598, "problem insights": 128284, "insights gleaned": 77573, "enhancing comprehension": 49470, "robustness incontext": 145392, "shows icl": 150437, "performance deterioration": 121381, "performance observed": 121861, "observed icl": 115415, "llms suite": 96728, "yields improvement": 180027, "icl furthermore": 71674, "furthermore prompt": 62133, "improve icl": 73481, "strategies match": 156038, "match efficacy": 99411, "gui navigation": 68133, "navigation present": 112065, "smartphone screen": 152487, "instructions findings": 78260, "excel zeroshot": 52782, "action reasoning": 4335, "reasoning precise": 137038, "localization capabilities": 97272, "according human": 3039, "generating reasonable": 64313, "action descriptions": 4316, "rate executing": 135987, "model subset": 104675, "navigation dataset": 112056, "detailed analyses": 40265, "aim lay": 7470, "embeddings multimodal": 47259, "strategy llms": 156181, "trained realworld": 168056, "realworld synthetic": 136519, "data directly": 34919, "efficiently incorporate": 46790, "incorporate diverse": 75008, "tasks joint": 162653, "instructions avoid": 78208, "layout detection": 89702, "human pose": 70963, "scenarios additionally": 146524, "embeddings various": 47297, "various network": 176062, "based proposed": 16045, "proposed joint": 132320, "applications propose": 10649, "aiming better": 7539, "mixing different": 102743, "exceptional visual": 52844, "work cast": 178835, "evaluating potential": 51372, "integrating artificial": 78580, "gpt35 palm2": 66843, "achieved highest": 3825, "biology research": 18529, "research capabilities": 141625, "development validation": 41256, "promise llms": 130187, "explores linguistic": 55407, "study measures": 157484, "translations produced": 169559, "produced llms": 129503, "strong linguistic": 156409, "english contrast": 49038, "distinct linguistic": 43231, "traits additionally": 168855, "importance selecting": 73061, "selecting right": 147824, "right model": 144835, "emphasizing role": 47659, "role linguistic": 145509, "achieving accurate": 4137, "models strategically": 109235, "trained helpful": 167935, "realistic simulated": 136303, "simulated environment": 151657, "stock trading": 155834, "trading agent": 167582, "agent environment": 6439, "removing model": 140369, "pressure model": 126719, "changes environment": 22369, "environment knowledge": 50009, "knowledge demonstration": 81864, "conceptual model": 28714, "interpreter large": 79724, "code common": 24716, "common programming": 26182, "commercial products": 26091, "products chatgpt": 129610, "automatic execution": 14674, "code fragments": 24849, "instant feedback": 77853, "develop refine": 40827, "refine conversational": 138729, "exploratory research": 55127, "research approach": 141593, "paper applies": 118747, "conceptual models": 28715, "models concept": 105725, "concept prototype": 28617, "llama2 chatgpt": 93354, "components necessary": 27769, "cases covering": 20953, "explore differences": 55181, "model open": 104147, "open ai": 116199, "media large": 100093, "understanding math": 171349, "gpt4 acquired": 66908, "words text": 178756, "mathematical understanding": 99605, "understanding gpt4": 171276, "model considering": 103350, "straightforward evaluate": 155922, "based mathematical": 15942, "questions formal": 135134, "likely seen": 92465, "problems despite": 128483, "scientific evidence": 146959, "evidence suggesting": 52219, "understanding basic": 171130, "straightforward way": 155929, "modes gpt4": 109853, "ability reproduce": 2353, "mathematical proofs": 99584, "continuously expanding": 31267, "predicting word": 125752, "gpt4 benefit": 66932, "question valuable": 134956, "learning theorem": 91079, "models genome": 106493, "review focuses": 144508, "explore strengths": 55297, "limitations transformers": 92681, "transformers llms": 169330, "trends research": 169726, "serve guide": 148985, "computer scientists": 28489, "interested llms": 79386, "unprecedented machine": 172082, "parameters achieved": 119702, "parameters reduce": 119848, "computational operations": 28386, "sparse activations": 153716, "networks deep": 112727, "systems fully": 160397, "technique deep": 163756, "learning interaction": 90589, "fully understood": 61791, "magnitude reduction": 98209, "reduction achieved": 138605, "neuromorphic computing": 113006, "computing devices": 28536, "devices especially": 41306, "especially good": 50483, "evidence making": 52200, "does compromise": 43968, "reasoning cognitive": 136752, "systems highlevel": 160420, "generalize knowledge": 63255, "exhibit robust": 53095, "behavior novel": 16621, "novel situations": 114695, "situations form": 151943, "basic skill": 16440, "making complex": 98718, "complex situations": 27588, "systems dont": 160343, "possess capability": 124332, "instance large": 77799, "demonstrating remarkable": 38953, "remarkable fluency": 140199, "different level": 41826, "outside training": 118154, "data prevents": 35538, "selfdriving vehicles": 147984, "adapt unseen": 4566, "problem limits": 128312, "technology paper": 164154, "discuss role": 42944, "verifiable generation": 176461, "supporting documents": 159370, "measures correctness": 99918, "answer answers": 9677, "documents generate": 43909, "answer serve": 9779, "serve evidence": 148976, "retrieval stage": 144140, "correctness verifiability": 32508, "model proven": 104382, "documents llm": 43924, "model verified": 104870, "generation experimental": 64633, "content moderators": 30554, "efforts automated": 46891, "offensive hateful": 115615, "hateful content": 68862, "aimed provide": 7523, "moderation rules": 109776, "availability models": 15060, "test evaluating": 164551, "moderation models": 109773, "overall observe": 118212, "nontrivial gap": 114151, "performance significant": 122065, "reports provide": 140605, "guides future": 68259, "assistant models": 13395, "title abstract": 166642, "abstract screening": 2657, "reviews using": 144596, "require intensive": 141125, "intensive human": 79000, "language uses": 86874, "chainofthought technique": 21546, "consensus human": 29517, "human reviewer": 71026, "accuracy 84": 3122, "scholarly work": 146823, "software framework": 152820, "integrated existing": 78528, "review processes": 144536, "zeroshot relevance": 180327, "synthetic querydocument": 160067, "prompting demonstrations": 130896, "condition input": 28944, "text document": 165032, "document generate": 43828, "relevant vs": 139667, "vs irrelevant": 177601, "generate queries": 63667, "approaches suboptimal": 11918, "label input": 82691, "different labels": 41810, "instead asking": 77866, "query given": 134591, "ir datasets": 80831, "datasets shows": 37116, "synthetic queries": 160065, "better downstream": 17850, "queries higher": 134487, "selfverification abilities": 148088, "models logical": 108089, "ai despite": 6950, "complex logical": 27460, "requires llms": 141408, "identify errors": 71887, "methods proposed": 101738, "pursuit goal": 133790, "context logical": 30839, "identify logical": 71919, "hierarchical taxonomy": 69378, "conducting exhaustive": 29309, "comprehensive detailed": 27994, "models verification": 109624, "abilities main": 1958, "suggest existing": 158533, "struggle identify": 156757, "art llm": 12548, "remarkable generative": 140203, "judge quality": 81308, "generations popular": 65285, "concept referred": 28619, "detect correct": 40351, "opposite direction": 116900, "suggesting llms": 158619, "reasoning involved": 136933, "decide llm": 37353, "refine output": 138736, "initial prediction": 77040, "prediction multistep": 125830, "model decision": 103405, "decision maker": 37369, "finetuning larger": 59343, "tasks extended": 162377, "methods encounter": 101477, "effectively handling": 46011, "particularly limited": 120219, "limited visual": 92878, "visual tokens": 177330, "tokens work": 166903, "unified visionlanguage": 171755, "engaging conversations": 48846, "conversations involving": 31950, "employ set": 47860, "representation framework": 140689, "empowers model": 48033, "utilize limited": 175063, "tokens simultaneously": 166885, "simultaneously capture": 151745, "capture spatial": 20683, "spatial details": 153784, "comprehensive temporal": 28143, "temporal relationship": 164281, "videos leverage": 176780, "trained mixed": 168004, "mixed dataset": 102714, "containing images": 30337, "allowing direct": 8364, "dynamic nature": 45142, "nature knowledge": 112009, "challenges language": 21929, "trained static": 168086, "static data": 155456, "information realworld": 76676, "outdated information": 117472, "ones address": 115987, "address underexplored": 5380, "designed training": 39967, "database construction": 35988, "construction benchmark": 30206, "benchmark automated": 16840, "benchmark incorporates": 17000, "emulate realworld": 48046, "existing continual": 53321, "outdated knowledge": 117473, "updated knowledge": 172343, "weight gradient": 178072, "questions asking": 135050, "model dynamic": 103499, "realworld information": 136465, "information offering": 76605, "offering robust": 115766, "framework support": 61439, "advancing llm": 6091, "instances training": 77847, "thinking ability": 166147, "updated based": 172341, "response evolving": 142641, "evolving model": 52320, "output training": 118014, "instances experiments": 77827, "including gsm8k": 74548, "finetuned method": 59069, "consistently surpass": 29926, "techniques approach": 163838, "scenarios boosting": 146543, "recall benchmark": 137263, "efficiency various": 46553, "knowledge answering": 81746, "issue researchers": 80962, "llms uptodate": 96900, "confuse model": 29446, "incorrect response": 75170, "response pressing": 142684, "need llms": 112345, "ability distinguish": 2136, "reliable information": 139724, "discern reliability": 42663, "knowledge create": 81845, "task provide": 161664, "simple intervention": 151479, "capabilities general": 19910, "short complex": 149961, "model step": 104658, "introduce multiagent": 80018, "strategy emulates": 156136, "confidence levels": 29354, "peer reviews": 120667, "collaboration approach": 25581, "approach delivers": 11096, "superior accuracy": 158990, "accuracy datasets": 3194, "underscores effectiveness": 170940, "effectiveness integrating": 46206, "highlights role": 69875, "data table": 35845, "work efficiently": 178925, "progress years": 130034, "years research": 179932, "research scientific": 142061, "systems benchmarks": 160269, "datasets focus": 36876, "core information": 32171, "present text": 126480, "costs propose": 32842, "propose semisupervised": 132115, "text entities": 165057, "based pipeline": 16002, "pipeline release": 123086, "release novel": 139487, "novel resources": 114672, "community including": 26487, "highquality benchmark": 69995, "benchmark largescale": 17014, "largescale corpus": 89285, "report performance": 140546, "dataset baseline": 36129, "potential capability": 124635, "current task": 34279, "analysis validate": 9229, "remaining limitations": 139964, "distillation multimodal": 43159, "generation attracted": 64437, "researchers investigating": 142230, "investigating utilization": 80621, "utilization visual": 175021, "llms students": 96704, "paradigm instructiontuning": 119466, "neglecting potential": 112554, "bidirectional feedback": 18349, "models continually": 105776, "datasets second": 37102, "improves capabilities": 73986, "dataset outperforms": 36441, "baselines zeroshot": 16388, "understand syntax": 171086, "evaluation asking": 51436, "bring closer": 19119, "llms truly": 96861, "seeks explore": 147676, "question lens": 134904, "sentence comprehension": 148483, "adopting natural": 5620, "comprehension experiments": 27902, "knowledge exhibiting": 81964, "questions involving": 135173, "llms handle": 95466, "study training": 157673, "dynamics llms": 45210, "reveals majority": 144436, "initial stages": 77057, "simply increasing": 151615, "silver bullet": 151197, "misuse large": 102571, "performance users": 122220, "include different": 74332, "depending users": 39175, "cover diverse": 33039, "diverse instruction": 43551, "llm detection": 93588, "manually create": 99084, "based factors": 15801, "detector performance": 40667, "generating texts": 64361, "texts multiple": 165748, "furthermore analysis": 62010, "philosophical inquiry": 122852, "generation original": 64906, "humanauthored texts": 71140, "pivotal question": 123149, "question emerges": 134862, "paraphrasing tools": 119923, "human author": 70601, "capacity produce": 20540, "text closely": 164921, "humangenerated content": 71182, "unravel intricate": 172106, "creativity large": 33393, "claims referred": 23847, "factchecking model": 56765, "timeconsuming process": 166556, "expensive acquire": 53774, "work finetune": 178984, "leverage key": 91611, "recent innovations": 137522, "measuring consistency": 99944, "models confidence": 105744, "direct preference": 42396, "preference optimization": 126017, "models objectives": 108325, "using preference": 174592, "preference ranking": 126023, "possible model": 124442, "responses learning": 142841, "preference rankings": 126024, "generated existing": 63861, "systems novel": 160498, "generated claims": 63818, "claims correct": 23837, "topics compared": 167346, "medical questions": 100209, "respectively llms": 142566, "errors correct": 50348, "outputs terms": 118132, "terms style": 164478, "performances overall": 122340, "paper break": 118770, "process core": 128774, "dataset logical": 36395, "alternative reinforcement": 8575, "remains effective": 140002, "effective reward": 45877, "architecture autonomous": 12122, "dialogues humans": 41560, "context conversation": 30720, "intrinsic motivations": 79897, "degree consciousness": 38010, "consciousness argue": 29513, "support properties": 159322, "combining insights": 25977, "systems architecture": 160247, "models great": 106562, "strides natural": 156309, "tokens autoregressive": 166780, "models nonautoregressive": 108305, "nonautoregressive nar": 114018, "research aiming": 141576, "aiming address": 7534, "results downstream": 143366, "2022 new": 676, "retrieval directly": 144041, "identifiers given": 71839, "effective highquality": 45771, "id sequence": 71717, "sequence past": 148779, "compare method": 26694, "method current": 100771, "stateoftheart technique": 155389, "generation produces": 64966, "clustering document": 24598, "simpler methods": 151557, "generate naturallanguage": 63626, "using words": 174871, "words high": 178727, "document using": 43863, "code reproducing": 25107, "reproducing results": 141027, "interactive nature": 79326, "nature large": 112011, "models refine": 108881, "task second": 161710, "second round": 147506, "offering opportunity": 115753, "initial answer": 77009, "study llms": 157475, "llms seven": 96512, "seven classification": 149691, "tasks reveals": 163189, "accuracy final": 3241, "conduct finetuning": 29139, "synthetically created": 160091, "created data": 33254, "explanation dataset": 54780, "dataset understanding": 36600, "understanding llm": 171336, "recently impressive": 137907, "impressive strides": 73379, "process remains": 128971, "new explanation": 113184, "dataset question": 36488, "graph attention": 67488, "attention networks": 13947, "networks gat": 112748, "potential dataset": 124668, "improve incontext": 73484, "enhance interpretability": 49215, "explainability work": 54737, "field explainable": 58163, "ai enabling": 6978, "assessing model": 13187, "input perturbations": 77305, "perturbations leading": 122758, "essential understand": 50645, "finetuning train": 59589, "distinct training": 43260, "prompting exemplars": 130924, "proposed strategies": 132437, "model robust": 104495, "different perturbations": 41905, "multilingual question": 110536, "benchmarks little": 17294, "languages spanning": 87130, "lowresource ones": 97931, "investigate strategies": 80500, "automatically translated": 14867, "calibration conduct": 19630, "ensemble large": 49635, "models complementary": 105700, "llms heterogeneous": 95485, "achieve consistently": 3615, "ranking outputs": 135816, "computation overhead": 28314, "method distilling": 100794, "rewards training": 144725, "routing function": 145654, "llm expertise": 93653, "uncertainty using": 170681, "using rewards": 174681, "efficiency inference": 46470, "benchmark collection": 16863, "study scientific": 157607, "financial domains": 58568, "domains large": 44449, "capacity leverage": 20521, "demonstrations unclear": 39053, "labels address": 82779, "question examine": 134868, "examine capacity": 52371, "follow incontext": 60214, "present different": 126285, "types factual": 170356, "factual counterfactual": 56865, "counterfactual concept": 32940, "concept definitions": 28591, "sentence classification": 148478, "help task": 69188, "performance larger": 121725, "models 70b": 105167, "70b parameters": 1542, "parameters limited": 119793, "sophisticated alignment": 153294, "careful finetuning": 20782, "finetuning effective": 59237, "method reveals": 101080, "reveals significant": 144447, "concept understanding": 28625, "proprietary apis": 132509, "memoryaugmented large": 100479, "easily produce": 45332, "motivated human": 110180, "mechanism called": 99979, "response llm": 142674, "historical new": 70206, "update memory": 172331, "localitysensitive hashing": 97268, "simulated dialogues": 151656, "llms ushered": 96916, "ushered transformative": 173931, "excelling tasks": 52800, "generation encounter": 64604, "context response": 30902, "response challenges": 142624, "extended contexts": 55653, "module seamlessly": 109959, "experiments utilize": 54519, "datasets multiturn": 36994, "solving existing": 153212, "applicable cases": 10275, "consistency reasoning": 29786, "harnessing capabilities": 68819, "construct generalizable": 30133, "generate evaluate": 63479, "promising strategies": 130321, "incredible performance": 75459, "paradigm llms": 119484, "mainly based": 98284, "learning examples": 90430, "certain number": 21404, "number supervised": 114951, "supervised examples": 159101, "examples learning": 52630, "complicated rules": 27718, "examples limited": 52632, "learning rules": 90958, "tasks grasps": 162480, "generalize given": 63252, "strong incontext": 156396, "encode knowledge": 48379, "examples offensive": 52645, "source domain": 153437, "available target": 15211, "volumes unlabeled": 177547, "addition labeled": 4876, "recently fewshot": 137887, "models bllms": 105531, "learning source": 91010, "transfer setting": 168990, "brings significant": 19150, "margin stateoftheart": 99192, "indomain setting": 75801, "using entire": 174168, "recognition large": 138083, "exploring application": 55452, "strategy propose": 156198, "utilize unlabeled": 175090, "unlabeled corpus": 171948, "llms ner": 95933, "second explore": 147473, "strategies select": 156072, "demonstrations considering": 38993, "conduct inference": 29150, "inference test": 76117, "ner llms": 112590, "corpus does": 32300, "improvements space": 73947, "space improvement": 153580, "integration vision": 78693, "vision capabilities": 176894, "presents initial": 126592, "initial implementation": 77031, "dialogue manager": 41490, "latest progress": 89567, "enhance traditional": 49301, "prompts visual": 131524, "contextually aware": 31147, "engineering incorporating": 48936, "ensures balance": 49716, "balance context": 15492, "context preservation": 30875, "dialogue paper": 41498, "future conversational": 62238, "concepts large": 28667, "represent concepts": 140638, "space present": 153606, "called linear": 19661, "layer transformer": 89649, "using earlier": 174156, "directions work": 42507, "causally influence": 21235, "data similar": 35759, "similar models": 151275, "downstream benchmarks": 44704, "benchmarks surprisingly": 17379, "metrics correlated": 102037, "correlated accuracy": 32520, "explanation code": 54779, "code reviews": 25119, "effective code": 45709, "explanation needs": 54796, "developers require": 40957, "explanations crucial": 54830, "reviews best": 144574, "used code": 172997, "review study": 144552, "explanations useful": 54907, "useful code": 173317, "reviews based": 144573, "analysis significant": 9169, "portion code": 124128, "review comments": 144490, "providing explanation": 133292, "seven distinct": 149694, "explanations based": 54818, "developers used": 40963, "assist developers": 13343, "specifically created": 154165, "transform code": 169040, "generate specific": 63722, "llms cause": 94554, "hallucinations lack": 68436, "variable knowledge": 175594, "mitigate llms": 102623, "context given": 30783, "research confined": 141660, "contains correct": 30365, "answer does": 9699, "response address": 142616, "responses fully": 142798, "contexts introduce": 31026, "experiments 13": 54124, "insights factors": 77562, "grounding performance": 67919, "capabilities suggest": 20201, "area improvement": 12323, "responses partial": 142870, "generation customizing": 64553, "effective responses": 45873, "using supervised": 174769, "finetuning extensive": 59265, "data obtaining": 35433, "optimize llms": 117070, "method trains": 101148, "trains model": 168846, "model prioritize": 104340, "prioritize best": 127970, "responses challenging": 142739, "sensitive noise": 148431, "limited human": 92777, "heuristic methods": 69309, "methods test": 101872, "improved response": 73716, "including latest": 74588, "determine suitable": 40715, "llms contextual": 94722, "effective conversation": 45720, "ground shared": 67833, "emerge spontaneously": 47336, "construct shared": 30159, "dialogue acts": 41445, "carefully constructing": 20797, "end curate": 48651, "curate set": 34003, "propose corresponding": 131768, "metrics quantify": 102137, "using grounding": 174285, "examine role": 52415, "tuning reinforcement": 170105, "intelligence remains": 78889, "existing resources": 53560, "nouns verbs": 114341, "components diverse": 27754, "domain experimental": 44142, "challenges comprehending": 21802, "knowledge zeroshot": 82520, "benchmark comprehensive": 16868, "abstraction tasks": 2670, "model writing": 104912, "models facilitated": 106294, "lack personalization": 82986, "personalization llm": 122580, "communication style": 26416, "challenge proposing": 21720, "llm writing": 94102, "propose key": 131888, "training retriever": 168703, "retriever training": 144261, "method identifies": 100910, "documents provide": 43934, "reddit comments": 138380, "times large": 166592, "tasks document": 162248, "classification summarization": 24102, "capabilities task": 20206, "domains varying": 44552, "analyze current": 9282, "dataset gpt4": 36333, "best outperform": 17715, "verifiable text": 176462, "generation symbolic": 65126, "ability synthesize": 2389, "remain vulnerable": 139953, "vulnerable hallucinations": 177653, "human verification": 71084, "applications timeconsuming": 10705, "approach enabling": 11171, "explicit symbolic": 54960, "references fields": 138696, "fields present": 58299, "json format": 81304, "reducing effort": 138563, "required manual": 141244, "able directly": 2489, "directly output": 42580, "text makes": 165293, "use symbolic": 172893, "maintaining fluency": 98350, "challenges particularly": 21989, "insights various": 77668, "distinct aspects": 43204, "aspects responses": 12970, "effectively diverse": 45979, "spearman correlation": 153843, "potential realm": 124930, "typically involve": 170495, "assist process": 13356, "generates rich": 64106, "edits original": 45505, "gpt4 generating": 67027, "different contextual": 41708, "scale computational": 146269, "formidable challenges": 60582, "reasoning hallucinations": 136897, "llm counterparts": 93567, "capability inherent": 20316, "aims mitigate": 7641, "mitigate adverse": 102587, "process incorporates": 128871, "incorporates multiple": 75069, "experiments nlp": 54380, "performance distilled": 121406, "path developing": 120427, "models closely": 105635, "value judgments": 175489, "social conventions": 152553, "swiftly expanding": 159774, "linguistic multimodal": 93046, "models evolving": 106180, "precise responses": 125596, "responses consequently": 142751, "grow rapidly": 67998, "explored approaches": 55335, "approaches help": 11796, "ai output": 7132, "output produce": 117977, "initially evaluated": 77081, "various countries": 175882, "llms value": 96941, "data suggested": 35827, "suggested model": 158602, "model decisionmaking": 103406, "adopted future": 5597, "judgments paper": 81336, "paper advocates": 118713, "practical approach": 125394, "tool investigating": 166996, "critical perspective": 33530, "anticipate study": 10114, "safe accurate": 145798, "accurate value": 3508, "outputs effectively": 118048, "humans gpt4": 71400, "explore abstract": 55137, "multimodal versions": 110785, "benchmark 10": 16812, "robust understanding": 145333, "extend work": 55647, "evaluating gpt4": 51310, "gpt4v multimodal": 67253, "oneshot prompts": 116036, "using image": 174313, "support conclusion": 159268, "developed robust": 40916, "abilities humanlike": 1925, "humanlike levels": 71269, "usercentric chatbot": 173539, "particularly focusing": 120194, "emotional needs": 47583, "deeply rooted": 37859, "character development": 22424, "proliferation large": 130124, "traditional static": 167698, "create dynamic": 33190, "responsive interactions": 142980, "interactions present": 79259, "integrated llm": 78538, "augmenting existing": 14385, "answer qa": 9752, "enhancement techniques": 49387, "boundaries natural": 18911, "llms problematic": 96200, "different symbolic": 42026, "mixture natural": 102757, "models project": 108675, "models finegrained": 106346, "feedback recent": 57770, "improvements text": 73957, "leveraged human": 91694, "output human": 117944, "inference work": 76138, "feedback form": 57684, "type error": 170304, "error location": 50304, "output iteratively": 117949, "refinement model": 138765, "output conditioned": 117905, "iterative steps": 81145, "balances exploration": 15516, "exploration search": 55101, "quality conduct": 134074, "englishgerman translation": 49131, "single iteration": 151815, "quality improvements": 134162, "task arithmetic": 161200, "using labeled": 174347, "labeled task": 82737, "7000 languages": 1532, "world languages": 179580, "lack labeled": 82973, "leverage unlabeled": 91678, "data english": 34977, "data extend": 35025, "cases labeled": 20981, "available propose": 15186, "modules trained": 110005, "related target": 139211, "target empirical": 161064, "using minimal": 174489, "potential merits": 124857, "decoding performance": 37584, "systems exploit": 160373, "evaluations highlight": 51980, "behaviour large": 16737, "llms demonstrating": 94893, "tasks delivering": 162166, "prompts opposed": 131389, "decreases bias": 37669, "paper shed": 119325, "tasks investigation": 162634, "responding queries": 142610, "queries involving": 134493, "based facts": 15802, "mainly use": 98301, "paper abstracts": 118696, "data reveals": 35679, "predict individual": 125687, "compare supervised": 26735, "approaches finding": 11772, "including personal": 74662, "accuracy zeroshot": 3426, "baseline research": 16257, "methods integrate": 101605, "trec ikat": 169653, "ikat 2023": 72125, "submitted runs": 157897, "exhibiting superior": 53176, "solution involves": 152949, "involves use": 80772, "results trec": 143879, "questions programming": 135234, "programming classes": 129799, "classes higher": 23907, "efficacy generative": 46379, "answers multiplechoice": 10053, "courses higher": 33019, "education focus": 45542, "differences capabilities": 41620, "prior release": 127921, "assessments originally": 13299, "qualitative differences": 133992, "current developments": 34105, "technology utilized": 164175, "collect passing": 25668, "passing scores": 120362, "scores effort": 147133, "effort whatsoever": 46873, "whatsoever today": 178213, "today counts": 166661, "counts viable": 32992, "viable programming": 176649, "skills assessments": 152148, "educators institutions": 45636, "adapt design": 4513, "design programming": 39727, "programming assessments": 129787, "assessments fuel": 13284, "fuel necessary": 61703, "necessary discussions": 112143, "classes updated": 23919, "generation manipulation": 64815, "textbased data": 165585, "data major": 35339, "major issue": 98435, "deployment real": 39298, "world generate": 179555, "hallucinated answers": 68340, "answers factual": 10023, "holistic perspective": 70300, "start design": 154954, "design iterative": 39665, "testtime adaptation": 164804, "adaptation tta": 4671, "responses effectively": 142774, "tune llms": 169940, "claims responses": 23848, "documents providing": 43935, "introduce data": 79944, "construction method": 30228, "method results": 101078, "generates better": 64058, "responses accurate": 142719, "ensuring quality": 49749, "domains computational": 44373, "challenges diverse": 21833, "leads highly": 89893, "enhance existing": 49193, "data increasing": 35213, "examples examine": 52569, "explore zeroshot": 55332, "examples training": 52714, "recognition framework": 138069, "investigate usefulness": 80517, "providing supplementary": 133383, "context detecting": 30729, "types need": 170391, "types datasets": 170344, "reasoning evaluation": 136836, "reasoning does": 136815, "support predictions": 159319, "predictions address": 125890, "address assess": 5158, "information understanding": 76823, "accuracy does": 3209, "rate model": 136008, "model appear": 103116, "shortcuts reasoning": 150030, "struggles effectively": 156786, "reasoning significantly": 137122, "significantly low": 151070, "judgment results": 81324, "emphasize urgent": 47634, "comprehensive reasoning": 28105, "accuracybased metrics": 3428, "understanding rationale": 171435, "situated language": 151930, "requires recognizing": 141433, "complex layouts": 27456, "methods commonly": 101380, "commonly use": 26236, "specialized preprocessing": 153905, "ocr systems": 115598, "textual tokens": 165961, "tokens employ": 166799, "token space": 166740, "cost increased": 32690, "increased computational": 75255, "complexity paper": 27692, "ask small": 12861, "imagetotext models": 72540, "selective text": 147907, "text layout": 165273, "recognition reasoning": 138117, "intermediate inference": 79511, "step endtoend": 155626, "endtoend model": 48750, "llms larger": 95733, "intermediate rationales": 79522, "small student": 152365, "rationales answers": 136060, "answers input": 10039, "improvements visual": 73964, "benchmarks representing": 17351, "llms explanation": 95195, "nature quality": 112024, "evaluation tool": 51902, "providing suggestions": 133381, "critique model": 33592, "examining reasoning": 52455, "time digital": 166378, "gap evaluation": 62644, "understanding improving": 171293, "improving explanation": 74138, "augmenting language": 14388, "knearest neighbors": 81692, "neighbors knn": 112583, "underlying reasons": 170869, "elusive work": 47115, "mlp layer": 102868, "vanilla gpt2": 175573, "performance setting": 122056, "llms executing": 95131, "challenges stemming": 22070, "distribution differences": 43352, "biases especially": 18262, "labels paper": 82817, "mitigation method": 102693, "eliminate bias": 47063, "methods effectiveness": 101465, "mitigating biases": 102653, "benchmarks compromising": 17193, "preexisting knowledge": 125994, "offering flexibility": 115737, "online continual": 116085, "knowledge enabling": 81926, "contexts change": 31007, "change paper": 22349, "novel problem": 114645, "manage dynamic": 98865, "nature world": 112040, "constraints propose": 30105, "rate new": 136010, "knowledge empirical": 81921, "using variety": 174844, "variety stateoftheart": 175765, "methods establishes": 101487, "establishes robust": 50705, "reveal existing": 144331, "advancing understanding": 6099, "train lms": 167792, "story understanding": 155902, "understanding psychological": 171428, "psychological research": 133507, "role event": 145487, "understanding event": 171224, "understanding employ": 171210, "partially lack": 119984, "lack reliable": 82995, "understanding design": 171189, "design specific": 39766, "extracting event": 56228, "technique performs": 163791, "types lengths": 170380, "extracted causal": 56183, "videotext alignment": 176794, "potential event": 124711, "generating programming": 64298, "approach comprehensively": 11068, "science students": 146915, "students utilize": 156911, "llm released": 93954, "employ combination": 47819, "surveys interviews": 159716, "improvements related": 73939, "suggest majority": 158563, "chatgpt aid": 22692, "unknown questions": 171941, "revolutionized numerous": 144663, "domains impressive": 44430, "nonexistent facts": 114056, "hallucination research": 68411, "force model": 60360, "complete sentence": 27286, "matter model": 99651, "approach formalized": 11241, "identifying knowledge": 72012, "knowledge instruction": 82135, "refrain responding": 138834, "responding questions": 142611, "questions furthermore": 135136, "outofdomain datasets": 117539, "better ability": 17787, "estimate uncertainty": 50730, "testing code": 164701, "models creative": 105820, "creative problem": 33375, "explore creative": 55175, "setting setting": 149507, "setting requires": 149504, "use familiar": 172620, "challenging groups": 22167, "typically excel": 170485, "requiring domainspecific": 141479, "knowledge leading": 82178, "leading higher": 89822, "llms exposed": 95208, "detailed error": 40287, "problemsolving ability": 128656, "thinking work": 166163, "need automatic": 112229, "effect prompt": 45670, "engineering performance": 48965, "optimization apo": 116978, "apo framework": 10204, "refine initial": 138733, "compare outputs": 26703, "outputs medical": 118086, "quality clinical": 134063, "hallucination despite": 68365, "numerous benchmarks": 115029, "semantic associations": 148105, "llms shortcuts": 96522, "biases prompt": 18306, "prompt instead": 130551, "instead following": 77876, "following correct": 60266, "novel probing": 114644, "probing method": 128159, "method benchmark": 100711, "answer correctly": 9692, "mask important": 99287, "sentence recursively": 148525, "asking models": 12885, "question construction": 134850, "semantic clues": 148112, "entities lead": 49854, "lead correct": 89734, "lack necessary": 82983, "model hallucination": 103780, "validity current": 175391, "verification language": 176483, "guidance research": 68157, "research automation": 141613, "usually employ": 174897, "tool automate": 166945, "process create": 128776, "create ai": 33171, "independently generate": 75506, "design verification": 39799, "plans execute": 123355, "investigated ai": 80527, "autonomously generate": 14959, "generate verify": 63781, "problem prompted": 128359, "prompted gpt4": 130817, "verification limited": 176488, "instances gpt4": 77831, "detailed guidance": 40297, "promising result": 130303, "remain significant": 139934, "continued exploration": 31208, "memory intensive": 100410, "like machine": 92343, "significantly work": 151179, "selection explore": 147849, "bound 25": 18904, "25 improvement": 830, "struggle maintaining": 156764, "sequence intermediate": 148749, "leading error": 89814, "verifier model": 176515, "model assess": 103140, "approach argue": 11000, "correct final": 32386, "problem proposed": 128365, "value model": 175491, "training offering": 168613, "efficient intuitive": 46649, "intuitive method": 80297, "steps lead": 155750, "need laborintensive": 112334, "multistep mathematical": 111166, "model notably": 104132, "utilize gpt4": 175049, "perspective role": 122689, "engine optimization": 48859, "engines use": 49023, "summarize information": 158908, "accurate personalized": 3477, "personalized responses": 122620, "replacing traditional": 140477, "engines like": 49015, "like google": 92279, "queries synthesizing": 134545, "llms shift": 96519, "shift significantly": 149921, "results huge": 143469, "huge challenge": 70507, "nature generative": 112002, "little control": 93227, "control content": 31530, "right tools": 144839, "introduce generative": 79971, "content generative": 30512, "metrics facilitate": 102064, "queries multiple": 134509, "required answer": 141223, "domainspecific methods": 44604, "reasoning multihop": 136990, "generating series": 64333, "analyze reasoning": 9327, "irrelevant question": 80854, "reach correct": 136108, "steps specifically": 155772, "given initial": 65909, "initial question": 77048, "filter irrelevant": 58347, "rationales generate": 136064, "questions obtain": 135207, "additionally generate": 5074, "graph information": 67537, "information represent": 76695, "prompting variants": 131119, "generation gaining": 64679, "customizing models": 34418, "models managing": 108133, "challenge precisely": 21706, "models area": 105385, "area ripe": 12350, "investigation response": 80646, "prompt effects": 130433, "complementing existing": 27267, "power lora": 125200, "lora lowrank": 97644, "prompt weighting": 130744, "impact prompts": 72719, "prompts methodology": 131374, "datasets prompt": 37046, "prompt distillation": 130427, "incorporating prompts": 75128, "model carefully": 103253, "prompts provides": 131431, "validated practicality": 175346, "generating short": 64334, "prompts chainofthought": 131183, "prompts samples": 131459, "sampling llm": 146102, "engineering existing": 48914, "works llm": 179468, "inside single": 77480, "prompt input": 130549, "design leverage": 39677, "multiple prompt": 111006, "inputs improve": 77416, "technique produce": 163793, "consistently enhance": 29864, "performance confidence": 121325, "context natural": 30856, "make similar": 98599, "alleviate propose": 8302, "including users": 74775, "instructions natural": 78313, "collectively termed": 25774, "dialogues spanning": 41566, "set users": 149343, "users specific": 173784, "instructions corresponding": 78223, "corresponding structured": 32606, "representations api": 140764, "using prompting": 174618, "demonstrate challenges": 38263, "challenges identifying": 21904, "extract diverse": 56130, "models collecting": 105670, "potential scalable": 124967, "efficient solutions": 46716, "subjective topics": 157864, "topics remains": 167367, "argumentative texts": 12441, "texts formulate": 165716, "llms motivated": 95901, "prompting generating": 130947, "generating outputs": 64287, "iterative manner": 81132, "reasoning structures": 137155, "integration method": 78678, "method neural": 100992, "neural llm": 112869, "used represent": 173215, "symbolic solver": 159827, "specifically customized": 154167, "allow production": 8348, "flexible search": 59825, "symbolic solvers": 159828, "nearly double": 112110, "shows accuracy": 150401, "diversity training": 43759, "prevalent practice": 127519, "addressing limited": 5461, "humangenerated training": 71189, "training methodology": 168578, "metrics targeting": 102153, "successive iterations": 158405, "particularly concerning": 120162, "need careful": 112239, "effects training": 46351, "search structured": 147421, "interface data": 79422, "sources challenging": 153495, "language formal": 83329, "data queries": 35596, "queries specifically": 134543, "require structured": 141200, "compared just": 26844, "model initially": 103865, "retrieves corresponding": 144268, "example test": 52508, "social roles": 152658, "prompts prompting": 131423, "commercial ai": 26068, "chatgpt uses": 23417, "default prompt": 37878, "affect model": 6306, "covering types": 33088, "interpersonal relationships": 79608, "analysis popular": 9066, "roles model": 145561, "prompts ai": 131156, "bard microsoft": 15564, "health literacy": 68953, "constraints imposed": 30088, "rate limits": 136003, "basic prompts": 16432, "provided responses": 133088, "regardless prompt": 138903, "enhancing health": 49489, "verify accuracy": 176521, "accuracy effectiveness": 3216, "reading level": 136196, "mechanism improve": 99997, "learning temporal": 91071, "temporal knowledge": 164263, "relations based": 139284, "based observed": 15987, "tkg forecasting": 166648, "unseen zeroshot": 172198, "graph context": 67502, "paper try": 119373, "relations large": 139298, "relation representations": 139263, "representations introduce": 140826, "relation descriptions": 139237, "descriptions makes": 39477, "semantic meanings": 148180, "stay close": 155530, "space enabling": 153568, "relations observed": 139304, "context experimental": 30754, "representation alignment": 140668, "model lvlm": 104051, "tasks visuallanguage": 163469, "visuallanguage understanding": 177379, "understanding existing": 171227, "encode images": 48376, "fed inputs": 57614, "learn multimodal": 90011, "multimodal interactions": 110674, "representation language": 140701, "foundational llm": 60842, "baseline videollava": 16272, "range image": 135630, "image benchmarks": 72182, "respectively notably": 142571, "notably extensive": 114269, "aim work": 7504, "education insights": 45548, "use digital": 172590, "teaching emerging": 163642, "emerging technologies": 47540, "technologies particularly": 164106, "aims contribute": 7589, "contribute current": 31397, "current debate": 34100, "debate chatgpt": 37286, "different courses": 41714, "courses findings": 33018, "need educators": 112273, "measuring moral": 99958, "moral dimensions": 110111, "dimensions social": 42349, "textual records": 165943, "social issues": 152596, "present opportunity": 126400, "studying moral": 157722, "moral concerns": 110109, "real life": 136239, "foundations theory": 60859, "current computational": 34092, "suffer incompleteness": 158430, "generalization data": 63160, "model measure": 104075, "measure moral": 99863, "based datasets": 15741, "online discussions": 116095, "approaches domains": 11737, "datasets improving": 36923, "everyday moral": 52162, "moral dilemmas": 110110, "moral situations": 110122, "advancements generative": 5897, "ai comprehensive": 6924, "intelligence generative": 78833, "ai effect": 6967, "wave research": 177753, "research innovation": 141856, "development release": 41206, "diffusion dalle": 42228, "encompassing tasks": 48557, "generation music": 64868, "music composition": 111309, "production code": 129586, "gpt3 recent": 66747, "autoencoders generative": 14471, "advancement generative": 5842, "ai presents": 7160, "exciting opportunities": 52880, "opportunities simultaneously": 116876, "unprecedented challenges": 172081, "explored stateoftheart": 55368, "tasks accomplish": 161887, "biases including": 18272, "offensive toxic": 115625, "content process": 30580, "process referred": 128966, "researchers developed": 142195, "approach mitigating": 11389, "biases used": 18321, "complementary advantages": 27253, "power text": 125222, "ability text": 2393, "chatgpt plus": 23192, "chinese senior": 23661, "texts additionally": 165676, "chatgpts reasoning": 23505, "positive emotions": 124289, "students showed": 156901, "negative emotions": 112514, "better logical": 17935, "good causal": 66261, "kept unchanged": 81440, "reveals human": 144425, "respective advantages": 142525, "drawing inferences": 44926, "complementary relationship": 27261, "textbased reasoning": 165600, "control code": 31525, "significant manual": 150774, "control engineers": 31535, "control logic": 31561, "production processes": 129592, "processes previous": 129094, "methods interpret": 101607, "llms combine": 94633, "combine image": 25878, "recognition trained": 138145, "trained domain": 167903, "skills propose": 152181, "iec 611313": 72057, "structure text": 156609, "evaluated method": 51188, "method case": 100729, "handle multiple": 68557, "training commonly": 168190, "short examples": 149969, "sequences length": 148826, "length usually": 91393, "samples model": 146041, "computation efficient": 28301, "efficient paper": 46692, "proposes dynamic": 132460, "pipelineparallel training": 123108, "construction using": 30236, "dynamic programmingbased": 45152, "approach handle": 11270, "efficient pipeline": 46695, "pipeline training": 123096, "training t5": 168774, "gpt compared": 66401, "testing language": 164722, "realworld autonomous": 136409, "safety challenges": 145846, "encountering new": 48583, "behavior interactions": 16600, "interactions realworld": 79266, "potentially malicious": 125122, "framework conducting": 61037, "agent actions": 6412, "humans design": 71372, "design basic": 39559, "training knowledge": 168512, "challenges dealing": 21817, "effectively extracting": 45997, "extracting relevant": 56242, "knowledge domainspecific": 81900, "approach starts": 11565, "starts training": 154974, "conversational dataset": 31862, "corpora associated": 32207, "testing model": 164734, "llm surpasses": 94035, "directly finetuned": 42540, "domain corpus": 44121, "corpus particular": 32338, "instances providing": 77842, "selfimprovement llms": 148006, "generalization learning": 63190, "learning limited": 90648, "dynamics chatgpt": 45201, "sentences used": 148598, "underlying architecture": 170827, "crucial question": 33837, "question raises": 134925, "capacity raises": 20542, "raises crucial": 135482, "compared transformers": 26960, "capabilities traditional": 20219, "dynamic time": 45169, "time warping": 166527, "warping dtw": 177720, "simulation results": 151715, "conditions limited": 29013, "mapping large": 99147, "basic human": 16420, "attention value": 14004, "helpful honest": 69208, "honest harmless": 70331, "fairness privacy": 57065, "suffering poor": 158459, "transparency inspired": 169581, "basic values": 16447, "basic value": 16446, "paradigm introduces": 119468, "space spanned": 153620, "dimensions llms": 42345, "llms behaviors": 94480, "research apply": 141591, "example construct": 52469, "pairs extensive": 118575, "values llms": 175544, "promising opportunity": 130279, "opportunity build": 116888, "various practical": 176108, "task domains": 161337, "set domain": 149179, "continuously evolving": 31266, "working patterns": 179404, "reflected data": 138808, "general paradigm": 63012, "paradigm relies": 119506, "knowledge extractor": 81995, "task selecting": 161713, "knowledge incorporated": 82116, "widespread application": 178459, "systems critical": 160315, "signals incorporated": 150534, "domains language": 44446, "dialogue challenging": 41454, "challenging scale": 22266, "sophisticated natural": 153317, "generation modules": 64857, "approaches far": 11770, "moderation capabilities": 109772, "conversational dialogue": 31864, "behavior struggle": 16650, "specific prompting": 154063, "understanding understanding": 171519, "human perceptions": 70952, "encompassing aspects": 48547, "methods recently": 101761, "goal enhancing": 66164, "efficacy multimodal": 46402, "aspect large": 12910, "tailored tuning": 160947, "method assesses": 100689, "assimilate information": 13336, "scalability mind": 146221, "allowing integration": 8376, "methods tokenlevel": 101876, "lora adapters": 97636, "adapters downstream": 4726, "introduces method": 80193, "arbitrary downstream": 12080, "unlike standard": 172023, "llama27b model": 93383, "tasks evaluations": 162331, "adaptation outperforms": 4650, "code study": 25157, "simple powerful": 151510, "efficiently language": 46792, "llms dominant": 94977, "nuanced linguistic": 114799, "drawing recent": 44936, "studies demonstrating": 156978, "construct novel": 30152, "need backpropagation": 112231, "leveraging contextual": 91827, "techniques based": 163842, "strong interpretability": 156402, "efficiency use": 46548, "utilizes different": 175126, "different aggregation": 41648, "contextually rich": 31153, "representations word": 140914, "word cooccurrences": 178621, "efficacy performing": 46404, "tagging named": 160894, "like word2vec": 92429, "word2vec glove": 178692, "embeddings experiments": 47233, "paradigms experiments": 119538, "t5 opt": 160718, "framework aibased": 60939, "llms digital": 94936, "impact healthcare": 72660, "ai results": 7197, "accurate interpretable": 3467, "crucial especially": 33798, "objectives include": 115246, "processes methods": 129084, "challenges focus": 21872, "interpretability paper": 79650, "aims establish": 7604, "robust interpretability": 145276, "results providing": 143712, "tools research": 167247, "eligibility criteria": 47061, "using specific": 174742, "addressing existing": 5445, "model limitations": 103962, "research research": 142048, "requires thorough": 141460, "human perspective": 70960, "increasing difficulty": 75319, "participant recruitment": 119989, "vision paper": 176967, "approach qualitative": 11487, "research harnessing": 141820, "behaviors research": 16724, "ai automating": 6880, "methodologies including": 101197, "dialogue focus": 41473, "observational studies": 115333, "studies user": 157108, "user evaluations": 173406, "simulating human": 151679, "interaction feedback": 79124, "feedback ai": 57638, "models offer": 108331, "human attitudes": 70599, "empathetic understanding": 47614, "understanding inherent": 171300, "ai humangenerated": 7031, "yield effective": 179966, "principled framework": 127847, "like hallucinations": 92307, "limiting applicability": 92883, "critical scenarios": 33548, "designed framework": 39883, "creating llms": 33309, "knowledge employ": 81922, "closedloop reasoning": 24481, "process enhancing": 128810, "dissect framework": 43106, "improved reasoning": 73713, "best uses": 17764, "ai computer": 6927, "research generative": 141813, "particularly tools": 120266, "popular chatgpt": 123990, "boost productivity": 18825, "exploration diverse": 55064, "research making": 141901, "making recommendations": 98802, "recommendations use": 138264, "highlight innovative": 69750, "technologies understanding": 164115, "complex texts": 27628, "recommending suitable": 138282, "academic journals": 2742, "significant focus": 150709, "creation research": 33353, "research methodology": 141909, "assessment paper": 13255, "article review": 12601, "length constraints": 91355, "constraints constructing": 30066, "capabilities tools": 20218, "ideas generating": 71762, "generation assistant": 64435, "accessing information": 2977, "formulating effective": 60635, "queries remains": 134530, "especially situations": 50542, "familiar domain": 57182, "information events": 76402, "providing example": 133289, "enabling user": 48357, "feedback stages": 57797, "process proposed": 128951, "assistant novel": 13396, "novel search": 114681, "interface supports": 79444, "document collection": 43818, "users refine": 173762, "generated different": 63851, "able incorporate": 2524, "feedback prompts": 57763, "queries proposed": 134522, "interface valuable": 79452, "tool exploring": 166975, "exploring finetuning": 55468, "qualitatively evaluate": 134025, "humanintheloop hitl": 71202, "experiments complex": 54182, "data interaction": 35249, "information traditional": 76812, "effectiveness various": 46314, "key focus": 81508, "focus applying": 59944, "problems simpler": 128624, "simpler subproblems": 151561, "token efficiency": 166702, "methods additionally": 101289, "prompting prompting": 131051, "tasks allowing": 161938, "manner approach": 98974, "approach marks": 11381, "significant leap": 150767, "adaptive capabilities": 4773, "opportunities incorporating": 116857, "types images": 170365, "framework empirical": 61105, "tasks 100": 161863, "100 success": 159, "agents enhanced": 6597, "capabilities achieving": 19761, "ai problemsolving": 7164, "increasing leveraging": 75329, "regarding reliability": 138885, "importance various": 73069, "data problem": 35550, "factors use": 56828, "toy datasets": 167484, "implementation identified": 72846, "aim determine": 7444, "committed advancing": 26110, "especially realm": 50528, "selection data": 147843, "science efforts": 146866, "efforts directed": 46906, "better classify": 17823, "engineering especially": 48911, "including textdavinci003": 74757, "arises models": 12462, "vector machine": 176383, "machine svm": 98102, "chatgpt effective": 22872, "functional requirements": 61878, "does lead": 43997, "lead enhanced": 89742, "instances suboptimal": 77845, "underscore potential": 170922, "llms domain": 94967, "role future": 145494, "mllms increasingly": 102829, "increasingly prominent": 75433, "prominent field": 130145, "benchmarks benchmarks": 17181, "holistically evaluate": 70306, "simple yesno": 151550, "naturally lead": 111975, "mllms focus": 102822, "queries dataset": 134464, "dataset intentionally": 36367, "comparison various": 27072, "various mllms": 176036, "scores assigned": 147122, "consider effective": 29567, "effective assessment": 45696, "selection representative": 147884, "mllms using": 102858, "designed challenge": 39831, "measure reasoning": 99871, "capabilities code": 19816, "extraction recently": 56345, "attracted lot": 14047, "english texts": 49117, "remains seen": 140068, "adaptation local": 4638, "contexts study": 31056, "propose threestep": 132168, "using f1score": 174191, "unique prompt": 171853, "settings carefully": 149534, "adaptation does": 4610, "diverse biomedical": 43474, "objective existing": 115193, "finetuned biomedical": 58995, "performance monolingual": 121819, "biomedical question": 18569, "conversation tasks": 31811, "effectiveness finetuned": 46178, "llm diverse": 93601, "curated comprehensive": 34009, "comprehensive collection": 27978, "datasets 10": 36623, "twostage strategy": 170270, "performance varied": 122232, "varied tasks": 175677, "results experimental": 143398, "results 13": 143145, "compared general": 26813, "leveraging rich": 91948, "rich highquality": 144782, "biomedical corpora": 18538, "extraction generation": 56302, "conventional discriminative": 31698, "essential comprehensive": 50592, "time approach": 166350, "discerning patterns": 42668, "patterns trends": 120570, "sectors like": 147542, "like finance": 92269, "extreme weather": 56424, "effective risk": 45878, "llms offers": 95967, "opportunity tackle": 116892, "challenge direct": 21626, "investigates application": 80544, "technique assess": 163744, "generation practical": 64938, "robust text": 145328, "solution empower": 152924, "verified knowledge": 176511, "domainspecific information": 44585, "information existing": 76404, "existing embedding": 53353, "number diversity": 114854, "scale second": 146342, "semantic correctness": 148130, "easy difficult": 45354, "samples cause": 145993, "specifically increase": 154225, "inbatch negative": 74294, "model dynamically": 103500, "process additionally": 128727, "finance medicine": 58557, "covering various": 33091, "questionanswering machine": 134989, "similarity matching": 151357, "matching extensive": 99459, "capability existing": 20291, "difficult handle": 42153, "scenarios design": 146577, "preferences feedback": 126039, "conversational intelligence": 31874, "detect image": 40362, "generate satisfactory": 63695, "features include": 57511, "chatgpt marks": 23119, "integrating language": 78605, "vision enhancing": 176916, "providing robust": 133364, "domain existing": 44141, "hitchhikers guide": 70231, "dramatically enhanced": 44889, "theoretical proofs": 166048, "efficacy handling": 46380, "en route": 48058, "deriving answer": 39370, "answer cot": 9694, "exhibited proficiency": 53144, "enhancing interpretability": 49496, "controllability flexibility": 31609, "development autonomous": 41060, "autonomous language": 14941, "agents adeptly": 6534, "varied environments": 175671, "vital research": 177410, "research dimensions": 141708, "techniques focus": 163909, "efficacy ii": 46382, "cot approaches": 32856, "prospective research": 132541, "safety paper": 145880, "wide audience": 178254, "audience including": 14158, "papers available": 119391, "processes visual": 129105, "pixel space": 123167, "perception comprehension": 120797, "abilities model": 1963, "covering multiple": 33081, "types extensive": 170355, "extensive quantitative": 55938, "benchmarks confirm": 17194, "mutual benefits": 111336, "benefits jointly": 17475, "jointly learning": 81276, "evidence effectiveness": 52179, "methods attention": 101324, "reason natural": 136574, "include relevant": 74338, "attentionbased llms": 14015, "qa math": 133896, "increases factuality": 75280, "documents recent": 43936, "gpt4 opened": 67092, "opened new": 116479, "results programming": 143687, "programming study": 129878, "llms original": 96009, "texts provide": 165759, "workflow using": 179379, "guide researchers": 68204, "looking incorporate": 97619, "research text": 142116, "analysis provided": 9098, "provided detailed": 133048, "coding examples": 25380, "llm good": 93721, "hundreds times": 71543, "60 human": 1423, "easier scale": 45291, "text overall": 165336, "coding projects": 25401, "agents exhibiting": 6604, "cooperative capabilities": 32076, "level specifically": 91510, "specifically initially": 154226, "initially propose": 77084, "attack strategy": 13661, "strategy llmbased": 156180, "agents influence": 6632, "introduce evil": 79958, "effective attack": 45697, "improving generated": 74148, "generated prompt": 63945, "similarity original": 151368, "high success": 69546, "evaluation discussion": 51549, "content llms": 30543, "empowering multimodal": 48021, "understand multimodal": 171046, "multimodal signals": 110763, "mainly adopt": 98281, "encoders pretrained": 48495, "devise duallevel": 41326, "incorporate finegrained": 75016, "imagelevel regionlevel": 72380, "instructiontuning strategy": 78417, "image tags": 72331, "influence caused": 76191, "text instruction": 165252, "experiments multimodal": 54368, "corresponding domains": 32578, "highly skilled": 69957, "34 accuracy": 1037, "accuracy despite": 3199, "30 minutes": 965, "unrestricted access": 172132, "based baseline": 15681, "baseline achieving": 16189, "accuracy use": 3416, "develop scalable": 40833, "humans supervise": 71477, "systems enable": 160353, "enable realistic": 48122, "realistic scalable": 136297, "experiments hope": 54306, "hope help": 70358, "collaborative feedback": 25614, "prevailing approaches": 127488, "approaches artificial": 11695, "approach work": 11666, "compares traditional": 26973, "masters level": 99401, "fostering critical": 60695, "leveraging ai": 91802, "enabling ondevice": 48336, "selfsupervised data": 148052, "usergenerated data": 173563, "usually contains": 174894, "contains sensitive": 30391, "sensitive private": 148438, "asking users": 12891, "preferred responses": 126087, "affect user": 6316, "enable largescale": 48101, "question enable": 134863, "ondevice llm": 115971, "llm personalization": 93886, "representative data": 140922, "data online": 35437, "way data": 177789, "small memory": 152325, "requests user": 141057, "finetuning enhance": 59244, "quality multiple": 134208, "expected responses": 53759, "accuracy finetuning": 3244, "speed performance": 154512, "baselines best": 16292, "llms efficient": 95012, "pivotal shift": 123157, "online user": 116150, "systems primarily": 160548, "primarily relied": 127790, "extends discussion": 55690, "result accuracy": 143019, "notable challenge": 114216, "challenge model": 21683, "crucial considerations": 33781, "unveil innovative": 172304, "strategies integrating": 156018, "knowledge capacity": 81806, "capacity limited": 20523, "context external": 30759, "ignore structural": 72072, "structural relationships": 156525, "documents furthermore": 43908, "especially regard": 50532, "documents paper": 43930, "structureaware retrieval": 156621, "graph capturing": 67494, "capturing multiple": 20735, "passages retrieved": 120352, "pretraining particularly": 127406, "model extensively": 103622, "scientific benchmarks": 146936, "benchmarks include": 17271, "coherent faithful": 25531, "longcontext large": 97512, "chatgpt transformerbased": 23402, "llms paved": 96058, "path artificial": 120421, "prevailing limitation": 127493, "constrained resources": 30038, "primarily pretrained": 127788, "shorter texts": 150036, "commonly encountered": 26227, "encountered realworld": 48579, "settings paper": 149622, "advancement model": 5851, "architecture transformerbased": 12235, "longcontext capabilities": 97507, "stages pretraining": 154771, "pretraining inference": 127344, "inference firstly": 76015, "firstly delineate": 59651, "current transformerbased": 34286, "architecture solve": 12227, "afterward provide": 6381, "provide investigation": 132866, "used evaluation": 173052, "including datasets": 74489, "like libraries": 92333, "llms efficiency": 95011, "efficiency efficacy": 46444, "domain additionally": 44084, "realtime updates": 136383, "data artificial": 34656, "educational landscape": 45614, "physics education": 122934, "ai focused": 6998, "answer conceptual": 9689, "questions study": 135291, "shift focus": 149910, "investigating chatgpts": 80588, "ability complete": 2104, "introductory mechanics": 80267, "plugin allows": 123676, "data writing": 35974, "quality accuracy": 134032, "prompts provided": 131430, "study leads": 157468, "fitting data": 59690, "associated uncertainty": 13519, "setting highlights": 149464, "strategies effective": 155989, "text academic": 164815, "inspired development": 77718, "applications pose": 10636, "pose problem": 124168, "tokenlevel classification": 166769, "generalist large": 63092, "gpt propose": 66479, "propose rulebased": 132107, "latex source": 89577, "possible reach": 124453, "llms healthcare": 95475, "focus application": 59943, "health monitoring": 68955, "research primarily": 141984, "primarily investigates": 127782, "llms interpreting": 95671, "data gathered": 35088, "precision reliability": 125623, "understanding evaluating": 171219, "specificity findings": 154325, "including mean": 74613, "absolute percentage": 2614, "percentage error": 120778, "adapted gpt": 4685, "highlights llms": 69863, "dual role": 45074, "health data": 68939, "tools pivotal": 167224, "ai health": 7023, "offering personalized": 115755, "curation assessment": 34035, "data critical": 34873, "critical elements": 33489, "corpus curation": 32293, "comprehensive corpus": 27985, "present pretraining": 126417, "assessment platform": 13257, "quality improvement": 134161, "userfriendly interactive": 173551, "interactive interfaces": 79316, "explicit feedback": 54932, "quality classification": 134062, "classification dataset": 23979, "including human": 74556, "metrics exhibit": 102061, "complete process": 27280, "models engineering": 106122, "undergoing transformative": 170789, "transformative shift": 169078, "ai marking": 7079, "marking new": 99243, "product service": 129581, "enabling shift": 48349, "tasks light": 162706, "advancements paper": 5944, "main areas": 98219, "conceptual design": 28708, "detailed design": 40282, "design manufacturing": 39687, "education tasks": 45594, "capabilities design": 19852, "textbook problems": 165611, "problems structured": 128632, "gpt4vs proficiency": 67273, "complex engineering": 27410, "applications research": 10670, "research establishes": 141760, "establishes foundation": 50701, "future assessments": 62227, "benchmark testing": 17108, "prompting frameworks": 130942, "prompt plays": 130629, "limitations temporal": 92674, "lack physical": 82987, "recently observed": 137948, "observed trend": 115439, "utilize power": 175074, "field work": 58258, "concept prompting": 28616, "interaction large": 79137, "models define": 105874, "data level": 35311, "base level": 15612, "overall landscape": 118206, "field discuss": 58156, "maintain repository": 98329, "useful resource": 173348, "industry field": 75875, "model exhibited": 103588, "various generaldomain": 175954, "generaldomain natural": 63073, "domain tasks": 44308, "tasks optimal": 162892, "responses response": 142903, "response challenge": 142621, "novel llamabased": 114568, "generated qa": 63950, "qa questionanswer": 133918, "questionanswer instances": 134963, "hpc tasks": 70473, "managing ai": 98901, "data race": 35599, "race detection": 135386, "detection employing": 40494, "results underscoring": 143891, "potential bridge": 124627, "gap llms": 62677, "aim pave": 7474, "computing applications": 28527, "applications enhancing": 10506, "generating scene": 64325, "propose bayesian": 131730, "type relationship": 170318, "relationship objects": 139329, "objects detailed": 115280, "detailed relationship": 40313, "commonsense validation": 26330, "model critique": 103395, "graph prediction": 67563, "feedback enhance": 57669, "performance requires": 122016, "requires external": 141373, "external large": 56078, "time making": 166445, "making convenient": 98720, "module existing": 109935, "generation algorithms": 64413, "generate extensive": 63488, "benchmark general": 16988, "represent milestone": 140645, "require set": 141186, "reasoning multimodality": 136995, "multimodality handling": 110797, "handling web": 68613, "simple humans": 151473, "challenging advanced": 22110, "advanced ais": 5701, "human respondents": 71021, "contrasts recent": 31389, "llms outperforming": 96015, "outperforming humans": 117680, "requiring professional": 141505, "questions answer": 135037, "leaderboard available": 89792, "proficiency large": 129664, "spectrum applications": 154356, "tasks overlooking": 162906, "realworld multimodal": 136479, "information study": 76781, "pioneering comprehensive": 123013, "dataset aimed": 36106, "aimed expanding": 7518, "proficiency multimodal": 129671, "prompts offering": 131388, "tasks comprehensive": 162098, "challenges domain": 21834, "selection argument": 147834, "argument generation": 12429, "impair performance": 72775, "way new": 177854, "challenges suggesting": 22075, "potential direction": 124677, "clinical insights": 24337, "models passively": 108444, "provide mental": 132885, "patients daily": 120484, "tools use": 167278, "data clinical": 34757, "clinical practice": 24355, "practice requires": 125495, "requires addressing": 141333, "challenges generalization": 21887, "individuals mental": 75775, "health address": 68930, "clinically useful": 24384, "data step": 35799, "conditions like": 29011, "like depression": 92263, "robust clinical": 145248, "new humanai": 113218, "query tools": 134633, "generated reasoning": 63957, "reasoning support": 137157, "decisionmaking models": 37423, "strong using": 156451, "language need": 86440, "need grounding": 112303, "work suggested": 179323, "given cognitive": 65852, "study issue": 157455, "descriptions containing": 39445, "containing million": 30338, "examples perform": 52651, "analysis compare": 8857, "means prompting": 99817, "space alignment": 153548, "examples exhibit": 52570, "application foundation": 10320, "algorithms applied": 7900, "management collaboration": 98873, "collaboration need": 25598, "transformer foundation": 169127, "encounters challenges": 48585, "solution performing": 152962, "finetuning tailored": 59576, "studies indicate": 157020, "mainly attributed": 98283, "insufficient incorporation": 78447, "proposed incontext": 132318, "incontext training": 74997, "sufficient achieve": 158478, "effective icl": 45774, "icl capabilities": 71659, "generative intelligence": 65430, "given goal": 65891, "manageable tasks": 98867, "based autonomous": 15677, "agents architecture": 6540, "related software": 139209, "quality attributes": 134049, "architecture serves": 12223, "utility proposed": 174969, "agents multimodal": 6664, "exploration multimodal": 55090, "latest large": 89557, "types multimodal": 170389, "enabling comprehensive": 48281, "paper begins": 118768, "begins defining": 16541, "historical development": 70200, "algorithms furthermore": 7926, "introduce range": 80092, "range multimodal": 135651, "major technology": 98455, "insights technical": 77656, "technical aspects": 163687, "algorithms commonly": 7907, "providing researchers": 133362, "researchers valuable": 142274, "experimentation evaluation": 54110, "associated development": 13474, "development addressing": 41041, "aspects paper": 12962, "efficient updates": 46746, "sparsification quantization": 153757, "techniques make": 163962, "possible efficiently": 124419, "domains recent": 44511, "techniques model": 163966, "size expert": 151995, "like internet": 92323, "gpu address": 67335, "issues present": 81046, "task vectors": 161807, "ternary quantization": 164496, "quantization reduce": 134419, "65b parameters": 1482, "achieves compression": 4000, "improves scale": 74080, "applied llama": 10781, "size reduction": 152064, "facilitate efficient": 56610, "efficient communication": 46584, "exhibit enhanced": 53043, "different method": 41846, "components compare": 27750, "advances finetuning": 6007, "textrich scenarios": 165673, "scenarios remains": 146688, "enhancing mllms": 49526, "mllms ability": 102807, "spatial positioning": 153793, "proficiency comprehending": 129651, "images specifically": 72490, "formulate instruction": 60615, "detection recognition": 40606, "recognition spotting": 138132, "alignment visual": 8260, "encoder large": 48424, "integrating text": 78628, "discerning text": 42669, "process extensive": 128829, "parsing address": 119953, "approach retrieving": 11517, "natural scene": 111946, "numerous practical": 115061, "detecting text": 40431, "text regions": 165414, "problem special": 128410, "special characteristics": 153850, "proposed text": 132445, "detection text": 40638, "recognition natural": 138100, "like english": 92264, "learningbased models": 91162, "detection address": 40437, "address text": 5377, "recognition address": 138043, "text correction": 164975, "models conducted": 105741, "designed novel": 39922, "correction model": 32444, "using sequencetosequence": 174708, "transformerbased network": 169276, "challenges reliability": 22043, "models serves": 109079, "crucial tool": 33877, "assessing improving": 13178, "improving reliability": 74208, "including pretraining": 74674, "pretraining alignment": 127259, "data affect": 34606, "models concerned": 105727, "light popular": 92133, "large videolanguage": 89105, "videolanguage models": 176763, "models extending": 106271, "challenging inherent": 22175, "video data": 176696, "videos lack": 176779, "addressing gaps": 5448, "uses offtheshelf": 173892, "novel grounding": 114534, "following user": 60321, "instructions evaluate": 78249, "generative questionanswering": 65585, "benchmarks specifically": 17369, "videos propose": 176785, "reproducibility results": 141018, "framework builds": 60994, "llava model": 93415, "model extends": 103617, "video domain": 176703, "conversation grounding": 31793, "attacks defenses": 13699, "defenses large": 37916, "capabilities coding": 19818, "code vulnerabilities": 25209, "vulnerabilities previous": 177633, "previous code": 127580, "shown vulnerable": 150398, "vulnerable adversarial": 177646, "print statements": 127873, "adversarial perturbations": 6218, "study transferability": 157674, "transferability adversarial": 169009, "whitebox attacks": 178231, "furthermore make": 62112, "promptbased defenses": 130758, "involve modifying": 80690, "code explicit": 24830, "explicit instructions": 54941, "perturbations experiments": 122755, "experiments adversarial": 54137, "model transferable": 104802, "models resilience": 108956, "solutions llms": 153043, "finetuned better": 58993, "better support": 18039, "support downstream": 159282, "weighted average": 178087, "average despite": 15278, "superior capacity": 158995, "domain conduct": 44115, "experiments llama": 54341, "model popular": 104287, "speak like": 153828, "choice natural": 23693, "llms aligning": 94385, "llms native": 95921, "inherent characteristic": 76945, "characteristic llms": 22449, "performance carefully": 121218, "carefully handcrafted": 20815, "handcrafted demonstrations": 68502, "demonstrations specifically": 39047, "average 32": 15262, "cot multistep": 32876, "performance retrieval": 122027, "document answer": 43811, "question aim": 134675, "assess applicability": 13044, "zeroshot long": 180255, "owing unprecedented": 118468, "tasks currently": 162148, "currently llms": 34334, "particularly processing": 120240, "entire document": 49803, "monetary expenses": 110047, "suite techniques": 158740, "techniques exploit": 163897, "understanding analysis": 171123, "relationships different": 139337, "best zeroshot": 17769, "total tokens": 167422, "used best": 172980, "retrieval setup": 144137, "agent achieve": 6409, "prevalent approach": 127509, "idea explored": 71730, "existing visual": 53631, "short addressing": 149952, "generic vision": 65675, "segmentation detection": 147735, "introduce universal": 80140, "prompt encoder": 130437, "support variety": 159345, "reference image": 138657, "context extensive": 30758, "proposed visual": 132453, "generic segmentation": 65670, "yielding competitive": 179997, "indomain datasets": 75792, "showing promising": 150187, "segmentation datasets": 147734, "datasets joint": 36936, "training coco": 168183, "year large": 179877, "multimodal research": 110756, "fewshot outofdistribution": 58012, "available inspired": 15142, "inspired prior": 77747, "methods called": 101357, "time leverage": 166435, "greedily selects": 67803, "set textual": 149331, "textual descriptors": 165904, "descriptors using": 39533, "class embeddings": 23871, "using selected": 174695, "words similar": 178753, "similar manner": 151269, "methods combined": 101378, "sota zeroshot": 153369, "ensembling methods": 49660, "accuracy fewer": 3240, "model inversion": 103901, "contain surprising": 30311, "surprising information": 159549, "preceding text": 125566, "text cases": 164872, "hidden user": 69343, "distribution output": 43376, "variety model": 175728, "token vocabulary": 166750, "vector search": 176388, "llama2 7b": 93351, "inversion method": 80353, "extraction experiments": 56297, "realistic application": 136282, "biomedicine paper": 18582, "dataset focused": 36311, "rare diseases": 135948, "entities use": 49880, "competing approaches": 27140, "approaches conduct": 11718, "conduct error": 29078, "models times": 109404, "verify findings": 176532, "lmbased methods": 97080, "suitable zeroshot": 158712, "offer substantial": 115707, "contribution conduct": 31472, "david goliath": 37227, "13 distinct": 330, "critical fields": 33498, "fields healthcare": 58276, "generating factually": 64212, "responses hallucinations": 142818, "lead loss": 89760, "propose multistage": 131942, "incorrect ones": 75160, "ones uses": 116023, "supporting references": 159381, "references generate": 138697, "answer framework": 9714, "rationale references": 136057, "rag enabling": 135426, "furthermore finetuning": 62082, "finetuning samples": 59524, "accuracy smaller": 3391, "controlling large": 31664, "llms opens": 95991, "additionally efficient": 5049, "efficient utilization": 46750, "employing llms": 47936, "facilitate interactions": 56626, "substantial number": 158082, "value distribution": 175479, "iterative reasoning": 81138, "approach dialogue": 11121, "emotion annotations": 47561, "customer support": 34387, "taskoriented conversational": 161841, "pretrained extensive": 126804, "data limitations": 35319, "dialogue applications": 41449, "benchmarking datasets": 17134, "annotation approach": 9509, "quality context": 134080, "broader perspective": 19217, "furthermore provides": 62148, "resource development": 142381, "development text": 41237, "present benchmarks": 126235, "leverage models": 91632, "production setting": 129593, "models marked": 108140, "marked significant": 99222, "advent visionlanguage": 6182, "mllms like": 102837, "aligning multimodal": 8109, "poses substantial": 124234, "addressing nuances": 5465, "array scenarios": 12527, "including perception": 74660, "understanding applying": 171127, "analyzing evaluating": 9366, "ethical consideration": 50798, "reflect user": 138806, "accurately provide": 3555, "performance comparative": 121277, "comparative evaluations": 26645, "community developing": 26464, "spectrum realworld": 154366, "applications online": 10621, "treeofthought reasoning": 169679, "parameters recent": 119846, "suffer negative": 158442, "lacking ability": 83031, "backward forward": 15461, "approach probabilistic": 11459, "question query": 134924, "parent node": 119927, "leaf nodes": 89923, "nodes llms": 113971, "employs parametric": 47976, "openbook qa": 116439, "llms broader": 94516, "reason information": 136565, "local errors": 97238, "errors experiments": 50356, "opendomain setting": 116474, "formative feedback": 60559, "researchers prior": 142246, "research demonstrate": 141686, "learning srl": 91016, "learning progress": 90866, "introduce leap": 80002, "leap novel": 89954, "novel platform": 114636, "provide formative": 132796, "empowers teachers": 48038, "students cognitive": 156850, "cognitive metacognitive": 25461, "demonstrate systematic": 38584, "based theoretical": 16140, "principles provide": 127868, "provide wide": 133032, "emphasize critical": 47629, "critical importance": 33503, "technological advances": 164068, "nlp transformers": 113926, "transformers paper": 169342, "heuristic strategies": 69311, "explanations aim": 54815, "leveraging traditional": 91958, "achieve present": 3711, "utilizing generative": 175188, "validation processes": 175376, "evaluating gpt4s": 51311, "performance academic": 121121, "studies overlook": 157047, "integration visual": 78695, "complexity inherent": 27677, "inherent realworld": 76969, "realistic assessment": 136283, "assessment multimodal": 13254, "text captions": 164869, "content outperform": 30564, "use images": 172675, "model room": 104498, "despite improvements": 40142, "biases chatgpt": 18256, "chatgpt higher": 23045, "education scoping": 45586, "review chatgpt": 144487, "gai models": 62428, "tend inherit": 164309, "given increasing": 65904, "increasing usage": 75369, "usage chatgpt": 172439, "students faculty": 156861, "education institutions": 45549, "institutions heis": 77922, "examine ethical": 52383, "discussed recent": 42965, "academic publications": 2750, "identify type": 71975, "body literature": 18775, "academic articles": 2720, "chinese japanese": 23632, "bias findings": 18123, "llms gai": 95316, "bias relatively": 18192, "level identify": 91475, "identify types": 71976, "types bias": 170330, "implications higher": 72933, "notable lack": 114232, "lack empirical": 82937, "education researchers": 45583, "researchers ai": 142169, "models narrative": 108264, "information textual": 76805, "data increasingly": 35214, "processing led": 129183, "pertinent question": 122744, "models leveraged": 106956, "evaluating capabilities": 51265, "commonly known": 26228, "events participants": 52125, "temporal expressions": 164260, "dataset collection": 36164, "annotation framework": 9530, "includes set": 74386, "set entity": 149184, "attribute values": 14087, "prompt components": 130396, "documents dataset": 43901, "subsequently use": 157992, "use best": 172519, "best templates": 17758, "baseline systems": 16266, "practitioners limited": 125537, "long token": 97498, "attention approximation": 13841, "takes time": 160998, "nov 2023": 114343, "2023 openai": 706, "released new": 139525, "able support": 2564, "document paper": 43841, "attention output": 13953, "n1o1 time": 111370, "data streaming": 35805, "fashion method": 57253, "alleviating need": 8315, "nearly constant": 112109, "efficiently handling": 46787, "handling llms": 68598, "mllms shown": 102849, "geospatial domains": 65752, "benefits navigation": 17485, "urban development": 172406, "development disaster": 41088, "disaster response": 42653, "exploring various": 55518, "models smallscale": 109161, "uncovers models": 170748, "providing balanced": 133266, "evaluation future": 51613, "fostering active": 60691, "active engagement": 4428, "understanding collaborative": 171162, "interactions especially": 79224, "large classrooms": 87208, "pedagogical approach": 120650, "models prioritize": 108647, "prioritize generating": 127972, "particular propose": 120112, "propose workflow": 132220, "learning capacity": 90285, "various elements": 175927, "assessment students": 13264, "undergraduate graduate": 170807, "years particular": 179917, "large class": 87206, "class settings": 23894, "developing benchmark": 40981, "trojan detection": 169791, "community diverse": 26465, "stateoftheart architectures": 155079, "poisoned models": 123790, "code provide": 25073, "code classification": 24704, "defect detection": 37887, "detection clone": 40459, "clone detection": 24436, "detection code": 40461, "task texttocode": 161775, "texttocode generation": 165809, "models codebert": 105657, "codet5 codet5": 25327, "poisoned datasets": 123789, "tasks repository": 163139, "whitebox analysis": 178230, "techniques addition": 163824, "various poisoning": 176106, "strategies different": 155988, "security robustness": 147623, "robustness critical": 145366, "technology crucial": 164130, "crucial thoroughly": 33876, "thoroughly test": 166215, "ensure quality": 49695, "illegal activities": 72130, "exploitation large": 55020, "aims highlight": 7623, "highlight risks": 69781, "enhance security": 49287, "security integrity": 147594, "engineering tactics": 48993, "analysis assess": 8821, "performance critical": 121347, "security domains": 147575, "walking tightrope": 177670, "domains pose": 44496, "challenges require": 22048, "accurate safe": 3491, "chatgpt variants": 23425, "accuracy safety": 3382, "domains legal": 44458, "legal medical": 91306, "existing limitations": 53411, "findings advance": 58631, "llms highrisk": 95500, "adaptability llms": 4578, "eu ai": 50859, "ai act": 6846, "significant knowledge": 150764, "false outputs": 57166, "outputs lack": 118073, "prompts best": 131175, "behavior use": 16659, "interpretability approaches": 79637, "model instead": 103873, "work robustly": 179274, "dataset splits": 36557, "greater understanding": 67775, "environment large": 50010, "progress openworld": 130003, "recently using": 138008, "vision perception": 176971, "perception language": 120808, "interpretation visual": 79716, "llms component": 94670, "instruction language": 78028, "database enabling": 35991, "knowledge questionanswering": 82329, "conduct continuous": 29059, "tech tree": 163681, "achieves 15": 3936, "key tech": 81584, "methods synthesizing": 101860, "mixedinteger linear": 102733, "programming models": 129859, "numerous realworld": 115063, "solved using": 153178, "transformation problems": 169057, "research mathematical": 141905, "models unstructured": 109564, "techniques framework": 163912, "classification objective": 24043, "constraints iii": 30087, "constraints addition": 30061, "compare framework": 26681, "offered llms": 115724, "method integrates": 100934, "prototype developed": 132598, "constraints complex": 30064, "developing training": 41034, "potential powerful": 124909, "tool automatic": 166946, "decision problem": 37377, "quality knowledge": 134177, "manner conduct": 98977, "qa data": 133877, "words given": 178726, "quickly obtain": 135352, "field provide": 58232, "support finetuning": 159291, "compared lora": 26852, "improves bleu": 73984, "rouge metrics": 145621, "metrics test": 102158, "test compared": 164535, "llms urban": 96901, "tasks italian": 162649, "word puzzles": 178670, "offer numerous": 115678, "numerous benefits": 115030, "including increased": 74569, "development comprehensive": 41070, "manner generate": 98992, "generate original": 63636, "original challenging": 117320, "clues given": 24589, "zerofewshot learning": 180098, "techniques used": 164049, "developed classifier": 40864, "classifier finetuning": 24157, "finetuning existing": 59258, "models labeled": 106854, "learning employed": 90410, "employed zeroshot": 47906, "check quality": 23529, "evaluation promising": 51793, "approach creating": 11087, "offer students": 115706, "students engaging": 156858, "paper does": 118867, "understanding study": 171491, "visual capabilities": 177124, "potential generated": 124745, "rich textual": 144809, "descriptions various": 39514, "various categories": 175847, "recognizing diverse": 138171, "diverse visual": 43695, "achieve conduct": 3613, "experiments systematically": 54488, "encompasses total": 48540, "total 16": 167411, "recognized benchmark": 138160, "top1 top5": 167299, "top5 accuracy": 167307, "metrics study": 102148, "leveraging gpt4s": 91860, "gpt4s advanced": 67234, "rich descriptions": 144774, "zeroshot recognition": 180323, "recognition terms": 138142, "terms visual": 164494, "gpt4vs average": 67268, "16 datasets": 452, "hope research": 70375, "research contribute": 141664, "20 large": 598, "attention work": 14011, "develop release": 40829, "series large": 148936, "parameters ranging": 119845, "ranging 21": 135742, "incorporate prior": 75032, "local dependencies": 97234, "language attention": 83163, "build pretraining": 19340, "data parallel": 35468, "greatly reduces": 67799, "display impressive": 43072, "code accessible": 24649, "accessible github": 2954, "consistently able": 29851, "descriptions simple": 39498, "run benchmark": 145736, "benchmark stateoftheart": 17094, "make errors": 98531, "response biases": 142620, "learning lastly": 90633, "finetuning similar": 59542, "problems does": 128486, "does result": 44030, "protein structure": 132575, "accuracy novel": 3319, "design capabilities": 39564, "dualuse risks": 45086, "developed quickly": 40910, "used discover": 173034, "highlight current": 69732, "primarily tailored": 127793, "require fewer": 141109, "resources train": 142492, "developed opensource": 40901, "manner propose": 99007, "propose range": 132090, "neurons large": 113024, "revolutionized text": 144665, "predominantly rely": 125987, "rely using": 139894, "outputs layer": 118081, "states result": 155437, "suffer limitations": 158438, "limitations efficiency": 92570, "interpretability work": 79659, "employing multiple": 47941, "novel lightweight": 114567, "intrinsically interpretable": 79904, "using genre": 174250, "recently improved": 137908, "plms paper": 123623, "suffer performance": 158444, "distribution topics": 43398, "test possible": 164594, "synthetic texts": 160083, "results little": 143571, "improvement empirical": 73784, "replicate experiments": 140491, "visual cognition": 177132, "like people": 92375, "asserted models": 13028, "intuitive physics": 80299, "intuitive psychology": 80300, "emulate humanlike": 48045, "evaluates current": 51229, "models grasp": 106561, "grasp complex": 67665, "physical interactions": 122901, "notable proficiency": 114243, "proficiency processing": 129674, "areas models": 12380, "need integrating": 112323, "understanding causality": 171152, "models point": 108553, "represent structured": 140655, "graphbased representation": 67592, "new observations": 113303, "observations robot": 115352, "spatial understanding": 153815, "neural conversational": 112840, "user utterances": 173533, "relies simple": 139808, "graph text": 67579, "text performed": 165351, "parameters optimized": 119820, "optimized based": 117086, "conversion text": 31982, "used decode": 173022, "agent response": 6497, "response proposed": 142690, "approach empirically": 11155, "humanoid robot": 71317, "conversation partner": 31801, "mechanism response": 100026, "generation moving": 64858, "robot using": 145185, "questions robot": 135269, "approach employed": 11156, "semantic triples": 148242, "introduces innovative": 80184, "approach integrating": 11312, "feasibility method": 57356, "using vision": 174854, "encoder gpt2": 48422, "input textual": 77359, "departing conventional": 39126, "conventional practices": 31725, "recognition textbased": 138144, "integrated architecture": 78514, "processes input": 129071, "enabling natural": 48330, "dialogues ai": 41548, "ai coach": 6913, "enhancing overall": 49538, "overall user": 118257, "sample results": 145960, "capability model": 20344, "potential promising": 124922, "paradigm creating": 119440, "domains involving": 44442, "involving visual": 80809, "encoder text": 48443, "text decoder": 165001, "additionally conducted": 5035, "assess impact": 13087, "performance providing": 121965, "scalability versatility": 146226, "versatility proposed": 176593, "skills reasoning": 152184, "abilities perform": 1985, "llms showed": 96528, "larger sizes": 89251, "theoretical limitations": 166039, "limitations generalization": 92590, "perform theoretical": 121067, "dynamic processes": 45150, "acyclic graphs": 4497, "graphs dags": 67623, "problem solved": 128399, "conducted verify": 29301, "theoretical results": 166049, "results novel": 143636, "data embedding": 34958, "engineering code": 48892, "generating domainspecific": 64199, "code utilizing": 25201, "llmbased data": 94137, "data splitting": 35793, "splitting data": 154564, "embeddings space": 47284, "ii introducing": 72096, "chain density": 21450, "adaptive text": 4786, "prompt technique": 130688, "refactoring existing": 138640, "existing scripts": 53567, "techniques enhance": 163882, "rag method": 135433, "ultimately achieving": 170581, "percentage correct": 120777, "demand robust": 38135, "retrieval augment": 143997, "questionanswering applications": 134972, "primary challenge": 127805, "challenge resolution": 21733, "strategies long": 156036, "source datasets": 153435, "nuanced information": 114796, "pairs containing": 118556, "develop dataset": 40770, "instructionfollowing model": 78193, "increasing adoption": 75298, "llms profoundly": 96213, "profoundly impacted": 129717, "particular software": 120123, "witnessed transformative": 178582, "transformative changes": 169063, "changes llms": 22380, "ai pair": 7134, "development specialized": 41225, "numerous advantages": 115021, "problems identify": 128535, "software developers": 152786, "additionally identified": 5078, "including prompt": 74682, "problems identified": 128534, "survey covering": 159616, "design business": 39562, "30 subjects": 971, "highly heterogeneous": 69921, "image types": 72351, "chemical structures": 23561, "structures unlike": 156719, "reasoning domainspecific": 136818, "knowledge challenging": 81808, "tasks akin": 161933, "experts evaluation": 54654, "evaluation 14": 51410, "opensource lmms": 116645, "highlights substantial": 69881, "substantial challenges": 158036, "gpt4v gemini": 67250, "improvement believe": 73764, "community build": 26455, "models expert": 106243, "constitute significant": 30013, "lacking capacity": 83034, "capacity multimodal": 20528, "generation gap": 64680, "multimodel framework": 110810, "generation specifically": 65097, "demonstrated effectively": 38640, "handle video": 68577, "video generation": 176709, "capabilities video": 20254, "scenarios example": 146592, "23 text": 793, "perform video": 121086, "safe healthy": 145805, "output analysis": 117896, "training loop": 168560, "loop large": 97626, "llm state": 94024, "used public": 173199, "public llms": 133584, "datasets usually": 37184, "usually collected": 174891, "collected internet": 25692, "content used": 30641, "train generation": 167773, "previous generations": 127595, "diversity generations": 43731, "real generated": 136231, "investigating large": 80604, "nonfactual content": 114066, "content known": 30535, "propose interactive": 131884, "obtain insights": 115483, "multiple samples": 111032, "texts using": 165798, "using idea": 174311, "idea design": 71727, "longform responses": 97550, "users better": 173588, "falcon series": 57113, "open language": 116242, "180b parameters": 521, "parameters causal": 119722, "cost making": 32708, "making knowledge": 98762, "knowledge best": 81796, "report detailed": 140517, "detailed evaluations": 40290, "deep dive": 37716, "employed pretrain": 47898, "tokens extract": 166813, "models permissive": 108501, "accelerate development": 2772, "development open": 41176, "open ecosystem": 116229, "models chatgpts": 105619, "seismic shift": 147763, "landscape ai": 83090, "answer human": 9723, "following success": 60313, "llms intensified": 95662, "anthropics claude": 10104, "outperform opensource": 117611, "exhaustive overview": 53019, "extraction training": 56366, "data production": 35559, "memorization training": 100335, "efficiently extract": 46779, "model prior": 104338, "chatgpt existing": 22915, "unaligned models": 170623, "practical attacks": 125395, "attacks recover": 13740, "current alignment": 34059, "techniques eliminate": 163875, "models combination": 105674, "lmms current": 97088, "language vl": 86896, "advanced lmms": 5766, "lmms struggle": 97093, "struggle capture": 156732, "extensively used": 55994, "used bridge": 172984, "textual domains": 165906, "annotations expensive": 9588, "propose compositional": 131753, "chainofthought ccot": 21484, "order extract": 117197, "specifically generate": 154211, "produce response": 129454, "response extensive": 142643, "lmm performance": 97085, "benchmarks improves": 17270, "benchmarks need": 17313, "need finetuning": 112295, "problem aiming": 128179, "objects matched": 115292, "reference task": 138677, "perception multimodal": 120816, "semantic intelligence": 148163, "intrinsic knowledge": 79893, "way language": 177839, "language highly": 83402, "multilevel knowledge": 110458, "knowledge descriptions": 81868, "model segmentation": 104526, "align textual": 8037, "main perspectives": 98259, "knowledge contribute": 81841, "injected rich": 77106, "produce unstructured": 129478, "valuable clinical": 175406, "clinical care": 24317, "limits usage": 92931, "using domainadapted": 174152, "domainadapted language": 44326, "extracting common": 56220, "training 400": 168138, "embeddings sentences": 47282, "values using": 175564, "used openais": 173165, "values output": 175550, "pairs compared": 118553, "compared reference": 26908, "difference statistically": 41613, "exhibited higher": 53135, "outperform generalpurpose": 117595, "large gpt4": 87277, "advantages including": 6138, "local deployment": 97235, "runtime costs": 145762, "benefits local": 17481, "given growing": 65894, "growing importance": 68027, "importance ai": 73013, "narrow gap": 111459, "discourse study": 42719, "models core": 105803, "want learn": 177692, "believe perspective": 16786, "similarity human": 151349, "offer scientific": 115700, "focuses questions": 60158, "study experimentation": 157335, "known models": 82616, "gains various": 62533, "utilizing multiple": 175218, "answer extraction": 9708, "freeform answers": 61558, "answers work": 10096, "llms select": 96498, "select consistent": 147769, "consistent answer": 29804, "tasks original": 162895, "method applicable": 100680, "utilizes multiple": 175151, "generation biomedical": 64457, "knowledge graphenhanced": 82073, "driving progress": 45019, "unprecedented rate": 172091, "knowledgeintensive domains": 82559, "solutions pretraining": 153058, "domainspecific finetuning": 44583, "taskagnostic knowledge": 161825, "knowledge graphbased": 82072, "leveraging massive": 91903, "prompt types": 130732, "questions multiplechoice": 135200, "performance llama2": 121745, "llama2 model": 93366, "model challenging": 103262, "dataset demonstrating": 36230, "performance proprietary": 121963, "gpt35 exhibited": 66805, "context utilization": 30955, "able address": 2464, "summary proposed": 158937, "llm respectively": 93966, "fashion enhancing": 57250, "adaptability generalpurpose": 4577, "generalpurpose llms": 63357, "notable advancements": 114213, "data prevailing": 35535, "models overlook": 108397, "explicit modeling": 54944, "rely knowledge": 139860, "frequently encounter": 61617, "challenges relevant": 22042, "tapping knowledge": 161038, "agent generates": 6449, "agent combines": 6428, "combines information": 25936, "vqa answer": 177567, "multiview knowledge": 111294, "scene reasoning": 146739, "processing manner": 129192, "extensively evaluate": 55981, "method diverse": 100796, "datasets vlms": 37197, "applicability interpretability": 10257, "unveiling implicit": 172309, "implicit toxicity": 72992, "toxicity large": 167476, "focus probing": 60038, "toxic outputs": 167462, "easily detected": 45309, "detected existing": 40387, "existing toxicity": 53619, "exceptionally difficult": 52848, "difficult detect": 42141, "prompting propose": 131053, "method induce": 100930, "induce implicit": 75818, "outputs explicit": 118054, "classifiers demonstrate": 24184, "llama13b model": 93348, "outputs finetuning": 118055, "finetuning toxicity": 59588, "effectively enhance": 45985, "applications enabling": 10503, "techniques challenges": 163850, "challenges rapid": 22034, "complexity network": 27691, "candidates paper": 19745, "aims pave": 7644, "domainadapted llms": 44328, "including parameterefficient": 74659, "insight language": 77488, "understanding tool": 171511, "usage required": 172474, "network llms": 112675, "network llm": 112674, "framework access": 60912, "access various": 2922, "various external": 175934, "improvement efficiency": 73782, "efficiency finally": 46460, "community question": 26512, "models community": 105689, "answers difficult": 10012, "users select": 173776, "relevant answers": 139573, "cross attention": 33599, "selection knowledge": 147861, "pretraining question": 127418, "answers respectively": 10075, "answer different": 9697, "answers achieve": 9994, "achieve knowledge": 3678, "aspects results": 12971, "results introduction": 143540, "rate llm": 136004, "llm select": 93987, "generation leading": 64786, "use applications": 172502, "llm frameworks": 93689, "frameworks face": 61514, "handling domainspecific": 68594, "framework building": 60993, "llmpowered autonomous": 94226, "requests executable": 141050, "llm coding": 93538, "intelligent conversational": 78947, "agents handle": 6621, "language grounded": 83395, "advances deep": 5993, "showcased potential": 150092, "potential tackling": 125013, "visual control": 177146, "stateoftheart reinforcement": 155322, "higherlevel concepts": 69653, "relatively easy": 139400, "language building": 83173, "objective improve": 115205, "improve state": 73630, "technique reinforcement": 163800, "learning leveraging": 90642, "robust action": 145232, "selection specifically": 147889, "focus learning": 60014, "features enhance": 57483, "learning modelbased": 90703, "image observation": 72294, "models humanrobot": 106646, "extracted visual": 56213, "features language": 57524, "summarization content": 158814, "aviation industry": 15331, "complex unstructured": 27638, "data emergence": 34959, "opportunity transform": 116894, "built opensource": 19498, "llama2 mistral": 93365, "offers users": 115856, "users multiple": 173716, "multiple advantages": 110830, "document writing": 43864, "interactive data": 79298, "accurate contextually": 3446, "domain significantly": 44283, "efficiency safety": 46526, "describing object": 39399, "accurate response": 3486, "scores sampled": 147170, "gpt4 summarization": 67183, "annotations useful": 9622, "material objects": 99500, "prompt auxiliary": 130374, "auxiliary inputs": 15031, "evaluations vlms": 52038, "vlms approach": 177450, "approach additional": 10968, "training incontext": 168488, "makes efficient": 98647, "extending large": 55679, "visionlanguage instructionfollowing": 177030, "challenging llm": 22196, "train visual": 167844, "adapter align": 4700, "representation pretrained": 140730, "generative image": 65423, "produce weak": 129480, "alignment vision": 8259, "aligned visionlanguage": 8080, "alignment objectives": 8203, "effectively align": 45942, "level sentence": 91507, "level alignment": 91447, "level features": 91468, "hard achieve": 68632, "captioning datasets": 20575, "datasets address": 36639, "example using": 52511, "data reach": 35605, "95 performance": 1798, "interleaved generation": 79493, "ability visual": 2414, "instruction model": 78037, "capabilities largelanguage": 20001, "text inherently": 165247, "mental imagery": 100504, "combines capabilities": 25928, "comprehension creativity": 27896, "diffusion xl": 42263, "approach equips": 11189, "outputs simultaneously": 118123, "control dialogue": 31534, "quality experience": 134117, "experience qoe": 53840, "improving incontext": 74153, "received great": 137302, "queries answers": 134450, "studied llms": 156930, "research vlms": 142147, "vlms remains": 177478, "inclusion additional": 74788, "information demonstrations": 76349, "select effective": 147775, "effective multimodal": 45822, "demonstrations barely": 38989, "performance subsequently": 122126, "subsequently provide": 157988, "provide understanding": 133013, "understanding findings": 171237, "findings analyzing": 58636, "comparing model": 26997, "inner states": 77135, "states given": 155425, "different icl": 41794, "approach termed": 11602, "selecting demonstrations": 147813, "demonstrations shows": 39046, "better icl": 17906, "support findings": 159290, "performance vlms": 122293, "fast reliable": 57276, "model social": 104627, "world wide": 179631, "wide language": 178259, "language social": 86728, "platforms twitter": 123416, "approach roberta": 11518, "detection demonstrate": 40483, "gives significant": 66060, "process largescale": 128898, "models commercial": 105680, "terms cost": 164403, "costeffective solution": 32765, "solution research": 152971, "finetuned lora": 59063, "license facilitate": 92049, "model available": 103171, "language annotation": 83153, "datasets bias": 36684, "bias analysis": 18097, "analysis crucial": 8872, "creating fair": 33299, "models bottleneck": 105538, "relevant dataset": 139588, "dataset domain": 36247, "automatic framework": 14676, "vlms use": 177487, "images results": 72480, "accurate diverse": 3451, "visual attribute": 177116, "features results": 57569, "evaluate biases": 50913, "tool help": 166984, "income countries": 74803, "dataset covid19": 36206, "posed domain": 124185, "improvements ranging": 73937, "points macro": 123760, "f1score compared": 56496, "study 19": 157126, "countries languages": 32987, "languages analysis": 86946, "significant positive": 150817, "gym benchmarks": 68298, "textgeneration capabilities": 165629, "capabilities standard": 20194, "methods generally": 101550, "generally lead": 63315, "considerable prompt": 29632, "conversations best": 31934, "ask clarifying": 12837, "actions lead": 4381, "better decisions": 17845, "potential leverage": 124819, "powerful modeling": 125304, "representation textual": 140744, "textual interactions": 165926, "agents enable": 6592, "temporally extended": 164292, "play text": 123472, "develop stable": 40841, "algorithms effectively": 7921, "algorithm design": 7793, "provide accessible": 132665, "accessible reproducible": 2965, "evaluations multiturn": 52005, "cover range": 33044, "task properties": 161658, "properties challenges": 131634, "improving reinforcement": 74206, "evaluating multiturn": 51354, "opensource research": 116673, "research framework": 141805, "getting started": 65783, "rl offline": 145066, "methods benchmark": 101346, "games large": 62583, "intelligence researchers": 78892, "researchers recent": 142254, "anthropomorphic language": 10106, "takes llms": 160986, "enable chatbots": 48067, "understanding individual": 171297, "conversations chatbots": 31936, "module named": 109949, "sense visual": 148396, "realtime contextual": 136373, "users profile": 173744, "semantics historical": 148298, "output converted": 117909, "chatbot user": 22592, "support assistance": 159257, "model life": 103955, "coupled growing": 33000, "public awareness": 133547, "issues raise": 81054, "relatively little": 139407, "issues associated": 80984, "associated image": 13486, "results survey": 143854, "data issues": 35261, "bias privacy": 18182, "issues model": 81035, "considering potential": 29727, "models social": 109163, "dataset testing": 36581, "questions taken": 135300, "existing multiplechoice": 53497, "main questions": 98263, "experiments dataset": 54212, "dataset recent": 36496, "poorly answering": 123963, "answering subquestions": 9963, "questions implying": 135160, "implying models": 73009, "suggest dataset": 158527, "process relevant": 128970, "knowledge parametric": 82266, "memory language": 100413, "common knowledge": 26149, "limited coverage": 92739, "noisy information": 114000, "inductive knowledge": 75841, "reasoning leverage": 136963, "knowledge novel": 82248, "based inductive": 15872, "patterns implement": 120536, "utilizes knowledge": 175136, "time incorporating": 166421, "trained knowledge": 167959, "scores experimental": 147139, "baselines chatgpt": 16296, "won place": 178605, "place official": 123178, "ai objective": 7129, "ir process": 80834, "process process": 128944, "process perspective": 128938, "ai context": 6933, "focus academic": 59939, "academic use": 2762, "systems conclusions": 160301, "motivate use": 110170, "users systems": 173792, "search llms": 147372, "provide functionality": 132802, "process continued": 128771, "improvement remains": 73844, "different way": 42085, "arithmetic ability": 12470, "propose train": 132170, "train llm": 167790, "arithmetic problem": 12480, "model transfers": 104803, "learning platform": 90826, "result propose": 143058, "provides different": 133134, "model codes": 103296, "exposing limitations": 55548, "promise performance": 130194, "realistic assumptions": 136284, "rate base": 135979, "tasks train": 163384, "train new": 167809, "surpasses humanlevel": 159486, "transferred models": 169027, "contrast recent": 31326, "recent remarkable": 137616, "versatile interactive": 176565, "interactive multimodal": 79324, "follow complex": 60209, "paradigm aligning": 119427, "instructions incontext": 78280, "autoregressively generate": 15022, "generate grounded": 63522, "coherent multimodal": 25534, "outputs continuous": 118040, "largescale generation": 89307, "incontext multimodal": 74989, "text vision": 165570, "multiround interactive": 111142, "interactive conversation": 79295, "subjectdriven image": 157846, "generation vision": 65256, "signifies substantial": 151184, "model adept": 103083, "instructions producing": 78325, "framework aligning": 60947, "llms emergent": 95034, "reasoning visionlanguage": 137232, "2d visual": 932, "built atop": 19471, "allows integration": 8441, "integration various": 78692, "modalities extensive": 102925, "highquality instruction": 70037, "3d leveraging": 1134, "abilities contribute": 1889, "novel discriminative": 114471, "models backdoor": 105441, "malicious exploitation": 98841, "research concentrated": 141656, "content unfortunately": 30639, "harmful data": 68733, "target llm": 161080, "finetuning safety": 59523, "unaligned llms": 170622, "finetuning aligned": 59161, "aligned data": 8046, "possible conduct": 124408, "pattern provide": 120507, "guidelines potential": 68253, "design extensive": 39629, "evaluation maintaining": 51686, "aims advantage": 7577, "intelligence techniques": 78905, "compatible different": 27094, "different academic": 41644, "saudi arabia": 146187, "method introduced": 100937, "create questions": 33228, "technology produce": 164159, "check validity": 23532, "educational outcomes": 45619, "ensure use": 49712, "questions acceptable": 135019, "responses obtained": 142862, "generate complete": 63428, "questions generative": 135147, "challenges learning": 21936, "chatgpt midjourney": 23126, "models holds": 106624, "transforming education": 169380, "enhancing human": 49490, "human productivity": 70983, "motivated numerous": 110184, "research initiatives": 141855, "technologies learning": 164098, "data enriching": 34982, "research delve": 141684, "capturing data": 20721, "essential consider": 50594, "implications broader": 72906, "impact genai": 72657, "plays substantial": 123538, "substantial role": 158099, "role shaping": 145533, "overall human": 118198, "prevailing large": 127490, "promise solving": 130199, "capacity work": 20548, "extending llms": 55681, "prompts conditioned": 131197, "conditioned input": 28980, "model inputs": 103867, "mitigate data": 102599, "formulating diverse": 60634, "tasks sequencetosequence": 163224, "improved framework": 73687, "capable tackling": 20473, "audio classification": 14166, "reasoning evaluate": 136835, "ability audio": 2075, "propose natural": 131945, "audio clips": 14167, "ontology matching": 116171, "enables semantic": 48248, "systems currently": 160319, "thoughtful consideration": 166240, "consideration specific": 29658, "propose generic": 131855, "matching set": 99481, "tools framework": 167166, "ontology alignment": 116165, "evaluation initiative": 51648, "initiative oaei": 77096, "achieve close": 3598, "changes models": 22383, "scale cost": 146273, "information bottleneck": 76300, "novel informationtheoretic": 114547, "models algorithmic": 105326, "survey rapid": 159677, "transforming various": 169385, "reshaping artificial": 142307, "intelligence landscape": 78844, "memory demands": 100388, "present substantial": 126465, "including algorithmic": 74412, "developed enhance": 40871, "llm efficiency": 93612, "typically focus": 170488, "specific areas": 153937, "areas training": 12394, "multifaceted dimensions": 110401, "covers various": 33108, "topics related": 167365, "training tuning": 168808, "inference techniques": 76116, "laying groundwork": 89693, "future innovations": 62273, "repository relevant": 140633, "relevant references": 139641, "detection based": 40450, "widely discussed": 178374, "task aiming": 161184, "structured formats": 156636, "sequences make": 148828, "using detection": 174132, "postprocessing method": 124512, "sequences existing": 148816, "usually perform": 174910, "limiting performance": 92893, "revisit existing": 144610, "models comprehensively": 105715, "comprehensively explore": 28175, "performance including": 121660, "including improper": 74564, "problem definition": 128221, "issue detection": 80895, "impact local": 72685, "simple methods": 151491, "personalized model": 122610, "responses large": 142837, "primarily textbased": 127794, "sensemaking tasks": 148402, "tasks planning": 162949, "users little": 173705, "ability specify": 2381, "specify highlevel": 154346, "help explore": 69117, "planning study": 123326, "future users": 62397, "complex user": 27639, "user tasks": 173528, "integration natural": 78683, "designed elicit": 39854, "survey measures": 159651, "measures personality": 99933, "statistically indistinguishable": 155517, "modify behavior": 109885, "based previous": 16027, "behaviors distinct": 16692, "aigenerated data": 7405, "lack data": 82916, "ai present": 7159, "short attention": 149956, "attention span": 13990, "make hard": 98545, "hard conclude": 68636, "sentences far": 148579, "makes usage": 98694, "generating keywords": 64263, "items textual": 81093, "includes stages": 74387, "fine grain": 58838, "results avoiding": 143187, "common llm": 26152, "llm llmbased": 93816, "setting perform": 149491, "based diversity": 15765, "based metrics": 15947, "compared benchmark": 26751, "models harnessing": 106586, "utilizes promptbased": 175157, "questions current": 135090, "current questionanswering": 34222, "experiments promptbased": 54406, "rich content": 144766, "long prompt": 97464, "covering main": 33080, "short prompt": 149984, "short textual": 150011, "information focus": 76459, "focus context": 59963, "prompts investigate": 131340, "performance generalpurpose": 121580, "llms textdavinci003": 96799, "gpt35turbo training": 66884, "baseline human": 16222, "case human": 20876, "nlp nlp": 113778, "nlp text": 113921, "garnered considerable": 62776, "limitations related": 92657, "expensive computational": 53777, "llms implemented": 95544, "reasoning prompts": 137073, "instead conventional": 77869, "utilizing pretrained": 175228, "capability gpt": 20310, "classification focus": 24002, "focus effectively": 59972, "effectively utilizing": 46108, "strategies various": 156092, "classification scenarios": 24076, "scenarios compare": 146556, "performance zero": 122315, "including traditional": 74763, "methods experimental": 101499, "llms underscores": 96878, "effectiveness zeroshot": 46323, "classifiers datasets": 24183, "datasets analyzed": 36649, "especially advantageous": 50425, "classification exploring": 23997, "especially applied": 50427, "remain insufficiently": 139921, "performance chatgpt35": 121240, "llama 7b": 93281, "models confronted": 105745, "prompting mechanism": 131005, "prompting types": 131113, "offers intriguing": 115822, "numerical spatial": 115014, "laying solid": 89697, "identification target": 71808, "future enhancements": 62258, "qa study": 133929, "types findings": 170358, "surpass stateoftheart": 159462, "points exact": 123746, "em f1": 47119, "mitigating risk": 102678, "emphasizes critical": 47638, "underscoring necessity": 170965, "task observed": 161579, "ongoing challenges": 116055, "work focusing": 178995, "focusing refining": 60193, "exploring promptbased": 55500, "enhance llm": 49226, "use state": 172887, "make surprising": 98614, "surprising observations": 159552, "bert distilbert": 17527, "tasks gpt2": 162475, "finetuning required": 59511, "model classification": 103283, "large used": 89097, "google colab": 66316, "llms textual": 96800, "textual analysis": 165877, "current policy": 34203, "timely manner": 166573, "manner crucial": 98979, "supporting effective": 159371, "policy design": 123831, "implementation manually": 72851, "texts openended": 165752, "enhance text": 49300, "k12 education": 81405, "policy state": 123873, "modeling results": 105085, "results designed": 143349, "guide gpt4": 68179, "findings quantitative": 58766, "quantitative measures": 134359, "qualitative reviews": 134018, "automated analysis": 14514, "offer new": 115673, "educational policy": 45620, "evaluations large": 51990, "dos donts": 44667, "evaluate cognitive": 50928, "using languagebased": 174359, "knowledge benchmark": 81793, "common pitfalls": 26174, "arise applying": 12452, "list 10": 93120, "help design": 69102, "evaluations ai": 51939, "systems conclude": 160300, "cultural linguistic": 33961, "diversity using": 43760, "evaluations open": 52011, "overall goal": 118194, "contribute broader": 31394, "discussion best": 42988, "practices rapidly": 125516, "ai psychology": 7177, "tool augmented": 166943, "come significant": 26008, "operational complexity": 116764, "domain scientists": 44277, "design experiments": 39627, "provide guidance": 132812, "usage using": 172479, "using xray": 174874, "contextaware language": 30980, "interface software": 79443, "tools experimental": 167157, "making information": 98757, "acting user": 4302, "needs llms": 112480, "scientific output": 146976, "study marathi": 157481, "systems identify": 160428, "persons organizations": 122648, "systems english": 160357, "language received": 86696, "received adequate": 137294, "adequate attention": 5506, "ner lowresource": 112591, "language marathi": 83504, "performance shallow": 122059, "shallow models": 149767, "traditional deep": 167608, "models relevant": 108905, "cnnlstm models": 24617, "brings accuracy": 19139, "models closer": 105636, "deep pretrained": 37815, "study building": 157198, "building efficient": 19396, "efficient nlp": 46688, "dataset generative": 36329, "models norwegian": 108312, "norwegian recent": 114208, "transformed natural": 169086, "paradigm utilizing": 119530, "potential capabilities": 124634, "capabilities lack": 19978, "comprehensive benchmarks": 27971, "benchmarks particularly": 17324, "languages existing": 86999, "crucial metric": 33824, "gaps introduce": 62759, "summarization opendomain": 158856, "opendomain conversation": 116449, "datasets instruction": 36930, "cultures idioms": 33983, "dataset topic": 36585, "systematic evaluations": 160124, "observed noticeable": 115426, "noticeable decline": 114316, "decline performance": 37500, "technique surpasses": 163808, "dataset utilizing": 36610, "variant using": 175624, "using half": 174288, "half parameters": 68319, "variants exhibit": 175627, "greater potential": 67771, "utilized deep": 175099, "deep transformers": 37831, "leveraging cuttingedge": 91829, "generator employs": 65619, "fewzeroshot learning": 58093, "generation highquality": 64719, "enhancing memory": 49525, "traditional learning": 167643, "crossword puzzles": 33713, "policy defining": 123830, "safety trustworthiness": 145898, "achieve goals": 3653, "number existing": 114863, "structural causal": 156510, "philosophy literature": 122859, "applicable realworld": 10285, "realworld machine": 136475, "provide graphical": 132809, "results used": 143897, "used mitigate": 173148, "agents language": 6638, "novel finetuning": 114503, "process method": 128919, "models function": 106404, "current method": 34176, "67 improvement": 1493, "tested various": 164687, "stronger baseline": 156464, "step direction": 155616, "direction showing": 42449, "showing notable": 150181, "notable improvement": 114229, "improvement existing": 73790, "sequence visual": 148798, "answering inspired": 9876, "icl nlp": 71688, "developed large": 40882, "capabilities implementing": 19946, "icl using": 71699, "researchers usually": 142272, "usually resort": 174917, "study use": 157692, "explore diverse": 55189, "observing changes": 115446, "lvlms improving": 97981, "employ different": 47823, "retrieved demonstrations": 144236, "datasets vqav2": 37198, "uncover important": 170726, "strategies consistently": 155976, "vqa performance": 177578, "good questions": 66290, "questions help": 135155, "image reasoning": 72314, "reasoning aligning": 136665, "leads large": 89899, "usually trained": 174927, "regions images": 138934, "complex scenes": 27577, "capabilities lvlms": 20044, "details original": 40336, "depth tasks": 39329, "zeroshot visionlanguage": 180371, "visionlanguage benchmarks": 177021, "gap complex": 62623, "characterizing large": 22490, "detection generation": 40514, "despite little": 40155, "informative features": 76874, "features solve": 57578, "intrinsic dimension": 79889, "representation inputs": 140700, "help solve": 69181, "domain prompt": 44256, "demonstrate largescale": 38397, "image search": 72326, "method explore": 100851, "images existing": 72420, "matching image": 99463, "results meet": 143591, "engine enables": 48857, "parsing stage": 119967, "incorporates language": 75060, "module large": 109945, "comprehension textual": 27938, "module integrates": 109944, "integrates interactive": 78558, "detailed visual": 40328, "user search": 173492, "users perform": 173731, "framework image": 61206, "nonfungible token": 114073, "search conducted": 147327, "properties results": 131660, "indicate proposed": 75620, "improves users": 74098, "users image": 173671, "search experience": 147354, "users express": 173653, "assessing students": 13210, "requires substantial": 141449, "explored existing": 55347, "questions heavily": 135154, "logical arithmetic": 97348, "modelsllms chatgpt": 109751, "excelled nlp": 52784, "field mathematics": 58202, "step conduct": 155608, "questions analysis": 135035, "analysis categorized": 8839, "including error": 74509, "imputation schema": 74245, "schema matching": 146770, "ensuring data": 49732, "enabling tuning": 48355, "language allows": 83148, "users manually": 173711, "tuning process": 170095, "prompts knowledge": 131345, "introduces task": 80219, "using range": 174645, "generalizability unseen": 63114, "performance rivals": 122031, "gpt35 furthermore": 66809, "furthermore evaluation": 62061, "highlights effectiveness": 69854, "plays fundamental": 123519, "role training": 145542, "management particularly": 98882, "pretraining supervised": 127450, "despite considerable": 40088, "considerable importance": 29621, "providing systematic": 133385, "strategy selection": 156203, "methodologies evaluating": 101195, "pursuit improved": 133791, "exploration data": 55060, "community survey": 26525, "finetuning stages": 59557, "stages llms": 154769, "strategy design": 156124, "directions development": 42469, "field survey": 58248, "construct powerful": 30153, "latest papers": 89564, "interactive visualization": 79349, "revolutionized efficiency": 144642, "llms instructed": 95649, "descriptions code": 39440, "hindered understanding": 70143, "control generated": 31545, "generated results": 63966, "results tackle": 143859, "actionable steps": 4355, "exploratory process": 55126, "diverse faithful": 43525, "authoring tool": 14427, "series interactive": 148930, "understanding programming": 171423, "actively participate": 4454, "process leading": 128899, "providing users": 133397, "enhances user": 49446, "free copy": 61545, "copy paper": 32117, "paper supplemental": 119349, "supplemental materials": 159232, "materials available": 99505, "communication large": 26381, "understanding lacking": 171319, "unique communication": 171832, "communication dynamics": 26367, "evaluation mechanism": 51693, "diverse complex": 43484, "significantly surpasses": 151166, "costeffective manner": 32762, "marking promising": 99247, "promising advancement": 130213, "advancement efficient": 5837, "efficient collaborative": 46583, "collaborative ai": 25606, "flood disaster": 59858, "scenario understanding": 146516, "hot research": 70436, "models disaster": 105984, "types limited": 170383, "limited answering": 92704, "answering capability": 9820, "research object": 141936, "dataset expands": 36281, "expands question": 53709, "previous dataset": 127582, "scenarios experimental": 146594, "bayesian perspective": 16486, "distilled finetuned": 43176, "model requiring": 104460, "regarding safety": 138890, "architecture provides": 12212, "provides alternative": 133108, "utilizing significantly": 175238, "lower number": 97831, "parameters challenging": 119723, "blocks standard": 18731, "various largescale": 176004, "just hours": 81370, "demonstrates notable": 38868, "notable zeroshot": 114253, "performance highly": 121626, "reduced computational": 138488, "bootstrapping procedure": 18868, "procedure addition": 128693, "encoders multimodal": 48494, "bad ugly": 15468, "ugly large": 170559, "possess deep": 124334, "capabilities contextual": 19836, "contextual awareness": 31071, "invaluable various": 80318, "security community": 147567, "securityrelated tasks": 147637, "llms security": 96496, "privacy specifically": 128028, "llms positively": 96131, "positively impact": 124315, "threats associated": 166279, "associated use": 13520, "llms comprehensive": 94674, "paper categorizes": 118777, "llms defenses": 94798, "findings example": 58667, "example llms": 52491, "security code": 147566, "code vulnerability": 25210, "data confidentiality": 34830, "outperforming traditional": 117701, "various attacks": 175821, "attacks particularly": 13729, "abilities identified": 1927, "identified areas": 71815, "areas require": 12387, "parameter extraction": 119612, "llm parameter": 93869, "tuning recent": 170103, "requires exploration": 141369, "light llms": 92129, "know audience": 81702, "age education": 6389, "range new": 135663, "adapting text": 4764, "adapt evaluate": 4524, "llms commercial": 94638, "commercial opensource": 26087, "science questions": 146910, "questions prompted": 135236, "target different": 161056, "age groups": 6394, "assess adaptability": 13042, "scores generated": 147145, "comprehension level": 27914, "intended audience": 78972, "underline importance": 170817, "problems effective": 128490, "evaluators large": 52054, "reasoning capacities": 136724, "capacities llms": 20491, "specifically solving": 154284, "competitionlevel programming": 27153, "skills provide": 152183, "task considering": 161272, "problems release": 128615, "types problems": 170402, "finetuning chainofthought": 59189, "able consistently": 2481, "emphasis importance": 47621, "llms foster": 95299, "llms stronger": 96695, "stronger reasoning": 156477, "work answer": 178801, "using gradient": 174273, "gradient ascent": 67380, "requires supervision": 141454, "rationales lead": 136067, "prompting approximately": 130859, "answer address": 9675, "address using": 5382, "expectationmaximization em": 53738, "em algorithm": 47117, "variance gradient": 175607, "gradient estimates": 67389, "applying technique": 10929, "scaling visual": 146456, "generative deep": 65409, "creation highquality": 33338, "shows finetuning": 150427, "pretrained diffusion": 126789, "real ones": 136241, "ones paper": 116007, "essential improvement": 50611, "improvement possible": 73834, "possible scale": 124459, "images addressing": 72393, "multiple challenges": 110856, "ambiguity lack": 8632, "resolve class": 142341, "propose contextualized": 131764, "leverage domain": 91581, "adaptation techniques": 4667, "images framework": 72425, "data improved": 35191, "recognition models": 138094, "distributional shifts": 43413, "text advantage": 164821, "advantage language": 6109, "output data": 117911, "potential advantage": 124560, "problem recent": 128373, "llms successful": 96717, "successful adoption": 158334, "domains indicate": 44440, "effectiveness capturing": 46137, "processing problems": 129278, "problems power": 128594, "embeddings generated": 47237, "generated hidden": 63882, "hidden layers": 69325, "approach applied": 10995, "applied text": 10815, "embedding algorithms": 47151, "embeddings provide": 47274, "provide high": 132818, "high sensitivity": 69541, "sensitivity data": 148453, "compared embedding": 26791, "comparing language": 26990, "insights lessons": 77596, "improving instructionfollowing": 74155, "realm large": 136354, "llms enhancing": 95080, "capability involves": 20318, "output pairs": 117969, "pairs task": 118622, "tasks enlarging": 162309, "instruction output": 78042, "tasks demands": 162169, "scale tasks": 146350, "various input": 175979, "various scales": 176151, "generally demonstrate": 63306, "mechanism generative": 99994, "nlp technologies": 113919, "develop medical": 40799, "efficient typical": 46742, "typical application": 170443, "application healthcare": 10330, "healthcare ai": 68987, "recently neural": 137945, "applied medical": 10784, "paper mechanism": 119079, "effectively inject": 46031, "medical information": 100185, "medical datasets": 100153, "models combined": 105676, "original methods": 117354, "building embodied": 19397, "agents openended": 6673, "instructionfollowing agents": 78175, "diverse openended": 43596, "novel diverse": 114473, "implicit language": 72983, "convert abstract": 31986, "abstract language": 2641, "task goals": 161435, "environment perform": 50020, "perform longhorizon": 120980, "goals given": 66219, "given observation": 65945, "perform creative": 120913, "conditioned language": 28982, "instructions introduce": 78288, "model textual": 104745, "policy learned": 123856, "generating executable": 64205, "openworld game": 116723, "game minecraft": 62564, "minecraft agents": 102298, "given freeform": 65888, "freeform language": 61562, "utilizing gpt4v": 175194, "metrics perform": 102124, "incontext visual": 74998, "emergence incontext": 47424, "icl cuttingedge": 71666, "processing domain": 129145, "domain recently": 44267, "yielding promising": 180002, "framework enable": 61118, "producing content": 129549, "new icl": 113222, "architecture employed": 12155, "employed perform": 47897, "learning thanks": 91078, "thanks design": 165985, "vision understanding": 177004, "previous icl": 127597, "baselines overall": 16357, "growing volume": 68065, "increasingly critical": 75387, "introduce draft": 79949, "simple framework": 151460, "uses examples": 173847, "specific topic": 154114, "retriever model": 144257, "algorithm effectively": 7799, "effectively handles": 46010, "related specific": 139210, "subsequently finetune": 157977, "classifier using": 24172, "dataset identify": 36349, "evaluations widely": 52042, "used classification": 172995, "datasets manually": 36973, "constructed datasets": 30174, "baselines use": 16381, "learning gpt3": 90508, "175b instructgpt": 500, "perform work": 121093, "measure similarity": 99877, "similarity representations": 151369, "representations set": 140882, "llms 7b": 94247, "using representational": 174668, "suggest need": 158572, "engineering domain": 48904, "process flow": 128840, "process flows": 128841, "safety hazards": 145867, "tedious manual": 164185, "methodology automatically": 101213, "identifying errors": 71999, "suggesting corrections": 158613, "language investigate": 83466, "potentially erroneous": 125100, "model suggestions": 104683, "dataset supervised": 36565, "dataset synthetically": 36569, "llms talk": 96765, "conversational questionanswering": 31910, "create interactive": 33204, "play roles": 123468, "issue investigate": 80919, "investigate applicability": 80370, "simulation propose": 151711, "propose simulation": 132136, "zeroshot learner": 180224, "interactions framework": 79227, "involves llms": 80749, "topic llm": 167325, "given search": 66000, "second llm": 147490, "llm plays": 93891, "given topic": 66037, "interactions understand": 79274, "disparities llm": 43059, "teachers performance": 163629, "performance benchmarking": 121195, "benchmarking stateoftheart": 17158, "comprehension models": 27918, "generates diverse": 64065, "covering aspects": 33073, "aspects given": 12941, "visual chat": 177129, "chat large": 22539, "capability visual": 20390, "increasingly recognized": 75438, "efforts enable": 46909, "chat performance": 22550, "problem lack": 128296, "captions address": 20604, "issue created": 80891, "data allows": 34616, "chat capabilities": 22526, "introduced benchmark": 80152, "grounding benchmarks": 67888, "emerging concept": 47508, "offering enhanced": 115736, "2022 2023": 663, "technology providing": 164164, "innovative solutions": 77189, "focus emerging": 59973, "remote control": 140345, "control optimization": 31568, "volume rendering": 177535, "domains 2d": 44349, "route planning": 145642, "planning remains": 123317, "remains notably": 140047, "models spatial": 109189, "tasks area": 161966, "autonomous vehicle": 14952, "baseline dataset": 16203, "dataset meticulously": 36408, "meticulously crafted": 101945, "study dataset": 157263, "key tasks": 81583, "environments specifically": 50115, "specifically developed": 154185, "dataset assess": 36118, "assess spatial": 13122, "reveals key": 144427, "visual program": 177248, "musical instrument": 111320, "decomposing tasks": 37633, "executable program": 52899, "specialized vision": 153918, "necessary steps": 112155, "steps include": 155746, "unable recover": 170610, "incorrect outputs": 75163, "outputs require": 118115, "models incurring": 106748, "model vlm": 104881, "candidate programs": 19726, "programs executed": 129904, "correct program": 32405, "description reasoning": 39423, "improves vlms": 74100, "understand spatial": 171079, "spatial relations": 153800, "okvqa aokvqa": 115938, "hateful memes": 68863, "evaluation human": 51637, "consistency finally": 29760, "applications limited": 10594, "capability recent": 20365, "demand use": 38140, "vulnerabilities limitations": 177624, "care needs": 20764, "use technologies": 172904, "llm general": 93696, "technique large": 163782, "explanations human": 54860, "possess intrinsic": 124343, "explanations students": 54902, "questions students": 135290, "generation accurate": 64391, "central hypothesis": 21341, "demonstrations necessary": 39033, "necessary sufficient": 112156, "sufficient condition": 158481, "generation conducted": 64526, "traditional fewshot": 167618, "learning improves": 90566, "explanation accuracy": 54773, "yields higherquality": 180024, "prompting guidelines": 130953, "explanations domain": 54835, "develop maintain": 40798, "exercises use": 53011, "explored analyzed": 55334, "capability gpt4": 20312, "produce multiplechoice": 129443, "aligned specific": 8075, "specific learning": 154031, "language single": 86726, "single correct": 151787, "correct choice": 32376, "observed generated": 115409, "specific scientific": 154084, "models additional": 105274, "training additional": 168144, "training explore": 168441, "llama large": 93317, "llm key": 93784, "requires reading": 141430, "utilize text": 175088, "texts including": 165734, "different size": 41996, "models 7b": 105169, "validating methods": 175355, "limitations incorporating": 92603, "suggesting areas": 158610, "llms spurred": 96673, "icl chainofthought": 71662, "responses enabling": 142775, "provide concise": 132719, "processes leading": 129079, "leading potential": 89855, "potential inaccuracies": 124779, "response study": 142703, "seeks bridge": 147673, "thinking processes": 166158, "cater specific": 21160, "approach known": 11330, "process word": 129035, "word level": 178650, "encompass entire": 48525, "findings validate": 58833, "light impact": 92121, "comprehension offering": 27925, "potential cause": 124638, "errors overall": 50385, "final text": 58408, "text improving": 165238, "community explore": 26473, "explore image": 55216, "stateoftheart image": 155157, "model demonstrating": 103431, "success recent": 158295, "images medical": 72448, "medical images": 100181, "motivated observations": 110186, "based strategy": 16112, "pseudo label": 133477, "propose weakly": 132218, "robustness computation": 145364, "effectiveness types": 46307, "downstream segmentation": 44750, "outperforms pretrained": 117817, "methods downstream": 101455, "future automatic": 62228, "manual classification": 99028, "laborious errorprone": 82864, "utilize machine": 175066, "leading model": 89844, "study unveils": 157691, "approach employing": 11157, "employing zeroshot": 47951, "fewshot generative": 57918, "gpt classifier": 66397, "necessity training": 112201, "structured python": 156666, "hierarchical nature": 69367, "initial simulation": 77054, "data demonstrates": 34898, "demonstrates efficacy": 38842, "efficacy method": 46396, "applied real": 10799, "formulated blueprint": 60628, "time ensures": 166393, "human biases": 70625, "ability refine": 2349, "evaluation stateoftheart": 51871, "ability correctly": 2116, "information recent": 76679, "detecting sarcasm": 40429, "bidirectional transformers": 18364, "representation model": 140724, "demonstrated higher": 38679, "model produces": 104353, "results detecting": 143352, "study analyzes": 157160, "including higher": 74555, "recently openai": 137949, "possibility finetune": 124380, "interface enabling": 79431, "meet demands": 100274, "task objective": 161576, "assess potential": 13114, "gpts recently": 67318, "recently launched": 137936, "evaluated compared": 51160, "results lead": 143562, "lead conclusions": 89732, "style communication": 157739, "observed following": 115408, "programming exercise": 129817, "far superior": 57239, "generally higher": 63310, "regarding overall": 138879, "present advantages": 126218, "prompting autoregressive": 130863, "transformed landscape": 169083, "prompt paradigm": 130624, "tasks shift": 163232, "llms innovative": 95642, "innovative prompting": 77187, "promise variety": 130203, "owing vast": 118471, "vast parameters": 176346, "huge datasets": 70514, "prompting specific": 131077, "input instruction": 77266, "provided guide": 133060, "fully harness": 61769, "techniques provide": 163995, "concise survey": 28853, "based taxonomy": 16130, "identify open": 71932, "imagetext alignment": 72521, "alignment models": 8199, "models reach": 108794, "method provide": 101045, "visual explanation": 177170, "grounding models": 67909, "captions given": 20609, "set comprising": 149160, "set enables": 149183, "outperforming strong": 117699, "classification explanation": 23995, "activation steering": 4416, "better control": 17834, "features represented": 57566, "seek address": 147653, "taking average": 161006, "effective steering": 45889, "steering away": 155566, "toxic text": 167464, "contexts llm": 31031, "agent applications": 6415, "envision llms": 50127, "ai application": 6866, "application level": 10341, "level instead": 91480, "instead turn": 77903, "architecture software": 12226, "software programming": 152836, "begin introducing": 16528, "architecture traditional": 12232, "tools programming": 167234, "development software": 41223, "following explore": 60273, "applications delve": 10472, "insights traditional": 77660, "propose roadmap": 132105, "designed guide": 39886, "development suggesting": 41228, "model focusing": 103683, "plays essential": 123517, "role extracting": 145491, "extracting valuable": 56246, "valuable content": 175408, "aligns textual": 8274, "editing images": 45460, "images crucial": 72406, "models fulfill": 106400, "fulfill requirements": 61712, "requirements introduce": 141302, "version clip": 176602, "regiontext pairs": 138941, "ability clip": 2100, "enables precise": 48240, "precise control": 125578, "recognition multimodal": 138096, "strong potential": 156431, "serve versatile": 149019, "imagerelated tasks": 72386, "year witnessed": 179878, "especially combined": 50437, "safety mechanisms": 145876, "mechanisms specialized": 100055, "harmful information": 68736, "shows using": 150493, "mechanisms set": 100054, "attack efficient": 13641, "capabilities important": 19947, "potential make": 124851, "capabilities come": 19820, "considerable resources": 29634, "effective techniques": 45899, "techniques addressing": 163827, "taxonomy consisting": 163577, "created github": 33260, "actively maintain": 4452, "understanding research": 171460, "research developments": 141704, "exciting field": 52875, "logical constraints": 97352, "neurosymbolic ai": 113037, "purely symbolic": 133725, "symbolic neural": 159816, "approaches learning": 11827, "networks output": 112780, "output distributions": 117917, "distributions typically": 43433, "limits applicability": 92908, "entire output": 49811, "model sample": 104503, "solutions subproblems": 153078, "efficiently computing": 46769, "low entropy": 97750, "generation observe": 64899, "greatly improve": 67789, "outputs evaluate": 118050, "detoxifying large": 40736, "toxic generations": 167456, "learning entity": 90419, "plms require": 123637, "large languages": 88888, "languages models": 87062, "learning labeled": 90602, "demonstrations existing": 39001, "existing icl": 53382, "icl approaches": 71657, "typically necessitate": 170501, "providing task": 133387, "set demonstrations": 149173, "monetary cost": 110045, "interfacing llms": 79475, "different design": 41730, "strategy achieves": 156098, "achieves effective": 4007, "matching accuracy": 99449, "cost conduct": 32657, "explore design": 55179, "compared plmbased": 26875, "plmbased methods": 123565, "methods finetuned": 101533, "data llmbased": 35325, "methods manually": 101657, "designed prompting": 39931, "prompting provide": 131054, "guidance selecting": 68161, "prompting comparing": 130884, "comparing large": 26992, "limit effectiveness": 92484, "offer personalized": 115680, "address repetition": 5363, "demonstrates promise": 38879, "examine feasibility": 52387, "humanwritten chatgptgenerated": 71511, "scale providing": 146336, "aigenerated messages": 7408, "helpful humanwritten": 69210, "helpfulness rating": 69223, "matched humanwritten": 99436, "regarding helpfulness": 138873, "suggesting ais": 158609, "analysis openended": 9043, "personalized suggestions": 122623, "ais like": 7702, "enhancement using": 49388, "design complex": 39580, "systems generation": 160405, "elements relationships": 47019, "llm support": 94033, "support generation": 159294, "prototype available": 132595, "online support": 116144, "research prompt": 141999, "inference explicit": 76007, "llms empower": 95051, "capability semantic": 20372, "semantic generation": 148150, "reliance prompt": 139784, "improve outputs": 73538, "precise prompts": 125594, "novel inference": 114543, "users highlight": 173668, "highlight specific": 69785, "specific prompt": 154061, "focus generation": 59987, "based highlighted": 15854, "inference guiding": 76026, "guiding models": 68281, "models highlighted": 106606, "attention weights": 14007, "customized generation": 34404, "training experiments": 168439, "generating reliable": 64318, "graphs natural": 67641, "fail extract": 56952, "visuallanguage alignment": 177373, "issues make": 81033, "hard model": 68647, "accurate scene": 3493, "effective framework": 45762, "language parser": 86458, "narratives generated": 111451, "generated image": 63888, "labels experimental": 82798, "work motivate": 179128, "research mining": 141911, "layers paper": 89678, "prominent opensource": 130158, "opensource foundational": 116607, "output design": 117912, "multiplechoice tasks": 111107, "reasoning computation": 136767, "examine model": 52402, "findings based": 58641, "based designed": 15751, "computational prowess": 28396, "certain size": 21416, "layers llama": 89673, "logical thinking": 97399, "power realworld": 125218, "function calling": 61825, "recent language": 137529, "various complex": 175862, "function calls": 61826, "limitations knowledge": 92609, "access private": 2901, "data development": 34910, "allowed llms": 8357, "coordinate multiple": 32087, "multiple functions": 110926, "functions based": 61901, "context tackle": 30932, "behavior address": 16560, "orchestrate multiple": 117160, "components llm": 27763, "calls used": 19688, "opensource closedsource": 116577, "models hyperparameter": 106654, "foundational large": 60838, "optimization standard": 117039, "propose treat": 132179, "treat code": 169630, "promising tool": 130327, "tool improving": 166989, "efficiency traditional": 46544, "text combined": 164931, "image work": 72362, "attempt generate": 13790, "vocabulary model": 177510, "object locations": 115142, "baseline method": 16235, "works particularly": 179475, "particularly comparing": 120159, "comparing methods": 26996, "box annotations": 18925, "understanding particular": 171396, "particular ability": 120045, "invaluable tool": 80316, "tool speed": 167034, "quality work": 134298, "used modern": 173152, "finally shed": 58524, "potential lmms": 124848, "work testing": 179341, "testing llm": 164729, "performance physics": 121909, "observations recent": 115350, "llms widespread": 97009, "educational technology": 45630, "university students": 171928, "need evaluate": 112279, "benchmarks order": 17319, "understand risks": 171073, "performance bard": 121182, "popular llmbased": 124013, "context social": 30921, "social cues": 152555, "difficulty detecting": 42207, "nature paper": 112021, "explores applications": 55383, "gpt4 detecting": 66969, "finetuning case": 59187, "largest finetuned": 89435, "accuracy f1score": 3235, "f1score 081": 56494, "zeroshot case": 180132, "yields accuracy": 180008, "score lower": 147080, "additionally models": 5094, "reassess performance": 137254, "performance release": 122009, "llmdriven code": 94184, "progress code": 129950, "transform natural": 169048, "llm providers": 93930, "issues aligning": 80977, "human guidance": 70845, "making code": 98714, "answer critical": 9695, "issue existing": 80905, "existing code": 53312, "generating vulnerable": 64375, "vulnerable code": 177651, "algorithm generate": 7810, "design unique": 39794, "unique advantage": 171819, "enables natural": 48229, "having great": 68878, "redteaming llms": 138395, "scenario users": 146517, "weakness llms": 177956, "rate asr": 135976, "improve average": 73415, "localized narratives": 97284, "histopathology videos": 70189, "analysis diagnosis": 8890, "evidence different": 52178, "individual image": 75720, "image patches": 72298, "lack diagnostic": 82924, "educational histopathology": 45611, "addition provide": 4898, "contextual reasoning": 31107, "entire video": 49822, "reasoning gpt4": 136891, "reason given": 136561, "given single": 66011, "capability spatial": 20375, "gpt4 score": 67151, "vqa code": 177570, "making crucial": 98721, "crucial align": 33756, "jailbreaking methods": 81189, "demonstrate alignment": 38228, "carefully constructed": 20796, "constructed prompts": 30185, "study reveal": 157599, "reveal new": 144357, "new threat": 113466, "bad actor": 15466, "common feature": 26139, "commercial llm": 26079, "does rely": 44012, "model reveal": 104484, "responses term": 142929, "methods achieving": 101283, "20 times": 612, "jailbreaking strategies": 81191, "attack performance": 13655, "models 3d": 105161, "framework largescale": 61263, "variety algorithmic": 175687, "algorithmic innovations": 7883, "including lightweight": 74592, "parallelism techniques": 119586, "pipeline schedule": 123089, "kv caching": 82664, "achieves great": 4017, "standard llm": 154839, "speedup compromising": 154522, "compromising output": 28284, "research adoption": 141564, "adoption release": 5653, "use remains": 172851, "memory communication": 100372, "attention blocks": 13848, "applied directly": 10748, "directly offtheshelf": 42576, "pretraining setup": 127436, "agent models": 6476, "models law": 106928, "planning despite": 123263, "despite tremendous": 40241, "language embodied": 83281, "social scenarios": 152659, "robust versatile": 145335, "capabilities particular": 20098, "propose world": 132221, "world agent": 179529, "reasoning introduces": 136932, "crucial elements": 33790, "world agents": 179530, "studies relevant": 157068, "law framework": 89599, "better knowledge": 17923, "prompting augmentation": 130860, "matching user": 99490, "propagation paper": 131602, "ability single": 2372, "deployment cost": 39265, "novel progressive": 114647, "generation llm": 64797, "steer llms": 155558, "provided strong": 133090, "captions poses": 20621, "challenge lack": 21666, "rich dataset": 144773, "lora method": 97646, "commercial gpu": 26072, "stateoftheart computer": 155110, "augmented chatgpt": 14336, "addresses question": 5422, "understanding achieved": 171111, "presents groundbreaking": 126585, "wellcurated datasets": 178148, "datasets enhancing": 36824, "granularity individual": 67479, "tokens models": 166844, "retrieval indices": 144066, "substantial memory": 158080, "embedding storage": 47196, "embedding tables": 47198, "query latency": 134606, "improving systems": 74222, "security reliability": 147616, "emerged standard": 47403, "linux kernel": 93112, "difficult developers": 42142, "developers write": 40970, "alternative framework": 8559, "difficulty writing": 42224, "uses recent": 173901, "users english": 173641, "output semantically": 117993, "employs combination": 47956, "program comprehension": 129727, "combination techniques": 25849, "particular uses": 120136, "novel structure": 114699, "allows combine": 8414, "combine results": 25886, "results program": 143686, "synthesis program": 159966, "build recent": 19344, "corpus natural": 32333, "exhibit zeroshot": 53125, "behavior emergent": 16587, "chainofthoughts cot": 21551, "50 billion": 1292, "algebraic manipulation": 7770, "arithmetic word": 12491, "symbolic manipulation": 159810, "achieve reasonable": 3718, "small frozen": 152292, "equipped efficient": 50182, "adapter capable": 4705, "incorporate natural": 75027, "variable names": 175596, "formal expressions": 60498, "adapted lm": 4688, "tools calculator": 167120, "massive improvements": 99359, "absolute point": 2617, "point improvement": 123707, "svamp dataset": 159754, "approach finding": 11233, "finding bugs": 58601, "high overall": 69494, "accuracy exhibit": 3227, "systematic errors": 160117, "scenarios posing": 146671, "posing potential": 124246, "models gaining": 106421, "increased attention": 75251, "propose languageassisted": 131893, "space clip": 153554, "model proxy": 104389, "model classify": 103285, "classify texts": 24216, "paired images": 118535, "diagnosis large": 41363, "llm employed": 93619, "corpora corpora": 32215, "serve input": 148988, "datasets identify": 36915, "known bugs": 82585, "bugs previously": 19297, "unknown ones": 171940, "recent evolution": 137497, "groundbreaking applications": 67850, "digital content": 42278, "content production": 30583, "enriches diversity": 49619, "analyzing complex": 9362, "offers great": 115814, "amidst rapid": 8672, "rapid expansion": 135887, "new physical": 113335, "learn input": 89996, "input signal": 77340, "channel estimation": 22412, "estimation accuracy": 50748, "model channel": 103264, "latent variables": 89521, "channel equalization": 22411, "ranging traditional": 135763, "emerging topics": 47545, "channel coding": 22410, "ai highlighting": 7027, "unique contributions": 171834, "issues proposes": 81053, "laying foundation": 89692, "foundation exploration": 60716, "prompt matching": 130600, "employed adapt": 47873, "tasks nonetheless": 162858, "nontrivial challenge": 114150, "matching network": 99476, "network selects": 112695, "selects prompts": 147919, "selected prompts": 147802, "user instruction": 173424, "performs inference": 122447, "inference using": 76135, "compared typical": 26961, "large reduction": 89036, "reduction computational": 138609, "software ecosystem": 152795, "domainspecific large": 44595, "application software": 10385, "development introduce": 41142, "model variant": 104865, "tuned llm": 169950, "enhancing developer": 49474, "extensive instruction": 55913, "systems enabling": 160354, "ner relation": 112600, "extraction link": 56315, "tasks comparison": 162088, "comparison models": 27058, "specialized llms": 153896, "llm domain": 93603, "domain gpt4": 44180, "gpt4 safety": 67150, "case generation": 20875, "landscape software": 83106, "chatgpt short": 23306, "revolutionary potential": 144625, "paper primary": 119195, "base gpt4": 15603, "gpt4 focusing": 67017, "perform distinct": 120927, "gpt4 experiments": 67004, "assess capacity": 13057, "application domain": 10315, "gpt4 demonstrates": 66966, "furthermore exhibits": 62065, "exhibits capability": 53184, "generate safety": 63693, "align semantic": 8033, "cases used": 21026, "use term": 172906, "chatgpt response": 23277, "different values": 42079, "values given": 175536, "finetuning retrieval": 59519, "injection llms": 77116, "external datasets": 56043, "challenge study": 21741, "compare common": 26666, "unsupervised finetuning": 172246, "evaluate approaches": 50908, "variety knowledgeintensive": 175715, "new factual": 113186, "finetuning exposing": 59264, "fact training": 56747, "training alleviate": 168156, "detection evaluation": 40498, "areas large": 12373, "remain prevalent": 139932, "prevalent research": 127521, "approaches despite": 11730, "literature concerning": 93160, "introducing llms": 80238, "generations language": 65281, "models contributing": 105788, "assistants llmbased": 13419, "assistants help": 13410, "particularly relevant": 120252, "graduate school": 67426, "challenges academic": 21756, "unique research": 171854, "lack direct": 82925, "queries making": 134505, "architecture offers": 12197, "preliminary analysis": 126113, "deployment study": 39306, "users discuss": 173626, "twice long": 170215, "models proliferation": 108678, "proliferation social": 130130, "memes memes": 100321, "memes multimodal": 100322, "analysis active": 8799, "moderation social": 109778, "cultural studies": 33969, "studies propose": 157058, "topics text": 167372, "considering semantic": 29732, "meme datasets": 100318, "additionally qualitative": 5126, "culturally relevant": 33977, "relevant topics": 139661, "understanding topics": 171513, "topics themes": 167373, "crucial form": 33801, "todays society": 166681, "tools software": 167254, "tools crucial": 167133, "performance intricate": 121692, "systems complexity": 160297, "selecting optimal": 147821, "modern applications": 109785, "applications conventional": 10459, "inefficient errorprone": 75903, "reproducibility study": 141019, "exploration leveraging": 55083, "leveraging largelanguage": 91888, "llms streamline": 96688, "identify task": 71972, "learning components": 90312, "challenging extensive": 22162, "extensive search": 55946, "nature existing": 111997, "convergence efficiency": 31751, "efficiency work": 46555, "uncovering intriguing": 170742, "consistent behavior": 29805, "results hyperparameter": 143476, "optimization experiments": 116992, "llms expediting": 95179, "indicate need": 75614, "need indepth": 112321, "indepth investigations": 75540, "retrieving information": 144283, "information web": 76847, "includes large": 74375, "html code": 70481, "using html": 174301, "llms uncover": 96873, "reasonable level": 136595, "performance retrieving": 122029, "ui elements": 170564, "developers coding": 40939, "coding practices": 25396, "coding assistant": 25368, "demonstrated tools": 38815, "attacks poisoning": 13730, "poisoning attack": 123793, "attack attacker": 13632, "maliciously crafted": 98854, "code developers": 24789, "little understood": 93252, "settings developers": 149558, "understand realworld": 171069, "realworld impact": 136463, "participants including": 120009, "including software": 74726, "adoption tools": 5659, "boilerplate code": 18782, "trust tools": 169839, "professional developers": 129620, "visual studio": 177314, "studio code": 157117, "developers using": 40965, "chatgptlike tool": 23476, "protocols scientific": 132591, "numerous efforts": 115039, "labor intensive": 82850, "knowledge complex": 81825, "tool leveraging": 167004, "llms curate": 94767, "retrieves information": 144270, "accuracy ranging": 3356, "protocols demonstrate": 132588, "survey foundation": 159637, "encounters various": 48587, "challenges longterm": 21950, "security threats": 147629, "stands remarkable": 154933, "potential general": 124739, "considering ongoing": 29726, "present consensus": 126268, "systematic reviews": 160150, "elucidates key": 47106, "components recent": 27775, "decision makers": 37370, "reliability availability": 139675, "knowledge visionlanguage": 82503, "learning prevalent": 90850, "strategy adapting": 156099, "adapting visionlanguage": 4766, "emerged recent": 47397, "input enhance": 77234, "effectively represents": 46075, "category address": 21149, "consequently propose": 29550, "tuning hpt": 170024, "conventional linguistic": 31703, "module capture": 109923, "associations entities": 13532, "addition incorporating": 4872, "modeling overall": 105062, "complex longterm": 27466, "gains large": 62520, "lower finetuning": 97824, "introduces multimodal": 80194, "icl capability": 71661, "multimodal features": 110634, "according different": 3031, "inputs objectives": 77431, "objectives based": 115239, "learn incontext": 89993, "features subsequently": 57582, "directly takes": 42598, "modalities input": 102935, "scientific software": 146990, "software repositories": 152842, "proliferation opensource": 130129, "source software": 153470, "designed address": 39811, "research software": 142086, "aiding development": 7375, "development ensure": 41100, "extensive coverage": 55741, "involves selecting": 80762, "131 million": 340, "world code": 179536, "subsequently analyze": 157963, "software designed": 152783, "research support": 142104, "support software": 159332, "dataset aims": 36107, "development furthermore": 41122, "furthermore includes": 62095, "includes data": 74363, "providing solid": 133370, "foundation conducting": 60712, "scientific nonscientific": 146975, "fully transparent": 61789, "falcon mistral": 57111, "provides diverse": 133136, "practitioners researchers": 125541, "researchers llms": 142235, "code technical": 25175, "technical reports": 163725, "highlevel design": 69689, "hinder progress": 70136, "transparency training": 169590, "fully opensource": 61776, "parameter llms": 119627, "pretrained scratch": 127152, "data intermediate": 35250, "continually pushing": 31181, "opensource effort": 116601, "effort largescale": 46857, "released future": 139514, "data scaling": 35692, "language modelslms": 86423, "limited quantity": 92828, "quantity diversity": 134402, "tasks access": 161886, "feedback example": 57673, "selftraining method": 148085, "using binary": 174011, "binary feedback": 18473, "model samples": 104504, "process times": 129016, "coding benchmarks": 25374, "palm2 models": 118669, "scales favorably": 146366, "favorably model": 57330, "size significantly": 152069, "reduce dependence": 138418, "attention transformers": 13997, "allow efficient": 8336, "efficient parallel": 46693, "training simultaneously": 168748, "softmax attention": 152748, "attention current": 13864, "work describes": 178900, "algorithm linear": 7826, "touvron et": 167440, "al 2023a": 7736, "especially effective": 50461, "modeling current": 104986, "single modality": 151831, "task contrast": 161280, "exhibit wide": 53122, "direction propose": 42444, "multimodal training": 110778, "scheme called": 146781, "consists training": 29988, "unifying representation": 171783, "subset tokens": 158010, "tasks box": 162016, "arbitrary modalities": 12086, "enabling wide": 48361, "editing capabilities": 45449, "capabilities remarkable": 20158, "experimental analyses": 53923, "tasks setting": 163229, "setting stage": 149509, "stage exploration": 154735, "learning vision": 91125, "introduce llama": 80005, "model incorporates": 103844, "risk taxonomy": 144964, "prompt classification": 130386, "gathered dataset": 62810, "volume demonstrates": 177533, "performance matches": 121787, "moderation tools": 109780, "functions language": 61912, "generating binary": 64146, "binary decision": 18471, "allows customization": 8419, "align specific": 8035, "facilitating zeroshot": 56721, "prompting diverse": 130899, "input making": 77284, "making llama": 98775, "available encourage": 15101, "meet evolving": 100277, "evolving needs": 52322, "community ai": 26450, "safety steering": 145894, "activations forward": 4419, "factual versus": 56903, "hallucinatory responses": 68469, "responses inference": 142828, "allowing precise": 8387, "chat using": 22554, "datasets openended": 37015, "behavior outperforms": 16623, "like finetuning": 92270, "employing various": 47950, "interpretation methods": 79708, "methods gain": 101545, "represented large": 140954, "reliability explainability": 139684, "engender trust": 48853, "model exhibit": 103587, "reliability achieve": 139671, "achieve necessary": 3688, "necessary use": 112160, "use analyze": 172498, "statistical symbolic": 155511, "suited making": 158743, "making ai": 98704, "framework shows": 61407, "shows consistency": 150422, "neurosymbolic methods": 113041, "knowledge support": 82441, "applications health": 10550, "article focuses": 12578, "focuses large": 60149, "googles medpalm": 66338, "emerged highly": 47358, "healthrelated queries": 69023, "respectively models": 142570, "instance chatgpt": 77796, "generate unsafe": 63771, "approach harnessing": 11274, "neurosymbolic framework": 113039, "framework shed": 61404, "associated llms": 13498, "llms want": 96995, "enabling interactive": 48310, "factor success": 56778, "accurate modeling": 3472, "psychology research": 133516, "highlighting pivotal": 69824, "approach combining": 11059, "framework lens": 61274, "information workers": 76850, "conduct studies": 29180, "studies evaluate": 156990, "systems performance": 160527, "study n10": 157498, "prototype work": 132601, "potential hybrid": 124763, "hybrid llm": 71566, "iterative preference": 81134, "preference elicitation": 126007, "improving safety": 74213, "harmful outcomes": 68743, "investigated variety": 80540, "models redteaming": 108871, "redteaming techniques": 138396, "techniques ensure": 163886, "ensure safety": 49704, "model intentionally": 103886, "solve sequence": 153155, "using access": 173955, "investigate range": 80487, "protocols test": 132592, "gpt4 write": 67219, "submitted gpt35": 157896, "edited code": 45438, "baselines alignment": 16285, "research significant": 142083, "ensuring llms": 49745, "llms proactively": 96196, "questions lack": 135175, "pivotal aspect": 123138, "knowledge far": 81999, "training methodologies": 168577, "methodologies paper": 101201, "challenges establishing": 21850, "serves cornerstone": 149036, "flexible training": 59828, "techniques emphasize": 163876, "marked increase": 99219, "alignment concept": 8136, "code large": 24968, "various research": 176143, "application opportunities": 10359, "modeling operation": 105061, "performance representative": 122014, "tasks power": 162964, "power engineering": 125172, "awareness results": 15382, "efficiency reliability": 46521, "provide suggestions": 132987, "applications context": 10456, "context matters": 30845, "scientific applications": 146934, "challenges inherent": 21916, "inherent large": 76958, "erroneous answers": 50261, "delves challenges": 38106, "improvement llm": 73817, "llm accuracy": 93429, "domains findings": 44412, "addition demonstrate": 4848, "automate grading": 14500, "degree llms": 38016, "quality performance": 134220, "described work": 39388, "used complex": 173002, "multiple chained": 110855, "efficient systems": 46720, "systems programming": 160551, "lacking bridge": 83032, "structured generation": 156638, "llms incorporates": 95591, "llm programming": 93912, "patterns implemented": 120537, "batching caching": 16468, "techniques additionally": 163825, "writing llm": 179732, "llm programs": 93913, "execution efficiency": 52946, "efficiency experiments": 46456, "5x reducing": 1421, "control image": 31549, "sparked research": 153702, "primarily limited": 127784, "information contains": 76327, "certain reasoning": 21410, "called visual": 19674, "additionally develop": 5043, "potentials limitations": 125150, "cc byncsa": 21290, "byncsa 40": 19561, "usage code": 172440, "translation examining": 169464, "multilingual neural": 110524, "learning transformer": 91097, "address language": 5301, "imbalance issue": 72556, "carry experiments": 20838, "using transfer": 174817, "learning methodology": 90677, "models mmplms": 108218, "clinical case": 24318, "clinical terminology": 24368, "field finally": 58167, "works experimental": 179443, "clinical knowledge": 24338, "development especially": 41105, "clinical healthcare": 24336, "healthcare fields": 68999, "fields research": 58302, "carried based": 20828, "based work": 16184, "improve healthcare": 73479, "text analytics": 164830, "transformation data": 169056, "role teaching": 145540, "llms expected": 95178, "capabilities comparing": 19826, "student code": 156805, "students introductory": 156869, "firstly assess": 59649, "chatgpts proficiency": 23504, "using given": 174252, "analyze quality": 9326, "quality relevance": 134245, "evaluation considers": 51504, "student solutions": 156830, "solutions code": 153001, "code correctness": 24737, "correctness code": 32483, "code quality": 25084, "discussion implications": 42995, "implications integrating": 72936, "education automated": 45520, "instructional support": 78152, "partially observable": 119985, "llms sequential": 96504, "space action": 153546, "reward signals": 144713, "prohibitively large": 130068, "observations actions": 115335, "represented natural": 140959, "generate action": 63388, "stuck local": 156797, "capabilities limited": 20023, "limited limited": 92797, "search balance": 147321, "llm queried": 93934, "text format": 165096, "improvement experiments": 73792, "improvement current": 73775, "terms average": 164391, "average reward": 15311, "goal dataset": 66159, "distinguishes notions": 43295, "false facts": 57160, "counterfactual examples": 32945, "contains 3000": 30356, "shows clear": 150416, "progression models": 130039, "entailment reasoning": 49771, "dataset provides": 36479, "rapidly progressed": 135937, "extend llm": 55633, "learns perform": 91190, "perform joint": 120971, "modeling modalities": 105050, "augmenting llm": 14393, "performance lack": 121706, "capability requires": 20367, "llm interleaved": 93777, "interleaved pretraining": 79498, "data beneficial": 34717, "pairs optimal": 118604, "data imagetext": 35177, "accuracy enhanced": 3220, "appealing properties": 10222, "reasoning enhanced": 136829, "enhanced incontext": 49338, "better world": 18072, "lmms demonstrated": 97089, "contents images": 30668, "instructions regarding": 78341, "llms lmms": 95815, "sequence images": 148745, "identify new": 71929, "generate biased": 63405, "biased output": 18234, "method removes": 101072, "gpt4v texttoimage": 67259, "coherent responses": 25540, "retrievalaugmented generative": 144178, "hallucinations provide": 68452, "provide provenance": 132937, "applying models": 10912, "assesses relevance": 13162, "agent question": 6494, "answering model": 9902, "model exceeds": 103581, "science qa": 146907, "field closer": 58135, "closer humans": 24538, "complex benchmark": 27366, "benchmark requires": 17074, "retrieval synthesis": 144145, "human researchers": 71019, "chatgpt question": 23241, "analysis comparison": 8859, "cater user": 21162, "notably gpt35": 114272, "attention underlying": 13998, "model adeptly": 103084, "proficiency extracting": 129654, "additionally performance": 5101, "performance comparisons": 121304, "multiple experiments": 110907, "conducted chatgpt": 29215, "languages metrics": 87059, "assessment study": 13265, "compared taskspecific": 26947, "providing context": 133275, "context improves": 30791, "chatgpt excels": 22908, "hallucinations chatgpt": 68424, "questions available": 135052, "crucial roles": 33856, "neural activity": 112823, "processes learning": 129080, "significance traditional": 150560, "profound influence": 129712, "biological insights": 18510, "insights developed": 77541, "computational paradigm": 28390, "applicability various": 10270, "particularly handling": 120202, "structures design": 156696, "dynamics enabling": 45205, "complex temporal": 27623, "shows low": 150452, "usage practical": 172471, "highly suitable": 69963, "environments successfully": 50116, "networks work": 112820, "narrows gap": 111473, "neural modeling": 112880, "insights community": 77530, "desired actions": 40036, "actions avoid": 4366, "highlighting transformative": 69841, "emphasizes potential": 47647, "potential redefine": 124936, "llms multibillion": 95904, "multibillion parameters": 110354, "way automatically": 177774, "code response": 25110, "human queries": 70996, "explores emerging": 55392, "need traditional": 112411, "methods present": 101720, "initial findings": 77029, "outline strategy": 117499, "management based": 98871, "based concepts": 15714, "challenges research": 22050, "nlp advances": 113679, "social factors": 152577, "heavily reliant": 69044, "reliant llms": 139788, "llms brings": 94514, "range design": 135606, "considerations challenges": 29660, "modeling strategies": 105098, "using concepts": 174078, "behavioral sciences": 16674, "people groups": 120718, "advances present": 6052, "present open": 126398, "possible solutions": 124464, "goals designing": 66217, "ui design": 170563, "creation timeconsuming": 33358, "study designers": 157279, "realworld usefulness": 136536, "process llm": 128906, "manipulation compositional": 98938, "components task": 27779, "new combinations": 113114, "components previous": 27773, "trained smaller": 168077, "generalization remains": 63221, "paper empirically": 118876, "icl methods": 71685, "generalization struggle": 63231, "complex compositional": 27376, "compositional questions": 27818, "cumulative errors": 33987, "long reasoning": 97468, "manipulation framework": 98945, "enhances effectiveness": 49405, "creation usage": 33359, "effort experiments": 46847, "benchmarks outperforms": 17321, "methods challenging": 101364, "test split": 164637, "declarative statements": 37494, "statements training": 155052, "mean variance": 99760, "change scientific": 22353, "papers written": 119412, "declarative procedural": 37492, "consequences effect": 29524, "domains aligning": 44353, "aligning ai": 8083, "demographic features": 38204, "features series": 57574, "series ablations": 148901, "surprisingly little": 159566, "results implications": 143484, "weights neural": 178122, "applications neural": 10619, "cover aspects": 33036, "aspects life": 12948, "life large": 92079, "networks tasks": 112807, "face recognition": 56548, "recognition machine": 138088, "used safety": 173222, "like high": 92312, "products like": 129611, "translate chatgpt": 169405, "threat model": 166273, "physical control": 122897, "information structure": 76779, "weights biases": 178100, "biases work": 18324, "novel attack": 114408, "parameters neural": 119813, "networks use": 112815, "nvidia jetson": 115085, "networks highly": 112760, "highly parallel": 69933, "environment finetuning": 50000, "qa opensource": 133907, "language access": 83125, "learning knowledge": 90601, "utility models": 174964, "goal project": 66188, "develop llm": 40793, "knowledge accurately": 81724, "consistent personality": 29831, "diverse audience": 43468, "differing levels": 42118, "knowledge significant": 82401, "useful creative": 173319, "creative responses": 33378, "types inputs": 170370, "inputs prompting": 77435, "exceeded expectations": 52743, "hallucinations especially": 68427, "especially set": 50541, "unified library": 171729, "crucial assess": 33763, "prompt construction": 130407, "dynamic evaluation": 45127, "general flexible": 62953, "original study": 117387, "deploying downstream": 39237, "applications designing": 10477, "designing new": 40005, "protocols code": 132587, "helping language": 69228, "prompt fewshot": 130502, "used accessible": 172949, "intelligent chatbots": 78944, "prompt constructions": 130408, "uncertainty answers": 170663, "interpretable structure": 79694, "learning principle": 90852, "tokens propose": 166865, "information automatically": 76293, "fewshot samples": 58044, "stability method": 154674, "method different": 100791, "settings ablation": 149519, "models embedding": 106069, "taskrelated information": 161856, "information prompts": 76652, "web articles": 177995, "empowered large": 47999, "models objective": 108324, "takes advantage": 160978, "ability biomedical": 2081, "external corpus": 56037, "method tailored": 101135, "explicitly incorporate": 54975, "text chunks": 164879, "additional embedding": 4952, "window size": 178528, "size constraints": 151972, "relation triplets": 139265, "distinct relation": 43247, "curated benchmark": 34006, "medical expert": 100170, "pipeline exhibits": 123053, "conclusion proposed": 28901, "effectiveness leveraging": 46219, "extraction various": 56372, "using geographical": 174251, "geographical environmental": 65709, "environmental features": 50044, "features capture": 57455, "enables range": 48243, "supervision propose": 159212, "predictions model": 125920, "range prediction": 135674, "prediction zeroshot": 125887, "zeroshot prediction": 180295, "novel objects": 114617, "object pose": 115154, "supporting modelbased": 159379, "modelbased modelfree": 104934, "novel object": 114616, "estimation modules": 50759, "largescale synthetic": 89405, "transformerbased architecture": 169228, "learning formulation": 90472, "multiple public": 111010, "methods specialized": 101835, "margin addition": 99178, "addition achieves": 4838, "dynamic memory": 45139, "highly demanded": 69908, "decisions enable": 37458, "intelligence approaches": 78786, "manually crafted": 99081, "crafted examples": 33144, "prompts hardly": 131305, "generalized complex": 63278, "complex environments": 27412, "environments paper": 50101, "construct dynamic": 30130, "dynamic prompts": 45155, "prompts guiding": 131301, "making proper": 98801, "memory formation": 100401, "stage human": 154741, "utilizing powerful": 175227, "stored memory": 155874, "tree exploration": 169658, "understanding global": 171274, "interactive environments": 79304, "llmbased knowledge": 94152, "qa safety": 133926, "safety engineering": 145855, "engineering recent": 48977, "nlp capabilities": 113699, "tasks attributed": 161985, "attributed factors": 14091, "size input": 152010, "input processing": 77312, "processing limitations": 129185, "information reliable": 76690, "sources limited": 153522, "time crucial": 166374, "addressing study": 5480, "comprehension response": 27932, "response accuracy": 142615, "accuracy model": 3310, "llm uptodate": 94072, "uptodate reliable": 172401, "historical incident": 70203, "utilizes vector": 175164, "search functionality": 147356, "integration external": 78653, "knowledge significantly": 82402, "problem analysis": 128184, "analysis autonomous": 8823, "autonomous task": 14951, "task assignment": 161205, "accident reports": 2982, "approach expands": 11202, "applications safety": 10674, "sets precedent": 149395, "automation intelligent": 14901, "intelligent systems": 78957, "generation guided": 64708, "accurately representing": 3562, "research aim": 141573, "cognitive capability": 25447, "capability models": 20345, "used previous": 173186, "limitations semantic": 92664, "vision field": 176918, "domain intelligent": 44189, "empathetic responses": 47613, "responses experimental": 142783, "competing objectives": 27143, "models resolve": 108957, "resolve conflicts": 142343, "specifically instruct": 154230, "operate using": 116742, "designed adversarial": 39813, "way able": 177759, "advanced ml": 5775, "boosting llm": 18843, "pruning large": 133459, "learning improve": 90563, "examples possible": 52655, "unimportant tokens": 171794, "fit context": 59678, "approach result": 11514, "llms llama27b": 95808, "llama27b 13b": 93381, "absolute improvements": 2612, "surpasses gpt35": 159483, "gpt35 wide": 66868, "serves plugandplay": 149049, "compatible existing": 27095, "require comprehensive": 141080, "tackling problems": 160875, "leading confusion": 89806, "decomposition modeling": 37642, "process specifically": 128990, "propose formal": 131829, "extend llms": 55634, "annotations paper": 9606, "present innovative": 126339, "reward score": 144710, "problem solutions": 128397, "using automatically": 173989, "supervision data": 159194, "data breaking": 34725, "series opensource": 148944, "llms demonstrates": 94892, "demonstrates exceptional": 38844, "performance instance": 121683, "respectively believe": 142536, "advancing image": 6089, "leverages multimodal": 91753, "aligning closely": 8084, "model establish": 103559, "navigate challenges": 112044, "challenges limited": 21944, "processing multiple": 129201, "data specialized": 35786, "scorebased methods": 147111, "benchmark compared": 16866, "reasoning descriptive": 136807, "descriptive languages": 39523, "datasets codes": 36702, "codes released": 25316, "data retrievalaugmented": 35672, "approaches introduced": 11813, "typically retrieved": 170518, "retrieved entities": 144240, "proposed pipeline": 132411, "pipeline developed": 123046, "codegeneration tasks": 25262, "collect publish": 25672, "projectlevel code": 130104, "evaluation publicly": 51806, "length limitations": 91377, "available context": 15087, "alleviating problem": 8316, "design common": 39579, "common methods": 26156, "speed accuracy": 154497, "accuracy provide": 3350, "performance components": 121312, "various tabular": 176193, "tabular tasks": 160794, "tasks enhances": 162307, "llms tabular": 96756, "devices offer": 41313, "reduce energy": 138421, "consumption inference": 30282, "inference significantly": 76100, "hardware including": 68687, "result language": 143043, "implementation language": 72848, "based recently": 16064, "efficiently maintaining": 46800, "maintaining competitive": 98344, "demonstrate results": 38534, "gesture recognition": 65777, "common use": 26211, "batch inference": 16459, "misinformation existing": 102486, "conversation especially": 31786, "delve llms": 38095, "persuasive conversations": 122731, "questions paired": 135213, "develop testing": 40845, "belief changes": 16754, "llms correct": 94743, "knowledge easily": 81903, "model images": 103822, "scale present": 146328, "arbitrary objects": 12088, "world scenario": 179615, "various object": 176081, "object perception": 115151, "tasks adopting": 161920, "encoder visual": 48449, "handle multimodal": 68555, "inputs enabling": 77399, "tasks maintaining": 162775, "performance demonstrated": 121370, "demonstrated extensive": 38666, "tackling downstream": 160870, "taskspecific adaptation": 163507, "data enhance": 34978, "integrated large": 78534, "models serving": 109080, "serving foundational": 149096, "provide universal": 133015, "information multimodal": 76582, "tasks hope": 162509, "efficient visual": 46752, "systems model": 160482, "images natural": 72455, "reasoning image": 136904, "set points": 149268, "inputs model": 77430, "captioning generates": 20578, "generates captions": 64059, "word generated": 178645, "performs dense": 122439, "human attention": 70598, "captioning dense": 20576, "dense object": 39093, "object captioning": 115108, "architecture educational": 12152, "topic current": 167318, "current technology": 34281, "potential create": 124662, "speech images": 154418, "summarizing knowledge": 158925, "improving communication": 74118, "learners generative": 90148, "holds promise": 70277, "dynamically generating": 45192, "serve single": 149007, "history generative": 70220, "gpt4 surpassing": 67186, "emulate human": 48042, "investigates ability": 80542, "comprehend interpret": 27852, "communication principles": 26404, "samples indicating": 146027, "potential text": 125017, "analysis comparative": 8856, "scores models": 147161, "exhibited significant": 53157, "highest score": 69671, "place gpt3": 123175, "best human": 17678, "human scoring": 71032, "studies consider": 156968, "cognitive aspects": 25440, "fully comprehend": 61749, "aibased models": 7346, "lack consensus": 82909, "public perception": 133591, "particularly rise": 120255, "precisely capturing": 125600, "psychology cognitive": 133511, "rigorous definition": 144855, "distinguish related": 43287, "identifying challenges": 71990, "ai public": 7178, "capabilities risks": 20163, "ai integrating": 7047, "analytics tool": 9263, "capabilities openais": 20086, "model tool": 104751, "designed quantify": 39935, "instructional strategies": 78151, "critical data": 33478, "methods tool": 101877, "multidimensional view": 110379, "empower educators": 47988, "insights enhance": 77554, "teaching methodologies": 163656, "pinpoint potential": 123000, "evaluation learning": 51666, "enhancing educational": 49476, "robust secure": 145320, "future education": 62256, "decisions ultimately": 37483, "ultimately fostering": 170585, "window large": 178521, "compression transformerbased": 28233, "ensure generation": 49685, "restricts applicability": 143012, "texts propose": 165758, "incurring significant": 75482, "finetuning proposed": 59488, "source coding": 153430, "employs pretrained": 47977, "extends context": 55688, "window llms": 178526, "summarization fewshot": 158831, "learning information": 90578, "retrieval furthermore": 144054, "proposed semantic": 132432, "simulations based": 151728, "models simulating": 109144, "notably current": 114263, "user models": 173456, "models neglect": 108280, "users context": 173603, "results end": 143378, "query reformulations": 134622, "consider users": 29599, "context simulation": 30917, "simulation efficient": 151691, "consider interaction": 29574, "conclude directions": 28861, "engagement large": 48836, "novel writing": 114755, "cheating using": 23523, "llms disrupted": 94955, "hallucinations fake": 68430, "peer reviewed": 120666, "llm solely": 94008, "fewer words": 57878, "average word": 15320, "chatgpt v35": 23423, "challenge machines": 21681, "video video": 176749, "propose baseline": 131728, "leveraging reasoning": 91933, "video representation": 176733, "investigate scalability": 80493, "recognition spoken": 138129, "given utterance": 66049, "information improve": 76506, "performance considering": 121328, "hypothesize llm": 71638, "useful context": 173318, "using preceding": 174588, "abstractive text": 2687, "text like": 165280, "use llmgenerated": 172741, "information finetuning": 76457, "access true": 2918, "requiring small": 141510, "module evaluate": 109934, "benchmarks downstream": 17224, "recognition named": 138097, "finetuning outperforms": 59419, "rapid progression": 135904, "llms resulted": 96435, "humans human": 71402, "especially systems": 50548, "highstakes settings": 70123, "leveraging explicit": 91840, "representations shared": 140883, "values paper": 175551, "introduce substantial": 80115, "propose neurosymbolic": 131949, "components essential": 27755, "robust practical": 145305, "dimensions human": 42338, "values finally": 175534, "current progress": 34215, "directions field": 42473, "applying existing": 10888, "decrease time": 37665, "use techniques": 172903, "takes user": 160999, "obtain enriched": 115474, "context includes": 30792, "graphs uses": 67652, "articles perform": 12616, "alignment supervised": 8241, "enabling align": 48267, "capabilities downstream": 19864, "notably improve": 114276, "task substantial": 161754, "substantial increase": 158075, "solution largescale": 152952, "stored llms": 155872, "forgetting paper": 60429, "phase propose": 122804, "use localized": 172756, "fully leverage": 61774, "leverage world": 91684, "experts based": 54643, "data type": 35893, "increasing instruction": 75323, "provides additional": 133105, "additional benefits": 4927, "benefits performance": 17487, "tasks indicating": 162595, "approach multitask": 11396, "reasoning integrating": 136924, "integrating external": 78593, "questions systems": 135297, "various failure": 175938, "train endtoend": 167767, "reactstyle llm": 136150, "agent ability": 6408, "iteratively trains": 81165, "just iterations": 81376, "iterations algorithm": 81104, "produce finetuned": 129411, "impressive generalpurpose": 73301, "generalpurpose visionlanguage": 63374, "visionlanguage capabilities": 177022, "mllms primarily": 102844, "achieving finegrained": 4174, "pixel level": 123166, "data limits": 35322, "limits advancements": 92907, "aiming achieving": 7533, "meticulously curate": 101947, "representation llm": 140720, "extract precise": 56150, "features high": 57504, "high resolution": 69523, "input experimental": 77240, "superiority various": 159075, "region understanding": 138924, "new capability": 113101, "tuning particular": 170077, "outstanding capabilities": 118161, "truthfulness ethical": 169895, "ethical alignment": 50790, "core principles": 32179, "literature relevant": 93196, "work structured": 179313, "explainability ai": 54719, "guidelines human": 68250, "robustness security": 145433, "security ethics": 147577, "conduct smallscale": 29179, "work preliminary": 179171, "steering models": 155571, "time improving": 166417, "behavior training": 16656, "reasoning look": 136974, "look leap": 97610, "information long": 76566, "long complicated": 97441, "lms solve": 97201, "apply causal": 10839, "ranging 125": 135738, "parameters lms": 119798, "original correct": 117325, "performing finegrained": 122401, "highlevel understanding": 69717, "demonstrate proof": 38492, "modular processing": 109910, "tasks varied": 163449, "pioneering effort": 123014, "effort applying": 46831, "multiple objects": 110989, "identifying targets": 72036, "complex spatial": 27593, "connecting large": 29481, "token prompt": 166728, "sam enable": 145935, "cases users": 21028, "reference multiple": 138665, "multiple subjects": 111055, "provide descriptions": 132740, "propose generalized": 131851, "segmentation vision": 147754, "vision assistant": 176889, "gap specifically": 62731, "supporting multiple": 159380, "learns generate": 91180, "marking notable": 99244, "notable enhancement": 114222, "various classic": 175856, "captioning recent": 20595, "progress generating": 129968, "content enhancing": 30487, "applications issue": 10574, "produce texts": 129472, "natural image": 111533, "captions structured": 20626, "introducing comprehensive": 80229, "captions largescale": 20616, "various chart": 175851, "forming foundation": 60586, "foundation novel": 60826, "including gpt4v": 74545, "gpt4v frequently": 67249, "produce captions": 129375, "task chart": 161241, "outperforms proprietary": 117836, "proprietary opensource": 132528, "opensource lvlms": 116646, "framework excels": 61147, "errors work": 50409, "demonstrating effective": 38927, "approach ensuring": 11186, "model survey": 104704, "survey advent": 159598, "advent foundation": 6169, "impact foundation": 72654, "developments computer": 41275, "paper delineates": 118834, "proficiency generative": 129657, "tasks texttoimage": 163365, "recent strides": 137648, "elucidating origins": 47108, "development vfms": 41259, "aspects lives": 12951, "presents ongoing": 126612, "efforts design": 46900, "insights utilizing": 77667, "learn complex": 89967, "techniques order": 163977, "order protect": 117235, "protect privacy": 132554, "uses novel": 173891, "run commodity": 145737, "environment use": 50037, "shot learning": 150057, "models aligning": 105337, "pretrained capabilities": 126762, "current instruction": 34135, "inadvertently introduce": 74283, "degrade model": 37993, "efficient methodology": 46673, "methodology employs": 101221, "learning select": 90973, "potential individual": 124784, "examples act": 52518, "act effective": 4293, "shot examples": 150056, "candidate examples": 19717, "examples perplexity": 52653, "rigorous testing": 144874, "testing benchmarks": 164699, "improves planning": 74058, "multistep planning": 111168, "tasks tool": 163374, "retrieval tr": 144155, "achieving successful": 4230, "successful outcomes": 158351, "complete query": 27283, "sequential retrieval": 148885, "atomic subtasks": 13618, "approach necessitates": 11401, "introduce progressive": 80090, "retrieval improve": 144063, "improve planning": 73579, "24 improvement": 808, "finetuning transformerbased": 59596, "gpt achieve": 66381, "success finetuning": 158243, "dataset standard": 36558, "transformer finetuning": 169124, "time high": 166413, "consumption large": 30283, "finetune transformerbased": 58975, "design sparse": 39764, "ffn module": 58097, "activates subset": 4407, "subset model": 158004, "reduce computation": 138407, "cuda kernels": 33920, "weights compute": 178104, "sparse matrix": 153733, "experiments evaluate": 54274, "model configurations": 103345, "configurations results": 29384, "promising intelligence": 130268, "intelligence owing": 78866, "owing rapid": 118466, "development pretraining": 41190, "finegrained crossmodal": 58861, "crossmodal alignment": 33679, "alignment imagetext": 8164, "concepts resulting": 28688, "finegrained alignment": 58850, "concepts specifically": 28692, "models concepts": 105726, "associating relevant": 13526, "images detailed": 72411, "detailed text": 40324, "enhancing lmms": 49516, "knowledge collect": 81818, "symbol grounding": 159799, "grounding approach": 67887, "approach considers": 11075, "existing largescale": 53406, "largescale imagetext": 89317, "approach finally": 11231, "task demonstrating": 161307, "improve lmms": 73511, "understanding crossmodal": 171180, "evaluating ai": 51260, "testing using": 164765, "focuses assessing": 60130, "models performances": 108497, "performances benchmark": 122329, "perspective potential": 122684, "match surpass": 99427, "gpt3 finetuning": 66691, "diverse professional": 43604, "enhancing chatbots": 49463, "models scored": 109049, "traditional roles": 167692, "roles including": 145560, "addressing current": 5440, "adaptation generative": 4622, "light rapidly": 92143, "garnered attention": 62775, "models preserving": 108609, "preserving original": 126694, "original parameters": 117364, "adapter tuning": 4718, "message passing": 100540, "process attention": 128742, "features attention": 57449, "node features": 113965, "features graph": 57502, "tuning adapters": 169960, "vlms necessitates": 177468, "space address": 153547, "adapter architecture": 4702, "specifically attention": 154139, "based features": 15805, "matrix enabling": 99637, "information varying": 76845, "validate methods": 175326, "significant superiority": 150899, "media realm": 100112, "various reasons": 176140, "effects paper": 46342, "comprehensively understanding": 28182, "focus developing": 59970, "multilabel classifier": 110444, "classifier capable": 24151, "application diverse": 10314, "random forest": 135521, "methods context": 101403, "context evaluation": 30750, "stateoftheart lmms": 155201, "dataset sourced": 36551, "sourced authentic": 153487, "community conduct": 26457, "finegrained analysis": 58852, "analysis generating": 8944, "image type": 72350, "identification user": 71811, "sheet music": 149891, "music image": 111312, "type labeled": 170310, "publications automatic": 133618, "key making": 81532, "example facilitate": 52475, "facilitate academic": 56590, "important type": 73210, "type information": 170308, "hyperparameters paper": 71603, "task create": 161289, "vicuna wizardlm": 176675, "develop relation": 40828, "improvement 29": 73744, "develop approach": 40756, "output structured": 118005, "using json": 174338, "analyze patterns": 9318, "understanding perspectives": 171404, "scenarios improve": 146619, "engagement lack": 48835, "understand answer": 170983, "qa chatbot": 133873, "online experiment": 116098, "studies present": 157050, "qa chatbots": 133874, "chatbots propose": 22632, "framework designing": 61073, "significant prominence": 150847, "tasks come": 162077, "memory costs": 100386, "propose optimus": 132057, "aiming measure": 7558, "compress bert": 28186, "standard glue": 154827, "techniques achieving": 163822, "outstanding results": 118164, "suitable deployment": 158695, "helps smaller": 69260, "better reasoning": 18000, "recent nlp": 137573, "tasks deployment": 162197, "deployment poses": 39294, "resource costs": 142379, "llmlevel performance": 94220, "performance particularly": 121898, "programofthought pot": 129887, "models regarding": 108884, "regarding capabilities": 138860, "models cot": 105809, "simultaneously optimizes": 151755, "models bridging": 105543, "framework boosts": 60990, "outperforms llm": 117798, "llm gpt35turbo": 93725, "terms reasoning": 164457, "accuracy sampling": 3384, "impressive accuracy": 73259, "knowledge neurons": 82245, "understand large": 171032, "model captures": 103250, "features researchers": 57568, "researchers typically": 142266, "probing classifiers": 128149, "accuracy classifiers": 3169, "exhibits low": 53207, "adequately capture": 5513, "capture characteristics": 20634, "characteristics encoded": 22457, "consequently effective": 29540, "particular type": 120134, "output representation": 117988, "network layer": 112670, "layer feedforward": 89630, "representations transformer": 140899, "explainable image": 54748, "modern machine": 109817, "highquality representations": 70069, "label information": 82690, "information coupled": 76339, "highdimensional nature": 69569, "representations consequently": 140780, "metric evaluating": 101970, "quality features": 134127, "learned representation": 90123, "pretrained clip": 126770, "images concept": 72402, "final image": 58381, "representation capability": 140675, "concept space": 28624, "robustness essential": 145380, "exhibits stateoftheart": 53222, "unsupervised clustering": 172237, "human conceptual": 70663, "images finetuning": 72424, "offers fresh": 115811, "approach automatic": 11011, "automatic label": 14697, "label generation": 82687, "important minimize": 73161, "minimize risk": 102378, "various diseases": 175894, "reasons including": 137252, "potential effects": 124689, "goal task": 66203, "task build": 161227, "build effective": 19312, "media post": 100107, "specific concerns": 153960, "best case": 17663, "macrof1 score": 98183, "perspective transformers": 122693, "framework analyzing": 60956, "systems reveals": 160596, "google gemini": 66321, "gemini openai": 62863, "state future": 155002, "googles gemini": 66337, "research priorities": 141989, "impact analysis": 72620, "research taxonomy": 142112, "challenges scalability": 22059, "scalability realworld": 146225, "realworld implications": 136464, "driving significant": 45022, "finance education": 58549, "peerreview process": 120669, "study highlighted": 157387, "methods ai": 101295, "development ensuring": 41101, "societal norms": 152695, "strategy future": 156149, "ai satellite": 7205, "captioning large": 20584, "models augment": 105417, "detection networks": 40573, "various objects": 176082, "image datasets": 72222, "datasets object": 37006, "extensive public": 55934, "present difficult": 126286, "instances work": 77848, "fluent language": 59904, "simple grammatical": 151467, "grammatical mistakes": 67461, "mistakes difficulties": 102547, "sensing images": 148411, "issue potential": 80943, "information communication": 76317, "domain images": 44183, "dataset experiment": 36283, "captions provided": 20623, "grammar correction": 67442, "caption models": 20569, "making data": 98722, "grammatically correct": 67467, "models augmenting": 105419, "api documentation": 10155, "programming approaches": 129786, "proposed augment": 132257, "summarization approaches": 158802, "approaches excel": 11755, "excel producing": 52773, "faithful summaries": 57081, "source content": 153432, "content input": 30530, "suffer inherent": 158433, "method gpt4": 100894, "coherent concise": 25521, "presents limitations": 126596, "terms informativeness": 164433, "producing coherent": 129546, "sources api": 153492, "techniques implementation": 163923, "security large": 147598, "ongoing challenge": 116054, "challenge despite": 21620, "developers work": 40969, "vulnerabilities persist": 177631, "exploit weaknesses": 55017, "need proactive": 112367, "cybersecurity measures": 34475, "attacks models": 13726, "models attacks": 105405, "attacks model": 13725, "data significant": 35753, "attack type": 13671, "investigate mitigation": 80449, "mitigation techniques": 102699, "future defenses": 62240, "llms consolidate": 94708, "addressing security": 5477, "llm attacks": 93483, "contributing robust": 31464, "robust defense": 145255, "development evolving": 41108, "evolving domain": 52309, "split rephrase": 154561, "task consists": 161275, "sentences preserving": 148592, "testbed evaluate": 164659, "evaluate natural": 51037, "complex grammatical": 27424, "task showing": 161724, "improvements state": 73949, "main metrics": 98250, "support conclusions": 159269, "shift finetuned": 149909, "varying parameter": 176300, "data volumes": 35957, "contrasted zeroshot": 31337, "models markedly": 108141, "alternative results": 8577, "improvements achievable": 73872, "using relatively": 174665, "parameters overall": 119826, "dont know": 44656, "generation retrievalaugmented": 65054, "rag grounds": 135430, "factual hallucinations": 56874, "evaluate llm": 51003, "llm robustness": 93975, "robustness rag": 145427, "metrics hallucination": 102076, "hallucination rate": 68408, "rate measuring": 136007, "measuring model": 99956, "tendency hallucinate": 164327, "answer answer": 9676, "passages relevant": 120351, "french english": 61592, "highlights important": 69859, "important avenue": 73094, "avenue future": 15237, "information rag": 76669, "layernorm attention": 89654, "attention efficient": 13869, "strategy transform": 156213, "transform large": 169043, "adaptation process": 4657, "intriguingly note": 79883, "note attention": 114298, "yield strong": 179981, "performance benchmarked": 121194, "scale performance": 146325, "performance enhanced": 121457, "average 20": 15260, "efficiency empirical": 46446, "empirical outcomes": 47715, "model indepth": 103850, "class models": 23885, "making contributions": 98719, "reproducible code": 141022, "code fully": 24851, "results identifying": 143478, "analysis 10": 8792, "datasets testing": 37156, "answering knowledgebased": 9885, "code acting": 24652, "accuracy close": 3171, "sensitivity multiplechoice": 148458, "answer ordering": 9742, "including generation": 74527, "generation nonenglish": 64892, "primarily centered": 127771, "based gpt": 15842, "posed complex": 124184, "qa paper": 133911, "gpt35 address": 66792, "specifically encode": 154195, "tables extensive": 160768, "work datasets": 178885, "detecting objects": 40423, "pioneering exploration": 123017, "nature experiments": 111998, "algorithm demonstrate": 7791, "demonstrate presence": 38477, "subsequently engaged": 157973, "user detection": 173396, "detection twitter": 40645, "dynamic rapidly": 45156, "world social": 179617, "media detecting": 100083, "detecting anomalous": 40395, "address malicious": 5321, "ability mimic": 2277, "terms capturing": 164395, "capturing subtle": 20742, "subtle distinctions": 158193, "challenges proposed": 22028, "heterogeneous entities": 69296, "detect anomalous": 40346, "users different": 173622, "models summarize": 109298, "integrating user": 78629, "multifaceted aspects": 110399, "behaviors users": 16728, "users extensive": 173655, "strategies code": 155972, "networks recently": 112792, "literature hypothesize": 93175, "increase scale": 75234, "correlations specific": 32563, "intuitive idea": 80293, "paper specifically": 119333, "metric measure": 101976, "brings performance": 19148, "performance change": 121229, "scales variety": 146382, "simulation tasks": 151721, "analysis theory": 9203, "reasoning foundation": 136867, "reasoning crucial": 136787, "criminal investigation": 33419, "ongoing development": 116058, "development foundation": 41115, "tasks methods": 162797, "inspire researchers": 77707, "exploration field": 55072, "advancements reasoning": 5955, "models contribute": 105786, "contribute development": 31398, "text potential": 165360, "fields software": 58305, "code commonly": 24717, "corpora source": 32249, "code scraped": 25126, "scraped internet": 147206, "internet content": 79582, "content datasets": 30467, "language adopt": 83137, "language construct": 83214, "code identifying": 24941, "vulnerable attack": 177649, "benchmarks variety": 17391, "attack large": 13645, "code vulnerable": 25212, "vulnerable data": 177652, "like natural": 92363, "counterparts training": 32979, "attack data": 13635, "code documentation": 24793, "documentation different": 43868, "community investigate": 26490, "extraction techniques": 56362, "technology work": 164177, "current potential": 34205, "pitfalls technology": 123131, "se tasks": 147277, "assisting students": 13449, "statistical differences": 155488, "study revealed": 157600, "revealed distinct": 144389, "negative consequences": 112509, "guiding principles": 68282, "llms ethical": 95099, "ethical frameworks": 50806, "frameworks use": 61528, "similar tools": 151319, "health disparities": 68941, "focusing case": 60175, "study specific": 157642, "healthcare setting": 69017, "principles use": 127871, "conducted quantitative": 29280, "results interactive": 143535, "ethical use": 50842, "serve resource": 149001, "historical context": 70197, "developing nlp": 41016, "models play": 108515, "starcraft ii": 154946, "summarization approach": 158801, "ii exhibit": 72088, "exhibit deficiencies": 53035, "long term": 97491, "planning strategy": 123325, "validate capabilities": 175303, "environment called": 49986, "ii llm": 72101, "including single": 74724, "single frame": 151801, "frame summarization": 60900, "summarization analyzing": 158800, "information providing": 76664, "recommendations generating": 138247, "strategic decisions": 155942, "parts evaluation": 120298, "agents game": 6616, "complex planning": 27518, "abilities needed": 1980, "built ai": 19470, "knowledge tracing": 82461, "potential model": 124866, "data ablation": 34565, "complex relationship": 27571, "relationship language": 139324, "knowledge augmented": 81757, "disambiguation using": 42644, "generation module": 64856, "target text": 161115, "different templates": 42043, "prompt different": 130426, "data incorporate": 35208, "related tweets": 139222, "representing various": 140976, "resolving conflicts": 142354, "employed annotate": 47876, "chatgpt annotations": 22702, "annotations evaluated": 9584, "tests average": 164772, "minimizing false": 102389, "recall f1score": 137268, "ambiguity human": 8631, "faced challenges": 56561, "log probability": 97316, "increase compute": 75199, "layers base": 89657, "base methods": 15618, "overall provide": 118221, "method understanding": 101155, "composed image": 27790, "retrieval cir": 144020, "directly plugged": 42584, "adverse effect": 6252, "results inconsistent": 143493, "relative caption": 139360, "llm llama": 93813, "llama generate": 93308, "answer vqa": 9798, "cirr fashioniq": 23791, "sequential controlled": 148863, "aligning generated": 8085, "text user": 165552, "flexible effective": 59804, "manner aligned": 98972, "aligned desired": 8047, "desired human": 40046, "structure using": 156614, "new automatic": 113075, "manner extensive": 98990, "domains news": 44482, "generation verified": 65253, "bypassing safety": 19572, "safety training": 145897, "surge popularity": 159436, "need llm": 112344, "llm safety": 93976, "sota opensource": 153361, "vulnerable simple": 177656, "attacks easy": 13704, "effectively bypass": 45955, "improves attack": 73975, "rate harmful": 135994, "inputs given": 77413, "generalpurpose vision": 63373, "vision systems": 176985, "unifying various": 171784, "single framework": 151802, "powerful visual": 125354, "single multiple": 151837, "image tokenizer": 72347, "adaptive sampling": 4785, "sampling technique": 146119, "binary segmentation": 18475, "masks sequences": 99335, "sequences significantly": 148837, "improving previously": 74191, "previously used": 127755, "uniform sampling": 171768, "dataset 68m": 36087, "datasets introducing": 36933, "boosts models": 18853, "reasoning grounding": 136894, "range vl": 135733, "achieving consistent": 4163, "early explorations": 45249, "understanding enabling": 171212, "recently google": 137903, "superior reasoning": 159055, "comprehensively covers": 28167, "stateoftheart gpt4v": 155156, "upper limits": 172386, "blackbox systems": 18665, "exhibit comparable": 53032, "domain generalizability": 44174, "explanations intermediate": 54866, "output direct": 117915, "direct concise": 42378, "mme benchmark": 102878, "benchmark demonstrates": 16924, "early investigation": 45253, "common issues": 26148, "remains considerable": 139995, "considerable distance": 29612, "intelligence project": 78880, "progress mllm": 129989, "object placement": 115153, "techniques able": 163818, "objects paper": 115294, "method object": 100994, "advances segmentation": 6064, "performs human": 122446, "annotated dialogue": 9469, "tasks chinese": 162043, "models indispensable": 106753, "crucial large": 33815, "knowledge manually": 82219, "evaluate commonsense": 50929, "conflict detection": 29409, "capabilities chinese": 19814, "form commonsense": 60445, "dialogues domain": 41556, "defined capture": 37946, "capture diverse": 20647, "diverse commonsense": 43482, "knowledge predefined": 82282, "dataset establish": 36261, "establish series": 50673, "reasoning detection": 136808, "variety existing": 175711, "opensource chinese": 116576, "tasks dataset": 162153, "content chatgpt": 30446, "accuracy domain": 3210, "identification tasks": 71810, "service using": 149072, "promptbased topic": 130797, "topic control": 167316, "developed dialogue": 40869, "travel plans": 169622, "preference history": 126010, "based preference": 16012, "maintain quality": 98327, "evaluated preliminary": 51203, "showed effectiveness": 150133, "proposed generative": 132313, "analysis ability": 8795, "chatgpt bing": 22744, "topics covid19": 167348, "perform high": 120955, "ability chatbots": 2094, "disinformation misinformation": 43048, "conspiracy theory": 29999, "theory using": 166106, "prompts systematically": 131494, "systematically test": 160206, "specific claims": 153955, "cases evaluated": 20959, "evaluated correctly": 51163, "languages pretraining": 87094, "67 percent": 1494, "percent accuracy": 120774, "accuracy observe": 3323, "significant disparities": 150689, "prompts high": 131308, "chatgpt providing": 23234, "providing nuanced": 133341, "performance chatbots": 121233, "potential llmbased": 124831, "information online": 76607, "continuous latent": 31242, "offer opportunity": 115679, "control llms": 31560, "investigate new": 80456, "analysis interpolation": 8982, "degree semantic": 38020, "semantic clustering": 148113, "search unstructured": 147428, "power natural": 125205, "conversations challenge": 31935, "providing unified": 133394, "unified interface": 171726, "language sql": 86740, "tasks obtained": 162872, "support natural": 159310, "lms specific": 97202, "domainspecific lms": 44603, "conventional multilingual": 31717, "lms achieves": 97102, "better ones": 17951, "parallel code": 119559, "task parallel": 161600, "compared gpt": 26817, "gpt especially": 66413, "informative visual": 76885, "bridging large": 19097, "rich informative": 144784, "informative answers": 76866, "content different": 30475, "contains long": 30379, "idea bridge": 71725, "model git": 103747, "description appropriate": 39405, "readily generate": 136175, "rate generated": 135991, "generated dialogues": 63850, "diverse dialogue": 43509, "long openended": 97460, "task finetune": 161399, "effort direction": 46844, "models genetic": 106492, "workflows assessing": 179383, "evidence literature": 52195, "review clinical": 144488, "testing assessed": 164697, "suitability use": 158687, "use complex": 172558, "optimized using": 117097, "articles prompts": 12619, "prompts asked": 131163, "asked gpt4": 12872, "present articles": 126228, "observed substantial": 115437, "seen models": 147697, "different performance": 41900, "llms assessed": 94433, "clinical workflows": 24379, "information critical": 76341, "automated decision": 14535, "llms rapidly": 96293, "utilized various": 175119, "including research": 74702, "aimed construct": 7512, "llms advanced": 94362, "phase effectively": 122796, "level success": 91513, "fourth place": 60870, "capture nuanced": 20671, "including ability": 74405, "unique needs": 171847, "needs user": 112494, "address conducted": 5209, "conducted interviews": 29263, "focus group": 59989, "group discussions": 67952, "technology probe": 164158, "highlight necessity": 69760, "support mechanisms": 159308, "mechanisms additionally": 100036, "additionally results": 5131, "offer crucial": 115642, "crucial design": 33785, "manually defined": 99089, "dialogue flow": 41472, "method sentiment": 101089, "scenarios attempted": 146538, "appropriately respond": 12005, "respond users": 142600, "dialogue scenario": 41514, "result evaluation": 143031, "provided information": 133062, "utterance generation": 175248, "llm combined": 93542, "state transitions": 155025, "capture flag": 20654, "number relevant": 114937, "relevant insights": 139612, "insights vast": 77669, "datadriven decisionmaking": 36039, "accomplishing task": 3019, "expertise human": 54614, "llms automate": 94450, "insights data": 77537, "proofofconcept agents": 131585, "work reported": 179264, "opinions chatgpt": 116812, "attention release": 13976, "models investigated": 106822, "human likeness": 70915, "automatic classification": 14644, "classification human": 24013, "analyze human": 9299, "multiple prompting": 111007, "particular utilize": 120138, "utilize zeroshot": 175092, "generated personas": 63936, "easily distinguish": 45310, "gpt35 generated": 66811, "methods performing": 101709, "higher lexical": 69611, "capability create": 20275, "evaluating tool": 51399, "models step": 109230, "tasks augmented": 161987, "augmented tools": 14376, "works evaluate": 179441, "models holistically": 106628, "reasoning retrieval": 137109, "review based": 144486, "based introduce": 15888, "capability step": 20378, "utilization evaluation": 174991, "capabilities facilitating": 19896, "competency llms": 27133, "perspective llm": 122678, "ability benchmark": 2080, "capable synthesizing": 20472, "highquality video": 70090, "video matching": 176721, "processes multimodal": 129086, "audio training": 14199, "consisting stages": 29954, "transformer framework": 169128, "serves foundation": 149039, "range video": 135727, "stateoftheart capabilities": 155096, "models vector": 109622, "approaches information": 11809, "privacy large": 128006, "prompted questions": 130832, "prone hallucination": 131565, "prompt ask": 130369, "hallucination better": 68359, "generation exploration": 64639, "features data": 57466, "level trust": 91517, "methods aim": 101296, "learn reason": 90038, "systems common": 160294, "reasoning infer": 136916, "parameters observations": 119816, "behavior paper": 16624, "systems experiments": 160371, "suited task": 158744, "simple systems": 151534, "llms assess": 94432, "physical simulation": 122909, "mllm recently": 102802, "performance visionlanguage": 122288, "ranging visual": 135764, "generation prompted": 64971, "image existing": 72248, "existing mllm": 53479, "working developing": 179394, "developing accurate": 40973, "secondly leverage": 147524, "leverage images": 91604, "cost dataset": 32662, "perception task": 120824, "introduce metrics": 80013, "assess object": 13102, "dataset lastly": 36387, "exploring intersection": 55477, "landscape artificial": 83091, "revolutionize software": 144632, "project management": 130080, "development stage": 41226, "unveil potential": 172306, "unique capabilities": 171823, "enhancing generative": 49488, "improve code": 73427, "model attacks": 103149, "typically assume": 170467, "weights blackbox": 178101, "access limited": 2878, "generation api": 64420, "realworld apis": 136391, "new functionalities": 113206, "apis finetuning": 10187, "harmful examples": 68735, "range harmful": 135628, "furthermore gpt4": 62087, "gpt4 assistants": 66916, "functionality exposed": 61885, "new vulnerabilities": 113502, "llm suggestions": 94030, "prior conversations": 127887, "enhance relevance": 49279, "small 1000": 152270, "samples specifically": 146068, "inputs case": 77388, "parameter llm": 119626, "experiments movie": 54364, "shows gains": 150428, "fewshot selection": 58049, "selection outperforms": 147876, "allows efficient": 8431, "tokens leads": 166837, "leads higher": 89891, "enhancing summarization": 49571, "identification hallucinations": 71795, "llms adept": 94357, "adept text": 5498, "hallucination detrimental": 68371, "behavior respect": 16640, "identifying different": 71995, "faithfulness llms": 57091, "enhanced dataset": 49331, "paradigm generative": 119459, "llms implications": 95545, "generation development": 64574, "generation processing": 64964, "work understanding": 179349, "understanding new": 171371, "texttoimage tti": 165832, "flash attention": 59768, "tti models": 169925, "models resemble": 108953, "prefill stage": 126091, "decode phase": 37505, "llms map": 95859, "thorough characterization": 166181, "insights new": 77611, "new optimization": 113312, "optimization opportunities": 117017, "inference additionally": 75958, "temporal aspects": 164247, "indepth performance": 75546, "step designing": 155613, "designing efficient": 39995, "systems emerging": 160350, "multimodal medical": 110716, "impressive efficacy": 73290, "typically treat": 170524, "number patches": 114927, "information inherent": 76519, "neurological disorders": 113004, "learning graph": 90512, "graph prompts": 67565, "prompts finetuning": 131279, "gpt4 obtain": 67088, "disease concepts": 43024, "according semantic": 3055, "construct graph": 30135, "graph convolutional": 67505, "convolutional network": 32039, "graph used": 67586, "prompt pretrained": 130634, "diagnosis compared": 41360, "local large": 97246, "question extent": 134874, "report writing": 140564, "remains unresolved": 140107, "reports goal": 140594, "goal generalization": 66166, "generalization finding": 63176, "report evaluate": 140521, "critical facet": 33493, "todays digital": 166671, "digital world": 42301, "highlighting necessity": 69820, "necessity robust": 112199, "robust data": 145254, "data communication": 34797, "central need": 21345, "channels data": 22414, "data transfer": 35884, "delve comprehensive": 38086, "analysis traditional": 9208, "offering comparative": 115730, "numerous criteria": 115033, "reliability distribution": 139682, "processes data": 129057, "scalability furthermore": 146215, "constraints design": 30073, "limitations crucial": 92558, "understanding realworld": 171436, "developing versatile": 41038, "quick adaptation": 135332, "growing demands": 68021, "advancements realm": 5954, "support wide": 159351, "like conversational": 92258, "agents creative": 6571, "highstake domains": 70114, "like medicine": 92348, "result different": 143028, "prompted multiple": 130828, "llm queries": 93935, "queries propose": 134521, "methods social": 101830, "theory study": 166103, "like medical": 92347, "query results": 134626, "discuss additional": 42864, "interesting properties": 79401, "agent structured": 6499, "method creating": 100770, "generality multiple": 63104, "prior information": 127898, "policy large": 123852, "emerged fundamental": 47353, "way incorporate": 177830, "agents lack": 6637, "lack crucial": 82915, "learning adaptation": 90180, "model integrating": 103883, "learning structured": 91029, "agents policies": 6685, "brain framework": 18945, "structures provides": 156712, "adaptive ability": 4771, "learn models": 90010, "module function": 109940, "structure cognitive": 156541, "processes framework": 129064, "ai pipelines": 7148, "pipelines existing": 123111, "indicate ai": 75570, "features current": 57465, "critical numerous": 33526, "extent reasoning": 56023, "risk overfitting": 144957, "benchmarks publicly": 17342, "allow models": 8345, "models potentially": 108576, "performance addressing": 121139, "llms broad": 94515, "algorithmic questions": 7886, "questions meticulously": 135195, "light current": 92107, "providing objective": 133343, "classes benchmark": 23904, "update mechanism": 172330, "regular updates": 138981, "models local": 108086, "managing health": 98904, "industrial systems": 75861, "systems emergence": 160349, "intelligence various": 78921, "llms rich": 96468, "significantly limiting": 151068, "applications end": 10505, "end study": 48692, "llm empowered": 93622, "base lkb": 15613, "steps combining": 155722, "real cases": 136219, "llms accurate": 94283, "accurate relevant": 3483, "llms industrial": 95618, "efficiency quality": 46512, "translate task": 169414, "program executed": 129732, "vision counterparts": 176896, "size finally": 151997, "language design": 83249, "cloudbased llm": 24571, "custom language": 34370, "language called": 83175, "descriptions english": 39448, "execution using": 52972, "using special": 174739, "called query": 19665, "query using": 134635, "increasingly challenging": 75383, "time 2x": 166341, "query prompt": 134617, "success complex": 158222, "increased presence": 75268, "answer choices": 9684, "study students": 157647, "interaction strategies": 79180, "copy paste": 32120, "usage present": 172472, "assessing impact": 13177, "critically evaluates": 33580, "enhancing mathematical": 49523, "llms investigation": 95686, "effectiveness enhancing": 46168, "problem sets": 128391, "investigated methods": 80533, "causing significant": 21269, "suggest prompting": 158581, "enhance mathematical": 49234, "gemini vs": 62867, "processing artificial": 129116, "indepth comparative": 75524, "study pioneering": 157531, "openais gpt4vision": 116421, "gpt4vision study": 67263, "study involves": 157453, "involves multifaceted": 80756, "scenarios offering": 146660, "comprehensive perspective": 28095, "scenarios ensure": 146586, "ensure balanced": 49672, "findings illuminate": 58690, "excels providing": 52803, "accompanied relevant": 2998, "attempted achieve": 13803, "combining models": 25989, "contributions field": 31491, "yang et": 179873, "work extensive": 178972, "extensive collection": 55734, "results provided": 143711, "detection goal": 40516, "goal technical": 66204, "right answer": 144830, "asked different": 12869, "ways different": 177900, "developer communities": 40930, "continues pose": 31222, "challenges various": 22099, "proposed detect": 132277, "detect duplicate": 40353, "forum posts": 60657, "semantics posts": 148313, "lack supervision": 83015, "supervision improve": 159202, "efficiency methods": 46490, "represent semantics": 140652, "dataset confirms": 36185, "respectively manual": 142568, "manual study": 99064, "study confirm": 157237, "approachs potential": 11966, "aims build": 7586, "training humanannotated": 168476, "challenging limited": 22194, "challenging worthwhile": 22322, "worthwhile zeroshot": 179685, "efficiently reduces": 46811, "effort data": 46836, "labeling takes": 82763, "takes recent": 160992, "chatgpt chatglm": 22770, "settings inspiring": 149590, "inspiring explore": 77781, "explore promptbased": 55279, "ask strong": 12862, "constructed directly": 30175, "chatgpt experimental": 22917, "unsupervised supervised": 172273, "method scaling": 101082, "scaling llms": 146420, "pretraining contrast": 127280, "highperformance llms": 69981, "finetuned instructionfollowing": 59037, "available apache": 15070, "application llm": 10342, "answering mqa": 9904, "dynamics knowledge": 45208, "knowledge facts": 81997, "update model": 172332, "avoiding expensive": 15357, "updated model": 172346, "needs provide": 112487, "prompt instruct": 130552, "conducting multiple": 29319, "edited facts": 45439, "llms advantages": 94366, "experiments llm": 54342, "validate superiority": 175335, "margin settings": 99191, "llms expanding": 95176, "social systems": 152671, "substituting human": 158164, "subjects experiments": 157873, "investigating extent": 80599, "key social": 81569, "humans agents": 71343, "agents develop": 6579, "study classical": 157211, "laboratory experiments": 82855, "mirrors human": 102456, "preferences llms": 126054, "llms analysis": 94394, "indepth examination": 75536, "focusing gpt4": 60183, "exhibit range": 53088, "capabilities analysis": 19782, "notable differences": 114219, "approach social": 11555, "humans insights": 71411, "insights indicate": 77586, "promise applications": 130166, "behavioral differences": 16668, "differences llm": 41630, "evaluating social": 51394, "humans diverse": 71377, "agents typically": 6753, "designed complex": 39837, "scenarios minimal": 146649, "highly interactive": 69926, "applications gaming": 10540, "gaming ai": 62592, "employs small": 47981, "reactive policies": 136147, "enabling fast": 48294, "fast inference": 57271, "offering limited": 115748, "realtime execution": 136377, "hierarchical framework": 69358, "comprises modules": 28249, "atomic actions": 13615, "actions human": 4375, "agents stronger": 6738, "faster responses": 57299, "consistent language": 29822, "llms neural": 95934, "reducing storage": 138596, "iterative magnitude": 81129, "magnitude pruning": 98207, "pruning imp": 133457, "al 2015": 7721, "important parameters": 73170, "performance pruning": 121968, "llms retraining": 96443, "challenge practice": 21705, "updating small": 172367, "performance shot": 122062, "sparsity levels": 153772, "approach parameterefficient": 11441, "30 billion": 955, "single nvidia": 151841, "nvidia a100": 115082, "pruning llms": 133463, "llms stand": 96674, "revolutionizing interact": 144672, "interact data": 79053, "efficiency particularly": 46501, "survey addresses": 159596, "research perspective": 141967, "optimizations provide": 117058, "covering spectrum": 33086, "overcoming barriers": 118315, "vision remains": 176980, "limited address": 92697, "mllms image": 102825, "video quality": 176729, "tasks structured": 163291, "pivotal components": 123141, "middle ground": 102188, "detailed assessment": 40273, "acquire accurate": 4250, "mllms exhibit": 102820, "exhibit outstanding": 53077, "chinese chatgpts": 23612, "suggests potential": 158669, "modern chinese": 109787, "human translations": 71066, "evaluate comprehension": 50933, "level chatgpt": 91452, "snippets used": 152516, "using multiagent": 174502, "multiagent llm": 110324, "provide efficient": 132762, "efficient easy": 46599, "easy way": 45363, "way access": 177760, "access vast": 2923, "amounts information": 8689, "differ significantly": 41608, "diverse demographics": 43507, "queries naturally": 134513, "diverse query": 43613, "integrates novel": 78567, "queries various": 134557, "various demographic": 175888, "enhance ranking": 49270, "profiles use": 129701, "use efficient": 172599, "models robustness": 109022, "robustness extensive": 145384, "industrial datasets": 75853, "efficacy query": 46411, "approach enhanced": 11180, "enhanced accuracy": 49318, "difficulty information": 42215, "task lies": 161520, "taskspecific label": 163527, "structures recent": 156713, "models uniformly": 109548, "uniformly model": 171772, "chinese languages": 23635, "english paper": 49092, "english specifically": 49110, "supervised settings": 159171, "learn rich": 90045, "particularly medical": 120227, "evaluation potential": 51777, "integrating image": 78601, "evaluation comprising": 51493, "comprising 1000": 28253, "professionally annotated": 129634, "llms convert": 94739, "semantically rich": 148274, "template second": 164220, "second finetune": 147474, "model fuses": 103701, "fuses image": 62190, "attention based": 13845, "descriptions users": 39510, "radiological quality": 135405, "report preliminary": 140548, "computer security": 28490, "aims assess": 7581, "application security": 10383, "includes versions": 74395, "evaluation prominent": 51790, "including gpt35turbo": 74541, "vicuna mistral": 176670, "mistral zephyr": 102558, "varying capabilities": 176279, "security context": 147571, "state llms": 155008, "achieved outstanding": 3852, "tasks powerful": 162965, "understanding zeroshot": 171542, "require long": 141148, "chains complex": 21559, "using key": 174341, "constraints given": 30084, "question guide": 134890, "question finally": 134875, "constructs structured": 30248, "llm help": 93736, "benchmarks experiments": 17242, "experiments framework": 54292, "great effectiveness": 67691, "effectiveness generalization": 46185, "generalization outperforming": 63206, "previous knowledge": 127601, "graph enhanced": 67526, "enhanced llm": 49347, "chatbot behavior": 22565, "established norms": 50696, "aim align": 7424, "complex diverse": 27403, "values social": 175557, "existing alignment": 53254, "techniques supervised": 164032, "values model": 175546, "overcome propose": 118310, "propose onthefly": 132052, "method realtime": 101054, "alignment works": 8262, "employs external": 47959, "memory store": 100467, "behaviors training": 16726, "training allowing": 168158, "customization human": 34395, "values introduce": 175540, "introduce scalable": 80097, "scalable evaluation": 146243, "evaluation assess": 51438, "supervised knowledge": 159132, "knowledge makes": 82214, "makes large": 98664, "abilities prompt": 1993, "progress largescale": 129981, "applications critical": 10464, "challenge improving": 21656, "models adhere": 105286, "undesired outputs": 171594, "use taskspecific": 172901, "establishment simple": 50717, "framework enhances": 61132, "method enhanced": 100829, "llama chatgpt": 93295, "surpass original": 159459, "regarding generalizability": 138872, "comprehensive suite": 28128, "including 16": 74400, "light advantages": 92097, "advantages incorporating": 6139, "topk recommendation": 167380, "recommendation large": 138203, "extensively deployed": 55977, "intrinsic llms": 79894, "llms example": 95119, "act zeroshot": 4299, "zeroshot rankers": 180313, "candidate items": 19721, "items generated": 81085, "model recommendation": 104428, "recommendation recent": 138226, "recommendations despite": 138242, "potential current": 124664, "conventional recommendation": 31726, "recommendation model": 138214, "model integrated": 103881, "tailored instruction": 160922, "tuning llm": 170050, "llm serve": 93990, "prompt introduce": 130555, "shifting strategy": 149933, "augment prompt": 14254, "recommendation models": 138215, "sampled data": 145971, "dataset augmented": 36121, "prompt comprising": 130400, "tasks pointwise": 162953, "pointwise pairwise": 123781, "pairwise listwise": 118643, "ranking method": 135811, "sequential recommendation": 148881, "recommendation scenarios": 138230, "instructions need": 78315, "process querying": 128958, "scales large": 146369, "abilities enhancing": 1900, "behaviors different": 16691, "proposed principles": 132417, "prompts design": 131222, "researchers working": 142276, "collaborative learning": 25622, "models burgeoning": 105555, "tasks captioning": 162025, "understanding deployment": 171188, "deployment largescale": 39284, "client devices": 24303, "leading notable": 89847, "continual adaptation": 31160, "leveraging robust": 91949, "robust capabilities": 145244, "data transmission": 35889, "knowledge adaptation": 81732, "strategy effectively": 156133, "adapterbased knowledge": 4721, "method transfer": 101150, "transmission efficiency": 169567, "efficiency reducing": 46520, "methods notably": 101684, "validate feasibility": 175318, "approach uncover": 11621, "feature vectors": 57436, "transformers key": 169318, "present stateoftheart": 126457, "methods finding": 101529, "features require": 57567, "data laborious": 35277, "data paradigm": 35467, "given tasks": 66026, "vectors called": 176403, "qualitative investigations": 134003, "gendered occupational": 62897, "surpasses traditional": 159503, "used better": 172981, "code experiments": 24823, "contamination language": 30401, "offer impressive": 115657, "thoroughly examined": 166208, "examined paper": 52424, "investigates zeroshot": 80584, "recent opensourced": 137575, "date llms": 37217, "better datasets": 17843, "exists task": 53666, "additionally utilize": 5146, "evidence task": 52226, "contamination llms": 30403, "settings llms": 149608, "prompts generic": 131293, "generic data": 65651, "reliable data": 139719, "ensure data": 49677, "majority applications": 98458, "design pattern": 39713, "reusability scalability": 144303, "demand machine": 38130, "implementations specific": 72865, "users dont": 173628, "makes data": 98641, "illustrate advantages": 72144, "summarize challenges": 158902, "hidden assumptions": 69321, "development complex": 41069, "technology experts": 164139, "safe operation": 145807, "processes like": 129081, "skills experts": 152157, "quality safety": 134257, "development projects": 41199, "work scientists": 179276, "multiple conversational": 110875, "contextaware conversational": 30977, "investigated use": 80538, "assist users": 13363, "multiple interlocutors": 110950, "scenarios multiple": 146654, "personal experiences": 122559, "ideas using": 71772, "approach machine": 11374, "effort improving": 46849, "products paper": 129613, "area context": 12320, "llms structural": 96696, "decline particularly": 37499, "substantial advancement": 158023, "previous existing": 127588, "existing table": 53608, "paradigms llms": 119541, "learning crossmodal": 90337, "person reidentification": 122541, "attribute descriptions": 14078, "descriptions significantly": 39497, "valuable semantic": 175452, "person image": 122540, "reidentification reid": 139025, "algorithms typically": 7979, "primarily reliance": 127789, "utilization image": 174998, "plentiful finegrained": 123550, "descriptions make": 39476, "person attributes": 122539, "reid tasks": 139023, "sentences describing": 148572, "query images": 134593, "explicit prompts": 54953, "used person": 173170, "prompts obtained": 131387, "alignment module": 8200, "gap extensive": 62651, "experiments existing": 54281, "solution evaluating": 152928, "demonstrated proficiency": 38745, "bard performed": 15567, "information overall": 76612, "era advanced": 50212, "mllms gpt4v": 102824, "gpt4v remarkable": 67256, "bridging language": 19096, "computational demand": 28356, "opensource mllms": 116647, "like llava": 92339, "llava minigpt4": 93414, "groundbreaking achievements": 67848, "achievements tasks": 3930, "efficiency remains": 46522, "unresolved issue": 172128, "issue models": 80930, "gpu training": 67351, "gpu cpu": 67338, "vision modules": 176961, "28b parameters": 904, "process suitable": 128999, "devices work": 41320, "furthermore paper": 62123, "based metric": 15946, "assessing text": 13211, "text coherence": 164927, "aspect evaluating": 12903, "advancements neural": 5941, "demonstrated efficacy": 38650, "capturing entity": 20724, "evaluation existing": 51572, "coherence long": 25516, "sentences effectively": 148574, "central theme": 21350, "novel referencefree": 114669, "referencefree metric": 138687, "findings showcase": 58795, "additional classification": 4931, "level comparable": 91453, "metric effectively": 101967, "documents text": 43941, "illustrate efficacy": 72149, "diverse large": 43561, "underscoring potential": 170967, "potential generalizability": 124740, "summary present": 158936, "global text": 66111, "circumventing need": 23787, "allows application": 8408, "chatbot simulate": 22587, "human conversation": 70667, "study theoretical": 157666, "networks study": 112804, "study problems": 157552, "problems solve": 128628, "networks theoretically": 112809, "choosing best": 23732, "theoretical upper": 166054, "observed data": 115402, "data simplicity": 35761, "networks applied": 112715, "involving natural": 80801, "changes various": 22396, "domains especially": 44397, "enhancing accuracy": 49453, "use past": 172797, "previous experiences": 127589, "agents effectively": 6586, "abilities scale": 2012, "demands deployment": 38156, "deployment challenges": 39263, "outputs larger": 118079, "icl based": 71658, "icl highly": 71676, "sensitive selection": 148444, "models preferences": 108595, "examples improve": 52609, "icl abilities": 71654, "introduce alignment": 79911, "incorporating novel": 75124, "novel ranking": 114665, "ranking loss": 135810, "baselines variety": 16384, "evaluation work": 51934, "evaluation paradigm": 51759, "shortcomings existing": 150022, "capabilities agents": 19772, "shifts focus": 149937, "benchmark gpt4": 16992, "demonstrates performance": 38872, "times better": 166578, "better gpt35": 17893, "lies ability": 92064, "includes stateoftheart": 74388, "uncovering fundamental": 170740, "advocates paradigm": 6284, "llms contributes": 94731, "ongoing discourse": 116060, "methods similar": 101826, "facilitate accurate": 56591, "accurate assessment": 3436, "contain billions": 30290, "raising question": 135504, "data simply": 35762, "indicating language": 75654, "using prediction": 174590, "prediction smoothing": 125864, "achieve extreme": 3639, "intelligence machine": 78855, "performance potential": 121920, "potential developments": 124674, "language intuitive": 83465, "intuitive efficient": 80291, "demand extensive": 38126, "extensive development": 55748, "reliable performance": 139743, "purposes work": 133776, "operations natural": 116789, "language opensource": 86447, "model limited": 103963, "automation systems": 14911, "systems data": 160320, "effectively bridges": 45951, "enable reasoning": 48123, "distinguish different": 43275, "different instances": 41803, "formats work": 60572, "update existing": 172326, "focusing improving": 60185, "core functionalities": 32164, "keeping base": 81422, "ability incorporate": 2224, "segmentation results": 147748, "directly text": 42600, "text responses": 165428, "improvements achieved": 73873, "aimed specifically": 7524, "understanding interaction": 171307, "highlight versatility": 69795, "applications evolving": 10512, "model assistant": 103146, "assistants like": 13415, "assistant utilizes": 13402, "knowledge experience": 81968, "dialogue user": 41540, "user ai": 173372, "future dialogue": 62246, "better response": 18009, "retrieve related": 144221, "related memory": 139185, "memorizing mechanism": 100357, "called conditional": 19652, "usage memory": 172463, "gpt4 backbone": 66927, "constructed test": 30186, "datasets focusing": 36878, "abilities required": 2008, "impressive linguistic": 73311, "lack humanlike": 82961, "frameworks enhance": 61513, "limitations traditional": 92679, "traditional llm": 167647, "analyzed including": 9349, "innovative model": 77184, "architecture aims": 12117, "provide greater": 132810, "collaborative scenarios": 25631, "research required": 142047, "strategic blueprint": 155939, "agents sophisticated": 6735, "approach extracting": 11220, "proposed efficiently": 132281, "extracting analyzing": 56219, "data corporate": 34858, "need reliable": 112373, "esg information": 50422, "rag techniques": 135438, "preprocessing module": 126187, "agent data": 6430, "using esg": 174170, "stock exchange": 155831, "ensuring comprehensive": 49729, "market capitalization": 99232, "significant insights": 150762, "gpt4 demonstrating": 66967, "disclosure analysis": 42685, "analysis improvement": 8966, "models highlights": 106609, "develop compare": 40764, "corporate sustainability": 32270, "promoting transparency": 130357, "graph conversational": 67503, "questions information": 135166, "pairs inputs": 118588, "given conversation": 65862, "reformulations generated": 138830, "learned question": 90122, "question representation": 134933, "rl model": 145064, "advanced text": 5811, "massive textual": 99384, "textual datasets": 165897, "necessitating advanced": 112185, "analytical approaches": 9251, "tools capable": 167121, "extracting insights": 56230, "datasets leverage": 36958, "llms textbased": 96798, "currently unclear": 34342, "llm literature": 93812, "business intelligence": 19541, "intelligence using": 78918, "framework demonstrate": 61063, "demonstrate application": 38230, "adopting llms": 5618, "offering systematic": 115769, "research streams": 142094, "mainly rely": 98300, "rely language": 139862, "llm autonomous": 93491, "exploration reasoning": 55097, "followed pursuit": 60243, "precise reasoning": 125595, "problemsolving llms": 128667, "state machines": 155010, "different objectives": 41885, "reasoning experimental": 136846, "task reveal": 161704, "baselines exploring": 16320, "decisionmaking capabilities": 37403, "prompt variation": 130740, "psychological perspective": 133505, "prompt study": 130683, "different capabilities": 41680, "findings language": 58716, "display humanlike": 43071, "tradeoff simple": 167566, "suffer generating": 158425, "truthfulness llms": 169898, "llms uncovering": 96874, "using multidimensional": 174503, "reducing gap": 138566, "truth features": 169882, "features llms": 57536, "approach improved": 11289, "improved truthfulness": 73729, "observed finetuned": 115406, "conducted thorough": 29292, "exploring language": 55479, "agents ad": 6530, "demonstrates proficiency": 38878, "basic tasks": 16442, "efficiency complex": 46434, "environments agents": 50064, "goal study": 66201, "problem agent": 128176, "issue develop": 80896, "equips llm": 50190, "reasoning enabling": 136824, "information rapid": 76673, "providing precise": 133352, "perspective understanding": 122694, "flurry research": 59923, "research reasoning": 142033, "llms solely": 96635, "precisely understanding": 125605, "significance llms": 150555, "perform quantitative": 121015, "area propose": 12342, "propose quantitative": 132088, "method dramatically": 100802, "dramatically improves": 44893, "extraction survey": 56358, "plain natural": 123199, "allowing generalization": 8371, "generalization various": 63238, "offer viable": 115716, "solutions tasks": 153080, "generative paradigm": 65526, "efforts tasks": 46936, "study survey": 157654, "field present": 58226, "works terms": 179512, "advanced methods": 5774, "discover emerging": 42729, "based thorough": 16142, "conducted identify": 29261, "studies maintain": 157042, "consistently update": 29928, "related resources": 139206, "value ai": 175465, "tests ai": 164771, "ai quantum": 7183, "core question": 32180, "test problem": 164598, "produce sequences": 129461, "learned statistical": 90132, "model reveals": 104485, "theories language": 166063, "linguistic practice": 93053, "relevant current": 139586, "users models": 173714, "language fragments": 83333, "new linguistic": 113262, "text exist": 165065, "language help": 83401, "open generative": 116234, "highlights challenges": 69847, "reproducibility privacy": 141015, "analysis tweets": 9212, "strategies models": 156042, "highlights advantages": 69845, "privacy reproducibility": 128019, "answering face": 9851, "entities complex": 49835, "interpretable logical": 79677, "according predefined": 3048, "predefined templates": 125662, "retrieving candidate": 144278, "candidate entities": 19715, "answers subquestions": 10087, "response reasoning": 142696, "llms response": 96430, "results kbqa": 143544, "performance illustrate": 121644, "selfsupervised vision": 148078, "power inspired": 125182, "inspired large": 77735, "various computer": 175866, "little finetuning": 93234, "finetuning design": 59222, "fewshot semantic": 58050, "object retrieval": 115162, "applied downstream": 10751, "tasks parameter": 162928, "tuning compared": 169976, "embeddings learned": 47251, "learned using": 90138, "information downstream": 76368, "providing analysis": 133263, "analysis benchmarks": 8830, "scientific data": 146945, "models integrated": 106792, "rag framework": 135428, "process diverse": 128795, "data spanning": 35783, "minimizes computational": 102382, "optimizing data": 117110, "incorporates prompt": 75074, "thorough examination": 166189, "segmentation strategies": 147749, "conducts comparative": 29328, "studies llms": 157037, "explores various": 55445, "delves investigation": 38113, "addresses concerns": 5408, "hallucinations false": 68431, "research articles": 141603, "introducing custom": 80230, "developed detection": 40868, "detection algorithm": 40445, "promise future": 130178, "underscores significance": 170957, "significance integrating": 150554, "evaluation recent": 51818, "benchmarks typically": 17386, "single instruction": 151814, "involving 20": 80776, "tailored evaluation": 160916, "llm developers": 93592, "task ensuring": 161353, "assessment llm": 13243, "advancement artificial": 5823, "consumption computational": 30280, "memory energy": 100392, "financial resources": 58577, "resources especially": 142435, "especially environments": 50467, "environments limited": 50094, "aims systematically": 7678, "categorize methods": 21140, "based optimization": 15994, "focus computational": 59962, "additionally survey": 5137, "efficiency techniques": 46540, "techniques specific": 164027, "specific resource": 154077, "uncovers intricate": 170747, "facilitate consistent": 56603, "techniques offering": 163973, "student ai": 156800, "physics learning": 122942, "ideas recent": 71769, "stem learning": 155585, "study adopt": 157134, "adopt mixedmethods": 5577, "physics problem": 122945, "students ai": 156843, "ai data": 6942, "data comes": 34792, "solutions collected": 153002, "collected using": 25704, "leverage representations": 91657, "results light": 143567, "deployment ai": 39257, "training pretraining": 168643, "varied datasets": 175669, "llms numerous": 95948, "authors paper": 14442, "introduce detailed": 79947, "confidence estimation": 29347, "series simulated": 148951, "results affirm": 143165, "frameworks effectiveness": 61512, "effectiveness identifying": 46197, "identifying addressing": 71984, "instances content": 77820, "content misuse": 30547, "misuse llm": 102575, "investigate presence": 80478, "study significant": 157636, "need transparent": 112415, "responsible data": 142962, "practices field": 125508, "revolution natural": 144621, "provides mechanism": 133178, "emotions expressed": 47601, "text recently": 165411, "use sentiment": 172868, "analysis studying": 9183, "model sentiment": 104544, "analysis review": 9143, "review major": 144523, "capabilities unclear": 20227, "explicit constraints": 54922, "instructions significant": 78351, "significant aspect": 150597, "formulate specialized": 60624, "resulting behavior": 143091, "systematically comprehensively": 160177, "responses instructions": 142830, "instructions various": 78373, "instructions test": 78360, "instruction diversification": 77987, "process synthesize": 129000, "synthesize diverse": 159988, "entire evaluation": 49804, "process facilitate": 128833, "paradigm time": 119519, "time provide": 166477, "representative llms": 140930, "chatgpt vicuna": 23432, "gap opensource": 62692, "benchmark facilitate": 16976, "controllability llms": 31611, "instructions data": 78227, "need paper": 112359, "architecture systems": 12230, "random fields": 135520, "customized head": 34405, "compare approaches": 26663, "approaches novel": 11853, "novel ideas": 114541, "auxiliary loss": 15036, "hyperparameter settings": 71599, "bring large": 19126, "large improvement": 87284, "product catalogs": 129568, "matching algorithms": 99450, "remains relatively": 140063, "relatively unexplored": 139426, "present unified": 126489, "character level": 22432, "combination language": 25827, "composed multiple": 27793, "vastly outperforms": 176368, "llms propelled": 96240, "new heights": 113213, "assistance code": 13368, "leakage limited": 89938, "automatic approach": 14640, "comprehensively evaluates": 28173, "improves logical": 74025, "set atomic": 149133, "predicate logic": 125671, "logic results": 97344, "logical rules": 97396, "learn evaluate": 89976, "widely deployed": 178371, "bard vicuna": 15570, "llms rate": 96295, "llms 10": 94238, "10 gpt4": 118, "gpt4 far": 67007, "far know": 57223, "based testing": 16134, "llms formal": 95296, "results released": 143739, "errors large": 50371, "applications extensive": 10523, "generating factual": 64211, "concerns critical": 28772, "critical areas": 33458, "limited test": 92865, "leakage need": 89939, "hindering efficient": 70150, "automatic testing": 14752, "aimed uncovering": 7526, "involves main": 80750, "main steps": 98273, "knowledge database": 81854, "employs rulebased": 47980, "yesno multiplechoice": 179955, "singlehop multihop": 151890, "multihop relations": 110433, "using tailored": 174784, "matching strategies": 99482, "question type": 134948, "extensive tests": 55959, "gpt4 vicuna": 67215, "errors 45": 50333, "accuracy incontext": 3276, "accuracy increase": 3278, "available future": 15116, "parameterefficient instruction": 119672, "finetuning fft": 59269, "tradeoff different": 167557, "sizes 16": 152085, "encompassing code": 48549, "performance scales": 122041, "methods differ": 101442, "tradeoff cost": 167554, "robustness code": 145356, "security explore": 147582, "loss task": 97697, "performance tuning": 122207, "reliable indicator": 139722, "survey code": 159612, "code empowers": 24802, "serve intelligent": 148990, "fact trained": 56746, "trained combination": 167881, "combination natural": 25836, "highlevel goals": 69692, "syntax logical": 159920, "logical consistency": 97351, "survey present": 159666, "overview various": 118451, "various benefits": 175839, "benefits integrating": 17474, "integrating code": 78583, "code help": 24936, "enabling applications": 48270, "code compilation": 24722, "execution environment": 52950, "diverse feedback": 43526, "code led": 24976, "situations ability": 151942, "goals plan": 66223, "feedback crucial": 57660, "crucial success": 33865, "code taking": 25172, "step generative": 155641, "role multimodal": 145514, "education integration": 45551, "enhancing teaching": 49573, "vision gpt4v": 176925, "sound visual": 153381, "personalized interactive": 122604, "learning landscapes": 90604, "explores transformative": 55433, "scenarios possible": 146672, "possible applications": 124398, "applications mllms": 10608, "range content": 135602, "tailored support": 160941, "scientific practices": 146979, "assessment feedback": 13229, "calling robust": 19680, "responsible integration": 142971, "underscores necessity": 170948, "role ensuring": 145486, "calls research": 19687, "evolving role": 52325, "potentials challenges": 125149, "implications aim": 72902, "make simple": 98600, "simple mistakes": 151493, "sft llms": 149742, "multimodal document": 110626, "carry rich": 20843, "spatial modalities": 153789, "documents effectively": 43903, "spatial layout": 153787, "focuses exclusively": 60139, "layout structure": 89705, "structure specifically": 156606, "text spatial": 165477, "objective learns": 115212, "content frequently": 30502, "frequently encountered": 61618, "largescale instruction": 89319, "intelligence tasks": 78904, "demonstrate solution": 38555, "solution outperforms": 152958, "datasets learning": 36956, "learning long": 90655, "networks modern": 112775, "tasks inherit": 162604, "efficient alternatives": 46570, "transformers given": 169307, "rise stateoftheart": 144913, "architectures named": 12282, "space models": 153595, "models ssms": 109220, "systematically investigates": 160196, "classification finally": 24000, "deploying powerful": 39253, "new programming": 113355, "programming practice": 129861, "practice llms": 125487, "programs possible": 129925, "requirement engineering": 141268, "testing project": 164744, "develop prototype": 40825, "development capable": 41062, "inputs generates": 77410, "nontrivial software": 114158, "clip multimodal": 24410, "recently substantial": 138002, "effectively capturing": 45959, "dialog context": 41410, "prompttuning method": 131548, "downstream dialog": 44715, "design multiple": 39696, "multimodal representation": 110754, "tuning mere": 170057, "approach underscoring": 11622, "potential advance": 124555, "llama2 language": 93364, "continuing pretraining": 31228, "dataset methodology": 36406, "involves initial": 80740, "papers followed": 119397, "process refine": 128967, "chatbots capabilities": 22603, "chatbot designed": 22570, "designed assist": 39818, "assist researchers": 13358, "contextaware responses": 30984, "field materials": 58200, "science make": 146893, "trained checkpoints": 167877, "undergone significant": 170801, "advancements particularly": 5946, "t2i models": 160686, "quality introduce": 134173, "factors prompts": 56818, "safety performance": 145881, "performance consequently": 121326, "improve image": 73482, "providing optimal": 133345, "specifically create": 154163, "prompts select": 131463, "design optimal": 39706, "matching approach": 99451, "approach implement": 11286, "prompts capable": 131180, "prompts generates": 131290, "improves semantic": 74082, "consistency average": 29751, "safety metrics": 145878, "debiasing large": 37307, "finetuning demonstrated": 59221, "improve domain": 73445, "poor generation": 123949, "prone exhibit": 131558, "exhibit position": 53081, "beginning end": 16535, "input existing": 77239, "knowledge annotated": 81744, "bias llms": 18155, "leverages unsupervised": 91792, "responses propose": 142886, "responses experiments": 142785, "methods mitigating": 101665, "general effective": 62945, "facilitate reproducibility": 56638, "share code": 149791, "code methods": 24996, "large legal": 88891, "legal facts": 91296, "consistency work": 29800, "makes key": 98659, "key contributions": 81483, "providing conceptual": 133273, "time chatgpt": 166354, "questions random": 135244, "federal court": 57620, "court cases": 33025, "illustrate llms": 72152, "users incorrect": 173676, "findings caution": 58643, "llms legal": 95754, "legal tasks": 91320, "benefit llms": 17442, "traditional legal": 167645, "resources llm": 142452, "communication problem": 26405, "addressing novel": 5464, "novel challenges": 114434, "traditional techniques": 167707, "novel multiagent": 114606, "employs multiple": 47974, "agents distinct": 6584, "offering nuanced": 115751, "problem scenarios": 128386, "experimentation demonstrates": 54108, "demonstrates frameworks": 38849, "frameworks superior": 61525, "insights collaborative": 77529, "collaborative potential": 25624, "potential multiple": 124875, "models selfplay": 109067, "weak language": 177930, "supervised finetuned": 159110, "mechanism llm": 100012, "specifically llm": 154247, "generates training": 64120, "function method": 61847, "achieved llm": 3837, "llm policy": 93892, "huggingface open": 70543, "trained direct": 167896, "optimization dpo": 116989, "gpt4 preference": 67119, "data sheds": 35748, "need expert": 112283, "cognitive maps": 25459, "maps proposed": 99166, "memory processing": 100444, "spatial navigation": 153790, "set multimodal": 149244, "model place": 104281, "map representations": 99130, "consisting images": 29944, "inputs training": 77449, "prediction network": 125831, "network used": 112705, "understanding environment": 171217, "objects appear": 115274, "association specific": 13528, "context awareness": 30695, "retrieve context": 144214, "suggesting large": 158615, "hierarchy finally": 69387, "finally utilizing": 58540, "utilizing multimodal": 175216, "forms data": 60593, "like images": 92319, "grounding abstract": 67885, "grounding problem": 67921, "recognition existing": 138066, "scenarios significant": 146698, "significant domain": 150691, "design context": 39584, "context class": 30703, "knowledge object": 82249, "leveraged enhance": 91692, "largelanguage model": 89138, "object knowledge": 115138, "integrating knowledge": 78604, "prompting clip": 130881, "regularization method": 138986, "method ensure": 100833, "fewshot target": 58069, "target training": 161117, "understanding interacting": 171306, "language various": 86884, "effectiveness limited": 46221, "specialized areas": 153872, "areas requiring": 12388, "requiring high": 141491, "enhanced comprehensive": 49325, "comprehensive database": 27989, "15 million": 413, "development significantly": 41220, "knowledge proficiency": 82313, "datasets related": 37073, "inquiries ensuring": 77462, "effective reliable": 45868, "reliable application": 139716, "web agent": 177991, "capability boundaries": 20271, "agent follow": 6445, "integrated visual": 78545, "benchmark addition": 16820, "new online": 113305, "developing tool": 41032, "tool allows": 166936, "allows running": 8470, "presents great": 126584, "agents successfully": 6742, "websites manually": 178053, "ground textual": 67835, "textual plans": 165935, "plans actions": 123347, "develop paper": 40818, "html text": 70484, "substantial gap": 158063, "ample room": 8713, "brands social": 18971, "generating captions": 64148, "marketing strategies": 99238, "strategies current": 155982, "opensource multimodal": 116660, "propose pipeline": 132065, "creating engaging": 33298, "gives users": 66062, "users flexibility": 173658, "qualitatively quantitatively": 134027, "wordart designer": 178694, "userdriven artistic": 173545, "artistic typography": 12811, "typography synthesis": 170532, "introduces wordart": 80221, "offering dynamic": 115734, "rigid templates": 144847, "templates approach": 164226, "interpret user": 79631, "facilitating intuitive": 56711, "process demonstrate": 128784, "various case": 175845, "users articulate": 173582, "possibilities personalized": 124371, "digital communication": 42277, "model relationships": 104443, "teach large": 163601, "demonstrate preliminary": 38476, "images study": 72491, "look like": 97611, "models numerous": 108322, "numerous aspects": 115028, "world furthermore": 179554, "furthermore experiments": 62070, "learning utilizing": 91116, "potential train": 125023, "train vision": 167843, "capable making": 20444, "assessments natural": 13298, "just llms": 81382, "ai vision": 7316, "household robots": 70465, "ai exemplified": 6985, "dalle stable": 34529, "fully harnessing": 61771, "harnessing generative": 68826, "ai iot": 7051, "complex challenge": 27370, "finetuning federated": 59267, "learning security": 90970, "benchmarks discuss": 17221, "discuss current": 42881, "opportunities enabling": 116845, "hope article": 70346, "annotations study": 9613, "focusing impact": 60184, "impact varying": 72742, "quality detection": 134095, "explicitly violent": 54993, "evaluate gpt35": 50981, "posts analysis": 124519, "overall increase": 118201, "increase violent": 75244, "individual level": 75724, "level particularly": 91494, "25 years": 834, "substantial agreement": 158027, "agreement human": 6829, "best gpt4": 17676, "yields good": 180019, "alignment overall": 8206, "practical means": 125432, "causal mechanism": 21205, "potential mitigations": 124863, "llm garnered": 93693, "extensive attention": 55719, "feedback llms": 57730, "llms intrinsic": 95674, "key bottleneck": 81464, "errors inherent": 50368, "development trend": 41245, "trend paper": 169705, "includes various": 74394, "content related": 30600, "related model": 139187, "paper covers": 118826, "parallel computation": 119561, "explores llms": 55409, "llms utilization": 96933, "consistency evaluation": 29758, "token similarity": 166739, "semantic equivalence": 148142, "results low": 143579, "especially problematic": 50525, "highly critical": 69906, "critical work": 33573, "improving consistency": 74120, "based predefined": 16009, "translates output": 169422, "numeric score": 114996, "new responses": 113391, "analysis approach": 8819, "consistency tasks": 29796, "substantially reduces": 158140, "effective hallucination": 45768, "hallucination mitigation": 68394, "analysis preliminary": 9076, "preliminary case": 126114, "various queries": 176133, "empower llms": 47994, "launch gpt4": 89587, "generated significant": 63976, "research communities": 141646, "intelligence generation": 78832, "domainspecific analysis": 44560, "study utilizing": 157707, "analysis report": 9122, "performance gpt4v": 121609, "far away": 57212, "images prompts": 72466, "critical way": 33571, "computing courses": 28534, "recent proliferation": 137601, "students generative": 156862, "rapidly adopted": 135911, "students rely": 156894, "finally observed": 58497, "ai skill": 7217, "better able": 17788, "advanced small": 5809, "facilitate multimodal": 56634, "marks notable": 99268, "notable advancement": 114212, "models demonstrates": 105919, "engage intricate": 48819, "trained highquality": 167936, "corpora model": 32239, "model delivers": 103417, "reasoning knowledgebased": 136942, "perception remarkable": 120820, "rag architecture": 135422, "architecture proven": 12211, "documents challenges": 43890, "queries especially": 134476, "pdf documents": 120634, "documents containing": 43897, "accuracy complex": 3183, "tabular content": 160782, "values ensure": 175531, "data employ": 34963, "data fed": 35045, "improve precision": 73581, "challenge information": 21657, "llm augmented": 93484, "corpora data": 32217, "data demonstrated": 34897, "challenging expensive": 22161, "new instances": 113233, "efficient practical": 46697, "capabilities end": 19872, "propose calm": 131739, "scales llms": 146373, "tasks reusing": 163186, "weights kept": 178115, "kept intact": 81438, "results absolute": 143151, "improvement 13": 73740, "like translation": 92422, "languages similarly": 87129, "explanation tasks": 54803, "fully finetuned": 61763, "engage content": 48813, "networks despite": 112731, "despite llms": 40156, "challenging develop": 22143, "develop llmbased": 40794, "users want": 173817, "interesting content": 79391, "operate social": 116741, "networks content": 112723, "llm monitoring": 93837, "contrastive chainofthought": 31344, "multiple image": 110935, "involves interpreting": 80745, "scenarios lack": 146631, "lack finegrained": 82944, "extensively investigate": 55986, "investigate capability": 80382, "dealing multiple": 37275, "focuses aspects": 60129, "effectively reason": 46070, "lmms accurately": 97087, "range opensource": 135668, "closedsource large": 24488, "develop contrastive": 40768, "detailed questions": 40311, "key technological": 81590, "areas natural": 12381, "intelligence led": 78853, "human financial": 70830, "actively develop": 4447, "model systems": 104711, "continuous growth": 31239, "parameters result": 119857, "power memory": 125201, "employing efficient": 47920, "actively explored": 4449, "methods comprehensive": 101388, "essential developers": 50599, "developers researchers": 40958, "researchers paper": 142238, "paper summarizes": 119348, "development direction": 41086, "comprehensive discussion": 27995, "discussion analysis": 42987, "hopes provide": 70412, "theoretical basis": 166022, "basis practical": 16455, "practical guidance": 125417, "applications promoting": 10648, "model service": 104552, "communication generation": 26377, "future given": 62266, "given characteristics": 65849, "suitable context": 158691, "context referred": 30894, "problem challenging": 128197, "stackelberg game": 154718, "propose iterative": 131886, "achieve nearoptimal": 3687, "selection decisions": 147844, "guaranteed optimal": 68115, "rigorous theoretical": 144876, "effectiveness robustness": 46286, "llm conversational": 93561, "agent memory": 6473, "enhancing integration": 49495, "memory maintain": 100422, "maintain context": 98321, "context continuity": 30716, "enhance agent": 49147, "complex multiturn": 27489, "potential broader": 124630, "field providing": 58233, "versatile conversational": 176561, "taken world": 160974, "certain forms": 21389, "language analyze": 83150, "gene expression": 62903, "models repurposed": 108938, "prediction tools": 125880, "tools able": 167092, "systems review": 160597, "outlines different": 117504, "llm scaling": 93980, "remarkable scaling": 140287, "literature presents": 93189, "dark cloud": 34551, "facilitate scaling": 56650, "support pretraining": 159320, "dataset currently": 36215, "conduct supervised": 29182, "sft direct": 149738, "resulting creation": 143096, "llama2 70b": 93350, "particularly domains": 120174, "benchmarking data": 17132, "analysis knowledge": 8992, "analysis particularly": 9052, "particularly focus": 120193, "focus datadriven": 59966, "llms dimensions": 94937, "foundational knowledge": 60835, "models numerical": 108321, "knowledge application": 81747, "ability quickly": 2335, "quickly comprehend": 135341, "information generate": 76471, "multiple views": 111084, "use technical": 172902, "technical knowledge": 163707, "analysis challenges": 8843, "types classification": 170335, "additionally weve": 5147, "domainspecific dataset": 44572, "llms release": 96376, "benchmark aims": 16826, "foster advancement": 60676, "advancement llms": 5850, "llms field": 95259, "analysis evaluating": 8915, "business education": 19538, "education rapid": 45577, "evolution artificial": 52255, "especially domain": 50457, "education remains": 45581, "performance seven": 122058, "major llms": 98440, "turbo gpt4": 170156, "gpt4 turbo": 67202, "shows llms": 150450, "models surpassing": 109317, "study research": 157595, "ability explain": 2156, "answers evaluate": 10017, "generate alternative": 63392, "scenarios latest": 146637, "latest llm": 89561, "marked improvements": 99218, "improvements reasoning": 73938, "potential complex": 124649, "promise education": 130171, "llms academic": 94273, "technology advances": 164121, "ai interaction": 7049, "access diverse": 2854, "diverse learners": 43564, "educational environment": 45607, "expertise research": 54629, "research sets": 142068, "experiences improve": 53866, "relational datasets": 139272, "models assessed": 105401, "effectively study": 46082, "worldly knowledge": 179636, "representations models": 140850, "evaluating pretrained": 51373, "effectiveness demonstrated": 46155, "including models": 74623, "evolving field": 52310, "reports complex": 140587, "innovative methodology": 77178, "library specifically": 92043, "significantly advances": 150935, "method adeptly": 100661, "research marks": 141903, "marks substantial": 99276, "fields industrial": 58280, "way application": 177771, "advanced nlp": 5790, "analysis corporate": 8870, "extraction mie": 56325, "gains significant": 62529, "content increases": 30527, "current mie": 34182, "mie tasks": 102200, "unify mie": 171777, "research serves": 142067, "domain code": 44107, "prevailing trend": 127499, "adopting datadriven": 5612, "datadriven methodologies": 36041, "challenge persists": 21703, "depicted images": 39187, "images address": 72392, "improve visual": 73659, "visual tools": 177332, "tools existing": 167155, "evaluated effectiveness": 51173, "contemporary digital": 30411, "traditional pretrained": 167678, "performance integrating": 121688, "applied recently": 10804, "cot significantly": 32906, "fundamental nlp": 61960, "study sought": 157641, "task distinct": 161331, "retrieval iii": 144060, "iii text": 72121, "method facilitate": 100865, "tutors performance": 170201, "students making": 156879, "errors research": 50397, "strategic approach": 155936, "students drawing": 156856, "students identify": 156866, "applying strategy": 10927, "arduous timeconsuming": 12311, "timeconsuming large": 166547, "llms promise": 96222, "promise providing": 130197, "known regarding": 82624, "capacity generative": 20507, "reallife tutoring": 136338, "making errors": 98736, "errors models": 50381, "error notably": 50310, "instances students": 77844, "errors human": 50365, "dataset dialogues": 36240, "transfer specifically": 168993, "specifically analyze": 154136, "presents set": 126635, "used metric": 173146, "llm focusing": 93682, "coding procedure": 25398, "procedure proposed": 128706, "work leads": 179094, "initial codes": 77016, "mathematical calculation": 99555, "independent identically": 75499, "identically distributed": 71779, "hindering applications": 70147, "shifts address": 149935, "crossdomain learning": 33626, "domaininvariant knowledge": 44338, "shift training": 149925, "data visual": 35952, "learning traditional": 91087, "methods concentrate": 101392, "image modality": 72288, "alleviate domain": 8286, "shift work": 149929, "models convert": 105798, "domain generated": 44176, "tasks domain": 162252, "settings demonstrated": 149552, "scoring tools": 147203, "comprehension study": 27933, "capabilities constraints": 19833, "representative large": 140926, "context automated": 30691, "statistical machine": 155494, "techniques face": 163900, "requirements limited": 141306, "contrast study": 31328, "employs chatgpt": 47955, "evaluation english": 51566, "english essays": 49046, "employing experimental": 47921, "scoring results": 147195, "effective design": 45734, "necessitate profound": 112167, "technical proficiency": 163713, "proficiency prompts": 129675, "global reasoning": 66104, "sequences document": 148814, "method seamlessly": 101083, "seamlessly extends": 147298, "pretraining leverage": 127376, "flow information": 59874, "enforce model": 48804, "method additional": 100656, "stage using": 154755, "length allowing": 91347, "latency extensive": 89482, "ecommerce healthcare": 45385, "complexities associated": 27651, "introduce strategies": 80112, "selection optimal": 147875, "optimal set": 116952, "nphard problem": 114782, "method adjust": 100662, "receiving responses": 137327, "using entropy": 174169, "demonstrate efficiency": 38319, "promising prospects": 130299, "software applications": 152770, "designed interact": 39899, "plethora different": 123554, "different purposes": 41952, "models arguments": 105388, "computational argumentation": 28330, "machinereadable format": 98163, "review papers": 144530, "benefits drawbacks": 17463, "approach entails": 11187, "development integration": 41139, "generate chinese": 63412, "chinese classical": 23613, "classical poetry": 23945, "content usually": 30645, "number characters": 114837, "task means": 161540, "showing existing": 150166, "chinese spelling": 23664, "model head": 103789, "characterlevel bytelevel": 22496, "release finetuned": 139468, "following complex": 60260, "2023 held": 703, "compare performances": 26718, "interactive robots": 79336, "robots using": 145229, "resembles human": 142286, "2023 competition": 697, "designed challenging": 39832, "travel agent": 169620, "develop dialogue": 40774, "participating teams": 120037, "overview task": 118450, "following ability": 60250, "breaks complex": 19000, "llms compliance": 94669, "tasks alongside": 161940, "comprising 500": 28256, "categories experiments": 21096, "evaluation advanced": 51424, "framework reveals": 61392, "reveals strengths": 144449, "strengths areas": 156249, "improvement particularly": 73832, "contributes novel": 31444, "study automatic": 157179, "development deep": 41079, "make assumptions": 98484, "dl frameworks": 43784, "software artifacts": 152772, "requirements design": 141282, "failures existing": 57021, "approaches tools": 11929, "usually depend": 174895, "sources code": 153496, "pull requests": 133712, "resources overcome": 142460, "largest dataset": 89432, "repositories github": 140623, "machine classification": 97999, "popular dl": 123994, "chatgpt identifying": 23057, "dataset better": 36134, "2nd best": 939, "best f1score": 17672, "achieved chatgpt": 3795, "model recommend": 104427, "provides researchers": 133206, "practitioners better": 125524, "projects language": 130113, "competence various": 27124, "study fundamental": 157377, "question language": 134898, "math based": 99521, "assumption llms": 13565, "capable compressing": 20411, "addition problems": 4889, "numbers llms": 114985, "numbers perform": 114987, "computational ability": 28325, "scales model": 146375, "preliminary research": 126138, "suggests llms": 158665, "future investigations": 62276, "years especially": 179895, "enabled new": 48144, "applications number": 10620, "understanding literature": 171335, "absence unified": 2597, "lms address": 97104, "address aforementioned": 5154, "framework accompanied": 60913, "concrete examples": 28920, "examples widely": 52725, "used models": 173151, "transformers pretrained": 169344, "tasks widely": 163475, "explore examples": 55200, "order enable": 117190, "transformers work": 169372, "domains compare": 44369, "use original": 172793, "recently surge": 138004, "benchmarks llm": 17295, "visual encoding": 177166, "encoding models": 48514, "encoding model": 48513, "data named": 35410, "highquality textual": 70087, "set use": 149341, "minimize distance": 102374, "alignment operation": 8205, "facilitates better": 56677, "better learning": 17929, "resulting higher": 143103, "retrieval traditional": 144156, "based sparse": 16105, "queries recent": 134526, "used dense": 173026, "classic benchmark": 23922, "benchmark scientific": 17083, "dense vectors": 39112, "hybrid model": 71568, "propose combining": 131749, "combining methods": 25988, "yields significantly": 180037, "integrating classical": 78582, "contemporary deep": 30409, "retrieval domain": 144043, "improved transformerbased": 73728, "reaches performance": 136132, "steps preserving": 155759, "amounts unlabeled": 8707, "input using": 77367, "using selfsupervised": 174699, "review present": 144534, "present summary": 126468, "processing bert": 129121, "gpt focus": 66418, "exploring applications": 55454, "models genomics": 106494, "potential prospects": 124927, "prospects large": 132544, "moments videos": 110040, "automatically understanding": 14872, "language dialogues": 83255, "cross selfattention": 33603, "rely ground": 139847, "understanding audio": 171128, "text automatically": 164851, "speechtotext model": 154493, "ted talk": 164182, "textual cues": 165888, "sets new": 149384, "multimodal cues": 110614, "using ground": 174283, "truth information": 169884, "tablebased question": 160759, "verification compared": 176470, "requires extraction": 141374, "underlying semantics": 170871, "data chainofthought": 34746, "context open": 30859, "question effectively": 134861, "leverage tabular": 91668, "data explicitly": 35021, "used reasoning": 173206, "learning iteratively": 90595, "represent tabular": 140657, "llms dynamically": 94998, "dynamically plan": 45195, "previous ones": 127623, "results enabling": 143375, "enabling accurate": 48263, "reliable predictions": 139744, "benchmarks multiple": 17310, "model project": 104363, "report introduces": 140538, "specifically knowledge": 154238, "rte tasks": 145677, "applications additionally": 10408, "llm accessible": 93428, "chinese opensource": 23654, "model community": 103309, "7b large": 1628, "processing lengthy": 129184, "model enabling": 103535, "texts various": 165799, "geographical areas": 65708, "texts report": 165767, "applying various": 10931, "correlation effectiveness": 32538, "patterns indicating": 120541, "carried using": 20829, "models moving": 108236, "ones explore": 115994, "prompts predicting": 131409, "automatically identified": 14828, "iterative approach": 81114, "approach developed": 11119, "evaluation refinement": 51820, "refinement large": 138760, "lack principled": 82988, "principled understanding": 127849, "paper pioneer": 119099, "factuality precision": 56918, "harmonic mean": 68762, "recall overall": 137273, "obtain reliable": 115495, "reliable evaluation": 139721, "evaluation outcome": 51753, "propose atomic": 131720, "score given": 147069, "given evaluation": 65880, "language rationale": 86688, "containing 300": 30324, "reasoning entailment": 136831, "effectiveness experiments": 46171, "relevant code": 139579, "metaevaluation datasets": 100569, "values current": 175528, "alignment ai": 8119, "agents possess": 6687, "propose evolutionary": 131812, "evolutionary framework": 52289, "framework agent": 60936, "process evolution": 128820, "environment social": 50031, "agents better": 6554, "maintaining proficiency": 98374, "proficiency general": 129655, "tests conducted": 164776, "various open": 176085, "open closedsource": 116217, "classification depression": 23983, "interactions diverse": 79221, "diverse responses": 43634, "elicited various": 47055, "contexts particularly": 31039, "prevalence negative": 127506, "negative outcomes": 112523, "outcomes mental": 117458, "necessitating comprehensive": 112186, "impact individuals": 72666, "majority vote": 98470, "acceptable level": 2831, "methods bert": 101348, "bart model": 15583, "highest f1": 69665, "076 showing": 71, "compared methods": 26856, "methods evaluated": 101489, "value dataset": 175475, "identifying emotions": 71998, "depression symptoms": 39321, "magnitude compute": 98199, "scaling recent": 146441, "compute scale": 28455, "performance order": 121879, "individual task": 75742, "significantly predictable": 151122, "tasks poses": 162960, "challenges adapting": 21762, "referencing external": 138703, "comparing prompt": 27007, "prompt addition": 130366, "directly compared": 42523, "compared quality": 26903, "quality retrieved": 134255, "way measure": 177851, "summarization explore": 158830, "empirically run": 47801, "run experiments": 145738, "evaluating generated": 51303, "second compare": 147461, "compare generated": 26682, "set retrieval": 149299, "approaches advanced": 11691, "improvements human": 73908, "judgments cases": 81330, "representation generated": 140692, "processing llms": 129186, "complex types": 27635, "arbitrarily long": 12074, "queries attend": 134452, "causal nature": 21212, "prior context": 127886, "queries present": 134518, "memory kv": 100412, "memory memory": 100428, "length extension": 91363, "task effectiveness": 161342, "model benchmarking": 103204, "managing knowledge": 98905, "knowledge efficiently": 81911, "designed use": 39970, "aims efficiently": 7599, "effectiveness conducted": 46149, "conducted evaluation": 29236, "setting results": 149505, "evaluation demonstrated": 51536, "systems benefits": 160271, "efficient resolution": 46706, "available furthermore": 15115, "consistently outperformed": 29895, "outperformed counterparts": 117655, "attractive option": 14067, "preliminary insights": 126132, "knowledge management": 82216, "automatic agent": 14636, "achieved considerable": 3799, "face challenge": 56511, "synthetic trajectories": 160087, "gpt4 given": 67029, "data tool": 35868, "tool library": 167005, "automatically synthesizes": 14865, "strategy automatically": 156106, "differentiate based": 42104, "parallel performance": 119575, "compared various": 26965, "policy making": 123859, "making generative": 98743, "intelligence including": 78841, "provide stateoftheart": 132981, "critical domains": 33484, "education health": 45543, "existing inequalities": 53386, "pervasive social": 122774, "problems generative": 128522, "education offers": 45563, "offers personalized": 115833, "digital divide": 42280, "proliferation misinformation": 130128, "evaluates existing": 51233, "research identifies": 141837, "identifies critical": 71842, "critical gaps": 33500, "directions conclude": 42463, "highlighting role": 69833, "potential reduce": 124937, "discuss strengths": 42948, "weaknesses existing": 177964, "policy frameworks": 123837, "european union": 50869, "union united": 171815, "states united": 155441, "united kingdom": 171874, "fails fully": 56997, "socioeconomic challenges": 152717, "interdisciplinary collaborations": 79379, "challenges generative": 21890, "llms tackling": 96759, "collecting multiple": 25719, "accurate answer": 3434, "incorporates key": 75057, "prompting tip": 131111, "initial prompt": 77045, "derive final": 39341, "previous reasoning": 127631, "achieves enhanced": 4008, "enhanced mathematical": 49349, "traditional llms": 167649, "llms accuracy": 94282, "evaluating agents": 51259, "agents data": 6574, "require agents": 141069, "incorporates llms": 75065, "analysis agents": 8807, "evaluate human": 50983, "automatically evaluated": 14798, "framework develop": 61079, "trustworthiness large": 169851, "nonetheless llms": 114053, "particularly realm": 120247, "llms emerges": 95036, "emerges important": 47492, "discussion open": 42999, "truthfulness safety": 169899, "study evaluating": 157329, "consisting 30": 29940, "30 datasets": 959, "positively related": 124318, "note llms": 114300, "compromise utility": 28273, "benign prompts": 17502, "technologies employed": 164085, "analyzing effectiveness": 9365, "training humans": 168477, "given opportunity": 65946, "strategy detect": 156127, "techniques study": 164030, "example train": 52509, "year 2023": 179876, "backdoor behavior": 15424, "learning adversarial": 90186, "unsafe behavior": 172136, "remove backdoor": 140357, "produce chainofthought": 129376, "furthermore removing": 62155, "teach models": 163608, "backdoor triggers": 15425, "behavior standard": 16649, "coverage using": 33064, "favor particular": 57326, "evidence supports": 52225, "identifying instances": 72008, "automatically detecting": 14790, "news story": 113584, "analysis news": 9035, "coverage multiple": 33060, "sources identify": 153509, "information news": 76598, "based importance": 15866, "detection used": 40647, "tested unseen": 164684, "stories results": 155886, "way accurate": 177761, "accurate diagnosis": 3449, "diagnostic dialogue": 41382, "consistency quality": 29785, "quality care": 134055, "based ai": 15651, "optimized diagnostic": 117088, "based simulated": 16100, "diverse disease": 43511, "contexts designed": 31014, "reasoning communication": 136761, "primary care": 127802, "care physicians": 20766, "study textbased": 157665, "structured clinical": 156626, "study included": 157405, "case scenarios": 20890, "scenarios clinical": 146550, "physicians patient": 122923, "practice research": 125496, "results represent": 143746, "detection explanation": 40504, "models video": 109630, "events timeline": 52131, "years suffer": 179940, "suffer high": 158429, "videobased large": 176752, "model free": 103696, "explain reasons": 54714, "novel network": 114611, "longterm context": 97598, "modeling design": 104988, "retrieval scenarios": 144132, "various information": 175977, "internet users": 79598, "users perceive": 173728, "digital tools": 42297, "carefully selected": 20817, "cover broad": 33037, "typical online": 170455, "queries ensuring": 134475, "intriguing patterns": 79877, "results offer": 143644, "digital information": 42287, "innovations field": 77151, "light specific": 92152, "specific contexts": 153963, "hybrid models": 71569, "leverage strengths": 91666, "llms insights": 95645, "insights gained": 77570, "landscape digital": 83094, "interaction technologies": 79184, "probing structured": 128166, "structured semantics": 156675, "semantics understanding": 148325, "advancement capabilities": 5830, "llms triggered": 96860, "evaluate comprehensive": 50934, "tasks deep": 162163, "structure understanding": 156612, "language rarely": 86686, "natural formal": 111529, "language incontext": 83418, "structured logical": 156654, "sizes different": 152093, "todays stateoftheart": 166683, "plenty room": 123552, "model directly": 103471, "languages general": 87016, "benchmarks large": 17284, "tasks safety": 163195, "issues llm": 81031, "major obstacle": 98443, "obstacle widespread": 115454, "application studies": 10387, "studies extensively": 157002, "extensively investigated": 55987, "google meta": 66324, "efforts responsible": 46931, "modules llm": 109990, "including input": 74571, "based propose": 16044, "comprehensive taxonomy": 28142, "systematically analyzes": 160170, "llm discusses": 93600, "strategies furthermore": 156003, "prevalent benchmarks": 127512, "benchmarks aiming": 17168, "aiming facilitate": 7551, "paper help": 118967, "evidence generate": 52183, "augmented reasoning": 14369, "methods variations": 101923, "cumulative reasoning": 33990, "reasoning cr": 136785, "inconsistent outputs": 74832, "framework instead": 61228, "focusing exclusively": 60180, "series intermediate": 148931, "powerful approach": 125255, "unlocks true": 172049, "tool achieves": 166931, "09 f1": 89, "qg natural": 133947, "benefits use": 17495, "domain order": 44241, "systems designed": 160334, "research assessed": 141604, "applies large": 10831, "generated learning": 63909, "taxonomy automatically": 163573, "use practice": 172806, "practice results": 125497, "quality compared": 134068, "metrics indicate": 102091, "demonstrate great": 38365, "llms suffering": 96722, "hallucinations work": 68464, "propose inferencetime": 131876, "llms decode": 94788, "rooted information": 145606, "theory llm": 166088, "llm tokens": 94056, "lower probabilities": 97836, "probabilities llm": 128102, "proper nouns": 131613, "information selecting": 76753, "model repeatedly": 104453, "effectively help": 46014, "llms elicit": 95015, "contexts significant": 31052, "modalities existing": 102924, "capturing global": 20727, "global information": 66094, "consequently models": 29548, "effectively understand": 46101, "require nuanced": 141167, "develop models": 40805, "language enhanced": 83287, "model capturing": 103251, "information like": 76561, "model excels": 103584, "detailed understanding": 40327, "understanding local": 171341, "videos achieve": 176768, "objective design": 115181, "construction pipeline": 30231, "demo model": 38176, "records using": 138318, "patients medical": 120490, "main reason": 98264, "seeking medical": 147668, "medical care": 100139, "provides critical": 133128, "information healthcare": 76488, "providers make": 133099, "timeconsuming healthcare": 166543, "autocompletion tool": 14461, "develop machine": 40795, "lstm model": 97958, "different variants": 42080, "biomedical generative": 18543, "utilizing openai": 175225, "openai api": 116321, "gpt4 evaluate": 66987, "based perplexity": 16001, "bertscore cosine": 17646, "remarkably low": 140320, "llms biogpt": 94501, "leads development": 89884, "healthcare settings": 69018, "good language": 66276, "systematic shortcomings": 160155, "errors explore": 50357, "visual embedding": 177158, "pairs images": 118586, "pairs construct": 118555, "straightforward questions": 155926, "questions basic": 135054, "hallucinated explanations": 68342, "models notable": 108314, "notable correlation": 114218, "propose mixture": 131929, "integrating vision": 78632, "mllms significantly": 102855, "challenge accurate": 21574, "crucial future": 33802, "latest stateoftheart": 89569, "stateoftheart research": 155325, "generate scientific": 63698, "task configurations": 161271, "models decoderonly": 105858, "decoderonly large": 37540, "generation integration": 64751, "force language": 60359, "expansive knowledge": 53726, "exceptional zeroshot": 52845, "various facets": 175935, "field including": 58177, "including information": 74570, "methodologies specifically": 101204, "supervised counterparts": 159096, "counterparts like": 32975, "trec dl": 169652, "models indomain": 106755, "indomain evaluations": 75795, "modalities llms": 102938, "capability comprehend": 20274, "comprehend diverse": 27844, "frameworks largely": 61518, "largely relied": 89170, "trained textual": 168100, "trained multimodal": 168016, "training projection": 168660, "alignment mechanism": 8193, "mechanism operates": 100017, "language aligns": 83146, "aligns llms": 8271, "output input": 117945, "models avoiding": 105439, "associated latent": 13496, "multiple training": 111073, "training stages": 168762, "single efficient": 151793, "performance state": 122103, "achieving considerable": 4162, "usage training": 172478, "algorithm large": 7822, "practical way": 125465, "complex humanwritten": 27431, "questions address": 135028, "called chain": 19649, "interactions large": 79236, "data reason": 35613, "derive logical": 39346, "chest xray": 23585, "xray images": 179856, "medical foundation": 100177, "drawn pretraining": 44953, "initial stage": 77056, "text popular": 165358, "investigating quality": 80616, "social dimensions": 152567, "experiments illuminate": 54309, "implicit preferences": 72987, "preferences data": 126034, "act like": 4295, "english content": 49037, "overall hope": 118197, "encourage new": 48601, "curation practices": 34038, "practices social": 125517, "claimed large": 23829, "languages possible": 87090, "published experimental": 133693, "set synthetic": 149319, "english words": 49121, "rules based": 145708, "struggles learn": 156787, "languages compared": 86964, "hope approach": 70345, "line inquiry": 92942, "architectures tested": 12298, "learn llms": 90003, "used tools": 173270, "tools cognitive": 167124, "developed gpt4": 40879, "answers research": 10074, "systems increased": 160434, "data include": 35201, "framework effectively": 61097, "graph embeddings": 67521, "embeddings finally": 47234, "systems case": 160282, "study machine": 157477, "especially emergence": 50462, "significantly transformed": 151173, "production use": 129596, "use software": 172880, "systems presents": 160544, "challenges challenges": 21795, "challenges primarily": 22015, "ensuring safety": 49758, "subsequently influencing": 157980, "overall robustness": 118234, "protocol designed": 132582, "interface different": 79426, "enhances robustness": 49442, "realworld case": 136414, "despite application": 40080, "descriptions llms": 39475, "facilitating comprehensive": 56702, "understanding execution": 171226, "potential instruction": 124790, "tuning enhance": 170001, "novel instruction": 114551, "20 tasks": 610, "experiments analyze": 54144, "effects instruction": 46335, "design template": 39784, "model judge": 103911, "finegrained evaluation": 58865, "evaluation assessing": 51439, "generated visionlanguage": 64048, "vlms challenging": 177451, "requires checking": 141341, "recent approach": 137440, "lms lms": 97165, "feedback dataset": 57662, "customized score": 34411, "score rubrics": 147096, "collection train": 25756, "evaluator model": 52048, "pearson correlation": 120643, "transparent accessible": 169594, "evaluation vlms": 51932, "sample diversity": 145944, "augmentation tasks": 14314, "numbers text": 114988, "needed assess": 112436, "assess different": 13070, "investigate text": 80502, "llms augmenting": 94449, "datasets measure": 36976, "measure effects": 99843, "performance compare": 121278, "mining domain": 102407, "data underexplored": 35900, "records ehrs": 138312, "ehrs challenging": 46959, "high expertise": 69459, "expertise create": 54607, "based expert": 15792, "data following": 35069, "different directions": 41738, "generates sentences": 64110, "symptoms based": 159845, "based label": 15895, "label definition": 82679, "ehrs using": 46960, "gold dataset": 66238, "longitudinal ehrs": 97560, "datasets improves": 36922, "synthetic clinical": 160014, "data complex": 34807, "information maintaining": 76569, "tools numerous": 167216, "numerous ways": 115071, "generation programming": 64967, "prompts analyze": 131159, "impact research": 72723, "researchers quickly": 142252, "furthermore generative": 62085, "improved point": 73709, "summarize extract": 158906, "reasoning provides": 137078, "researchers ability": 142161, "related technical": 139215, "topics used": 167374, "summarization propose": 158863, "propose directions": 131785, "ai text": 7276, "concerns arisen": 28764, "defining ai": 37954, "ai hallucination": 7021, "databases present": 36024, "literature discuss": 93165, "effort bring": 46834, "bring consistency": 19120, "affect multiple": 6309, "assistant recent": 13399, "times increasing": 166591, "increasing awareness": 75304, "environmental challenges": 50040, "life current": 92075, "natural world": 111962, "assist people": 13354, "conversations propose": 31959, "dialogues users": 41571, "dataset help": 36335, "task ii": 161456, "performed extensive": 122369, "automated manual": 14567, "performance exhibited": 121476, "weaknesses diverse": 177962, "exhibit inconsistent": 53065, "languages reasoning": 87106, "languages imbalance": 87025, "multilingual training": 110561, "languages propose": 87100, "aiming align": 7535, "align reasoning": 8031, "translation model": 169486, "model consistency": 103351, "reasoning consistency": 136770, "health prediction": 68959, "wearable sensor": 177981, "user demographics": 173395, "techniques public": 163997, "health datasets": 68940, "exhibits comparable": 53186, "tasks ablation": 161879, "context enhancement": 30745, "capability finetuned": 20294, "observe context": 115364, "prompts combining": 131192, "exhibits synergistic": 53231, "enhances overall": 49429, "gpt4 opensource": 67094, "models misinformation": 108189, "effective misinformation": 45814, "choice llms": 23692, "strong domain": 156376, "potentially expensive": 125101, "mixed results": 102724, "limitations commonly": 92554, "llama2 gpt35": 93362, "models gradually": 106555, "gpt35 exhibits": 66806, "compromise performance": 28271, "enabling complex": 48279, "complex pipelines": 27517, "tuning crosslingual": 169982, "technique elicit": 163763, "language generalization": 83338, "generalization bridge": 63139, "propose crosslingual": 131771, "languages lowresource": 87053, "crosslingual incontext": 33654, "accelerate multilingual": 2777, "source languages": 153450, "examples randomly": 52677, "enhance multilingual": 49241, "english facilitate": 49050, "training lowresource": 168564, "languages crosslingual": 86971, "languages highlighting": 87021, "understanding semantics": 171472, "highquality test": 70083, "sets task": 149407, "question answers": 134828, "28k data": 906, "adapted existing": 4684, "datasets evaluated": 36829, "varying number": 176297, "versions perform": 176624, "counterparts additionally": 32967, "capabilities furthermore": 19909, "demonstrate variability": 38608, "dataset overall": 36443, "reasoning novel": 137006, "novel multistage": 114609, "language agnostic": 83142, "textdavinci003 gpt4": 165624, "incorporates innovative": 75055, "innovative concept": 77164, "resulting production": 143130, "including english": 74506, "difficulty highlighting": 42213, "languages survey": 87140, "survey statistical": 159698, "perspectives results": 122718, "results rely": 143743, "leading fast": 89817, "width depth": 178486, "terms sample": 164466, "data dimension": 34918, "highly nonconvex": 69930, "specifically review": 154282, "modern generative": 109797, "examples context": 52544, "learning theory": 91081, "knowledge action": 81729, "language modelpowered": 84036, "modelpowered chatbot": 105141, "operational success": 116767, "enriching user": 49625, "llms provided": 96260, "build conversational": 19310, "conversational applications": 31845, "using best": 174009, "interested developing": 79385, "developing deploying": 40986, "deploying llmbased": 39248, "knowledge methodology": 82229, "resources used": 142497, "used demo": 173025, "serve bridge": 148966, "experts address": 54640, "practical needs": 125436, "foster collaborative": 60677, "collaborative environment": 25613, "environment data": 49991, "analysis prediction": 9075, "building models": 19429, "abundant highquality": 2706, "highquality event": 70024, "sequence data": 148731, "certain applications": 21365, "structured event": 156632, "sequences available": 148806, "noisy incomplete": 113999, "sequences effectively": 148815, "relies knowledge": 139802, "guide generative": 68178, "model causal": 103258, "generated sequences": 63975, "discover useful": 42741, "code evaluation": 24812, "data improving": 35196, "improving domain": 74132, "enhance domainspecific": 49185, "comprehension data": 27897, "data formatted": 35075, "patterns significantly": 120563, "knowledge furthermore": 82017, "pairs extracted": 118576, "offers limited": 115824, "knowledge corpus": 81842, "corpus refine": 32347, "stage additionally": 154725, "additionally method": 5091, "incorporates parameterefficient": 75072, "improvement exceeding": 73789, "sophisticated pipelines": 153321, "induce large": 75819, "exhibit capability": 53029, "selfcorrection large": 147967, "lms explicitly": 97136, "explicitly prompted": 54986, "completing steps": 27315, "models aiming": 105325, "parameters specifically": 119866, "pipeline constructing": 123044, "propose partial": 132063, "aiming endow": 7547, "finetuning conduct": 59206, "reasoning experiments": 136849, "empowering ability": 48010, "study era": 157314, "health social": 68975, "media work": 100122, "detection depression": 40485, "bilstm gru": 18458, "gru bigru": 68091, "architecture details": 12149, "range learning": 135640, "learning contexts": 90323, "according experiment": 3033, "relatively poorer": 139413, "situations work": 151951, "providing insightful": 133320, "depression detection": 39320, "llms weak": 96999, "tool learners": 167002, "significantly extend": 151005, "standalone llms": 154793, "llms empowering": 95053, "interact external": 79055, "complete various": 27294, "demands llms": 38162, "tool invocation": 166997, "summarization traditional": 158890, "approach decomposes": 11093, "focuses specific": 60162, "capability effectively": 20284, "train framework": 167771, "paradigm finetune": 119454, "backbone llm": 15415, "model comprehensive": 103326, "multillm framework": 110576, "learn preferences": 90033, "choice paper": 23696, "focus ability": 59938, "prompted respond": 130834, "human decision": 70687, "provided sample": 133089, "sample set": 145962, "based provided": 16048, "learn data": 89970, "analysis yields": 9241, "expected utility": 53762, "potential personalized": 124903, "decision aid": 37364, "gpt demonstrates": 66407, "evaluation parameter": 51764, "emerged viable": 47408, "viable solution": 176653, "solution improving": 152947, "requiring massive": 141498, "work multilingual": 179130, "smaller opensource": 152426, "models equitable": 106141, "datasets determine": 36787, "determine effect": 40701, "various parameters": 176098, "higher rank": 69627, "ones english": 115992, "english performance": 49093, "finetuning improves": 59299, "degrading performance": 38005, "impact critical": 72632, "quantum circuit": 134435, "quantum advantage": 134433, "advantages terms": 6154, "trained embedding": 167906, "vectors extracted": 176406, "perform classification": 120883, "acceptability judgment": 2827, "considered natural": 29693, "approach tested": 11605, "sentences extracted": 148578, "current quantum": 34219, "quantum computers": 134436, "applications furthermore": 10537, "aided explainable": 7373, "algorithms correctly": 7913, "classify complex": 24206, "sentences compared": 148563, "tokenization large": 166757, "applications retrieval": 10672, "llms access": 94276, "access information": 2863, "size context": 151973, "window extended": 178518, "extended finetuning": 55658, "context llm": 30835, "arbitrary context": 12077, "length inference": 91367, "preserving llms": 126690, "modeling understanding": 105116, "efficient flexible": 46626, "method extend": 100855, "model source": 104634, "tasks tend": 163350, "data nonstandard": 35423, "alignment train": 8251, "model translate": 104806, "english finetuning": 49051, "perform targeted": 121059, "use english": 172600, "english instruction": 49065, "unlock llms": 172033, "abilities experimental": 1905, "models faithful": 106304, "excel tasks": 52775, "confidence llms": 29355, "increasing risk": 75358, "important measure": 73156, "measure called": 99832, "inference api": 75962, "able make": 2530, "make prediction": 98577, "prediction words": 125886, "applied llm": 10782, "promise assisting": 130168, "discovery applications": 42758, "understanding intricate": 171313, "intricate scientific": 79862, "scientific concepts": 146941, "scientific reasoning": 146986, "reasoning central": 136731, "framework address": 60929, "scientific questions": 146985, "applying framework": 10891, "proofs finetuned": 131588, "capabilities scientific": 20168, "sacrificing language": 145792, "capabilities base": 19796, "diverse scientific": 43642, "wider research": 178444, "adoption large": 5639, "llms commonplace": 94643, "models wellsuited": 109683, "study tackle": 157657, "tasks answering": 161947, "answering multiple": 9909, "models choice": 105623, "choice order": 23695, "testing task": 164759, "understanding using": 171526, "using mcq": 174482, "intelligence field": 78817, "paper articulate": 118752, "forms human": 60600, "suggest ai": 158515, "best tools": 17761, "tools exploring": 167159, "space space": 153619, "combine novel": 25882, "humanlevel accuracy": 71222, "solve ways": 153169, "usually performed": 174911, "implement algorithm": 72816, "aforementioned tasks": 6373, "parts network": 120303, "responsible task": 142974, "llmbased multimodal": 94158, "models revolutionizing": 108997, "entire machine": 49808, "lifecycle training": 92085, "deployment substantial": 39307, "terms hardware": 164428, "hardware resources": 68694, "support growth": 159295, "scalable environmentally": 146242, "environmentally sustainable": 50057, "survey delves": 159622, "delves critical": 38107, "research examining": 141768, "designs implementations": 40020, "resource challenges": 142375, "future breakthroughs": 62232, "breakthroughs field": 19020, "conflict conflict": 29408, "present meticulously": 126369, "november 2023": 114767, "emotional moral": 47582, "moral language": 110116, "trends time": 169728, "emotionally charged": 47594, "light complex": 92104, "complex interplay": 27447, "instructing llms": 77959, "daily critical": 34506, "propose current": 131772, "hallucinate possible": 68334, "possible fact": 124422, "prompting experiments": 130930, "different degree": 41727, "possible utilize": 124474, "prompting way": 131124, "way detect": 177792, "datasets perform": 37027, "prompting incorporates": 130966, "trends results": 169727, "function type": 61862, "type benchmark": 170299, "studying language": 157719, "advancing artificial": 6077, "research faces": 141785, "faces significant": 56576, "challenges include": 21909, "unknown target": 171942, "costs memory": 32834, "requirements lack": 141303, "interpretability inference": 79643, "research propose": 142002, "concept anchor": 28584, "function designed": 61833, "construct series": 30158, "simulate various": 151649, "particularly suitable": 120261, "commonly observed": 26229, "standardized benchmarks": 154902, "benchmarks enhancing": 17231, "gap research": 62728, "research increasingly": 141850, "critical llms": 33518, "peoples everyday": 120745, "interactions study": 79270, "addresses important": 5416, "addressing major": 5462, "interactions grounded": 79228, "interaction logs": 79142, "logs human": 97430, "subsequently conduct": 157967, "state user": 155026, "analysis pinpoint": 9058, "pinpoint future": 122997, "prioritizing user": 127977, "essential crafting": 50596, "llms just": 95695, "technologically advanced": 164073, "ai mere": 7083, "way users": 177886, "gap investigating": 62668, "users recently": 173761, "substantial portion": 158091, "underlining significance": 170824, "ways developers": 177899, "building applications": 19367, "llms retrievalaugmented": 96445, "rag finetuning": 135427, "rag augments": 135423, "augments prompt": 14409, "pipeline finetuning": 123057, "multiple popular": 111000, "pipeline consists": 123042, "stages including": 154767, "using finetuning": 174210, "finetuning leveraging": 59350, "gpt4 evaluating": 66989, "evaluating results": 51384, "pipeline conduct": 123040, "study potentially": 157536, "knowledge quantitative": 82325, "finetuning accuracy": 59153, "increases accuracy": 75279, "particular experiment": 120077, "experiment demonstrate": 53888, "demonstrate finetuned": 38344, "leverages information": 91735, "answer specific": 9784, "questions increasing": 135165, "47 72": 1255, "llms adapted": 94338, "ask experts": 12840, "flexible generation": 59808, "abilities powerful": 1986, "powerful data": 125268, "sources domains": 153502, "domains available": 44359, "hallucinations biases": 68422, "applications case": 10439, "cluster novel": 24592, "chatgpt producing": 23214, "text finally": 165086, "experts evaluate": 54653, "safety generated": 145862, "producing highly": 129556, "like mental": 92351, "making unsuitable": 98817, "annotation tools": 9557, "detection important": 40525, "important research": 73185, "topics natural": 167358, "tasks widespread": 163477, "researchers started": 142260, "emotion intensity": 47568, "reason lack": 136568, "useful downstream": 173322, "lack highquality": 82955, "based finetuning": 15819, "analysis instruction": 8979, "tasks support": 163323, "llm instruction": 93767, "tuning comprehensive": 169977, "domains test": 44537, "model variety": 104867, "outperform opensourced": 117613, "capabilities affective": 19771, "demonstrates models": 38866, "tools supporting": 167263, "supporting student": 159383, "learning recommendation": 90906, "based understanding": 16158, "explainability approaches": 54721, "approach utilize": 11651, "generation explanations": 64638, "proposed llmbased": 132326, "prompts context": 131205, "group chat": 67951, "cases exceed": 20961, "potential requirements": 124942, "limitations utilizing": 92686, "scalable pretraining": 146253, "properties specifically": 131661, "saturation performance": 146185, "represents new": 140983, "largescale vision": 89422, "similar pretraining": 151292, "consistently benefit": 29857, "decodingtime algorithm": 37609, "directly tuning": 42604, "model accessing": 103019, "prediction output": 125834, "difference predictions": 41612, "model direction": 103470, "scale pretraining": 146332, "experiments apply": 54147, "reasoning safety": 137111, "safety benchmarks": 145844, "demonstrate generality": 38356, "finetuning questionanswering": 59495, "promise using": 130202, "customize large": 34399, "settings employing": 149564, "vqa techniques": 177583, "study examined": 157331, "studentdrawn models": 156836, "education employed": 45536, "employed quantitative": 47901, "scientific models": 146974, "nerif notationenhanced": 112608, "feedback prompting": 57762, "reveal gpt4v": 144338, "scoring accuracy": 147181, "overall image": 118199, "performance adapting": 121129, "educational tasks": 45629, "performance makes": 121784, "makes suitable": 98691, "involving multimodal": 80798, "permeate various": 122479, "serving systems": 149106, "systems existing": 160370, "long prompts": 97465, "composition strategy": 27807, "effective throughput": 45902, "tail latency": 160904, "catering diverse": 21166, "load balancing": 97224, "models hardware": 106584, "enhancements including": 49392, "new hardware": 113212, "hardware backends": 68677, "code readily": 25085, "ai help": 7025, "seven questions": 149700, "relation ai": 139232, "highlight role": 69782, "fostering nuanced": 60702, "autoethnographic approach": 14480, "developing machines": 41010, "recent machine": 137556, "models aspects": 105399, "aspects tom": 12978, "tom benchmarks": 166913, "benchmarks use": 17387, "text human": 165222, "mind based": 102279, "based conceptual": 15715, "machine tom": 98105, "unimodal data": 171787, "tom capacity": 166915, "representations multimodal": 140851, "utilizes language": 175137, "lack robust": 83001, "robust tom": 145329, "inference language": 76037, "images social": 72487, "media online": 100101, "online reviews": 116129, "content ugc": 30636, "pervasive issue": 122772, "issue human": 80909, "content machinegenerated": 30545, "content challenges": 30445, "fabricate indistinguishable": 56502, "indistinguishable fake": 75690, "fake generated": 57097, "cost leveraging": 32702, "leveraging openais": 91914, "authentic machinegenerated": 14416, "use attributes": 172510, "respectively demonstrating": 142549, "demonstrating utility": 38967, "scalable interpretable": 146246, "interpretable detection": 79663, "opensourcing dataset": 116709, "fake review": 57105, "features synthetic": 57588, "units gpus": 171882, "powerful platform": 125321, "process vast": 129030, "confidential data": 29370, "security researchers": 147617, "discovery various": 42789, "various vulnerabilities": 176252, "paper uncover": 119374, "previously executed": 127724, "showcase challenges": 150069, "data processed": 35552, "leakage attacks": 89932, "increasingly heterogeneous": 75403, "cloud systems": 24565, "new device": 113143, "released years": 139544, "new heterogeneous": 113214, "domainspecific accelerators": 44558, "new devices": 113144, "devices significant": 41317, "useful features": 173325, "uses features": 173852, "features make": 57537, "reduces burden": 138508, "enable easy": 48075, "integration new": 78685, "capable extracting": 20422, "difficult employ": 42145, "issue introducing": 80918, "rl environment": 145051, "models employs": 106098, "testing method": 164732, "environments demonstrate": 50071, "codes corresponding": 25289, "finetuning way": 59609, "sft using": 149750, "ability training": 2398, "training relies": 168690, "algorithm learn": 7823, "ppo algorithm": 125368, "algorithm paper": 7840, "obtains improvement": 115557, "improvement learning": 73816, "sheeps clothing": 149885, "openai introduced": 116358, "create custom": 33182, "knowledge guide": 82094, "aim raise": 7485, "privacy security": 128026, "evaluate interactions": 50992, "agents growing": 6620, "finding ways": 58629, "biased toxic": 18243, "toxic inaccurate": 167458, "suggestions help": 158640, "llm technologies": 94048, "relevant publications": 139636, "like semantic": 92397, "tools literature": 167204, "novel retrieval": 114674, "generation leverages": 64790, "enhance process": 49262, "enabling intuitive": 48311, "interactions various": 79278, "content hallucination": 30515, "hallucination data": 68364, "libraries case": 92029, "study advantages": 157135, "information era": 76396, "advent largescale": 6178, "summarizing academic": 158921, "employing diverse": 47918, "role automated": 145464, "automated scientific": 14602, "systems paramount": 160518, "prevailing models": 127495, "texts lack": 165738, "lack diverse": 82926, "incorporating llms": 75117, "module extract": 109938, "introduce hierarchical": 79976, "utilizes extracted": 175128, "shorter text": 150035, "prompts finally": 131276, "designed types": 39968, "scenarios qualitative": 146681, "evaluations underscore": 52032, "especially scientific": 50539, "scientific summarization": 146991, "summarization outperforms": 158857, "properties develop": 131641, "implementation generative": 72844, "training prior": 168644, "simulation application": 151685, "areas quantum": 12385, "applications characterized": 10445, "nature necessitating": 112020, "symbolic reasoners": 159821, "agents natural": 6666, "symbolic tasks": 159830, "like math": 92345, "propose llm": 131903, "designed tackle": 39956, "challenges achieve": 21759, "ingame objectives": 76923, "set valid": 149345, "automated agents": 14512, "reasoning far": 136858, "interventions recent": 79804, "performance true": 122205, "focus popular": 60035, "method apply": 100684, "perturbations iii": 122756, "datasets core": 36741, "numeric reasoning": 114995, "closedsource opensource": 24497, "perturbed questions": 122764, "abilities areas": 1881, "datasets source": 37122, "ai generating": 7015, "short videos": 150013, "contains complex": 30361, "existing video": 53627, "approaches break": 11708, "llm director": 93598, "key stages": 81570, "various foundation": 175951, "critical roles": 33547, "novel video": 114745, "video diffusion": 176701, "mixed training": 102727, "t2v generation": 160689, "generation prediction": 64939, "prediction finally": 125796, "attention large": 13911, "limitations high": 92598, "high demand": 69443, "model typical": 104817, "alleviate resource": 8303, "resource usage": 142401, "results loss": 143578, "loss information": 97676, "enables lossless": 48217, "lossless compression": 97708, "incorporates specialized": 75075, "algorithm optimized": 7838, "context method": 30850, "generated tokens": 64028, "length process": 91385, "process occurs": 128930, "models engineered": 106121, "inputs attention": 77386, "usage achieving": 172438, "achieving lossless": 4193, "improving classification": 74113, "data unstructured": 35907, "train supervised": 167837, "learning goal": 90506, "goal improve": 66171, "focuses understanding": 60166, "continuous feedback": 31238, "refine models": 138735, "input employing": 77233, "aim analyze": 7425, "analyze efficacy": 9290, "efficacy using": 46414, "benchmark approach": 16830, "approach financial": 11232, "amazon reviews": 8623, "reviews datasets": 144579, "just labeled": 81377, "surpass accuracy": 159451, "provide enhanced": 132767, "manually label": 99099, "effectively predict": 46064, "llms resort": 96425, "resort shortcuts": 142364, "tasks creating": 162142, "introduces challenges": 80176, "accurately assessing": 3515, "assessing natural": 13191, "contributing development": 31457, "models raising": 108767, "evaluation realworld": 51817, "translation framework": 169465, "translation processes": 169502, "success attributed": 158218, "attributed key": 14092, "instance normalization": 77806, "focus textual": 60068, "highquality content": 70002, "generation second": 65071, "deciphering intricate": 37362, "maintaining overall": 98372, "empowering users": 48025, "results research": 143749, "cognitive intelligence": 25455, "applications comparative": 10453, "annotation task": 9552, "specific nlp": 154045, "datasets studies": 37135, "collected labels": 25694, "investigate existing": 80409, "crowdsourcing datasets": 33730, "study create": 157258, "benchmark compare": 16865, "compare quality": 26722, "labels llm": 82812, "labels make": 82813, "aggregation method": 6781, "verify performance": 176536, "good llms": 66280, "labels datasets": 82792, "generation increasing": 64740, "capable interpreting": 20436, "content requires": 30606, "ability conduct": 2110, "acquire necessary": 4257, "knowledge enhancing": 81948, "designed promote": 39929, "reasoning combined": 136755, "mechanism designed": 99986, "awareness address": 15374, "address intricate": 5251, "stride robust": 156302, "robust accurate": 145231, "reasoning explicitly": 136851, "exhibited great": 53134, "content safety": 30612, "diverse environments": 43519, "environments introduce": 50085, "proficiency llms": 129669, "llms judging": 95693, "interaction records": 79175, "risk scenarios": 144962, "scenarios application": 146536, "categories 10": 21085, "descriptions evaluation": 39453, "shows considerable": 150421, "considerable room": 29636, "descriptions environment": 39449, "challenging current": 22136, "extraction empirical": 56289, "use structured": 172889, "content representation": 30604, "product descriptions": 129571, "representations provide": 140872, "users concise": 173601, "leverages robust": 91776, "offering practical": 115760, "intelligence conversational": 78802, "applied effectively": 10753, "like science": 92394, "replaces traditional": 140472, "approach simpler": 11549, "instructions results": 78348, "parameters stateoftheart": 119868, "ability draw": 2139, "improved llms": 73699, "little understanding": 93251, "llms hypothesize": 95527, "prompts trigger": 131508, "chain prompts": 21459, "language problem": 86480, "problem code": 128199, "exhibit performance": 53078, "datasets requiring": 37083, "experiments discover": 54251, "observe prompts": 115389, "furthermore code": 62023, "prompts efficient": 131240, "requiring fewer": 141488, "superior state": 159060, "long served": 97476, "indispensable tools": 75687, "behavior query": 16638, "llms suggested": 96724, "types query": 170411, "query strategies": 134631, "search task": 147422, "interactions particular": 79254, "engines assistants": 49012, "distinct strategies": 43254, "assistant participants": 13398, "search sessions": 147413, "participants tended": 120024, "metrics analyzing": 102001, "datatotext d2t": 37210, "d2t generation": 34496, "coherent relevant": 25539, "avoid issue": 15342, "issue llm": 80926, "novel structured": 114700, "public apis": 133539, "dataset collected": 36162, "text standard": 165483, "standard data": 154811, "settings semantic": 149645, "accuracy outputs": 3330, "twostage instruction": 170260, "largely reducing": 89169, "cost notably": 32718, "gpt4 terms": 67195, "data openai": 35440, "instructions guide": 78271, "inpainting process": 77200, "approach overcomes": 11436, "traditional video": 167714, "depend manually": 39134, "videos instructions": 176778, "novel diffusionbased": 114468, "framework endtoend": 61128, "baseline task": 16267, "integrating multimodal": 78614, "execute complex": 52905, "scenarios make": 146645, "make datasets": 98522, "llms vice": 96972, "develop systems": 40842, "hybrid neurosymbolic": 71570, "direction paper": 42443, "better reflect": 18003, "mutually beneficial": 111349, "ai understanding": 7306, "decoding constraints": 37563, "llms decoding": 94789, "decoding knowledge": 37570, "neurosymbolic method": 113040, "better coherence": 17825, "flexibly applied": 59836, "representations output": 140858, "dataset knowledge": 36377, "knowledge fusion": 82018, "fusion large": 62195, "llms scratch": 96492, "costs result": 32846, "merge existing": 100525, "introduce notion": 80044, "aimed combining": 7511, "combining capabilities": 25965, "transferring single": 169035, "llm leveraging": 93804, "collective knowledge": 25769, "elevating capabilities": 47029, "llm validate": 94087, "approach adapt": 10961, "tasks multilingual": 162823, "utilizing english": 175182, "considerably enhances": 29644, "models lowresource": 108105, "characteristics multilingual": 22471, "using central": 174025, "systems multiple": 160488, "extend application": 55615, "tooluse ability": 167292, "text query": 165395, "users real": 173757, "perceiving visual": 120772, "dataset featured": 36296, "feature dataset": 57392, "recommending appropriate": 138281, "appropriate tools": 11998, "models electronic": 106063, "volume complexity": 177531, "extraction challenging": 56269, "introduces natural": 80195, "questionanswering clinical": 134978, "powered langchain": 125237, "answers clinical": 10001, "high compute": 69422, "demands model": 38163, "48 times": 1264, "challenges model": 21957, "diverse medical": 43572, "aidriven clinical": 7381, "decisionmaking knowledge": 37416, "human alignment": 70568, "knowledge phenomenon": 82274, "data intrinsic": 35255, "embedded foundation": 47139, "knowledge consistent": 81833, "specific strategies": 154088, "deal data": 37264, "need using": 112424, "goaldirected behavior": 66211, "allows agents": 8405, "performance modifying": 121818, "dataset radiation": 36492, "important medical": 73157, "medical specialty": 100221, "agi increasing": 6798, "increasing need": 75338, "benchmarks facilitate": 17243, "offers opportunities": 115831, "exploration encompasses": 55067, "logic reasoning": 97343, "reasoning text": 137204, "qa text": 133934, "distinct focus": 43225, "cases addition": 20938, "addition developed": 4849, "consisting 20k": 29939, "instruction pairs": 78043, "models highlyspecialized": 106612, "domain evaluation": 44140, "study serve": 157619, "serve baseline": 148962, "results future": 143424, "oncology clinical": 115960, "offering platform": 115756, "domainspecific context": 44565, "does using": 44038, "result human": 143040, "human produce": 70982, "lower level": 97829, "work human": 179025, "role expert": 145488, "deep machine": 37791, "systems able": 160222, "tools human": 167177, "achieve exceed": 3635, "human judgement": 70879, "fact chatgpt": 56734, "result misleading": 143048, "techniques offer": 163972, "relation annotations": 139233, "36 million": 1076, "advanced search": 5806, "largescale analyses": 89266, "streamlining complex": 156237, "using series": 174709, "queries demonstrating": 134466, "greater number": 67769, "factuality verifiability": 56920, "features tools": 57594, "data materials": 35355, "literature large": 93180, "dedicated evaluating": 37676, "gpt4 gpt4turbo": 67038, "chemical formulas": 23560, "tackle complexities": 160814, "science information": 146880, "extraction named": 56329, "benchmarked traditional": 17124, "bert architecture": 17510, "exhibit limited": 53073, "gpt35turbo finetuned": 66876, "appropriate strategy": 11996, "baseline finetuning": 16214, "finetuning gpt4": 59290, "capabilities provided": 20135, "examples surpassing": 52703, "relevant reasoning": 139640, "concepts tasks": 28694, "domainspecific entities": 44577, "domains exemplified": 44402, "korean medicine": 82647, "rag methods": 135434, "generic llmbased": 65662, "representations specialized": 140889, "operates need": 116747, "responses evaluated": 142780, "outperformed existing": 117656, "relevance informativeness": 139557, "response latency": 142671, "domains need": 44480, "methods novel": 101685, "years rapid": 179926, "seen emergence": 147691, "emergence various": 47451, "arises varying": 12465, "varying training": 176308, "identifying effective": 71997, "segmentation critical": 147732, "comprehensive comparative": 27979, "prominent foundation": 130148, "dino v2": 42359, "coco dataset": 24640, "new semantic": 113403, "capability adapt": 20270, "compared counterparts": 26775, "performance emphasizing": 121448, "adaptation technique": 4666, "light critical": 92106, "contributes valuable": 31452, "insights comparative": 77531, "highlights significance": 69876, "extractor domain": 56392, "manipulation generative": 98946, "possess humanlevel": 124340, "humanlevel linguistic": 71229, "linguistic abilities": 93001, "contexts raises": 31047, "raises concern": 135478, "misinformation social": 102498, "ends paper": 48720, "propose measures": 131911, "defensive systems": 37921, "measures protect": 99935, "provide important": 132830, "mllms significant": 102854, "knowledge powerful": 82280, "perception generation": 120804, "degradation information": 37985, "universal image": 171902, "employing pretrained": 47942, "encode context": 48374, "context embedding": 30736, "restoration network": 142991, "dialogue users": 41541, "degradation priors": 37989, "simultaneously extensive": 151749, "technology large": 164146, "llms transformer": 96850, "io bandwidth": 80811, "work develops": 178909, "basic building": 16410, "xray report": 179857, "freetext radiology": 61577, "source various": 153484, "various medical": 176028, "medical tasks": 100225, "texts remains": 165766, "challenging traditional": 22308, "traditional rulebased": 167693, "short capturing": 149957, "capturing nuances": 20737, "patterns models": 120551, "flexibility scalability": 59795, "offers main": 115825, "gpt trained": 66502, "trained bertbased": 167871, "faster efficiently": 57289, "superior efficiency": 159002, "dataset robust": 36518, "benchmarking code": 17131, "vision datasets": 176902, "topics researchers": 167368, "encompasses range": 48538, "detection semantic": 40614, "segmentation 3d": 147728, "3d reconstruction": 1145, "communities research": 26443, "study undertakes": 157689, "undertakes thorough": 171569, "topics datasets": 167350, "datasets researchers": 37085, "aspect study": 12920, "abstracts publications": 2692, "data hosting": 35160, "platforms provide": 123413, "researchers current": 142190, "need urgent": 112421, "survey underscores": 159706, "investigate bias": 80378, "bias terms": 18208, "recommendations students": 138261, "students various": 156912, "factors race": 56820, "race gender": 135387, "status educational": 155526, "educational disparities": 45605, "constructing prompts": 30202, "evaluate bias": 50911, "significant disparity": 150690, "widely exist": 178376, "playing important": 123501, "roles various": 145565, "symbol representations": 159800, "information expressed": 76412, "representations implemented": 140817, "implemented prompting": 72874, "direct substitution": 42407, "apibased gpt4": 10182, "media experimental": 100087, "consistently leads": 29885, "leads superior": 89921, "limitation large": 92506, "llms works": 97024, "attempt reduce": 13796, "extent hallucination": 56009, "world hallucination": 179558, "validate claims": 175304, "finally using": 58539, "framework discuss": 61088, "existing hallucination": 53380, "safe deployment": 145800, "attracting attention": 14061, "research leading": 141885, "leading various": 89867, "survey systematically": 159702, "systematically categorize": 160175, "previous explorations": 127590, "common technical": 26204, "technical approaches": 163686, "research objectives": 141938, "ai utilized": 7313, "tool enhance": 166969, "research second": 142063, "capabilities conducting": 19831, "facilitated recent": 56667, "relationship ai": 139316, "allows researchers": 8467, "simulation platforms": 151706, "directions believe": 42460, "technology continues": 164129, "increasing applications": 75300, "capabilities small": 20177, "propose ensemble": 131805, "involves creating": 80724, "creating reasoning": 33319, "processes including": 129067, "cot programofthought": 32879, "boosts reasoning": 18857, "stateoftheart reasoning": 155321, "systems enhanced": 160359, "significant risks": 150864, "date comprehensive": 37215, "comprehensive research": 28106, "research safety": 142060, "tackle concerns": 160815, "dark personality": 34552, "evaluating safety": 51389, "behavioral perspectives": 16671, "agents psychological": 6702, "assessments dangerous": 13280, "understanding consumer": 171169, "consumers today": 30268, "evaluation specific": 51866, "online platform": 116120, "valuable source": 175454, "include information": 74334, "data consumer": 34844, "profile data": 129694, "addition recent": 4902, "data joint": 35265, "joint representations": 81265, "representations effectively": 140798, "study constructs": 157243, "information compare": 76318, "compare multiple": 26701, "demonstrate robustness": 38539, "llms relatively": 96374, "contexts specifically": 31055, "llms retrieved": 96446, "identify llms": 71917, "trace origin": 167501, "construct datasets": 30128, "contexts question": 31046, "significant bias": 150625, "contexts provide": 31045, "provide incorrect": 132832, "information identify": 76498, "greater similarity": 67773, "process used": 129024, "hindering utilization": 70152, "insights advancing": 77507, "current augmentation": 34074, "enhancing multimodal": 49534, "interactions boost": 79206, "boost user": 18831, "personalized user": 122633, "informed formative": 76892, "interaction design": 79114, "domainoriented large": 44344, "encompass various": 48527, "personalized preferences": 122614, "advance evaluating": 5678, "performance lmms": 121765, "additionally larger": 5087, "gap evaluating": 62643, "nonenglish contexts": 114040, "chinese introduce": 23631, "reasoning chinese": 136746, "chinese context": 23616, "annotation analysis": 9508, "manually collected": 99078, "knowledge chinese": 81811, "11 opensource": 230, "providing diverse": 133284, "domains utilized": 44550, "influx new": 76247, "models integrate": 106791, "limited study": 92857, "showcasing immense": 150113, "finally improve": 58483, "performance experiment": 121484, "methods chainofthought": 101360, "resulting significant": 143133, "models basic": 105468, "basic question": 16436, "learn underlying": 90068, "different initial": 41799, "neurons consistently": 113019, "establish universal": 50681, "entropy token": 49966, "token distribution": 166699, "predicting token": 125750, "particular set": 120122, "set text": 149330, "embedding inversion": 47169, "embeddings nlp": 47261, "service eaas": 149061, "information embeddings": 76379, "vulnerable security": 177655, "security breaches": 147563, "shows text": 150489, "embeddings knowledge": 47245, "defence mechanisms": 37894, "explores llm": 55408, "define problem": 37940, "problem blackbox": 128192, "multilingual crosslingual": 110477, "inversion attacks": 80352, "thoroughly explore": 166210, "english based": 49029, "investigate multilingual": 80454, "comprehensively explores": 28176, "explores ethical": 55393, "challenges arising": 21783, "prime targets": 127830, "threats society": 166285, "threats prompt": 166283, "injection jailbreaking": 77112, "personal identifiable": 122560, "sexually explicit": 149733, "explicit content": 54923, "content hate": 30518, "defensive strategies": 37920, "systems operate": 160504, "ethical norms": 50821, "significant societal": 150878, "tool tailored": 167042, "dual purpose": 45073, "behaviors align": 16682, "ethical values": 50844, "values held": 175537, "broader society": 19223, "ultimately paper": 170589, "struggle generating": 156753, "data pair": 35457, "model direct": 103466, "updates model": 172352, "model leading": 103938, "selfsupervised manner": 148064, "manner empirically": 98983, "similar larger": 151263, "llms truthfulness": 96864, "data field": 35047, "labelled training": 82773, "models cheaper": 105620, "hold significant": 70256, "large labelled": 87292, "learning analytical": 90208, "tasks article": 161972, "techniques developed": 163868, "developed recent": 40911, "particular case": 120054, "case zeroshot": 20933, "technique provide": 163797, "works demonstrate": 179436, "paired different": 118532, "particular demonstrate": 120067, "results accompanied": 143152, "code repository": 25102, "repository make": 140628, "make easy": 98528, "techniques social": 164024, "nash equilibria": 111487, "algorithms converge": 7911, "methodology extended": 101228, "concerns llms": 28792, "llms higher": 95487, "education conducted": 45529, "directly impact": 42549, "inaccurate llm": 74267, "privacy leakage": 128009, "integrity issues": 78703, "digital literacy": 42290, "reflect ethical": 138793, "models interpretability": 106807, "offer explanations": 115648, "explanations form": 54852, "form dialogue": 60451, "dialogue demonstrated": 41463, "users understanding": 173800, "easily transferable": 45339, "transferable tasks": 169023, "users chat": 173592, "recognition finetuning": 138068, "xai tools": 179824, "interactive dialogue": 79302, "individuals varying": 75783, "supports multiple": 159397, "substantially enhancing": 158118, "parsing accuracy": 119952, "concept comprehension": 28590, "nature language": 112010, "llms traditionally": 96818, "gap enhancing": 62642, "llms comprehension": 94673, "evolving new": 52323, "designed autonomously": 39825, "autonomously integrate": 14961, "concepts alongside": 28639, "context benchmark": 30697, "expressions meanings": 55599, "terms precision": 164451, "generation enhanced": 64611, "method field": 100870, "major foundation": 98431, "api interfaces": 10158, "frameworks like": 61520, "appears key": 10240, "key models": 81539, "accessing highquality": 2976, "professional documents": 129621, "impacts effectiveness": 72759, "knowledgebased qa": 82531, "realworld professional": 136483, "answers empirical": 10015, "recognition generating": 138071, "zeroshot abstractive": 180113, "abstractive explanations": 2677, "veracity claim": 176427, "result previous": 143057, "veracity label": 176428, "verification model": 176490, "posthoc explainability": 124500, "informative explanations": 76873, "evaluating summaries": 51397, "using highest": 174294, "ai poised": 7151, "way individuals": 177831, "respond use": 142597, "use social": 172879, "interaction particular": 79157, "particular remains": 120117, "results largescale": 143560, "cooperation coordination": 32070, "twoplayer games": 170247, "effects individuals": 46334, "human generative": 70834, "solution mitigate": 152956, "mitigate negative": 102625, "ai society": 7219, "detrimental effect": 40741, "discern ai": 42660, "multimodal chainofthoughts": 110599, "chainofthoughts reasoning": 21554, "cost requires": 32737, "substantial hardware": 158064, "resources address": 142421, "integrates cot": 78551, "modalities comprehensive": 102918, "adopts twostage": 5667, "grounding generate": 67895, "knowledge kgs": 82151, "hallucinations enhancing": 68426, "requiring external": 141486, "context providing": 30890, "providing informed": 133318, "scienceqa dataset": 146924, "dataset achieve": 36090, "achieve average": 3582, "parameters time": 119874, "writing programs": 179742, "programs using": 129934, "using primitive": 174607, "solutions human": 153031, "solutions present": 153057, "datasets math": 36975, "consistently yields": 29932, "simpler solutions": 151560, "solutions higher": 153029, "verification baselines": 176468, "insights individual": 77587, "learn structural": 90061, "concept natural": 28611, "languages structural": 87135, "mathematics tasks": 99621, "symbolic tools": 159831, "inferring semantic": 76160, "program behavior": 129725, "behavior introduce": 16601, "modeling problems": 105072, "problems learned": 128552, "behavior framework": 16592, "captures general": 20704, "coupled different": 32999, "different frameworks": 41781, "framework powerful": 61348, "identify different": 71883, "setups models": 149684, "fully capture": 61748, "algorithms solve": 7971, "solve certain": 153094, "certain edge": 21383, "edge cases": 45418, "underrepresented training": 170906, "interesting ways": 79405, "models taskagnostic": 109358, "queries employing": 134471, "highlevel instructions": 69697, "smaller manageable": 152405, "ensures seamless": 49721, "seamless communication": 147283, "effective integration": 45787, "thinking robust": 166160, "end result": 48690, "collaborative prompting": 25627, "diverse experts": 43523, "experts significantly": 54684, "greatly simplifies": 67801, "need detailed": 112265, "tools python": 167243, "python interpreter": 133835, "changing environments": 22401, "virtual environments": 176863, "building intelligent": 19425, "intelligent embodied": 78951, "perceive reason": 120756, "remain unchanged": 139938, "environments characterized": 50067, "specifically supports": 154287, "benchmark enables": 16939, "including reinforcement": 74696, "step addressing": 155595, "perform indepth": 120966, "led rapid": 91238, "tool healthcare": 166983, "diagnosing patients": 41357, "ai interactions": 7050, "framework generalpurpose": 61181, "twophase approach": 170245, "create different": 33187, "humanlike interaction": 71265, "interaction patients": 79158, "patient engagement": 120464, "investigating ways": 80622, "improve chatbots": 73420, "chatbots understanding": 22643, "context ensuring": 30746, "ensuring accuracy": 49723, "specialized medical": 153901, "engineering medical": 48951, "specifically detecting": 154182, "various mental": 176029, "content existing": 30491, "rely fully": 139846, "laborintensive manual": 82857, "need design": 112264, "engineering specifically": 48990, "specifically address": 154133, "key technical": 81585, "personalized prompts": 122616, "incorporating medical": 75118, "instruct learning": 77930, "architecture engineering": 12161, "minimal number": 102348, "diseases based": 43035, "information quality": 76666, "requiring users": 141517, "challenges information": 21915, "integrity information": 78702, "pretraining llm": 127378, "llm decreased": 93579, "novel mathematical": 114578, "quality challenges": 134057, "challenges scaling": 22060, "xai large": 179819, "explainable artificial": 54742, "intelligence xai": 78926, "nonexperts understand": 114063, "xai methods": 179823, "accessible wider": 2973, "wider audience": 178435, "llm developed": 93590, "goal design": 66160, "generate clear": 63414, "methods tailored": 101861, "including business": 74438, "feature model": 57418, "approach offers": 11412, "process end": 128809, "users results": 173768, "studies model": 157045, "explanations regardless": 54895, "xai method": 179822, "improves accessibility": 73969, "applications findings": 10530, "indicate promising": 75619, "making advanced": 98703, "range users": 135726, "span corruption": 153649, "replaced token": 140461, "sequences paper": 148833, "procedure consisting": 128698, "token replacement": 166730, "twostage curriculum": 170254, "empirically effectiveness": 47786, "analysis case": 8836, "case experiments": 20873, "experiments encoderdecoder": 54270, "architectures t5": 12294, "pretraining enabling": 127314, "50 reduction": 1305, "reduction total": 138623, "improved downstream": 73682, "downstream benchmark": 44703, "automated answer": 14516, "know answer": 81701, "answer correct": 9691, "examples current": 52551, "judgments particularly": 81337, "large expensive": 87248, "guidelines evaluating": 68248, "evaluation efficient": 51559, "matching method": 99472, "trained validated": 168117, "accurately evaluate": 3530, "llms generalpurpose": 95352, "generalpurpose agents": 63332, "process presents": 128942, "challenges primary": 22016, "framework especially": 61137, "environments ensuring": 50076, "abilities address": 1878, "evaluation toolkit": 51903, "toolkit features": 167085, "multifaceted analysis": 110396, "limitations llm": 92617, "agent behaviors": 6420, "accelerating development": 2789, "stronger llm": 156472, "model discrete": 103473, "content web": 30652, "sec filings": 147452, "strong multistep": 156419, "capabilities consider": 19832, "task abstract": 161155, "steps including": 155747, "design instruction": 39657, "gpt4 outperforms": 67100, "risk motivates": 144955, "task develop": 161318, "llama training": 93339, "datasets following": 36881, "including previous": 74675, "largescale llms": 89348, "approach optimize": 11416, "learning major": 90662, "use crowdsourcing": 172573, "crowdsourcing platforms": 33736, "platforms data": 123400, "introduces issues": 80188, "consistency biases": 29752, "alternative use": 8587, "fewshot fully": 57914, "advancements driven": 5880, "severely limited": 149717, "sampling data": 146088, "imbalanced datasets": 72562, "build small": 19351, "data selected": 35719, "selected human": 147797, "know dont": 81703, "assistants based": 13405, "surprising performance": 159553, "make factual": 98534, "errors facing": 50359, "knowledge intensive": 82140, "intensive tasks": 79003, "like opendomain": 92373, "cause significant": 21252, "risks practical": 145016, "method reducing": 101063, "express natural": 55562, "language answer": 83154, "known unknown": 82632, "datasets align": 36644, "questions alignment": 135034, "ai led": 7064, "joint reasoning": 81263, "content image": 30522, "places paper": 123186, "reasoning contextual": 136773, "diverse realworld": 43626, "indicating substantial": 75664, "humans addition": 71339, "similar trends": 151323, "trends performance": 169725, "visual contexts": 177145, "understanding instructions": 171304, "instructions study": 78355, "unified format": 171709, "covers wide": 33109, "tasks includes": 162543, "furthermore enhance": 62056, "new instructionbased": 113235, "document reading": 43851, "reading understanding": 136203, "training research": 168696, "area recent": 12346, "years particularly": 179918, "addressing diverse": 5442, "problemsolving various": 128678, "detection llms": 40547, "bard ernie": 15556, "detection aigenerated": 40441, "detection manipulation": 40553, "detection aigc": 40440, "aims test": 7679, "image real": 72313, "focuses identifying": 60144, "images according": 72390, "according experiments": 3034, "llms distinguish": 94959, "human eye": 70790, "realistic images": 136293, "aigenerated images": 7407, "malaysian language": 98829, "32768 tokens": 1016, "malaysian mistral": 98830, "continue pretraining": 31201, "mistral 7bs": 102556, "specifically tuned": 154297, "length instruction": 91370, "potential capturing": 124637, "capturing nuanced": 20736, "including chatgpt35": 74449, "chatgpt35 claude": 23448, "results indicating": 143525, "particularly finetuned": 120192, "advancements augmenting": 5869, "costeffective training": 32767, "strategies resulting": 156068, "preserve inherent": 126665, "inherent reasoning": 76971, "facilitating research": 56718, "introduce taxonomy": 80126, "performance selected": 122047, "mainstream benchmarks": 98306, "concurrently maintaining": 28934, "ongoing advancement": 116053, "good chatgpt": 66262, "explainability large": 54726, "results introducing": 143539, "llms experience": 95181, "field needed": 58221, "gpt4 multimodal": 67082, "explainability transparency": 54736, "order evaluate": 117194, "popular public": 124049, "methods field": 101526, "github unified": 65827, "dialogue modeling": 41493, "dialogue tod": 41535, "tod systems": 166657, "independent task": 75502, "contrast work": 31332, "endtoend tod": 48770, "relying single": 139907, "gpt2 llama2": 66556, "annotated emotions": 9473, "results findings": 143414, "refine responses": 138741, "responses terms": 142930, "expertise ai": 54605, "ai efficiency": 6969, "assisting complex": 13444, "material synthesis": 99502, "explore utility": 55322, "program interfaces": 129737, "using inhouse": 174325, "inhouse developed": 77006, "api api": 10151, "control llm": 31559, "capable analyzing": 20401, "images generic": 72427, "analyses indepth": 8768, "argue llm": 12412, "synergy human": 159871, "expertise llm": 54620, "accelerating scientific": 2801, "research enabling": 141751, "experimental protocols": 53958, "enhancing student": 49570, "reasoning principle": 137045, "challenge effectively": 21633, "effectively transferring": 46096, "approaches heavily": 11794, "extensive finetuning": 55906, "based student": 16116, "student llms": 156816, "refinement instructions": 138759, "making inferences": 98756, "performance achieving": 121126, "racial bias": 135390, "medical report": 100214, "healthcare professionals": 69009, "despite attempts": 40081, "extent biases": 56001, "higher costs": 69589, "challenging medical": 22207, "scenarios higher": 146613, "mirror realworld": 102452, "realworld healthcare": 136460, "specific diseases": 153975, "treatment recommendations": 169644, "underscore critical": 170913, "especially critical": 50450, "critical healthcare": 33501, "applications ensure": 10507, "fair accurate": 57027, "outcomes patients": 117460, "extraction clinical": 56271, "expertise timeconsuming": 54630, "reduce need": 138451, "manuallylabeled dataset": 99115, "reports labeled": 140597, "13 categories": 327, "random forests": 135524, "memory networks": 100436, "performed significantly": 122379, "vs 075": 177595, "simpler supervised": 151564, "potential speed": 125002, "nlp studies": 113812, "studies reducing": 157065, "datasets result": 37089, "clinical studies": 24364, "models advancement": 105291, "leads new": 89903, "era marked": 50240, "applications real": 10655, "existing web": 53634, "innovative large": 77174, "interacting realworld": 79096, "challenges automatic": 21790, "agent tasks": 6503, "capabilities gpt4v": 19931, "tasks 15": 161868, "evaluate agents": 50900, "exceptional capability": 52817, "applications proposed": 10650, "proposed automatic": 132259, "evaluation achieves": 51420, "development web": 41262, "setting chatgpt": 149431, "chatgpt pivotal": 23188, "intelligence applications": 78785, "processing software": 129297, "particularly blackbox": 120153, "created human": 33262, "participants study": 120021, "cases applications": 20943, "specifications written": 154322, "applicability proposed": 10266, "testing strategies": 164758, "strategies chatgpt": 155971, "generate test": 63749, "match slightly": 99426, "additionally experiments": 5061, "demonstrated chatgpt": 38630, "cases generated": 20968, "certain issues": 21395, "issues require": 81058, "chatbots powered": 22628, "notably chatgpt": 114262, "experience ux": 53851, "turn attention": 170170, "human factors": 70792, "aim bring": 7435, "share knowledge": 149797, "international network": 79577, "people interact": 120721, "model integration": 103884, "harness collective": 68788, "core framework": 32163, "optimal task": 116956, "inspired selfplay": 77767, "selfplay reinforcement": 148025, "evaluation focused": 51594, "mmlu benchmark": 102885, "13b 34b": 360, "34b parameters": 1045, "cost increasing": 32692, "accuracy cost": 3189, "integrating gpt4": 78597, "model pool": 104286, "nearly matches": 112117, "gpt4s results": 67239, "findings illustrate": 58691, "potential architecture": 124598, "architecture creating": 12137, "chatgpt emerged": 22875, "potential novel": 124886, "novel offtheshelf": 114618, "stateoftheart modeling": 155224, "experiments represent": 54435, "studying semantic": 157725, "change results": 22352, "achieves slightly": 4082, "role optimizing": 145521, "methods aims": 101298, "stages demonstrate": 154762, "applicability framework": 10256, "framework summarizing": 61438, "directions proposed": 42495, "extreme compression": 56417, "tensor networks": 164355, "llama advancing": 93286, "advancing rapidly": 6095, "immense size": 72603, "huge training": 70531, "substantial energy": 158056, "traditional compression": 167602, "pruning distillation": 133455, "distillation lowrank": 43153, "focus reducing": 60043, "individual weights": 75752, "successful practice": 158355, "compelling reason": 27107, "innovative llm": 77176, "compression approach": 28211, "space instead": 153583, "allowing controlled": 8362, "techniques benchmark": 163844, "prompting largescale": 130990, "fewshot inference": 57933, "based largescale": 15914, "prompttuning methods": 131549, "specific fewshot": 153996, "target downstream": 161063, "downstream domains": 44718, "domains universal": 44545, "knowledge embedding": 81919, "space end": 153569, "representative features": 140925, "empirically method": 47796, "time capabilities": 166353, "networks chatgpt": 112720, "llms captured": 94545, "attention crucial": 13863, "computational mechanism": 28375, "example words": 52512, "sentence long": 148512, "learn longrange": 90004, "longrange temporal": 97573, "sequences specifically": 148838, "enhances temporal": 49444, "temporal context": 164253, "words input": 178729, "multiple regions": 111021, "spatial pattern": 153792, "context extracted": 30761, "sensory inputs": 148472, "inputs computational": 77391, "topologies reasoning": 167394, "chains trees": 21568, "trees graphs": 169683, "progress recent": 130010, "notable focus": 114226, "techniques prompt": 163991, "coupled structures": 33001, "overall llm": 118208, "structure graph": 156564, "numerous examples": 115040, "capability solve": 20373, "ranging logical": 135755, "understanding growing": 171279, "schemes conduct": 146802, "prompt execution": 130496, "defining different": 37955, "build taxonomy": 19354, "schemes focus": 146804, "focus identifying": 59993, "structures analyze": 156688, "schemes using": 146810, "proposed taxonomy": 132442, "choices lead": 23716, "theoretical underpinnings": 166052, "llm ecosystem": 93609, "help advance": 69079, "future prompt": 62303, "rapidly essential": 135918, "core concepts": 32161, "concepts advanced": 28638, "agents finally": 6611, "led researchers": 91241, "researchers propose": 142247, "emergence theory": 47447, "llms attribute": 94446, "desires intentions": 40063, "attribute mental": 14081, "dataset typically": 36597, "individuals right": 75779, "character predictions": 22435, "predictions behavior": 125892, "based internal": 15886, "based similarities": 16096, "conceptual empirical": 28709, "value biases": 175470, "relatively better": 139399, "better outcomes": 17954, "similar bias": 151215, "complete record": 27284, "similar observed": 151280, "relative comparisons": 139361, "models estimate": 106160, "expected outcomes": 53755, "mechanisms contribute": 100037, "investigating capabilities": 80587, "trend scaling": 169706, "short sota": 149992, "results information": 143528, "tasks framed": 162430, "limitation llms": 92510, "explore strategies": 55296, "bidirectional information": 18353, "decoder blocks": 37510, "applying layerwise": 10904, "outperforming results": 117693, "tasks proving": 163050, "scale maintaining": 146313, "incontext prompt": 74990, "predict visual": 125713, "samples new": 146044, "forgetting previously": 60431, "relationship predictions": 139331, "capability predict": 20356, "model constrained": 103359, "training present": 168642, "access previously": 2898, "model tasked": 104721, "rigorous experiments": 144861, "method stateoftheart": 101120, "array metrics": 12521, "number competitive": 114843, "settings comprehensive": 149541, "scientific large": 146967, "emerged transformative": 47405, "power enhancing": 125173, "enhancing natural": 49535, "representing significant": 140973, "significant stride": 150883, "stride artificial": 156299, "llms extends": 95212, "linguistic systems": 93075, "specifically engineered": 154196, "llms warrant": 96996, "uptodate survey": 172402, "paper endeavor": 118881, "review latest": 144520, "advancements scientific": 5964, "domains includes": 44431, "examination llms": 52357, "small molecules": 152332, "capabilities datasets": 19846, "evaluation finally": 51587, "critically examine": 33581, "examine prevailing": 52408, "prevailing challenges": 127489, "point promising": 123718, "navigating intricate": 112052, "llmgenerated data": 94197, "expanding role": 53701, "employed create": 47878, "create variety": 33244, "outputs including": 118068, "instruction prompts": 78048, "text forms": 165098, "mutual influence": 111341, "raise significant": 135459, "data ecosystem": 34945, "study aggregate": 157138, "aggregate various": 6772, "constrained data": 30028, "like task": 92417, "paper reveals": 119308, "need ethical": 112278, "practices data": 125507, "creation using": 33360, "replicating human": 140500, "human traits": 71064, "traits behaviors": 168856, "importance addressing": 73012, "addressing biases": 5428, "artifacts produced": 12641, "models relies": 108910, "parameters underlying": 119883, "architectures allows": 12248, "llms memorized": 95880, "information known": 76541, "llms partially": 96047, "memorize concepts": 100338, "new metrics": 113278, "estimate degree": 50720, "llms measuring": 95874, "produced different": 129488, "query languages": 134601, "recently investigated": 137918, "language robotic": 86714, "presents work": 126658, "end conducted": 48643, "study involved": 157452, "conducted focus": 29253, "15 hours": 410, "scenarios iii": 146618, "designing appropriate": 39987, "context make": 30842, "avoid bias": 15333, "realworld contexts": 136427, "incorporating generated": 75101, "background context": 15435, "evaluates quality": 51251, "examine multiple": 52404, "llms emphasizing": 95042, "assessment tool": 13274, "tool human": 166986, "highly selfconsistent": 69953, "abilities generating": 1917, "respect multimodal": 142511, "broad public": 19181, "qualitative study": 134020, "modalities text": 102955, "supporting various": 159387, "applications specific": 10695, "mllms overall": 102839, "multimodal applications": 110587, "overcome cognitive": 118279, "humans suffer": 71476, "problems compared": 128469, "science assessments": 146851, "experts using": 54688, "including task": 74749, "gpt4 responses": 67144, "scored using": 147116, "based average": 15680, "individual items": 75722, "items results": 81087, "changes educational": 22368, "educational objectives": 45618, "foster critical": 60679, "contexts findings": 31019, "avoid negative": 15345, "efficiently large": 46794, "guided knowledge": 68230, "typically demand": 170477, "data acquire": 34587, "acquire generalizable": 4253, "conflicts scenarios": 29418, "scenarios available": 146539, "llmbased teacher": 94172, "teacher network": 163616, "network pretrained": 112686, "learning teacher": 91061, "teacher networks": 163617, "extraction use": 56367, "use synthetic": 172896, "representation gap": 140691, "15 datasets": 406, "matches human": 99442, "meaning text": 99782, "corpus texts": 32361, "potential automating": 124612, "category labels": 21154, "labels texts": 82833, "concentrate creative": 28576, "ai case": 6898, "comprises set": 28250, "gpt35 compared": 66798, "delivers excellent": 38078, "contrast gpt35": 31307, "coding decisions": 25376, "practices adapting": 125506, "render ai": 140377, "ai coding": 6916, "improving medical": 74167, "medical reasoning": 100210, "retrieval selfreflection": 144135, "proprietary large": 132516, "achieved milestone": 3842, "tackling diverse": 160869, "longform generations": 97544, "generation applying": 64426, "problems poor": 128590, "documents making": 43925, "making inaccurate": 98753, "framework reliable": 61384, "domainspecific documents": 44574, "instruction sets": 78054, "components retriever": 27778, "corpus instruction": 32320, "instructions using": 78369, "major medical": 98441, "medical questionanswering": 100208, "gains achieving": 62510, "knowledge medical": 82224, "framework components": 61023, "13b enhance": 363, "use capability": 172522, "analysis finance": 8935, "finance large": 58551, "capabilities face": 19893, "data heterogeneous": 35150, "precision paramount": 125616, "potential language": 124801, "offload certain": 115890, "inherent abilities": 76933, "using financial": 174202, "finetuning llama2": 59354, "model act": 103061, "right tool": 144838, "tool set": 167029, "baselines respectively": 16364, "competitive strong": 27205, "models finance": 106338, "finance domain": 58546, "learning understanding": 91100, "chatbots questionanswering": 22634, "establish connections": 50659, "respond complex": 142589, "responses include": 142826, "religious beliefs": 139815, "utilized answer": 175096, "prevent harmful": 127535, "harmful offensive": 68741, "values provide": 175553, "reliable results": 139747, "chatgpt tested": 23388, "works given": 179454, "datasets facilitate": 36858, "contexts existing": 31016, "lack indepth": 82963, "indepth details": 75526, "capture multifaceted": 20668, "reasoning response": 137106, "response limitations": 142673, "compile new": 27226, "generative commonsense": 65405, "commonsense models": 26287, "producing plausible": 129562, "plausible inferences": 123433, "high novelty": 69490, "datasets best": 36681, "multitude novel": 111261, "addresses vital": 5425, "innovatively combines": 77197, "addresses limitations": 5419, "accurate versatile": 3509, "versatile userfriendly": 176576, "accessible solution": 2969, "processing significantly": 129296, "environments including": 50083, "satellite imagery": 146152, "efficacy accurately": 46356, "environmental monitoring": 50050, "monitoring disaster": 110054, "disaster management": 42652, "experts investigate": 54663, "combining feedback": 25975, "enhance overall": 49245, "overall learning": 118207, "outcomes use": 117466, "groups use": 67985, "humanlevel cognitive": 71224, "capabilities terms": 20210, "ai medical": 7080, "usage impact": 172454, "indian healthcare": 75562, "investigates integration": 80562, "healthcare sector": 69015, "research employs": 141750, "medical professionals": 100202, "respectively findings": 142557, "chatgpt medical": 23120, "exercise caution": 53002, "medical references": 100213, "healthcare concerns": 68990, "medical expertise": 100172, "importance developing": 73021, "collaboration healthcare": 25586, "providers paper": 133101, "current usage": 34293, "insights inform": 77588, "llm advancements": 93447, "generative linguistic": 65454, "linguistic steganography": 93068, "model linguistic": 103967, "steganography ls": 155579, "tasks aim": 161931, "aim generate": 7459, "generate steganographic": 63725, "steganographic text": 155577, "preserving privacy": 126696, "existing schemes": 53566, "contain specific": 30308, "finetuned llama2": 59054, "encompassing rich": 48555, "texts specific": 165782, "controllable manner": 31621, "surpasses baselines": 159474, "tasks lag": 162673, "capacity learn": 20520, "learn basic": 89962, "framework emulates": 61117, "education process": 45571, "process improve": 128863, "framework operates": 61335, "teacher agent": 163611, "agent provides": 6493, "systematically organizes": 160198, "feedback forms": 57686, "robust comprehensive": 145250, "questions systematic": 135295, "utilized model": 175110, "llama2 data": 93356, "training curriculum": 168219, "improves learning": 74019, "selection key": 147860, "performance characteristics": 121231, "evaluating model": 51345, "model requires": 104459, "requires developers": 141359, "select models": 147782, "tradeoffs based": 167571, "domain current": 44124, "language leverage": 83487, "leverage reasoning": 91651, "strategy extract": 156146, "extract desired": 56129, "accurate compared": 3442, "presents important": 126586, "grounding paper": 67918, "grounding task": 67927, "model offtheshelf": 104145, "framework need": 61323, "process framework": 128843, "models exhibiting": 106219, "exhibiting significant": 53174, "constrained computational": 30026, "demonstrate robust": 38538, "data grows": 35144, "infeasible large": 75932, "compute costs": 28439, "web work": 178026, "model prompted": 104368, "styles like": 157783, "pretrain llms": 126736, "c4 dataset": 19585, "naturally noisy": 111978, "budget improves": 19271, "improves perplexity": 74057, "zeroshot question": 180310, "insights composition": 77532, "data impact": 35181, "data higher": 35154, "data incorporates": 35209, "downstream evaluation": 44720, "evaluation style": 51879, "webscraped data": 178044, "visionlanguage large": 177031, "conventional visionlanguage": 31738, "content diverse": 30477, "diverse inputs": 43550, "inputs like": 77424, "highly customizable": 69907, "proposes partial": 132484, "approach applies": 10996, "lora parameters": 97649, "parameters exclusively": 119750, "preserve integrity": 126666, "highquality longtext": 70052, "benchmarks significantly": 17367, "models matches": 108151, "assessments highlights": 13291, "highlights remarkable": 69874, "realm multimodal": 136359, "model series": 104548, "related harms": 139170, "misinformation disinformation": 102485, "professional factcheckers": 129623, "role addressing": 145455, "addressing threat": 5483, "scale problem": 146333, "range factors": 135621, "specific groups": 154005, "people work": 120742, "llm facilitate": 93667, "impacts wide": 72773, "range diverse": 135608, "society important": 152706, "diverse views": 43694, "llm reflect": 93950, "various groups": 175965, "focusing gender": 60182, "prompts explicit": 131265, "explicit gender": 54933, "viewpoints topics": 176830, "questions present": 135226, "empirically observed": 47799, "differences findings": 41625, "ais complex": 7699, "annotators release": 9641, "dataset support": 36566, "allows data": 8420, "amd gpus": 8649, "security posture": 147608, "applications particular": 10631, "particular datasets": 120066, "strategy natural": 156187, "usually results": 174919, "generalizability paper": 63113, "attribution paper": 14146, "stage novel": 154746, "functions proposed": 61921, "framework demonstrates": 61065, "attribution text": 14148, "datasets hatexplain": 36904, "reviews social": 144591, "illustrate proposed": 72157, "accuracy generalizability": 3250, "observe improvement": 115375, "accuracy 10": 3101, "improvement f1score": 73794, "imdb dataset": 72569, "dataset conjunction": 36186, "implemented pytorch": 72875, "opensource github": 116613, "parsing errors": 119957, "errors utilizing": 50408, "development environments": 41103, "environments ides": 50081, "users seamlessly": 173773, "existing development": 53347, "tasks recovering": 163105, "markov chain": 99255, "sampling algorithms": 146084, "useful method": 173337, "study representations": 157592, "directly prompt": 42590, "increased efficiency": 75260, "algorithm explore": 7804, "explore extent": 55203, "humanlike representations": 71276, "method yield": 101175, "better faster": 17867, "open foundation": 116231, "stateoftheart speech": 155376, "encoders work": 48499, "scripts pretrained": 147257, "present variety": 126496, "classification experiments": 23994, "related task": 139212, "utilize diverse": 175035, "new feature": 113188, "models trusted": 109515, "despite utility": 40246, "reliably evaluating": 139767, "llms varied": 96943, "challenging modern": 22213, "assess responses": 13120, "constrained coverage": 30027, "coverage existing": 33055, "benchmarks requires": 17353, "underscores urgency": 170958, "capabilities multiple": 20067, "agents framework": 6612, "require largescale": 141143, "sensing domain": 148409, "domain multimodal": 44229, "success vision": 158315, "vision visuallanguage": 177007, "image domain": 72230, "sensing rs": 148412, "rs images": 145667, "rs domain": 145666, "stage gap": 154738, "mllm named": 102801, "interpretation tasks": 79712, "universal rs": 171911, "key techniques": 81589, "developed including": 40881, "rs instructionfollowing": 145668, "constructed comprising": 30171, "1m imagetext": 575, "rs datasets": 145665, "dataset addresses": 36101, "various rs": 176150, "rs visual": 145670, "specialist models": 153862, "offering versatile": 115777, "versatile paradigm": 176571, "availability large": 15054, "existing plagiarism": 53519, "uses formal": 173855, "formal mathematical": 60507, "make contributions": 98512, "pairs second": 118616, "second analyze": 147455, "approaches detect": 11731, "similarity achieve": 151335, "modeling llm": 105034, "natural social": 111953, "use need": 172777, "llmbased interfaces": 94151, "30 participants": 966, "perceived benefits": 120759, "adopt llms": 5576, "perceptions behaviors": 120834, "possible reason": 124454, "support programming": 159321, "paper probe": 119196, "able distinguish": 2493, "ones focus": 115996, "focus inference": 60000, "question reasoning": 134926, "llms match": 95865, "tested gpt4": 164671, "gpt4 displays": 66974, "autoregressive ar": 14971, "ar models": 12058, "models lightweight": 106965, "lightweight adaptation": 92165, "adaptation procedure": 4656, "baseline setup": 16262, "setup training": 149680, "comparing multiple": 26999, "multiple architectures": 110839, "model prefix": 104311, "prefix lm": 126099, "lm objective": 97062, "test various": 164654, "models cases": 105578, "quality gains": 134134, "use diffusion": 172588, "decoding results": 37594, "dataefficient finetuning": 36052, "llmbased recommendation": 94164, "recommendation leveraging": 138208, "llms recommendation": 96353, "recommendation recently": 138228, "attention finetuning": 13881, "finetuning plays": 59444, "llms adaptation": 94337, "limits practical": 92928, "application address": 10295, "new recommendation": 113378, "representative samples": 140939, "samples tailored": 146069, "coreset selection": 32191, "proposed task": 132440, "data tackle": 35848, "recommendation high": 138202, "identify influential": 71904, "low costs": 97746, "costs data": 32819, "pruning method": 133464, "influence score": 76218, "accurately estimate": 3528, "performance achieve": 121123, "achieve low": 3683, "score considering": 147056, "method particular": 101024, "finetuning reducing": 59499, "reducing time": 138598, "challenges insufficient": 21917, "single visual": 151876, "excessively long": 52858, "tokens issues": 166830, "limit models": 92486, "accurately interpreting": 3545, "crucial enhancing": 33794, "proposes use": 132491, "capabilities individual": 19959, "encoders including": 48484, "outputs different": 118045, "gap image": 62661, "schemes alleviate": 146800, "alleviate waste": 8306, "implementation technique": 72860, "like sam": 92393, "used report": 173214, "resources project": 142470, "robust prompt": 145308, "despite advances": 40078, "attacks jailbreaking": 13715, "posit effective": 124252, "propose adversarial": 131702, "algorithm robust": 7851, "outputs results": 118118, "results easily": 143367, "adaptive attacks": 4772, "limitations ability": 92528, "data potentially": 35510, "risk factor": 144938, "study conducts": 157236, "focusing application": 60172, "application machine": 10345, "networks emerged": 112736, "promising alternatives": 130218, "offer superior": 115708, "learning integration": 90588, "requirements computational": 141280, "computational constraints": 28342, "models revolutionised": 108991, "diagnostic precision": 41383, "examines core": 52429, "core aspects": 32152, "risk presents": 144959, "improved accuracy": 73671, "furthermore potential": 62128, "potential machine": 124850, "healthcare integration": 69002, "ngram language": 113624, "models trillion": 109511, "analysis improving": 8967, "neural llms": 112870, "use small": 172876, "hinders performance": 70160, "expensive develop": 53781, "suffix arrays": 158511, "engine enable": 48856, "greatly reduce": 67798, "text observe": 165327, "task constrained": 161276, "acquiring human": 4282, "experimental economics": 53936, "considering llms": 29722, "settings study": 149647, "used fully": 173079, "environment generate": 50001, "efficient human": 46635, "pioneer study": 123007, "particular model": 120097, "trained solely": 168078, "data preliminary": 35518, "promising potentials": 130297, "security tasks": 147627, "perceived potential": 120764, "vulnerabilities source": 177635, "improved time": 73727, "structures model": 156708, "results engineering": 143380, "tasks examine": 162335, "code test": 25178, "containing various": 30352, "types vulnerabilities": 170437, "data compare": 34799, "agent prompt": 6490, "engineering compare": 48895, "static code": 155453, "multiple versions": 111083, "versions ai": 176616, "repeated use": 140433, "efficient tool": 46729, "expectations large": 53742, "invoke tools": 80676, "tool calls": 166954, "calls require": 19686, "leverage tools": 91673, "knowledge planning": 82275, "planning abstract": 123239, "reasoning strategies": 137150, "relevant different": 139590, "responses mathematical": 142850, "domains method": 44472, "toolaugmented baselines": 167068, "speed average": 154498, "study probabilistic": 157549, "modeling performed": 105066, "difference time": 41615, "time theoretically": 166519, "sparsity computational": 153763, "convolution models": 32035, "llms epitomized": 95086, "introduces pioneering": 80213, "associated llm": 13497, "transfer leveraging": 168965, "heads transformer": 68925, "long contextual": 97447, "methods technique": 101868, "enhances inference": 49415, "pretraining terms": 127459, "evolving llms": 52319, "sustainable ai": 159745, "ai solutions": 7222, "balance computational": 15491, "efficient reliable": 46704, "workload study": 179412, "models broader": 105547, "high operational": 69493, "llms characteristics": 94564, "realworld llm": 136473, "llm workloads": 94099, "absence reliable": 2594, "quality service": 134267, "user llm": 173451, "llm behaviors": 93507, "request response": 141045, "response distributions": 142638, "services based": 149078, "based developed": 15754, "patterns enabling": 120526, "distributions allowing": 43420, "precise scaling": 125597, "evaluation uncovers": 51908, "memory limitations": 100418, "limitations caused": 92548, "degradation existing": 37983, "systems benchmarking": 160268, "understanding patterns": 171397, "optimizing llm": 117120, "hardware resource": 68693, "increasingly pivotal": 75420, "context retrievalaugmented": 30904, "generation pipelines": 64929, "empowering llmbased": 48017, "general google": 62955, "based nature": 15969, "selection selection": 147887, "costs associated": 32816, "methods involve": 101616, "labour intensive": 82871, "context federated": 30764, "assess relevance": 13118, "predefined labels": 125651, "labels features": 82800, "method exploits": 100850, "exploits llms": 55045, "llms drive": 94992, "resources federated": 142440, "search zeroshot": 147432, "setting addition": 149419, "synthetic label": 160053, "label augmentation": 82676, "predicted using": 125729, "influencing effectiveness": 76240, "large finetuned": 87253, "coding learning": 25391, "students professors": 156890, "topics need": 167360, "argue ability": 12401, "interact flexibly": 79056, "students write": 156913, "code executed": 24817, "lms context": 97121, "applications data": 10468, "example prompt": 52497, "models ignore": 106663, "cases larger": 20988, "phenomenon inverse": 122831, "technique mitigating": 163786, "instructions produce": 78324, "version original": 176610, "infer model": 75947, "models combine": 105675, "works inference": 179458, "gpt3 llama": 66719, "tasks improvements": 162537, "tasks completed": 162091, "prominent benchmark": 130140, "machine understanding": 98138, "valid cases": 175293, "cases vs": 21031, "10 recent": 135, "llmgenerated sentences": 94204, "providing deeper": 133278, "deeper insight": 37843, "insight model": 77493, "model overconfidence": 104197, "crafted models": 33147, "llm achieves": 93433, "accuracy 687": 3117, "significantly human": 151015, "sequential recommender": 148882, "capture users": 20693, "renders vulnerable": 140384, "traditional defense": 167611, "rules extracted": 145713, "limiting generalizability": 92888, "openworld knowledge": 116725, "knowledge encapsulated": 81928, "llms detection": 94910, "fraudulent activities": 61538, "substantial capability": 158034, "llms identifying": 95532, "propose integration": 131883, "llms defense": 94797, "attacks propose": 13735, "advanced framework": 5735, "refines training": 138778, "process sequential": 128984, "systems knowledge": 160447, "derived llms": 39363, "llms applying": 94420, "attacks comprehensive": 13695, "realtime strategy": 136381, "strategy game": 156150, "ii large": 72098, "reinforcement learningbased": 139123, "environment paper": 50018, "agent leveraging": 6468, "strategy implementation": 156154, "powered stateoftheart": 125247, "allocating resources": 8326, "machine framework": 98001, "set different": 149176, "different difficulty": 41734, "learning workflow": 91141, "demonstrated considerable": 38637, "considerable progress": 29630, "array domains": 12513, "domains owing": 44487, "owing extensive": 118463, "extensive number": 55926, "materials knowledge": 99511, "devising methods": 41337, "methods harness": 101562, "harness knowledge": 68790, "design discovery": 39605, "discovery novel": 42783, "novel materials": 114577, "algorithms utilizing": 7983, "utilizing dataset": 175179, "methodology achieved": 101208, "conventional classification": 31695, "models findings": 106342, "sparse datasets": 153723, "promoting innovation": 130354, "innovation materials": 77144, "discovery design": 42764, "solutions particularly": 153054, "factuality fairness": 56908, "fairness especially": 57057, "rampant spread": 135510, "online study": 116143, "evaluates factual": 51234, "including gpt35": 74539, "dataset uniquely": 36601, "geographic temporal": 65706, "nuanced evaluation": 114794, "llm biases": 93513, "biases analysis": 18249, "gpt4 version": 67214, "concerning bias": 28753, "bias observed": 18169, "global north": 66102, "regions africa": 138930, "model updates": 104833, "insights impact": 77581, "exhibit reduced": 53090, "approach key": 11328, "key achieving": 81456, "ai benefits": 6888, "benefits fairly": 17465, "advent visual": 6184, "effectively discerning": 45976, "limitation mllms": 92512, "mllms introduce": 102836, "qa novel": 133903, "operates phases": 116748, "phases phase": 122815, "objects based": 115276, "vqa dataset": 177571, "containing additional": 30326, "stateoftheart mllms": 155222, "multilabel image": 110445, "recently visionlanguage": 138010, "area previous": 12340, "semantics visual": 148327, "manner paper": 99002, "propose promptdriven": 132080, "framework better": 60989, "fixed prompts": 59718, "capture intrinsic": 20662, "bidirectional interaction": 18354, "experiments popular": 54393, "llms drawing": 94988, "drawing theories": 44938, "psychology philosophy": 133514, "subsequently categorize": 157965, "questions assess": 135051, "reveal majority": 144352, "majority struggle": 98468, "ethical development": 50802, "previously difficult": 127720, "difficult build": 42133, "build high": 19320, "literary text": 93151, "text involves": 165258, "involves subtle": 80765, "language new": 86442, "opportunity solve": 116891, "copy input": 32115, "annotations create": 9577, "study despite": 157281, "mllms integrating": 102835, "elements paper": 47018, "study enhancing": 157313, "finegrained image": 58870, "responses research": 142902, "tasks maintains": 162776, "maintains original": 98395, "resulting enhanced": 143098, "outperform sota": 117629, "10 benchmarks": 106, "advancement multimodal": 5852, "understanding release": 171453, "codes facilitate": 25303, "dialogue capabilities": 41452, "models purposes": 108745, "study biases": 157191, "learning science": 90965, "understand parts": 171053, "parts process": 120304, "enables finegrained": 48186, "control problem": 31577, "steps solving": 155771, "final step": 58405, "arithmetic expressions": 12477, "humans created": 71366, "simple question": 151519, "humans likely": 71425, "networks llms": 112774, "significantly simpler": 151154, "natural evolution": 111528, "evolution neural": 52277, "networks does": 112734, "does involve": 43995, "complexity easily": 27668, "detection control": 40470, "control feedback": 31541, "allowing safe": 8391, "time resourceconsuming": 166490, "experiments generating": 54295, "llm proposes": 93927, "framework adaptable": 60923, "estimation diverse": 50750, "match real": 99423, "data sequentially": 35734, "use distribution": 172591, "model modified": 104099, "validation results": 175377, "recognized datasets": 138161, "explanation effectiveness": 54782, "disease progression": 43031, "data driven": 34941, "later stages": 89529, "stage existing": 154733, "lack explainability": 82938, "limiting scope": 92900, "scope analysis": 147012, "prompts use": 131512, "findings model": 58732, "explicitly learn": 54978, "crossmodal feature": 33683, "feature associations": 57386, "open corpus": 116220, "information pretraining": 76642, "datasets trained": 37161, "result challenging": 143026, "challenging conduct": 22131, "pretraining release": 127426, "tokens english": 166806, "english corpus": 49040, "corpus built": 32283, "built diverse": 19477, "diverse mixture": 43574, "content scientific": 30614, "toolkit enable": 167084, "including design": 74491, "course students": 33014, "students perceptions": 156884, "years experience": 179897, "experience report": 53843, "report explores": 140529, "chatgpt activity": 22680, "analysis seven": 9158, "experience including": 53831, "ability respond": 2356, "learning raise": 90893, "students critical": 156851, "tools educational": 167146, "tasks presents": 162976, "tuning typically": 170139, "rely arbitrary": 139829, "prolonged training": 130135, "various class": 175854, "designed classification": 39835, "diverging conventional": 43451, "label tokens": 82704, "technique improves": 163779, "generation distinct": 64585, "label embeddings": 82684, "embeddings class": 47217, "improvement training": 73861, "ai regulation": 7190, "frameworks leading": 61519, "leading llm": 89839, "normative values": 114200, "decisionmaking roles": 37439, "fields ai": 58260, "paper undertakes": 119376, "gpt4 assess": 66915, "models engage": 106120, "engage moral": 48823, "values underlying": 175562, "approach challenges": 11044, "ethical dilemmas": 50803, "humanai alignment": 71106, "ethical scenarios": 50833, "bias particular": 18174, "cultural norms": 33963, "embeddings paper": 47266, "advantage unique": 6122, "affordances large": 6353, "models encoding": 106113, "semantic structural": 148229, "apply ensemble": 10845, "embeddings stateoftheart": 47286, "embedding method": 47179, "representation graph": 140694, "capture structural": 20687, "structural similarities": 156529, "style use": 157775, "initial evaluation": 77021, "ideas capable": 71758, "scale wide": 146356, "largescale ai": 89264, "cuttingedge generative": 34433, "models organizations": 108376, "openai meta": 116364, "security current": 147573, "important overlooked": 73168, "overlooked aspect": 118379, "potential aibased": 124565, "psychological manipulation": 133503, "domain capabilities": 44104, "individuals organizations": 75777, "explores concept": 55389, "potential countermeasures": 124661, "chatgpt enhanced": 22892, "enhanced understanding": 49370, "spurred increasing": 154626, "face primary": 56545, "primary challenges": 127807, "subjective interpretations": 157858, "annotated downstream": 9472, "validate hypothesis": 175323, "scenarios demonstrates": 146575, "potential replace": 124940, "tasks performed": 162942, "effective different": 45737, "research systematically": 142106, "copilot chat": 32106, "junior senior": 81353, "task offers": 161580, "tool social": 167031, "chatgpt performing": 23183, "text known": 165261, "hinges quality": 70175, "quality input": 134169, "quality prompts": 134231, "aims automatically": 7583, "distinct text": 43258, "prompts tuned": 131509, "datasets improvement": 36921, "extended support": 55664, "support additional": 159255, "additional tuning": 5017, "representational harms": 140755, "measurement mitigation": 99904, "algorithmic harms": 7882, "analysis motivates": 9021, "motivates expansion": 110198, "states paper": 155436, "highlevel requirements": 69707, "vulnerabilities large": 177618, "work concludes": 178854, "establish framework": 50664, "fairness research": 57068, "alignment aims": 8120, "aims ensure": 7603, "researchers demonstrated": 142193, "jailbreak techniques": 81182, "alignment various": 8258, "contexts systematically": 31057, "cost method": 32709, "issues different": 80999, "efficiency addition": 46420, "training focuses": 168456, "lacking various": 83042, "various virtual": 176246, "text messages": 165298, "social mental": 152636, "tool assist": 166941, "text message": 165297, "concern regarding": 28747, "composition assistance": 27804, "development testing": 41236, "promise medical": 130188, "rag emerges": 135424, "tailored healthcare": 160920, "healthcare focusing": 69001, "medicine methods": 100243, "humangenerated responses": 71186, "models optimize": 108367, "optimize data": 117062, "10 minutes": 123, "required humans": 141238, "compared humangenerated": 26838, "rag model": 135435, "model healthcare": 103790, "implementation pipeline": 72854, "pipeline shows": 123090, "aspects healthcare": 12942, "field promises": 58231, "number people": 114928, "unfortunately chatgpt": 171661, "chatgpt largelanguage": 23092, "basic questions": 16437, "quantum programs": 134440, "classify user": 24218, "generates accurate": 64053, "interpreting executing": 79732, "particularly affected": 120146, "decisionmaking research": 37438, "representative list": 140929, "explore biases": 55162, "type prompt": 170314, "complexity model": 27689, "behavior findings": 16591, "increase bias": 75192, "step lowering": 155661, "costs llm": 32829, "usage generative": 172449, "various document": 175895, "come different": 26005, "different costs": 41712, "llms respective": 96426, "propose optimizing": 132056, "costs llms": 32830, "invoking llms": 80682, "llm selection": 93988, "quality llms": 134191, "like summarization": 92412, "selection llms": 147867, "sentence simplification": 148536, "model reducing": 104433, "tokens quality": 166867, "study related": 157589, "optimizing quality": 117125, "datasets annotated": 36650, "better compared": 17830, "methods reduce": 101762, "release annotated": 139437, "research exploration": 141774, "risk associated": 144931, "tools making": 167209, "making effective": 98734, "effective decisions": 45730, "actions requires": 4388, "reason uncertainty": 136583, "world problems": 179606, "demand ai": 38125, "currently sufficiently": 34339, "accuracy report": 3373, "capabilities having": 19937, "having established": 68875, "network underlying": 112704, "problem includes": 128278, "users developers": 173621, "developers policymakers": 40952, "theory argue": 166075, "novel ai": 114351, "interconnected nature": 79367, "effects performance": 46344, "vs bard": 177596, "current form": 34119, "spontaneous speech": 154585, "queries second": 134538, "sensitivity specificity": 148462, "precision f1": 125612, "bard produced": 15568, "resulted highest": 143078, "rates overall": 136037, "chatbots identify": 22616, "survey survey": 159701, "survey explores": 159634, "synergistic potential": 159859, "compelling solution": 27109, "solution issues": 152951, "llm operations": 93857, "impact enhancing": 72647, "advanced data": 5722, "data handling": 35146, "approaches evaluate": 11751, "interesting research": 79403, "engineering assess": 48886, "produced scientists": 129510, "generate clinical": 63416, "contents generated": 30667, "emerged chatgpt": 47342, "obtained similarity": 115534, "developed mitigate": 40892, "typically involves": 170496, "involves human": 80737, "main phases": 98260, "phase employs": 122797, "reasoning formal": 136866, "quality arguments": 134044, "aid human": 7360, "research dynamic": 141734, "decisionmaking support": 37444, "creation intelligent": 33339, "support real": 159324, "real application": 136216, "scarce address": 146471, "educational systems": 45628, "authenticity reliability": 14419, "collected questions": 25698, "questions categorized": 135058, "categorized according": 21142, "type questions": 170316, "questions type": 135310, "quality online": 134214, "online programming": 116122, "generating chinese": 64152, "chinese content": 23615, "content highlighting": 30520, "limitations general": 92589, "convolutional recurrent": 32045, "achieving realtime": 4206, "used softmax": 173235, "low arithmetic": 97731, "arithmetic intensity": 12478, "softwarehardware codesign": 152856, "lookup table": 97623, "inference experimental": 76003, "cmos technology": 24609, "accuracy gpt2": 3255, "approach transfer learning": 11614, "transfer learning pretrained": 168956, "learning pretrained language": 90844, "pretrained language models": 126871, "language models growing": 84625, "transfer learning methods": 168948, "employ language models": 47834, "language models pretrained": 85941, "models pretrained large": 108616, "present conceptually simple": 126266, "conceptually simple effective": 28732, "effective transfer learning": 45911, "transfer learning approach": 168934, "approach addresses problem": 10974, "problem catastrophic forgetting": 128195, "auxiliary language model": 15034, "language models enabling": 84443, "method does require": 100799, "does require pretraining": 44026, "require pretraining finetuning": 141174, "text classification tasks": 164908, "models work propose": 109712, "work propose endtoend": 179199, "transferable real robot": 169022, "real robot hardware": 136247, "convolutional neural network": 32042, "compatible openai gym": 27097, "significant improvements stateoftheart": 150752, "test proposed model": 164602, "previous stateoftheart systems": 127662, "encourage future work": 48596, "language representation models": 86706, "extends earlier work": 55692, "openai gpt2 model": 116346, "present use cases": 126494, "detecting model bias": 40419, "multihop question answering": 110422, "question answering tasks": 134810, "tasks question answering": 163059, "question answering qa": 134778, "multihop qa tasks": 110420, "tasks require reasoning": 163149, "require reasoning multiple": 141180, "pretrained large scale": 127009, "large scale datasets": 89044, "models multihop qa": 108242, "functions pretrained large": 61920, "datasets evaluate performance": 36828, "models code available": 105641, "transformer language model": 169149, "achieved stateoftheart results": 3906, "range nlp tasks": 135665, "nlp tasks paper": 113877, "language model gpt2": 83666, "different parts speech": 41896, "field natural language": 58213, "natural language processing": 111699, "outperforms existing methods": 117756, "existing methods significant": 53466, "methods significant margin": 101822, "best knowledge attempt": 17682, "deep language models": 37721, "approach improving performance": 11294, "multihead attention mechanism": 110410, "attention mechanism transformer": 13931, "bert openai gpt2": 17577, "sequence generation tasks": 148743, "large neural models": 88957, "revolutionized natural language": 144656, "mainly natural language": 98298, "natural language understanding": 111897, "language understanding tasks": 86862, "efficacy pretrained checkpoints": 46406, "publicly available pretrained": 133658, "bert gpt2 roberta": 17552, "conducted extensive empirical": 29247, "extensive empirical study": 55763, "new stateoftheart results": 113429, "results machine translation": 143581, "machine translation text": 98131, "translation text summarization": 169535, "text summarization sentence": 165515, "neural machine translation": 112873, "using pretrained language": 174595, "language models lms": 85665, "various natural language": 176048, "language processing tasks": 86624, "suffers catastrophic forgetting": 158462, "tasks work introduce": 163484, "machine translation nmt": 98122, "avoid catastrophic forgetting": 15335, "base model significantly": 15622, "model significantly improves": 104574, "bleu score code": 18689, "recurrent neural networks": 138351, "recurrent neural network": 138349, "neural network rnn": 112908, "long shortterm memory": 97482, "shortterm memory lstm": 150053, "research areas including": 141600, "including natural language": 74634, "language processing speech": 86619, "paper present new": 119125, "significantly reduce number": 151130, "reduce number parameters": 138454, "performance comparable better": 121271, "existing compression techniques": 53318, "experiments natural language": 54376, "natural language modeling": 111676, "language modeling compared": 83987, "produces comparable results": 129523, "50 compression rate": 1296, "using transformerbased language": 174821, "transformerbased language models": 169243, "language models automated": 84149, "parameter language model": 119621, "case study shows": 20924, "recent transformer models": 137708, "language models large": 84764, "models large language": 106880, "large language models": 87524, "language models range": 86018, "gpt2 language model": 66552, "neural language models": 112858, "models recurrent neural": 108869, "neural networks learn": 112935, "models match human": 108150, "models trained billions": 109417, "models perform poorly": 108472, "like gpt bert": 92282, "range natural language": 135653, "paper explore use": 118921, "use pretrained transformer": 172819, "achieve stateoftheart results": 3759, "language models produce": 85967, "improvements nlp tasks": 73925, "nlp tasks models": 113874, "tasks models typically": 162819, "reasoning process present": 137061, "bert language model": 17560, "language model provides": 83868, "fundamental building blocks": 61937, "data analysis tasks": 34627, "tools large language": 167192, "language models image": 84667, "paper propose general": 119221, "empirical results demonstrate": 47719, "results demonstrate proposed": 143325, "demonstrate proposed algorithm": 38497, "algorithm significantly outperforms": 7857, "extraction natural language": 56333, "model finetune large": 103659, "large pretrained language": 88993, "pretrained language model": 126856, "language model bert": 83560, "bert devlin et": 17524, "devlin et al": 41340, "et al 2019": 50772, "training data successfully": 168353, "diverse set nlp": 43650, "set nlp tasks": 149254, "nlp tasks including": 113849, "tasks including natural": 162566, "natural language inference": 111632, "language inference question": 83427, "inference question answering": 76085, "shift transfer learning": 149927, "performs slightly worse": 122462, "masked language model": 99300, "pretrained masked language": 127034, "masked language models": 99312, "language models mlms": 85766, "finetuning nlp tasks": 59406, "autoregressive language models": 14988, "language models like": 84793, "models like gpt2": 106983, "multilingual language models": 110492, "language models leveraging": 84790, "process involves multiple": 128886, "machine translation models": 98118, "language models propose": 85990, "models propose simple": 108711, "trained multilingual parallel": 168015, "paraphrases generated model": 119915, "gpt radford et": 66482, "radford et al": 135396, "et al 2018": 50771, "model experimental results": 103597, "experimental results model": 54043, "natural question answering": 111941, "huge language models": 70520, "language models gpt2": 84607, "unsupervised learning techniques": 172251, "training language model": 168516, "language model goal": 83663, "language model based": 83549, "language model results": 83885, "hours single gpu": 70457, "transfer reinforcement learning": 168988, "reinforcement learning work": 139122, "work explore use": 178961, "reinforcement learning agent": 139038, "generative models reinforcement": 65510, "models reinforcement learning": 108888, "reinforcement learning algorithms": 139044, "evaluating language models": 51323, "stateoftheart models identify": 155229, "negative polarity items": 112526, "study pretrained language": 157545, "usergenerated content social": 173560, "content social media": 30621, "social media provides": 152625, "demonstrate stateoftheart results": 38560, "pretraining language model": 127354, "language model large": 83708, "social media corpus": 152605, "downstream classification tasks": 44708, "modern language models": 109803, "performance limited pretraining": 121741, "language model neural": 83813, "model neural network": 104125, "neural network language": 112900, "network language models": 112666, "amounts training data": 8706, "limitations todays models": 92678, "models particular models": 108436, "models struggle learn": 109248, "propose general methodology": 131850, "language modeling performance": 84012, "transformer based large": 169102, "based large language": 15903, "language models vllms": 86380, "like bert xlnet": 92207, "bert xlnet roberta": 17622, "recently shown tremendous": 137997, "shown tremendous performance": 150394, "variety natural language": 175731, "language understanding nlu": 86836, "understanding nlu tasks": 171380, "inference time propose": 76125, "time propose novel": 166476, "propose novel set": 132029, "models neural network": 108283, "train machine learning": 167794, "machine learning models": 98051, "neural network model": 112904, "modelfree deep reinforcement": 104949, "deep reinforcement learning": 37818, "reinforcement learning methods": 139078, "black box nature": 18615, "potentially lead better": 125117, "downstream tasks propose": 44825, "recursive neural network": 138362, "neural network using": 112911, "structures language modeling": 156703, "empirical results proposed": 47733, "language models recent": 86041, "unsupervised representation learning": 172270, "transfer learning nlp": 168953, "making better use": 98709, "language modelling objectives": 84031, "pretraining large language": 127363, "new stateoftheart sota": 113432, "stateoftheart sota results": 155372, "language models achieved": 84064, "achieved sota results": 3900, "documents using natural": 43948, "using natural language": 174513, "natural language text": 111892, "pretrain large language": 126735, "large language model": 87299, "language model serve": 83898, "extensive automatic human": 55721, "automatic human evaluations": 14687, "models make clear": 108127, "challenges future work": 21885, "long training times": 97501, "plays integral role": 123528, "fully connected layers": 61751, "conversational assistance track": 31850, "assistance track overview": 13379, "track overview conversational": 167525, "conversational information seeking": 31873, "machine reading comprehension": 98096, "retrieval based methods": 144016, "generative language models": 65434, "language models conversational": 84313, "conversational query rewriting": 31903, "language models paper": 85840, "models paper presents": 108417, "paper presents empirical": 119158, "presents empirical study": 126574, "empirical study conversational": 47750, "language models plms": 85889, "maximum likelihood estimation": 99697, "taskoriented dialogue systems": 161845, "models using data": 109585, "texttotext transfer transformer": 165866, "transfer transformer t5": 169002, "achieves best results": 3969, "variational autoencoder vae": 175645, "powerful generative model": 125281, "effective representation learning": 45870, "representation learning framework": 140709, "natural language paper": 111687, "language paper propose": 86457, "paper propose largescale": 119227, "latent embedding space": 89503, "pretrained large text": 127010, "large text corpus": 89074, "language generation understanding": 83388, "generation understanding tasks": 65225, "structure extensive experimental": 156554, "extensive experimental results": 55784, "results wide range": 143933, "range language tasks": 135635, "tasks demonstrate effectiveness": 162172, "achieves new stateoftheart": 4041, "language modeling benchmarks": 83980, "deep generative models": 37719, "models era largescale": 106147, "paper present simple": 119135, "provides better accuracy": 133113, "language modelling task": 84033, "achieves stateoftheart performance": 4094, "optical character recognition": 116923, "character recognition ocr": 22437, "errors paper reports": 50387, "language model lm": 83787, "subject human intervention": 157832, "tasks generative language": 162462, "language models available": 84158, "generative language model": 65432, "built using gpt2": 19507, "provide thorough analysis": 133008, "sentence completion task": 148480, "language model baseline": 83555, "largescale pretrained language": 89375, "language models bert": 84173, "models bert gpt2": 105494, "achieved excellent performance": 3806, "language representation learning": 86704, "freeform text generation": 61568, "text generation models": 165160, "address challenge present": 5169, "text generation proposed": 165173, "time complexity inference": 166361, "inference time experimental": 76121, "time experimental results": 166402, "constrained text generation": 30044, "text generation released": 165180, "released pretrained models": 139534, "pretrained models source": 127109, "models source code": 109184, "code facilitate future": 24834, "facilitate future research": 56617, "existing approaches generating": 53266, "data paper propose": 35466, "paper propose alternative": 119202, "propose alternative approach": 131706, "strong pretrained language": 156433, "despite simplicity approach": 40211, "simplicity approach experimental": 151577, "approach experimental results": 11204, "experimental results models": 54045, "models outperform previous": 108385, "standard evaluation metrics": 154821, "evaluation metrics provide": 51728, "human evaluation experiments": 70735, "approach language models": 11332, "language models fewshot": 84526, "models fewshot learners": 106325, "fewshot learners recent": 57949, "learners recent work": 90157, "recent work demonstrated": 137720, "work demonstrated substantial": 178895, "demonstrated substantial gains": 38805, "nlp tasks benchmarks": 113825, "large corpus text": 87228, "text followed finetuning": 165094, "followed finetuning specific": 60238, "thousands tens thousands": 166260, "current nlp systems": 34197, "scaling language models": 146406, "language models greatly": 84623, "autoregressive language model": 14985, "model 175 billion": 102997, "175 billion parameters": 495, "language model test": 83928, "performance fewshot setting": 121513, "gradient updates finetuning": 67399, "achieves strong performance": 4114, "questionanswering cloze tasks": 134980, "tasks tasks require": 163346, "articles written humans": 12630, "strong baselines finetuning": 156357, "pretrained transformerbased language": 127210, "various nlp benchmarks": 176068, "performance finetuned models": 121533, "training model multiple": 168583, "multiple random seeds": 111014, "et al 2020": 50773, "instability catastrophic forgetting": 77787, "bert roberta albert": 17592, "commonly used datasets": 26242, "downstream task performance": 44757, "finetuned models training": 59085, "simple strong baseline": 151529, "code reproduce results": 25105, "reproduce results available": 141005, "parameter language models": 119622, "knowledgeaware language model": 82528, "language model pretraining": 83851, "model pretraining knowledge": 104333, "knowledge pretrained language": 82287, "language models hold": 84646, "downstream tasks like": 44802, "tasks like zeroshot": 162734, "augmentation language models": 14287, "language models experiment": 84487, "language models text": 86281, "text corpus used": 164973, "neural code completion": 112836, "code completion code": 24725, "language models trained": 86300, "models trained public": 109469, "opensource code repositories": 116585, "lens large language": 91415, "language models transfer": 86316, "transfer learning network": 168952, "deep neural network": 37803, "neural network architectures": 112893, "based data augmentation": 15739, "deep transformer models": 37830, "language modeling tasks": 84023, "language models lm": 85662, "using neural text": 174528, "neural text generation": 112987, "text generation based": 165132, "general text corpus": 63058, "text corpus finetune": 164971, "propose new method": 131965, "new method called": 113271, "methods significantly improve": 101824, "investigating pretrained language": 80614, "generation aims generate": 64410, "aims generate fluent": 7619, "generate fluent texts": 63511, "data paper investigate": 35463, "analyze impact different": 9301, "knowledge graphs kgs": 82077, "achieve new stateoftheart": 3690, "strategies improve performance": 156011, "improve performance particular": 73565, "network language model": 112665, "used various fields": 173294, "high computational complexity": 69413, "continuous speech recognition": 31255, "paper proposes novel": 119272, "proposes novel method": 132479, "novel method applying": 114582, "shows proposed approach": 150469, "proposed approach achieves": 132232, "maintaining word error": 98387, "word error rate": 178638, "error rate wer": 50318, "information retrieval tasks": 76737, "critical user experience": 33569, "poses significant challenge": 124227, "sophisticated language models": 153306, "language models unseen": 86349, "paper propose efficient": 119215, "language modeling methods": 84006, "results public datasets": 143715, "public datasets model": 133562, "balance accuracy efficiency": 15489, "transformer based models": 169106, "deep learning natural": 37767, "learning natural language": 90754, "language processing deep": 86504, "processing deep learning": 129139, "wide range natural": 178291, "language processing applications": 86486, "success deep learning": 158230, "annotated data making": 9459, "learning methods knowledge": 90680, "low resource settings": 97788, "learning transfer learning": 91095, "supervised unsupervised learning": 159185, "modern deep learning": 109794, "deep learning models": 37756, "learning models knowledge": 90720, "deep learning model": 37755, "incorporating prior knowledge": 75127, "machine reading models": 98098, "evidence sentences support": 52216, "setting proposed method": 149497, "proposed method improve": 132359, "external knowledge pretrained": 56071, "transfer learning models": 168950, "models elmo bert": 106067, "measuring massive multitask": 99952, "massive multitask language": 99369, "multitask language understanding": 111215, "language understanding propose": 86847, "models possess extensive": 108570, "possess extensive world": 124337, "extensive world knowledge": 55970, "largest gpt3 model": 89438, "20 percentage points": 607, "need substantial improvements": 112399, "advanced neural language": 5787, "language models assessing": 84139, "demonstrates significant improvement": 38890, "industry government civil": 75877, "government civil society": 66361, "current limitations language": 34158, "limitations language models": 92611, "language models need": 85788, "language models including": 84683, "models masked language": 108144, "openended text generation": 116511, "scaling model size": 146427, "model size efficiently": 104592, "results poor performance": 143668, "entire training dataset": 49819, "small language models": 152306, "hundreds billions parameters": 71536, "billions parameters pretrained": 18452, "parameters pretrained language": 119835, "language models gpt3": 84608, "models gpt3 brown": 106528, "gpt3 brown et": 66656, "brown et al": 19252, "remarkable fewshot performance": 140198, "orders magnitude smaller": 117267, "identify key factors": 71911, "successful natural language": 158348, "understanding small language": 171478, "contextual language model": 31103, "series case studies": 148909, "case studies illustrate": 20895, "work natural language": 179132, "language processing latin": 86528, "achieves new state": 4039, "new state art": 113423, "create new dataset": 33219, "new dataset assessing": 113132, "word sense disambiguation": 178676, "static word embeddings": 155471, "high level text": 69478, "despite recent progress": 40190, "models trained existing": 109436, "trained existing datasets": 167915, "existing datasets introduce": 53334, "compared existing datasets": 26798, "information finally evaluate": 76450, "generation models based": 64844, "models based gpt2": 105453, "based gpt2 model": 15845, "gpt2 model able": 66560, "model able generate": 103011, "data augmentation finetuning": 34674, "data augmentation text": 34689, "text generation language": 165147, "generation language modeling": 64768, "tasks natural language": 162837, "language processing especially": 86513, "incorporate external knowledge": 75013, "quality generated text": 134147, "aspects generated text": 12940, "language models languages": 84763, "benchmark dataset containing": 16894, "naturally occurring data": 111980, "language models capture": 84211, "models capture human": 105569, "human preferences results": 70975, "results larger models": 143559, "larger models perform": 89234, "models perform better": 108459, "better smaller models": 18028, "transformerbased text generation": 169290, "growth social media": 68088, "african american vernacular": 6378, "american vernacular english": 8664, "gpt2 generated text": 66537, "conduct human evaluation": 29141, "text generated gpt2": 165111, "text classification model": 164887, "language model gpt": 83664, "times fewer parameters": 166586, "improve language model": 73497, "language model performance": 83831, "performance language processing": 121712, "word embeddings use": 178636, "word representations derived": 178674, "demographic information user": 38207, "ethical implications using": 50811, "language model successful": 83919, "modern deep neural": 109795, "deep neural networks": 37809, "recently deep generative": 137847, "generative models gpt2": 65491, "models gpt2 bart": 106524, "language model learning": 83712, "unconditional generation conditional": 170710, "generation conditional generation": 64523, "humans process language": 71453, "datasets compare performance": 36715, "compare performance using": 26716, "evaluation metrics results": 51730, "bert model achieves": 17568, "generated language model": 63896, "language model like": 83715, "model like gpt2": 103960, "large scale pretrained": 89049, "scale pretrained language": 146330, "achieved great success": 3816, "great success various": 67742, "success various natural": 158310, "tasks efficiently effectively": 162275, "text generation tasks": 165189, "problem paper propose": 128344, "paper propose address": 119201, "propose address problem": 131700, "different bert models": 41677, "encoder decoder respectively": 48415, "lightweight adapter modules": 92167, "catastrophic forgetting problem": 21075, "conduct extensive experiments": 29115, "machine translation tasks": 98130, "translation tasks proposed": 169530, "tasks proposed method": 163039, "proposed method consistently": 132346, "method consistently outperforms": 100755, "proposed method achieves": 132338, "great success nlp": 67741, "advanced models like": 5780, "models like bert": 106967, "like bert gpt": 92200, "contexts paper propose": 31038, "extensive experiments benchmark": 55805, "experiments benchmark datasets": 54161, "effectively improve performance": 46024, "improve performance tasks": 73572, "multiple choice question": 110862, "generate semantically correct": 63706, "multiple choice questions": 110865, "generation active research": 64396, "active research topic": 4441, "lot room improvement": 97718, "language model generate": 83652, "language model answer": 83524, "question answering ability": 134683, "lead better performance": 89729, "conducted human evaluation": 29259, "human evaluation study": 70753, "using deep reinforcement": 174127, "reinforcement learning drl": 139053, "general applicability approach": 62915, "openai gym tasks": 116357, "capacity neural networks": 20530, "widely adopted transformer": 178359, "gradient descent gd": 67387, "training transformer language": 168801, "transformer language models": 169151, "models including t5": 106721, "different attention heads": 41664, "capabilities shed light": 20173, "text simplification ts": 165467, "pretrained neural language": 127136, "achieve better results": 3595, "knowledge language models": 82160, "language models automatically": 84151, "automatically generated prompts": 14819, "success pretrained language": 158279, "language models motivated": 85771, "diverse set tasks": 43656, "perform sentiment analysis": 121033, "sentiment analysis natural": 148623, "analysis natural language": 9029, "additional parameters finetuning": 4987, "achieving performance par": 4202, "stateoftheart supervised models": 155383, "accurate factual knowledge": 3457, "supervised relation extraction": 159169, "relation extraction models": 139251, "models results demonstrate": 108972, "supervised contrastive learning": 159095, "language model finetuning": 83647, "stateoftheart natural language": 155251, "propose supervised contrastive": 132152, "obtains significant improvements": 115562, "significant improvements strong": 150753, "fewshot learning settings": 57984, "different levels noise": 41829, "finetuning training data": 59592, "training data generalize": 168267, "limited labeled data": 92791, "present novel approach": 126385, "recent pretrained models": 137587, "pretrained models text": 127112, "models text editing": 109386, "offtheshelf pretrained language": 115923, "language model evaluate": 83625, "zeroshot domain adaptation": 180160, "domain adaptation using": 44080, "lowresource machine translation": 97921, "dataset parallel sentences": 36449, "perform style transfer": 121053, "augmenting training set": 14404, "extremely lowresource setting": 56445, "machine translation approach": 98109, "code data available": 24743, "adapting language model": 4738, "language generation models": 83358, "generation models generate": 64846, "model capable generating": 103245, "stateoftheart text generation": 155392, "text generation model": 165158, "generation model gpt2": 64840, "flexibility control category": 59786, "topic generated text": 167323, "provide detailed comparison": 132747, "evaluations model outperforms": 52001, "model outperforms existing": 104174, "neural networks dnns": 112920, "black box models": 18614, "models llms develop": 107304, "proposed methods demonstrated": 132380, "credit risk assessment": 33410, "neural language model": 112855, "neural language modelling": 112857, "models paper present": 108416, "language models specifically": 86206, "models specifically gpt2": 109207, "downstream tasks named": 44813, "tasks named entity": 162832, "named entity recognition": 111399, "language models pretraining": 85951, "achieved impressive results": 3832, "understanding nlu generation": 171374, "nlu generation nlg": 113940, "generation nlg tasks": 64890, "current pretraining objectives": 34213, "pretraining objectives masked": 127403, "masked token prediction": 99322, "knowledge paper propose": 82263, "paper propose generative": 119222, "finetuning downstream datasets": 59232, "experimental results method": 54036, "language model calm": 83566, "relying external knowledge": 139899, "external knowledge graphs": 56067, "nlu nlg tasks": 113947, "outperforms baseline methods": 117710, "commonsense reasoning ability": 26303, "image natural language": 72293, "work introduce novel": 179057, "generate natural language": 63620, "natural language captions": 111559, "experiments proposed model": 54410, "proposed model achieves": 132389, "model achieves stateoftheart": 103053, "challenges ai systems": 21769, "existing work falls": 53641, "falls short handling": 57151, "pretrained deep learning": 126783, "learning models bert": 90708, "models bert gpt3": 105495, "largescale datasets shown": 89293, "new pretrained model": 113346, "finetuning pretrained model": 59464, "outperforms current stateoftheart": 117746, "current stateoftheart methods": 34263, "stateoftheart methods various": 155218, "benchmarks code available": 17186, "chinese pretrained language": 23657, "language model pretrained": 83844, "model pretrained language": 104318, "models plms proven": 108544, "various downstream nlp": 175917, "downstream nlp tasks": 44741, "nlp tasks recently": 113891, "gpt3 175 billion": 66631, "fewshot zeroshot learning": 58087, "nlp tasks challenging": 113826, "largest chinese pretrained": 89431, "extensive experiments demonstrate": 55821, "performance nlp tasks": 121847, "advancement deep learning": 5835, "learning artificial intelligence": 90226, "artificial intelligence ai": 12658, "performance various tasks": 122278, "tasks object detection": 162867, "generative adversarial networks": 65299, "models applied generate": 105373, "research natural language": 141917, "language processing nlp": 86539, "recently released gpt3": 137976, "framework based conditional": 60978, "based conditional generative": 15717, "conditional generative adversarial": 28956, "model generate abstract": 103715, "different existing work": 41762, "large generative language": 87269, "language models successful": 86234, "existing pretrained models": 53529, "pretrained models new": 127096, "models new languages": 108287, "generated gpt2 model": 63874, "notoriously difficult control": 114336, "artificial neural networks": 12792, "natural language generation": 111610, "language model just": 83701, "application programming interfaces": 10367, "programming interfaces apis": 129826, "original model allowing": 117356, "models new tasks": 108289, "stateoftheart approaches demonstrate": 155076, "openais gpt2 model": 116410, "gpt2 model successfully": 66565, "generative pretraining transformer": 65575, "language model used": 83945, "text classification paper": 164892, "classification paper proposes": 24046, "paper proposes new": 119268, "paper proposes method": 119265, "character error rate": 22426, "main contribution paper": 98230, "contribution paper propose": 31480, "paper propose method": 119230, "language model query": 83869, "way improve performance": 177829, "approaches proposed literature": 11872, "experiments text generation": 54498, "outperforms strong baselines": 117872, "existing work does": 53638, "powerful language models": 125287, "language models able": 84044, "compared existing baselines": 26796, "augmentation contrastive learning": 14271, "selfsupervised representation learning": 148073, "language models designed": 84364, "mutual information maximization": 111343, "current contrastive learning": 34095, "maximizes mutual information": 99684, "making pretrained language": 98794, "language models better": 84186, "better fewshot learners": 17870, "al 2020 achieves": 7727, "demonstrations input context": 39017, "smaller language models": 152398, "language models finetuning": 84539, "fewshot finetuning language": 57911, "finetuning language models": 59325, "language models small": 86180, "models small number": 109158, "present systematic evaluation": 126472, "tasks including classification": 162546, "low resource setting": 97787, "30 absolute improvement": 953, "makes minimal assumptions": 98670, "minimal assumptions task": 102314, "language modeling recent": 84017, "capability largescale language": 20329, "largescale language models": 89336, "text corpus targeted": 164972, "training largescale language": 168537, "performance downstream evaluations": 121427, "make publicly available": 98586, "publicly available code": 133631, "models bert xlnet": 105501, "achieved impressive success": 3834, "success nlp tasks": 158273, "enormous computation resources": 49603, "long training time": 97500, "pretraining finetuning works": 127333, "reducing inference time": 138575, "expensive training process": 53818, "computer vision tasks": 28514, "finetuning largescale language": 59346, "downstream tasks results": 44833, "achieves comparable performance": 3983, "way leverage large": 177846, "leverage large pretrained": 91621, "language models perform": 85869, "perform downstream tasks": 120932, "language model parameters": 83829, "task paper propose": 161598, "finetuning natural language": 59400, "language generation tasks": 83385, "sequencetosequence seq2seq pretraining": 148857, "transferring knowledge large": 169032, "reasoning commonsense knowledge": 136758, "visual textual inputs": 177325, "improve model performance": 73518, "boosts model performance": 18852, "leveraging commonsense knowledge": 91823, "commonsense knowledge large": 26272, "knowledge large language": 82163, "external commonsense knowledge": 56035, "commonsense knowledge graphs": 26270, "knowledge graphs best": 82075, "graphs best knowledge": 67619, "best knowledge propose": 17688, "improving model performance": 74169, "task experimental results": 161376, "reaches stateoftheart performance": 136134, "pretrained transformer encoder": 127180, "large memory footprint": 88910, "model performs competitively": 104271, "conditional variational autoencoder": 28972, "controllable story generation": 31624, "latent variable models": 89520, "neural story generation": 112980, "latent representation learning": 89511, "generation ability model": 64384, "makes good incontext": 98652, "good incontext examples": 66273, "attracted lots attention": 14049, "superior performance wide": 159048, "performance wide range": 122296, "wide range nlp": 178296, "nlp tasks especially": 113840, "incontext fewshot learning": 74853, "fewshot learning ability": 57952, "choice incontext examples": 23689, "examples work investigate": 52727, "investigate effective strategies": 80401, "selecting incontext examples": 147819, "inspired recent success": 77761, "neural network models": 112905, "evaluate proposed approach": 51078, "approach natural language": 11399, "language understanding generation": 86818, "prompt selection approach": 130662, "approach consistently outperforms": 11078, "outperforms random baseline": 117838, "opendomain question answering": 116467, "distilling large language": 43189, "pretrained multilingual models": 127126, "multilingual models like": 110511, "achieve state art": 3750, "state art results": 154993, "models end propose": 106118, "effective natural language": 45826, "multilingual semantic parsing": 110544, "semantic parsing dataset": 148186, "results suggest approach": 143830, "models googles bert": 106515, "pretrained models used": 127114, "respect sequence length": 142518, "complexity selfattention mechanism": 27700, "research work present": 142153, "tasks text generation": 163361, "generation existing methods": 64632, "visual question answering": 177263, "referring expression comprehension": 138710, "decoder image captioning": 37516, "work propose unified": 179221, "propose unified framework": 132187, "unified framework learns": 171716, "framework learns different": 61273, "different tasks single": 42037, "architecture language modeling": 12178, "language modeling objective": 84009, "conditional text generation": 28969, "models learn generate": 106939, "text based visual": 164857, "based visual textual": 16179, "visionandlanguage benchmarks including": 177010, "benchmarks including visual": 17276, "question answering referring": 134796, "answering referring expression": 9952, "visual commonsense reasoning": 177134, "approach shows better": 11535, "shows better generalization": 150408, "better generalization ability": 17885, "allows multitask learning": 8458, "achieving similar performance": 4215, "models code publicly": 105655, "code publicly available": 25078, "approach using gpt3": 11644, "ability understand generate": 2403, "progress natural language": 129994, "gpt3 language model": 66714, "paper explore possibility": 118915, "software engineering data": 152799, "engineering data science": 48900, "language generation nlg": 83366, "understanding nlu models": 171376, "require massive amounts": 141156, "automatically constructing largescale": 14780, "models proposed framework": 108714, "weakly supervised training": 177952, "low resource scenarios": 97786, "100 training data": 164, "training data used": 168361, "lack training data": 83023, "address problem propose": 5342, "problem propose novel": 128362, "propose novel fewshot": 132000, "data available training": 34711, "training data use": 168360, "order make sure": 117221, "utilizing annotated data": 175170, "annotated data model": 9460, "establishing new stateoftheart": 50711, "intelligence ai increasingly": 78747, "transformers natural language": 169337, "gpt bert xlnet": 66394, "recent years seen": 137802, "models gpt bert": 106518, "significant implications field": 150729, "summarization text generation": 158889, "language models achieve": 84058, "applying large pretrained": 10903, "large pretrained transformer": 89014, "models outperform strong": 108387, "outperform strong baselines": 117638, "strong baselines using": 156362, "using automated metrics": 173981, "automated metrics human": 14574, "provide case study": 132697, "performance language models": 121711, "tasks provided natural": 163046, "provided natural language": 133078, "natural language prompt": 111844, "training examples order": 168432, "order training examples": 117250, "bias language models": 18145, "language models predicting": 85934, "common pretraining data": 26180, "training language models": 168518, "language models increasingly": 84697, "standard language modeling": 154837, "training cost compared": 168213, "achieves stateoftheart result": 4104, "near stateoftheart performance": 112093, "model training inference": 104786, "generalize new problems": 63264, "present new dataset": 126378, "various reasoning tasks": 176139, "design fewshot learning": 39633, "learn new concepts": 90018, "extensive experiments various": 55896, "chain thought prompting": 21468, "results indicate current": 143502, "current models struggle": 34187, "prompting exhibits impressive": 130926, "dataset experimental findings": 36285, "bridging vision language": 19101, "bridge vision language": 19077, "language recent years": 86698, "text image modalities": 165230, "crossmodal contrastive learning": 33682, "contrastive learning framework": 31365, "simple contrastive learning": 151422, "construct large chinese": 30145, "model extensive experiments": 103620, "various downstream tasks": 175919, "tasks large pretrained": 162688, "language models contain": 84298, "models contain humanlike": 105768, "recent advances largescale": 137411, "largescale transformerbased language": 89414, "models lms bert": 108060, "using pretrained models": 174601, "pretrained models finetuning": 127076, "models finetuning specific": 106365, "finetuning specific tasks": 59554, "nlp tasks shown": 113899, "preventing toxic degeneration": 127553, "neural toxic degeneration": 112991, "zeroshot reasoning performance": 180321, "solve difficult problems": 153115, "improve reasoning ability": 73604, "language models similar": 86169, "language model main": 83791, "significantly improves zeroshot": 151053, "improves zeroshot performance": 74103, "reasoning natural language": 136998, "inference task model": 76114, "including fewshot learning": 74518, "original problem description": 117370, "contextual language models": 31104, "models bert gpt": 105491, "tasks models finetuned": 162816, "models finetuned based": 106349, "ranking signals documents": 135823, "study design decisions": 157278, "large training datasets": 89079, "using weak supervision": 174864, "task large language": 161507, "training data work": 168364, "novel efficient method": 114483, "communication efficient largescale": 26371, "train large models": 167785, "large models like": 88925, "like bert gpt3": 92203, "communication major bottleneck": 26389, "major bottleneck especially": 98410, "bottleneck especially commodity": 18888, "especially commodity systems": 50440, "low network bandwidth": 97772, "communication volume reduction": 26423, "task accuracy compared": 161158, "language models recently": 86060, "challenges future research": 21883, "applications including language": 10561, "including language modeling": 74579, "factual knowledge stored": 56891, "knowledge stored large": 82424, "knowledge base kb": 81770, "pretraining masked language": 127385, "pretrained transformer language": 127195, "dense vector representations": 39111, "novel transformer architecture": 114729, "various text retrieval": 176232, "language models shown": 86150, "models shown promising": 109110, "shown promising results": 150343, "multiple choice tasks": 110866, "different surface forms": 42025, "pointwise mutual information": 123780, "zhao et al": 180385, "et al 2021": 50775, "gpt2 gpt3 models": 66545, "multiple choice datasets": 110861, "fluent natural language": 59909, "world domain knowledge": 179543, "stateoftheart neural language": 155256, "language model achieve": 83514, "achieve good performance": 3655, "second main contribution": 147492, "challenging data split": 22138, "parameterefficient prompt tuning": 119678, "frozen language models": 61663, "specific downstream tasks": 153984, "downstream tasks unlike": 44841, "discrete text prompts": 42818, "text prompts used": 165387, "soft prompts learned": 152741, "number labeled examples": 114888, "fewshot learning large": 57965, "method closes gap": 100733, "model tuning model": 104812, "model multiple downstream": 104109, "multiple downstream tasks": 110903, "model soft prompts": 104630, "colossal clean crawled": 25799, "clean crawled corpus": 24247, "corpus large language": 32324, "language models led": 84784, "raffel et al": 135415, "text machine translation": 165288, "machine translation systems": 98128, "finally conclude recommendations": 58423, "generalization natural language": 63202, "solving different tasks": 153207, "examples despite success": 52558, "despite success conventional": 40220, "success conventional supervised": 158224, "conventional supervised learning": 31733, "datasets models struggle": 36988, "existing nlp datasets": 53504, "generative pretrained language": 65535, "language models encode": 84444, "results indicate models": 143514, "generalization unseen tasks": 63235, "language models tlms": 86292, "social media posts": 152622, "used produce results": 173191, "language models promising": 85974, "opinions social media": 116816, "create synthetic data": 33234, "synthetic data improve": 160031, "data improve prediction": 35189, "improve prediction performance": 73584, "nlp machine learning": 113759, "large datasets training": 87235, "performance machine learning": 121776, "using synthetic data": 174776, "machine learning practitioners": 98070, "generate synthetic data": 63738, "convolutional neural networks": 32043, "data improve performance": 35188, "performance natural language": 121832, "language processing machine": 86531, "processing machine learning": 129190, "transfer learning finetune": 168941, "finetune pretrained gpt2": 58960, "model generate synthetic": 103729, "sentiment analysis deep": 148613, "deep learningbased language": 37783, "learningbased language models": 91158, "sentiment analysis data": 148611, "social networks twitter": 152643, "social media provide": 152624, "deep understanding human": 37833, "paper present framework": 119119, "language models long": 85700, "sentiment analysis rise": 148635, "lstm language model": 97957, "language model review": 83889, "results indicate majority": 143512, "potential computer vision": 124653, "computer vision cv": 28496, "despite great advance": 40114, "tokens paper propose": 166847, "paper propose novel": 119239, "propose novel transformer": 132042, "benchmarks including imagenet": 17273, "nlp tasks finetuning": 113844, "based pretrained language": 16017, "pretrained language transformers": 126989, "performance widely used": 122307, "smaller language model": 152397, "model large language": 103926, "models led stateoftheart": 106948, "led stateoftheart accuracies": 91248, "stateoftheart accuracies range": 155062, "accuracies range tasks": 3099, "larger target model": 89254, "model data sets": 103400, "data sets comparable": 35741, "target model training": 161087, "chinese language models": 23634, "models plms new": 108539, "plms new paradigm": 123622, "new paradigm natural": 113319, "paradigm natural language": 119488, "gpt3 demonstrated strong": 66674, "performances natural language": 122337, "incontext learning work": 74985, "learning work present": 91139, "language models named": 85783, "pipeline model parallelism": 123077, "highquality chinese data": 69998, "data wide range": 35962, "wide range domains": 178278, "various scenarios including": 176155, "including text summarization": 74756, "text summarization question": 165512, "summarization question answering": 158867, "question answering dialogue": 134703, "answering dialogue generation": 9838, "tasks experimental results": 162359, "experimental results demonstrate": 53980, "results demonstrate superior": 143337, "performing various tasks": 122421, "various tasks fewshot": 176209, "fewshot zeroshot settings": 58090, "bidirectional encoder representations": 18346, "extracted pretrained large": 56202, "pretrained large language": 126995, "method takes account": 101137, "evaluation results proposed": 51833, "results proposed method": 143700, "f1 score compared": 56486, "proposed method achieved": 132337, "mean opinion score": 99751, "benchmarks fair comparison": 17245, "language models driven": 84408, "tasks general language": 162446, "general language understanding": 62978, "language understanding performance": 86845, "human performance results": 70957, "analysis benchmark datasets": 8829, "machine learning based": 98020, "learning based language": 90242, "based language models": 15901, "language models exploit": 84497, "russian natural language": 145774, "models like gpt3": 106984, "like gpt3 bert": 92287, "provide set recommendations": 132971, "humanlevel nlp tasks": 71231, "modern transformerbased language": 109843, "provide systematic study": 132994, "finetuning large models": 59338, "models limited data": 107005, "data pose significant": 35502, "achieve results comparable": 3726, "best performance just": 17722, "machine learning research": 98071, "training large language": 168525, "language models notably": 85806, "future research including": 62346, "adds growing literature": 5489, "grounded text generation": 67876, "quality text generated": 134283, "external information grounded": 56054, "widelyused pretrained language": 178423, "directly raw text": 42594, "models introduced new": 106817, "standard transformer architecture": 154889, "parameter count training": 119599, "models based t5": 105462, "architecture code data": 12131, "code data used": 24761, "reinforcement learning sequence": 139114, "reinforcement learning rl": 139095, "learning rl sequence": 90949, "sequence modeling problem": 148771, "advances language modeling": 6019, "unlike prior approaches": 172019, "matches exceeds performance": 99441, "language models serve": 86143, "models plms knowledge": 108535, "construct new dataset": 30151, "recall relevant knowledge": 137279, "knowledge question answering": 82328, "question answering syntactic": 134805, "extract linguistic information": 56145, "models linguistic knowledge": 107012, "popular language models": 124004, "bert gpt roberta": 17546, "sequence modeling tasks": 148773, "transformer architecture work": 169095, "transformers large language": 169322, "large language modeling": 87516, "language modeling dialogue": 83990, "modeling dialogue tasks": 104990, "conduct case study": 29029, "large model size": 88915, "autoregressive decoding process": 14978, "source code available": 153394, "introduce new type": 80041, "new type programming": 113483, "python programming puzzles": 133849, "depend natural language": 39136, "language understanding dataset": 86813, "representation learning recently": 140716, "largescale unlabeled data": 89418, "extract semantic information": 56158, "effective discriminative tasks": 45740, "achieve best worlds": 3588, "number natural language": 114907, "plans natural language": 123363, "natural language descriptions": 111581, "multiple translation tasks": 111075, "particularly gpt3 able": 120199, "current state art": 34246, "neural architecture search": 112827, "fixed training process": 59721, "training process known": 168653, "initial experimental results": 77024, "experimental results indicate": 54019, "results indicate approach": 143500, "multivariate time series": 111291, "time series forecasting": 166501, "network reinforcement learning": 112693, "reinforcement learning deep": 139052, "learning deep neural": 90355, "robotic control tasks": 145191, "spatial temporal information": 153811, "twin delayed deep": 170219, "delayed deep deterministic": 38032, "deep deterministic policy": 37713, "deterministic policy gradient": 40729, "policy gradient algorithm": 123840, "achieves better performance": 3972, "better performance stateoftheart": 17970, "performance stateoftheart models": 122112, "models openai gym": 108346, "openai gym benchmark": 116353, "gym benchmark tasks": 68297, "ability generate coherent": 2185, "generate coherent text": 63427, "semantics paper propose": 148312, "todays large language": 166676, "language models enriched": 84453, "compression large language": 28214, "models natural language": 108266, "processing nlp led": 129228, "massive number parameters": 99373, "inference time memory": 76123, "paper presents novel": 119174, "language modeling pretraining": 84014, "pretraining method significantly": 127388, "method significantly outperforms": 101102, "outperforms commonly used": 117736, "language model perplexity": 83834, "downstream tasks glue": 44790, "tasks glue benchmark": 162470, "use language models": 172699, "models lms trained": 108084, "trained general domain": 167929, "general domain text": 62941, "lack commonsense knowledge": 82900, "present novel endtoend": 126386, "novel endtoend framework": 114485, "models commonsense knowledge": 105685, "bidirectional gated recurrent": 18351, "datasets demonstrate proposed": 36772, "demonstrate proposed approach": 38498, "proposed approach outperforms": 132241, "approach outperforms stateoftheart": 11433, "outperforms stateoftheart models": 117862, "models recent years": 108842, "size pretrained language": 152053, "utilization realworld scenarios": 175017, "training models scratch": 168589, "explore best practice": 55161, "compared conventional finetuning": 26773, "finetuning prompt tuning": 59476, "prompt tuning significantly": 130727, "significantly reduces number": 151141, "number taskspecific parameters": 114957, "limited computational resources": 92733, "billion parameters experiments": 18436, "downstream tasks experimental": 44782, "tens billions parameters": 164344, "source code model": 153408, "multitask reinforcement learning": 111239, "reinforcement learning problem": 139085, "generative transformer model": 65604, "approaches based genetic": 11705, "deep learningbased methods": 37785, "active research area": 4440, "research area work": 141596, "area work present": 12354, "transformerbased language model": 169242, "language model symbolic": 83920, "probabilistic language models": 128087, "models like gpt": 106982, "comprehensive experiments model": 28047, "shown promise tasks": 150337, "fewshot learning capabilities": 57955, "task based pretrained": 161218, "cross entropy loss": 33602, "poses new challenge": 124216, "propose new framework": 131960, "new framework called": 113201, "support broad range": 159260, "count training data": 32929, "quality machine text": 134194, "gpt2 generated texts": 66538, "natural language datasets": 111578, "unsupervised machine learning": 172253, "machine learning ml": 98040, "learning ml methods": 90695, "text generation methods": 165157, "kullbackleibler divergence kld": 82661, "accelerating large language": 2794, "language models llms": 84839, "existing methods address": 53438, "accelerators paper introduces": 2817, "paper introduces new": 119011, "largescale knowledge enhanced": 89325, "knowledge enhanced pretraining": 81943, "enhanced pretraining language": 49357, "pretraining language understanding": 127357, "understanding generation pretrained": 171265, "generation pretrained models": 64948, "models achieved stateoftheart": 105250, "stateoftheart results various": 155339, "results various natural": 143918, "processing nlp tasks": 129250, "nlp tasks recent": 113890, "tasks recent works": 163097, "t5 gpt3 shown": 160710, "gpt3 shown scaling": 66755, "shown scaling pretrained": 150373, "scaling pretrained language": 146438, "language models improve": 84677, "gpt3 model 175": 66723, "knowledge world knowledge": 82518, "traditional finetuning approach": 167621, "unified framework named": 171717, "framework named ernie": 61320, "named ernie 30": 111416, "pretraining largescale knowledge": 127372, "knowledge enhanced models": 81942, "tailored natural language": 160928, "understanding generation tasks": 171267, "generation tasks zeroshot": 65187, "tasks zeroshot learning": 163499, "zeroshot learning fewshot": 180236, "learning fewshot learning": 90456, "fewshot learning finetuning": 57961, "trained model 10": 168007, "model 10 billion": 102986, "10 billion parameters": 108, "largescale knowledge graph": 89327, "empirical results model": 47731, "results model outperforms": 143611, "model outperforms stateoftheart": 104184, "surpassing human performance": 159518, "neural network architecture": 112892, "cost large language": 32699, "large language modelling": 87520, "language modelling tasks": 84034, "ai language models": 7056, "models trained web": 109481, "web data generate": 178003, "best language model": 17695, "language model gpt3": 83669, "library information science": 92041, "information science lis": 76747, "language models reflect": 86073, "prompting language models": 130974, "language models introduce": 84732, "language model trained": 83937, "transfer wide range": 169007, "wide range end": 178282, "range end tasks": 135618, "zeroshot prompting finetuning": 180304, "finetuning classification benchmarks": 59195, "benchmarks setting new": 17362, "setting new stateoftheart": 149482, "new stateoftheart performance": 113426, "available training data": 15219, "training data release": 168331, "data release code": 35639, "release code models": 139449, "language models work": 86402, "language models spanish": 86199, "models pretrained using": 108627, "assessed performance models": 13147, "models existing evaluation": 106224, "extractive question answering": 56384, "question answering dataset": 134698, "models outperform existing": 108381, "language models reasoning": 86038, "models pretrained language": 108612, "pretrained language modeling": 126870, "struggle tasks require": 156777, "reasoning work propose": 137239, "work propose leverage": 179206, "requires reasoning multiple": 141432, "different reasoning skills": 41960, "improve data efficiency": 73441, "data efficiency propose": 34950, "reading comprehension datasets": 136184, "pretrained encoderdecoder model": 126799, "natural language explanations": 111594, "context large language": 30808, "models achieve stateoftheart": 105233, "achieve stateoftheart performance": 3753, "stateoftheart performance employed": 155278, "applicability realworld scenarios": 10268, "realworld scenarios require": 136507, "framework significantly outperforms": 61412, "significantly outperforms previous": 151107, "models achieving performance": 105258, "performance comparable stateoftheart": 121274, "contributing improved performance": 31462, "causal language models": 21198, "language models search": 86134, "existing approaches rely": 53272, "user interaction data": 173435, "given recent success": 65981, "transformer t5 model": 169213, "model text generation": 104740, "causal language modeling": 21197, "evaluation benchmarks method": 51455, "shows approach effective": 150405, "question answering finetuned": 134723, "finetuned language models": 59042, "language models use": 86351, "question answering training": 134816, "training examples available": 168430, "performance zeroshot setting": 122322, "overall results suggest": 118231, "language models good": 84600, "small training set": 152376, "models recent works": 108840, "language models massive": 85721, "models massive gpus": 108146, "size learning rate": 152025, "leading poor generalization": 89853, "conduct indepth analysis": 29145, "indepth analysis largescale": 75519, "largescale pretraining experiments": 89392, "long sequence lengths": 97472, "larger batch size": 89196, "evaluation results method": 51832, "number training tokens": 114973, "wall clock time": 177675, "risks foundation models": 144988, "foundation models ai": 60753, "undergoing paradigm shift": 170788, "adaptable wide range": 4595, "wide range downstream": 178279, "range downstream tasks": 135614, "downstream tasks models": 44812, "models foundation models": 106387, "reasoning human interaction": 136901, "model architectures training": 103135, "deep learning transfer": 37779, "foundation models currently": 60759, "models currently lack": 105836, "lack clear understanding": 82895, "bert language models": 17561, "language models speech": 86209, "speech recognition language": 154450, "recognition language models": 138081, "models lms pretrained": 108073, "lms pretrained massive": 97179, "pretrained massive amounts": 127037, "massive amounts text": 99344, "encoder representations transformers": 48439, "representations transformers bert": 140902, "transformers bert generative": 169299, "generative pretraining gpt": 65570, "technology natural language": 164152, "processing tasks paper": 129325, "tasks paper present": 162919, "results using finetuned": 143903, "automatic speech recognition": 14741, "speech recognition asr": 154445, "results widely used": 143936, "lms different architectures": 97126, "relative word error": 139395, "leveraging pretrained language": 91925, "end propose method": 48679, "language models t5": 86263, "retrieve relevant sentences": 144226, "experimental results showed": 54073, "finetunes pretrained language": 59149, "able improve performance": 2523, "improve performance pretrained": 73566, "performance pretrained language": 121930, "previous research shows": 127642, "tasks conduct extensive": 162110, "extensive experiments study": 55889, "impact different factors": 72637, "common sense world": 26191, "sense world knowledge": 148398, "commonsense causal reasoning": 26256, "gpt2 based model": 66517, "transfer learning large": 168943, "learning large pretrained": 90631, "large pretrained models": 89009, "applications natural language": 10616, "processing nlp recently": 129244, "pretrained models bert": 127066, "using reinforcement learning": 174663, "widely used datasets": 178393, "text generation results": 165181, "quality generated texts": 134148, "language models zeroshot": 86414, "learners paper explores": 90152, "improving zeroshot learning": 74240, "zeroshot learning abilities": 180227, "abilities language models": 1937, "language models instruction": 84716, "models instruction tuning": 106781, "instruction tuning finetuning": 78090, "tuning finetuning language": 170015, "language models collection": 84258, "performance unseen tasks": 122214, "natural language instruction": 111649, "unseen task types": 172186, "substantially improves performance": 158126, "gpt3 large margin": 66718, "ablation studies reveal": 2443, "natural language instructions": 111650, "success instruction tuning": 158249, "language models complex": 84271, "models complex tasks": 105707, "previously proved difficult": 127738, "small number examples": 152337, "million training examples": 102244, "model achieves 80": 103034, "achieves 80 accuracy": 3946, "training machine learning": 168567, "deep neural language": 37800, "language models set": 86144, "models set new": 109082, "nlp recent work": 113797, "recent work shown": 137740, "pretrained large amounts": 126991, "comparable stateoftheart models": 26621, "models ability large": 105182, "ability large language": 2241, "fewshot transfer learning": 58081, "biomedical nlp tasks": 18567, "language model finetuned": 83644, "training data gpt3": 168271, "fewshot knowledge transfer": 57939, "opendomain nlp tasks": 116461, "nlp tasks perform": 113880, "magnitude smaller gpt3": 98211, "domain empirical study": 44134, "language models promptbased": 85979, "world knowledge stored": 179578, "language models existing": 84483, "models existing work": 106228, "better performance work": 17972, "dataset code available": 36152, "understanding language models": 171321, "language models represent": 86084, "similarity measures cosine": 151361, "measures cosine similarity": 99920, "cosine similarity euclidean": 32638, "similarity euclidean distance": 151344, "static word embedding": 155469, "word embedding models": 178628, "contextualized language models": 31131, "language models bring": 84198, "generative pretrained transformers": 65564, "remarkable incontext learning": 140208, "incontext learning ability": 74865, "incontext learning achieve": 74869, "zeroshot fewshot learning": 180178, "performances various downstream": 122347, "transformerbased pretrained language": 169284, "conventional nlp tasks": 31724, "nlp tasks struggle": 113903, "tasks struggle tasks": 163294, "transfer learning model": 168949, "models perform reasonably": 108474, "obtained large language": 115523, "models large pretrained": 106907, "language models textual": 86289, "formal languages like": 60505, "code trained models": 25186, "trained models available": 168011, "language models incremental": 84704, "generating questionanswer pairs": 64308, "generating high quality": 64239, "task previous works": 161645, "achieved great results": 3815, "important information input": 73146, "question answering recent": 134792, "answering recent advances": 9948, "recent advances multimodal": 137415, "multimodal vision language": 110788, "work address gap": 178772, "question answering task": 134809, "question answering propose": 134777, "outperform current stateoftheart": 117580, "current stateoftheart multilingual": 34266, "zeroshot crosslingual transfer": 180154, "multilingual language modeling": 110491, "prior work paper": 127947, "commonsense reasoning dataset": 26307, "models ability understand": 105189, "prediction language models": 125811, "enhance pretrained language": 49259, "language models performance": 85878, "language model complete": 83584, "table question answering": 160751, "based natural language": 15962, "natural language question": 111853, "specific training data": 154118, "conducting extensive empirical": 29313, "extensive empirical analysis": 55755, "analysis shed light": 9160, "zeroshot fewshot performance": 180179, "lms different sizes": 97127, "models lms exhibit": 108064, "apply method study": 10861, "human sentence processing": 71037, "potential areas improvement": 124600, "models avoid generating": 105438, "nlp tasks performance": 113881, "performance improves model": 121657, "improves model size": 74033, "question answering answering": 134684, "dataset covering wide": 36203, "covering wide range": 33094, "dense passage retriever": 39097, "passage retriever dpr": 120338, "absolute improvement exact": 2610, "improvement exact match": 73787, "exact match accuracy": 52338, "accuracy natural questions": 3317, "natural questions triviaqa": 111944, "collect data multiple": 25656, "data multiple sources": 35407, "goal paper present": 66183, "presents comprehensive study": 126562, "models achieve similar": 105232, "language models prior": 85956, "models prior work": 108646, "prior work shown": 127951, "english language models": 49069, "language models learn": 84781, "improve language models": 73499, "language models ability": 84042, "datasets different sizes": 36795, "evaluate models ability": 51024, "measure large language": 99853, "language models known": 84754, "suffer hallucination problem": 158427, "models proposing method": 108716, "proposing method evaluating": 132499, "multimodal language models": 110678, "language models method": 85738, "models method based": 108178, "model training data": 104783, "evaluate proposed method": 51082, "shows promising results": 150467, "prompt tuning pretrained": 130720, "pretrained visionlanguage models": 127237, "visionlanguage models pretrained": 177053, "models pretrained visionlanguage": 108630, "shown promising capabilities": 150340, "grounding natural language": 67915, "natural language image": 111630, "exists significant gap": 53664, "model pretraining finetuning": 104330, "large amounts labeled": 87184, "amounts labeled data": 8692, "downstream tasks address": 44762, "tasks address challenge": 161912, "prompt tuning novel": 130716, "tuning novel paradigm": 170071, "comprehensive experimental results": 28035, "absolute accuracy improvement": 2603, "make data code": 98518, "machine translation recent": 98126, "utility language models": 174956, "language models increases": 84694, "performance models require": 121813, "particular large language": 120090, "models work assess": 109702, "assess performance models": 13110, "models machine translation": 108118, "multiple language pairs": 110956, "required train models": 141261, "fewshot text classification": 58075, "models shown promise": 109109, "benchmarks designed measure": 17218, "classification tasks difficult": 24115, "language models used": 86352, "constraints language model": 30093, "language model produce": 83856, "different language models": 41813, "paper introduces novel": 119013, "introduces novel method": 80209, "novel method generating": 114590, "stateoftheart deep learning": 155120, "deep learning methods": 37754, "able generate images": 2516, "provide quantitative insights": 132942, "text processing tools": 165380, "openais generative pretrained": 116404, "generative pretrained transformer": 65544, "pretrained transformer gpt3": 127192, "learning rl achieved": 90938, "achieved significant success": 3894, "domains robotics games": 44526, "exhibit poor performance": 53080, "work propose framework": 179201, "propose novel data": 131989, "stochastic gradient descent": 155821, "supports wide range": 159400, "demonstrate effectiveness framework": 38298, "algorithms performing experiments": 7959, "closed book qa": 24456, "research question answering": 142019, "language models ptlms": 86003, "shown great success": 150257, "propose new task": 131976, "chaining large language": 21478, "language model prompts": 83864, "prompts large language": 131351, "models llms demonstrated": 107256, "llms demonstrated impressive": 94850, "demonstrated impressive potential": 38708, "output step input": 118003, "room improvement large": 145592, "bias large language": 18148, "language models abstract": 84049, "large natural language": 88952, "natural language models": 111677, "models gpt3 t5": 106534, "general nlp tasks": 63008, "nlp tasks knowledge": 113864, "models provides useful": 108732, "traditional nlp tasks": 167674, "textual reasoning tasks": 165942, "language models investigate": 84736, "language models acquire": 84072, "models reinforcing importance": 108894, "models lstm transformer": 108108, "results shed light": 143783, "language models generative": 84585, "models generative pretrained": 106485, "plays vital role": 123541, "success field natural": 158239, "language model zeroshot": 83963, "model zeroshot fewshot": 104916, "fewshot learning recent": 57979, "learning recent work": 90903, "recent work like": 137733, "demonstrated excellent performance": 38653, "excellent performance zeroshot": 52796, "performance zeroshot fewshot": 122318, "fewshot learning natural": 57972, "tasks scaling model": 163198, "model size dataset": 104590, "work propose method": 179207, "propose method incorporates": 131922, "largescale distributed training": 89299, "model architecture design": 103129, "achieves excellent performance": 4010, "training stateoftheart results": 168764, "results nlp tasks": 143634, "nlp tasks data": 113832, "high quality texts": 69515, "accuracy various tasks": 3420, "articles difficult distinguish": 12610, "difficult distinguish humanwritten": 42144, "distinguish humanwritten ones": 43282, "training transformerbased models": 168806, "training models expensive": 168587, "neural networks existing": 112924, "existing systems focus": 53607, "memory access patterns": 100363, "model architectures including": 103133, "architectures including bert": 12268, "compared existing systems": 26806, "machine translation benchmark": 98110, "neural scaling laws": 112975, "future machine learning": 62289, "machine learning particularly": 98066, "largescale pretrained models": 89385, "pretrained models gpt3": 127079, "provides comprehensive evaluation": 133120, "comprehensive evaluation different": 28010, "target data distribution": 161050, "source training data": 153481, "training data distribution": 168247, "pretraining data affects": 127291, "training set size": 168734, "new classes training": 113112, "classes training data": 23918, "training data fewshot": 168262, "shed new light": 149862, "largest publicly available": 89449, "publicly available dataset": 133636, "recent years researchers": 137801, "language models explore": 84501, "models trained scratch": 109470, "effectively transfer knowledge": 46094, "initialization significantly improve": 77071, "language model improve": 83682, "pretraining method proposed": 127387, "extensive experiments representative": 55878, "applicable different types": 10279, "pretrained models particular": 127099, "computational cost pretraining": 28347, "source code publicly": 153415, "publicly available publication": 133660, "building chinese biomedical": 19380, "chinese biomedical language": 23608, "biomedical language models": 18553, "models plms bert": 108525, "bert gpt revolutionized": 17545, "revolutionized field nlp": 144649, "domain biomedical domain": 44103, "new pretraining framework": 113348, "extensive experiments 11": 55795, "biomedical language understanding": 18554, "information language models": 76546, "language models diverse": 84397, "extracted large language": 56191, "work aim address": 178787, "mixture experts moe": 102753, "experts moe models": 54669, "trained humanannotated data": 167944, "map natural language": 99128, "natural language prompts": 111846, "eliminating need additional": 47081, "natural language queries": 111850, "original natural language": 117360, "medical dialogue summarization": 100161, "summarization require large": 158872, "require large amounts": 141136, "create synthetic training": 33236, "synthetic training data": 160085, "results comparable using": 143238, "produces high quality": 129531, "high quality training": 69516, "quality training data": 134290, "human labeled data": 70893, "models trained human": 109443, "crosslingual transfer finetuning": 33674, "entire set parameters": 49816, "large pretrained model": 89008, "work introduce new": 179055, "lottery ticket hypothesis": 97726, "data source language": 35777, "masked language modeling": 99304, "large margin series": 88905, "language models downstream": 84404, "models downstream tasks": 106026, "prompt tuning approach": 130701, "pretrained model perform": 127053, "perform different tasks": 120926, "tasks propose novel": 163035, "propose novel promptbased": 132026, "significantly boosts performance": 150958, "conduct largescale study": 29156, "multitask prompted training": 111237, "zeroshot task generalization": 180352, "generalization large language": 63187, "models recently shown": 108859, "learning language models": 90610, "pretraining radford et": 127420, "mapping natural language": 99151, "natural language tasks": 111883, "ability model perform": 2283, "tasks finetune pretrained": 162413, "model raffel et": 104409, "wide variety tasks": 178349, "strong zeroshot performance": 156458, "zeroshot performance standard": 180287, "performance standard datasets": 122101, "performance subset tasks": 122128, "demonstrate large language": 38394, "stateoftheart models various": 155240, "power prompt tuning": 125216, "recently emerged effective": 137868, "emerged effective method": 47350, "adapting pretrained language": 4756, "language models number": 85810, "generation tasks paper": 65175, "tasks paper investigate": 162918, "natural language utterances": 111926, "ablation studies different": 2441, "different model scales": 41858, "increasing model scale": 75335, "improves language model": 74015, "language model generalization": 83651, "like gpt3 t5": 92290, "gpt3 t5 research": 66764, "substantial engineering efforts": 158058, "sam recently proposed": 145939, "generalization language models": 63185, "language models computational": 84275, "particularly large gains": 120214, "training data tasks": 168354, "models discriminative generative": 105990, "discriminative generative tasks": 42842, "large publicly available": 89030, "alleviate catastrophic forgetting": 8283, "obtain better performance": 115464, "performance dramatically decreases": 121434, "learning different tasks": 90370, "results catastrophic forgetting": 143211, "catastrophic forgetting address": 21067, "forgetting address issues": 60415, "address issues propose": 5290, "model student model": 104668, "data experimental results": 35015, "previous stateoftheart methods": 127658, "ai foundation models": 7002, "paradigm shift ai": 119510, "computer vision models": 28503, "bender et al": 17399, "et al argue": 50785, "propose simple effective": 132120, "simple effective approach": 151426, "graph representation learning": 67573, "training data quality": 168327, "classification tasks sentiment": 24125, "tasks sentiment analysis": 163215, "sentiment analysis product": 148629, "fake news detection": 57101, "news detection using": 113559, "artificially generated data": 12804, "gpt2 models results": 66570, "significantly improve performance": 151025, "finetuning methods adapterbased": 59382, "learning lightweight finetuning": 90646, "extensive experiment results": 55780, "datasets results confirm": 37091, "early exiting token": 45247, "finetuning large language": 59332, "language models commonly": 84262, "models commonly used": 105683, "used achieve stateoftheart": 172951, "stateoftheart performance natural": 155281, "nlp tasks pretrained": 113884, "tasks pretrained models": 162983, "challenging work focus": 22321, "empirical studies demonstrate": 47745, "floating point operations": 59853, "modern natural language": 109824, "language modeling effective": 83993, "significant advancements field": 150571, "computational cost grows": 28344, "cost grows quadratically": 32684, "respect input length": 142508, "context paper propose": 30867, "current pretrained language": 34210, "fraction computational cost": 60883, "compare models performance": 26699, "models performance terms": 108495, "performance terms accuracy": 122168, "challenge requires finding": 21730, "methods large language": 101624, "user study shows": 173525, "combining large language": 25982, "language models knowledge": 84745, "models knowledge bases": 106841, "learning remains limited": 90914, "analysis text generation": 9200, "test sets work": 164633, "introduce novel method": 80061, "use large language": 172701, "language model provide": 83867, "new evaluation set": 113179, "prompt tuning pt": 130725, "extremely large pretrained": 56440, "models plms achieve": 108521, "plms achieve comparable": 123568, "achieve comparable performance": 3604, "tuning soft prompts": 170123, "transferability soft prompts": 169016, "different downstream tasks": 41751, "trained similar tasks": 168072, "significantly accelerate training": 150922, "training improve performance": 168484, "slight performance degradation": 152226, "performance degradation compared": 121364, "text generation using": 165198, "current language models": 34144, "language models generate": 84573, "models generate highquality": 106451, "generate highquality text": 63545, "tease apart possibilities": 163677, "apart possibilities introduce": 10143, "suite analyses assessing": 158716, "models test set": 109380, "extensive manual analysis": 55921, "training neural network": 168601, "overparameterized neural networks": 118398, "neural networks generalize": 112926, "reduce computational cost": 138410, "challenges existing methods": 21857, "existing methods struggle": 53467, "blackbox adversarial attacks": 18624, "causal language model": 21195, "language model approach": 83532, "deep learning dlbased": 37738, "early detection malicious": 45242, "language model enables": 83619, "training generative pretrained": 168467, "pretrained transformer gpt": 127181, "transformer gpt proposed": 169140, "based language model": 15900, "representations using vector": 140907, "contextual word representations": 31118, "generated language models": 63897, "associations present training": 13540, "privacy risks language": 128022, "risks language models": 144997, "develop methods incorporate": 40804, "language models survey": 86246, "transformer gpt architecture": 169132, "various pretrained language": 176110, "language models specialized": 86203, "ethical social risks": 50838, "understanding potential risks": 171411, "potential risks posed": 124957, "risks posed models": 145014, "computer science linguistics": 28487, "inferring sensitive information": 76162, "false misleading information": 57163, "human users including": 71072, "different social groups": 42001, "based recent advances": 16063, "language modeling gpt3": 83996, "images using natural": 72507, "improving language models": 74159, "enhance autoregressive language": 49157, "language models conditioning": 84282, "order magnitude data": 117215, "work opens new": 179144, "opens new avenues": 116552, "language models explicit": 84495, "unified multimodal pretraining": 171740, "objectives masked language": 115254, "tasks visual question": 163466, "question answering imagetext": 134732, "answering imagetext retrieval": 9871, "imagetext retrieval visual": 72533, "tackle problem propose": 160845, "tasks generative tasks": 162463, "tokens pretrained models": 166858, "pretrained models autoregressive": 127061, "understanding tasks text": 171505, "text generation task": 165188, "generation task propose": 65142, "downstream tasks experiments": 44784, "generation tasks using": 65186, "tasks using model": 163433, "attains comparable performance": 13768, "methods understanding tasks": 101898, "nlp systems use": 113816, "systems use large": 160656, "large neural networks": 88960, "neural networks require": 112949, "computational resources training": 28407, "models bert t5": 105499, "strategies extensive experiments": 156000, "extensive experiments different": 55838, "different nlp tasks": 41876, "embeddings crosslingual transfer": 47222, "monolingual language models": 110067, "building block nlp": 19376, "block nlp applications": 18718, "training models requires": 168588, "models trained english": 109433, "alleviate problem introduce": 8298, "problem introduce novel": 128288, "novel method called": 114586, "roberta gpt2 models": 145150, "method lowresource languages": 100971, "language models new": 85792, "make code models": 98503, "code models publicly": 25017, "models publicly available": 108743, "language models mixtureofexperts": 85749, "language models data": 84325, "significant progress natural": 150840, "able achieve strong": 2461, "achieve strong results": 3765, "strong results incontext": 156442, "results incontext learning": 143495, "incontext learning tasks": 74976, "models requires significant": 108948, "computing resources paper": 28556, "resources paper propose": 142463, "family language models": 57194, "generalist language model": 63090, "language model uses": 83947, "sparsely activated mixtureofexperts": 153750, "used train gpt3": 173276, "zeroshot oneshot performance": 180273, "human feedback finetune": 70802, "able train models": 2567, "using imitation learning": 174318, "human feedback make": 70811, "train evaluate models": 167769, "best model obtained": 17704, "reward model trained": 144695, "model trained predict": 104769, "language models methods": 85741, "wide range model": 178289, "models tens millions": 109375, "280 billion parameter": 892, "billion parameter model": 18433, "tasks achieving stateoftheart": 161897, "achieving stateoftheart performance": 4223, "reading comprehension factchecking": 136185, "logical mathematical reasoning": 97367, "application language models": 10335, "language models ai": 84099, "cuttingedge large language": 34437, "recent progress language": 137595, "language models powered": 85927, "models powered deep": 108580, "powered deep learning": 125232, "deep learning enabled": 37739, "methods paper present": 101700, "language model known": 83706, "accuracy natural language": 3316, "language understanding models": 86835, "paper proposes efficient": 119263, "inference computational cost": 75979, "evaluation extensive experiments": 51583, "higher transformer layers": 69648, "classification text generation": 24130, "benchmarks like glue": 17290, "context proposed method": 30888, "posits large language": 124325, "design taskspecific prompts": 39781, "inference apis paper": 75964, "experimental results blackbox": 53971, "prompt tuning model": 130713, "tuning model tuning": 170063, "introduce novel approach": 80046, "language inference nli": 83426, "examples similar patterns": 52696, "outofdomain test sets": 117545, "datasets results demonstrate": 37092, "leveraging natural language": 91911, "language generation techniques": 83387, "structured knowledge grounding": 156649, "texttotext language models": 165860, "language models structured": 86221, "leverages structured knowledge": 91786, "question answering knowledge": 134743, "answering knowledge bases": 9883, "paper overcome limitation": 119092, "improving overall performance": 74179, "series controlled experiments": 148912, "based user feedback": 16164, "large pretrained lms": 89007, "pretrained lms code": 127031, "increased recent years": 75271, "learning methods natural": 90682, "methods natural language": 101673, "language processing recent": 86609, "train large language": 167781, "language models main": 85709, "order produce new": 117233, "detection pretrained language": 40594, "language models artificial": 84133, "models artificial intelligence": 105394, "intelligence ai technologies": 78776, "educational settings ai": 45626, "widely used software": 178405, "implications large language": 72938, "directions future research": 42475, "language models dialog": 84377, "transformerbased neural language": 169278, "external knowledge sources": 56075, "promising approach improving": 130225, "information retrieval language": 76724, "approach enables model": 11168, "model generate responses": 103727, "finally explore use": 58457, "blackbox prompt learning": 18659, "prompt learning pretrained": 130581, "language models increasing": 84695, "models increasing scale": 106738, "generalpurpose pretrained language": 63363, "downstream tasks paper": 44815, "discrete prompt learning": 42810, "plms prompt learning": 123629, "variancereduced policy gradient": 175614, "achieves significant improvement": 4071, "prompts code available": 131188, "diverse data sources": 43498, "resources recent years": 142480, "recent years largescale": 137785, "largescale data collection": 89287, "modeling capabilities large": 104975, "capabilities large language": 19986, "programming languages collect": 129838, "selection language models": 147863, "models increasingly rely": 106744, "training corpora language": 168208, "corpora language models": 32231, "fewshot learning fsl": 57962, "make predictions based": 98579, "structured data knowledge": 156630, "data knowledge graphs": 35268, "existing methods suffer": 53468, "performance fewshot learning": 121511, "based external knowledge": 15798, "external knowledge graph": 56066, "knowledge graph address": 82043, "tasks including relation": 162573, "relation extraction event": 139245, "extraction event extraction": 56294, "event extraction knowledge": 52077, "extraction knowledge graph": 56307, "knowledge graph completion": 82045, "graph completion datasets": 67496, "datasets experimental results": 36846, "results demonstrate approach": 143281, "better fewshot performance": 17872, "megatronturing nlg 530b": 100305, "largescale generative language": 89310, "pretrained generalpurpose language": 126819, "generalpurpose language models": 63348, "language processing domains": 86510, "tasks zeroshot fewshot": 163497, "zeroshot fewshot finetuning": 180173, "training large models": 168531, "transformer based language": 169100, "train model using": 167799, "training process design": 168650, "design training corpus": 39790, "zero fewshot learning": 180073, "establishes new stateoftheart": 50703, "language models natural": 85784, "offline reinforcement learning": 115882, "reinforcement learning finetuning": 139059, "finetuning reinforcement learning": 59504, "learning rl models": 90948, "lack large scale": 82976, "model trained scratch": 104773, "offline rl tasks": 115885, "propose techniques improve": 132161, "consistent performance gains": 29827, "stateoftheart performance variety": 155295, "performance variety tasks": 122247, "gpt2 language models": 66553, "language models hope": 84650, "models hope work": 106631, "generative modeling tasks": 65475, "binary classification tasks": 18469, "promptbased learning large": 130777, "learning large language": 90622, "language models demonstrate": 84338, "performance promptbased learning": 121950, "promptbased learning using": 130783, "using unlabeled data": 174836, "larger models compared": 89229, "t0 sanh et": 160680, "sanh et al": 146132, "model models trained": 104098, "models robust training": 109018, "training neural networks": 168602, "neural networks using": 112959, "adaptive gradient methods": 4779, "especially large language": 50496, "cost extra memory": 32675, "raises fundamental question": 135487, "provide affirmative answer": 132673, "sgd weight decay": 149755, "achieves performance comparable": 4052, "using large transformer": 174400, "large transformer language": 89082, "language models problem": 85963, "advanced language models": 5751, "language models openais": 85824, "output large language": 117955, "results method able": 143594, "method able produce": 100621, "able produce highquality": 2544, "evaluating natural language": 51356, "language processing models": 86535, "learning ml model": 90696, "model performance recent": 104255, "analysis neural networks": 9033, "neural networks nns": 112937, "tasks prior work": 163002, "prior work primarily": 127948, "model selection results": 104535, "large pretrained transformers": 89019, "data model size": 35388, "models including gpt2": 106712, "including gpt2 bert": 74534, "useful nlp tasks": 173343, "language model scaling": 83892, "scaling size training": 146450, "training autoregressive language": 168166, "language models enabled": 84441, "solving natural language": 153230, "tasks using zeroshot": 163439, "using zeroshot fewshot": 174880, "extremescale language models": 56456, "remain largely unexplored": 139924, "language model specifically": 83911, "french language models": 61596, "language models competitive": 84269, "furthermore provide indepth": 62144, "improvement language model": 73811, "playing central role": 123492, "time effort required": 166388, "language models asked": 84137, "models automatically generate": 105425, "gpt3 model generate": 66726, "model generate semantic": 103728, "results highlight potential": 143458, "potential large language": 124804, "machine learning benchmark": 98021, "development large pretrained": 41154, "community mainly focused": 26495, "mainly focused developing": 98294, "various performance measures": 176102, "performance different tasks": 121398, "social choice theory": 152537, "extensive numerical experiments": 55928, "using large language": 174363, "leverage recent advances": 91656, "recent advances language": 137404, "advances language models": 6020, "language models online": 85820, "based text descriptions": 16137, "information retrieval using": 76738, "language models information": 84711, "information retrieval community": 76712, "pretrained transformer models": 127203, "zeroshot transfer learning": 180362, "transfer learning various": 168963, "various nlp tasks": 176069, "domainspecific training data": 44635, "performance neural models": 121842, "capabilities large pretrained": 19998, "language models synthetic": 86257, "models synthetic data": 109337, "synthetic data generators": 160030, "recently proposed selfsupervised": 137965, "dense retrieval methods": 39104, "synthetic data achieve": 160023, "data achieve better": 34579, "code models data": 25013, "models data available": 105842, "reasoning pretrained language": 137042, "models lms demonstrated": 108061, "demonstrated ability perform": 38617, "gptbased language models": 67282, "models pretrained pile": 108624, "results consistently demonstrate": 143260, "numerical reasoning tasks": 115010, "interpreting evaluation results": 79731, "task language models": 161505, "sequence labeling model": 148753, "model design allows": 103438, "quickly learn new": 135350, "predictions experiments demonstrate": 125905, "experiments demonstrate effectiveness": 54218, "demonstrate effectiveness proposed": 38306, "shows superior performance": 150486, "large generative models": 87273, "discuss policy implications": 42922, "rapid development models": 135872, "real world observations": 136270, "regulate ai systems": 139003, "language modeling masked": 84005, "modeling masked language": 105043, "structured information unstructured": 156641, "conduct empirical study": 29075, "compared previous stateoftheart": 26891, "previous stateoftheart models": 127659, "outline potential research": 117496, "potential research directions": 124944, "inspire new ideas": 77705, "failures large language": 57023, "language models human": 84652, "human cognitive biases": 70646, "cognitive biases large": 25443, "biases large language": 18280, "produce working code": 129482, "inspiration human cognitive": 77684, "cognitive science help": 25479, "machine learning systems": 98080, "promptbased data augmentation": 130757, "data augmentation lowresource": 34678, "data augmentation model": 34683, "prompt set trainable": 130669, "set trainable vectors": 149335, "trainable vectors frozen": 167858, "frozen pretrained language": 61680, "generated synthetic data": 63996, "filters lowquality data": 58369, "lowquality data using": 97880, "successfully boost performance": 158371, "models consistently outperform": 105757, "data synthetic data": 35840, "augmentation large language": 14289, "language models emotional": 84430, "work leverage large": 179098, "leverage large language": 91616, "language models dialogue": 84378, "finetuned language model": 59040, "comprehensive human evaluation": 28061, "human evaluation demonstrate": 70730, "evaluation demonstrate approach": 51531, "models generalization ability": 106433, "language models improving": 84681, "dialogue generation tasks": 41477, "language models building": 84203, "capable language models": 20438, "past years despite": 120403, "incur high computational": 75474, "high computational cost": 69414, "paper proposes effective": 119262, "unlike existing methods": 172000, "classification tasks method": 24121, "experiments t5 bert": 54490, "code demo available": 24779, "question answering models": 134759, "fewshot named entity": 57999, "recently promptbased learning": 137960, "entity recognition ner": 49917, "prompts task guidance": 131498, "previous promptbased methods": 127630, "promptbased methods fewshot": 130787, "manual prompt engineering": 99058, "new promptbased learning": 113359, "method question answering": 101051, "efficient language models": 46655, "language models transformer": 86318, "language models finding": 84533, "tradeoff task performance": 167568, "architecture search nas": 12220, "search nas algorithm": 147382, "models achieve higher": 105224, "autoregressive language modeling": 14987, "pretrained models recently": 127105, "attracted significant attention": 14052, "language model plm": 83836, "numerous downstream tasks": 115038, "effectiveness natural language": 46251, "conceptually simple empirically": 28733, "simple empirically powerful": 151450, "achieve comparable better": 3602, "comparable better performance": 26562, "better performance finetuning": 17967, "social media social": 152628, "media social media": 100115, "new nlp task": 113300, "leverages pretrained language": 91766, "baseline models 20": 16242, "model natural language": 104119, "natural language explanation": 111593, "generating natural language": 64278, "natural language sentences": 111867, "model language model": 103921, "language model simultaneously": 83902, "large scale data": 89043, "better evaluation scores": 17861, "classifiers natural language": 24191, "processing nlp large": 129224, "machine translation mt": 98119, "practical large language": 125429, "language models translation": 86327, "prompting large language": 130976, "language models providing": 86001, "providing natural language": 133334, "improving task performance": 74224, "performance large language": 121718, "models zeroshot setting": 109745, "models work introduce": 109706, "instructions large language": 78291, "percentage points classification": 120781, "question answering extractive": 134713, "answering qa task": 9932, "little attention paid": 93223, "crucial making informed": 33822, "attempt systematically study": 13799, "language models prlms": 85959, "perform qualitative quantitative": 121014, "provide insights future": 132849, "insights future directions": 77566, "models despite success": 105943, "models pretrained natural": 108622, "pretrained natural language": 127133, "natural language data": 111574, "language data trained": 83234, "language models words": 86401, "models t5 bart": 109345, "language models various": 86366, "language models previous": 85953, "specific language model": 154024, "language models novel": 85807, "text generation various": 165202, "generation various tasks": 65251, "vision transformers vits": 177003, "various design choices": 175890, "learning specifically introduce": 91013, "specifically introduce novel": 154234, "significantly improves performance": 151043, "improves performance results": 74053, "simple highly effective": 151471, "visual prompt tuning": 177254, "adapting pretrained models": 4760, "finetuning paper introduces": 59423, "prompt tuning vpt": 130731, "largescale transformer models": 89412, "taking inspiration recent": 161009, "recent advances efficiently": 137393, "tuning large language": 170042, "trainable parameters input": 167852, "parameters input space": 119777, "extensive experiments wide": 55900, "experiments wide variety": 54542, "wide variety downstream": 178345, "achieves significant performance": 4073, "significant performance gains": 150803, "performance gains compared": 121553, "parameter efficient tuning": 119610, "language models understanding": 86336, "abilities pretrained language": 1988, "understanding inner workings": 171302, "paper provides valuable": 119297, "provides valuable insights": 133247, "language models furthermore": 84561, "better pretrained language": 17985, "released source code": 139543, "source code data": 153398, "emergent communication ec": 47479, "models trained large": 109446, "trained large text": 167977, "large text corpora": 89073, "work propose novel": 179210, "propose novel way": 132047, "downstream natural language": 44736, "contrast prior work": 31323, "different tasks language": 42034, "tasks language modeling": 162676, "language modeling image": 83997, "introduce novel metric": 80063, "metric highly correlates": 101973, "previous work shows": 127696, "natural language findings": 111604, "language findings indicate": 83323, "language models deep": 84334, "models deep learning": 105869, "deep learning dl": 37735, "alzheimers disease ad": 8605, "publicly available research": 133662, "model parameters directly": 104218, "propose novel method": 132013, "general english text": 62949, "stateoftheart performance text": 155293, "data widely used": 35965, "language models language": 84757, "language vision domains": 86887, "vision domains learning": 176905, "domains learning useful": 44456, "learning useful representations": 91109, "end introduce framework": 48663, "video prediction model": 176726, "model utilize pretrained": 104859, "demonstrate framework significantly": 38350, "framework significantly improves": 61411, "tasks code available": 162051, "rich contextual information": 144771, "internal prediction construction": 79557, "prediction construction process": 125778, "largely understood work": 89181, "make substantial step": 98611, "substantial step unveiling": 158105, "feedforward network ffn": 57830, "language models scholarly": 86130, "models increasingly popular": 106743, "language models handling": 84633, "retrieve relevant documents": 144224, "language models positional": 85922, "models lms gpt3": 108066, "model sizes sequence": 104621, "sizes sequence lengths": 152113, "expressive structured matrices": 55610, "training large neural": 168532, "neural networks excel": 112923, "seen widespread adoption": 147718, "new ways train": 113507, "sparse dense models": 153725, "multimodal reasoning language": 110752, "large pretrained foundation": 88989, "pretrained foundation models": 126813, "visuallanguage models vlms": 177377, "image captions large": 72195, "captions large language": 20614, "different domains work": 41749, "multiple pretrained models": 111003, "zeroshot image captioning": 180206, "enable new applications": 48116, "shown achieve remarkable": 150208, "achieve remarkable performance": 3722, "remarkable performance variety": 140241, "performance variety natural": 122241, "language tasks using": 86778, "using fewshot learning": 174201, "pathways language model": 120455, "language model palm": 83822, "model palm trained": 104201, "enables highly efficient": 48194, "stateoftheart fewshot learning": 155137, "suite multistep reasoning": 158735, "multistep reasoning tasks": 111192, "reasoning tasks outperforming": 137192, "average human performance": 15290, "tasks source code": 163267, "source code generation": 153404, "code generation demonstrate": 24882, "additionally provide comprehensive": 5121, "provide comprehensive analysis": 132708, "training data memorization": 168308, "memorization respect model": 100334, "related large language": 139179, "language models discuss": 84392, "models lms shown": 108079, "lms shown memorize": 97198, "knowledge pretraining corpora": 82297, "nlg tasks recent": 113661, "performance fewshot scenarios": 121512, "human evaluation confirms": 70728, "generating longer sequences": 64268, "transformerbased natural language": 169274, "loss function training": 97672, "vision transformer models": 176995, "energy reduction respectively": 48793, "text recent advances": 165410, "recent advances natural": 137418, "advances natural language": 6038, "models opening new": 108357, "paper investigate usage": 119037, "incontext learning pretrained": 74958, "models address problem": 105282, "address problem information": 5338, "pretrained transformer model": 127202, "model incontext learning": 103841, "highlight potential approach": 69769, "address training data": 5379, "training data challenge": 168234, "deep learning based": 37731, "learning based nlp": 90247, "limits natural language": 92925, "diverse language models": 43558, "language models using": 86358, "considering language models": 29717, "neural networks transformer": 112955, "closely human judgments": 24516, "human writing process": 71101, "despite success large": 40224, "success large language": 158253, "evaluating capability large": 51267, "capability large language": 20322, "language models making": 85715, "minimal human efforts": 102336, "text generation paper": 165164, "generation paper introduces": 64913, "different prior studies": 41927, "design simple effective": 39756, "simple effective model": 151433, "learning promising results": 90868, "results benchmark datasets": 143194, "limited training data": 92869, "centers disease control": 21332, "disease control prevention": 43026, "control prevention cdc": 31576, "modern large language": 109807, "language models require": 86087, "distributed training strategies": 43338, "training framework present": 168459, "language model introduce": 83696, "best knowledge largest": 17686, "model publicly available": 104394, "publicly available weights": 133670, "models architecture training": 105383, "training evaluation code": 168425, "code model weights": 25006, "analysis social media": 9171, "social media sentiment": 152627, "language models gpt": 84604, "models gpt series": 106521, "generate synthetic text": 63741, "high levels accuracy": 69480, "accuracy compared traditional": 3180, "training corpora gpt": 168207, "large volumes text": 89130, "recent studies report": 137669, "language models successfully": 86235, "solve nlp tasks": 153134, "tasks zero fewshot": 163494, "opens new possibilities": 116557, "new possibilities using": 113340, "models paper introduces": 108412, "models 13 billion": 105151, "13 billion parameters": 325, "billion parameters trained": 18439, "sparse attention mechanism": 153719, "models performance par": 108492, "low resource languages": 97785, "data preparation pipeline": 35520, "multilingual tasks including": 110556, "methods furthermore compared": 101542, "multilingual model xglm": 110508, "address question introduce": 5358, "diverse nlp tasks": 43592, "models follow instructions": 106378, "transformer model trained": 169173, "despite order magnitude": 40164, "order magnitude smaller": 117218, "facilitate future progress": 56616, "promptbased learning respectively": 130782, "soft prompts novel": 152742, "learn soft prompt": 90056, "prompt generator using": 130524, "human prior knowledge": 70979, "comprehensively evaluate proposed": 28170, "object detection benchmarks": 115117, "achieving promising results": 4205, "dense retrieval effective": 39102, "stanford question answering": 154937, "new publicly available": 113368, "requires significant human": 141437, "significant human effort": 150719, "expensive paper propose": 53796, "user simulator called": 173497, "automated natural language": 14579, "language generation metrics": 83356, "currently available datasets": 34310, "capable providing accurate": 20465, "data pretrained model": 35532, "language models analysis": 84118, "mediumsized language models": 100265, "models using roberta": 109595, "number model parameters": 114904, "model parameters empirically": 104219, "new language learners": 113246, "languages paper propose": 87084, "transformerbased deep learning": 169235, "deep learning approach": 37727, "translation language modeling": 169472, "berts masked language": 17642, "language modeling mlm": 84007, "encoderdecoder language model": 48458, "stateoftheart neural models": 155258, "models typically encode": 109524, "propose finetune pretrained": 131824, "encoderdecoder model using": 48463, "decoderonly language model": 37538, "language model inference": 83690, "achieves results comparable": 4067, "work paves way": 179157, "paves way efficient": 120594, "tasks pretrained language": 162979, "results fewshot learning": 143411, "fewshot learning scenarios": 57982, "using incontext learning": 174320, "size language models": 152015, "language models taskspecific": 86271, "finetune language model": 58929, "language model specific": 83910, "finetuning training dataset": 59593, "results transformer models": 143877, "release source code": 139497, "queries natural language": 134511, "natural language questions": 111854, "query pretrained language": 134615, "state art performance": 154992, "outperforms taskspecific models": 117877, "controlled text generation": 31650, "text generation ctg": 165139, "existing works utilize": 53655, "generation tasks demonstrate": 65152, "relations complex questions": 139286, "questions language models": 135177, "language models prominent": 85972, "steps answering question": 155717, "reasoning question answering": 137083, "answering qa tasks": 9933, "define new task": 37937, "given question model": 65971, "answering question using": 9937, "gpt3 family models": 66688, "state art neural": 154991, "language processing computer": 86499, "processing computer vision": 129133, "computer vision foundation": 28500, "vision foundation model": 176920, "large transformer models": 89084, "question answering approaches": 134685, "underlying mathematical principles": 170855, "remain poorly understood": 139931, "range machine learning": 135645, "comparable state art": 26619, "tasks language models": 162677, "vision transformers vit": 177002, "combines large language": 25940, "language models external": 84511, "models external knowledge": 106278, "ushered new era": 173929, "new era ai": 113166, "adversarial networks gans": 6215, "use recent advances": 172843, "recent advances image": 137403, "generation based semantic": 64451, "prompts using openais": 131518, "using openais clip": 174557, "openais clip model": 116399, "opens new direction": 116554, "prompts text generation": 131504, "text generation pretrained": 165166, "generation pretrained language": 64944, "models plms remarkable": 108545, "plms remarkable progress": 123636, "progress text generation": 130022, "various text generation": 176229, "generation tasks based": 65148, "specific target prompt": 154098, "prompts extensive experiments": 131269, "better results finetuning": 18015, "generation tasks future": 65161, "future research code": 62318, "research code data": 141638, "input text prompt": 77357, "novel approach learning": 114390, "finetuning promptbased learning": 59478, "training signals paper": 168743, "supervised tasks experiments": 159177, "experiments ms marco": 54366, "success wide spectrum": 158320, "question answering vqa": 134821, "adapt downstream task": 4521, "pretrained vl models": 127246, "vl models downstream": 177433, "downstream tasks requires": 44831, "requires large labeled": 141404, "large labeled data": 87291, "alleviate problem propose": 8299, "models downstream task": 106025, "data codes available": 34776, "available facilitate future": 15109, "answering extractive question": 9849, "tasks machine reading": 162765, "reading comprehension mrc": 136187, "models plms existing": 108532, "solve issue propose": 153126, "issue propose novel": 80951, "propose novel framework": 132001, "novel framework named": 114525, "external knowledge base": 56060, "experiments multiple benchmarks": 54371, "multiple benchmarks demonstrate": 110852, "benchmarks demonstrate method": 17208, "demonstrate method consistently": 38422, "consistently outperforms stateoftheart": 29908, "outperforms stateoftheart approaches": 117855, "assessment language models": 13239, "transformerbased models gpt2": 169271, "models certain extent": 105591, "challenge natural language": 21688, "processing nlp systems": 129248, "information retrieval ir": 76722, "achieve stateoftheart sota": 3760, "macro f1 score": 98176, "dialogue generative pretrained": 41479, "human evaluation results": 70748, "similar model trained": 151274, "huggingface hub public": 70540, "hub public access": 70499, "augmentative alternative communication": 14333, "alternative communication aac": 8551, "severe motor impairments": 149713, "power pretrained large": 125212, "models llms zeroshot": 108046, "llms zeroshot fewshot": 97035, "incontext learning fewshot": 74896, "fewshot incontext learning": 57925, "incontext learning icl": 74908, "learning icl enables": 90542, "number training examples": 114971, "substantial computational memory": 158038, "memory storage costs": 100465, "parameterefficient finetuning peft": 119666, "small set parameters": 152360, "model perform new": 104226, "perform new task": 120995, "lower computational costs": 97818, "way introduce new": 177838, "new peft method": 113329, "peft method called": 120683, "experiments publicly available": 54423, "improving large language": 74161, "language models humanlike": 84657, "models llms benchmark": 107142, "defacto learning paradigm": 37874, "generation natural language": 64873, "language models employ": 84435, "models plms downstream": 108529, "training code available": 168185, "advancements various nlp": 5973, "nlp tasks based": 113824, "power large language": 125187, "models llms nlp": 107672, "daily lives work": 34512, "generative question answering": 65584, "promptbased fewshot learning": 130761, "challenges ethical issues": 21853, "ethical issues involved": 50817, "deep neural models": 37802, "bert roberta gpt2": 17595, "various linguistic properties": 176012, "recent years thanks": 137808, "neural networks cnns": 112915, "propose simple general": 132130, "simple general method": 151463, "capture different types": 20646, "image extensive experiments": 72250, "experiments demonstrate method": 54228, "method boost performance": 100717, "benefits large language": 17477, "prompt engineering paper": 130476, "model introduce new": 103898, "introduce new benchmark": 80026, "new benchmark assessing": 113085, "diverse tasks datasets": 43677, "translation summarization question": 169523, "question answering lack": 134746, "lack benchmark datasets": 82889, "nlp tasks single": 113901, "model better results": 103213, "reasoner large language": 136608, "achieved high performance": 3823, "high performance various": 69500, "answering qa benchmarks": 9927, "previous approaches method": 127569, "input size limit": 77343, "models conduct experiments": 105734, "conduct experiments using": 29099, "problems large language": 128548, "language models standard": 86212, "detection classification tasks": 40458, "disproportionately focused english": 43085, "language models bridge": 84197, "english nonenglish languages": 49090, "multimodal machine learning": 110714, "machine learning comparative": 98025, "based pretrained large": 16022, "perform better english": 120876, "pitfalls large language": 123127, "theoretical practical implications": 166046, "significantly reduce human": 151129, "models large number": 106905, "large number parameters": 88967, "demonstrate effectiveness approach": 38291, "using training dataset": 174815, "received considerable attention": 137300, "way experiments demonstrate": 177808, "language modeling datasets": 83989, "pretrained checkpoints released": 126768, "fewshot learning language": 57963, "language models incontext": 84689, "models incontext learning": 106725, "templates demonstration permutations": 164229, "work propose prototypical": 179218, "examples natural language": 52642, "natural language task": 111881, "language task descriptions": 86758, "descriptions large language": 39470, "models able perform": 105194, "able perform task": 2539, "known incontext learning": 82603, "incontext learning language": 74936, "language models explicitly": 84496, "novel evaluation metric": 114490, "evaluation metric based": 51708, "gpt3 model reaches": 66728, "surprising result suggests": 159555, "learning paradigm instead": 90807, "description natural language": 39420, "question generation conversational": 134881, "evaluate quality generated": 51087, "compared gptbased baseline": 26826, "short text classification": 150006, "largescale natural language": 89368, "natural language model": 111675, "language model developed": 83602, "model developed openai": 103454, "different tasks including": 42033, "requires small number": 141444, "number incontext examples": 114878, "address issue study": 5279, "largescale machine learning": 89350, "learning models like": 90722, "improved classification performance": 73677, "sparsity large language": 153769, "increased number parameters": 75267, "number parameters language": 114919, "parameters language models": 119784, "language models address": 84080, "reduce number trainable": 138455, "number trainable parameters": 114968, "downstream tasks specifically": 44836, "roberta gpt2 dozens": 145148, "gpt2 dozens datasets": 66527, "training small number": 168752, "small number parameters": 152340, "parameters achieve comparable": 119700, "comparable performance bert": 26592, "comprehensive benchmark evaluating": 27967, "benchmark evaluating natural": 16960, "generation nlg models": 64888, "stateoftheart performance tasks": 155292, "advancing future research": 6088, "recent works shown": 137761, "results prompt tuning": 143691, "tasks best knowledge": 162007, "best knowledge existing": 17684, "existing works focus": 53648, "generate target tokens": 63744, "prompt tuning framework": 130706, "language modeling problem": 84015, "experiments text classification": 54497, "text classification question": 164896, "classification question answering": 24062, "achieves significantly higher": 4078, "source code experiment": 153402, "future large language": 62281, "downstream adaptation methods": 44697, "parameters pretrained models": 119837, "pretrained models ptms": 127102, "model size contrast": 104588, "experiments various tasks": 54534, "comparable performance model": 26605, "fewer tunable parameters": 57877, "models knowledge outdated": 106846, "new largescale dataset": 113252, "promising directions future": 130248, "experimental studies address": 54094, "utility maximization framework": 174963, "measuring social biases": 99963, "multitask learning large": 111219, "large body work": 87204, "achieving superior performance": 4233, "outputs paper study": 118099, "model trained using": 104777, "using promptbased learning": 174616, "benchmark natural language": 17041, "code data released": 24758, "commonsense knowledge bases": 26268, "knowledge bases used": 81790, "used extensively nlp": 173063, "does hold true": 43986, "present novel framework": 126388, "framework outperforms strong": 61341, "analysis highlights importance": 8957, "task natural language": 161559, "inference large language": 76039, "models llms widely": 108034, "llms widely used": 97008, "subfields natural language": 157811, "excellent fewshot learners": 52790, "chain thought cot": 21462, "thought cot prompting": 166220, "complex multistep reasoning": 27487, "fewshot learning llms": 57968, "lets think step": 91436, "think step step": 166140, "answer experimental results": 9706, "significantly outperforms zeroshot": 151121, "benchmark reasoning tasks": 17070, "reasoning tasks including": 137179, "logical reasoning tasks": 97392, "tasks date understanding": 162159, "diverse reasoning tasks": 43629, "hope work serves": 70403, "strongest zeroshot baseline": 156490, "challenging reasoning benchmarks": 22252, "strong performance tasks": 156426, "models shown struggle": 109117, "shown considerable improvements": 150221, "nlp tasks model": 113873, "models 11b parameters": 105147, "models 540b parameters": 105165, "language model new": 83814, "new task finetuning": 113445, "tuning incontext learning": 170030, "smaller finetuned models": 152393, "overall study highlights": 118241, "highlights limitations current": 69862, "suggests promising directions": 158672, "directions future work": 42477, "analyze hidden states": 9298, "hidden states gpt2": 69336, "language understanding recently": 86856, "recognizing textual entailment": 138179, "conjunction human annotators": 29462, "need large language": 112336, "models lms achieved": 108057, "achieved stateoftheart performance": 3904, "processing nlp benchmarks": 129211, "growing number new": 68040, "possible significantly improve": 124462, "significantly improve model": 151023, "approach provides viable": 11481, "generative data augmentation": 65408, "ability generative language": 2204, "language models glms": 84598, "data augmentation work": 34693, "downstream tasks question": 44827, "perform extensive experiments": 120947, "extensive experiments multiple": 55861, "classification datasets demonstrate": 23981, "performance zeroshot settings": 122323, "highlevel reasoning abilities": 69706, "commonsense qa datasets": 26295, "qa datasets tend": 133881, "performance fewshot zeroshot": 121514, "alignment reinforcement learning": 8227, "reinforcement learning large": 139071, "language models readily": 86032, "taskspecific training data": 163553, "training data zeroshot": 168367, "extended multimodal inputs": 55662, "tasks like image": 162712, "use reinforcement learning": 172847, "language model generations": 83659, "parameters language model": 119783, "used natural language": 173155, "language processing scenarios": 86616, "candidates previous works": 19748, "cost paper propose": 32723, "language modeling slm": 84021, "single forward pass": 151800, "experimental results multiple": 54048, "results multiple tasks": 143622, "multiple tasks demonstrate": 111061, "tasks demonstrate method": 162177, "demonstrate method achieves": 38418, "method achieves better": 100633, "better performance language": 17968, "time memory complexity": 166448, "attempted address problem": 13805, "high bandwidth memory": 69402, "bandwidth memory hbm": 15533, "pretraining language models": 127356, "lead suboptimal performance": 89781, "seq2seq pretrained language": 148722, "learning better sentence": 90261, "better sentence representations": 18024, "tokens capture highlevel": 166787, "models bart t5": 105447, "language understanding evaluation": 86814, "understanding evaluation glue": 171222, "evaluation glue benchmark": 51623, "provide indepth analyses": 132834, "hope work foster": 70396, "multiagent reinforcement learning": 110328, "performance generalization capabilities": 121576, "recently reinforcement learning": 137971, "reinforcement learning tasks": 139115, "paper introduce novel": 118996, "cooperative multiagent reinforcement": 32079, "reinforcement learning marl": 139076, "sequential decision making": 148868, "decision making process": 37374, "benchmarks results demonstrate": 17358, "achieves superior performance": 4123, "performance data efficiency": 121354, "efficiency compared strong": 46432, "compared strong baselines": 26942, "strong baselines including": 156358, "indomain training data": 75805, "data case study": 34739, "case study legal": 20915, "task recent work": 161681, "work shown language": 179298, "shown language models": 150296, "language models scaled": 86127, "models scaled billions": 109038, "zeroshot fewshot scenarios": 180184, "models legal case": 106952, "scaling number parameters": 146431, "language model improves": 83684, "model outperforms models": 104180, "outperforms models including": 117805, "test set achieves": 164618, "achieves best performance": 3966, "best performance single": 17723, "language models mainly": 85711, "pretrained programming language": 127143, "programming language models": 129832, "models pretrained programming": 108625, "programming language pl": 129836, "models codet5 codebert": 105662, "automate software engineering": 14505, "software engineering tasks": 152810, "tasks involving code": 162643, "involving code understanding": 80780, "code understanding code": 25196, "understanding code generation": 171159, "code generation models": 24902, "susceptible adversarial attacks": 159728, "different programming languages": 41932, "fully unsupervised way": 61798, "syntactic semantic information": 159900, "language processing using": 86654, "case studies using": 20899, "english german dataset": 49059, "long input sequences": 97456, "model performance finetuning": 104243, "prediction task finally": 125871, "results achieved using": 143157, "processing nlp models": 129233, "nlp models minimal": 113771, "power transfer learning": 125224, "know pretrained language": 81712, "models plms use": 108552, "variety language tasks": 175718, "despite lacking explicit": 40150, "models robustly encode": 109021, "machine learning technology": 98086, "specifically large language": 154240, "language models drawn": 84407, "data work proposes": 35973, "recent research demonstrates": 137620, "research demonstrates effectiveness": 141689, "demonstrates effectiveness using": 38840, "language models plm": 85888, "work present simple": 179181, "present simple effective": 126451, "pretraining task called": 127455, "pairs different languages": 118564, "play essential role": 123451, "model achieves new": 103044, "achieves new sota": 4037, "new sota results": 113419, "results methods using": 143606, "model achieves sota": 103050, "achieves sota results": 4086, "capabilities language models": 19983, "models language models": 106866, "models demonstrate quantitative": 105891, "demonstrate quantitative improvement": 38516, "quantitative improvement new": 134352, "improvement new qualitative": 73826, "new qualitative capabilities": 113370, "capabilities increasing scale": 19957, "inform future research": 76253, "models address challenge": 105279, "address challenge introduce": 5163, "bias software development": 18203, "language models evaluate": 84466, "neural networks rnns": 112950, "need bridge gap": 112238, "memory computational requirements": 100380, "forward backward passes": 60662, "competitive performance compared": 27185, "performance compared stateoftheart": 121299, "realworld tasks including": 136527, "tasks including language": 162557, "language modeling dynamic": 83992, "emergent abilities large": 47458, "abilities large language": 1942, "language models scaling": 86129, "performance sample efficiency": 122040, "language models consider": 84289, "smaller models present": 152419, "models emergent abilities": 106080, "performance smaller models": 122080, "language models write": 86410, "generative visionlanguage models": 65609, "learners recent advances": 90156, "recent advances visionlanguage": 137431, "various visionlanguage tasks": 176249, "multimodal foundation model": 110637, "prefix language modeling": 126098, "achieves competitive performance": 3994, "competitive performance wide": 27192, "different scales pretraining": 41979, "results demonstrate potential": 143323, "stronger baselines future": 156466, "different data scales": 41720, "code pretrained models": 25056, "pretrained models available": 127062, "mitigating catastrophic forgetting": 102655, "challenge learning multimodal": 21674, "help mitigate forgetting": 69146, "model data augmentation": 103399, "lowresource nlp tasks": 97927, "new synthetic data": 113440, "issue propose knowledge": 80949, "nlp tasks novel": 113876, "unified texttotext format": 171752, "training objectives different": 168610, "training data augmentation": 168228, "data augmentation extensive": 34672, "models bert albert": 105489, "new learning paradigm": 113254, "pretraining finetuning downstream": 127326, "finetuning downstream tasks": 59233, "variety nlp tasks": 175738, "nlp tasks achieve": 113820, "tasks achieve superior": 161891, "achieve superior performance": 3775, "severity prediction using": 149723, "inspired recent advances": 77756, "method outperforms previous": 101014, "outperforms previous approaches": 117819, "data large margin": 35293, "achieving f1 score": 4172, "f1 score 076": 56485, "clinical use cases": 24377, "representation linguistic phenomena": 140719, "language models widely": 86395, "models widely used": 109692, "understanding nlu natural": 171377, "nlu natural language": 113943, "used downstream applications": 173038, "common sense knowledge": 26188, "consistent performance improvement": 29829, "dataset compared baseline": 36170, "compared baseline methods": 26748, "methods provide indepth": 101744, "provide indepth discussion": 132837, "question answering based": 134686, "wealth information contained": 177974, "financial sentiment analysis": 58580, "deep learning techniques": 37777, "stateoftheart models like": 155233, "gpt2 bert models": 66520, "resulting model generates": 143118, "language models efficient": 84417, "language models infer": 84708, "introduce novel neural": 80065, "demonstrate model able": 38440, "bert gpt2 language": 17551, "enhance performance pretrained": 49255, "language models commonsense": 84263, "empirical studies exploring": 47746, "capabilities transformerbased language": 20223, "language models establish": 84463, "tasks shows significant": 163240, "incontext learning abilities": 74864, "models ability generalize": 105178, "language model using": 83948, "language models usually": 86362, "data frequently used": 35081, "data resulting models": 35668, "comparable current stateoftheart": 26568, "results certain tasks": 143213, "learning approaches large": 90220, "approaches large language": 11820, "language model study": 83918, "largescale language model": 89333, "study aims answer": 157147, "aims answer question": 7580, "semisupervised learning approach": 148368, "terms output quality": 164443, "data augmentation approach": 34667, "language model present": 83843, "syntactic semantic processing": 159901, "semantic processing tasks": 148196, "models lms achieve": 108056, "play central role": 123438, "investigate language models": 80435, "reasoning tasks natural": 137189, "state art large": 154982, "art large language": 12546, "language models humans": 84658, "humans language models": 71418, "human response times": 71023, "recent advances transformerbased": 137428, "advances transformerbased large": 6069, "transformerbased large language": 169252, "models llms led": 107605, "llms led significant": 95751, "significant performance improvements": 150808, "varying levels difficulty": 176292, "theoretical analysis empirical": 166016, "empirical experiments diverse": 47701, "tasks demonstrate efficacy": 162175, "language model text": 83929, "taskoriented dialog systems": 161843, "challenging task existing": 22285, "address limitations propose": 5317, "limitations propose novel": 92647, "language model multimodal": 83806, "model multimodal taskoriented": 104107, "consisting key components": 29946, "generation extensive experiments": 64644, "extensive experiments public": 55870, "experiments public dataset": 54420, "public dataset verify": 133559, "language model cascades": 83573, "models demonstrated impressive": 105902, "fewshot learning abilities": 57951, "stateoftheart performance downstream": 155277, "performance downstream task": 121430, "pretrained model tuned": 127056, "responses given query": 142812, "typically require thousands": 170513, "extract useful information": 56175, "queries introduce new": 134492, "sensitive user information": 148448, "information present training": 76634, "present training data": 126487, "zeroshot video captioning": 180369, "imagetext matching model": 72530, "steer language model": 155551, "language model generating": 83657, "image captioning methods": 72187, "knowledge code available": 81816, "task recent years": 161682, "learning models used": 90737, "machine learning algorithms": 98008, "different context lengths": 41706, "model achieves best": 103037, "use deep learning": 172582, "learning computer vision": 90317, "time consuming process": 166367, "perform common tasks": 120888, "tasks like visual": 162729, "like visual question": 92425, "question answering paper": 134771, "quality generated descriptions": 134143, "finally evaluate performance": 58449, "performance visual question": 122290, "question answering captioning": 134690, "commonly used text": 26246, "text clustering semantic": 164924, "semantic retrieval tasks": 148211, "based artificial neural": 15666, "labeled sentence pairs": 82734, "sufficient annotated data": 158480, "annotated data available": 9453, "available highresource languages": 15130, "highresource languages english": 70102, "languages multilingual models": 87067, "address problem proposing": 5344, "labeled data approach": 82710, "language model additional": 83518, "achieving high performance": 4182, "performance diverse set": 121417, "tasks evaluate method": 162325, "area natural language": 12333, "masked language modelling": 99310, "tasks machine translation": 162767, "machine translation summarization": 98127, "question answering text": 134812, "languages massively multilingual": 87058, "multilingual t5 model": 110554, "sequence sequence models": 148786, "synthesis large language": 159951, "language models codex": 84254, "codex large language": 25347, "language model llm": 83720, "model llm trained": 104029, "previous state art": 127654, "models generate code": 106442, "models like codex": 106980, "novel evaluation framework": 114489, "advanced code generation": 5718, "code generation techniques": 24925, "tasks test ability": 163354, "large room improvement": 89039, "room improvement especially": 145590, "feedforward networks ffns": 57832, "networks ffns transformers": 112744, "factual knowledge pretrained": 56889, "knowledge pretrained transformers": 82295, "general language modeling": 62975, "language modeling ability": 83978, "closedbook question answering": 24470, "question answering datasets": 134699, "tasks summarization machine": 163317, "summarization machine translation": 158844, "machine translation thoroughly": 98134, "wide range text": 178322, "ordinary differential equations": 117275, "pretrained lms gpt2": 127032, "data different domains": 34912, "previous methods terms": 127615, "terms generation quality": 164427, "task aimed identifying": 161183, "language models cloze": 84241, "subtasks binary classification": 158181, "fewshot learning using": 57987, "models various tasks": 109616, "achieves stateoftheart sota": 4111, "stateoftheart sota performance": 155371, "translation especially lowresource": 169460, "especially lowresource languages": 50508, "english french german": 49056, "outperforms gpt3 175b": 117781, "models largescale language": 106919, "advancements large language": 5908, "language models based": 84163, "models based transformers": 105465, "machine learning model": 98049, "model specific tasks": 104645, "small computational cost": 152278, "generalpurpose model various": 63359, "new pretrained language": 113344, "release new model": 139486, "long standing challenge": 97486, "ability pretrained language": 2322, "approaches require laborious": 11895, "human effort involved": 70708, "achieves strong zeroshot": 4115, "zeroshot fewshot generalization": 180175, "unseen downstream tasks": 172159, "comprehensive analyses demonstrate": 27948, "analyses demonstrate effectiveness": 8759, "ability improve performance": 2220, "expert language models": 54578, "language models present": 85938, "models llms possible": 107728, "generalize new domains": 63263, "data new domain": 35422, "extensive analysis results": 55713, "models future work": 106413, "language models training": 86312, "models training data": 109483, "training data includes": 168282, "data includes wide": 35204, "social media platforms": 152620, "frozen pretrained large": 61685, "model llm perform": 104015, "llm perform tasks": 93876, "concatenated input text": 28566, "massive amounts data": 99343, "models efficient deployment": 106055, "unlabeled training data": 171962, "training data paper": 168317, "pretrained generative models": 126829, "obviating need large": 115569, "need large volume": 112341, "image classification benchmarks": 72202, "generation language models": 64769, "personally identifiable information": 122638, "identifiable information pii": 71782, "include users pii": 74346, "models require training": 108942, "dense passage retrieval": 39095, "retrieval aims retrieve": 143991, "aims retrieve relevant": 7666, "recent studies explored": 137660, "language models boost": 84196, "performance paper proposes": 121893, "generative pretraining method": 65572, "improvements strong baselines": 73954, "text generated language": 165112, "existing prompting techniques": 53539, "users paper propose": 173726, "paper propose simple": 119250, "propose simple prompting": 132133, "hope work encourage": 70395, "harness power large": 68797, "language models ask": 84136, "lifelong language learning": 92089, "tasks previous works": 162993, "suffer catastrophic forgetting": 158420, "generate pseudo data": 63664, "humans ai systems": 71345, "model trained dataset": 104760, "significantly outperforms human": 151105, "parameters significantly outperforms": 119863, "significantly outperforms chatgpt": 151094, "diverse knowledge sources": 43556, "human natural language": 70934, "responses retrieved large": 142910, "evaluate performance different": 51049, "language model code": 83580, "models llms openai": 107689, "llms openai codex": 95976, "llms given potential": 95405, "does introduce new": 43994, "introduce new security": 80039, "new security risks": 113401, "additional soft prompt": 5000, "shows competitive performance": 150419, "recently proposed improve": 137964, "lead catastrophic forgetting": 89731, "propose new metric": 131967, "knowledge distillation technique": 81890, "transfer knowledge source": 168923, "source target datasets": 153474, "consistently outperforms vanilla": 29913, "tasks model sizes": 162812, "competitive better performance": 27166, "code models released": 25019, "language models simulate": 86172, "given language model": 65921, "language models simulation": 86174, "compare different language": 26669, "present language models": 126352, "models including chatgpt": 106706, "including chatgpt gpt4": 74447, "fewshot tabletotext generation": 58068, "applications previous works": 10644, "alleviate problems propose": 8301, "substantial improvements baseline": 158070, "using language models": 174356, "models knowledge base": 106840, "knowledge base construction": 81766, "construction language models": 30222, "models lms proven": 108078, "various downstream applications": 175916, "translation question answering": 169506, "answering text classification": 9973, "tools artificial intelligence": 167105, "gpt3 large language": 66716, "natural language rationales": 111857, "current deep learning": 34102, "models recent work": 108838, "recent work shows": 137746, "stateoftheart transformerbased models": 155406, "language understanding large": 86831, "understanding large language": 171323, "models llms achieved": 107065, "llms achieved stateoftheart": 94319, "understanding tasks llms": 171502, "adversarial robustness paper": 6227, "review recent developments": 144541, "behavior language models": 16605, "language models characterize": 84228, "discuss key research": 42909, "aligning llms human": 8101, "recent advancements large": 137361, "data practical applications": 35513, "explore question using": 55284, "reinforcement learning human": 139065, "combining llms symbolic": 25987, "recently generative pretrained": 137902, "trained natural language": 168019, "challenging address challenges": 22108, "performance especially lowresource": 121464, "endtoend deep learning": 48731, "suffer data scarcity": 158423, "models llms language": 107594, "llms language understanding": 95719, "framework achieves stateoftheart": 60919, "embodied tasks including": 47316, "execution dialog history": 52943, "dialog history edh": 41419, "history edh trajectory": 70219, "unseen success rate": 172183, "demonstrate superiority method": 38579, "improve performance model": 73562, "follow prior work": 60225, "paper investigate effectiveness": 119027, "investigate effectiveness using": 80404, "fulldata settings results": 61720, "bert glue benchmark": 17540, "opens new research": 116560, "new research direction": 113385, "reasoning using large": 137223, "contemporary large language": 30415, "underlying logical structure": 170853, "demonstrate effectiveness model": 38305, "leveraging machine learning": 91901, "machine learning approaches": 98013, "study proposes novel": 157563, "proposes novel framework": 132478, "machine learning techniques": 98084, "advances large language": 6022, "proposed framework using": 132309, "unlike prior work": 172021, "pretraining significantly improve": 127439, "temporal relation extraction": 164278, "problem natural language": 128334, "features model uses": 57541, "graph neural network": 67555, "neural network gnn": 112899, "stateoftheart methods use": 155217, "methods use simple": 101907, "reinforcement learning approaches": 139046, "contrastive learning objective": 31369, "compared current stateoftheart": 26777, "relation extraction datasets": 139244, "aligning language models": 8091, "models human values": 106641, "increasingly used various": 75454, "output natural language": 117967, "conclude discussing practical": 28865, "inference finetuning large": 76013, "models nlp tasks": 108301, "benefit using large": 17450, "models llms 100": 107053, "llms 100 billion": 94240, "100 billion parameters": 146, "pretrained models scale": 127108, "models requires highend": 108945, "requires highend hardware": 141385, "efficient finetuning methods": 46623, "finetuning methods large": 59383, "language models know": 84743, "child development particularly": 23592, "participants large language": 120013, "language model significantly": 83901, "ability reason mental": 2339, "reason mental states": 136572, "makes language models": 98662, "approaches natural language": 11850, "remarkable abilities large": 140116, "perform incontext learning": 120965, "incontext learning learn": 74941, "learn new task": 90019, "new natural language": 113293, "recent incontext learning": 137519, "annotate unlabeled data": 9444, "method improves task": 100921, "performance large margin": 121721, "compared stateoftheart supervised": 26938, "stateoftheart supervised finetuning": 155380, "framework various scenarios": 61494, "scenarios language models": 146633, "language models varying": 86368, "models varying sizes": 109620, "annotations large language": 9599, "models increasingly applied": 106740, "pretrained autoregressive language": 126753, "language model paper": 83824, "language model iteratively": 83699, "language model conditioned": 83586, "achieved competitive performance": 3798, "generate textual responses": 63758, "compare performance method": 26713, "reliable methods automatic": 139738, "recently large language": 137922, "learning based approaches": 90241, "2022 shared task": 680, "mean squared error": 99758, "language models substantially": 86232, "huge cost training": 70512, "prohibitively expensive motivating": 130066, "performance gains strong": 121557, "translation natural language": 169493, "improve performance downstream": 73548, "downstream nlu tasks": 44745, "models struggle tasks": 109250, "release models code": 139484, "impact model performance": 72688, "model performance introduce": 104249, "performance introduce novel": 121694, "introduce novel dataset": 80053, "novel dataset called": 114460, "perform comprehensive analysis": 120905, "offensive language detection": 115621, "produce false positives": 129406, "warning paper contains": 177711, "paper contains offensive": 118824, "improving language model": 74158, "language model prompting": 83863, "models llms offer": 107682, "llms offer potential": 95957, "potential source knowledge": 124998, "learning new task": 90768, "learning results demonstrate": 90931, "past decade witnessed": 120381, "gains natural language": 62525, "scaling large language": 146408, "cot prompting specifically": 32896, "despite impressive results": 40141, "impressive results various": 73374, "results various tasks": 143923, "fewshot prompting mechanisms": 58032, "language models systematically": 86261, "identify define key": 71882, "set experiments different": 149193, "experiments different tasks": 54250, "models palm gpt3": 108402, "task intermediate steps": 161489, "qualitative analysis reveals": 133982, "global scholarly communication": 66108, "creating new versions": 33315, "mt evaluation metrics": 110279, "era llms work": 50239, "llms work provide": 97022, "work provide comprehensive": 179231, "provide comprehensive evaluation": 132710, "evaluation metrics approach": 51711, "referencefree referencebased metrics": 138690, "enhance training efficiency": 49303, "research contributes ongoing": 141668, "contributes ongoing efforts": 31447, "minimal impact performance": 102340, "overcome difficulty propose": 118288, "makes use large": 98696, "models perform sentencelevel": 108475, "language model instruction": 83694, "instruction tuning generate": 78094, "data intent classification": 35247, "sequencetosequence seq2seq model": 148856, "f1 score zeroshot": 56490, "zeroshot crosslingual setting": 180153, "outperforms strong baseline": 117871, "significant improvements baseline": 150742, "transformers shown remarkable": 169357, "shown remarkable success": 150370, "especially natural language": 50517, "summarization natural language": 158855, "natural language summary": 111877, "extensive experiments using": 55893, "experiments using popular": 54515, "score bleu score": 147048, "metrics measure performance": 102110, "measure performance various": 99866, "language model chinese": 83578, "chinese large language": 23637, "selfsupervised learning demonstrated": 148058, "demonstrated impressive zeroshot": 38711, "impressive zeroshot generalization": 73391, "zeroshot generalization capabilities": 180194, "generalization capabilities wide": 63150, "wide spectrum tasks": 178338, "tasks work present": 163485, "different types tasks": 42074, "wide range topics": 178324, "knowledge various domains": 82501, "significantly outperform existing": 151076, "models similar sizes": 109138, "training resulting model": 168701, "zeroshot learning finally": 180238, "future research models": 62356, "deep learning language": 37746, "learning language model": 90608, "model widely used": 104901, "transformer models generative": 169176, "gpt achieved remarkable": 66383, "achieved remarkable performance": 3868, "performance text generation": 122177, "text generation natural": 165161, "significantly degrades generation": 150976, "generation paper present": 64914, "low latency high": 97766, "latency high throughput": 89484, "xilinx alveo u280": 179838, "high hardware efficiency": 69465, "llms case study": 94550, "case study question": 20919, "generation large language": 64772, "models llms recent": 107792, "llms recent years": 96326, "recent years demonstrated": 137774, "prowess natural language": 133421, "generation common practice": 64508, "question generation model": 134882, "empirically demonstrate approach": 47784, "demonstrate approach effectively": 38235, "largelanguage models like": 89140, "present case study": 126239, "quantitative qualitative analyses": 134367, "chatbots specific tasks": 22638, "data various tasks": 35947, "leverages large language": 91741, "language models llm": 84812, "models llm fewshot": 107032, "llms generalization ability": 95349, "modern nlp models": 109829, "longshort term memory": 97580, "term memory lstm": 164372, "store use information": 155862, "models llms gpt3": 107485, "problem modern nlp": 128328, "modern nlp systems": 109830, "problem large language": 128301, "models truly understand": 109514, "previous work shown": 127695, "performance different downstream": 121390, "nlp tasks work": 113914, "evaluate different tasks": 50949, "urge community develop": 172413, "gordon van durme": 66344, "van durme 2013": 175567, "view physical world": 176818, "larger language models": 89209, "llms significantly outperform": 96605, "language model t5": 83921, "compare results obtained": 26729, "results obtained different": 143642, "bidirectional language models": 18356, "prompt language model": 130560, "known promptbased learning": 82623, "promptbased learning capabilities": 130776, "unidirectional language models": 171694, "language models bidirectional": 84189, "prompting technique enables": 131100, "machine translation task": 98129, "task case study": 161233, "xue et al": 179867, "demonstrate fewshot zeroshot": 38342, "unidirectional models like": 171696, "xglm lin et": 179830, "lin et al": 92936, "question answering summarization": 134804, "presents unique challenges": 126655, "recent large pretrained": 137542, "achieved remarkable progress": 3872, "progress mathematical reasoning": 129988, "mathematical reasoning tasks": 99599, "math word problems": 99545, "word problems mwp": 178666, "information tabular data": 76795, "new dataset containing": 113136, "textual tabular data": 165959, "reasoning process evaluate": 137055, "different pretrained models": 41920, "incontext examples performance": 74850, "mitigate propose novel": 102632, "propose novel approach": 131982, "small training data": 152375, "results method outperforms": 143601, "outperforms best baseline": 117728, "study neural machine": 157505, "raises intriguing questions": 135491, "crosslingual transfer learning": 33675, "models llms emerged": 107337, "llms emerged powerful": 95028, "emerged powerful technique": 47386, "different domains languages": 41746, "remains open question": 140053, "transfer learning work": 168964, "transfer natural language": 168977, "nlp tasks text": 113907, "tasks text classification": 163358, "llms bert roberta": 94491, "bert roberta xlnet": 17602, "finetuning target datasets": 59579, "training larger dataset": 168535, "approach solving complex": 11560, "solving complex tasks": 153203, "models llms solve": 107930, "solve various tasks": 153167, "individual reasoning steps": 75734, "solve complex tasks": 153108, "outperform prior work": 117620, "prompting using gpt3": 131118, "symbolic reasoning tasks": 159823, "multihop qa task": 110419, "leading improved performance": 89824, "improved performance tasks": 73708, "datasets code prompts": 36699, "code prompts available": 25069, "new tasks outofthebox": 113455, "given natural language": 65938, "task additional training": 161170, "use weak supervision": 172939, "match exceed performance": 99414, "learning models gpt3": 90717, "aims improve model": 7628, "examples retrieved training": 52686, "retrieved training data": 144253, "success wide range": 158317, "standard natural language": 154858, "remains underexplored paper": 140093, "underexplored paper present": 170774, "empirical risk minimization": 47740, "finetunes language model": 59145, "given task instruction": 66023, "task instruction input": 161480, "average f1 score": 15283, "language models multilingual": 85775, "reasoning abilities large": 136625, "models multilingual settings": 108246, "grade school math": 67368, "gradeschool math problems": 67375, "problems gsm8k dataset": 128527, "multilingual reasoning abilities": 110539, "reasoning abilities language": 136623, "language models extend": 84509, "tasks commonsense reasoning": 162083, "benchmark publicly available": 17063, "recent success large": 137681, "models text generation": 109387, "poses severe threat": 124225, "threat academic integrity": 166267, "perform human study": 120961, "results suggest large": 143836, "suggest large models": 158552, "models rewrite text": 109000, "synergizing reasoning acting": 159869, "demonstrated impressive capabilities": 38690, "tasks language understanding": 162678, "action plan generation": 4327, "explore use llms": 55315, "use llms generate": 172745, "llms generate reasoning": 95375, "diverse set language": 43648, "decision making tasks": 37375, "demonstrate effectiveness stateoftheart": 38312, "benchmarks alfworld webshop": 17170, "prompted incontext examples": 130819, "project site code": 130086, "multitask learning mtl": 111223, "instruction tuning prompting": 78128, "prompting recently shown": 131059, "recently shown improve": 137994, "language models studies": 86224, "instruction tuning fewshot": 78089, "models llms shown": 107863, "llms shown exceptional": 96536, "shown exceptional performance": 150234, "exceptional performance variety": 52829, "previous work developed": 127689, "understanding llms pretrained": 171340, "natural language corpora": 111570, "compared models trained": 26861, "models trained exclusively": 109435, "data compared previous": 34803, "compared previous best": 26885, "generation prompting large": 64973, "language models case": 84212, "models case study": 105577, "propose novel application": 131981, "prompting pretrained language": 131042, "design effective prompts": 39615, "model size largest": 104606, "achieve humanlevel performance": 3669, "finetuning pretrained transformers": 59466, "strong language models": 156404, "outperforms prior methods": 117831, "endtoend neural methods": 48756, "methods require substantial": 101785, "handful training examples": 68522, "datasets different scenarios": 36794, "different scenarios including": 41983, "consistently achieves significant": 29856, "significant improvement baselines": 150732, "models llms saturated": 107850, "data second step": 35714, "language models semantic": 86139, "machine learning shifting": 98074, "models paper introduce": 108410, "paper introduce general": 118989, "based beam search": 15683, "language model demonstrate": 83597, "model demonstrate ability": 103420, "shown large language": 150299, "models llms generally": 107461, "fewshot reasoners solve": 58039, "incontext learning specifically": 74972, "qa fact verification": 133887, "llms achieve strong": 94298, "achieve strong performance": 3764, "sota models llms": 153359, "reasoning chains highly": 136738, "chains highly consistent": 21561, "serve simple generic": 149006, "baseline future research": 16216, "explanations large language": 54871, "language models make": 85712, "incontext learning large": 74938, "models llm shown": 107045, "strong reasoning capabilities": 156438, "paper consider problem": 118812, "generated llm improve": 63912, "multitask learning framework": 111218, "multiple reasoning tasks": 111020, "significantly outperform finetuning": 151077, "outperform finetuning baselines": 117593, "baselines different settings": 16310, "human evaluation shows": 70752, "evaluation shows method": 51861, "maps natural language": 99165, "address key challenges": 5296, "automatic human evaluation": 14684, "machine generated text": 98003, "generated text comprehensive": 64006, "text comprehensive survey": 164944, "increasingly difficult distinguish": 75396, "models freely available": 106398, "generation nlg systems": 64889, "significant technical challenges": 150903, "generated text detection": 64008, "text detection methods": 165016, "guidance future work": 68146, "long sequence modeling": 97473, "achieved remarkable success": 3876, "modeling long sequences": 105037, "long range arena": 97467, "downstream applications paper": 44702, "applications paper propose": 10629, "paper propose comprehensive": 119211, "research areas evaluate": 141598, "conduct exhaustive experiments": 29084, "experimental results shed": 54071, "longcontext language modeling": 97509, "survey recent advances": 159679, "capacity large language": 20515, "generate humanlike text": 63556, "survey aims serve": 159604, "open problems future": 116269, "influence campaigns social": 76189, "campaigns social media": 19702, "address challenge propose": 5170, "challenge propose new": 21716, "approach holds significant": 11280, "models llms contrast": 107225, "especially given potential": 50482, "guide future research": 68176, "reliable large language": 139731, "models llms impressive": 107546, "llms impressive abilities": 95552, "simple effective prompts": 151436, "uses natural language": 173889, "factual knowledge reasoning": 56890, "datasets evaluation scripts": 36834, "systematic empirical study": 160116, "study sheds new": 157626, "use llms like": 172748, "llms like gpt3": 95779, "et al 2022": 50777, "models fall short": 106307, "models work focus": 109705, "tasks bigbench hard": 162011, "bigbench hard bbh": 18393, "language model evaluations": 83630, "chainofthought cot prompting": 21490, "require multistep reasoning": 141163, "generation question generation": 64999, "advent large language": 6173, "language models question": 86009, "models question generation": 108758, "quality answers generated": 134041, "modules natural language": 109995, "gpt2 based models": 66518, "models dialogue state": 105963, "dialogue state tracking": 41518, "state tracking dst": 155023, "controllable text generation": 31626, "text generation prompt": 165170, "generation prompt learning": 64970, "language models clms": 84240, "poor generalization ability": 123947, "performance paper propose": 121891, "paper propose new": 119234, "model capable producing": 103246, "highquality text generation": 70085, "language models attracted": 84142, "attracted increasing attention": 14046, "great success general": 67733, "general natural language": 63003, "natural language domain": 111588, "language models general": 84569, "models general language": 106426, "downstream biomedical tasks": 44706, "biomedical tasks lack": 18575, "model pretrained large": 104320, "nlp tasks demonstrate": 113833, "demonstrate model outperforms": 38444, "model outperforms previous": 104181, "outperforms previous models": 117822, "endtoend relation extraction": 48761, "relation extraction tasks": 139255, "case study text": 20927, "human subjects enrolled": 71049, "openais language model": 116424, "model gpt3 test": 103764, "models improves performance": 106695, "computational costs paper": 28354, "method substantially improves": 101124, "existing language models": 53397, "stateoftheart large language": 155170, "extra computational costs": 56106, "english nlp tasks": 49088, "commonsense reasoning question": 26314, "question answering reasoning": 134790, "answering reasoning tasks": 9946, "reasoning tasks chainofthought": 137169, "natural language specifications": 111871, "leveraging domain knowledge": 91835, "knowledge embedded large": 81915, "embedded large language": 47142, "models llms help": 107518, "leading key findings": 89835, "distinct complementary capabilities": 43213, "trained language models": 167963, "models gpt3 capable": 106531, "language descriptions work": 83248, "use pretrained models": 172818, "performance downstream tasks": 121431, "downstream tasks improving": 44794, "school math problems": 146836, "used general purpose": 173083, "framework wide range": 61498, "wide range zeroshot": 178328, "zeroshot multimodal tasks": 180266, "multimodal tasks image": 110773, "image generation video": 72269, "video question answering": 176731, "question answering mathematical": 134753, "answering mathematical reasoning": 9897, "manipulation project page": 98958, "llms achieved excellent": 94303, "performances various tasks": 122350, "various tasks finetuning": 176210, "requires extensive supervision": 141372, "improve reasoning abilities": 73602, "use pretrained llm": 172817, "pretrained llm generate": 127020, "using chainofthought prompting": 174029, "chainofthought prompting selfconsistency": 21531, "finetune llm using": 58942, "llm using selfgenerated": 94083, "general reasoning ability": 63041, "performance ground truth": 121613, "ground truth label": 67842, "evaluation large language": 51659, "language models understand": 86335, "knowledge encoded pretrained": 81934, "minimal sentence pairs": 102355, "data generation process": 35118, "far human performance": 57221, "achieves highest accuracy": 4023, "questions large language": 135179, "models llms grow": 107509, "capabilities natural language": 20069, "reasoning capabilities llms": 136709, "implicit commonsense knowledge": 72973, "room future improvements": 145582, "improvements large language": 73912, "models learn language": 106940, "language large language": 83478, "acquire rich linguistic": 4265, "rich linguistic knowledge": 144789, "training large amounts": 168522, "large amounts text": 87186, "models significantly outperform": 109132, "models fewer parameters": 106321, "models leveraging large": 106959, "leveraging large language": 91879, "language models multiple": 85780, "models multiple choice": 108255, "choice question answering": 23703, "question answering large": 134748, "answering large language": 9889, "models llms like": 107618, "like gpt3 achieved": 92286, "impressive results multiple": 73371, "question answering mcqa": 134755, "zero fewshot settings": 180077, "state art sota": 154994, "reduces computational costs": 138511, "developing natural language": 41014, "language models task": 86269, "hierarchical event schema": 69354, "current stateoftheart approaches": 34254, "highlight open challenges": 69765, "foster future research": 60686, "future research area": 62314, "knowledge transfer method": 82473, "fewshot prompt tuning": 58022, "prompt tuning prompt": 130721, "tuning prompt tuning": 170097, "conditioning frozen pretrained": 28990, "efficiency large language": 46479, "language models sufficient": 86237, "sufficient training data": 158500, "training data prompt": 168324, "prompt tuning performs": 130719, "limited training samples": 92871, "training samples fewshot": 168714, "performance fullmodel finetuning": 121540, "finetuning work focus": 59612, "good generalization capabilities": 66269, "model predictions based": 104304, "model ensembles propose": 103549, "conduct experiments diverse": 29090, "experiments diverse set": 54258, "nlp tasks using": 113913, "models different scales": 105972, "consistently outperforms existing": 29904, "outperforms existing models": 117759, "prediction large language": 125813, "demonstrated impressive capability": 38699, "translating natural language": 169429, "natural language nl": 111680, "structured prediction tasks": 156663, "event argument extraction": 52069, "argument extraction eae": 12428, "introduce external knowledge": 79962, "code generation problem": 24913, "using 20 training": 173945, "current stateoftheart sota": 34267, "language models ambiguity": 84117, "model strong baselines": 104662, "model trained synthetic": 104775, "network priori knowledge": 112689, "help explain predictions": 69116, "better fewshot finetuning": 17869, "fewshot finetuning performance": 57912, "models llm trained": 107049, "impressive zeroshot fewshot": 73390, "zeroshot fewshot capabilities": 180170, "capabilities wide range": 20260, "wide range tasks": 178314, "tasks work propose": 163487, "work propose simple": 179219, "boosts performance llms": 18856, "token prediction task": 166725, "quality learned representations": 134184, "applications conversational agents": 10461, "real world despite": 136264, "popularity large language": 124092, "models llms realworld": 107787, "average bleu score": 15273, "understanding strengths limitations": 171487, "large pretrained transformerbased": 89016, "landscape natural language": 83102, "models requires large": 108947, "large number training": 88973, "examples target task": 52705, "datasets training models": 37164, "expensive work propose": 53820, "method outperforms various": 101019, "various strong baselines": 176189, "outofdistribution ood data": 117525, "open information extraction": 116239, "models introduce new": 106814, "recent studies demonstrated": 137654, "pretrained lms bert": 127030, "lms bert gpt": 97108, "surprisingly pretrained lms": 159573, "f1 score stateoftheart": 56489, "code datasets available": 24770, "information pretrained language": 76640, "models various languages": 109612, "language models masked": 85719, "analyses language models": 8770, "language models likely": 84805, "language models syntactic": 86255, "wikidata knowledge graph": 178491, "questions require reasoning": 135256, "human annotators rate": 70589, "models zeroshot fewshot": 109738, "models perform similarly": 108476, "benchmark large language": 17010, "language models provides": 86000, "shared task aims": 149824, "different large language": 41820, "literature recent advances": 93195, "recent advances generative": 137397, "advances generative models": 6015, "machine learning researchers": 98072, "adaptive dynamic grouping": 4775, "approach achieves superior": 10957, "despite widespread use": 40255, "widespread use llms": 178481, "llms conversational agents": 94738, "prior knowledge world": 127911, "perform significantly better": 121036, "significantly better results": 150949, "human evaluation expensive": 70733, "evaluation expensive timeconsuming": 51574, "using gpt model": 174256, "inverse text normalization": 80347, "text normalization itn": 165325, "improve generalization ability": 73472, "distributionally robust optimization": 43416, "improving model robustness": 74170, "language model train": 83936, "openaccess multilingual language": 116317, "target model size": 161086, "models code opensourced": 105654, "decoding large language": 37572, "language models decoding": 84333, "decoding methods large": 37579, "methods beam search": 101345, "defined large language": 37950, "model demonstrate effectiveness": 103421, "sampling beam search": 146086, "distillation large language": 43150, "llms shown impressive": 96543, "shown impressive results": 150286, "text understanding tasks": 165547, "knowledge distillation paper": 81889, "make following contributions": 98542, "demonstrate retrieval augmentation": 38536, "retrieval augmentation llms": 143999, "extensive experiments including": 55849, "models shown remarkable": 109113, "shown remarkable performance": 150360, "approaches proposed reduce": 11874, "improve model robustness": 73523, "existing methods usually": 53474, "methods usually use": 101917, "semiparametric language models": 148356, "language models generally": 84571, "multiple natural language": 110983, "paper develop novel": 118850, "semiparametric language model": 148355, "language model architecture": 83534, "different types knowledge": 42069, "model t5 generate": 104713, "superior zeroshot performance": 159064, "evaluating 40 different": 51255, "outperforms large language": 117789, "smaller model scale": 152407, "bert widely used": 17619, "widely used systems": 178407, "paper investigates use": 119061, "systems using different": 160661, "different plms bert": 41909, "plms bert roberta": 123578, "question answering using": 134818, "using gpt3 perform": 174264, "perform question answering": 121017, "question answering tabular": 134807, "answering tabular data": 9968, "questions natural language": 135203, "significantly improves accuracy": 151037, "models work present": 109711, "key design choices": 81485, "outperforms competitive baselines": 117741, "models llms general": 107460, "tasks finetuning data": 162416, "incontext learning performance": 74953, "solve problem propose": 153146, "simple effective twostage": 151443, "effective twostage finetuning": 45913, "prompt tuning finetuning": 130705, "model soft prompt": 104629, "comparable performance finetuned": 26599, "generalization incontext learning": 63180, "improve generalization performance": 73474, "representations paper propose": 140860, "experimental results public": 54062, "public datasets online": 133563, "superior performance stateoftheart": 159041, "performance stateoftheart approaches": 122106, "law large language": 89602, "promising research direction": 130301, "languagebased reasoning tasks": 86910, "reasoning process explicit": 137056, "expensive rationale annotation": 53805, "reasoning process task": 137063, "significantly improves generalization": 151041, "tasks data augmentation": 162150, "achieved promising results": 3861, "2022 large language": 671, "language models humanlevel": 84656, "conditioning natural language": 28995, "language instructions large": 83450, "models llms displayed": 107313, "llms displayed impressive": 94954, "task performance depends": 161611, "approach prompt engineering": 11469, "evaluate zeroshot performance": 51138, "nlp tasks automatically": 113823, "baseline large margin": 16229, "achieve better comparable": 3591, "better comparable performance": 17828, "generated human annotators": 63886, "conduct extensive qualitative": 29132, "extensive qualitative quantitative": 55936, "qualitative quantitative analyses": 134011, "improve fewshot learning": 73466, "fewshot learning performance": 57975, "standard incontext learning": 154832, "language model benchmark": 83559, "language tasks performance": 86770, "language models rapidly": 86028, "robustness large language": 145399, "language models experiments": 84490, "models experiments reveal": 106242, "pose considerable challenge": 124154, "challenge large language": 21670, "models including openais": 106720, "learning better representations": 90260, "representations natural language": 140854, "statistical language models": 155492, "representation learning based": 140708, "language models larger": 84772, "paper present novel": 119127, "generated large language": 63899, "language models web": 86393, "models llms capable": 107157, "llms capable generating": 94533, "models openai codex": 108345, "using llms integrating": 174439, "discuss future directions": 42891, "explanations generated llms": 54856, "language models developing": 84375, "paper discusses major": 118862, "general ai systems": 62912, "findings large language": 58719, "conduct largescale user": 29157, "largescale user study": 89421, "user study examining": 173520, "provide indepth analysis": 132835, "language generation recent": 83380, "language generation systems": 83383, "transformer models trained": 169185, "models trained parallel": 109464, "furthermore qualitative evaluation": 62150, "strategy increase accessibility": 156162, "neural models generate": 112884, "language generation generating": 83348, "annotated human annotators": 9479, "large neural language": 88954, "synthetic data generation": 160029, "data generation method": 35114, "generation method based": 64824, "translation test sets": 169532, "prompting approach designed": 130857, "existing baseline models": 53292, "language models gpt4": 84616, "notable limitation existing": 114234, "crowdsourcing large language": 33734, "language models instead": 84714, "requests large language": 141053, "language models replace": 86081, "improve large language": 73501, "generated using openai": 64041, "using openai codex": 174555, "reduce human effort": 138435, "multilingual language model": 110490, "shown able perform": 150205, "perform new tasks": 120996, "new tasks based": 113449, "demonstrations natural language": 39032, "led widespread adoption": 91260, "widespread adoption llms": 178457, "language model designed": 83599, "performance wide variety": 122304, "wide variety benchmarks": 178342, "multitask prompted finetuning": 111236, "future research applications": 62313, "inference transformer models": 76132, "large transformerbased models": 89088, "use cases models": 172534, "model flops utilization": 103681, "larger context lengths": 89199, "memory large language": 100415, "breakthroughs natural language": 19027, "understanding generation abilities": 171253, "amounts world knowledge": 8710, "model predictions grounded": 104305, "increasing model size": 75336, "comprehensive evaluation showcases": 28021, "model architectures sizes": 103134, "states language models": 155429, "models paper investigates": 108414, "demonstrate existing approaches": 38332, "prompting dramatically improve": 130903, "limited data available": 92743, "reliability large language": 139692, "language tasks recent": 86773, "tasks recent work": 163095, "language models different": 84379, "lexical equality single": 91981, "equality single multiword": 50159, "single multiword answers": 151840, "consistency generative text": 29763, "generative text sequences": 65602, "plms text generation": 123646, "text generation settings": 165185, "measure semantic consistency": 99876, "metric evaluate performance": 101969, "models trained code": 109421, "trained code generation": 167880, "created generative models": 33259, "models plms shown": 108548, "large amounts data": 87180, "amounts data pretraining": 8681, "outofdistribution ood generalization": 117527, "methods paper presents": 101701, "publicly available datasets": 133637, "classic nlp tasks": 23927, "significant performance degradation": 150797, "language use large": 86868, "use large transformerbased": 172717, "large transformerbased language": 89086, "processing tasks language": 129320, "model using dataset": 104850, "using dataset evaluate": 174116, "results significant performance": 143797, "significant performance increase": 150810, "updating language model": 172362, "knowledge graph construction": 82048, "requires commonsense knowledge": 141344, "knowledge paper present": 82261, "propose new approach": 131952, "new approach leverages": 113065, "generation power large": 64935, "large language modelsllms": 88878, "construct knowledge graph": 30143, "knowledge graph llms": 82062, "training data order": 168315, "empowering language models": 48013, "models knowledge graph": 106843, "knowledge graph reasoning": 82068, "entities pretrained language": 49864, "knowledge external knowledge": 81986, "knowledge sources knowledge": 82412, "sources knowledge graphs": 153514, "work propose knowledge": 179205, "significant performance gain": 150802, "recent studies existing": 137659, "asr large language": 12999, "expensive timeconsuming obtain": 53812, "spoken language understanding": 154573, "spoken question answering": 154578, "achieves similar performance": 4081, "performance supervised methods": 122142, "supervised methods trained": 159155, "evaluating factual consistency": 51299, "factual consistency large": 56858, "consistency large language": 29771, "language models news": 85794, "models news summarization": 108293, "news summarization large": 113586, "summarization large language": 158840, "models llms proven": 107771, "llms proven effective": 96252, "proven effective large": 132642, "large variety tasks": 89103, "propose new benchmark": 131955, "new benchmark called": 113086, "humanwritten reference summaries": 71525, "summaries factually inconsistent": 158764, "models factual consistency": 106299, "language models ranging": 86019, "different model families": 41857, "code benchmark data": 24693, "models shown great": 109102, "shown great performance": 150250, "great performance tasks": 67699, "shown improve performance": 150288, "improve performance various": 73575, "performance various nlp": 122270, "nlp tasks just": 113863, "indistribution id outofdistribution": 75701, "id outofdistribution ood": 71716, "models semantic parsing": 109070, "semantic parsing tasks": 148190, "tasks incontext learning": 162586, "codex semantic parsing": 25356, "semantic parsing datasets": 148187, "knowledgebased visual question": 82537, "answering vqa involves": 9986, "answer large language": 9730, "knowledge retrieval reasoning": 82383, "prior work uses": 127955, "convert images text": 31990, "achieves stateoftheart accuracy": 4090, "make language models": 98559, "systematic evaluation models": 160123, "existing research shown": 53558, "generation propose new": 64980, "language model guided": 83675, "interpretable image classification": 79670, "concept bottleneck models": 28587, "leverages language model": 91739, "large space possible": 89065, "similar better performance": 151213, "random layerwise token": 135529, "layerwise token dropping": 89690, "various machine learning": 176026, "machine learning applications": 98011, "prohibitive training costs": 130060, "mitigate issue propose": 102616, "novel random layerwise": 114662, "sequence length training": 148763, "underlying language model": 170842, "previous supervised stateoftheart": 127674, "text descriptions using": 165010, "text description prompt": 165008, "text image generation": 165229, "image generation work": 72270, "generation work explore": 65264, "work explore possibility": 178958, "compared previous works": 26896, "style content information": 157741, "audio samples dataset": 14188, "samples dataset publicly": 146001, "dataset publicly available": 36483, "teaching math word": 163654, "enhance human performance": 49211, "math word problem": 99541, "word problem mwp": 178661, "work explore ability": 178950, "math word problemsolving": 99548, "reinforcement learning automatic": 139047, "preliminary user study": 126154, "user study examine": 173519, "difficulty level problems": 42218, "plays important role": 123522, "machine learning tasks": 98082, "learning tasks particularly": 91057, "allowing models learn": 8383, "address issue propose": 5272, "human evaluations indicate": 70765, "learning models current": 90713, "effective incontext learning": 45782, "models llms exhibited": 107388, "llms exhibited remarkable": 95160, "exhibited remarkable capabilities": 53149, "remarkable capabilities learning": 140161, "used incontext learning": 173108, "incontext learning study": 74975, "natural language used": 111919, "improves incontext learning": 74011, "performance realworld tasks": 121993, "realworld tasks multiple": 136528, "previous research explored": 127635, "language processing field": 86514, "efficiency using large": 46550, "natural language prompting": 111845, "neural code generation": 112837, "code generation model": 24901, "pretrained code generation": 126772, "code generation generate": 24888, "generation generate executable": 64687, "generate executable code": 63482, "substantial performance improvement": 158089, "thoroughly investigated paper": 166214, "specifically propose novel": 154270, "novel approach named": 114396, "codegpt plbart codet5": 25265, "finetuning code generation": 59197, "code generation task": 24921, "results highlight importance": 143456, "processing long documents": 129188, "different natural language": 41867, "input proposed model": 77321, "using masked language": 174478, "language modeling task": 84022, "language models affected": 84095, "models ability follow": 105176, "ability follow instructions": 2168, "model size increase": 104597, "play important role": 123455, "sequential decisionmaking problems": 148871, "propose novel algorithm": 131980, "extract task knowledge": 56169, "secure multiparty computation": 147552, "generation large pretrained": 64780, "generation task task": 65145, "task introduce new": 161492, "introduce new dataset": 80029, "new dataset called": 113133, "experimental result shows": 53960, "language model generated": 83654, "zeroshot image classification": 180208, "unstructured text documents": 172224, "methods require access": 101777, "information large language": 76549, "trained webscale text": 168129, "image classification model": 72206, "multiple text descriptions": 111069, "allowing model learn": 8381, "compared baseline models": 26749, "public benchmark datasets": 133550, "models fail systematically": 106301, "natural language description": 111580, "small data model": 152283, "classification object detection": 24042, "object detection image": 115118, "image captioning models": 72189, "play key role": 123459, "key role enabling": 81567, "adapting large language": 4741, "language model initial": 83691, "initial experiments demonstrate": 77026, "challenging task especially": 22284, "models lms perform": 108071, "complex question answering": 27540, "complex question single": 27541, "multilingual large language": 110495, "dataset used train": 36607, "wide range research": 178304, "distributed training paper": 43337, "share lessons learned": 149799, "training large deep": 168523, "models efficient terms": 106057, "quality computation cost": 134073, "language models vision": 86373, "base large models": 15610, "sparse models trained": 153739, "trained scratch 100": 168066, "analysis large language": 8996, "models llms automated": 107129, "structured information extraction": 156640, "complex scientific text": 27579, "finetuned large language": 59045, "information unstructured text": 76826, "language processing present": 86605, "entity recognition relation": 49925, "recognition relation extraction": 138122, "leverages pretrained large": 91768, "model llm gpt3": 104005, "online demo available": 116091, "language models demonstrated": 84343, "models demonstrated outstanding": 105906, "demonstrated outstanding performance": 38729, "range tasks question": 135715, "question answering code": 134691, "answering code generation": 9824, "input language model": 77271, "model used automatically": 104839, "variety downstream tasks": 175707, "language model user": 83946, "adapt language models": 4529, "language models specific": 86204, "models specific tasks": 109202, "language model output": 83820, "wide range stateoftheart": 178311, "stateoftheart prompting methods": 155316, "accuracy downstream tasks": 3212, "downstream tasks significantly": 44834, "deep learning review": 37775, "rapid advancement ai": 135845, "text generation tools": 165194, "generation tools like": 65208, "like gpt3 chatgpt": 92288, "new directions future": 113149, "use visual information": 172936, "outperforms baseline models": 117712, "baseline models provide": 16244, "remarkable performance wide": 140254, "scaling laws function": 146413, "model size compute": 104587, "address limitations investigate": 5313, "investigate scaling laws": 80495, "contrastive languageimage pretraining": 31357, "languageimage pretraining clip": 86919, "power law scaling": 125195, "downstream tasks including": 44795, "tasks including zeroshot": 162584, "zeroshot classification retrieval": 180145, "plays key role": 123530, "models exhibit different": 106201, "models ensure reproducibility": 106132, "visionlanguage foundation models": 177026, "foundation models reason": 60799, "vision natural language": 176964, "large vision language": 89108, "vision language pretraining": 176940, "cognitive science literature": 25481, "language models nlp": 85800, "pretrained language modelsplms": 126988, "shown impressive performance": 150274, "issues propose novel": 81051, "experimental results approach": 53967, "consistently improve performance": 29879, "bert roberta bart": 17593, "outperform competitive baselines": 117575, "codes data publicly": 25294, "data publicly available": 35592, "generating chain thought": 64150, "model llm performance": 104016, "prior work mainly": 127945, "work mainly focused": 179113, "reasoning tasks arithmetic": 137167, "tasks arithmetic commonsense": 161970, "different prompt formats": 41937, "increase model size": 75217, "ai drug discovery": 6963, "intelligence ai potential": 78762, "drug discovery process": 45050, "overall review highlights": 118233, "highlights potential ai": 69869, "opportunities realizing potential": 116874, "chatgpt chatbot based": 22768, "language model assist": 83537, "text generated ai": 165109, "ability automatically generate": 2077, "retrievalaugmented language model": 144182, "knowledgeintensive nlp tasks": 82562, "inference time results": 76126, "models wide range": 109687, "language models reason": 86037, "reasoning capabilities large": 136704, "language models achieving": 84071, "achieving state art": 4219, "parameters paper explore": 119828, "reasoning capabilities models": 136711, "generated larger teacher": 63906, "experiments proposed method": 54409, "proposed method improves": 132360, "performance arithmetic commonsense": 121164, "arithmetic commonsense symbolic": 12474, "commonsense symbolic reasoning": 26327, "opendomain qa opendomain": 116463, "qa opendomain question": 133905, "question answering odqa": 134769, "documents zeroshot setting": 43953, "zeroshot setting task": 180340, "data available train": 34710, "knowledge stored parameters": 82427, "stored parameters llms": 155876, "learning experimental results": 90437, "surpasses previous sota": 159495, "previous sota methods": 127650, "training data language": 168291, "data language model": 35284, "raises important question": 135489, "shown promise effectively": 150336, "evaluate strengths weaknesses": 51110, "strengths weaknesses popular": 156279, "tasks findings indicate": 162406, "language models exhibit": 84478, "models exhibit strong": 106212, "models improve performance": 106689, "promising large language": 130270, "models like gpt35": 106987, "nlp large language": 113751, "increased model size": 75264, "model size large": 104602, "pretrained sequencetosequence models": 127158, "eliminating need specialized": 47085, "improvements previously published": 73934, "previously published results": 127740, "models present promising": 108604, "models perform new": 108469, "human labor collect": 70898, "prompting language model": 130973, "various benchmarks results": 175838, "grounding language models": 67898, "language models realworld": 86035, "grounded language understanding": 67871, "knowledge base question": 81776, "base question answering": 15633, "question answering kbqa": 134741, "demonstrates remarkable effectiveness": 38885, "standard kbqa datasets": 154835, "incontext learning kbqa": 74935, "language models similarly": 86170, "propose benchmark dataset": 131732, "benchmark dataset consisting": 16892, "stateoftheart pretrained language": 155305, "language models solve": 86192, "models solve complex": 109176, "solve complex reasoning": 153105, "complex reasoning tasks": 27562, "reasoning tasks stepbystep": 137197, "large models gpt3": 88923, "paper use large": 119379, "models reduce model": 108873, "reduce model size": 138449, "method generates reasoning": 100889, "wide range public": 178300, "small models far": 152329, "models ability generate": 105179, "ability generate multiple": 2199, "results substantial performance": 143827, "compared previous text": 26894, "text style transfer": 165495, "style transfer tasks": 157773, "requires deep understanding": 141357, "training validation test": 168817, "reasoning large language": 136953, "reasoning fundamental aspect": 136873, "fundamental aspect human": 61932, "aspect human intelligence": 12907, "plays crucial role": 123514, "solving decision making": 153205, "recent years large": 137782, "years large language": 179906, "models llms significant": 107907, "llms significant progress": 96588, "llms capable reasoning": 94538, "paper provides comprehensive": 119289, "provides comprehensive overview": 133121, "comprehensive overview current": 28085, "overview current state": 118425, "knowledge reasoning llms": 82342, "benchmarks evaluating reasoning": 17236, "previous research field": 127636, "aim provide detailed": 7480, "harmful content detection": 68728, "stateoftheart language models": 155166, "pretraining corpora large": 127284, "corpora large language": 32234, "harmful content paper": 68731, "paper explore different": 118912, "noisy web data": 114008, "small language model": 152304, "language model use": 83944, "data used train": 35917, "allows model learn": 8454, "impressive zero fewshot": 73386, "zero fewshot performance": 180074, "nlp tasks natural": 113875, "paper evaluate performance": 118887, "evaluate performance gpt3": 51052, "dense retrieval systems": 39106, "instructionfollowing language model": 78185, "embedding vector vector": 47202, "significantly outperforms stateoftheart": 151114, "unsupervised dense retriever": 172241, "despite impressive performance": 40137, "impressive performance diverse": 73326, "performance diverse tasks": 121418, "tasks large language": 162683, "models lms struggle": 108082, "rich world knowledge": 144815, "encode wealth world": 48388, "wealth world knowledge": 177977, "knowledge paper aims": 82260, "orders magnitude larger": 117265, "simple effective method": 151430, "significantly improves models": 151042, "reducing inference costs": 138574, "evaluate models using": 51031, "using human automatic": 174304, "automatic metrics human": 14711, "metrics human evaluation": 102080, "human evaluation suggests": 70754, "reranking natural language": 141535, "language generation pretrained": 83375, "present empirical analysis": 126292, "proposed novel method": 132404, "tasks demonstrated effectiveness": 162184, "results compared previous": 143242, "compared previous baselines": 26883, "reasoning language models": 136948, "despite recent success": 40191, "model llm reasoning": 104024, "reasoning tasks like": 137181, "tasks like generating": 162711, "framework enabling automatic": 61125, "hierarchical natural language": 69366, "llms solve competitionlevel": 96637, "past work shown": 120399, "models llms trained": 107976, "llms trained text": 96837, "methods achieves stateoftheart": 101281, "performance various multimodal": 122263, "outperforms prior stateoftheart": 117832, "language models input": 84712, "shown highly effective": 150262, "effective nlp tasks": 45834, "models bert roberta": 105497, "respect semantic content": 142516, "semantic content text": 148127, "models achieve high": 105222, "achieve high performance": 3659, "standard question answering": 154875, "significant number cases": 150787, "models better understand": 105512, "better understand effectiveness": 18056, "fail respond adequately": 56979, "taskoriented semantic parsing": 161853, "semantic parsing using": 148191, "explore use large": 55312, "representations language models": 140829, "models generally trained": 106438, "trained publicly available": 168053, "tasks zeroshot setting": 163501, "frozen large language": 61665, "effective utilization llms": 45921, "visual questionanswering vqa": 177284, "questionanswering vqa remains": 135006, "vision language data": 176929, "llms perform zeroshot": 96086, "pairs effectively guide": 118567, "guide llm perform": 68189, "llm perform zeroshot": 93877, "offers following benefits": 115807, "achieves comparable better": 3981, "method outperforms fewshot": 101012, "prompt tuning multitask": 130715, "language models efficiently": 84418, "parameterefficient finetuning methods": 119665, "methods prompt tuning": 101734, "prompt tuning proposed": 130724, "prompt tuning methods": 130712, "prompt tuning method": 130711, "extensive experiments finetuning": 55848, "finetuning language model": 59324, "different tasks different": 42032, "tasks different domains": 162226, "heldout datasets nlp": 69071, "datasets demonstrate effectiveness": 36764, "studied long time": 156932, "using neural networks": 174527, "issue artificial intelligence": 80888, "mitre attck framework": 102703, "empirical results illustrate": 47728, "models llms ai": 107102, "results fewshot prompting": 143412, "leads better results": 89877, "demonstrated great potential": 38675, "potential learning representations": 124818, "limited availability resources": 92716, "diverse downstream tasks": 43517, "tasks fine tuning": 162411, "used wide variety": 173304, "wide variety applications": 178341, "increase model parameters": 75216, "demonstrates superior performance": 38908, "techniques language models": 163943, "language models considered": 84293, "language tasks like": 86767, "code language models": 24966, "try answer question": 169907, "relatively small language": 139419, "answer openended questions": 9740, "work shown finetuning": 179295, "shown finetuning large": 150243, "finetuning large pretrained": 59339, "models finetuned specific": 106354, "evaluation framework measuring": 51605, "artificial intelligence agents": 12657, "advanced artificial intelligence": 5706, "intelligence ai agents": 78724, "advanced ai agents": 5698, "agent large language": 6460, "increasingly popular recent": 75422, "popular recent years": 124052, "tasks like information": 162715, "like information retrieval": 92322, "specific tasks datasets": 154103, "techniques paper present": 163981, "present indepth analysis": 126337, "biomedical information retrieval": 18547, "information retrieval models": 76727, "gptj 6b parameters": 67293, "gpt3 175b parameters": 66634, "using large corpus": 174362, "dataset findings suggest": 36306, "finetuned domainspecific datasets": 59013, "outperform larger language": 117605, "language models highly": 84641, "models highly specific": 106611, "complex task requires": 27604, "openais textdavinci003 model": 116434, "scale training data": 146353, "optimization prompt engineering": 117035, "performance best prompt": 121201, "results strongly suggest": 143818, "exploratory case study": 55121, "chatgpt language model": 23084, "language model capable": 83570, "capable generating text": 20429, "gained significant attention": 62478, "significant attention research": 150615, "attention research community": 13982, "great potential using": 67710, "potential using large": 125047, "models like chatgpt": 106973, "like chatgpt improve": 92232, "models llms various": 108020, "llms various natural": 96955, "utilize external knowledge": 175042, "incorporating external knowledge": 75098, "require additional training": 141066, "additional training finetuning": 5014, "llms address issue": 94350, "retrieves relevant external": 144273, "approach does require": 11132, "does require additional": 44017, "limited input length": 92784, "llms evaluate effectiveness": 95101, "explanations improve performance": 54863, "improve performance llms": 73559, "like chatgpt offer": 92235, "reasoning paper proposes": 137019, "research introduces novel": 141868, "consisting large language": 29948, "language models developed": 84374, "findings provide evidence": 58758, "stateoftheart transformer based": 155403, "transformer based llms": 169105, "study present new": 157538, "multimodal question answering": 110750, "et al 2017": 50770, "perform complex reasoning": 120899, "standard finetuning approach": 154825, "irrespective model size": 80861, "model automatically generate": 103163, "masked image modeling": 99298, "3d point clouds": 1142, "downstream tasks surpasses": 44837, "stateoftheart contrastive learning": 155115, "detection instance segmentation": 40530, "gains larger models": 62522, "multiplechoice questions based": 111098, "suggest large language": 158550, "language models potential": 85925, "augmented large language": 14359, "language models computationally": 84276, "language model conditions": 83587, "existing large language": 53400, "language model weights": 83960, "applications use large": 10714, "language models identify": 84661, "data social media": 35772, "using openais gpt3": 174559, "openais gpt3 generate": 116412, "prompting vision language": 131121, "vision language models": 176934, "visual reasoning large": 177290, "large pretrained vision": 89020, "pretrained vision language": 127228, "models demonstrated remarkable": 105909, "demonstrated remarkable capacities": 38769, "visual reasoning tasks": 177291, "tasks remains challenging": 163126, "understand image content": 171019, "external world knowledge": 56099, "perform stepbystep reasoning": 121050, "answer questions correctly": 9765, "end propose novel": 48681, "uses llm generate": 173883, "better performance previous": 17969, "trustworthiness reasoning process": 169859, "models llms making": 107650, "machine learning community": 98024, "advent deep learning": 6168, "source code work": 153428, "language processing community": 86498, "deep learning researchers": 37774, "language models typically": 86330, "generalization distribution shifts": 63163, "distribution shifts work": 43389, "work aim improve": 178789, "mitigate catastrophic forgetting": 102593, "transfer learning finetuning": 168942, "close gap finetuning": 24444, "compared standard finetuning": 26927, "algorithm achieves average": 7776, "datasets compared standard": 36719, "strong empirical evidence": 156379, "publicly available model": 133654, "text classification task": 164907, "models including large": 106717, "including large language": 74582, "inference cost discuss": 75984, "large number samples": 88968, "hope work help": 70397, "help people better": 69156, "chatgpt human experts": 23054, "chatgpt garnered widespread": 22971, "attention academic industrial": 13834, "academic industrial communities": 2734, "effectively wide range": 46111, "fluent comprehensive answers": 59900, "potential negative impacts": 124882, "impacts large language": 72762, "llms like chatgpt": 95764, "fake news plagiarism": 57103, "comparison responses human": 27065, "human experts chatgpt": 70785, "financial medical legal": 58574, "collected dataset human": 25683, "dataset human chatgpt": 36342, "human chatgpt comparison": 70634, "chatgpt comparison corpus": 22789, "comparison corpus hc3": 27032, "future directions llms": 62254, "text generated chatgpt": 165110, "generated chatgpt humans": 63814, "factors influence effectiveness": 56802, "dataset code models": 36154, "chatgpt case study": 22761, "capabilities limitations chatgpt": 20016, "chatgpt natural language": 23141, "language processing model": 86534, "visual representations abstract": 177303, "efficient inference large": 46641, "language model apis": 83526, "samples large language": 146034, "prompting simple effective": 131075, "simple effective prompting": 151435, "approach enables llm": 11166, "token time costs": 166743, "incontext learning setting": 74970, "extensively validate effectiveness": 55997, "commonsense qa arithmetic": 26293, "qa arithmetic reasoning": 133869, "achieving better comparable": 4153, "comparable performance stateoftheart": 26606, "llms gpt35 gpt4": 95426, "methods using llms": 101915, "using llms code": 174427, "recent work showing": 137739, "using computational language": 174073, "computational language models": 28369, "zeroshot prompt learning": 180299, "automatic scoring science": 14734, "scoring science education": 147198, "recent studies suggest": 137676, "language models adapted": 84075, "adapted downstream tasks": 4683, "downstream tasks finetuning": 44788, "presented natural language": 126523, "prediction task using": 125872, "task using prompts": 161801, "automatically score student": 14852, "score student responses": 147100, "f1 score 054": 56484, "automatic scoring student": 14736, "scoring student responses": 147200, "significantly reducing cost": 151147, "cost model training": 32714, "future research explore": 62339, "assessment tasks science": 13269, "tasks science education": 163205, "knowledge natural language": 82241, "models recent advancements": 108819, "models llms drawn": 107325, "pretrained largescale datasets": 127013, "learned knowledge llms": 90102, "aim bridge gap": 7434, "diagnosis report generation": 41373, "report generation introduce": 140532, "optimal transport ot": 116960, "evaluated downstream tasks": 51172, "approach able generate": 10940, "able generate highquality": 2512, "zeroshot classification performance": 180144, "classification performance compared": 24048, "performance compared supervised": 121300, "compared supervised baselines": 26944, "based t5 model": 16126, "effect model size": 45666, "model size prompt": 104610, "assess feasibility using": 13083, "feasibility using chatgpt": 57365, "using likert scale": 174409, "using human annotations": 174303, "language models future": 84562, "model llm generate": 104001, "effective strategy improve": 45892, "explanations use llms": 54906, "use llms gpt35": 172747, "additional computational cost": 4936, "crucial natural language": 33828, "natural language reasoning": 111858, "texts existing work": 165709, "causally related propose": 21237, "models including gpt3": 106713, "perform close chance": 120885, "boost model performance": 18819, "models pretrained code": 108611, "intermediate reasoning steps": 79525, "language models efficacy": 84416, "combined chainofthought prompting": 25895, "language models visionlanguage": 86376, "models visionlanguage models": 109637, "internal representations interpretable": 79562, "covering diverse topics": 33077, "social media discourse": 152609, "advancements natural language": 5935, "social media data": 152606, "pioneering approach designed": 123011, "formulate novel task": 60619, "social media text": 152630, "text use case": 165550, "qualitative quantitative analysis": 134012, "extracting actionable insights": 56217, "insights social media": 77646, "supervised nlp models": 159163, "models contributions include": 105790, "contributions include development": 31495, "include development novel": 74331, "data collection curation": 34782, "nlp models extract": 113770, "language model chatgpt": 83577, "understanding effectiveness large": 171204, "effectiveness large language": 46214, "evaluation language models": 51656, "language models steadily": 86216, "performance various natural": 122265, "nlp tasks question": 113888, "models llms used": 108004, "language understanding capabilities": 86810, "task paper explore": 161595, "datasets used training": 37177, "number examples prompt": 114861, "affect models performance": 6308, "instructgpt large language": 77946, "future language models": 62279, "language models conclude": 84279, "crosslingual information retrieval": 33656, "language models neural": 85790, "neural ranking models": 112967, "models significant progress": 109124, "multilingual pretrained language": 110531, "models provides great": 108731, "data different languages": 34913, "different languages multilingual": 41818, "languages multilingual language": 87065, "high lowresource languages": 69486, "models built pretrained": 105553, "language makes challenging": 83501, "retrieval models work": 144096, "high low resource": 69483, "languages experimental results": 87002, "minimal training data": 102361, "significantly outperforms strong": 151117, "lowresource languages including": 97910, "bootstrapping languageimage pretraining": 18866, "frozen image encoders": 61659, "image encoders large": 72241, "encoders large language": 48488, "language models cost": 84315, "training largescale models": 168539, "largescale models paper": 89358, "models paper proposes": 108420, "offtheshelf frozen pretrained": 115905, "frozen pretrained image": 61677, "pretrained image encoders": 126843, "image encoders frozen": 72238, "encoders frozen large": 48481, "bridges modality gap": 19085, "visionlanguage representation learning": 177083, "frozen image encoder": 61658, "learning frozen language": 90486, "stateoftheart performance various": 155296, "despite having significantly": 40121, "having significantly fewer": 68892, "fewer trainable parameters": 57873, "zeroshot imagetotext generation": 180210, "follow natural language": 60220, "models llms perform": 107713, "llms perform complex": 96070, "propose model specialization": 131931, "multistep math reasoning": 111165, "language models multidimensional": 85773, "model selection method": 104532, "serve important attempt": 148987, "new research paradigm": 113388, "practical applications large": 125389, "applications large language": 10581, "models llms significantly": 107915, "llms significantly impacted": 96602, "applications multimodal large": 10612, "multimodal large language": 110682, "language model enhanced": 83623, "reasoning visual commonsense": 137235, "commonsense reasoning vcr": 26321, "reasoning vcr task": 137229, "recently multimodal large": 137941, "language models mllms": 85751, "used powerful tools": 173176, "dataset demonstrate superiority": 36228, "demonstrate superiority proposed": 38580, "1000 times smaller": 171, "exploratory data analysis": 55123, "unseen test cases": 172193, "test cases using": 164529, "transformer recent work": 169206, "work shown large": 179300, "models llms incredibly": 107571, "chen et al": 23577, "skill discovery methods": 152133, "benchmark code videos": 16862, "models expensive train": 106233, "model trained exclusively": 104763, "achieve competitive performance": 3607, "competitive performance substantially": 27190, "orders magnitude data": 117261, "training dataset using": 168374, "masked span prediction": 99320, "outperform larger models": 117607, "shown remarkable progress": 150367, "freeform natural language": 61565, "language nl questions": 86444, "nl questions structured": 113642, "structured tabular data": 156678, "usually suffer significant": 174923, "suffer significant performance": 158452, "performance degradation huge": 121366, "exploit large language": 55010, "specifically use llms": 154301, "step extensive experiments": 155635, "extensive experiments method": 55858, "method effectively leverage": 100811, "explaining large language": 54765, "large language modelbased": 87507, "neural semantic parsers": 112977, "abstract large language": 2644, "llms demonstrated strong": 94888, "demonstrated strong capability": 38802, "prediction tasks semantic": 125875, "studies different methods": 156983, "inspire future research": 77700, "benchmark language models": 17008, "mathematical reasoning datasets": 99591, "language models easily": 84410, "models achieved impressive": 105239, "achieved impressive performance": 3829, "impressive performance various": 73344, "task work investigate": 161813, "language models model": 85768, "arithmetic reasoning dataset": 12486, "techniques large language": 163945, "improving fewshot generalization": 74145, "work focus fewshot": 178988, "focus fewshot learning": 59981, "previous works proposed": 127702, "limiting practicality work": 92897, "datasets prior methods": 37044, "billion parameter language": 18430, "language models outperform": 85834, "175 billion parameter": 494, "survey deep learning": 159620, "transformers selfsupervised learning": 169355, "provide comprehensive overview": 132714, "comprehensive overview important": 28090, "models openais gpt4": 108353, "believe large language": 16779, "language models understood": 86337, "output ai systems": 117895, "models shown impressive": 109104, "shown impressive capabilities": 150268, "impressive capabilities performing": 73273, "fewshot learning wide": 57988, "learning wide range": 91134, "interact real world": 79073, "pretraining andor finetuning": 127261, "decoder reconstruct original": 37524, "fewshot image classification": 57923, "classification large language": 24023, "best knowledge work": 17693, "power pretrained language": 125210, "explore language models": 55231, "language models employed": 84436, "publicly available data": 133634, "best performing models": 17729, "bugs large language": 19294, "models llms openais": 107691, "llms openais codex": 95982, "openais codex demonstrated": 116401, "hardware description language": 68682, "quantitatively evaluate performance": 134387, "evaluate performance llm": 51056, "design space exploration": 39763, "prompts prompt engineering": 131422, "framework large language": 61257, "language models predict": 85932, "models predict human": 108588, "philosophy cognitive science": 122858, "language models unlock": 86342, "models unlock new": 109553, "does necessarily lead": 44004, "recent years pretrained": 137789, "models rely heavily": 108912, "specialized domains medical": 153887, "using data augmentation": 174110, "data augmentation neural": 34684, "language models research": 86089, "nlp tasks specifically": 113902, "original training data": 117394, "training data results": 168338, "simple effective solutions": 151439, "language models considerably": 84292, "text simplification task": 165466, "unfortunately lack largescale": 171668, "gaining deeper understanding": 62496, "knowledge graph kg": 82056, "data various sources": 35946, "various sources including": 176179, "algorithms large language": 7940, "language models support": 86244, "graph completion kgc": 67497, "knowledge graph embedding": 82051, "graph embedding models": 67520, "uses large language": 173871, "word problem solvers": 178662, "challenging task demands": 22283, "mathematical reasoning natural": 99595, "natural language recent": 111861, "text using language": 165556, "using language model": 174354, "issues propose new": 81050, "demonstrate framework outperforms": 38349, "framework outperforms stateoftheart": 61340, "conduct detailed analysis": 29066, "detailed analysis results": 40269, "limitations approach discuss": 92542, "approach discuss potential": 11127, "future work code": 62405, "strategies pretrained language": 156053, "concept regression testing": 28621, "language models importance": 84672, "match desired target": 99409, "raw text data": 136092, "data existing methods": 35007, "existing methods use": 53472, "use simple heuristics": 172873, "data selection methods": 35722, "benchmark code available": 16861, "instruction tuning recently": 78130, "recently language models": 137920, "generalize unseen tasks": 63274, "tasks previous work": 162992, "scaling number training": 146434, "scaling number tasks": 146433, "learn new tasks": 90020, "language modeling code": 83986, "general purpose large": 63030, "purpose large language": 133747, "trained massive datasets": 167999, "human written text": 71103, "code natural language": 25023, "use ai tools": 172492, "paper examine chatgpt": 118891, "findings indicate chatgpt": 58697, "based findings discuss": 15809, "related use chatgpt": 139225, "parameter large language": 119624, "image diffusion models": 72229, "improve zeroshot generalization": 73664, "zeroshot generalization ability": 180193, "ability language models": 2239, "memory inference time": 100407, "increased model parameters": 75263, "open source code": 116292, "language models answer": 84121, "models answer set": 105360, "answer set programming": 9781, "llms gpt3 chatgpt": 95417, "tasks fall short": 162391, "different nlu tasks": 41878, "nlu tasks requiring": 113950, "tasks requiring reasoning": 163164, "able bridge gap": 2474, "improvements especially smaller": 73899, "paper proposes framework": 119264, "framework quantitatively evaluating": 61369, "quantitatively evaluating interactive": 134391, "using publicly available": 174632, "available data sets": 15093, "llms zeroshot learning": 97036, "zeroshot learning tasks": 180250, "learning tasks outperforms": 91056, "outperforms finetuned models": 117772, "nonlatin script languages": 114089, "generate multimodal content": 63614, "10 different reasoning": 115, "reasoning commonsense reasoning": 136759, "access external knowledge": 2858, "knowledge base finally": 81769, "llm improve performance": 93746, "generative artificial intelligence": 65379, "intelligence ai enabled": 78742, "models capable producing": 105566, "generative pretrained models": 65542, "gpt3 experimental results": 66684, "experimental results text": 54078, "datasets demonstrate approach": 36762, "make code publicly": 98506, "rise artificial intelligence": 144890, "intelligence ai technology": 78777, "generation ai systems": 64407, "study aims explore": 157151, "ai chatbots chatgpt": 6910, "chatgpt great potential": 23037, "showed superior performance": 150156, "superior performance compared": 159020, "tools paper discusses": 167219, "recent research shown": 137632, "models exploit artifacts": 106251, "exploit artifacts benchmarks": 55000, "written natural language": 179786, "external domain knowledge": 56046, "recent largescale language": 137544, "language models empirical": 84432, "models empirical study": 106092, "qa language models": 133891, "processing nlp natural": 129235, "nlp natural language": 113776, "plms shown promising": 123639, "instruction tuning incontext": 78099, "experimental results diverse": 54008, "results diverse set": 143362, "achieve higher performance": 3663, "improve upper bound": 73654, "scaling incontext learning": 146402, "language models code": 84242, "adversarial testing large": 6232, "testing large language": 164725, "increasingly trained massive": 75446, "used generate code": 173086, "work studies security": 179316, "generating functionally correct": 64229, "functionally correct code": 61892, "code propose novel": 25071, "propose novel learningbased": 132009, "using highquality dataset": 174297, "dataset carefully curated": 36144, "extensive evaluation shows": 55772, "models llms contain": 107220, "perform wide variety": 121092, "retrievalaugmented large language": 144187, "language models despite": 84367, "generative large language": 65447, "language models common": 84261, "solution augmenting llms": 152900, "augmenting llms retrieval": 14395, "information given new": 76481, "language models help": 84637, "aligned human preferences": 8054, "used evaluate large": 173048, "larger models tend": 89236, "models tend better": 109369, "use artificial intelligence": 172506, "intelligence ai systems": 78774, "answer typical questions": 9791, "relevant clinical setting": 139578, "calibration incontext learning": 19636, "incontext learning recent": 74966, "learning recent years": 90904, "recent years witnessed": 137810, "learning models trained": 90735, "learning text classification": 91076, "use pretrained language": 172811, "built transformer architecture": 19505, "class labels work": 23879, "extensive experiments datasets": 55820, "datasets various settings": 37193, "various settings demonstrate": 176165, "settings demonstrate effectiveness": 149549, "effectiveness approach code": 46123, "architectures like bert": 12279, "answering knowledge graphs": 9884, "current status future": 34271, "users natural language": 173718, "natural language interfaces": 111660, "paper present comprehensive": 119110, "present comprehensive study": 126262, "conduct thorough evaluation": 29195, "various application domains": 175799, "based findings propose": 15813, "language processing task": 86623, "spurred advancements scale": 154623, "advancements scale large": 5961, "scale large language": 146303, "llms demonstrated ability": 94831, "ability perform variety": 2313, "perform variety natural": 121080, "nlp tasks zeroshot": 113916, "chatgpt drawn great": 22865, "drawn great deal": 44950, "great deal attention": 67690, "attention natural language": 13942, "processing nlp community": 129213, "generate highquality responses": 63543, "responses human input": 142820, "work empirically analyze": 178929, "zeroshot learning ability": 180228, "learning ability chatgpt": 90168, "representative task categories": 140942, "task categories extensive": 161235, "categories extensive empirical": 21098, "extensive empirical studies": 55761, "studies demonstrate effectiveness": 156971, "tasks sequence tagging": 163223, "additionally provide indepth": 5122, "qualitative case studies": 133989, "language model behavior": 83558, "trained using small": 168115, "prompttuning large language": 131545, "tuned using small": 169955, "specific use cases": 154123, "present empirical evaluation": 126293, "empirical evaluation different": 47681, "evaluation different lms": 51545, "lms bert gpt2": 97109, "tuning pretrained large": 170090, "models llms able": 107059, "llms able solve": 94269, "tracin pruthi et": 167509, "pruthi et al": 133472, "training examples paper": 168433, "parameterefficient tuning pet": 119687, "questionanswering qa datasets": 134996, "perform extensive evaluation": 120945, "models fewshot prompting": 106327, "fewshot prompting gpt3": 58030, "lag human performance": 83058, "explanations natural language": 54882, "natural language language": 111665, "language language model": 83475, "knowledge bases kbs": 81783, "traditional natural language": 167666, "small number samples": 152341, "opensource code datasets": 116582, "study aims understand": 157157, "analyzing social media": 9387, "language models chatgpt": 84230, "language model utilized": 83950, "unlike existing deep": 171998, "experimental results proposed": 54056, "speech recognition errors": 154449, "test model performance": 164585, "model performance data": 104233, "original test data": 117389, "language models robust": 86117, "robust training methods": 145332, "models suffer significant": 109287, "significant performance drops": 150800, "like data augmentation": 92260, "source code dataset": 153400, "incontext learning capabilities": 74874, "learning capabilities llms": 90275, "sets incontext learning": 149377, "better incontext learning": 17911, "incontext learning user": 74979, "survey state art": 159696, "large transformerbased pretrained": 89089, "bert gpt t5": 17549, "including commonsense reasoning": 74465, "paper presents survey": 119186, "conversational ai research": 31842, "capabilities stateoftheart open": 20198, "response generation chinese": 142649, "models trained datasets": 109425, "generate humanlike responses": 63554, "pretrained generative language": 126823, "language models mixture": 85748, "model neural scaling": 104126, "observed large language": 115421, "respect number parameters": 142514, "distribution paper propose": 43378, "paper propose model": 119232, "conduct pilot study": 29163, "reasoning recently released": 137093, "recently released generative": 137975, "generative transformer models": 65605, "able generate correct": 2511, "models comprehensive survey": 105714, "computer vision natural": 28504, "drawn attention recent": 44943, "attention recent years": 13974, "recent years work": 137813, "work comprehensive survey": 178853, "provide new insights": 132898, "introduce background multimodal": 79921, "conventional deep learning": 31697, "natural language process": 111698, "computer vision speech": 28512, "downstream tasks finally": 44785, "possible research directions": 124457, "research directions topic": 141725, "largescale pretrained multimodal": 89388, "comparative study chatgpt": 26652, "chatgpt finetuned bert": 22948, "recently chatgpt attracted": 137842, "chatgpt attracted great": 22724, "attracted great attention": 14042, "prior studies shown": 127937, "studies shown chatgpt": 157081, "compared existing models": 26802, "understanding ability chatgpt": 171106, "finetuned bertstyle models": 58992, "chatgpt falls short": 22937, "outperforms bert models": 117726, "tasks large margin": 162687, "comparable performance compared": 26594, "bert sentiment analysis": 17605, "sentiment analysis questionanswering": 148632, "chat generative pretrained": 22530, "pretrained transformer chatgpt": 127179, "wellknown natural language": 178175, "nlp tasks existing": 113843, "qualitative analysis revealed": 133981, "generative ai models": 65334, "ai models chatgpt": 7091, "intelligence ai models": 78755, "ai models openais": 7108, "models openais chatgpt": 108349, "chatgpt potential revolutionize": 23199, "early stages development": 45263, "generative ai specifically": 65355, "explore chatgpts ability": 55168, "highlight benefits limitations": 69726, "tasks translating code": 163393, "translating code language": 169426, "new ai tools": 113051, "use generative ai": 172648, "data work explore": 35968, "work explore large": 178952, "explore large language": 55233, "explore various approaches": 55326, "question answering visual": 134819, "answering vqa challenging": 9985, "challenging task natural": 22288, "processing nlp computer": 129214, "nlp computer vision": 113715, "models visual question": 109642, "used benchmark dataset": 172977, "teams various universities": 163672, "private test set": 128054, "language model powerful": 83839, "powerful pretrained language": 125324, "model based transformer": 103190, "based transformer architecture": 16152, "question answering systems": 134806, "deep learning learn": 37751, "learning models paper": 90725, "models plms t5": 108551, "larger model sizes": 89224, "model sizes data": 104616, "success natural language": 158269, "human language learning": 70902, "different input languages": 41801, "capabilities pretrained language": 20116, "language model gpt35": 83671, "neural networks trained": 112954, "humans findings suggest": 71387, "new avenues research": 113082, "evolution language models": 52266, "language models built": 84204, "research explore use": 141776, "transformers language models": 169320, "paper investigates potential": 119058, "conventional machine learning": 31707, "different pretrained language": 41918, "results demonstrate significant": 143333, "demonstrate significant improvements": 38544, "significant improvements accuracy": 150740, "task best knowledge": 161222, "models llms introduce": 107582, "external knowledge automated": 56059, "feedback large language": 57722, "models llms chatgpt": 107168, "llms chatgpt able": 94567, "chatgpt able generate": 22665, "able generate humanlike": 2513, "generate humanlike fluent": 63551, "humanlike fluent responses": 71263, "use external knowledge": 172618, "knowledge paper proposes": 82264, "set plugandplay modules": 149267, "grounded external knowledge": 67862, "make source code": 98603, "source code models": 153409, "leveraging chatgpt text": 91819, "text data augmentation": 164981, "data augmentation effective": 34671, "limited sample sizes": 92842, "data target domain": 35851, "perform data augmentation": 120917, "data augmentation better": 34669, "increase sample size": 75233, "data augmentation methods": 34682, "language models especially": 84461, "experiment results fewshot": 53907, "superior performance proposed": 159038, "language models gplms": 84603, "knowledge linguistic patterns": 82200, "search engine used": 147341, "engine used retrieve": 48868, "used retrieve documents": 173220, "based generative pretrained": 15836, "mathematical word problems": 99607, "available large language": 15152, "word problems mwps": 178667, "increases linearly number": 75282, "baseline machine learning": 16232, "learning models predict": 90727, "support research area": 159329, "various domains including": 175899, "domains including healthcare": 44433, "despite promising results": 40185, "privacy ethical concerns": 127998, "size large language": 152017, "language models continue": 84305, "models continue scale": 105779, "computational resources required": 28405, "deep learning leverage": 37753, "reduce computational overhead": 138411, "models computer vision": 105723, "language generation paper": 83373, "train proposed model": 167815, "parameters best knowledge": 119719, "comprehension natural language": 27922, "natural language achieve": 111544, "significantly smaller model": 151159, "importantly method does": 73226, "does require access": 44015, "various llms including": 176021, "llms including gpt3": 95572, "approach significantly improves": 11541, "largest language model": 89441, "language model explicitly": 83633, "available hugging face": 15136, "formulate new task": 60617, "wide range applications": 178265, "analysis large scale": 8999, "retrieval relevant data": 144128, "userfriendly interface enables": 173553, "modes large language": 109855, "language models framework": 84558, "open source available": 116290, "various large language": 176001, "models llms inference": 107574, "target task zeroshot": 161113, "llms finetuned follow": 95273, "finetuned follow instructions": 59021, "ability llms improved": 2263, "content large language": 30538, "language models field": 84529, "processing nlp tools": 129266, "work address limitations": 178774, "limitations adopting large": 92533, "adopting large language": 5614, "models llms study": 107953, "method achieves high": 100636, "achieves high performance": 4020, "design language models": 39670, "design reinforcement learning": 39741, "learning rl challenging": 90942, "natural language interface": 111658, "reward signal rl": 144712, "rl agent uses": 145039, "rl agents trained": 145041, "fail meet user": 56965, "meet user expectations": 100286, "contribute crowdsourced dataset": 31396, "users stop using": 173788, "short period time": 149982, "demonstrated impressive performance": 38701, "understanding reasoning capabilities": 171440, "study perform comprehensive": 157524, "popular natural language": 124029, "language inference sentiment": 83432, "inference sentiment analysis": 76096, "sentiment analysis tasks": 148641, "guiding future research": 68273, "future research addressing": 62308, "performance generalization abilities": 121575, "analysis language models": 8994, "success large pretrained": 158260, "large pretrained neural": 89013, "models llms variety": 108018, "llms variety prompting": 96945, "propose general framework": 131846, "models internal representations": 106803, "develop novel approach": 40812, "using gradientbased adversarial": 174275, "asr error correction": 12994, "error correction using": 50290, "using multiple input": 174508, "error correction models": 50287, "important automatic speech": 73092, "prior works use": 127962, "1best asr hypothesis": 565, "finetuned t5 model": 59124, "transferring knowledge pretrained": 169033, "standard error correction": 154819, "nbest list asr": 112078, "prediction paper describes": 125836, "paper describes submission": 118844, "using small set": 174727, "data available study": 34709, "pretrained models lack": 127083, "learning synthetic data": 91048, "synthetic data used": 160034, "text generation systems": 165187, "language models classifying": 84238, "use transformerbased language": 172922, "language models medicine": 85731, "adapting language models": 4739, "language models compared": 84268, "vision language model": 176933, "improved language models": 73698, "language models example": 84474, "following domain adaptation": 60272, "best performing model": 17728, "domain adaptation improved": 44067, "language models interpreting": 84729, "data generation large": 35111, "models llms effectively": 107334, "generate fluent text": 63510, "text target output": 165526, "natural language patterns": 111689, "capable producing diverse": 20462, "achieves stateoftheart results": 4105, "stateoftheart results benchmarks": 155330, "applying llms complex": 10906, "model reinforcement learning": 104441, "empirically demonstrate effectiveness": 47785, "various tasks including": 176212, "chatgpt large language": 23086, "language models evolutionary": 84471, "design large language": 39672, "models llms taken": 107964, "answer complex questions": 9687, "tasks generate code": 162454, "evolution large language": 52268, "ideas large language": 71766, "design process providing": 39725, "knowledge graphs using": 82089, "programming large language": 129851, "language models answering": 84124, "models answering questions": 105363, "programming languages large": 129840, "languages large language": 87041, "models llms enabling": 107356, "logical reasoning capabilities": 97377, "natural language representation": 111863, "validate effectiveness approach": 175309, "results demonstrate method": 143309, "trained small fraction": 168076, "overall work presents": 118264, "presents promising approach": 126624, "language models feasibility": 84525, "recent advances large": 137407, "data collection annotation": 34781, "models paper explore": 108407, "paper explore feasibility": 118913, "different coderelated tasks": 41693, "training process results": 168656, "help researchers better": 69175, "tasks despite success": 162213, "hallmarks human intelligence": 68327, "plms gpt2 t5": 123607, "finally suggest research": 58531, "language models evaluating": 84467, "parameterefficient transfer learning": 119684, "transfer learning approaches": 168935, "individual downstream tasks": 75715, "finetuning prohibitively expensive": 59472, "prohibitively expensive model": 130065, "tasks mitigate issue": 162804, "introduce trainable parameters": 80131, "plugged large pretrained": 123673, "tasks additionally introduce": 161909, "additionally introduce new": 5083, "trainable parameters task": 167854, "language models examine": 84472, "text corpora used": 164967, "corpora used train": 32263, "t5 language model": 160712, "language model does": 83609, "biases training data": 18320, "training data finetuning": 168264, "2023 shared task": 712, "cot prompting enables": 32886, "prompting enables large": 130913, "enables large language": 48202, "llms solve complex": 96638, "reasoning tasks generating": 137178, "explanations finetuning language": 54850, "approaches data collection": 11725, "toolkit publicly available": 167087, "aigenerated content given": 7403, "ai systems like": 7251, "systems like chatgpt": 160463, "like chatgpt generate": 92224, "responsible use technology": 142977, "ai systems requires": 7260, "generation prior work": 64951, "prior work proposed": 127949, "work makes contributions": 179119, "makes contributions propose": 98639, "ai scientific research": 7208, "dataset language models": 36379, "language models grow": 84624, "visual foundation models": 177176, "foundation models chatgpt": 60755, "foundation models visual": 60824, "visual understanding generation": 177336, "understanding generation capabilities": 171255, "complex visual questions": 27644, "hyperparameter optimization large": 71593, "optimization large language": 117003, "language model generation": 83658, "models llms sparked": 107932, "paper presents study": 119185, "pretrained models natural": 127093, "prompt learning methods": 130578, "discriminative pretrained models": 42850, "pretraining downstream tasks": 127312, "learning generative pretrained": 90502, "labels best knowledge": 82789, "conversational language models": 31881, "language models prompt": 85975, "models prompt engineering": 108684, "automated data extraction": 14534, "data extraction based": 35034, "language processing language": 86523, "processing language models": 129176, "models recently large": 108854, "models llms methods": 107656, "high quality data": 69511, "conversational llms like": 31889, "demonstrate exceptional performance": 38329, "likely powerful tools": 92463, "critical cooling rates": 33475, "cooling rates metallic": 32063, "rates metallic glasses": 136035, "human instructions image": 70855, "drawn widespread attention": 44957, "multimodal dialogue systems": 110624, "multimodal generation capabilities": 110642, "capabilities visual language": 20256, "visual language models": 177212, "language models vlms": 86382, "paper address gap": 118701, "address gap introducing": 5234, "instruction proposed method": 78050, "conduct comprehensive analyses": 29040, "contribute valuable insights": 31424, "use human feedback": 172671, "proposed approach uses": 132249, "train reward model": 167819, "reward model used": 144700, "sample responses generated": 145958, "chai research platform": 21447, "future work aims": 62402, "work aims use": 178797, "model reward model": 104489, "evaluation llms using": 51679, "deployed artificial intelligence": 39208, "quantitative qualitative analysis": 134369, "explainable ai xai": 54740, "humancomputer interaction hci": 71155, "boom large language": 18810, "chatgpt gained huge": 22963, "gained huge popularity": 62463, "language understanding reasoning": 86850, "understanding reasoning ability": 171439, "fall short generating": 57126, "fewshot learning employing": 57959, "language descriptions images": 83245, "utilize pretrained language": 175078, "model gpt2 language": 103760, "language model help": 83680, "help bridge gap": 69091, "problem propose new": 128361, "new opportunity develop": 113311, "learning visionlanguage models": 91127, "models continual learning": 105774, "continual learning cl": 31169, "help pretrained visionlanguage": 69163, "pretraining clip model": 127277, "catastrophic forgetting existing": 21071, "access pretraining dataset": 2897, "tasks enhance performance": 162306, "challenge propose novel": 21717, "space feature space": 153576, "task incremental learning": 161467, "tasks various domains": 163452, "method outperforms methods": 101013, "code generation large": 24895, "demonstrated impressive ability": 38689, "ability code generation": 2102, "decompose complex problems": 37613, "planning code generation": 123257, "help model understand": 69150, "code generation method": 24900, "method large language": 100947, "combined incontext learning": 25902, "model generates code": 103734, "evaluated multiple code": 51194, "multiple code generation": 110868, "code generation datasets": 24880, "code generation tasks": 24922, "generation tasks large": 65170, "study prompt engineering": 157556, "classification case study": 23971, "case study investigates": 20909, "compare large language": 26688, "employ prompt engineering": 47858, "prompt engineering technique": 130486, "designing prompts guide": 40009, "prompts guide llms": 131300, "models textdavinci003 gpt35turbo": 109391, "prompt engineering models": 130475, "outperforms models achieving": 117804, "models performance evaluation": 108485, "analysis google translate": 8948, "compared human experts": 26836, "language models results": 86096, "models results indicate": 108973, "framework lays foundation": 61266, "generation code completion": 64494, "explore chatgpts potential": 55170, "conducted assess ability": 29207, "wide range use": 178325, "range use cases": 135724, "models utilized generate": 109602, "responses generated models": 142807, "generated models results": 63925, "analysis question answering": 9109, "question answering performance": 134772, "powerful large language": 125295, "knowledgebased question answering": 82533, "model paper present": 104207, "ribeiro et al": 144761, "number test cases": 114960, "chatgpt shown remarkable": 23320, "remain black box": 139913, "chatbots like chatgpt": 22622, "mimicking human language": 102271, "human language processing": 70904, "answer multiplechoice questions": 9737, "multiplechoice questions code": 111099, "transformer gpt models": 169137, "programming courses postsecondary": 129806, "courses postsecondary level": 33022, "discussions potential uses": 43016, "potential uses exercise": 125042, "uses exercise generation": 173849, "exercise generation code": 53004, "generation code explanation": 64495, "code explanation misuses": 24827, "explanation misuses programming": 54795, "capabilities gpt models": 19927, "findings leveraged educators": 58724, "descriptions natural language": 39481, "natural language optimization": 111685, "based text description": 16136, "interface using natural": 79450, "linear programming lp": 92973, "word problem dataset": 178660, "compare performance chatgpt": 26706, "analyze large language": 9308, "models llms represent": 107825, "language models extensive": 84510, "models extensive experiments": 106274, "extensive experiments reveal": 55882, "llms realworld scenarios": 96308, "electronic health records": 46999, "health records objective": 68968, "clinical large language": 24342, "development process study": 41193, "different clinical settings": 41691, "task materials methods": 161539, "breast cancer patients": 19034, "collected electronic health": 25687, "bidirectional long shortterm": 18358, "different test sets": 42045, "test sets different": 164631, "performance compared model": 121294, "models llms remarkable": 107820, "llms remarkable strides": 96396, "various tasks llms": 176216, "information extraction tasks": 76438, "tasks remains open": 163130, "remains open problem": 140052, "open problem work": 116266, "work aim provide": 178790, "aim provide thorough": 7482, "question extensive experiments": 134873, "datasets tasks demonstrate": 37152, "fewshot information extractors": 57935, "appropriate prompting strategies": 11987, "web search engines": 178019, "search query based": 147397, "formulated human experts": 60630, "automatic text generation": 14754, "methods based pretrained": 101340, "language models socratic": 86187, "models socratic method": 109169, "paper presents systematic": 119187, "presents systematic approach": 126648, "interact large language": 79061, "inductive deductive abductive": 75839, "deductive abductive reasoning": 37695, "dialogue large language": 41487, "image text inputs": 72340, "humans realworld scenarios": 71459, "humanlevel performance various": 71233, "professional academic benchmarks": 129618, "transformerbased model pretrained": 169262, "process results improved": 128979, "zeroresource blackbox hallucination": 180104, "blackbox hallucination detection": 18633, "models generative large": 106481, "gpt3 capable generating": 66660, "fluent responses wide": 59911, "responses wide variety": 142945, "wide variety user": 178351, "llms known hallucinate": 95709, "known hallucinate facts": 82597, "approaches require access": 11894, "output probability distribution": 117976, "conversational agents understand": 31838, "knowledge representation reasoning": 82362, "language processing large": 86525, "processing large language": 129179, "models llms rely": 107819, "user natural language": 173458, "complex reasoning zeroshot": 27567, "thought cot reasoning": 166221, "rely external tools": 139842, "code prior work": 25059, "typically requires handcrafting": 170515, "handcrafting taskspecific demonstrations": 68513, "llms automatically generate": 94458, "generate intermediate reasoning": 63582, "achieves substantial improvement": 4118, "humans improve performance": 71406, "improve performance correcting": 73546, "minimal human intervention": 102337, "stateoftheart performance range": 155289, "performance range natural": 121983, "huge memory footprint": 70522, "tackle issue propose": 160827, "embedding matrix multiplication": 47176, "matrix multiplication gelu": 99641, "multiplication gelu softmax": 111113, "gelu softmax layer": 62859, "softmax layer normalization": 152752, "layer normalization intermediate": 89639, "normalization intermediate results": 114182, "intermediate results case": 79530, "pretrained transformers gpt": 127219, "pass assessments higher": 120313, "assessments higher education": 13288, "higher education programming": 69596, "education programming courses": 45573, "evaluated capability generative": 51153, "capability generative pretrained": 20308, "pass assessments introductory": 120316, "assessments introductory intermediate": 13293, "introductory intermediate python": 80264, "intermediate python programming": 79519, "python programming courses": 133846, "intensified date rigorous": 78989, "date rigorous analysis": 37220, "assessments ranging simple": 13303, "ranging simple multiplechoice": 135758, "simple multiplechoice questions": 151498, "questions code involved": 135064, "code involved complex": 24957, "involved complex programming": 80701, "complex programming projects": 27530, "programming projects code": 129868, "projects code bases": 130108, "code bases distributed": 24689, "bases distributed multiple": 16392, "distributed multiple files": 43329, "multiple files 599": 110915, "files 599 exercises": 58326, "599 exercises overall": 1407, "leverage feedback provided": 91592, "feedback provided autograder": 57768, "python programming course": 133845, "models exhibit remarkable": 106207, "exhibit remarkable capabilities": 53093, "chains reasoning steps": 21565, "internal decisionmaking process": 79546, "inspecting hidden representations": 77678, "undergraduate computer science": 170805, "algorithms data structures": 7916, "recent advances diffusion": 137391, "advances diffusion models": 6004, "generative pretraining paper": 65573, "diffusion models denoising": 42244, "contrastive learning masked": 31366, "transformers suggesting potential": 169362, "unified foundation models": 171712, "foundation models code": 60757, "unsupervised object discovery": 172261, "object discovery learning": 115125, "learning large corpus": 90620, "large corpus data": 87226, "relations paper propose": 139306, "tackle issues introduce": 160829, "alleviate data insufficiency": 8285, "images propose novel": 72469, "propose novel trainingfree": 132039, "architectures extensive experiments": 12263, "extensive experiments ablation": 55797, "experiments ablation studies": 54130, "ablation studies demonstrate": 2439, "gpt35 series models": 66852, "gpt series models": 66492, "models gpt3 codex": 106533, "chatgpt gained considerable": 22961, "gained considerable attention": 62458, "attention exceptional natural": 13874, "exceptional natural language": 52821, "language processing capabilities": 86496, "series models finetuned": 148939, "models finetuned models": 106353, "limited attention given": 92710, "conduct comprehensive analysis": 29041, "performance robustness different": 122035, "task zeroshot fewshot": 161818, "fewshot scenarios extensive": 58047, "scenarios extensive experiments": 146600, "enhances models ability": 49425, "ability generate humanlike": 2193, "ability solve tasks": 2378, "furthermore findings indicate": 62079, "pretraining finetuning paradigm": 127328, "downstream task language": 44756, "pretrained large datasets": 126994, "finetuned taskspecific data": 59129, "data natural language": 35413, "generation text summarization": 65201, "prohibitive computational costs": 130056, "presents promising direction": 126627, "large gpt models": 87276, "representations downstream tasks": 140796, "language model sparse": 83908, "models greatly improved": 106566, "present language model": 126351, "stateoftheart performance zeroshot": 155300, "performance zeroshot learning": 122320, "nlp downstream tasks": 113726, "dialogue question answering": 41504, "generation survey large": 65122, "survey large language": 159646, "models llms popular": 107723, "offer promising solution": 115692, "intelligence ai tools": 78779, "ai tools including": 7295, "findings suggest chatgpt": 58806, "suggest chatgpt potential": 158521, "information investigate impact": 76531, "findings highlight potential": 58681, "vision visionlanguage models": 177006, "visionlanguage models achieve": 177040, "allows language models": 8446, "language models accept": 84050, "advanced visual understanding": 5820, "language models multimodal": 85776, "language models received": 86040, "english language model": 49068, "language models possess": 85923, "syntax semantics pragmatics": 159925, "world knowledge reasoning": 179577, "knowledge reasoning capabilities": 82340, "scale hundreds billions": 146293, "language model capabilities": 83567, "language models sparse": 86200, "efficiency recent works": 46517, "recent works explored": 137752, "works explored use": 179446, "improve training efficiency": 73644, "leads accuracy loss": 89872, "model training efficiency": 104784, "leads significant improvements": 89910, "vision cv natural": 176898, "cv natural language": 34453, "knowledge work demonstrate": 82513, "large ai models": 87178, "applications challenges future": 10443, "foundation models models": 60783, "models demonstrate impressive": 105886, "demonstrate impressive performance": 38380, "performance various downstream": 122255, "ai models potential": 7112, "presents comprehensive review": 126561, "medical imaging medical": 100184, "potential future directions": 124732, "chatgpt publicly available": 23237, "chatgpt performed better": 23182, "augmenting large language": 14391, "conversational large language": 31883, "models llms open": 107688, "encoder decoder models": 48413, "improvement rouge scores": 73848, "human evaluators prefer": 70774, "better previous stateoftheart": 17989, "language model recently": 83874, "model recently released": 104424, "recently released openai": 137979, "solving linear systems": 153222, "physicsinformed neural networks": 122955, "neural networks convolutional": 112916, "language models gained": 84564, "models gained significant": 106419, "excitement potential applications": 52869, "review aims provide": 144477, "provide brief overview": 132692, "language models terms": 86277, "transfer learning paradigm": 168954, "learning paradigm gained": 90806, "gained significant traction": 62488, "scenarios limited data": 146642, "high inference latency": 69470, "based transfer learning": 16150, "learning paper propose": 90802, "enable fewshot learning": 48083, "consists major components": 29977, "tasks vision language": 163464, "vision language domains": 176930, "impressive performance natural": 73333, "understanding generating text": 171251, "compare performance generative": 26711, "llms including chatgpt": 95567, "chatgpt gpt4 state": 23031, "gpt4 state art": 67175, "generative models perform": 65505, "models perform compared": 108460, "compared previous generation": 26886, "analysis performance models": 9056, "llms lowresource languages": 95832, "multilingual setting provide": 110548, "provide directions future": 132756, "sparks artificial general": 153708, "artificial general intelligence": 12649, "experiments gpt4 artificial": 54302, "gpt4 artificial intelligence": 66913, "intelligence ai researchers": 78767, "refining large language": 138781, "models llms exhibit": 107384, "llms exhibit remarkable": 95148, "remarkable capabilities variety": 140173, "capabilities variety domains": 20236, "variety domains tasks": 175705, "ai models discuss": 7095, "general intelligence agi": 62961, "future research directions": 62327, "evaluation chatgpt chatgpt": 51473, "chatgpt chatgpt large": 22772, "demonstrated remarkable performance": 38773, "remarkable performance numerous": 140235, "performance numerous natural": 121856, "numerous natural language": 115050, "evaluating chatgpts performance": 51276, "learning human feedback": 90521, "human feedback rlhf": 70817, "issue data contamination": 80893, "models llms reason": 107789, "machine learning communities": 98023, "reasoning abilities humans": 136622, "various forms including": 175950, "raises question llms": 135495, "research work aims": 142151, "work aims investigate": 178795, "investigate performance llms": 80461, "performance llms different": 121754, "different reasoning tasks": 41961, "evaluate ability llms": 50896, "openended natural language": 116498, "findings indicate llms": 58702, "spatial reasoning tasks": 153798, "informing future development": 76901, "future development llms": 62244, "reasoning abilities llms": 136628, "llms study aims": 96708, "recently garnered significant": 137896, "garnered significant attention": 62785, "attention computational linguistics": 13860, "computational linguistics community": 28373, "preliminary evaluation chatgpt": 126120, "task evaluate performance": 161359, "evaluate performance various": 51063, "performance various aspects": 122252, "various aspects including": 175820, "minor performance differences": 102427, "based findings conclude": 15808, "faces challenges comes": 56569, "transition large language": 169395, "experimental results large": 54031, "results large language": 143555, "models llm exhibit": 107031, "exhibit emergent abilities": 53042, "knowledge graph question": 82065, "graph question answering": 67567, "question answering kgqa": 134742, "texttotext pretrained language": 165863, "natural language input": 111645, "model does directly": 103486, "corresponding entity relation": 32582, "use openais clip": 172790, "downstream performance medical": 44748, "datasets large margin": 36950, "code pretrained model": 25055, "detectors aigenerated text": 40672, "usage large language": 172459, "language models fake": 84523, "text generated large": 165114, "false positive rate": 57168, "aigenerated text detection": 7413, "language model api": 83525, "opensource models code": 116653, "models code data": 105645, "recent advances artificial": 137379, "advances artificial intelligence": 5984, "findings important implications": 58694, "programming tasks researchers": 129882, "need write code": 112429, "available general public": 15119, "efficient transformer models": 46734, "models recently attracted": 108849, "recently attracted significant": 137837, "significant attention industry": 150611, "attention industry academia": 13907, "challenging problem work": 22244, "problem work propose": 128439, "propose framework called": 131834, "latency energy consumption": 89481, "particular natural language": 120101, "processing nlp increasingly": 129221, "artificial intelligence tool": 12773, "integrating generative ai": 78596, "generative ai gai": 65319, "various areas software": 175811, "areas software engineering": 12392, "models gpt4 chatgpt": 106543, "gpt4 chatgpt led": 66940, "concerns academic integrity": 28760, "underexplored paper conduct": 170771, "paper conduct comprehensive": 118794, "comprehensive analysis various": 27955, "different detection methods": 41733, "aligned human expectations": 8052, "help large language": 69133, "motivating future research": 110201, "language models unsupervised": 86350, "discovery large language": 42774, "models typically trained": 109527, "introduce simple effective": 80106, "language models technique": 86273, "size training data": 152075, "predictions training data": 125937, "existing approaches data": 53261, "models datasets work": 105852, "datasets work introduce": 37203, "methods require training": 101786, "models demonstrate utility": 105896, "visionlanguage models clip": 177041, "demonstrate appropriate prompting": 38248, "data structures algorithms": 35810, "implications evaluating llms": 72922, "thought hard llms": 166228, "plays critical role": 123512, "significantly improve accuracy": 151021, "semantic parsing architecture": 148185, "continuous discrete prompts": 31235, "identification experimental results": 71790, "datasets demonstrate method": 36768, "demonstrate method significantly": 38432, "furthermore propose semantic": 62138, "partial differential equations": 119977, "significantly reduced number": 151135, "evaluate performance unsupervised": 51062, "performance unsupervised models": 122216, "demonstrate chatgpt outperforms": 38267, "evaluation despite significant": 51542, "despite significant advancements": 40208, "comprehensive evaluation framework": 28011, "correlates better human": 32525, "integrating nonverbal cues": 78619, "models recently achieved": 108846, "variety language understanding": 175719, "understanding tasks model": 171503, "increases model complexity": 75284, "text data available": 164983, "terms time money": 164484, "investigate large language": 80437, "visual information corresponding": 177189, "information corresponding textual": 76338, "corresponding textual descriptions": 32610, "pretrained bert model": 126758, "downstream multimodal tasks": 44734, "significantly reduces model": 151140, "setting large language": 149469, "language models assist": 84140, "llms gpt3 demonstrated": 95419, "remarkable natural language": 140219, "applied variety tasks": 10819, "code generation paper": 24908, "generation paper explores": 64912, "paper explores potential": 118938, "explores potential integrating": 55416, "potential integrating llms": 124794, "open ais chatgpt": 116201, "results suggest llms": 143837, "suggest llms useful": 158561, "language models exploiting": 84500, "graphics processing units": 67610, "used prompt model": 173195, "contextual information surrounding": 31099, "information surrounding words": 76790, "information paper explore": 76615, "language models enables": 84442, "downstream tasks datasets": 44769, "public github repository": 133572, "create effective prompts": 33192, "lower entry barrier": 97823, "procedural content generation": 128683, "foundation models foundation": 60764, "researchers industry professionals": 142224, "multilingual translation models": 110565, "models largescale multilingual": 106920, "largescale multilingual machine": 89362, "multilingual machine translation": 110505, "systems demonstrated remarkable": 160331, "demonstrated remarkable ability": 38756, "remarkable ability translate": 140127, "models generate hallucinated": 106449, "models trained highresource": 109441, "trained highresource languages": 167938, "massively multilingual models": 99389, "gap conducting comprehensive": 62629, "conducting comprehensive analysis": 29307, "conventional neural machine": 31721, "generalpurpose large language": 63350, "large language modelllm": 87521, "covers broad spectrum": 33102, "provide key insights": 132868, "generation empirical study": 64599, "recent advancements llms": 137368, "llms gpt3 shown": 95423, "tasks including semantic": 162575, "including semantic parsing": 74717, "finetuned publicly available": 59093, "available code github": 15082, "generate code programming": 63421, "code programming languages": 25065, "target task using": 161112, "using zero fewshot": 174876, "fewshot learning methods": 57970, "ones ground truth": 115999, "paper presents evidence": 119160, "tools like chatgpt": 167198, "chatbot powered large": 22582, "powered large language": 125239, "models llms gpt35": 107490, "numerous fields including": 115043, "engineering hope work": 48930, "foundation models like": 60779, "incontext learning code": 74882, "learning code generation": 90301, "code generation abilities": 24867, "based common sense": 15708, "tasks lack domainspecific": 162670, "leverage foundation models": 91596, "foundation models propose": 60795, "unlike previous work": 172016, "previous work aimed": 127686, "existing foundation models": 53372, "paper present vision": 119141, "language models scalable": 86125, "models language feedback": 106862, "models generate outputs": 106455, "text factually incorrect": 165078, "factually incorrect summaries": 56933, "incorrect summaries recent": 75175, "summaries recent work": 158780, "recent work approaches": 137718, "learning simple form": 90995, "simple form human": 151459, "form human feedback": 60462, "comparisons pairs modelgenerated": 27082, "outputs comparison feedback": 118035, "comparison feedback conveys": 27041, "feedback conveys limited": 57656, "conveys limited information": 32023, "limited information human": 92781, "information human preferences": 76497, "human preferences paper": 70973, "imitation learning language": 72582, "learning language feedback": 90606, "language feedback ilf": 83319, "conditioning language model": 28993, "language model input": 83692, "output feedback generate": 117928, "feedback generate refinements": 57690, "generate refinements second": 63680, "language model maximize": 83794, "model maximize likelihood": 104069, "maximize likelihood chosen": 99674, "likelihood chosen refinement": 92435, "chosen refinement given": 23741, "refinement given input": 138757, "viewed bayesian inference": 176823, "human feedback evaluate": 70801, "task experiments demonstrate": 161380, "language models accurately": 84055, "models accurately incorporate": 105211, "accurately incorporate feedback": 3542, "making large language": 98767, "labeled data train": 82722, "data annotation timeconsuming": 34638, "demonstrated remarkable fewshot": 38771, "tasks paper claim": 162908, "make llms better": 98567, "propose twostep approach": 132184, "unlabeled data conduct": 171950, "data conduct experiments": 34824, "conduct experiments tasks": 29095, "experiments tasks including": 54493, "results comparable obtained": 143236, "complex systems present": 27602, "evaluating gpt35 gpt4": 51309, "gpt35 gpt4 models": 66816, "present study aims": 126461, "aims explore capabilities": 7610, "generated gpt35 gpt4": 63877, "including use chainofthought": 74773, "chainofthought cot prompts": 21499, "bestperforming model gpt4": 17780, "crucial task improving": 33870, "model diffusion model": 103465, "diffusion model generate": 42239, "model generate effective": 103720, "aigenerated content aigc": 7402, "documents large language": 43918, "models llms leveraged": 107616, "conversational agent chatgpt": 31821, "paper explore ability": 118903, "models memory original": 108173, "human recognition performance": 71011, "humans large language": 71420, "models llms generate": 107462, "supervised training data": 159181, "training reinforcement learning": 168688, "diverse tasks ranging": 43681, "dialog response generation": 41426, "generation mathematical reasoning": 64817, "mathematical reasoning using": 99600, "gpt35 chatgpt gpt4": 66797, "generated llm using": 63913, "task performance work": 161614, "stateoftheart llms like": 155198, "llms like gpt4": 95784, "biomedical literature growing": 18556, "results natural language": 143625, "gpt bert models": 66393, "models achieved best": 105236, "models achieved precision": 105243, "dataset results suggest": 36512, "results suggest gpt": 143834, "gpt models effectively": 66453, "tasks biomedical domain": 162014, "exploration large language": 55079, "challenging timeconsuming paper": 22305, "approach involves using": 11324, "generate conversational data": 63441, "language models particular": 85859, "contributions include introducing": 31497, "behaviors capabilities multiagent": 16686, "language models sampling": 86124, "writing single line": 179752, "single line code": 151824, "using stateoftheart large": 174753, "model llm finetuned": 103995, "natural language using": 111922, "intelligence ai particularly": 78760, "careful prompt engineering": 20787, "solutions generated chatgpt": 153026, "fundamentals engineering fe": 61995, "pass fe exam": 120321, "study highlights potential": 157393, "highlights potential using": 69873, "text prior work": 165376, "language model harms": 83678, "language models benchmarks": 84171, "language model given": 83661, "language modeling widely": 84028, "recently pretrained language": 137954, "pretraining transformer models": 127470, "models largescale corpora": 106918, "strong capabilities solving": 156366, "model size larger": 104605, "size larger size": 152021, "achieve significant performance": 3735, "significant performance improvement": 150807, "smallscale language models": 152461, "term large language": 164370, "academia industry remarkable": 2718, "attracted widespread attention": 14059, "recent advances llms": 137412, "techniques particular focus": 163983, "involving large language": 80793, "tasks llms struggle": 162752, "introduce novel taxonomy": 80075, "exceptional performance various": 52831, "findings suggest llms": 58812, "enhance alignment human": 49152, "address issue introduce": 5259, "llm large language": 93791, "language modelbased automated": 83970, "automatically selects appropriate": 14860, "insights natural language": 77610, "enhance model performance": 49237, "models llms training": 107984, "paper propose framework": 119219, "quality large language": 134180, "recent advances ai": 137378, "propose novel solution": 132031, "fields computer vision": 58266, "language inference natural": 83424, "inference natural language": 76059, "logic large language": 97331, "models llms set": 107856, "previous work focused": 127691, "work focused learning": 178993, "control tasks openai": 31595, "adapt new tasks": 4546, "new tasks better": 113450, "analysis era large": 8907, "era large language": 50228, "make use large": 98622, "using chatgpt investigate": 174039, "results using chatgpt": 143902, "statistically significant differences": 155519, "domainspecific prompt engineering": 44615, "deep learning algorithms": 37725, "deep learning architectures": 37730, "feature engineering approaches": 57400, "automated machine learning": 14564, "machine learning automl": 98018, "models llms gpt4": 107494, "task improve performance": 161459, "answer questions introduce": 9766, "trained public data": 168051, "70m 12b parameters": 1546, "present case studies": 126238, "reducing gender bias": 138569, "code training data": 25189, "potential generative ai": 124749, "ai models including": 7100, "models multimodal models": 108252, "range scientific disciplines": 135691, "range fields including": 135623, "generative ai technologies": 65361, "accelerate scientific discovery": 2780, "opportunities generative ai": 116853, "guide responsible development": 68206, "achieve superhuman performance": 3773, "artificial intelligence large": 12745, "intelligence large language": 78849, "models llms gained": 107442, "llms gained widespread": 95330, "gained widespread popularity": 62492, "simple natural language": 151502, "techniques natural language": 163969, "lack domainspecific knowledge": 82933, "quantitative qualitative assessments": 134370, "llms findings indicate": 95268, "surpassing existing stateoftheart": 159515, "applications advantages limitations": 10414, "directions natural language": 42493, "language models revolutionized": 86108, "models revolutionized field": 108994, "revolutionized field artificial": 144644, "field artificial intelligence": 58126, "used various applications": 173293, "various applications models": 175805, "successfully applied numerous": 158368, "medical diagnosis treatment": 100156, "humanlike responses understand": 71279, "understand natural language": 171048, "natural language adapt": 111545, "article provides comprehensive": 12598, "paper emphasizes importance": 118874, "emphasizes importance ethical": 47641, "importance ethical considerations": 73030, "surrounding artificial intelligence": 159587, "artificial intelligence impact": 12738, "prompt engineering techniques": 130487, "review large language": 144517, "models llms class": 107199, "generate humanlike language": 63553, "roadmap researchers practitioners": 145135, "current landscape llms": 34142, "applications llms various": 10598, "domains including medicine": 44435, "overall paper offers": 118214, "paper offers valuable": 119088, "offers valuable insights": 115859, "valuable insights current": 175424, "impact potential llms": 72713, "neural networks particularly": 112939, "enhancing quality generated": 49556, "address gap propose": 5239, "framework includes modules": 61214, "qualitative experiments demonstrate": 133999, "approach publicly available": 11485, "publicly available algorithm": 133627, "models llms fundamental": 107438, "fundamental changes human": 61942, "zandieh han daliri": 180060, "2023 alman song": 687, "query key value": 134598, "cohen lee song": 25498, "lee song stoc": 91265, "song stoc 2019": 153279, "stoc 2019 brand": 155815, "2019 brand soda": 649, "brand soda 2020": 18965, "language models introduced": 84734, "exciting new opportunities": 52879, "writing support tools": 179761, "tools recent work": 167245, "position paper argue": 124265, "opens new opportunities": 116556, "considerations future research": 29664, "cell type annotation": 21311, "widely used technique": 178408, "challenging task requires": 22294, "emergence large language": 47428, "chatgpt new bing": 23146, "uncover new insights": 170731, "type annotation using": 170297, "annotation using chatgpt": 9561, "knowledge bases using": 81791, "using zeroshot learning": 174883, "current approaches rely": 34068, "approaches rely extensive": 11888, "rely extensive training": 139838, "extensive training data": 55965, "perform zeroshot learning": 121097, "zeroshot learning zsl": 180251, "different domains including": 41745, "existing relation extraction": 53552, "relation extraction methods": 139250, "absence training data": 2596, "available open source": 15172, "models llms make": 107647, "llms make possible": 95846, "commonly used human": 26243, "rely large language": 139864, "language models recognize": 86068, "models llms paper": 107706, "paper asks llms": 118756, "llmpowered writing tools": 94234, "era search engines": 50243, "search engines recommendation": 147349, "engines recommendation systems": 49021, "systems recently large": 160574, "impressive capabilities wide": 73283, "prompt engineering llms": 130471, "sentence embedding model": 148494, "strong generalization ability": 156388, "ability wide range": 2419, "potential multimodal large": 124871, "pretrained transformer gpt4": 127193, "milestone large language": 102210, "models llms billions": 107146, "llms billions parameters": 94499, "impact various fields": 72741, "future applications llms": 62223, "advanced natural language": 5782, "llms offer significant": 95962, "offer significant potential": 115702, "potential benefits challenges": 124621, "challenges data privacy": 21815, "llms potential revolutionize": 96142, "recent research advances": 137618, "deepmind chinchilla scaling": 37867, "given compute budget": 65858, "stateoftheart training efficiency": 155400, "pretraining downstream objectives": 127311, "pretrained models code": 127071, "multistep reasoning large": 111185, "tasks arithmetic reasoning": 161971, "reasoning tasks tasks": 137198, "variety reasoning tasks": 175755, "programs natural language": 129920, "form natural language": 60477, "talking large language": 161018, "various tasks models": 176217, "chatgpt developed openai": 22852, "customer service education": 34383, "provide valuable insights": 133026, "valuable insights potential": 175435, "success failure technology": 158236, "obtain natural language": 115487, "performance gpt3 gpt4": 121599, "captions using chatgpt": 20628, "preferences particularly context": 126063, "case study introduce": 20908, "using social media": 174734, "evaluating logical reasoning": 51340, "logical reasoning ability": 97376, "reasoning ability chatgpt": 136637, "ability chatgpt gpt4": 2096, "comprehensive natural language": 28082, "advanced reasoning tasks": 5803, "logical reasoning datasets": 97379, "reading comprehension natural": 136188, "language inference tasks": 83434, "results chatgpt performs": 143222, "performs significantly better": 122458, "performance drops significantly": 121437, "logical reasoning remains": 97391, "successful machine learning": 158345, "despite impressive capabilities": 40132, "impressive capabilities large": 73265, "guides chatgpt generate": 68258, "demonstrates large language": 38862, "models llms great": 107503, "performance range downstream": 121981, "tasks fewshot learning": 162398, "fewshot learning setting": 57983, "language models capabilities": 84207, "models continue advance": 105778, "garnered increasing attention": 62783, "investigates challenges risks": 80553, "nature training data": 112037, "training data model": 168310, "models various applications": 109610, "applications virtual assistants": 10728, "review current approaches": 144494, "biases language models": 18278, "models emphasizing need": 106087, "responsible ai systems": 142957, "artificial intelligence community": 12716, "recent large language": 137533, "language models expected": 84486, "agi large language": 6800, "models llms promising": 107760, "tackle complex problems": 160813, "tasks presented natural": 162974, "propose reinforcement learning": 132097, "classes large language": 23910, "programming languages like": 129843, "languages like python": 87049, "doing aim facilitate": 44048, "introduces groundbreaking approach": 80183, "augmented language models": 14356, "limitations large language": 92613, "language models access": 84051, "access large collection": 2873, "openais large language": 116426, "models generate new": 106454, "reduce reliance human": 138468, "use machine learning": 172759, "improve efficiency effectiveness": 73455, "carefully engineered prompts": 20813, "evaluated human judges": 51182, "conversational models increasingly": 31893, "general public users": 63025, "robust evaluation metrics": 145262, "existing evaluation metrics": 53363, "address limitation propose": 5307, "models llms gpt": 107482, "llms gpt family": 95411, "evaluation framework based": 51599, "framework based prompting": 60985, "correlation human judgment": 32544, "approach involves collecting": 11319, "different prompting approaches": 41942, "critical information needs": 33506, "understanding capabilities limitations": 171144, "capabilities limitations llms": 20021, "hope findings inspire": 70355, "safe trustworthy ai": 145815, "trustworthy ai systems": 169863, "ai systems chatgpt": 7242, "systems chatgpt bard": 160285, "human performance chatgpt": 70955, "chatgpt bard ai": 22732, "chatbots based large": 22598, "automated essay scoring": 14544, "openai chatgpt google": 116328, "chatgpt google bard": 22997, "gold standard human": 66243, "databases paper presents": 36023, "focusing specifically chatgpt": 60199, "gained increasing attention": 62467, "artificial intelligence related": 12763, "study aims provide": 157155, "foundation language models": 60726, "downstream tasks text": 44838, "text generation sentiment": 165184, "expertise machine learning": 54622, "introduces new challenges": 80199, "model 13 billion": 102992, "role large language": 145506, "impact large language": 72675, "models llm like": 107037, "llm like openais": 93808, "like openais chatgpt": 92371, "play crucial role": 123443, "provide empirical evaluation": 132764, "language model glm": 83662, "fully unleashing power": 61796, "shows significant improvements": 150477, "advancements machine learning": 5926, "recent breakthroughs large": 137452, "breakthroughs large language": 19022, "classification regression task": 24069, "abilities foundation models": 1913, "foundation models tackle": 60813, "pursuit artificial general": 133786, "capabilities paper introduce": 20095, "novel benchmark specifically": 114423, "benchmark specifically designed": 17090, "stateoftheart foundation models": 155143, "foundation models including": 60772, "models including gpt4": 106715, "including gpt4 chatgpt": 74544, "tasks require complex": 163142, "require complex reasoning": 141079, "specific domain knowledge": 153978, "understanding knowledge reasoning": 171318, "providing valuable insights": 133399, "valuable insights future": 175429, "future directions enhancing": 62252, "foundation models performance": 60789, "performance realworld scenarios": 121992, "data code model": 34768, "zeroshot learning paper": 180246, "compared manual annotation": 26855, "considered gold standard": 29689, "providing ground truth": 133305, "llm able correctly": 93426, "ubiquitous modern life": 170549, "applications various domains": 10720, "various domains natural": 175904, "domains natural language": 44477, "input sparsity time": 77348, "sparsity time algorithm": 153777, "questions generated large": 135142, "language models huge": 84651, "teachers students alike": 163632, "improve quality educational": 73595, "quality educational content": 134105, "content recent work": 30596, "generated high quality": 63884, "language models retrieval": 86099, "decoderonly language models": 37539, "impact text generation": 72730, "text generation quality": 165175, "downstream task accuracy": 44752, "perform comprehensive study": 120908, "tasks furthermore introduce": 162440, "findings highlight promising": 58683, "highlight promising direction": 69778, "models release code": 108899, "release code model": 139448, "100 million users": 153, "findings indicate gpt": 58699, "interestingly findings suggest": 79409, "play significant role": 123471, "foundation models geospatial": 60768, "models geospatial artificial": 106497, "geospatial artificial intelligence": 65749, "known foundation models": 82594, "foundation models fms": 60762, "language vision tasks": 86892, "artificial intelligence geoai": 12735, "multimodal foundation models": 110638, "multiple data modalities": 110881, "remote sensing image": 140349, "based observations propose": 15984, "integrates large language": 78561, "models llms key": 107589, "ai generated content": 7013, "generated content aigc": 63828, "able detect text": 2488, "detect text generated": 40377, "existing aigc detectors": 53252, "achieves 90 accuracy": 3949, "classification best knowledge": 23965, "best knowledge comprehensive": 17683, "field deep learning": 58154, "transformerbased models achieved": 169265, "models achieved remarkable": 105244, "remarkable performance tasks": 140240, "tasks recent research": 163091, "stateoftheart models including": 155232, "realworld applications including": 136402, "sparql query generation": 153712, "generation witnessed significant": 65262, "witnessed significant growth": 178577, "paper presents various": 119193, "models llms highlighting": 107524, "various finetuning methods": 175947, "finetuning methods using": 59386, "using llms particular": 174444, "llms particular provide": 96049, "models test generalization": 109379, "yields significant performance": 180034, "significant performance enhancements": 150801, "additionally findings reveal": 5069, "generative pretrained model": 65541, "advance artificial intelligence": 5674, "artificial intelligence technology": 12772, "translation text classification": 169534, "chain thought prompt": 21467, "demonstrated promising results": 38749, "results zeroshot fewshot": 143942, "downstream tasks prompting": 44824, "visual models natural": 177231, "prompts recent studies": 131441, "recent studies use": 137678, "complex task settings": 27605, "useful natural language": 173340, "tasks chain thought": 162034, "prompt tuning visionlanguage": 130729, "modeling extensive experiments": 105002, "image classification tasks": 72210, "retrieval visual question": 144163, "require reasoning capabilities": 141179, "conversational search conversational": 31921, "search conversational search": 147329, "multiturn natural language": 111282, "natural language interactions": 111657, "language generation model": 83357, "new evaluation setup": 113180, "significant improvements existing": 150745, "systems large language": 160453, "analysis provides insights": 9101, "facilitate future work": 56620, "generalist language models": 63091, "attracted attention researchers": 14038, "instruction tuning samples": 78135, "instruction data instruction": 77976, "instruction following large": 78014, "following large language": 60291, "instructiontuning large language": 78413, "language models crucial": 84323, "crucial area research": 33759, "research field natural": 141790, "parameterefficient tuning techniques": 119688, "tuning techniques lora": 170136, "llama base model": 93292, "model training cost": 104782, "especially field chinese": 50476, "cost model performance": 32713, "models generalization capabilities": 106434, "generalization capabilities various": 63147, "capabilities various downstream": 20243, "text corpus containing": 164970, "embedding space using": 47194, "effective instruction tuning": 45786, "instructions instruction tuning": 78284, "enables language models": 48200, "language models effectively": 84415, "better follow user": 17877, "expensive human annotation": 53786, "select diverse set": 147774, "long text generation": 97493, "outperform 10x larger": 117564, "instruction tuning tasks": 78139, "longform question answering": 97547, "models trained additional": 109416, "language models scale": 86126, "models llms recently": 107794, "llms recently gained": 96340, "concerns regarding misuse": 28821, "regarding misuse llms": 138877, "llms led emergence": 95746, "assumed publicly available": 13552, "publicly available generative": 133643, "use generative language": 172651, "specific tasks paper": 154107, "tasks paper presents": 162920, "perspectives large language": 122707, "paper discuss possible": 118859, "information retrieval efficient": 76718, "efficient information retrieval": 46644, "poses significant challenges": 124230, "training data requirements": 168334, "chatgpt generative pretrained": 22988, "facilitated use large": 56673, "aigenerated synthetic media": 7411, "ai models gpt3": 7097, "offers insights potential": 115821, "deep learning code": 37734, "functioning large language": 61896, "critical machine learning": 33520, "machine learning studies": 98079, "deep learning systems": 37776, "pretrained transformer network": 127205, "network traffic data": 112700, "generation despite great": 64567, "despite great success": 40115, "pretraining natural language": 127397, "language processing work": 86657, "tasks tackle challenges": 163335, "tackle challenges paper": 160806, "paper make attempt": 119075, "datasets outperform stateoftheart": 37018, "outperform stateoftheart baselines": 117633, "code generated chatgpt": 24855, "language models responsible": 86093, "intelligence ai chatgpt": 78733, "model able process": 103014, "translate natural language": 169410, "natural language code": 111561, "programs generated chatgpt": 129907, "ask chatgpt generate": 12836, "results suggest chatgpt": 143831, "language models domain": 84400, "models llms successfully": 107956, "llms successfully applied": 96719, "various tasks face": 176207, "tasks face challenges": 162386, "prompt codex solve": 130389, "different types errors": 42067, "improves reasoning large": 74068, "models performance large": 108486, "models llms reasoning": 107790, "llms reasoning tasks": 96317, "design chainofthought cot": 39567, "new prompting method": 113361, "prompting method named": 131011, "interactions users llms": 79276, "techniques improve performance": 163926, "llms achieved remarkable": 94309, "solving various natural": 153255, "using external tools": 174190, "mathematical logical reasoning": 99572, "logical reasoning paper": 97388, "reasoning paper present": 137017, "offtheshelf vision models": 115929, "generate final response": 63501, "conversational ai systems": 31843, "systems recent advancements": 160571, "increasingly deployed realworld": 75392, "deployed realworld settings": 39225, "better user experience": 18065, "reviews large language": 144583, "models using generative": 109589, "using generative pretrained": 174245, "fields machine learning": 58286, "machine learning natural": 98062, "language processing remains": 86613, "models logistic regression": 108092, "model gpt family": 103757, "using simulated data": 174719, "multilingual natural language": 110521, "poses unique challenges": 124240, "unique challenges including": 171828, "big data large": 18379, "data large models": 35294, "emergent abilities llms": 47461, "abilities llms language": 1956, "language understanding incontext": 86827, "understanding incontext learning": 171295, "incontext learning chainofthought": 74881, "learning chainofthought prompting": 90290, "models llms revolutionizing": 107849, "revolutionizing natural language": 144674, "use various domains": 172931, "answering vqa tasks": 9988, "vision language processing": 176942, "generate coherent long": 63426, "newly annotated dataset": 113528, "llms large language": 95722, "systems language models": 160451, "powered generative large": 125234, "model llm design": 103985, "leverage complementary strengths": 91578, "humans generative models": 71397, "conduct user studies": 29200, "commercial language models": 26074, "models openais gpt3": 108352, "sentiment analysis model": 148617, "qualitative analysis shows": 133983, "social computing tasks": 152544, "paper seek understand": 119316, "significantly reduce cost": 151128, "social computing research": 152543, "data annotation tasks": 34637, "sentiment analysis dataset": 148612, "various linguistic features": 176011, "features large language": 57528, "fragment natural language": 60893, "commonsense knowledge base": 26267, "knowledge base population": 81774, "knowledge bases cskb": 81781, "et al 2021a": 50776, "external knowledge source": 56074, "extensive experiments comparing": 55811, "challenging large language": 22188, "models llm chatgpt": 107024, "codes data available": 25291, "potential artificial intelligence": 124604, "artificial intelligence chatbots": 12714, "knowledge graphs paper": 82085, "paper present work": 119142, "intelligence ai chatbots": 78731, "languages paper presents": 87083, "release large language": 139475, "achieving competitive performance": 4161, "languages limited resources": 87051, "people use chatgpt": 120739, "code models available": 25012, "chatgpt fall short": 22935, "fall short providing": 57129, "models chatgpt demonstrated": 105614, "chatgpt demonstrated significant": 22838, "demonstrated significant potential": 38794, "potential impact various": 124768, "impact various aspects": 72740, "various aspects human": 175818, "aspects human life": 12945, "better understand models": 18059, "question answering specifically": 134802, "language models combining": 84260, "rich valuable information": 144812, "taskspecific models study": 163535, "data fixed set": 35064, "training taskspecific models": 168780, "prompt learning using": 130587, "proposed approach achieved": 132231, "advanced large language": 5754, "sophisticated large language": 153308, "frozen visual encoder": 61689, "topk nucleus sampling": 167379, "token sequence level": 166737, "comprehensive experiments demonstrate": 28041, "experiments demonstrate proposed": 54234, "demonstrate proposed methods": 38510, "proposed methods work": 132383, "particularly large language": 120215, "using large pretrained": 174396, "llms shown significant": 96574, "training data ability": 168224, "llms offer promising": 95959, "offer promising alternative": 115691, "knowledge text corpora": 82455, "fewshot learning approach": 57954, "approach uses llms": 11639, "uses llms predict": 173885, "finetuned gpt3 model": 59031, "comparing existing stateoftheart": 26984, "simple prompting scheme": 151515, "point future research": 123706, "general purpose language": 63028, "purpose language models": 133745, "remarkable capabilities performing": 140166, "paper evaluate ability": 118885, "models perform arithmetic": 108458, "emerged promising solution": 47394, "techniques machine learning": 163961, "machine learning methods": 98038, "methods face limitations": 101515, "understanding paper introduces": 171392, "advanced reasoning capabilities": 5800, "reasoning capabilities chatgpt": 136698, "language model automated": 83543, "demonstrate feasibility effectiveness": 38338, "including case studies": 74440, "integration large language": 78667, "language model technologies": 83927, "conversational ai models": 31841, "openais chatgpt demonstrated": 116392, "chatgpt text annotation": 23390, "studies demonstrated promising": 156977, "chatgpt study investigates": 23361, "era generative ai": 50226, "architecture designing foundation": 12146, "designing foundation model": 40000, "foundation model based": 60733, "model based systems": 103189, "future ai systems": 62219, "models ai systems": 105318, "concerns responsible ai": 28828, "address challenges paper": 5184, "challenges paper presents": 21986, "era foundation models": 50224, "key design decisions": 81486, "research machine learning": 141896, "outputs produced models": 118104, "language models strong": 86220, "prompt engineering demonstrate": 130451, "introductory physics course": 80269, "answers openended questions": 10057, "mathematics using llms": 99623, "trained machine learning": 167992, "llms perform worse": 96085, "language models meet": 85732, "personalization large language": 122578, "language models producing": 85968, "offers comprehensive evaluation": 115789, "diverse language tasks": 43559, "text classification text": 164912, "tasks additionally propose": 161910, "language model outputs": 83821, "methods extensive experiments": 101510, "demonstrate efficacy proposed": 38317, "processing natural language": 129203, "models bert variants": 105500, "models various nlp": 109613, "nlp tasks large": 113866, "tasks large size": 162689, "complex nlp tasks": 27501, "nlp tasks unclear": 113910, "nlp task paper": 113818, "task paper presents": 161597, "study commonly used": 157216, "tasks findings help": 162405, "combined large language": 25905, "achieved encouraging results": 3802, "encouraging results complex": 48626, "results complex reasoning": 143248, "task converts natural": 161283, "converts natural language": 32008, "language questions sql": 86684, "involving complex reasoning": 80782, "complex reasoning process": 27561, "llms reasoning capabilities": 96315, "work propose new": 179208, "propose new paradigm": 131972, "ability llms experiments": 2260, "guide llms generate": 68191, "background large language": 15441, "models chatgpt capable": 105611, "chatgpt capable generating": 22757, "medical texts clinical": 100230, "texts clinical notes": 165684, "content generated chatgpt": 30506, "artificial intelligence generated": 12730, "intelligence generated content": 78830, "machine learning workflows": 98089, "texts generated chatgpt": 165719, "texts written humans": 165805, "paper focus assessing": 118952, "experts findings reveal": 54660, "findings reveal chatgpts": 58775, "reveal chatgpts performance": 144319, "exhibits excellent performance": 53193, "human evaluation addition": 70723, "datasets code available": 36697, "astronomy large language": 13593, "gpt4 large language": 67056, "recent development large": 137466, "development large language": 41146, "models llms demonstrate": 107245, "llms demonstrate emergent": 94813, "openais gpt35 model": 116416, "results indicate chatgpt": 143501, "model performs exceptionally": 104272, "models instruction finetuned": 106780, "model performance generalization": 104244, "performance generalization unseen": 121577, "abstract meaning representation": 2649, "meaning representation amr": 99777, "semantic role labeling": 148214, "role labeling srl": 145504, "finetuned models outperform": 59084, "outperform previous stateoftheart": 117617, "parameter efficient finetuning": 119608, "lowrank adaptation lora": 97888, "datasets large language": 36946, "smaller models finetuned": 152415, "multiple ways including": 111088, "language models rise": 86112, "models rise large": 109002, "rise large language": 144899, "information retrieval question": 76731, "retrieval question answering": 144117, "summarization code generation": 158813, "number input output": 114881, "input output tokens": 77299, "output tokens processed": 118013, "using llms focusing": 174433, "specifically gpt35 gpt4": 154218, "results indicate gpt4": 143506, "text preserving semantic": 165368, "shown impressive ability": 150267, "evaluate chatgpts performance": 50925, "evaluation results reveal": 51834, "provides preliminary evidence": 133198, "tools based llms": 167116, "advances generative pretrained": 6016, "modeling propose new": 105076, "applications machine learning": 10600, "neural network based": 112894, "development advanced generative": 41044, "generative chat models": 65401, "chat models chatgpt": 22547, "general artificial intelligence": 62919, "artificial intelligence chatgpt": 12715, "language models test": 86278, "major domains including": 98425, "speech music sound": 154436, "success current llms": 158228, "llms capable processing": 94537, "like siri alexa": 92402, "evaluate multimodal llms": 51034, "solving ai tasks": 153194, "ability interact users": 2233, "language models interact": 84727, "experiments datasets demonstrate": 54214, "sequence reasoning steps": 148784, "language models study": 86225, "models able learn": 105193, "capabilities transformer models": 20221, "language models current": 84324, "query expansion models": 134581, "firstpass retrieval effectiveness": 59667, "language model retrieved": 83887, "covering diverse set": 33076, "diverse set queries": 43652, "methods significantly outperform": 101825, "leads performance improvements": 89905, "structured reasoning tasks": 156670, "language tasks work": 86779, "interacting language models": 79089, "popular gpt models": 124001, "performance tasks finetuning": 122156, "instructions leads better": 78297, "softmax regression large": 152759, "regression large language": 138957, "models llms known": 107592, "mechanism transformer architecture": 100032, "llms allows model": 94390, "performance llms various": 121764, "llms various nlp": 96958, "abilities recent llms": 2005, "learning linear functions": 90650, "study incontext learning": 157409, "incontext learning based": 74873, "minx langle expax": 102443, "langle expax bf": 83117, "expax bf 1n": 53730, "bf 1n rangle1": 18084, "1n rangle1 expax": 579, "enhancing large language": 49503, "address limitation paper": 5304, "limitation paper propose": 92514, "enhance ability llms": 49141, "framework comprises key": 61028, "comprises key components": 28246, "instruction following llms": 78017, "summarization experimental results": 158827, "compared competitive baselines": 26767, "shown stateoftheart performance": 150381, "tasks downstream tasks": 162261, "recognition ner partofspeech": 138104, "ner partofspeech pos": 112597, "partofspeech pos tagging": 120291, "positive negative examples": 124296, "class imbalance paper": 23875, "language models position": 85921, "conduct indepth evaluation": 29148, "language models lexical": 84791, "language models models": 85769, "findings provide quantitative": 58763, "raise new challenges": 135452, "harnessing power llms": 68840, "paper presents comprehensive": 119150, "models llms downstream": 107320, "data downstream tasks": 34940, "data training data": 35876, "training data test": 168355, "cases large language": 20985, "tasks traditional natural": 163378, "present various use": 126498, "various use cases": 176243, "applications limitations llms": 10593, "task furthermore explore": 161416, "delve essential considerations": 38092, "aims provide researchers": 7655, "provide researchers practitioners": 132956, "insights best practices": 77514, "provide evidence llms": 132770, "set test sentences": 149328, "llm base model": 93496, "highlighting potential enhance": 69827, "practical applicability realworld": 125381, "language model extract": 83637, "computational social science": 28410, "data synthetically generated": 35842, "tasks varying complexity": 163456, "impact training data": 72734, "performance findings reveal": 121526, "findings reveal models": 58782, "models trained humanlabeled": 109444, "trained humanlabeled data": 167946, "superior comparable performance": 158997, "gpt4 llama2 zeroshot": 67065, "prompting chainofthought reasoning": 130879, "frequently asked questions": 61611, "cloudbased large language": 24569, "llms study focuses": 96709, "chainofthought cot techniques": 21502, "proposed methods significantly": 132382, "single consumergrade gpu": 151786, "provide detailed account": 132744, "training data evaluation": 168253, "using automatic evaluation": 173984, "automatic evaluation methods": 14665, "generative tasks using": 65598, "tasks using human": 163429, "commercial search engines": 26093, "zeroshot accuracy imagenet": 180115, "chatgpt demonstrated exceptional": 22832, "demonstrated exceptional performance": 38659, "tasks limited research": 162737, "limited research evaluating": 92836, "seeks address gap": 147672, "generation long documents": 64803, "performance short long": 122061, "short long documents": 149977, "results chatgpt outperforms": 143221, "current stateoftheart models": 34265, "adapt diverse domains": 4519, "empowers large language": 48029, "multimodality large language": 110802, "recent research explored": 137622, "novel training paradigm": 114723, "align image text": 8007, "lowrank adaption lora": 97893, "outperforms existing multimodal": 117760, "existing multimodal models": 53496, "multiturn conversation ability": 111267, "knowledge reasoning ability": 82339, "chatgpt similar generative": 23330, "similar generative ai": 151241, "results demonstrate chatgpt": 143284, "results clearly demonstrate": 143230, "plays pivotal role": 123532, "process challenging address": 128752, "work presents new": 179185, "engineering large language": 48942, "llms shown great": 96538, "shown great potential": 150252, "potential solving complex": 124995, "solving complex problems": 153201, "various fields including": 175942, "challenging task paper": 22291, "increasingly powerful large": 75428, "using training data": 174814, "training examples generating": 168431, "prompt gpt4 generate": 130530, "feature natural language": 57421, "human language understanding": 70905, "models lms increasingly": 108068, "human evaluation compared": 70727, "powered artificial intelligence": 125230, "artificial intelligence tools": 12774, "paper provides detailed": 119293, "evaluate performance chatgpt": 51048, "relations temporal relations": 139311, "promising performance various": 130288, "11 datasets including": 223, "zeroshot prompt engineering": 180298, "relation classification tasks": 139236, "exhibits exceptional proficiency": 53196, "implicit discourse relation": 72976, "remains formidable challenge": 140010, "unleashing power large": 171985, "language models solving": 86196, "field machine learning": 58199, "paper aim bridge": 118716, "bridge gap machine": 19051, "introducing novel framework": 80245, "novel framework leverages": 114522, "framework leverages stateoftheart": 61284, "leverages stateoftheart large": 91781, "language models develop": 84373, "extending capability llms": 55672, "deliver promising results": 38065, "examples code available": 52537, "automated circuit discovery": 14524, "circuit discovery mechanistic": 23773, "discovery mechanistic interpretability": 42780, "transformer models paper": 169182, "desired model behavior": 40051, "claims large language": 23842, "language models display": 84393, "changes model behavior": 22382, "chatgpt gpt4 using": 23033, "data models perform": 35395, "downstream tasks argue": 44765, "training data known": 168290, "vision models using": 176959, "tasks paper focus": 162914, "paper focus adapting": 118951, "based instruction tuning": 15883, "performance domain adaptability": 121421, "information retrieval clir": 76710, "retrieval clir systems": 144022, "paucity training data": 120579, "advances state art": 6066, "using machine translation": 174469, "using newly created": 174532, "significant practical value": 150827, "existing models struggle": 53485, "based selfsupervised learning": 16088, "uses generative pretraining": 173859, "anomaly detection performance": 9660, "performance demonstrating effectiveness": 121372, "demonstrating effectiveness method": 38930, "chatgpt mental health": 23122, "mental health support": 100501, "data privacy protection": 35546, "proposed method compared": 132345, "demonstrating effectiveness proposed": 38931, "effectiveness proposed method": 46274, "evaluation results demonstrate": 51829, "generated proposed method": 63949, "generated baseline methods": 63802, "dialogue dataset named": 41461, "assess overall quality": 13104, "evaluation automatic human": 51442, "human evaluations demonstrate": 70761, "language models surprisingly": 86245, "tasks explicitly trained": 162370, "poorly understood paper": 123972, "language models concretely": 84280, "creativity problemsolving skills": 33396, "generate new ideas": 63630, "critical thinking problemsolving": 33559, "make informed decisions": 98554, "effective learning strategies": 45799, "leveraging capabilities chatgpt": 91807, "instruction tuning instructiontuned": 78104, "manipulate model predictions": 98931, "parallel large language": 119570, "models llms increasingly": 107564, "llms increasingly applied": 95601, "radiology report summarization": 135410, "domain adaptation large": 44068, "adaptation large language": 4631, "adapt large language": 4531, "models llms task": 107967, "domain adaptation pretraining": 44073, "natural language biomedical": 111557, "text clinical text": 164920, "consistently achieve best": 29853, "achieve best performance": 3586, "study qualitative analysis": 157576, "findings highlight importance": 58679, "importance domain adaptation": 73026, "valuable insights developing": 175425, "multimodal llm mllm": 110702, "different llm sizes": 41834, "training data compared": 168237, "models plms achieved": 108522, "plms achieved remarkable": 123571, "remarkable success nlp": 140295, "nlp tasks despite": 113835, "high deployment costs": 69445, "low training efficiency": 97792, "strategy language models": 156171, "model demonstrates strong": 103428, "demonstrates strong generalization": 38902, "trained vast quantities": 168125, "advanced field natural": 5731, "improves performance finetuning": 74050, "tackle issues propose": 160832, "aims improve performance": 7629, "unsupervised pretraining objectives": 172265, "consistently improves performance": 29884, "visual word sense": 177340, "sense disambiguation vwsd": 148387, "word given context": 178648, "achieved prominent performance": 3858, "better performance existing": 17964, "cot prompting cot": 32883, "decisions work propose": 37486, "knowledge distillation method": 81886, "model teacher model": 104726, "model orders magnitude": 104164, "detection empirical study": 40492, "paper presents thorough": 119189, "presents thorough empirical": 126650, "thorough empirical study": 166183, "baseline outperforms existing": 16248, "methods large margin": 101629, "better understand impact": 18057, "current artificial intelligence": 34072, "mediqachat 2023 clinical": 100252, "2023 clinical note": 695, "conversations using large": 31970, "shared task automatic": 149825, "shared task data": 149826, "learning icl large": 90548, "icl large language": 71681, "model llm achieve": 103971, "llm achieve high": 93431, "submissions shared task": 157892, "drawn significant attention": 44955, "diverse range tasks": 43620, "range tasks including": 135710, "computer science education": 28485, "science education paper": 146865, "education paper aims": 45565, "paper aims explore": 118732, "valuable insights chatgpts": 175423, "student instructor perspectives": 156812, "chatgpts capabilities potential": 23486, "smaller model sizes": 152409, "deploying large language": 39242, "models llms challenging": 107166, "train smaller taskspecific": 167832, "smaller taskspecific models": 152448, "large amounts training": 87187, "training data achieve": 168225, "comparable performance llms": 26604, "training small models": 168751, "better performance fewer": 17965, "llms achieve better": 94286, "achieve better performance": 3594, "better performance using": 17971, "substantially smaller model": 158142, "model size data": 104589, "dataset release code": 36502, "improves multistep reasoning": 74037, "reasoning ability language": 136639, "language models limited": 84806, "novel method leverages": 114592, "method leverages chainofthought": 100960, "leverages chainofthought prompting": 91714, "summarization datasets demonstrate": 158818, "demonstrate human evaluation": 38372, "synthetic data augmentation": 160026, "extent language model": 56012, "language model infer": 83689, "finetuned model perform": 59075, "taken results suggest": 160972, "suggest language models": 158548, "prompt tuning better": 130703, "leverage power large": 91638, "models finetuning downstream": 106359, "tasks existing prompt": 162346, "prompt tuning based": 130702, "prompt tuning propose": 130723, "propose new algorithm": 131951, "new algorithm called": 113053, "embedding space extensive": 47191, "space extensive experiments": 153574, "extensive experiments effectiveness": 55842, "experiments effectiveness proposed": 54264, "effectiveness proposed methods": 46277, "stateoftheart prompt tuning": 155312, "apis large language": 10190, "models llms power": 107733, "systems natural language": 160490, "processing models extremely": 129196, "extremely computationally expensive": 56428, "text generation apis": 165127, "inference efficiency models": 75993, "stateoftheart llms provide": 155199, "models llms specifically": 107936, "llms specifically openais": 96669, "openais gpt35 gpt4": 116415, "llms various languages": 96953, "reveal gpt models": 144335, "enabling researchers explore": 48344, "llms identify potential": 95531, "planning large language": 123286, "models demonstrate remarkable": 105894, "remains challenging paper": 139986, "challenging paper propose": 22233, "answer questions based": 9764, "search space large": 147415, "planning algorithm lookahead": 123244, "algorithm lookahead search": 7829, "stateoftheart performance standard": 155291, "compared large language": 26847, "language models smaller": 86181, "smaller model size": 152408, "suggestions large language": 158643, "alignment human values": 8161, "llms great potential": 95449, "generalpurpose ai assistants": 63335, "llms propose novel": 96246, "popular llms chatgpt": 124015, "llms chatgpt gpt4": 94586, "sampling language models": 146101, "models generate text": 106462, "inverse scaling model": 80344, "stateoftheart methods trained": 155216, "data paper present": 35464, "image captioning framework": 72185, "supporting wide range": 159389, "including points boxes": 74667, "segment model sam": 147723, "extensive case studies": 55729, "case studies demonstrate": 20894, "model pretraining masked": 104334, "acceleration large language": 2809, "critical issue present": 33513, "nlp research paper": 113804, "existing work explored": 53640, "existing work relies": 53645, "training dynamics address": 168405, "dynamics address issues": 45199, "opportunities natural language": 116868, "language processing generative": 86515, "processing generative pretrained": 129165, "advancements field natural": 5890, "processing nlp research": 129247, "potential applications challenges": 124581, "larger model size": 89223, "contextual understanding reasoning": 31115, "assistants language translation": 13414, "text summarization questionanswering": 165514, "leveraging language models": 91877, "language models explainable": 84493, "data large language": 35288, "llms achieved unprecedented": 94324, "complex textual inputs": 27630, "foundation models clip": 60756, "extract semantically meaningful": 56160, "models used generate": 109571, "generation reasoning tasks": 65021, "performance complex reasoning": 121309, "knowledgeintensive tasks paper": 82574, "tasks paper propose": 162922, "tasks using chatgpt": 163427, "matching entity matching": 99458, "finetuning transformer models": 59595, "models require significant": 108940, "require significant amounts": 141189, "amounts finetuning data": 8685, "ii finetuned models": 72090, "paper investigate using": 119041, "investigate using chatgpt": 80519, "models perform experiments": 108464, "multimodal chainofthought reasoning": 110598, "science question answering": 146909, "llms recently demonstrated": 96331, "recently demonstrated exceptional": 137849, "tasks shown ability": 163238, "chainofthought cot reasoning": 21500, "reasoning solve complex": 137131, "solve complex problems": 153104, "complex problems recent": 27523, "novel method termed": 114594, "additionally introduce novel": 5084, "data mixing strategy": 35373, "method achieves new": 100639, "multimodal deep learning": 110621, "given dialogue history": 65872, "response given dialogue": 142659, "models trained evaluated": 109434, "opendomain dialogue dataset": 116454, "automatic evaluation proposed": 14668, "outperforms existing baselines": 117753, "language models transform": 86317, "science large language": 146883, "processing tasks zeroshot": 129334, "zeroshot training data": 180359, "provides road map": 133210, "finetuned models achieve": 59079, "blackbox prompt tuning": 18660, "learning blackbox prompt": 90267, "network large language": 112668, "llms recent studies": 96324, "paper propose blackbox": 119209, "tasks target task": 163339, "target task experiments": 161110, "downstream tasks llms": 44806, "randomized controlled trials": 135558, "controlled trials rcts": 31654, "unstructured natural language": 172217, "work propose evaluate": 179200, "instructiontuned large language": 78389, "contribute model performance": 31410, "highlight potential directions": 69771, "systems paper propose": 160514, "paper propose approach": 119205, "models llms unlike": 107998, "pseudorelevance feedback prf": 133487, "including zeroshot fewshot": 74786, "zeroshot fewshot chainofthought": 180171, "fewshot chainofthought cot": 57889, "provide large number": 132871, "related original query": 139190, "suffer insufficient knowledge": 158435, "knowledge limited context": 82198, "limited context length": 92735, "release dataset code": 139463, "language models unlocked": 86343, "models unlocked strong": 109555, "results room improvement": 143770, "study investigates potential": 157449, "incorporates large language": 75062, "ml models assess": 102780, "set best practices": 149143, "incontext instruction tuning": 74857, "instruction tuning large": 78107, "llms demonstrated significant": 94886, "vast amounts text": 176319, "amounts text data": 8702, "following natural language": 60299, "accomplish realworld tasks": 3012, "instruction tuning multimodal": 78120, "similar approach construct": 151207, "multimodal incontext instruction": 110653, "instruction tuning mimicit": 78116, "tuning mimicit dataset": 170061, "ability incontext learning": 2222, "chatgpt empirical study": 22880, "furthermore investigate impact": 62105, "investigate impact different": 80423, "empirical findings propose": 47705, "models hold potential": 106623, "scenarios recent years": 146684, "research development field": 141701, "clinical language models": 24340, "multilabel classification task": 110442, "addressing challenges posed": 5433, "challenges posed limited": 22002, "furthermore results underscore": 62158, "results underscore significance": 143890, "enhancing model performance": 49529, "essential achieving optimal": 50582, "study offers valuable": 157514, "language models guide": 84628, "transformer variant named": 169219, "tuning pretrained language": 170088, "typically performs worse": 170506, "simple efficient method": 151448, "efficient method significantly": 46672, "method significantly improves": 101099, "soft prompt embeddings": 152736, "llms paper propose": 96039, "propose simple efficient": 132127, "simple efficient approach": 151447, "approach based prompt": 11023, "prompt engineering leverages": 130468, "comprehensive empirical evaluation": 27998, "llms demonstrated remarkable": 94867, "demonstrated remarkable language": 38772, "llms compared previous": 94655, "compared previous multimodal": 26889, "model architecture training": 103130, "inputs large language": 77421, "demonstrates impressive multimodel": 38855, "impressive multimodel chat": 73314, "multimodel chat abilities": 110807, "chat abilities exhibiting": 22518, "abilities exhibiting behaviors": 1902, "exhibiting behaviors multimodal": 53165, "behaviors multimodal gpt4": 16717, "multimodal gpt4 unseen": 110646, "gpt4 unseen imagesinstructions": 67205, "unseen imagesinstructions yields": 172167, "relative score compared": 139384, "score compared gpt4": 147051, "compared gpt4 synthetic": 26822, "gpt4 synthetic multimodal": 67189, "synthetic multimodal instructionfollowing": 160056, "multimodal instructionfollowing dataset": 110669, "explanations chainofthought prompting": 54823, "chainofthought prompting large": 21526, "models llms achieve": 107061, "language models decision": 84329, "case study using": 20929, "gpt35 large language": 66832, "artificial intelligence trained": 12775, "intelligence trained vast": 78913, "trained vast amounts": 168120, "vast amounts natural": 176316, "amounts natural language": 8694, "language data enabling": 83233, "data enabling generate": 34969, "study human participants": 157397, "play role generating": 123466, "instruction tuning shown": 78136, "language models challenging": 84226, "help language models": 69131, "tasks provide detailed": 163042, "different model sizes": 41859, "future research release": 62370, "human quality evaluation": 70995, "quality evaluation results": 134115, "guiding large language": 68275, "llms significantly advanced": 96595, "significantly advanced natural": 150932, "processing nlp impressive": 129220, "impressive language understanding": 73308, "suboptimal domainspecific tasks": 157908, "tasks require specialized": 163150, "require specialized knowledge": 141197, "stateoftheart sota llms": 155364, "address challenges propose": 5190, "challenges propose novel": 22026, "whitebox language models": 178235, "framework enhance performance": 61130, "knowledgeintensive tasks require": 82577, "language model dialogue": 83605, "language model named": 83812, "answering general questions": 9861, "language model construct": 83589, "multimodality instruction tuning": 110800, "instruction tuning make": 78113, "human instructions quality": 70856, "code dataset demo": 24764, "intelligence ai community": 78734, "finetuning neural networks": 59403, "compositional generalization paper": 27812, "generalization paper present": 63208, "pretrained large corpus": 126993, "incontext learning paradigm": 74951, "biomedical named entity": 18559, "model address challenges": 103080, "challenges paper proposes": 21987, "model learn semantic": 103943, "model results demonstrate": 104474, "results demonstrate effectiveness": 143292, "knowledge distillation large": 81883, "models llms address": 107091, "legal ethical risks": 91294, "method utilizes llms": 101169, "llms generate accurate": 95354, "knowledge distillation techniques": 81891, "smaller specialized student": 152443, "surpassing current stateoftheart": 159512, "current stateoftheart approach": 34253, "model matches performance": 104066, "performance teacher llm": 122164, "requires orders magnitude": 141426, "manually labeled training": 99101, "labeled training data": 82740, "training data current": 168245, "approach depending specific": 11106, "depending specific use": 39172, "specific use case": 154122, "generation generative pretrained": 64694, "pretrained transformer large": 127199, "transformer large language": 169157, "models llms generative": 107475, "llms generative pretrained": 95398, "achieved tremendous success": 3918, "tremendous success various": 169695, "various language tasks": 175994, "challenges need addressed": 21964, "gain better understanding": 62434, "text sequence generation": 165456, "rapidly growing number": 135931, "number large language": 114895, "models llms users": 108007, "reduce inference cost": 138438, "cost associated using": 32652, "using llms prompt": 174445, "shown impressive abilities": 150265, "impressive abilities various": 73255, "abilities various tasks": 2038, "significantly improve abilities": 151020, "arithmetic reasoning commonsense": 12484, "recent release large": 137613, "model llm based": 103977, "llm based chatbots": 93502, "foundation models serve": 60805, "systems foundation models": 160395, "decisions large language": 37468, "language model programs": 83858, "programs recent years": 129930, "follow instructions perform": 60216, "perform novel tasks": 120998, "discuss advantages disadvantages": 42866, "test large language": 164575, "performance ai models": 121143, "tasks suggesting potential": 163313, "performance transformer language": 122198, "models language modeling": 106865, "fundamental task natural": 61981, "models lms paper": 108070, "bert models trained": 17572, "compare performance different": 26708, "sizes model sizes": 152102, "terms training time": 164489, "downstream tasks lastly": 44801, "planning reasoning capabilities": 123312, "significantly improves efficiency": 151040, "llm large visionlanguage": 93795, "large visionlanguage model": 89113, "models llms pretrained": 107745, "llms pretrained massive": 96177, "pretrained massive corpora": 127038, "nlp tasks common": 113827, "llms natural language": 95923, "text paper propose": 165345, "natural language utilize": 111925, "tasks code generation": 162057, "tasks experiment results": 162357, "specially designed tasks": 153926, "approach using large": 11645, "language models medical": 85730, "paper tackles problem": 119365, "medical conversation summarization": 100148, "summaries generated using": 158769, "research large language": 141879, "intelligence ai research": 78766, "development models trained": 41162, "models trained massive": 109454, "trained massive amounts": 167995, "used wide range": 173303, "text generation question": 165176, "generation question answering": 64998, "examine impact llms": 52392, "llms ai research": 94377, "significant potential improving": 150820, "using pretrained large": 174597, "models demonstrate method": 105887, "demonstrate method outperform": 38427, "outperform existing methods": 117585, "question large language": 134901, "like chatgpt recently": 92240, "chatgpt recently demonstrated": 23255, "recently demonstrated impressive": 137850, "impressive capabilities natural": 73270, "various applications including": 175802, "malicious purposes fraud": 98846, "develop methods detecting": 40803, "propose framework named": 131838, "finding large language": 58611, "providing new way": 133339, "online service providers": 116135, "largescale foundation models": 89306, "based artificial intelligence": 15664, "intelligence ai remarkable": 78765, "widely used various": 178410, "language understanding ability": 86807, "future development directions": 62243, "challenges future development": 21879, "open world lifelong": 116311, "world lifelong learning": 179586, "models learn new": 106941, "unseen tasks paper": 172189, "learn sequence tasks": 90050, "language model types": 83941, "tasks extensive experiments": 162379, "tasks release code": 163119, "release code data": 139444, "language models salient": 86123, "emergence new capabilities": 47439, "increasing model capacity": 75334, "pretraining dataset size": 127301, "utility training data": 174979, "training data maintaining": 168304, "corpora demonstrate proposed": 32219, "demonstrate proposed framework": 38502, "proposed framework applied": 132300, "rigorous empirical evaluation": 144857, "models llms dominate": 107319, "spurious correlations training": 154616, "correlations training datasets": 32565, "propose simple method": 132132, "various pretrained models": 176112, "existing debiasing methods": 53337, "performance models trained": 121814, "models trained different": 109427, "hope results motivate": 70379, "answer paper introduce": 9745, "information retrieval based": 76709, "search relevant information": 147406, "highquality questionanswer pairs": 70066, "finetune pretrained language": 58961, "generate answers based": 63397, "numerous studies highlighted": 115068, "capabilities various tasks": 20252, "various tasks domains": 176204, "tasks domains paper": 162257, "domains paper presents": 44490, "encompassing wide range": 48561, "programming languages python": 129848, "languages python java": 87104, "empirical analysis provides": 47671, "analysis provides evidence": 9100, "contrary popular belief": 31290, "average human score": 15291, "programming language paper": 129835, "critical insights limitations": 33510, "aibased language models": 7340, "llms demonstrate impressive": 94815, "languages work introduce": 87159, "capability llms specifically": 20340, "enhance task performance": 49299, "task performance languages": 161612, "conduct comprehensive evaluations": 29049, "highresource lowresource languages": 70105, "enhances performance various": 49437, "reasoning opendomain questionanswering": 137011, "stateoftheart ai systems": 155070, "ravens progressive matrices": 136083, "abstraction reasoning corpus": 2668, "reasoning corpus arc": 136781, "publicly available benchmark": 133628, "development ai systems": 41047, "provide experimental evidence": 132778, "language models conducting": 84287, "significantly advanced field": 150928, "llms realworld business": 96307, "significantly improves reasoning": 151048, "improves reasoning ability": 74067, "knowledge external resources": 81988, "search large language": 147369, "information retrieval information": 76719, "retrieval information retrieval": 144069, "vast amounts data": 176313, "traditional knowledge bases": 167636, "models llms revolutionized": 107840, "systems natural languages": 160491, "retrieval performance compared": 144109, "compared stateoftheart methods": 26934, "wordlevel quality estimation": 178706, "quality machine translation": 134195, "prominent large language": 130153, "better performance zeroshot": 17973, "large visionlanguage models": 89115, "recent years advancements": 137768, "language models remarkable": 86080, "tasks pretraining large": 162986, "pretraining large models": 127366, "large models billions": 88919, "models billions parameters": 105522, "billions parameters poses": 18451, "pretrained models using": 127115, "dataset comprising approximately": 36179, "work presents unique": 179187, "dataset designed evaluate": 36234, "discussion large language": 42997, "artificial intelligence models": 12753, "need large scale": 112339, "large scale language": 89045, "language models temporal": 86275, "domains paper propose": 44491, "exploring use large": 55513, "models llms multiple": 107664, "size poses challenges": 152045, "poses challenges terms": 124198, "challenges terms computational": 22081, "language models slms": 86178, "training data especially": 168251, "method aimed improving": 100668, "models specifically tailored": 109217, "dataset demonstrate effectiveness": 36226, "demonstrate effectiveness llms": 38300, "16 billion parameters": 451, "billion parameters outperforms": 18437, "code generated data": 24857, "publicly available facilitate": 133641, "shown promise various": 150338, "remains largely untapped": 140028, "largely untapped study": 89190, "study evaluates performance": 157327, "evaluates performance large": 51248, "llms gpt 35": 95410, "gpt 35 gpt": 66375, "results reveal substantial": 143764, "underscores need research": 170950, "language models automatic": 84150, "language model extensive": 83634, "pretraining finetuning pretrained": 127330, "finetuning pretrained language": 59453, "generative ai large": 65329, "ai large language": 7058, "language models suggest": 86238, "focus large language": 60010, "increasing popularity large": 75346, "llms chatgpt led": 94591, "safety security risks": 145893, "paper aims provide": 118737, "aims provide overview": 7654, "provide overview different": 132916, "security risks associated": 147621, "code generation private": 24912, "present empirical study": 126296, "based qualitative analysis": 16052, "potential strategies mitigate": 125005, "challenges posed llms": 22003, "study contributes ongoing": 157251, "ethical security implications": 50835, "security implications llms": 147591, "llms shown increasing": 96552, "downstream tasks usually": 44843, "various tasks natural": 176218, "language understanding inference": 86829, "inference demonstrate effectiveness": 75990, "demonstrate effectiveness method": 38301, "effectiveness method codes": 46236, "codes publicly available": 25314, "framework novel approach": 61327, "novel approach aimed": 114367, "approach aimed improving": 10982, "improving problemsolving capabilities": 74193, "autoregressive large language": 14993, "solving complex reasoning": 153202, "explores solution space": 55431, "solve given problem": 153120, "directions verify effectiveness": 42505, "verify effectiveness proposed": 176529, "increase success rate": 75236, "models despite remarkable": 105941, "despite remarkable success": 40202, "incontext learning paper": 74950, "learning paper introduce": 90799, "diagnostic reasoning process": 41385, "sota performances widelyused": 153364, "using 16 examples": 173943, "achieves comparable performances": 3988, "graph construction kgc": 67500, "approaches typically follow": 11938, "fall short applied": 57122, "automatically extract information": 14803, "new task called": 113444, "entity relation event": 49933, "experimental results illustrate": 54018, "room improvement hope": 145591, "natural language feedback": 111602, "feedback reinforcement learning": 57774, "despite unprecedented success": 40244, "largest language models": 89442, "models make mistakes": 108129, "previous work proposed": 127694, "large generalpurpose language": 87265, "reinforcement learning feedback": 139058, "multiagent collaborative framework": 110309, "text similarity metrics": 165463, "creating synthetic datasets": 33326, "recent advancements artificial": 137344, "advancements artificial intelligence": 5866, "datasets poses significant": 37034, "significant challenge researchers": 150644, "applications study aims": 10698, "aims knowledge gap": 7634, "gap proposing comprehensive": 62719, "implications guidelines illustrated": 72932, "study underscores importance": 157683, "valuable insights researchers": 175440, "paving way effective": 120600, "recent work extended": 137728, "causal mediation analysis": 21208, "standard web search": 154893, "search engines existing": 147345, "paper large language": 119064, "models llms follow": 107432, "approaches significant margin": 11905, "question answering benchmarks": 134688, "fewshot settings code": 58054, "language model reason": 83871, "zeroshot reasoning ability": 180317, "reasoning ability large": 136641, "answering tasks based": 9971, "reasoning task based": 137163, "extensive experiments conducted": 55813, "data demonstrate effectiveness": 34895, "significantly boost performance": 150952, "boost performance chatgpt": 18822, "baselines codes data": 16302, "smart home assistants": 152481, "introduce large language": 79996, "wide spectrum natural": 178335, "spectrum natural language": 154361, "potential risks misuse": 124955, "compared gradientbased methods": 26828, "introduce gradient descent": 79974, "furthermore propose novel": 62137, "manner experimental results": 98988, "performance gains previous": 121555, "llms empirical study": 95046, "models llms brought": 107150, "llms brought significant": 94518, "including chatgpt llama": 74448, "llms raises concerns": 96285, "language models longterm": 85701, "models longterm memory": 108101, "interactions artificial intelligence": 79204, "artificial intelligence systems": 12769, "closedsource models like": 24495, "opensource models like": 116655, "diverse data formats": 43495, "development foundational models": 41120, "multiple data sources": 110882, "finetuned different downstream": 59009, "unique challenges associated": 171827, "method proposed method": 101041, "proposed method model": 132363, "pretraining larger models": 127370, "demonstrate method outperforms": 38428, "outperforms robust baselines": 117843, "learning multiple datasets": 90750, "technical report introduce": 163717, "stateoftheart language model": 155165, "language reasoning tasks": 86694, "reasoning tasks demonstrate": 137172, "significantly improved quality": 151035, "downstream tasks different": 44773, "tasks different model": 162229, "robust reasoning capabilities": 145314, "bigbench reasoning tasks": 18396, "stateoftheart performance diverse": 155276, "models various sizes": 109615, "potential applications emerging": 124582, "challenges future directions": 21880, "represents notable breakthrough": 140985, "domain natural language": 44232, "closely resembles humans": 24530, "architecture deep neural": 12140, "neural network designed": 112896, "designed natural language": 39918, "gained significant popularity": 62484, "widely used effective": 178394, "language processing related": 86611, "provides detailed overview": 133133, "solutions future directions": 153024, "aims provide comprehensive": 7651, "provide comprehensive understanding": 132718, "various applications emerging": 175801, "challenges potential solutions": 22008, "works primarily focused": 179481, "neural networks reinforcement": 112947, "networks reinforcement learning": 112794, "learning rl machine": 90946, "rl machine learning": 145060, "learning algorithms based": 90197, "density estimation methods": 39120, "models discuss advantages": 105993, "assessment large language": 13241, "language models given": 84597, "model llm reliably": 104025, "generate factually correct": 63491, "factually correct answers": 56925, "paper study problem": 119344, "factual knowledge llms": 56888, "llms main idea": 95837, "llm generating text": 93712, "llms various sizes": 96961, "llms results reveal": 96441, "problem solving large": 128405, "solving large language": 153219, "solving wide range": 153263, "fall short tasks": 57132, "play pivotal role": 123463, "surmount challenges introduce": 159449, "introduce new framework": 80031, "framework language model": 61253, "tree thoughts tot": 169673, "chain thought approach": 21461, "multiple different reasoning": 110891, "different reasoning paths": 41959, "novel tasks requiring": 114709, "success rate 74": 158284, "rate 74 code": 135968, "model hidden states": 103795, "language model predictions": 83842, "explain language models": 54701, "language models predictions": 85935, "enhance language models": 49218, "shown remarkable capabilities": 150351, "skills paper propose": 152179, "new paradigm enhancing": 113315, "diverse set embodied": 43647, "lowrank adapters lora": 97891, "efficiency extensive experiments": 46459, "experiments approach substantially": 54153, "approach substantially improves": 11575, "match outperform larger": 99419, "language models fit": 84545, "evaluate ability generate": 50890, "ability generate meaningful": 2198, "questions evaluate ability": 135116, "report large language": 140541, "models able generate": 105192, "generate high quality": 63531, "ability masked language": 2273, "models experiments demonstrate": 106241, "aishell1 librispeech datasets": 7708, "ability artificial intelligence": 2069, "significant progress area": 150830, "ability paper propose": 2304, "foundation model called": 60735, "question answer tuples": 134680, "demonstrates strong performance": 38903, "models best knowledge": 105503, "language models focus": 84547, "current machine learning": 34171, "models llms encode": 107357, "world knowledge knowledge": 179569, "training data time": 168356, "llms knowledgeintensive tasks": 95707, "using search engine": 174693, "information paper present": 76617, "continual knowledge learning": 31163, "experiments wide range": 54541, "model significantly outperforms": 104575, "empowering large language": 48015, "language models intrinsic": 84731, "abilities multimodal large": 1967, "step artificial general": 155598, "employ threestage training": 47866, "threestage training strategy": 166297, "finetuning experimental results": 59260, "models llms largescale": 107601, "largescale instructionfollowing datasets": 89322, "information extraction task": 76437, "strong capabilities llms": 156365, "wang et al": 177685, "instructiontuned llms llms": 78399, "framework consistently improves": 61041, "strong zeroshot baselines": 156456, "baselines large margin": 16346, "large margin additionally": 88903, "additionally provide thorough": 5124, "language model openended": 83816, "models llms notably": 107675, "notably accelerated progress": 114256, "field computer vision": 58142, "vision foundation models": 176921, "foundation models vfms": 60821, "llms work present": 97020, "vision language tasks": 176943, "using language instructions": 174353, "extensive experiments proposed": 55866, "parameters large language": 119786, "deploy commodity hardware": 39195, "devices model compression": 41312, "model compression methods": 103329, "model size inference": 104599, "size inference latency": 152009, "optimizing accuracyefficiency tradeoff": 117107, "paper introduce new": 118995, "based observation propose": 15982, "prompt learning method": 130577, "tasks llms shown": 162751, "conduct comprehensive benchmarking": 29042, "address issue paper": 5265, "issue paper proposes": 80938, "perform wide range": 121090, "wide range complex": 178273, "range complex tasks": 135600, "categories prompts used": 21117, "draw accurate conclusions": 44909, "llms performance specific": 96091, "language models agreement": 84098, "remarkable capabilities comprehending": 140152, "generating humanlike text": 64249, "framework finetuning llms": 61163, "data generated llm": 35101, "pretrained llm finetuned": 127019, "framework achieves comparable": 60917, "utilization llms paper": 175007, "better use llms": 18063, "arithmetic reasoning tasks": 12489, "reasoning tasks accuracy": 137165, "achieves remarkable performance": 4064, "remarkable performance reasoning": 140238, "performance reasoning tasks": 121995, "sensemaking large language": 148401, "language models people": 85867, "models people increasingly": 108454, "turning large language": 170183, "models llms complex": 107209, "complex information tasks": 27437, "users explore topics": 173652, "generative pretraining point": 65574, "models llms based": 107137, "llms based generative": 94470, "pretraining transformer gpt": 127469, "transformer gpt demonstrated": 169133, "demonstrated remarkable effectiveness": 38770, "effectiveness diverse range": 46164, "downstream tasks inspired": 44796, "addressing challenges associated": 5432, "low information density": 97763, "generation task proposed": 65143, "tasks particular approach": 162933, "models furthermore method": 106408, "new stateoftheart accuracies": 113425, "medical dialogue generation": 100160, "generation using incontext": 65237, "difficult large language": 42159, "inspired incontext learning": 77731, "incontext learning propose": 74964, "responses generated llms": 142805, "generated llms furthermore": 63916, "furthermore introduce new": 62101, "introduce new evaluation": 80030, "new evaluation method": 113173, "evaluation method based": 51695, "evaluation demonstrate effectiveness": 51532, "traditional information extraction": 167631, "world bridge gap": 179533, "crosstask generalization capabilities": 33709, "models llms observe": 107679, "tackle issue introduce": 160824, "furthermore develop innovative": 62045, "innovative framework named": 77173, "designed automatic generation": 39822, "reveal current models": 144327, "empower large language": 47991, "language model perform": 83830, "domainspecific question answering": 44619, "model llm gained": 103997, "achieved remarkable results": 3874, "aiming enhance llms": 7549, "addition propose new": 4893, "propose new model": 131969, "performance domainspecific tasks": 121425, "experiments demonstrate approach": 54217, "debate large language": 37288, "impressive capabilities various": 73277, "capabilities various applications": 20240, "works primarily focus": 179480, "commonsense reasoning introduce": 26311, "experiments various datasets": 54530, "llms effectively collaborate": 95007, "llm like gpt4": 93807, "performance work contributes": 122310, "work contributes understanding": 178879, "methods codes data": 101375, "language model incontext": 83686, "models llms substantially": 107955, "language processing demonstrating": 86507, "processing demonstrating exceptional": 129142, "various tasks study": 176225, "superior performance approach": 159018, "strong language understanding": 156405, "llms directly generate": 94940, "generate response based": 63685, "based dialogue context": 15758, "approach build benchmark": 11033, "zeroshot oneshot settings": 180274, "method outperforms standard": 101016, "online reinforcement learning": 116128, "finetuning instructionfinetuned language": 59318, "language model vision": 83954, "model achieves superior": 103056, "superior performance existing": 159028, "times larger prior": 166597, "promote future research": 130339, "future research direction": 62324, "reasoning code generation": 136750, "models llms garnered": 107456, "llms garnered significant": 95339, "having billion parameters": 68872, "question answering requires": 134800, "requires models provide": 141422, "results human evaluation": 143471, "open source community": 116293, "role explanations finetuning": 145490, "reasoning skills large": 137126, "skills large language": 152169, "paper conduct thorough": 118804, "open pretrained transformers": 116262, "pretrained transformers opt": 127221, "skills findings reveal": 152159, "impact models performance": 72692, "increase classification accuracy": 75195, "pretraining large corpora": 127362, "large corpora text": 87223, "performance variety language": 122239, "stateoftheart nlp models": 155261, "paper investigate ability": 119026, "high school graduation": 69533, "school graduation examination": 146831, "dataset large language": 36382, "evaluating large language": 51325, "models llms introduced": 107583, "vietnamese national high": 176805, "national high school": 111491, "answering text generation": 9974, "generation reading comprehension": 65017, "chatgpt bingchat perform": 22747, "perform human level": 120960, "mathematics physics chemistry": 99617, "physics chemistry biology": 122928, "llms making dataset": 95852, "recent years deep": 137772, "years deep learningbased": 179890, "multimodal named entity": 110734, "entity recognition mner": 49915, "social media aims": 152600, "existing studies mainly": 53594, "studies mainly focus": 157040, "knowledge explicit knowledge": 81975, "explicit knowledge bases": 54943, "model external knowledge": 103625, "guide chatgpt generate": 68170, "processing extensive experiments": 129155, "outperforms stateoftheart methods": 117861, "models llms powerful": 107734, "powerful multimodal large": 125308, "visual semantic understanding": 177308, "introducing extra parameters": 80234, "question answering image": 134730, "answering image captioning": 9869, "visual understanding tasks": 177338, "generative ai tools": 65364, "methods use large": 101903, "demonstrate llms help": 38413, "adopted language models": 5600, "best method based": 17700, "encoderdecoder language models": 48459, "models finetuning pretrained": 106364, "previous studies mainly": 127668, "language models llama": 84811, "open question answering": 116271, "question answering openqa": 134770, "factuality large language": 56912, "models llms current": 107233, "introduce new task": 80040, "high correlation human": 69429, "correlation human evaluations": 32543, "automatic evaluation tools": 14670, "valuable future research": 175414, "gpt35 gpt4 bard": 66813, "llms reasoning ability": 96314, "ability zeroshot setting": 2423, "exhibited remarkable performance": 53150, "remarkable performance various": 140246, "nlp tasks current": 113830, "paper examine performance": 118893, "performance gpt35 gpt4": 121603, "provides empirical evidence": 133141, "showcasing superior performance": 150129, "multihop reasoning tasks": 110432, "comprehensive analysis results": 27954, "furthermore propose set": 62139, "models recent progress": 108833, "recent progress large": 137596, "progress large language": 129976, "nlp research directions": 113803, "suggestions research directions": 158647, "models different architectures": 105967, "language models alms": 84116, "speech recognition using": 154465, "recognition using large": 138149, "pretrained models backbones": 127064, "active learning al": 4434, "support human annotators": 159297, "work proposes novel": 179228, "automated human evaluations": 14559, "evaluations demonstrate effectiveness": 51959, "additional ablation studies": 4918, "studies illustrate potential": 157016, "models llms llms": 107643, "llms llms exhibit": 95814, "llms exhibit exceptional": 95137, "relatively simple tasks": 139417, "complex realworld tasks": 27549, "language models domainspecific": 84402, "models domainspecific data": 106020, "gains downstream tasks": 62518, "require additional parameters": 141064, "introducing additional parameters": 80225, "gpt large language": 66440, "llms like gpt": 95778, "language processing paper": 86601, "potential llms make": 124845, "lightweight language model": 92178, "word embedding space": 178629, "remarkable progress various": 140277, "progress various natural": 130029, "tasks pretraining finetuning": 162985, "efficiently adapt existing": 46759, "adaptation language model": 4628, "remains open challenge": 140051, "hidden markov models": 69328, "language model finding": 83642, "space language model": 153587, "better performance compared": 17962, "compared stateoftheart baselines": 26933, "time overhead compared": 166460, "make code available": 98500, "available research community": 15195, "simulate human behavior": 151639, "little attention given": 93222, "collect new dataset": 25666, "pretrained finetuned models": 126811, "entity relation extraction": 49934, "scholarly knowledge graph": 146820, "models achieve performance": 105226, "emergence generative large": 47421, "models llms raises": 107784, "llms raises question": 96286, "involving text generation": 80805, "data using chatgpt": 35927, "lead robust models": 89772, "grammatical error correction": 67455, "error correction task": 50288, "pretrained seq2seq model": 127155, "language modeling capture": 83985, "test sets respectively": 164632, "set large language": 149230, "paper presents results": 119184, "analysis previous research": 9082, "thematic analysis qualitative": 165998, "analysis commonly used": 8855, "research paper presents": 141956, "prompting machine translation": 131003, "task machine translation": 161534, "novel approach fewshot": 114382, "prompting bloom model": 130869, "pipeline large language": 123070, "llms revolutionized field": 96457, "costs paper propose": 32838, "propose efficient llm": 131795, "efficient llm inference": 46664, "harnesses power llms": 68815, "power llms approach": 125199, "llms approach begins": 94422, "results demonstrate impressive": 143305, "improvement inference throughput": 73808, "making valuable addition": 98821, "valuable addition existing": 175401, "chatgpt gpt4 shown": 23028, "impressive performance complex": 73324, "way work explore": 177891, "clever hans effect": 24292, "achieve correct answer": 3618, "correct stepbystep solutions": 32419, "recent findings llms": 137503, "evaluation dataset consisting": 51526, "extensive evaluations demonstrate": 55778, "models gpt4 achieved": 106542, "popular prompting techniques": 124048, "prompting techniques chainofthought": 131102, "unique challenges posed": 171829, "recent research highlighted": 137625, "key factors contributing": 81500, "size model parameters": 152032, "model parameters training": 104221, "techniques yield significant": 164061, "yield significant improvements": 179980, "language explanations nles": 83303, "stateoftheart parameterefficient finetuning": 155266, "parameterefficient finetuning techniques": 119671, "perform automatic human": 120871, "human evaluations assess": 70759, "evaluations assess quality": 51942, "pretraining data large": 127295, "propose novel evaluation": 131997, "language models increase": 84693, "enhance reasoning ability": 49274, "ability visuallanguage models": 2416, "pretrained visual language": 127241, "language models vlm": 86381, "shown excellent performance": 150231, "contrast large language": 31311, "models llms emerge": 107336, "powerful reasoning capabilities": 125328, "reasoning capabilities propose": 136715, "propose method called": 131919, "language model visual": 83957, "visual language model": 177210, "input token embedding": 77361, "study contributes deeper": 157248, "contributes deeper understanding": 31437, "behavior large language": 16607, "external information large": 56055, "models llms tool": 107972, "promising solution addressing": 130316, "addressing limitations llms": 5460, "llms demonstrate strong": 94829, "consideration development deployment": 29656, "unlike large language": 172007, "language models excel": 84475, "specific tasks work": 154109, "foundation models address": 60752, "impressive generalization performance": 73300, "various segmentation tasks": 176162, "summarization using large": 158893, "models llms potentially": 107732, "gpt models perform": 66461, "methods able generate": 101268, "able generate plausible": 2517, "encoded pretrained language": 48400, "propose using large": 132200, "analysis pretrained language": 9079, "language models discover": 84390, "findings demonstrate chatgpt": 58654, "categories paper propose": 21114, "transformers recent advances": 169349, "weights hidden states": 178112, "pretrained transformers gpts": 127220, "huge amounts data": 70505, "closely related languages": 24526, "large multilingual language": 88934, "combined achieve stateoftheart": 25892, "impressive performance large": 73330, "existing training data": 53621, "training data incontext": 168284, "data incontext learning": 35207, "incontext learning taskspecific": 74977, "work tackle problem": 179330, "training data improve": 168280, "performance llms finetuning": 121756, "improves fewshot performance": 74002, "fewshot performance llms": 58016, "extensive prompt engineering": 55933, "systems based large": 160262, "understanding response generation": 171463, "response generation despite": 142650, "proactive dialogue problems": 128071, "work conduct comprehensive": 178857, "systems specifically focusing": 160622, "crosslingual instruction tuning": 33658, "instructions demonstrated remarkable": 78232, "demonstrated remarkable capabilities": 38757, "remarkable capabilities various": 140174, "adapting new languages": 4752, "result catastrophic forgetting": 143025, "ability address issue": 2057, "languages results demonstrate": 87124, "lowresource languages limited": 97912, "limited parallel data": 92815, "catastrophic forgetting work": 21076, "work contributes advancement": 178876, "learning automl tools": 90237, "tasks intuitive natural": 162631, "utilize large language": 175057, "multiple llm instances": 110969, "llms solving complex": 96642, "experimental results highlight": 54016, "boosting model performance": 18845, "respectively demonstrate effectiveness": 142547, "physics language models": 122941, "design controlled experiments": 39587, "hidden states transformer": 69339, "indicate chatgpt accurately": 75575, "solutions natural language": 153050, "potential valuable tool": 125061, "explore alternative approaches": 55142, "incontext learning capability": 74877, "learning capability large": 90280, "models propose data": 108706, "data synthesis framework": 35836, "human annotated question": 70574, "question answer pairs": 134677, "finetune language models": 58930, "question answering fact": 134718, "answering fact verification": 9855, "improves model performance": 74031, "model performance significantly": 104257, "exploring large language": 55482, "recent advances nlp": 137422, "using roberta t5": 174684, "english evaluate models": 49048, "probing tasks investigate": 128170, "models provide significant": 108728, "provide significant improvements": 132973, "curated pretraining corpus": 34024, "generated underlying language": 64034, "underlying language models": 170843, "work analyze effect": 178799, "conduct systematic analysis": 29185, "tasks development large": 162221, "large langauge models": 87294, "tackle multiple tasks": 160838, "capability logical reasoning": 20342, "reasoning performance llms": 137028, "llms logical reasoning": 95820, "existing stateoftheart baselines": 53580, "make attempt investigate": 98486, "challenging logical reasoning": 22199, "reasoning benchmarks demonstrate": 136683, "benchmarks demonstrate effectiveness": 17206, "conduct extensive ablation": 29104, "extensive ablation studies": 55709, "ablation studies analyze": 2437, "language models inductive": 84706, "propose challenging benchmark": 131743, "experiments strong llms": 54478, "reveal current llms": 144326, "zeroshot fewshot settings": 180185, "models vision language": 109633, "language tasks large": 86766, "models demonstrated robust": 105913, "demonstrated robust performance": 38792, "robust performance various": 145303, "performance various language": 122258, "tasks require visual": 163155, "models specifically investigate": 109211, "specifically investigate performance": 154237, "information results suggest": 76705, "language models effective": 84413, "solving visionlanguage tasks": 153260, "approach enhances interpretability": 11182, "language models introduction": 84735, "capabilities recent large": 20145, "underlying large language": 170845, "recent research indicates": 137626, "language models struggle": 86222, "chainofthought prompting significantly": 21532, "significantly enhance performance": 150989, "human performance task": 70958, "models propose new": 108708, "reading comprehension dataset": 136183, "using gpt 35": 174255, "order magnitude larger": 117217, "language models questions": 86013, "language models memory": 85736, "models reasoning large": 108811, "models llms excel": 107376, "models reasoning tasks": 108815, "achieves 10 improvement": 3934, "models llms bring": 107148, "task model trained": 161549, "efficient deployment inference": 46595, "applied natural language": 10790, "complex structured outputs": 27599, "generation paper propose": 64917, "model achieve comparable": 103025, "sheds new light": 149882, "generation complex tasks": 64517, "conversational artificial intelligence": 31848, "led development powerful": 91222, "produce text indistinguishable": 129470, "text indistinguishable humangenerated": 165243, "age artificial intelligence": 6387, "chatgpts performance comparable": 23500, "methods limited specific": 101645, "limited specific tasks": 92855, "code generation work": 24931, "wider range tasks": 178443, "nlp tasks general": 113845, "taskspecific finetuned models": 163521, "hold great promise": 70244, "lms wide range": 97220, "especially training data": 50555, "training data scarce": 168340, "models successfully applied": 109284, "popular large language": 124007, "improves generalization performance": 74007, "training inference costs": 168494, "using unified framework": 174833, "compared existing moe": 26803, "existing moe architectures": 53489, "improve models ability": 73525, "empirical analysis reveals": 47673, "methods including supervised": 101596, "theory mind theory": 166094, "mind theory mind": 102286, "theory mind tom": 166097, "mind tom ability": 102289, "tom ability understand": 166912, "crucial role social": 33853, "paper investigates extent": 119052, "human reasoning decision": 71006, "reasoning decision making": 136796, "prompting strategies results": 131087, "language models chainofthought": 84221, "unseen tasks work": 172191, "tasks work aim": 163480, "achieve goal introduce": 3651, "new instructiontuning dataset": 113237, "capabilities unseen tasks": 20232, "data model checkpoints": 35379, "model checkpoints publicly": 103275, "checkpoints publicly available": 23551, "corpus linguistic acceptability": 32329, "instructgpt model performs": 77949, "provide detailed analysis": 132746, "sensitive choice examples": 148421, "tasks llms difficult": 162748, "different llms using": 41842, "seen significant advancements": 147705, "models llms models": 107658, "paving way novel": 120606, "introduce new paradigm": 80037, "users interact using": 173691, "openvocabulary object detectors": 116716, "applicable wide range": 10291, "wide range fields": 178284, "overall proposed paradigm": 118220, "like age gender": 92195, "change way people": 22356, "finetuned llama model": 59052, "finetuned synthetically generated": 59121, "synthetically generated dataset": 160094, "language models bloom": 84195, "tackle challenging tasks": 160811, "offering comprehensive evaluation": 115732, "easily trained using": 45337, "trained using lora": 168111, "facilitating reproducibility researchers": 56717, "models llms answer": 107110, "llms answer questions": 94402, "question answering benchmark": 134687, "paper presents fewshot": 119162, "fewshot training data": 58078, "data used finetune": 35913, "alpaca experimental results": 8509, "dev test sets": 40746, "method outperforms stateoftheart": 101017, "previous studies typically": 127672, "large number languages": 88966, "use dataset evaluate": 172580, "array large language": 12518, "llms perform poorly": 96074, "introduce novel methodology": 80062, "superior fewshot performance": 159005, "fewshot performance various": 58017, "various tasks performance": 176221, "room improvement paper": 145594, "wei et al": 178064, "zhou et al": 180390, "et al 2023": 50780, "findings propose new": 58753, "compared standard prompting": 26928, "standard prompting method": 154871, "question answering programming": 134776, "pivotal role human": 123153, "everchanging nature realworld": 52143, "llms shown remarkable": 96564, "question answering experiments": 134710, "answering experiments reveal": 9846, "pose significant challenge": 124174, "significant challenge existing": 150639, "perform rigorous reasoning": 121027, "answer question propose": 9760, "superior capability understanding": 158994, "understanding natural language": 171365, "natural language programming": 111842, "language programming language": 86665, "timesensitive question answering": 166616, "strong baselines codes": 156353, "models llms proficient": 107756, "extensive human evaluation": 55909, "available public use": 15190, "navigation large language": 112059, "models llms struggle": 107951, "tasks alleviate issue": 161937, "issue propose simple": 80954, "approach outperforms previous": 11430, "outperforms previous stateoftheart": 117823, "task success rate": 161757, "ability neural language": 2297, "novel setting models": 114690, "comprehensive evaluations reveal": 28029, "mitigate issue work": 102617, "work represents step": 179266, "step evaluating developing": 155631, "developing language models": 41003, "introduce novel benchmark": 80051, "generate informative responses": 63568, "response generation model": 142652, "models llms play": 107721, "making remarkable progress": 98804, "work introduces new": 179062, "introduces new framework": 80200, "unlike prior studies": 172020, "prompt llm generate": 130595, "web search engine": 178018, "search engine retrieve": 147340, "study large language": 157462, "llms exhibited impressive": 95159, "computational demands associated": 28358, "training models applications": 168586, "various prompting strategies": 176126, "investigate impact prompt": 80426, "foundation model training": 60747, "different prompting strategies": 41944, "progress utilizing tools": 130026, "overcome limitations propose": 118304, "novel framework enables": 114518, "framework enables llms": 61122, "math competition problems": 99524, "knowledge transfer llms": 82472, "llms exhibit varying": 95153, "codes data released": 25296, "store retrieve knowledge": 155860, "various tasks paper": 176219, "novel framework equips": 114519, "qualitative evaluations demonstrate": 133996, "exhibits robust performance": 53219, "robust performance handling": 145302, "remarkable capabilities language": 140157, "capabilities language generation": 19982, "indicate approach significantly": 75572, "approach significantly enhances": 11540, "tasks demonstrate approach": 162171, "overall findings suggest": 118191, "potential significantly advance": 124980, "llms pave way": 96057, "learn human feedback": 89991, "human feedback large": 70806, "cost data collection": 32661, "design llm prompts": 39680, "compositional zeroshot learning": 27828, "zeroshot learning czsl": 180233, "task aims recognize": 161188, "aims recognize unseen": 7660, "prompt tuning large": 130708, "tuning large pretrained": 170046, "language models clip": 84239, "primitives state object": 127839, "generalization experimental results": 63173, "mitstates utzappos cgqa": 102708, "utzappos cgqa datasets": 175262, "collaborative filtering robust": 25616, "interactions conversational ai": 79215, "utilization large language": 175001, "model llm enhance": 103990, "field large language": 58189, "performance gap chatgpt": 121561, "data code released": 34773, "code released github": 25093, "present systematic study": 126474, "comprehensive evaluation large": 28013, "multilingual multidomain dataset": 110517, "different data sources": 41721, "mbert xlmr mt5": 99718, "datasets showcasing superior": 37111, "traditional readability metrics": 167683, "data code publicly": 34771, "tasks finetuning models": 162417, "llms reliance external": 96383, "language models assess": 84138, "assess text quality": 13131, "text generation machine": 165154, "generation machine translation": 64810, "models different sizes": 105973, "applicability large language": 10259, "annotated data target": 9461, "abilities wide range": 2042, "prior work studied": 127953, "winograd schema challenge": 178539, "instructiontuned language models": 78387, "language models difficult": 84383, "finetuning neural models": 59402, "presents unique challenge": 126654, "answer question findings": 9758, "advanced gpt models": 5741, "gpt models struggle": 66465, "compared original dataset": 26869, "understanding performance llms": 171403, "llms realworld applications": 96306, "large highquality datasets": 87280, "datasets remains challenging": 37080, "raises privacy concerns": 135493, "address propose framework": 5352, "model llm prompted": 104022, "generate factually incorrect": 63493, "learning opportunities students": 90792, "hallucination large language": 68387, "language models inference": 84709, "capable natural language": 20454, "tasks like question": 162723, "like question answering": 92382, "llama gpt35 palm": 93313, "training data bias": 168232, "demonstrate llms perform": 38414, "llms perform significantly": 96076, "perform significantly worse": 121037, "language models plan": 85885, "plan execute actions": 123208, "prompting improve performance": 130957, "improve performance large": 73554, "llms complex reasoning": 94666, "examples intermediate steps": 52620, "prompting framework improve": 130940, "plan execution specifically": 123210, "specifically given question": 154215, "zeroshot fewshot prompting": 180182, "fewshot prompting llms": 58031, "zeroshot chainofthought prompting": 180138, "step leveraging llms": 155655, "recognition asr systems": 138046, "generalpurpose speech recognition": 63369, "speech recognition model": 154458, "content enable better": 30484, "inspired observation introduce": 77742, "behavior results suggest": 16642, "overcome limitations present": 118303, "language models far": 84524, "geopolitical biases language": 65738, "model llm answer": 103974, "chinese tagalog vietnamese": 23666, "set multiplechoice questions": 149246, "various multilingual llms": 176044, "language model reasoning": 83872, "models llms improve": 107548, "answering qa datasets": 9928, "provide empirical evidence": 132765, "llms suffer poor": 96721, "specialized language models": 153895, "backbone language model": 15414, "reasoning key insight": 136937, "experts select best": 54683, "selective question answering": 147906, "instructing large language": 77955, "aligned large language": 8064, "prompts paper propose": 131402, "utilize incontext learning": 175051, "instruction ask llms": 77965, "ask llms provide": 12852, "significantly higher quality": 151012, "outperforms existing opensource": 117762, "combination large language": 25829, "sparse mixtureofexperts moe": 153736, "models llms increasing": 107563, "llms increasing inference": 95599, "cost instruction tuning": 32695, "training llms follow": 168553, "llms follow instructions": 95289, "models benefit instruction": 105485, "benefit instruction tuning": 17436, "conduct empirical studies": 29074, "zeroshot generalization downstream": 180197, "generalization downstream tasks": 63168, "downstream tasks iii": 44792, "benchmark tasks using": 17106, "language models diffusion": 84385, "models diffusion models": 105978, "symbols propose new": 159838, "new task generating": 113447, "model implicit meaning": 103825, "collaboration large language": 25591, "models llms diffusion": 107308, "llms diffusion models": 94935, "create highquality dataset": 33202, "evaluation extrinsic evaluation": 51585, "contextaware decoding cad": 30979, "training significantly improves": 168745, "substantial improvements tasks": 158074, "models llms produce": 107755, "novel data set": 114456, "nature humanai interaction": 112007, "paper sheds light": 119328, "make correct inferences": 98514, "emphasize need research": 47633, "commonsense question answering": 26297, "evaluates models capacity": 51243, "leverage external knowledge": 91590, "knowledge commonsense knowledge": 81821, "synthetic qa pairs": 160064, "tackle limitations propose": 160835, "methods including large": 101592, "language models gpt35": 84613, "models gpt35 chatgpt": 106536, "codes data model": 25292, "model checkpoints available": 103274, "strategy effective finetuning": 156132, "work investigate capacity": 179066, "commonsense reasoning tasks": 26320, "task generating text": 161429, "high degree agreement": 69441, "models llms natural": 107665, "conversational abilities llms": 31818, "llms specifically trained": 96671, "building dialog systems": 19389, "systems using llms": 160665, "prompt prompt tuning": 130644, "contributes better understanding": 31432, "language models order": 85831, "results language models": 143552, "lays groundwork future": 89715, "reveals large language": 144430, "multiarmed bandit task": 110347, "improve performance llm": 73558, "findings demonstrate llms": 58657, "correct reasoning steps": 32411, "substantial performance gains": 158088, "llms shown perform": 96554, "reasoning tasks llms": 137182, "llms increasingly deployed": 95602, "demonstrate current models": 38281, "capabilities case study": 19808, "predictability large language": 125718, "experiments using different": 54511, "using different model": 174136, "warrant investigation study": 177725, "temporal relations events": 164280, "counterfactual data augmentation": 32942, "data augmentation based": 34668, "models plms large": 108536, "plms large language": 123615, "models llms additional": 107089, "llms additional training": 94343, "additional training data": 5012, "demonstrations incontext learning": 39015, "incontext learning experiments": 74892, "temporal reasoning tasks": 164276, "zeroshot reasoning tasks": 180322, "reasoning tasks require": 137196, "tasks require multistep": 163147, "information address limitations": 76269, "language model planning": 83835, "shown remarkable reasoning": 150368, "remarkable reasoning capabilities": 140283, "reasoning capabilities especially": 136700, "reasoning steps chainofthought": 137144, "generating action plans": 64130, "limitations propose new": 92646, "propose new llm": 131964, "llm world model": 94101, "carlo tree search": 20824, "tasks demonstrate superiority": 162182, "existing knowledge graphs": 53395, "models llms gap": 107455, "end introduce new": 48664, "publicly available llms": 133653, "correlation model size": 32550, "deep learning approaches": 37728, "finetuning strategies pretrained": 59564, "models plms demonstrated": 108526, "plms demonstrated remarkable": 123584, "chatgpt gpt35 gpt4": 23006, "models llms serving": 107855, "dataset specifically designed": 36555, "furthermore analyze factors": 62013, "commonsense knowledge largescale": 26276, "development language models": 41144, "code dataset available": 24763, "llms demonstrated powerful": 94863, "demonstrated powerful capabilities": 38743, "code generation language": 24894, "drawn great attention": 44949, "framework tackle problems": 61445, "carefully designing prompts": 20811, "taskspecific evaluation metrics": 163518, "gpt4 experimental results": 67003, "nlp tasks tackle": 113906, "data realworld data": 35611, "improve performance classifiers": 73542, "role nlp research": 145519, "data specific tasks": 35788, "models using causal": 109583, "mathematical reasoning large": 99592, "significant attention recent": 150613, "models process store": 108658, "process store information": 128994, "lms experimental results": 97134, "results indicate lms": 143511, "different model components": 41856, "models recent large": 108830, "llms frequently fail": 95305, "frequently fail complex": 61622, "complex decisionmaking tasks": 27397, "decisionmaking tasks misalignment": 37447, "pretrained knowledge llms": 126851, "existing methods require": 53463, "hotpotqa code available": 70444, "adaptation language models": 4629, "world knowledge parameters": 179575, "language modeling loss": 84004, "models ability answer": 105174, "ability answer questions": 2066, "models recent advances": 108824, "models llms stimulated": 107945, "improvement paper introduce": 73831, "novel neural architecture": 114613, "understanding capability llms": 171150, "bridges gap vision": 19082, "gap vision language": 62749, "vision language understanding": 176944, "understanding paving way": 171399, "tasks event extraction": 162333, "data human annotation": 35162, "data generation methods": 35115, "generation methods rely": 64830, "performance address challenges": 121135, "generation method leverages": 64827, "method leverages large": 100962, "models llms synthesize": 107962, "performance approach involves": 121156, "approach involves generating": 11321, "improve data quality": 73442, "improve performance lowresource": 73561, "event extraction relation": 52079, "extraction relation extraction": 56347, "instruction learning large": 78034, "llms significantly improved": 96604, "language generation instruction": 83350, "generation instruction following": 64748, "instruction following abilities": 78006, "training set containing": 168732, "finetune llama7b model": 58940, "model needs learn": 104122, "openended question answering": 116502, "answering fact checking": 9854, "recent studies shown": 137672, "studies shown large": 157083, "models llms possess": 107725, "deductive reasoning ability": 37698, "given chainofthought prompts": 65847, "reasoning ability llms": 136646, "set deduction rules": 149172, "various sizes training": 176169, "intelligence ai machine": 78752, "ai machine learning": 7075, "recent years development": 137775, "ai language model": 7054, "internet things iot": 79595, "robotics computer vision": 145204, "chainofthought prompting cot": 21518, "models llms particularly": 107708, "llms particularly dealing": 96052, "dealing complex tasks": 37269, "complex tasks involving": 27613, "llms remain elusive": 96387, "produce correct answers": 129386, "model size grows": 104596, "extensive set experiments": 55950, "generate correct solutions": 63445, "demonstrations large language": 39022, "models llms capture": 107161, "harnessing power large": 68836, "translation translating natural": 169539, "achieve similar performance": 3743, "similar performance gpt4": 151288, "supervised finetuning sft": 159123, "finetuning sft reinforcement": 59534, "sft reinforcement learning": 149744, "framework initially trains": 61226, "reward model train": 144694, "embodied decision making": 47309, "decision making language": 37372, "making language models": 98765, "world large language": 179582, "agents capable performing": 6558, "capable performing diverse": 20458, "performing diverse tasks": 122399, "face challenges efficiently": 56517, "leading suboptimal performance": 89862, "seek additional information": 147652, "leveraging external knowledge": 91844, "information using natural": 76838, "enhance efficiency performance": 49191, "empirically evaluate method": 47789, "exhibit remarkable performance": 53094, "tasks previous methods": 162990, "previous methods struggle": 127614, "methods struggle solve": 101842, "language model finetune": 83643, "gap open closed": 62691, "research areas explore": 141599, "adopted large language": 5603, "models llms hard": 107515, "scale long sequences": 146310, "study present novel": 157539, "contextual information preserving": 31096, "notably empirical findings": 114265, "tasks offering valuable": 162877, "hallucinations large language": 68438, "language models evaluation": 84468, "mitigation large language": 102690, "context work present": 30974, "work present comprehensive": 179175, "lms generate text": 97145, "achieves high accuracy": 4019, "does require external": 44021, "current large language": 34147, "artificial intelligence language": 12742, "intelligence language models": 78847, "question answering leveraging": 134752, "external knowledge enhance": 56065, "reasoning ability crucial": 136638, "question answering existing": 134709, "existing knowledge bases": 53394, "heavily rely manual": 69048, "rely manual annotation": 139872, "models llms dramatically": 107323, "grounded language models": 67870, "language models sentence": 86141, "learned large language": 90106, "ability recent work": 2345, "compositional visual question": 27824, "sentence embedding models": 148495, "complex reasoning problems": 27560, "tasks paper introduces": 162916, "aspects human cognition": 12944, "active learning mechanism": 4436, "multiple reasoning datasets": 111017, "stateoftheart benchmarks demonstrating": 155091, "language model llmbased": 83782, "training new task": 168606, "models performance previous": 108493, "performance previous tasks": 121940, "memory module store": 100432, "downstream tasks evaluation": 44778, "tasks evaluation results": 162330, "method improves training": 100922, "object manipulation tasks": 115144, "language models visual": 86378, "perform complex tasks": 120901, "data different modalities": 34914, "data image text": 35175, "text video audio": 165569, "imperative develop effective": 72797, "language models fact": 84519, "conversational question answering": 31905, "models known produce": 106852, "language models widespread": 86397, "widespread use large": 178478, "llms nlp tasks": 95942, "generating intermediate steps": 64261, "human thought processes": 71062, "models human thought": 106640, "significant improvement strong": 150738, "achieves comparable results": 3989, "despite having fewer": 40120, "question generation qg": 134883, "task generating valid": 161430, "evaluation using large": 51919, "experiments using multiple": 54514, "higher correlation human": 69587, "shown astonishing performance": 150212, "reasoning tasks paper": 137193, "paper investigate reason": 119035, "framework integrates large": 61231, "language model learns": 83713, "extensive experiments challenging": 55810, "challenging realworld datasets": 22250, "realworld datasets demonstrate": 136434, "language models significantly": 86166, "significantly outperform stateoftheart": 151080, "english large language": 49072, "processing nlp applications": 129208, "text generation applications": 165128, "trained limited data": 167986, "different tasks paper": 42036, "diversity data sources": 43720, "information retrieval semantic": 76734, "extensive experiments largescale": 55853, "november 30 2022": 114769, "family large language": 57196, "supervised reinforcement learning": 159167, "reinforcement learning techniques": 139117, "knowledge study explore": 82437, "common software engineering": 26195, "test case prioritization": 164522, "using chatgpt study": 174044, "respective state art": 142529, "chatgpt does perform": 22863, "model selection model": 104533, "essential software engineering": 50633, "like image captioning": 92316, "concerns environmental impact": 28780, "learning models based": 90707, "employs large language": 47967, "optimizing resource utilization": 117127, "able identify model": 2520, "blackbox language models": 18636, "new tasks domains": 113451, "whitebox access model": 178229, "model weights available": 104892, "method adapting large": 100652, "small validation set": 152381, "approach adapting large": 10963, "multimodal neural networks": 110739, "new research questions": 113389, "future artificial intelligence": 62226, "reward reinforcement learning": 144709, "try answer questions": 169908, "time large language": 166429, "manages kv cache": 98899, "inference memory usage": 76052, "model weights achieve": 104890, "assess large language": 13092, "performance varies widely": 122237, "work sheds light": 179290, "future research modeling": 62355, "models propose method": 108707, "textonly large language": 165664, "pretrained image encoder": 126842, "image generation multimodal": 72264, "text inputs generate": 165250, "texttoimage generation model": 165816, "text embedding space": 165043, "approach outperforms baseline": 11424, "image generation model": 72262, "language models process": 85966, "generated text outperforming": 64014, "solve diverse tasks": 153117, "role analogical reasoning": 145460, "agents different levels": 6582, "demonstrate use case": 38598, "complex interactive reasoning": 27444, "interactive reasoning tasks": 79335, "models llms enhance": 107361, "clear large language": 24273, "gaussian mixture models": 62833, "generative models demonstrate": 65484, "data scraped web": 35711, "content generated llms": 30507, "data crawled internet": 34867, "parameterefficient tuning methods": 119686, "use latent stochastic": 172729, "better performance achieved": 17961, "lowresource languages paper": 97913, "multilingual performance llms": 110529, "llms specifically focusing": 96665, "qa datasets present": 133880, "true potential llms": 169812, "resulting substantial performance": 143139, "second introduce new": 147481, "llms introduce novel": 95676, "introduce novel learning": 80060, "languages language models": 87036, "perspective language models": 122673, "language models finetuned": 84538, "finetuned reinforcement learning": 59098, "ouyang et al": 118169, "limitations reinforcement learning": 92654, "wu et al": 179815, "language processing techniques": 86646, "responses natural language": 142857, "natural language visual": 111928, "introduces new benchmark": 80198, "benchmark evaluation dataset": 16965, "evaluation dataset task": 51528, "automated evaluation metrics": 14548, "evaluation metrics evaluate": 51721, "dataset evaluation code": 36267, "evaluation code available": 51480, "language models detecting": 84372, "pretraining transfer learning": 127467, "dataset social media": 36548, "social media tweets": 152631, "conducted experiments using": 29243, "experiments using zeroshot": 54518, "hypothesis language models": 71623, "models fewshot finetuning": 106324, "limited data availability": 92742, "provides insights potential": 133170, "language models power": 85926, "highlighting strengths limitations": 69839, "leveraging advanced natural": 91799, "language models scientific": 86132, "llms trained large": 96828, "trained large corpus": 167968, "corpus scientific literature": 32354, "examines potential llms": 52436, "background knowledge using": 15439, "models chatgpt gpt4": 105615, "chatgpt gpt4 llama": 23022, "work provides systematic": 179244, "provides systematic assessment": 133226, "biomedical knowledge bases": 18549, "open source model": 116301, "factual knowledge bases": 56881, "based prompt learning": 16038, "language model gpt4": 83672, "multiple instance learning": 110943, "fewshot learning problems": 57976, "drawing inspiration recent": 44932, "models vl models": 109648, "fewshot classification tasks": 57893, "small number labeled": 152338, "fewshot prompt learning": 58021, "fewshot labeled data": 57942, "data conduct extensive": 34825, "performance proposed method": 121960, "assessments study explores": 13307, "open ais generative": 116202, "ai detection tool": 6952, "research contributes understanding": 141669, "academic integrity impact": 2740, "systematic review literature": 160148, "chatgpt widely used": 23437, "language processing tools": 86650, "revolutionize various industries": 144634, "ensure responsible use": 49700, "explored work present": 55376, "language models testing": 86280, "phase thematic analysis": 122807, "building previous work": 19440, "utility large language": 174958, "models generative ai": 106474, "generative ai education": 65314, "use natural language": 172774, "processing nlp techniques": 129263, "language models realistic": 86033, "approach using generative": 11643, "generative text models": 65601, "demonstrate feasibility usefulness": 38340, "reasoning chainofthought cot": 136735, "cot prompting large": 32889, "language models proven": 85996, "models proven effective": 108721, "large training data": 89077, "supervised learning techniques": 159147, "learning techniques address": 91065, "gao et al": 62604, "al 2022 proposed": 7732, "programs intermediate reasoning": 129913, "programs large language": 129915, "language model program": 83857, "training data experiments": 168258, "demonstrate effectiveness approaches": 38295, "significant improvements previous": 150750, "language models prompted": 85981, "syntax semantics present": 159926, "novel evaluation dataset": 114488, "search engine queries": 147338, "recent multimodal large": 137568, "tasks image captioning": 162524, "captioning question answering": 20594, "work address limitation": 178773, "visual captioning question": 177126, "question answering present": 134773, "multimodal model capable": 110719, "bounding boxes given": 18919, "language models handle": 84632, "models reveal biases": 108986, "method commonly used": 100744, "autoregressive text generation": 15012, "text generation scenarios": 165183, "gpt3 chatgpt gpt4": 66664, "students large language": 156873, "models increasingly integrated": 106741, "increasingly integrated lives": 75414, "order avoid perpetuating": 117177, "cuttingedge language models": 34435, "models gpt3 chatgpt": 106532, "cognitive psychology specifically": 25475, "use data obtained": 172578, "llms language generation": 95717, "language generation task": 83384, "language model application": 83527, "financial domain common": 58567, "use large pretrained": 172714, "domain large language": 44216, "fine tuning domain": 58842, "tuning domain specific": 169996, "content aigc garnered": 30430, "content faster pace": 30497, "security privacy ethical": 147612, "need addressed paper": 112219, "paper presents indepth": 119165, "future challenges aigc": 62235, "taxonomy security privacy": 163585, "ethical societal implications": 50840, "challenges open research": 21975, "representations large language": 140832, "abstract reasoning ability": 2656, "representations significantly improve": 140885, "prior research shown": 127928, "database large language": 35995, "making easier users": 98731, "available research data": 15196, "language models knowledgeintensive": 84752, "models knowledgeintensive tasks": 106850, "knowledgeintensive tasks large": 82568, "llms shown promising": 96560, "shown promising performance": 150341, "promising performance knowledgeintensive": 130286, "deployment llms realworld": 39289, "challenging high computational": 22170, "high computational requirements": 69421, "concerns data privacy": 28775, "previous studies focused": 127667, "knowledge retrieved external": 82386, "retrieved external knowledge": 144244, "knowledge base propose": 81775, "improves performance small": 74055, "augment language models": 14245, "data test time": 35860, "narrows performance gap": 111475, "training language modeling": 168517, "comprehensive evaluation chatgpt": 28006, "benchmark datasets development": 16907, "model ground truth": 103774, "thorough evaluation chatgpts": 166185, "evaluation chatgpts performance": 51476, "datasets covering tasks": 36747, "text summarization code": 165503, "generation commonsense reasoning": 64510, "strengths weaknesses chatgpt": 156273, "chatgpt various tasks": 23428, "tasks provide insights": 163043, "insights future research": 77567, "research using llms": 142141, "models extensive evaluation": 106273, "evaluation shows chatgpt": 51860, "performance benchmark datasets": 121193, "solve challenging tasks": 153101, "performance diverse nlp": 121414, "complex reasoning large": 27557, "various prompting methods": 176125, "prompting methods generate": 131016, "method zeroshot fewshot": 101178, "perform extensive ablation": 120944, "compared natural language": 26864, "natural language consider": 111566, "prompting cot prompting": 130890, "llms knowledge editing": 95703, "new task formulation": 113446, "propose novel effective": 131995, "news articles published": 113551, "benchmark experimental results": 16970, "results demonstrate superiority": 143339, "demonstrate superiority approach": 38578, "factual consistency score": 56861, "described plain text": 39383, "highlighting strengths weaknesses": 69840, "complex mathematical problems": 27472, "answers given question": 10032, "existing work shown": 53646, "work shown models": 179303, "language models goal": 84599, "language model outperforms": 83818, "model outperforms gpt2": 104177, "models llms incorporate": 107558, "scenarios conduct experiments": 146564, "quantitative qualitative results": 134375, "results demonstrated proposed": 143344, "creates training data": 33283, "training data machine": 168303, "data machine learning": 35335, "language visionlanguage models": 86894, "using oneshot prompting": 174550, "used large language": 173129, "small manually annotated": 152318, "manually annotated dataset": 99075, "quadratic weighted kappa": 133967, "exceptional performance tasks": 52828, "empirical findings suggest": 47706, "empirical study provide": 47761, "multistep reasoning problems": 111190, "models question answering": 108756, "task generate answer": 161423, "answer given question": 9721, "language model advancements": 83519, "used generate answers": 173085, "use knowledge distillation": 172690, "chatgpts gpt35 gpt4": 23494, "multiple dimensions including": 110894, "strongly align human": 156494, "thinking large language": 166153, "like chatgpt shown": 92242, "performance general language": 121570, "general language tasks": 62977, "language tasks struggle": 86775, "tasks struggle complex": 163293, "struggle complex reasoning": 156737, "multiagent debate mad": 110315, "arithmetic reasoning demonstrate": 12488, "altering model weights": 8538, "set pretrained models": 149274, "models generated data": 106465, "models llms ability": 107057, "llms ability comprehend": 94254, "paper introduces approach": 119007, "approach uses pretrained": 11640, "additionally demonstrate approach": 5040, "results highlight ability": 143453, "classincremental learning cil": 24224, "real world requires": 136275, "advances visionlanguage models": 6074, "visionlanguage models vlm": 177065, "catastrophic forgetting knowledge": 21072, "poses major challenges": 124214, "visual textual features": 177323, "capture semantic information": 20678, "ability extensive experiments": 2161, "benchmark datasets validate": 16918, "downstream tasks remains": 44830, "tasks remains unclear": 163132, "remains unclear paper": 140089, "paper conduct systematic": 118802, "empirical study comparing": 47749, "tasks findings reveal": 162407, "downstream tasks importantly": 44793, "models performance overall": 108490, "performance overall work": 121888, "integrating commonsense knowledge": 78586, "results using large": 143904, "language models procedural": 85965, "introduce novel task": 80073, "novel task counterfactual": 114707, "larger teacher models": 89256, "reasoners large language": 136613, "models shown tremendous": 109118, "common sense reasoning": 26189, "llms achieve humanlike": 94295, "new benchmark evaluating": 113090, "benchmark evaluating language": 16954, "language models memorization": 85733, "perform extensive evaluations": 120946, "evaluations stateoftheart llms": 52029, "improve performance nlp": 73563, "text generation large": 165149, "remarkable success wide": 140302, "existing prompting methods": 53538, "simple effective technique": 151441, "generation tasks including": 65162, "tasks including summarization": 162580, "including summarization translation": 74740, "outperforms existing prompting": 117763, "stateoftheart performance multiple": 155280, "generation tasks provide": 65179, "indepth analyses reveal": 75513, "interpreting language model": 79735, "llms led remarkable": 95749, "introduces novel automated": 80206, "conventional methods require": 31714, "tool automatically extracts": 166948, "truncation saliency methods": 169828, "dataset examples diverse": 36273, "examples diverse samples": 52563, "diverse samples better": 43639, "neuron behaviour graphs": 113011, "behaviour graphs visualised": 16734, "graphs visualised aid": 67655, "token activations text": 166690, "neurons ground truth": 113021, "ground truth activations": 67837, "transformer model using": 169174, "improved ability perform": 73669, "ability perform complex": 2310, "multistep reasoning stateoftheart": 111191, "given high cost": 65897, "high cost human": 69434, "recent work begun": 137719, "models solve problems": 109179, "challenging math dataset": 22202, "test set additionally": 164619, "human feedback labels": 70805, "labels used train": 82839, "information retrieval successfully": 76735, "customer service healthcare": 34384, "conversation user elicit": 31814, "user elicit information": 173400, "todays foundation models": 166673, "existing manually generated": 53430, "trained reinforcement learning": 168059, "questions asked humans": 135049, "retrieval extensive evaluations": 144052, "nlp models domain": 113769, "capabilities fewshot learning": 19899, "current research focuses": 34226, "developed benchmark comprised": 40861, "including classification qa": 74454, "finetuned fewshot models": 59018, "reliable metric assessing": 139740, "offer potential solutions": 115684, "potential solutions issues": 124992, "enhance learning outcomes": 49224, "research highlights potential": 141828, "highlights potential llms": 69872, "potential llms educational": 124837, "llms educational settings": 95004, "artificial intelligence assessing": 12713, "events large language": 52117, "models llms dialogue": 107306, "models visionlanguage tasks": 109640, "visionlanguage vl tasks": 177092, "reasoning tasks inspired": 137180, "projected semantic space": 130094, "visual information model": 177190, "observations propose novel": 115348, "propose novel transfer": 132040, "novel transfer learning": 114726, "shift single multimodal": 149923, "extensive experiments set": 55884, "reasoning benchmarks including": 136687, "language models vl": 86379, "image question answering": 72312, "models achieved significant": 105248, "achieved significant progress": 3893, "bounding box coordinates": 18917, "language foundation models": 83332, "foundation models recently": 60802, "recently shown promising": 137995, "shown promising potential": 150342, "potential zeroshot learning": 125079, "instructiontuning language models": 78411, "address issue developed": 5256, "pretrained models help": 127080, "upsurge pretrained large": 172394, "pretrained large models": 127008, "large models gpt4": 88924, "multimodal understanding capability": 110781, "new stateoftheart performances": 113427, "visual perception tasks": 177244, "perception tasks paper": 120826, "enhance representation ability": 49282, "tasks image classification": 162525, "taking advantage large": 161004, "advantage large pretrained": 6113, "pretrained models present": 127101, "models present new": 108601, "learning paradigm knowledge": 90808, "knowledge extracted large": 81990, "models utilized help": 109603, "representations achieve better": 140761, "generate descriptive text": 63455, "rich semantic information": 144801, "achieve higher accuracy": 3661, "llms conduct extensive": 94694, "extensive experiments verify": 55899, "verify proposed algorithm": 176538, "performance various vision": 122280, "language modeling large": 83998, "modeling large language": 105028, "language models output": 85836, "long chains reasoning": 97437, "language models simple": 86171, "task requires model": 161697, "encoder decoder recent": 48414, "dealing long sequences": 37274, "long sequences hierarchical": 97475, "models paper propose": 108419, "model based hierarchical": 103185, "significantly reduces memory": 151139, "reduces memory requirements": 138523, "zeroshot generalization abilities": 180192, "like gpt4 outperform": 92299, "llms specifically gpt4": 96667, "common natural language": 26163, "nlp tasks exhibit": 113842, "used practical applications": 173178, "experimental validation paper": 54099, "paper explore potential": 118916, "explore potential llms": 55266, "setting experimental results": 149454, "experimental results real": 54064, "potential future advancements": 124730, "propose future research": 131843, "guided generation large": 68225, "paper investigate efficacy": 119029, "existing methods based": 53440, "furthermore introduce concept": 62100, "respect model size": 142510, "english foreign language": 49053, "foreign language efl": 60394, "hong kong secondary": 70338, "opensource language models": 116619, "endtoend automatic speech": 48727, "vast amounts training": 176323, "paper investigates effectiveness": 119050, "contextual biasing whisper": 31073, "model inference large": 103855, "models llms large": 107596, "large foundation models": 87256, "datasets language models": 36943, "language models researchers": 86090, "social science research": 152662, "text variety domains": 165562, "speech language models": 154425, "language models prompts": 85986, "llms gained considerable": 95322, "attention artificial intelligence": 13843, "adaptation continuous speech": 4604, "speech classification tasks": 154389, "generation tasks speech": 65183, "open question paper": 116273, "question paper present": 134915, "various generation tasks": 175959, "generation tasks unified": 65185, "tasks unified framework": 163410, "holds great promise": 70269, "available project website": 15184, "models llms decisionmaking": 107240, "present comprehensive benchmark": 126253, "comprehensive benchmark study": 27968, "gain deeper insights": 62441, "compare performance popular": 26714, "performance popular llms": 121917, "popular llms gpt4": 124016, "llms gpt4 gpt35": 95435, "comparisons ablation studies": 27075, "significantly enhances performance": 150997, "new chinese dataset": 113109, "turn experimental results": 170172, "data code available": 34763, "clinical notes using": 24352, "notes using large": 114310, "chatgpt versions 35": 23431, "google bard claude": 66311, "ensembling large language": 49658, "consistently superior performance": 29925, "opensource large language": 116621, "models llms framework": 107437, "introduce benchmark dataset": 79923, "multiple instruction datasets": 110946, "methods various metrics": 101926, "model downstream tasks": 103495, "including language understanding": 74580, "language understanding text": 86864, "text summarization model": 165508, "model performs similarly": 104273, "recent research focused": 137623, "research focused enhancing": 141800, "models imitation learning": 106674, "outputs generated large": 118058, "model learns imitate": 103948, "thought processes complex": 166232, "surpasses conventional stateoftheart": 159477, "zeroshot reasoning benchmarks": 180320, "advanced ai models": 5699, "improve model capabilities": 73516, "using prompt engineering": 174614, "incorporating large language": 75112, "model llm gpt35": 104006, "propose innovative approach": 131879, "prompt engineering develop": 130452, "implications various applications": 72963, "language model video": 83953, "models llms capability": 107156, "visual auditory content": 177121, "auditory content video": 14228, "unlike previous works": 172017, "visual audio signals": 177119, "videototext generation task": 176798, "comprehend video content": 27863, "generate meaningful responses": 63607, "grounded visual auditory": 67880, "visual auditory information": 177123, "practices language model": 125512, "drive progress foundation": 44977, "progress foundation models": 129966, "presents empirical evaluation": 126573, "empirical evaluation performance": 47683, "performance generative pretrained": 121589, "transformer gpt model": 169136, "ability generate code": 2184, "paper concludes discussing": 118791, "capacity pretrained language": 20537, "relationships remains unclear": 139352, "models llms flexibly": 107430, "results showed finetuned": 143789, "blackbox large language": 18638, "using opensource llm": 174563, "improving zeroshot performance": 74242, "downstream tasks code": 44766, "tasks code data": 162053, "code data publicly": 24756, "large generative ai": 87267, "generate harmful content": 63527, "transfer learning capabilities": 168937, "existing ml models": 53478, "paper investigates capabilities": 119047, "diverse domains including": 43514, "explore potential chatgpt": 55259, "improve writing style": 73662, "furthermore highlight potential": 62089, "highlight potential risks": 69774, "potential risks associated": 124953, "limited logical reasoning": 92799, "logical reasoning abilities": 97375, "chatgpt proves beneficial": 23226, "work large language": 179086, "nlp classification tasks": 113703, "classification tasks finetuning": 24117, "reduce training time": 138481, "dynamic data pruning": 45123, "finetuning method leverages": 59377, "results glue benchmark": 143437, "models llms incurs": 107572, "early training models": 45269, "training models trained": 168590, "moving average ema": 110236, "results publicly available": 143717, "llms ranging 1b": 96291, "language models brought": 84201, "nlp software engineering": 113809, "openais gpt series": 116408, "nlp applications models": 113690, "trained massive corpora": 167998, "expensive train deploy": 53816, "data design decisions": 34903, "pretrained models work": 127117, "models including using": 106722, "models previous sota": 108639, "model trained data": 104759, "consistently outperform baselines": 29893, "ai systems remains": 7259, "systems remains challenging": 160584, "remains challenging task": 139991, "language models examining": 84473, "potential practical utility": 124912, "conducted semistructured interviews": 29285, "discuss design implications": 42885, "exploring role ai": 55506, "role ai assistants": 145458, "introductory programming courses": 80272, "evaluated performance chatgpt": 51201, "answers language model": 10043, "number attention heads": 114826, "data despite success": 34906, "despite success llms": 40229, "experiments verify theoretical": 54537, "models llms particular": 107707, "make specific use": 98605, "language models follow": 84549, "gpt2 models scratch": 66571, "language models tend": 86276, "models tend learn": 109370, "language models overall": 85838, "overall results shed": 118230, "process natural language": 128926, "models llms providing": 107778, "llms providing explicit": 96264, "llms excel various": 95124, "excel various tasks": 52779, "relation extraction machine": 139249, "extraction machine translation": 56319, "translation sentiment analysis": 169514, "different prompt engineering": 41935, "prompt engineering strategies": 130485, "new effective approach": 113160, "prompt lets think": 130590, "step step prompt": 155685, "marks significant step": 99275, "validate effectiveness proposed": 175313, "requiring complex reasoning": 141476, "project website available": 130090, "ability capture longrange": 2088, "data augmentation fewshot": 34673, "training samples available": 168712, "data augmentation framework": 34675, "extensive experiments widely": 55902, "experiments widely used": 54544, "widely used benchmarks": 178391, "consistently outperforms competitive": 29902, "validating effectiveness proposed": 175354, "finetunes language models": 59146, "text data generation": 164985, "interventions large language": 79803, "llms used generate": 96909, "used generate text": 173090, "text data training": 164995, "data training evaluating": 35877, "training evaluating models": 168423, "target domain address": 161060, "domain address issue": 44087, "accuracy models trained": 3313, "models trained data": 109423, "social media users": 152633, "complex structured data": 27598, "capabilities generative pretrained": 19921, "reasoning capability current": 136719, "llms experimental results": 95185, "zeroshot prompting fewshot": 180302, "prompting fewshot incontext": 130934, "incontext learning llms": 74943, "prompting method significantly": 131012, "enhancing incontext learning": 49493, "recent emergence large": 137487, "like chatgpt exhibited": 92222, "performance large gap": 121717, "output paper propose": 117971, "new prompting strategy": 113362, "consistently improves llms": 29883, "llms incontext learning": 95584, "evaluating robustness large": 51386, "language models adversarial": 84093, "models adversarial prompts": 105307, "increasing reliance large": 75355, "reliance large language": 139780, "resilience adversarial prompts": 142324, "adversarial textual attacks": 6237, "character word sentence": 22442, "maintaining semantic integrity": 98380, "language inference reading": 83429, "inference reading comprehension": 76087, "datasets findings demonstrate": 36868, "furthermore present comprehensive": 62131, "present comprehensive analysis": 126252, "far large language": 57225, "chatgpt recently gained": 23257, "shown remarkable abilities": 150350, "new opensource benchmark": 113307, "aspect human language": 12908, "conducted series experiments": 29287, "challenging distribution shifts": 22150, "conduct series experiments": 29175, "experiments pretrained language": 54398, "significant improvement compared": 150733, "finetuning evaluate llms": 59249, "incontext learning yields": 74986, "learning yields better": 91148, "yields better results": 180015, "models llms face": 107415, "llms face challenges": 95232, "face challenges effectively": 56516, "social science applications": 152661, "papers rapid growth": 119405, "need tools help": 112410, "specifically explore potential": 154201, "explore potential benefits": 55257, "potential benefits using": 124623, "pubmed 200k rct": 133704, "models llms llama": 107639, "results indicate using": 143523, "does improve performance": 43989, "nlp tasks enhance": 113839, "human cost paper": 70671, "preference learning enables": 126013, "enables model learn": 48221, "learning framework called": 90477, "benchmarks demonstrate proposed": 17210, "models work introduces": 109707, "text classification sequence": 164901, "classification sequence labeling": 24088, "training data greatly": 168272, "evaluation chatgpt gpt4": 51474, "little known performance": 93241, "realworld use cases": 136534, "use cases paper": 172535, "identify research challenges": 71953, "critically evaluate llms": 33579, "foundation language model": 60725, "language model geoscience": 83660, "llms achieved great": 94304, "success general domains": 158245, "research applications field": 141589, "instruction tuning dataset": 78079, "geoscience domain specifically": 65744, "data finetune model": 35056, "models using large": 109592, "model llm use": 104030, "transformer models gpt": 169177, "preliminary findings suggest": 126131, "models like openais": 106995, "like openais gpt": 92372, "generative ai content": 65311, "language models software": 86189, "models software testing": 109173, "models llms suggest": 107959, "discuss potential limitations": 42930, "examining large language": 52449, "general intelligence large": 62966, "abilities language understanding": 1938, "understanding domain knowledge": 171198, "knowledge problemsolving skills": 82310, "questions test models": 135305, "lowresource nonlatin script": 97929, "perform poorly complex": 121007, "mae generative pretraining": 98192, "analysis indicates models": 8974, "models pretrained masked": 108621, "video understanding large": 176744, "visual encoder llm": 177164, "capable understanding generating": 20479, "understanding generating humanlike": 171248, "pairs used train": 118630, "models code models": 105653, "address gap introduce": 5232, "dataset million samples": 36411, "domain fact verification": 44164, "multimodal fake news": 110632, "fake news dataset": 57100, "instruction tuning language": 78106, "models demonstrated ability": 105898, "model generalization unseen": 103709, "unseen tasks incontext": 172188, "incontext learning using": 74980, "supervised learning requires": 159142, "supervised finetuning work": 159130, "perform transfer learning": 121072, "match performance stateoftheart": 99421, "performance stateoftheart sota": 122113, "supervised models conduct": 159159, "settings findings reveal": 149578, "demonstrate instruction tuning": 38387, "mental health care": 100496, "language models useful": 86354, "popularity ability generate": 124079, "domains including limited": 44434, "face challenges using": 56521, "challenges using chatgpt": 22093, "detection language model": 40537, "model generated text": 103732, "generated text chatgpt": 64005, "nlp led development": 113756, "led development large": 91219, "chatgpt paper proposes": 23171, "paper proposes methodology": 119266, "effectively detect chatgptgenerated": 45974, "detect chatgptgenerated text": 40349, "language instructions complete": 83446, "instructions complete complex": 78216, "complete complex tasks": 27274, "user interaction patterns": 173436, "interaction patterns based": 79160, "models llms building": 107154, "building generalist agent": 19415, "llm hallucinations using": 93732, "models suffer hallucinations": 109286, "ensuring users receive": 49763, "datasets paper propose": 37025, "paper propose leverage": 119228, "methods trained limited": 101883, "introduce novel metrics": 80064, "3d content creation": 1127, "content creation process": 30464, "using foundation models": 174217, "foundation models large": 60776, "neural networks pretrained": 112940, "soft prompt tuning": 152737, "attains high accuracy": 13770, "modifying factual knowledge": 109890, "factual knowledge large": 56885, "models llms store": 107947, "fail provide accurate": 56972, "metrics assess accuracy": 102005, "llms exhibit limitations": 95144, "make code data": 98501, "graduation examination vnhsge": 67431, "chatgpts performance varies": 23502, "performance varies depending": 122234, "study shown chatgpt": 157633, "correctly answering questions": 32459, "data address challenges": 34596, "address challenges presented": 5189, "trained specific tasks": 168083, "specific tasks require": 154108, "require substantial amounts": 141202, "labeled data paper": 82716, "data paper introduces": 35462, "unsupervised pretraining model": 172264, "stateoftheart results wide": 155343, "results wide variety": 143934, "language models impressive": 84675, "spanning multiple domains": 153682, "general language model": 62973, "language model distillation": 83608, "language models poses": 85920, "models poses challenge": 108563, "knowledge distillation methods": 81887, "address problems propose": 5350, "propose general language": 131847, "strong performance specifically": 156425, "structure models need": 156586, "achieving average score": 4149, "news articles based": 113549, "language models emerged": 84424, "models emerged promising": 106074, "emerged promising approach": 47393, "generalpurpose ai agents": 63334, "interaction natural language": 79151, "language processing human": 86518, "language models gpt4v": 84618, "demonstrated effectiveness handling": 38645, "multimodal instruction tuning": 110664, "ai agents capable": 6854, "cover wide range": 33049, "extensive experiments validate": 55894, "experiments validate effectiveness": 54521, "instruction tuning datasets": 78081, "provide baseline models": 132684, "baseline model trained": 16240, "a100 gpu hours": 1851, "learning prompt engineering": 90871, "prompt engineering shown": 130483, "prompt engineering mitigating": 130473, "plms shown remarkable": 123640, "particularly lowresource settings": 120223, "remains largely unexplored": 140022, "largely unexplored study": 89187, "generated text findings": 64009, "language models perspective": 85884, "paper explores possibility": 118937, "ensure effective safe": 49681, "social determinants health": 152563, "determinants health sdoh": 40696, "electronic health record": 46998, "increasingly studied understand": 75444, "explore automatic extraction": 55156, "test set similar": 164629, "language models retain": 86098, "world knowledge pretraining": 179576, "models limited work": 107007, "answer factual questions": 9712, "ability perform task": 2311, "model trained perform": 104768, "data used paper": 35914, "machine translation large": 98113, "translation large language": 169475, "building generalpurpose models": 19417, "datasets followed finetuning": 36880, "finetuning taskspecific datasets": 59583, "computer vision recently": 28508, "space pretrained models": 153608, "pretrained models clip": 127070, "improvements downstream tasks": 73897, "image captioning visual": 72190, "captioning visual question": 20599, "little work exploring": 93255, "paper surveys landscape": 119355, "assistant large language": 13392, "capabilities demonstrated impressive": 19851, "performance various applications": 122251, "harness power llms": 68800, "multimodal ai assistants": 110584, "instructionfollowing data despite": 78179, "paper aim develop": 118719, "video instruction dataset": 176718, "specifically employ chatgpt": 154192, "causal relationship inference": 21222, "visual textual modalities": 177326, "generate vast amounts": 63780, "high level expertise": 69477, "considering large language": 29719, "models llms showcased": 107858, "semantic understanding reasoning": 148250, "match users intent": 99432, "text using large": 165557, "generative models language": 65496, "images paper present": 72459, "model best knowledge": 103210, "best knowledge approach": 17681, "simple text inputs": 151541, "surpassing existing methods": 159514, "pretrained texttoimage diffusion": 127173, "texttoimage diffusion model": 165812, "evaluating nlp models": 51361, "llm prompt engineering": 93915, "prompt engineering finetuning": 130456, "knowledge distillation using": 81892, "exhibit incontext learning": 53067, "model perform tasks": 104228, "tasks taskspecific training": 163348, "models specific task": 109201, "examples existing approaches": 52573, "contain sufficient information": 30310, "llms reasoning abilities": 96313, "demonstrate performance gap": 38461, "performance gap exists": 121562, "reasoning abilities using": 136634, "improves performance different": 74048, "software engineering research": 152805, "software engineering se": 152807, "privacy data security": 127995, "agents large language": 6640, "models llms computer": 107213, "benefits incontext learning": 17472, "learning icl performance": 90552, "issues limited context": 81029, "context length llms": 30825, "address challenges introduce": 5179, "average success rate": 15316, "llms remarkable data": 96394, "understanding capabilities llms": 171146, "amazon mechanical turk": 8619, "detection synthetic text": 40629, "shown perform better": 150320, "human evaluation code": 70726, "generating synthetic conversations": 64351, "conversations large language": 31953, "does require labeled": 44023, "require labeled data": 141129, "previous work key": 127692, "introduce new approach": 80025, "approach involves employing": 11320, "entity recognition model": 49916, "require costly human": 141083, "costly human annotation": 32788, "billions imagetext pairs": 18449, "supervised pretraining contrastive": 159165, "surpassing previous stateoftheart": 159525, "clip model trained": 24408, "tuning deep learning": 169992, "large models expensive": 88922, "large models present": 88930, "optimization algorithm performs": 116975, "deep learning problem": 37772, "language model agent": 83520, "question answering framework": 134724, "model llm dynamically": 103988, "utilization external tools": 174995, "making informed decisions": 98759, "conduct user study": 29201, "language model rescoring": 83882, "work study impact": 179318, "llm automated speech": 93486, "automated speech recognition": 14610, "reduction word error": 138625, "language model improved": 83683, "llms trained vast": 96839, "intelligence ai language": 78748, "things iot devices": 166129, "model llm chatgpt": 103982, "stateoftheart machine learning": 155204, "singh et al": 151771, "stateoftheart performance wide": 155298, "conducted experiments gpt3": 29242, "higher accuracy stateoftheart": 69580, "stateoftheart models using": 155239, "learning using carefully": 91113, "using carefully designed": 174022, "carefully designed prompt": 20809, "models gpt35 gpt4": 106537, "recent research large": 137628, "led remarkable advancements": 91240, "studies explored use": 157000, "capable using natural": 20483, "benchmarks achieving stateoftheart": 17164, "achieving stateoftheart results": 4225, "agi computer vision": 6797, "systems powered large": 160538, "emerge rapidly promising": 47333, "rapidly promising direction": 135939, "promising direction achieve": 130243, "agi natural language": 6806, "llms solve problem": 96639, "solve problem paper": 153144, "predict future frames": 125684, "llms proven useful": 96253, "machine learning training": 98088, "reliably detect llmgenerated": 139763, "data scarce tasks": 35694, "strict privacy constraints": 156295, "high annotation costs": 69395, "make things worse": 98617, "collected dataset named": 25684, "tasks significant improvements": 163242, "mechanical turk amt": 99968, "question answering cqa": 134695, "llms exhibit poor": 95146, "context understanding reasoning": 30947, "learning language modeling": 90609, "natural language form": 111606, "language model training": 83939, "specifically build largescale": 154146, "experimental results validate": 54081, "code model dataset": 25002, "world knowledge large": 179570, "language models unprecedented": 86345, "models unprecedented performance": 109557, "unprecedented performance large": 172087, "models llms necessitates": 107669, "world knowledge llms": 179573, "knowledge llms construct": 82203, "design crucial factors": 39593, "opensource commercial llms": 116589, "openparticipation leaderboard publicly": 116544, "leaderboard publicly released": 89796, "language models teach": 86272, "models perform complex": 108461, "complex reasoning generating": 27556, "llm agents study": 93453, "theory mind abilities": 166091, "language models wide": 86394, "models llms enabled": 107355, "pretrained models perform": 127100, "models perform tasks": 108477, "text generated pretrained": 165120, "pretrained base model": 126756, "massachusetts institute technology": 99339, "analysis qualitative analysis": 9106, "large data sources": 87231, "overcome challenge propose": 118273, "consistent human annotations": 29816, "exciting future directions": 52877, "scaling laws large": 146414, "laws large language": 89613, "scale model size": 146315, "model size training": 104613, "training data compute": 168238, "patterns training data": 120569, "training data iii": 168278, "language models parameter": 85855, "models limited resources": 107006, "resources large language": 142447, "llms revolutionized natural": 96462, "adds small number": 5492, "tuning parameters llms": 170076, "llms limited resources": 95796, "lowmemory optimization lomo": 97874, "gradient computation parameter": 67384, "reduce memory usage": 138447, "techniques reduce memory": 164006, "consequently approach enables": 29537, "approach enables parameter": 11170, "work conducts comprehensive": 178865, "fields including computer": 58278, "including computer science": 74470, "empirical findings indicate": 47704, "findings indicate significant": 58705, "language models science": 86131, "science higher education": 146878, "education primary focus": 45570, "effects large language": 46337, "models llms llmbased": 107641, "findings highlight transformative": 58685, "highlight transformative potential": 69791, "transformative potential llms": 169075, "generative ai science": 65352, "using text generated": 174798, "experiments standard document": 54473, "standard document ranking": 154816, "document ranking benchmarks": 43850, "propose framework evaluating": 131836, "regarding use chatgpt": 138899, "use chatgpt education": 172547, "chatgpt education artificial": 22869, "education artificial intelligence": 45518, "different scientific domains": 41985, "intelligent tutoring systems": 78961, "artificial intelligencebased chatbot": 12784, "chatbot developed openai": 22573, "impressive performance generating": 73328, "informative humanlike responses": 76876, "input natural language": 77293, "issues concerns raised": 80993, "concerns raised regarding": 28815, "legal ethical implications": 91293, "ethical implications arising": 50809, "potential use cases": 125036, "understanding generative ai": 171272, "generative ai chatgpt": 65310, "help students learn": 69185, "proposed framework offers": 132304, "understanding capabilities large": 171141, "model performance results": 104256, "capabilities different llms": 19858, "model properties model": 104375, "properties model size": 131653, "based findings suggest": 15818, "embeddings large language": 47248, "respond user queries": 142599, "demonstrate existing methods": 38333, "opportunities challenges chatgpt": 116833, "drawn considerable attention": 44946, "attention general public": 13885, "text generation capabilities": 165133, "areas biomedical information": 12359, "question answering medical": 134757, "field text generation": 58255, "recent rapid progress": 137610, "information generated responses": 76476, "privacy concerns associated": 127988, "sensitive patient data": 148434, "survey provide comprehensive": 159673, "challenges associated using": 21789, "remarkable abilities visual": 140120, "including image recognition": 74560, "understanding underlying mechanisms": 171518, "diverse applications including": 43461, "language model develop": 83601, "novel tool called": 114720, "data collection processing": 34788, "collection processing analysis": 25750, "transformative potential ai": 169074, "entire training set": 49821, "classifier trained using": 24170, "language model experiments": 83631, "language models benchmark": 84170, "understanding nlu datasets": 171373, "existing data selection": 53329, "increase language model": 75210, "model performance compared": 104232, "model autoregressive language": 103169, "potential artificial general": 124602, "demonstrating impressive capabilities": 38941, "model language models": 103923, "received little attention": 137310, "hope shed light": 70383, "encourage research area": 48603, "comparative analysis human": 26636, "personalized learning experiences": 122608, "models llms appear": 107113, "llms appear offer": 94410, "study investigated potential": 157435, "highlights need research": 69866, "types learning resources": 170379, "perspective large language": 122675, "humanlike cognitive abilities": 71254, "different models benchmarks": 41862, "accuracy recall f1": 3364, "evaluation using standard": 51925, "using standard test": 174748, "language learning models": 83485, "learning models zeroshot": 90739, "models zeroshot learning": 109741, "zeroshot learning capabilities": 180231, "learning capabilities chatgpt": 90271, "case study simple": 20925, "address issues facilitate": 5283, "models llms exploit": 107406, "augment domain knowledge": 14239, "propose novel neurosymbolic": 132021, "alignment instruction following": 8173, "llms instruction tuning": 95651, "llms human preferences": 95516, "performance nonenglish languages": 121849, "languagespecific training data": 87166, "training data foundation": 168265, "transfer capabilities language": 168900, "smaller parameter size": 152431, "size 13 billion": 151958, "gpt4 automatic evaluation": 66922, "performance general tasks": 121572, "test set called": 164623, "demonstrates outstanding performance": 38871, "neural networks including": 112931, "networks including large": 112762, "shed light challenges": 149851, "lowresource languages leveraging": 97911, "generative capabilities llms": 65396, "tasks target languages": 163338, "llms different sizes": 94925, "lowresource languages finetuning": 97909, "tasks method outperforms": 162796, "current llms lack": 34167, "llms lack ability": 95712, "raven iq test": 136080, "llms chatgpt gained": 94579, "chatgpt gained significant": 22965, "significant attention impressive": 150606, "attention impressive natural": 13899, "impressive natural language": 73318, "study aims address": 157145, "comprehensive evaluation llms": 28016, "evaluation llms crucial": 51674, "toxicity language models": 167475, "research aims enhance": 141582, "language models ethical": 84465, "transformer machine learning": 169166, "machine learning deep": 98026, "learning deep learning": 90353, "paves way development": 120593, "complex physical systems": 27516, "reshaped natural language": 142303, "adoption foundation models": 5634, "foundation models domains": 60760, "model construction evaluation": 103364, "bridge gap introduce": 19045, "zeroshot performance pretrained": 180285, "performance pretrained models": 121935, "new large language": 113249, "significantly smaller size": 151160, "robustness adversarial demonstrations": 145348, "leak private information": 89928, "information training data": 76814, "evaluation gpt models": 51625, "models sheds light": 109091, "opendomain text generation": 116477, "referencebased metrics bleu": 138682, "metrics bleu rouge": 102020, "openended generation tasks": 116489, "highquality training data": 70089, "novel approach evaluate": 114381, "improving performance llms": 74184, "text generation evaluation": 165143, "better human judgment": 17901, "human judgment existing": 70884, "existing automatic evaluation": 53287, "automatic evaluation metrics": 14667, "evaluation metrics tasks": 51732, "investigating potential large": 80610, "paper explores new": 118936, "new avenues exploration": 113080, "chatgpt shown strong": 23323, "enhance models understanding": 49240, "paper provides promising": 119295, "promising avenues future": 130232, "avenues future research": 15248, "future research field": 62341, "impact natural language": 72697, "training deep neural": 168381, "computational resources time": 28406, "poorly understood present": 123973, "networks second propose": 112799, "propose theoretical framework": 132166, "theoretical framework using": 166034, "approach accelerates training": 10942, "process reduces computational": 128964, "reduces computational requirements": 138512, "significantly reduces training": 151142, "reduces training time": 138540, "prompt sapper llmempowered": 130658, "emergence foundation models": 47418, "texttoimage models dalle": 165822, "opened numerous possibilities": 116484, "use foundation models": 172634, "ai chain engineering": 6902, "chain engineering methodology": 21454, "integrated development environment": 78521, "services foundation models": 149080, "language models deployed": 84360, "natural language use": 111918, "play vital role": 123475, "explores using chatgpt": 55442, "evaluation compares performance": 51488, "human evaluation propose": 70746, "recommendations future research": 138246, "language models advent": 84090, "models advent large": 105303, "fail capture important": 56947, "capture important aspects": 20658, "provide theoretical foundation": 133004, "evaluate large language": 50998, "explore prompt engineering": 55278, "generation remains challenging": 65039, "using variational inference": 174842, "models llms seen": 107853, "parameters natural language": 119811, "effectively perform prompt": 46063, "models exhibit biases": 106200, "cognitive science human": 25480, "models world models": 109718, "language models probabilistic": 85960, "models probabilistic models": 108651, "construction large language": 30224, "models llms support": 107961, "finally explore language": 58456, "hope work provide": 70400, "methods mainly focus": 101654, "models llms work": 108041, "llms work propose": 97021, "framework based llms": 60983, "language model frozen": 83649, "emergent incontext learning": 47482, "learning capability llms": 90283, "stateoftheart results wellestablished": 155342, "mitigating popularity bias": 102674, "offtheshelf language model": 115910, "paving way efficient": 120601, "stepbystep thinking instructions": 155706, "generation artificial intelligence": 64432, "artificial intelligence significant": 12768, "processing models like": 129197, "complex tasks require": 27618, "tasks require understanding": 163154, "generation using gpt3": 65235, "driven large language": 44984, "models llms stirred": 107946, "compared results human": 26911, "human llm collaboration": 70918, "question answering external": 134712, "nlp tasks suffer": 113904, "enhance llms questionanswering": 49231, "llms questionanswering abilities": 96278, "current evaluation methods": 34115, "llms internal knowledge": 95668, "issue introduce new": 80914, "evaluate llms ability": 51007, "llms ability use": 94265, "use external tools": 172619, "llms pretraining data": 96181, "set new benchmark": 149251, "benchmark evaluating llms": 16959, "comprehensive evaluation benchmark": 28005, "benchmark multimodal large": 17035, "models multimodal large": 108248, "language model mllm": 83800, "perform multimodal tasks": 120984, "avoid data leakage": 15337, "prompt engineering instruction": 130461, "experts large language": 54665, "continually increasing model": 31178, "increasing model sizes": 75337, "prior stateoftheart methods": 127932, "investigate alternative approach": 80369, "domainspecific data recent": 44570, "data recent work": 35620, "feedback natural language": 57742, "existing studies focus": 53592, "specific examples introduce": 153992, "language model prompt": 83861, "component transformer architecture": 27744, "underlying attention mechanism": 170830, "experiments provide insights": 54415, "approach problem using": 11461, "language tasks including": 86765, "tasks including opendomain": 162569, "hallucinate incorrect answers": 68332, "face value paper": 56557, "capable large language": 20440, "models llms focus": 107431, "focus scaling model": 60049, "quality pretraining data": 134226, "aspects data quality": 12934, "publicly available pretraining": 133659, "publicly available llm": 133652, "pretrained model better": 127047, "pretrained model does": 127048, "meanings words form": 99812, "test models understanding": 164587, "studies shown llms": 157088, "llms tend generate": 96782, "outputs propose novel": 118110, "stateoftheart sota methods": 155366, "current sota methods": 34240, "decisionmaking reinforcement learning": 37437, "reinforcement learning problems": 139086, "learning problems typically": 90857, "models especially transformer": 106154, "survey presents comprehensive": 159669, "presents comprehensive overview": 126560, "comprehensive overview recent": 28091, "overview recent works": 118446, "solving sequential decisionmaking": 153247, "sequential decisionmaking tasks": 148872, "potential avenues future": 124617, "risks large language": 144999, "understand capabilities models": 170987, "capturing design intent": 20723, "work investigate use": 179071, "emerging large language": 47516, "models llms code": 107201, "llms code generation": 94621, "code generation hardware": 24892, "primarily natural language": 127787, "varying levels prompt": 176296, "generative inference large": 65425, "models llms despite": 107303, "recent impressive accomplishments": 137515, "generation dialogue systems": 64578, "sequence length batch": 148760, "length batch size": 91351, "novel approach implementing": 114385, "reduces memory footprint": 138522, "based insights propose": 15881, "prove mild assumptions": 132627, "help guide future": 69122, "smaller student model": 152445, "supervised fewshot settings": 159104, "despite orders magnitude": 40167, "orders magnitude fewer": 117263, "magnitude fewer parameters": 98203, "literature language models": 93179, "language models weak": 86391, "promptbased large language": 130773, "particularly tasks involving": 120264, "results illustrate potential": 143481, "larger machine learning": 89221, "machine learning pipelines": 98068, "impressive performance tasks": 73340, "propose new prompting": 131973, "teach language models": 163600, "zeroshot chainofthought cot": 180137, "minimal human supervision": 102338, "large vision models": 89110, "inference speed experiments": 76104, "grounding multimodal large": 67912, "language models world": 86409, "visual world specifically": 177344, "performing incontext learning": 122404, "tasks including multimodal": 162562, "understanding generation work": 171270, "lays foundation development": 89712, "big convergence language": 18375, "convergence language multimodal": 31759, "language multimodal perception": 86430, "multimodal perception action": 110741, "perception action world": 120791, "action world modeling": 4346, "world modeling key": 179594, "modeling key step": 105022, "key step artificial": 81572, "address scarcity annotated": 5368, "scarcity annotated data": 146485, "used social media": 173233, "processing nlp introduce": 129222, "experimental results using": 54080, "models nlp tools": 108302, "finetuning parameterefficient finetuning": 59427, "adapt pretrained language": 4554, "various domains tasks": 175911, "additional training enables": 5013, "latest instructiontuned large": 89554, "model based llama": 103187, "demonstrate approach produces": 38240, "text generative model": 165207, "learning paper presents": 90801, "analysis using large": 9224, "coding widely used": 25417, "widely used qualitative": 178403, "language processing reasoning": 86608, "tasks study explore": 163300, "study explore use": 157341, "indepth case study": 75523, "effective language model": 45794, "recent years language": 137779, "years language models": 179903, "multiple domains including": 110901, "domains including natural": 44436, "highperformance computing hpc": 69980, "facilitate research development": 56645, "machine learning software": 98077, "help users quickly": 69194, "stateoftheart models generate": 155227, "current multimodal large": 34189, "gap paper proposes": 62698, "image captioning vqa": 72193, "experimental results showcase": 54072, "language models tuned": 86329, "largescale ml models": 89354, "models allow users": 105343, "text generated models": 165119, "llms increasingly integrated": 95604, "increasingly integrated everyday": 75412, "ability comprehend human": 2107, "models align human": 105329, "address challenges present": 5188, "using framework create": 174220, "results suggest gpt4": 143835, "language models provide": 85998, "feedback human tutors": 57703, "models data augmentation": 105841, "data augmentation improve": 34677, "demonstrate potential use": 38471, "exams large language": 52732, "language models emergence": 84425, "emergence advanced natural": 47412, "chatgpt raised concerns": 23245, "did significantly impact": 41598, "gpt4 findings suggest": 67013, "findings suggest current": 58807, "novel deep learning": 114465, "models empirical evaluations": 106089, "evaluations benchmark datasets": 51945, "achieve performance comparable": 3704, "represents significant step": 140995, "significant step forward": 150881, "language models setting": 86145, "vision tasks image": 176989, "small number datasets": 152336, "prior knowledge improve": 127902, "nlp tasks previous": 113885, "tasks previous research": 162991, "training models using": 168591, "generated data generally": 63841, "training data generation": 168269, "additionally present comprehensive": 5105, "present comprehensive empirical": 126254, "comprehensive empirical study": 28001, "key observations firstly": 81545, "synthetic datasets generated": 160041, "pivotal role enhancing": 123152, "age large language": 6396, "largelanguage models llm": 89141, "natural language refined": 111862, "intent natural language": 79017, "tasks assessed performance": 161978, "commercial large language": 26076, "models llms gpt35turbo": 107492, "llms gpt35turbo gpt4": 95431, "2023 bioasq challenge": 689, "query expansion zeroshot": 134582, "ability paper introduce": 2303, "bayesian inverse planning": 16481, "correlate human judgments": 32518, "methods recent advances": 101760, "chatgpt gpt4 demonstrated": 23014, "great potential improving": 67704, "remains unclear study": 140090, "gpt4 performs better": 67114, "states medical licensing": 155432, "medical licensing examination": 100196, "remarkable capabilities wide": 140181, "additional manual efforts": 4976, "align llm output": 8017, "significant accuracy improvement": 150565, "pose significant challenges": 124176, "incorrect answers results": 75146, "results showed chatgpt": 143788, "benchmarking large language": 17147, "model adapted wide": 103069, "like gpt3 palm": 92289, "techniques like fewshot": 163955, "fewshot learning additionally": 57953, "language models rarely": 86031, "different data regimes": 41719, "llms generate highquality": 95367, "experiment results demonstrate": 53904, "conducted comparative analysis": 29217, "analysis proposed method": 9093, "deep learning large": 37748, "including text generation": 74754, "text generation ai": 165126, "generation ai chatbots": 64406, "method achieving stateoftheart": 100649, "robust speech recognition": 145325, "chatbased large language": 22557, "error rate compared": 50316, "compared existing methods": 26799, "visual instruction tuning": 177199, "use publicly available": 172834, "multimodal instructionfollowing data": 110668, "comparative performance evaluation": 26648, "performance evaluation chatgpt": 121471, "35 chatgpt 40": 1050, "study aimed evaluate": 157143, "llms openais chatgpt": 95979, "information findings highlight": 76452, "highlight potential ai": 69768, "generation using generative": 65234, "synthesis extensively studied": 159943, "language generation natural": 83362, "reproduce training data": 141007, "text training data": 165537, "models new perspective": 108288, "test cases work": 164530, "model trained endtoend": 104761, "medical summarization tasks": 100224, "results highlight effectiveness": 143455, "gpt4 automatically generate": 66924, "automatically generate highquality": 14811, "learning objectives los": 90782, "challenging time consuming": 22303, "stateoftheart generative models": 155150, "efforts large language": 46922, "models effective text": 106045, "documents using large": 43945, "models llms directly": 107311, "used existing methods": 173055, "llms using new": 96929, "new technique called": 113458, "performance standard benchmarks": 122100, "standard benchmarks using": 154807, "model 20b parameters": 103002, "parameters outperforms previous": 119825, "outperforms previous best": 117820, "previous best approach": 127577, "achieve competitive results": 3610, "classifierfree guidance cfg": 24177, "models array tasks": 105391, "methods like chainofthought": 101639, "efficient fewshot learning": 46611, "models impressive results": 106687, "fewshot nlp tasks": 58008, "overcome issue propose": 118291, "demonstrations training set": 39052, "task approach outperforms": 161198, "classification tasks including": 24119, "language models probing": 85962, "burns et al": 19531, "language model 100": 83511, "entity recognition medical": 49914, "recent advancements language": 137360, "advancements language models": 5906, "models demonstrated exceptional": 105900, "demonstrated exceptional capabilities": 38655, "exceptional capabilities wide": 52814, "tasks entity recognition": 162312, "compared models like": 26860, "aims provide thorough": 7657, "based extensive experiments": 15795, "indicate llms outperform": 75606, "outperform slms fewshot": 117627, "process experimental results": 128824, "medical benchmark datasets": 100138, "feedback language models": 57720, "language feedback nlf": 83320, "align large language": 8013, "models llms human": 107534, "text prompts images": 165386, "capture complex dependencies": 20637, "natural language making": 111674, "tasks language generation": 162675, "generation dialog systems": 64576, "reinforcement learning ai": 139040, "approaches significantly improve": 11907, "natural language applications": 111553, "language processing systems": 86622, "data limited resources": 35321, "text classification translation": 164914, "base pretrained model": 15628, "english pretrained language": 49096, "significant impact model": 150722, "crucial software development": 33859, "software development processes": 152792, "gap propose novel": 62715, "model knowledge graph": 103914, "knowledge graph generate": 82054, "smallscale user study": 152465, "user study involving": 173522, "generating fluent humanlike": 64221, "downstream tasks applying": 44763, "tasks applying large": 161958, "applying large language": 10900, "text generation framework": 165144, "models generate rich": 106458, "protecting data privacy": 132564, "text generation capability": 165136, "generation capability large": 64474, "models make better": 108126, "underpin large language": 170891, "address issue work": 5280, "experimental results gpt2": 54015, "evolution generative ai": 52261, "generative ai genai": 65321, "ai genai models": 7008, "like chatgpt google": 92225, "potential risks opportunities": 124956, "exploited malicious users": 55025, "prompt injection attacks": 130546, "social engineering attacks": 152572, "secure code generation": 147548, "ethical implications chatgpt": 50810, "conclusion paper highlights": 28900, "open challenges future": 116210, "safe trustworthy ethical": 145816, "event knowledge graph": 52083, "knowledge graphs kg": 82076, "including named entity": 74630, "triple extraction event": 169776, "event extraction ee": 52076, "human evaluation quantitatively": 70747, "significantly improves annotation": 151038, "language models emergent": 84428, "paper investigate potential": 119034, "investigate potential using": 80474, "models gpt4 claude": 106544, "simple pattern matching": 151508, "study provides insights": 157571, "language models implicitly": 84671, "work propose efficient": 179198, "model billion parameters": 103218, "various language modeling": 175991, "downstream tasks example": 44780, "model improves performance": 103834, "findings suggest large": 58811, "suggest large pretrained": 158553, "language models capable": 84209, "models capable performing": 105565, "capabilities ai systems": 19775, "negative attitudes ai": 112507, "knowledge deep learning": 81861, "publicly available benchmarks": 133629, "language models focusing": 84548, "like search engines": 92396, "llms able generate": 94268, "generate highly realistic": 63537, "highly realistic text": 69946, "represent wide range": 140663, "discuss implications results": 42901, "language models augmented": 84146, "data augmented synthetic": 34696, "augmented synthetic data": 14375, "synthetic data generated": 160028, "pretraining data augmentation": 127292, "yields best performance": 180011, "approach ranked second": 11491, "challenge code available": 21599, "tasks study examines": 163299, "models llms text": 107969, "proprietary models like": 132526, "prior research demonstrated": 127924, "demonstrated high performance": 38678, "high performance chatgpt": 69497, "numerous nlp tasks": 115056, "tasks opensource llms": 162890, "opensource llms like": 116639, "different temperature parameters": 42042, "opensource llms outperform": 116642, "chatgpt specific tasks": 23345, "comparison large language": 27051, "chatgpt microsoft bing": 23125, "paper presents performance": 119181, "llms openai chatgpt": 95975, "findings study contribute": 58802, "study contribute understanding": 157246, "handling long sequences": 68601, "remains limited paper": 140034, "performance models heavily": 121811, "models heavily relies": 106591, "training data training": 168359, "extensively discussed literature": 55979, "issue paper presents": 80935, "systematic comprehensive study": 160112, "training data investigate": 168289, "based findings present": 15812, "commonsense knowledge reasoning": 26279, "language comprehension text": 83206, "comprehension text generation": 27937, "accomplish longhorizon tasks": 3009, "achieve promising performance": 3714, "conducted user study": 29295, "research underscores potential": 142130, "underscores potential llms": 170953, "llms future research": 95315, "science computer science": 146858, "multimodel large language": 110812, "demonstrated promising zeroshot": 38750, "understanding paper propose": 171394, "unified instruction tuning": 171725, "understanding experimental results": 171230, "tasks code models": 162061, "study investigates various": 157450, "proposed approach involves": 132239, "language models graph": 84620, "models graph neural": 106559, "detection data augmentation": 40475, "data augmentation techniques": 34688, "using various methods": 174847, "contrastive learning approach": 31362, "using contrastive learning": 174087, "findings shed light": 58794, "chatgpt potential valuable": 23200, "results showcase chatgpt": 143785, "providing accurate answers": 133257, "models llms typically": 107992, "superior performance smaller": 159039, "model sizes paper": 104619, "sizes paper propose": 152107, "model wide range": 104898, "model improves various": 103835, "various baselines including": 175828, "baselines including larger": 16338, "exact match em": 52339, "remarkable capabilities large": 140158, "variety tasks domains": 175771, "overcome context window": 118281, "context window limitation": 30966, "interaction paper propose": 79155, "unlike previous methods": 172014, "tasks data science": 162151, "education large language": 45553, "language models rapid": 86023, "using llms paper": 174443, "llms play significant": 96111, "seeks shed light": 147679, "potential opportunities challenges": 124890, "question answering data": 134697, "importance data points": 73018, "enhance performance large": 49250, "language models pruning": 86002, "benchmarks recent years": 17345, "space overcome limitations": 153601, "new challenging benchmark": 113107, "compared previous benchmarks": 26884, "annotators large language": 9634, "models llms construct": 107218, "test stateoftheart models": 164639, "models ai chatbots": 105317, "various knowledge domains": 175989, "technology artificial intelligence": 164125, "ai augmented reality": 6879, "augmented reality ar": 14368, "witnessed substantial progress": 178580, "tasks involve complex": 162637, "physical world generating": 122916, "gpt language model": 66437, "unity game engine": 171890, "facilitating seamless interaction": 56720, "answer research questions": 9771, "challenging tasks time": 22298, "tasks time using": 163373, "models like gpt4": 106988, "like gpt4 exhibit": 92298, "using nexttoken prediction": 174534, "changes significantly improve": 22391, "building prior work": 19442, "improves accuracy sample": 73972, "work highlights importance": 179017, "highlights importance highquality": 69857, "nextword prediction objective": 113615, "critical open question": 33528, "training set finetune": 168733, "detection social media": 40619, "supervised learning methods": 159138, "models face challenges": 106289, "conduct systematic study": 29188, "social media propose": 152623, "propose analytical framework": 131708, "monte carlo dropout": 110089, "method improve performance": 100917, "improve performance interpretability": 73551, "experimental findings demonstrate": 53947, "framework outperforms baseline": 61338, "emphasizing importance incorporating": 47651, "recent advances development": 137387, "advances development large": 5999, "offer natural language": 115672, "able complete tasks": 2478, "complex decision making": 27394, "decision making problems": 37373, "motivated recent advances": 110191, "llms privacy concern": 96194, "language model mlm": 83801, "model mlm objective": 104093, "key component modern": 81477, "efficacy large language": 46388, "language models generating": 84583, "building educational applications": 19394, "shared task study": 149828, "present extensive evaluation": 126313, "benchmarking generative models": 17140, "generative models including": 65493, "gpt4 fewshot incontext": 67009, "model using reinforcement": 104853, "using bertscore dialogrpt": 174008, "finetuned models finally": 59083, "work visionlanguage models": 179367, "language descriptions image": 83244, "method automatically generates": 100702, "class large language": 23882, "model llm uses": 104032, "outperform existing stateoftheart": 117588, "biomedical text summarization": 18579, "generation transfer learning": 65215, "model architecture use": 103131, "results indicate large": 143507, "indicate large language": 75598, "language model domainspecific": 83610, "data generation pipeline": 35117, "neural information retrieval": 112850, "retrieval recent work": 144123, "recent work explored": 137727, "explored large language": 55353, "models llms overcome": 107705, "demonstrated potential using": 38740, "potential using llms": 125051, "llms synthetic data": 96751, "lack annotated data": 82883, "fully realize potential": 61779, "data generation research": 35119, "use different llms": 172587, "data code data": 34765, "generated text introduce": 64011, "reducing risk hallucinations": 138594, "questions covering 20": 135086, "intelligence ai capabilities": 78730, "foundation large language": 60728, "research presents comprehensive": 141983, "widely used large": 178395, "systems based llms": 160265, "approach opens new": 11415, "reasoning ability ability": 136636, "language models studied": 86223, "language models informal": 84710, "framework mimics human": 61305, "experimental results human": 54017, "results human performance": 143474, "effective prompt engineering": 45851, "code benchmark publicly": 24694, "synergy large language": 159874, "reasoning capabilities additionally": 136696, "code data prompts": 24754, "code generation propose": 24916, "generation propose novel": 64981, "novel method automatically": 114583, "poor performance solving": 123952, "llms exhibit strong": 95150, "analysis evaluate quality": 8913, "effectively experimental results": 45993, "rapid development large": 135868, "language models meticulously": 85743, "language models foundational": 84555, "models specifically designed": 109205, "models trained extensive": 109437, "processing tasks related": 129330, "models exhibited exceptional": 106217, "exhibited exceptional performance": 53132, "tasks using publicly": 163437, "foundational language models": 60837, "paper presents findings": 119163, "use chatgpt tool": 172548, "assess chatgpts ability": 13060, "experiments indicate chatgpt": 54318, "generate responses aligned": 63687, "chatgpt shows promise": 23325, "needed address limitations": 112434, "paper presents case": 119146, "presents case study": 126548, "sets large language": 149380, "approach combined large": 11057, "language model create": 83592, "clip text encoder": 24414, "models llms explore": 107407, "stable diffusion generate": 154691, "generate multiple images": 63616, "tasks pretrained large": 162981, "models demonstrate potential": 105890, "variety tasks data": 175770, "binary classification task": 18468, "performance compared existing": 121284, "models designed specific": 105935, "designed model structure": 39914, "language model graph": 83673, "job recommendations large": 81233, "recommendations large language": 138251, "demonstrating exceptional capabilities": 38934, "exceptional capabilities various": 52812, "capabilities various domains": 20242, "various domains potential": 175909, "largely unexplored paper": 89186, "novel framework harnesses": 114520, "provided large language": 133070, "language models analyze": 84119, "evaluate effectiveness approach": 50952, "research sheds light": 142074, "untapped potential large": 172288, "findings contribute growing": 58649, "language processing offer": 86600, "models trained predict": 109465, "trained predict word": 168041, "able perform tasks": 2540, "indepth analysis different": 75517, "ai tool large": 7283, "tool large language": 166999, "natural language conversations": 111569, "transformer neural network": 169194, "longrange dependencies text": 97570, "tool able generate": 166929, "promising new tool": 130277, "using artificial intelligence": 173976, "case study methodology": 20917, "overview large language": 118437, "recently demonstrated remarkable": 137854, "remarkable capabilities natural": 140162, "recent developments field": 137470, "article provides overview": 12600, "provide systematic survey": 132995, "reference researchers practitioners": 138669, "training transformerbased language": 168804, "unsupervised domain adaptation": 172243, "technical report present": 163721, "findings study conducted": 58801, "domain adaptation task": 44076, "performance compared baseline": 121280, "slight decrease performance": 152224, "shed light potential": 149858, "knowledge learned large": 82182, "models perform zeroshot": 108480, "given textual descriptions": 66035, "quality textual descriptions": 134287, "stateoftheart performance using": 155294, "chatgpt knowledge graphs": 23081, "data various domains": 35945, "conducted comprehensive experiments": 29222, "experiments results demonstrate": 54441, "demonstrate chatgpt assist": 38266, "models llms representing": 107831, "alternative endtoend training": 8556, "endtoend training large": 48778, "scratch prohibitively expensive": 147228, "smaller models trained": 152420, "models trained limited": 109452, "multilingual corpora work": 110475, "highquality english data": 70023, "competitive stateoftheart models": 27204, "stateoftheart models image": 155230, "models image captioning": 106669, "visionlanguage models trained": 177060, "release model code": 139482, "language model propose": 83866, "leveraging power large": 91919, "language modeling objectives": 84010, "massive text data": 99381, "responses various prompts": 142941, "prompts experiments demonstrate": 131263, "memory cost inference": 100385, "representation learning llms": 140710, "code model released": 25005, "visionlanguage vl pretraining": 177091, "relevant visual features": 139666, "align visual features": 8041, "framework significantly enhances": 61410, "performance gap models": 121564, "modules code available": 109974, "language models stable": 86211, "performance corrupted data": 121342, "direct application llms": 42372, "llms remains challenging": 96389, "different previous works": 41925, "previous works like": 127699, "training separate model": 168726, "experiment results method": 53909, "method outperforms existing": 101011, "comparable superior performance": 26624, "nlp tasks compared": 113828, "performance glue benchmark": 121594, "various prompt templates": 176123, "massive text embedding": 99382, "text embedding benchmark": 165042, "considerable margin despite": 29625, "deep learning research": 37773, "wireless communication systems": 178546, "stack overflow large": 154710, "overflow large language": 118346, "training data future": 168266, "models work investigate": 109709, "online qa platform": 116124, "stack overflow significantly": 154714, "languages training data": 87147, "training data using": 168362, "lowresource named entity": 97923, "data augmentation widely": 34691, "augmentation widely used": 14327, "problem data sparsity": 128217, "knowledge manual effort": 82218, "effort address issues": 46830, "samples extensive experiments": 146012, "extensive experiments benchmarks": 55808, "different domains demonstrate": 41744, "baselines outperforms stateoftheart": 16356, "artificial intelligence recent": 12760, "intelligence recent advances": 78885, "recent advances machine": 137413, "advances machine learning": 6032, "generative ai llms": 65333, "require access large": 141061, "generative models ai": 65477, "large data sets": 87230, "generative ai general": 65323, "general large language": 62982, "language model knowledge": 83702, "knowledge graph large": 82059, "graph large language": 67542, "llms achieved significant": 94316, "significant success various": 150893, "success various tasks": 158314, "especially scenarios requiring": 50538, "reasoning paper propose": 137018, "based retrieved knowledge": 16077, "introducing new approach": 80241, "new approach called": 113060, "additional training cost": 5011, "lower computational cost": 97817, "compressed large language": 28194, "language models parameterefficient": 85856, "explored recent years": 55365, "llms downstream tasks": 94984, "techniques experimental results": 163894, "abilities human intelligence": 1923, "refer project website": 138648, "code additional information": 24655, "remains significant challenge": 140070, "large lms llms": 88896, "llms work explore": 97018, "work explore new": 178957, "outperform prior approaches": 117619, "additionally proposed method": 5119, "inspire future studies": 77702, "attention computation large": 13856, "computation large language": 28305, "llms demonstrated exceptional": 94837, "exceptional performance wide": 52835, "range tasks models": 135713, "advanced deep learning": 5725, "revolutionized field natural": 144646, "remarkable results various": 140285, "various languagerelated tasks": 175997, "sentiment analysis question": 148630, "text generation text": 165193, "text classification language": 164885, "classification language modeling": 24020, "highly effective capturing": 69914, "understanding context generating": 171172, "generating coherent contextually": 64162, "coherent contextually relevant": 25526, "contextually relevant text": 31152, "architecture large language": 12180, "utilize contextual information": 175030, "contextual information language": 31095, "llms additionally present": 94346, "additionally present detailed": 5106, "present detailed analysis": 126283, "computing attention matrix": 28529, "evaluation benchmark language": 51447, "challenging aspect natural": 22117, "aspect natural language": 12915, "processing nlp existing": 129218, "existing evaluation benchmarks": 53359, "evaluation benchmarks primarily": 51456, "benchmarks primarily focus": 17335, "bridge gap propose": 19057, "models based transformer": 105463, "pretraining architectures large": 127266, "architectures large language": 12273, "models llms results": 107838, "training data consistently": 168240, "data consistently improves": 34835, "modeling discourse information": 104992, "datasets pretrained models": 37040, "making difficult assess": 98726, "study compared performance": 157221, "assessing multiplechoice questions": 13190, "finally discuss potential": 58440, "discuss potential using": 42931, "language models open": 85822, "models open source": 108343, "language models needed": 85789, "tasks results demonstrate": 163178, "results demonstrate limited": 143307, "highquality code generation": 70000, "code generation recent": 24917, "generation recent years": 65027, "code generation utilizing": 24930, "transformerbased generative models": 169239, "recent research revealed": 137631, "revealed automatically generated": 144386, "automatically generated source": 14820, "codes contain vulnerabilities": 25288, "enhance code generation": 49172, "java code generation": 81210, "generation models prompt": 64854, "vision large language": 176947, "llms demonstrated extraordinary": 94842, "significant challenge paper": 150641, "challenge paper introduces": 21696, "chatgpt code generation": 22782, "code generation debugging": 24881, "conversational agents models": 31833, "different deep learning": 41725, "trained vast corpora": 168122, "llms chatgpt developed": 94577, "developed openai ushered": 40898, "openai ushered new": 116383, "problem domains ranging": 128236, "evaluating quality generated": 51378, "research paper delves": 141953, "solving programming problems": 153240, "overall success rate": 118247, "capabilities areas improvement": 19788, "sota large language": 153349, "conduct comparative analysis": 29031, "chemistry biology history": 23565, "biology history geography": 18524, "history geography civic": 70223, "geography civic education": 65720, "wide range subjects": 178313, "chatgpt exhibits better": 22914, "retrieval large language": 144079, "knowledge prior work": 82304, "outperforms unsupervised baselines": 117884, "demonstrated remarkable abilities": 38755, "data recent advancements": 35617, "abilities incorporating multimodal": 1930, "improve user experience": 73657, "twostage training scheme": 170274, "memory sacrificing performance": 100460, "experimental results language": 54029, "results language modeling": 143551, "models llms process": 107754, "explanation birds fly": 54777, "metrics evaluate stateoftheart": 102052, "evaluate stateoftheart llms": 51105, "stateoftheart llms gpt4": 155193, "openai google deepmind": 116337, "google deepmind anthropic": 66318, "deepmind anthropic stated": 37863, "anthropic stated goal": 10100, "stated goal building": 155033, "goal building artificial": 66153, "building artificial general": 19370, "intelligence agi ai": 78720, "agi ai systems": 6792, "ai systems perform": 7255, "systems perform better": 160525, "tasks increasing concerns": 162591, "pose catastrophic risks": 124148, "ai agents paper": 6855, "limitations heavy reliance": 92597, "traditional reinforcement learning": 167689, "require model finetuning": 141158, "finetuning comparative analysis": 59199, "analysis existing methods": 8919, "demonstrate comparable performance": 38271, "diverse set scenarios": 43654, "tasks math problems": 162786, "gpt4 march 2023": 67071, "follow user instructions": 60230, "llms multimodal llms": 95911, "tasks wide range": 163474, "llms need ability": 95930, "health large language": 68951, "llms token embedding": 96809, "token embedding space": 166705, "like tabular data": 92416, "using tabular data": 174783, "classical machine learning": 23936, "neural networks specifically": 112951, "based pretrained model": 16025, "framework general applied": 61178, "leverages parallelization capabilities": 91761, "approach sheds light": 11530, "using generative artificial": 174236, "models gained popularity": 106418, "gained popularity field": 62470, "popularity field natural": 124086, "vision tasks multimodal": 176991, "presents novel method": 126607, "novel method enhance": 114589, "image classification models": 72207, "models method aims": 108177, "method aims improve": 100670, "gain deeper understanding": 62442, "downstream tasks providing": 44826, "qualitative quantitative experiments": 134013, "demonstrate significant improvement": 38543, "previous methods conduct": 127610, "effectiveness proposed approach": 46270, "image generation recently": 72266, "recently significant progress": 137999, "visionlanguage models able": 177039, "models able produce": 105196, "based textual inputs": 16139, "quality generated content": 134140, "methods introduce novel": 101609, "inspired human cognitive": 77727, "combines strengths large": 25955, "strengths large language": 156256, "llms visual question": 96988, "human cognitive process": 70648, "widely used methods": 178400, "scaling model data": 146425, "model data size": 103401, "inspired recent work": 77765, "recent work natural": 137734, "learning setting demonstrate": 90982, "model size number": 104607, "current ai systems": 34057, "improvements artificial intelligence": 73876, "specific information needs": 154013, "survey provides comprehensive": 159675, "publicly available tools": 133668, "meets large language": 100297, "field information retrieval": 58180, "capabilities text understanding": 20213, "text understanding generation": 165546, "models llms humans": 107538, "limitations ethical considerations": 92575, "yielding valuable insights": 180006, "mutual enhancement llms": 111339, "like chatgpt bard": 92217, "learning models datasets": 90714, "available following link": 15114, "models llms emerging": 107349, "emerging research direction": 47532, "employ incontext learning": 47831, "models empirical results": 106090, "indepth analysis reveals": 75521, "models overall work": 108395, "appropriately assessing quality": 12003, "ubiquitous machine learning": 170547, "paper aim establish": 118720, "categories large language": 21107, "tools natural language": 167214, "llms vision language": 96978, "chatbots virtual assistants": 22648, "models llms bert": 107145, "users generate answers": 173665, "solutions based large": 152997, "paper assesses impact": 118759, "potential impact chatgpt": 124766, "use cases including": 172527, "online social networks": 116141, "currently lack systematic": 34325, "lack systematic research": 83017, "impact social networks": 72725, "study findings indicate": 157365, "existing detection methods": 53345, "subject certain limitations": 157828, "dataset publicly released": 36484, "existing information retrieval": 53390, "achieve goal propose": 3652, "distribution small number": 43392, "average performance improvement": 15304, "models identify social": 106661, "language model applications": 83530, "applications continue expand": 10458, "models ability identify": 105181, "multimodal llms demonstrate": 110704, "pretrained visionlanguage model": 127236, "tasks finally present": 162402, "simple linear transformation": 151487, "speech synthesis models": 154476, "synthesis models trained": 159960, "codec language model": 25240, "language model called": 83565, "conduct comparative experiments": 29033, "evaluation metrics assess": 51712, "demonstrates competitive performance": 38831, "models audio samples": 105416, "remarkable success various": 140298, "instructions remains challenging": 78343, "remains challenging existing": 139985, "challenging existing benchmarks": 22160, "existing benchmarks primarily": 53301, "does necessarily imply": 44003, "ability instruction following": 2229, "evaluation protocol called": 51799, "conduct comprehensive evaluation": 29046, "model struggles perform": 104666, "better random guessing": 17998, "improving code generation": 74117, "code generation text": 24926, "text vice versa": 165567, "different methods work": 41849, "model trained language": 104766, "ability model generate": 2282, "hope evidence paper": 70351, "language models allow": 84114, "training generative language": 168466, "discriminative models like": 42847, "unexplored best knowledge": 171625, "substantial computational resources": 158041, "unlike natural language": 172011, "natural language essential": 111590, "reasoning capabilities required": 136717, "opensource proprietary llms": 116669, "results reveal current": 143754, "llms fall short": 95247, "progress artificial intelligence": 129943, "language models chatbots": 84229, "despite growing use": 40118, "diverse range applications": 43616, "knowledgeintensive tasks opendomain": 82571, "tasks opendomain question": 162883, "answering qa require": 9930, "llms chatgpt demonstrated": 94575, "chatgpt demonstrated impressive": 22833, "world knowledge including": 179568, "knowledgeintensive tasks remains": 82576, "remains unclear llms": 140087, "knowledge boundaries llms": 81801, "questions accuracy responses": 135022, "evaluation long context": 51682, "context language models": 30806, "models recently growing": 108853, "extending context length": 55674, "context length large": 30822, "length large language": 91373, "models llms aiming": 107103, "evaluation models large": 51737, "provide immediate feedback": 132828, "using chatgpt api": 174034, "detection incontext learning": 40528, "examples large language": 52626, "llms achieved humanlevel": 94306, "fluency text generation": 59895, "humanwritten llmgenerated texts": 71518, "examples incontext learning": 52614, "stateoftheart detection performance": 155127, "generate stepbystep reasoning": 63728, "models generate reasoning": 106457, "methods achieve strong": 101276, "language model empirical": 83616, "model empirical study": 103526, "autonomous driving domain": 14931, "extensive manual effort": 55922, "domain knowledge large": 44206, "llms trained using": 96838, "prompt engineering llm": 130470, "human large language": 70908, "models llms lately": 107602, "results suggest models": 143841, "solve wide range": 153171, "range generative tasks": 135627, "tasks abstractive summarization": 161884, "extend capabilities llms": 55621, "perform speech recognition": 121047, "recognition asr used": 138047, "multilingual speech recognition": 110552, "perform ablation studies": 120861, "ablation studies investigate": 2442, "present novel method": 126390, "novel method detecting": 114587, "best knowledge large": 17685, "contextualized word embeddings": 31136, "accuracy identifying llmgenerated": 3267, "achieve accuracy approximately": 3576, "added training set": 4818, "effective humanrobot interaction": 45773, "challenges overcome limitations": 21982, "complex ai tasks": 27353, "realization artificial general": 136324, "prevalence large language": 127504, "llms like gpt35": 95781, "like gpt35 gpt4": 92293, "capabilities language comprehension": 19980, "language comprehension generation": 83205, "generation interaction reasoning": 64758, "introduces novel methodology": 80210, "human feedback comprehensive": 70798, "using multiple llms": 174509, "multiple llms results": 110972, "llms results indicate": 96440, "results indicate stateoftheart": 143522, "llms source code": 96645, "language models applied": 84128, "biomedical natural language": 18562, "namedentity recognition ner": 111421, "overall results demonstrate": 118227, "models zero fewshot": 109734, "zero fewshot scenarios": 180076, "models better suited": 105511, "language processing demonstrated": 86506, "demonstrated potential large": 38737, "chatbots based llms": 22601, "llms chatgpt bard": 94572, "assessing large language": 13181, "models ability predict": 105186, "leveraging generative ai": 91854, "novel framework called": 114509, "leveraging recent advancements": 91935, "reinforcement learning method": 139077, "method effectively addresses": 100808, "addresses critical challenges": 5411, "llms specific tasks": 96659, "specific tasks impractical": 154104, "llms wide range": 97002, "long context understanding": 97444, "llms recently achieved": 96328, "better generalization sample": 17886, "python programs generated": 133851, "local global attention": 97242, "higher success rate": 69640, "llms text analysis": 96792, "introduces large language": 80191, "applicable broad range": 10274, "classification sentiment analysis": 24086, "sentiment analysis critical": 148609, "multilevel large language": 110460, "language models significant": 86164, "linking large language": 93107, "language models inspired": 84713, "specific regions brain": 154072, "accuracy large language": 3287, "understanding cot prompting": 171178, "cot prompting effective": 32885, "little work addressed": 93254, "address question leveraging": 5359, "cot prompting does": 32884, "compared standard fewshot": 26925, "standard fewshot prompting": 154823, "recent works attempt": 137751, "attempt address issue": 13778, "propose novel technique": 132034, "novel technique called": 114713, "llama7b model context": 93398, "token length ranging": 166717, "results demonstrate achieve": 143280, "substantial improvements compared": 158071, "results evaluated gpt4": 143390, "chainofthought reasoning large": 21543, "llms perform better": 96066, "stepbystep chainofthought cot": 155695, "reasoning process answering": 137054, "results suggest cot": 143832, "advances generative ai": 6012, "generative ai potential": 65348, "daily tasks natural": 34516, "natural language commands": 111562, "realworld scenarios paper": 136503, "external knowledge bases": 56062, "complex tasks challenging": 27608, "results highlight need": 143457, "need development robust": 112271, "current stateoftheart large": 34257, "possible future directions": 124425, "launch november 2022": 89589, "performance various domains": 122254, "present comprehensive review": 126261, "critically analyze existing": 33576, "science natural language": 146897, "insights potential chatgpt": 77625, "emphasizing need research": 47654, "need research development": 112378, "advancements conversational ai": 5876, "tool results indicate": 167025, "despite limitations study": 40153, "language models quality": 86008, "performance pretrained large": 121932, "downstream model performance": 44731, "model performance tasks": 104260, "develop new framework": 40810, "based simple hypothesis": 16099, "using synthetic real": 174778, "synthetic real data": 160070, "achieving higher accuracy": 4184, "general language models": 62976, "training data given": 168270, "evaluating generative models": 51307, "llms widely employed": 97006, "finetuning llms requires": 59362, "llms requires significant": 96417, "models generate descriptive": 106446, "text graph data": 165215, "data zeroshot setting": 35980, "compare performance finetuned": 26710, "performance finetuned llm": 121531, "generative models capable": 65479, "models capable generating": 105563, "generating fluent coherent": 64219, "fluent coherent text": 59898, "detect machinegenerated text": 40368, "llms remarkable progress": 96395, "addressing gap introduce": 5447, "outperforms existing stateoftheart": 117765, "existing stateoftheart models": 53582, "field conversational ai": 58150, "handle visual inputs": 68579, "interpreting visual data": 79741, "new insights challenges": 113232, "computer vision problems": 28507, "visual language understanding": 177221, "remote sensing data": 140347, "data comprehensively evaluate": 34810, "probing large language": 128156, "text make predictions": 165292, "representations contain information": 140782, "data model trained": 35389, "bias based gender": 18101, "growing body work": 68010, "models representation space": 108933, "domainspecific language model": 44593, "paper presents development": 119157, "competencies large language": 27129, "domain knowledge effectively": 44195, "language models parallel": 85854, "models llms major": 107646, "critical review large": 33544, "models llms addressing": 107094, "llms addressing challenges": 94355, "challenge reinforcement learning": 21725, "learn optimal policy": 90024, "nonplayer characters npcs": 114118, "train rl agents": 167822, "information using large": 76834, "using knowledge graphs": 174346, "skills language models": 152167, "empirical scaling laws": 47742, "models llms received": 107791, "received increasing attention": 137306, "evaluate capabilities llms": 50918, "generates natural language": 64085, "natural language evaluation": 111592, "models llms involves": 107588, "instruction tuning helps": 78095, "commercial llms chatgpt": 26081, "research development efforts": 141700, "existing opensource llms": 53513, "world recent work": 179610, "recent work explore": 137726, "instruction tuning llms": 78112, "llms multiple languages": 95915, "raised important questions": 135469, "multilingual instruction tuning": 110486, "overcome issue present": 118290, "instructiontuned llms based": 78398, "present benchmark datasets": 126234, "evaluation generative llms": 51620, "models mllms gained": 108204, "questions accurate human": 135024, "accurate human annotations": 3463, "multiplechoice questions groundtruth": 111102, "questions groundtruth options": 135151, "groundtruth options derived": 67940, "options derived human": 117142, "derived human annotation": 39356, "human annotation enables": 70577, "annotation enables objective": 9525, "enables objective efficient": 48234, "objective efficient assessment": 115185, "efficient assessment model": 46577, "assessment model performance": 13250, "model performance eliminating": 104238, "performance eliminating need": 121445, "eliminating need human": 47082, "need human gpt": 112308, "human gpt intervention": 70838, "gpt intervention evaluation": 66433, "intervention evaluation evaluate": 79790, "evaluation evaluate performance": 51570, "temporal understanding revealing": 164289, "revealing limitations existing": 144403, "limitations existing mllms": 92583, "image video audio": 72357, "modalities unified framework": 102958, "unified framework large": 171715, "framework large models": 61262, "competitive performance existing": 27186, "performance existing stateoftheart": 121481, "existing stateoftheart approaches": 53579, "model merging weight": 104081, "llms exhibit impressive": 95141, "exhibit impressive capabilities": 53061, "impressive capabilities generating": 73263, "capabilities generating realistic": 19918, "generating realistic text": 64312, "employ chatgpt generate": 47818, "chatgpt generate humanlike": 22978, "generate humanlike content": 63550, "current stateoftheart llm": 34260, "generation multiplechoice questions": 64867, "chatgpt demonstrated remarkable": 22834, "llms multiplechoice questions": 95917, "multiplechoice questions mcqs": 111106, "approach generating highquality": 11256, "longterm action anticipation": 97595, "action anticipation lta": 4308, "anticipation lta task": 10123, "lta task aims": 97967, "task aims predict": 161187, "humanmachine interaction propose": 71306, "hypothesize large language": 71635, "propose twostage framework": 132182, "chainofthought prompting empirical": 21520, "stateoftheart performance benchmarks": 155270, "opportunities advent large": 116823, "language models dramatically": 84406, "filtering large language": 58355, "language models generalpurpose": 84572, "external tools execute": 56095, "today large language": 166666, "language models personalization": 85882, "address limitations paper": 5314, "agents realworld applications": 6704, "emerged large language": 47367, "models llms currently": 107234, "llms currently forefront": 94771, "currently forefront intertwining": 34318, "ai systems human": 7246, "systems human communication": 160424, "human communication everyday": 70656, "communication everyday life": 26373, "aligning human values": 8088, "series experiments showing": 148922, "llms able understand": 94270, "language models ontology": 85821, "approach utilizes large": 11654, "utilizes large language": 175139, "significant advancements natural": 150575, "comprehensive evaluation using": 28025, "using zeroshot prompting": 174884, "chatgpt teaching learning": 23381, "application large language": 10337, "clinical decision support": 24325, "paper aims bridge": 118728, "aims bridge gap": 7585, "data science course": 35705, "feedback using chatgpt": 57818, "teaching learning data": 163650, "language models education": 84411, "study utilized chatgpt": 157705, "subject matter experts": 157836, "networks natural language": 112778, "recognition tasks various": 138141, "language model gained": 83650, "problemsolving information retrieval": 128663, "training data study": 168351, "data study address": 35815, "bias potential amplify": 18179, "empathetic response generation": 47612, "approaches mainly focus": 11840, "perspective paper propose": 122682, "experimental evaluations demonstrate": 53944, "evaluations demonstrate method": 51961, "methods automatic human": 101328, "highlevel task planning": 69714, "promising initial results": 130267, "models exhibit emergent": 106202, "studies instruction tuning": 157022, "human feedback improve": 70804, "finetuned models work": 59086, "work provides evidence": 179238, "finetuned models exhibit": 59082, "undergone instruction tuning": 170798, "flant5 gpt35 gpt4": 59753, "gpt35 gpt4 research": 66823, "dataset model evaluation": 36414, "model exhibits remarkable": 103590, "exhibits remarkable zeroshot": 53217, "remarkable zeroshot performance": 140311, "models better human": 105509, "models consider problem": 105748, "models llms novel": 107677, "llms solve problems": 96640, "current stateoftheart llms": 34262, "unseen problems require": 172177, "able achieve stateoftheart": 2459, "stateoftheart performance challenging": 155271, "challenging mathematical reasoning": 22205, "mathematical reasoning benchmarks": 99587, "integrating visual information": 78634, "generation current models": 64549, "struggle effectively utilize": 156745, "image text modalities": 72341, "images texts unified": 72498, "comprehensive experiments conducted": 28038, "robust generalization capabilities": 145269, "generalization capabilities novel": 63143, "domains code available": 44368, "models llms especially": 107367, "llms make mistakes": 95845, "current state large": 34249, "directed acyclic graph": 42417, "acyclic graph dag": 4496, "retrieval augmented generation": 144001, "unstructured textual data": 172227, "textual data medical": 165894, "models increasingly used": 106745, "augmented generation rag": 14347, "extractive abstractive summarization": 56377, "abstractive summarization method": 2682, "textual data using": 165895, "remarkable advancements recent": 140138, "advancements recent years": 5957, "explicit human instruction": 54938, "visual recognition tasks": 177294, "language generation capabilities": 83343, "capabilities multimodal large": 20064, "segmentation tasks code": 147752, "code models demo": 25016, "mitigate potential risks": 102627, "apply foundation models": 10849, "foundation model developers": 60736, "internal information processing": 79549, "findings support hypothesis": 58816, "robust ai systems": 145237, "models achieve remarkable": 105230, "performance various benchmarks": 122253, "models high predictive": 106602, "high predictive performance": 69505, "stateoftheart calibration methods": 155095, "models particularly large": 108439, "llms finally discuss": 95264, "models code comprehension": 105644, "comprehension generation tasks": 27906, "following main findings": 60296, "models specifically finetuned": 109206, "finetuned downstream task": 59015, "model performance downstream": 104237, "generation tasks compared": 65151, "instruction tuning based": 78071, "legal reasoning large": 91311, "suggest structured reasoning": 158590, "absolute points terms": 2619, "models revolutionized various": 108995, "revolutionized various applications": 144667, "applications artificial intelligence": 10426, "matching surpassing human": 99484, "rlhf reinforcement learning": 145097, "human feedback training": 70827, "models hundreds billions": 106651, "rlhf training data": 145105, "development field ai": 41113, "framework training large": 61463, "autoregressive visionlanguage models": 15019, "visionlanguage models introduce": 177044, "technical report describes": 163716, "data hyperparameters evaluation": 35164, "gpt3 gpt35 gpt4": 66701, "evaluate ability ai": 50888, "ability ai agents": 2060, "metalorganic frameworks mofs": 100586, "leveraging largescale language": 91892, "variety tasks including": 175772, "conversational agents recent": 31837, "recent advent large": 137434, "responses contextually relevant": 142758, "original language model": 117349, "language model research": 83883, "simulated household environment": 151661, "leverage pretrained large": 91646, "language models extract": 84514, "clinical narratives using": 24348, "language models create": 84318, "language models enhanced": 84450, "llms demonstrate remarkable": 94826, "demonstrate remarkable performance": 38530, "improving training efficiency": 74228, "training efficiency paper": 168411, "efficiency paper propose": 46500, "baby language models": 15399, "leveraging chain thought": 91813, "outperforms vanilla roberta": 117887, "contextual information results": 31098, "achieve improved performance": 3676, "models llms obtain": 107681, "language models mathematical": 85725, "models mathematical reasoning": 108155, "reasoning challenging task": 136744, "underexplored paper investigate": 170773, "data model performance": 35385, "correct reasoning paths": 32410, "quality responses generated": 134251, "llms challenging task": 94562, "challenging task particularly": 22292, "novel approach involves": 114389, "information obtain comprehensive": 76603, "validate effectiveness method": 175312, "data augmentation method": 34679, "address lack annotated": 5300, "high quality synthetic": 69514, "quality synthetic data": 134280, "datasets artificial intelligence": 36661, "impact artificial intelligence": 72623, "answers stack overflow": 10084, "stack overflow questions": 154713, "online helpseeking behavior": 116103, "comprehensive study conducted": 28126, "study conducted evaluate": 157233, "bridge gap conducted": 19043, "questions stack overflow": 135287, "analysis user study": 9222, "language models computer": 84277, "program large language": 129739, "led paradigm shift": 91235, "performance different large": 121391, "responses openended questions": 142865, "identify areas improvement": 71859, "llms hold promise": 95506, "enhance student learning": 49295, "student learning outcomes": 156814, "comprehensive literature review": 28074, "retrieval text embeddings": 144152, "summarization using llms": 158896, "graphical user interface": 67604, "user interface gui": 173443, "language models master": 85723, "space study propose": 153623, "language models machine": 85706, "models machine learning": 108116, "machine learning approach": 98012, "joint probability distribution": 81261, "using policy gradient": 174582, "algorithm reinforcement learning": 7848, "reinforcement learning framework": 139061, "pretrained large model": 127007, "evaluating chatgpt gpt4": 51274, "visual programming generative": 177251, "education automatically generating": 45522, "generating personalized feedback": 64292, "recent works studied": 137764, "programming education scenarios": 129815, "visual programming domains": 177250, "main research question": 98268, "research question study": 142022, "evaluate models chatgpt": 51025, "models chatgpt based": 105608, "chatgpt based gpt35": 22736, "based gpt35 gpt4": 15848, "assess performance using": 13111, "performance using expertbased": 122222, "using expertbased annotations": 174184, "maze challenge codedotorg": 99707, "results models perform": 143613, "future work developing": 62406, "developing techniques improve": 41029, "new paradigm shift": 113322, "general purpose technology": 63033, "stateoftheart artificial intelligence": 155081, "intelligence language model": 78846, "language model multiple": 83810, "results revealed high": 143767, "gpt4 capable generating": 66938, "ai models various": 7117, "use cases chatgpt": 172526, "openais gpt35turbo gpt4": 116418, "multiplechoice questions mcq": 111105, "llms information extraction": 95629, "language modelbased chatbot": 83971, "question answering essay": 134706, "code data model": 24746, "data model parameters": 35384, "research applications llms": 141590, "agents powered large": 6690, "consider ethical implications": 29569, "use pretrained large": 172814, "language models industrial": 84707, "rich prior knowledge": 144795, "prior knowledge obtained": 127908, "knowledge obtained pretraining": 82253, "chatgpt machine translation": 23114, "modern standard arabic": 109837, "standard arabic msa": 154802, "llms encounter challenges": 95065, "existing commercial systems": 53315, "following human instructions": 60278, "tasks analysis reveals": 161945, "linguistic cultural intricacies": 93023, "capable accurately identifying": 20395, "comparison existing methods": 27037, "existing methods approach": 53439, "achieves consistently better": 4006, "visionlanguage models visionlanguage": 177062, "visionlanguage models vlms": 177066, "models vlms shown": 109662, "vlms shown impressive": 177482, "improvement prior works": 73838, "paper comprehensively investigate": 118788, "performance general domain": 121569, "different geographic regions": 41785, "strategies large language": 156023, "comprehensive review emerging": 28113, "questions incontext learning": 135164, "designed target specific": 39958, "work explore task": 178960, "propose simple incontext": 132131, "metrics evaluating quality": 102055, "extensive experiments tasks": 55891, "experiments tasks using": 54494, "room improvement automated": 145585, "generation based findings": 64449, "based findings outline": 15811, "public release chatgpt": 133601, "capabilities generative ai": 19920, "models ability extract": 105175, "results indicate potential": 143517, "using generative ai": 174230, "language modelbased ai": 83967, "task planning tool": 161620, "planning tool usage": 123329, "recent advancements natural": 137372, "emerged powerful tools": 47388, "powerful tools various": 125348, "various realworld applications": 176136, "realworld applications despite": 136397, "handling complex tasks": 68589, "tasks necessitate combination": 162847, "necessitate combination task": 112163, "combination task planning": 25846, "task planning usage": 161623, "planning usage external": 123336, "usage external tools": 172447, "paper propose structured": 119253, "llmbased ai agents": 94119, "using various llms": 174846, "tool usage tptu": 167046, "usage tptu abilities": 172477, "resource researchers practitioners": 142395, "researchers practitioners leverage": 142244, "leverage power llms": 91641, "language model expert": 83632, "achieved remarkable breakthroughs": 3867, "chinese medicine llms": 23646, "rely supervised finetuning": 139889, "medical dialogue dataset": 100159, "significantly enhances models": 150996, "given unique characteristics": 66044, "outperforms baselines various": 117723, "parameters ablation studies": 119698, "code datasets models": 24771, "methods including gpt3": 101591, "vectors embedding space": 176405, "integration language models": 78665, "language tasks models": 86768, "face significant challenges": 56552, "significant challenges terms": 150653, "terms computational costs": 164398, "llms lack efficient": 95713, "performance language model": 121709, "achieving comparable performance": 4158, "model surpasses performance": 104701, "exact match scores": 52341, "new benchmark dataset": 113088, "benchmark dataset designed": 16895, "national transportation safety": 111496, "transportation safety board": 169611, "showcases potential knowledge": 150101, "models llms likely": 107637, "content generation scale": 30511, "open source llms": 116300, "open source models": 116302, "training custom llms": 168221, "evaluation gpt4s performance": 51629, "assistance large language": 13373, "given rise large": 65994, "question arises llms": 134831, "determining optimal number": 40724, "conduct empirical evaluation": 29070, "empirical evaluation using": 47685, "generative machine learning": 65462, "models recently emerged": 108852, "diffusion model trained": 42240, "model trained public": 104772, "conclusion study demonstrated": 28906, "demonstrated high accuracy": 38677, "new research opportunities": 113387, "scaling instruction tuning": 146404, "instruction tuning significantly": 78137, "step significantly reduce": 155682, "generating synthetic data": 64352, "efficient continual pretraining": 46589, "training new dataset": 168604, "ability use tools": 2407, "various language models": 175992, "task formats prompting": 161409, "formats prompting modules": 60567, "existing approaches understanding": 53277, "recent advancements foundation": 137355, "advancements foundation models": 5895, "using benchmark dataset": 174002, "language processing nlpbased": 86599, "adequately represent range": 5519, "augmentation method based": 14296, "language model iterative": 83697, "model iterative process": 103906, "method realworld applications": 101056, "corpus containing diverse": 32289, "proposed data augmentation": 132270, "data generation paper": 35116, "generation paper presents": 64916, "diverse data modalities": 43496, "video audio text": 176687, "processed large language": 129045, "models future prospects": 106411, "recent advancements multimodal": 137369, "advancements multimodal large": 5930, "frozen llm generate": 61670, "benchmarks demonstrate superiority": 17214, "alignment large language": 8182, "general pretrained transformer": 63019, "remains unclear models": 140088, "models ability accurately": 105173, "gpt models gpt35": 66455, "understanding ability llms": 171107, "ai trustworthy ai": 7302, "generative ai popular": 65347, "consists large language": 29972, "symbolic ai systems": 159803, "deep learning generative": 37745, "language models manually": 85716, "lack common sense": 82898, "based foundation models": 15822, "models hierarchical planning": 106600, "ai tools like": 7296, "tools like large": 167201, "like large language": 92329, "models llms need": 107670, "paper propose use": 119255, "better results compared": 18013, "qa large language": 133893, "llms shown outstanding": 96553, "shown outstanding performance": 150318, "substantial parameter size": 158085, "capabilities tackling complex": 20205, "tackling complex reasoning": 160866, "cot prompting method": 32893, "advanced reasoning abilities": 5798, "paper investigate possibility": 119033, "investigate possibility transferring": 80466, "smaller models knowledge": 152416, "models knowledge distillation": 106842, "twostage framework separates": 170258, "process paper introduces": 128934, "capable automatically generating": 20406, "generate highquality data": 63539, "models shown exhibit": 109101, "strong reasoning ability": 156437, "larger language model": 89208, "multihop dense retrieval": 110415, "dense retrieval method": 39103, "model score generated": 104513, "al 2023 train": 7735, "significantly improve results": 151029, "models generally outperform": 106437, "knowledge transfer large": 82469, "transfer large language": 168927, "language models conduct": 84283, "empirical study using": 47765, "knowledge transfer improve": 82468, "generalization ability large": 63127, "models llms software": 107927, "llms software engineering": 96632, "tasks require llms": 163145, "training data proposed": 168326, "approach guides llm": 11268, "generalization ability unseen": 63133, "approach software engineering": 11557, "engineering tasks api": 48996, "code example generation": 24815, "findings demonstrate feasibility": 58656, "enhance llms performance": 49230, "llms performance various": 96093, "performance various software": 122275, "various software engineering": 176174, "enhance llms ability": 49229, "text generation automatic": 165130, "automatic prompt optimization": 14720, "generation methods require": 64831, "language model scratch": 83894, "substantial data computational": 158047, "data computational resources": 34816, "presents promising alternative": 126623, "zero fewshot text": 180078, "received limited attention": 137308, "prompt optimization approach": 130615, "text evaluate method": 165062, "manually designed prompts": 99092, "study using large": 157700, "models llms analyze": 107107, "average accuracy 68": 15269, "future work improve": 62409, "improve llm performance": 73507, "llm performance context": 93879, "building foundation models": 19408, "inspiration recent success": 77690, "expressed natural language": 55573, "demonstrated effectiveness multimodal": 38647, "proposed method significantly": 132372, "models llms consistent": 107216, "effective prompt design": 45850, "llms llama2 vicuna": 95807, "tasks glue superglue": 162471, "glue superglue benchmarks": 66130, "approaches performance level": 11859, "prompting methods including": 131017, "study underscores potential": 157685, "language models alignment": 84113, "alignment refers making": 8223, "refers making models": 138719, "making models behave": 98780, "models behave accordance": 105471, "behave accordance human": 16551, "accordance human intentions": 3025, "presents comprehensive survey": 126563, "results indicate general": 143503, "models tend perform": 109371, "tend perform better": 164316, "llms various applications": 96948, "low rank adaptation": 97781, "openais gpt3 gpt4": 116413, "gpt4 metas llama": 67076, "metas llama googles": 100603, "paradigm shift advent": 119509, "model sam exhibited": 104501, "sam exhibited remarkable": 145937, "resulting suboptimal performance": 143137, "structure inherent deep": 156570, "benchmark datasets demonstrate": 16903, "datasets demonstrate superior": 36775, "demonstrate superior performance": 38572, "high school college": 69532, "language models comparative": 84266, "models comparative study": 105692, "comparative study human": 26653, "limitations current evaluation": 92560, "investigate potential large": 80471, "models llms automatically": 107133, "feedback using dataset": 57819, "intelligence ai based": 78727, "poses greater challenge": 124209, "chainofthought cot technique": 21501, "ability foundation models": 2172, "foundation models possess": 60792, "benchmark demonstrate proposed": 16923, "code generated large": 24858, "utilizing large language": 175204, "code eliminating need": 24800, "interaction generative ai": 79128, "using openais gpt": 174558, "gpt case study": 66396, "using chatgpt different": 174036, "stable diffusion using": 154695, "role generative ai": 145497, "intelligence ai paper": 78759, "paper offers comprehensive": 119087, "exploration generative ai": 55075, "applications text generation": 10703, "generation models like": 64851, "like chatgpt gpt3": 92226, "image generation models": 72263, "models dalle midjourney": 105839, "challenges ethical considerations": 21852, "limitation propose novel": 92521, "propose novel twostage": 132043, "paper presents comparative": 119148, "presents comparative analysis": 126553, "comparative analysis different": 26634, "promising approach future": 130224, "future research development": 62323, "knowledge graph noisy": 82063, "generation aims generating": 64411, "exploiting power pretrained": 55036, "generation model generate": 64839, "utilize contrastive learning": 175032, "contrastive learning enhance": 31364, "enhance models ability": 49239, "decoder generate text": 37512, "text generation technique": 165191, "evaluate models performance": 51030, "significant advancements various": 150580, "advancements various domains": 5972, "evaluate performance llms": 51057, "findings reveal llms": 58780, "abundant domain knowledge": 2703, "domain knowledge inherent": 44201, "knowledge inherent llms": 82126, "recent years shown": 137803, "shed light common": 149852, "light common challenges": 92103, "models llms exemplified": 107382, "llms exemplified chatgpt": 95133, "chatgpt openai bard": 23159, "openai bard google": 116324, "remarkable proficiency various": 140268, "framework leverages knowledge": 61279, "knowledge base llms": 81773, "provided experimental results": 133055, "experimental results obtained": 54049, "efficacy proposed framework": 46409, "instructionfollowing large language": 78188, "models llms represented": 107829, "llms represented chatgpt": 96411, "parameter scales training": 119637, "capabilities extensive experiments": 19890, "retrieval ir systems": 144073, "systems search engines": 160601, "integrated daily lives": 78519, "advanced neural models": 5789, "models excel capturing": 106187, "face challenges data": 56514, "challenges data scarcity": 21816, "language models powerful": 85930, "powerful language understanding": 125291, "models llms typified": 107993, "chatgpt gpt4 revolutionized": 23025, "gpt4 revolutionized natural": 67148, "remarkable language understanding": 140211, "recent research sought": 137637, "systems given rapid": 160408, "given rapid evolution": 65975, "rapid evolution research": 135886, "posed significant challenges": 124192, "models llms researchers": 107835, "alternatives human evaluation": 8594, "experimental results suggest": 54076, "enhance efficiency effectiveness": 49190, "quality generated responses": 134146, "fewshot learning promptbased": 57977, "fewshot natural language": 58003, "discrete prompt optimization": 42811, "prompt optimization methods": 130617, "require expert knowledge": 141098, "methods improve performance": 101582, "improve performance learning": 73557, "address research gap": 5365, "research gap propose": 141811, "learning rl framework": 90945, "outperforms stateoftheart sota": 117863, "stateoftheart sota method": 155365, "source code summarization": 153424, "code summarization paper": 25166, "summarization paper presents": 158859, "code summarization code": 25165, "code summarization task": 25167, "writing natural language": 179736, "generating descriptions using": 64188, "propose use semantic": 132197, "semantic similarity metric": 148226, "gpt generative pretrained": 66426, "aigenerated text significant": 7414, "humans performing tasks": 71442, "different types questions": 42073, "types questions answered": 170413, "analysis shows chatgpt": 9167, "research needed understand": 141928, "present new framework": 126379, "size computational demands": 151970, "present significant challenges": 126448, "challenges practical deployment": 22010, "especially resourceconstrained environments": 50536, "emerged pivotal research": 47378, "limitations paper presents": 92632, "model compression techniques": 103332, "llms providing insights": 96265, "survey serves invaluable": 159692, "serves invaluable resource": 149045, "invaluable resource researchers": 80314, "foundation future advancements": 60718, "future advancements field": 62217, "capabilities llms effectively": 20030, "manual evaluation metrics": 99041, "diverse synthetic data": 43669, "models llms hold": 107528, "llms hold immense": 95505, "data high quality": 35153, "models despite impressive": 105940, "struggle produce coherent": 156769, "base language models": 15607, "language models emphasised": 84431, "llms strike balance": 96690, "demonstrates improved performance": 38860, "data generation techniques": 35121, "commonsense reasoning task": 26319, "llms chatgpt exhibit": 94578, "enhanced user engagement": 49373, "remains underexplored study": 140097, "underexplored study introduce": 170779, "encompassing arithmetic commonsense": 48546, "arithmetic commonsense reasoning": 12472, "reasoning symbolic reasoning": 137159, "models chatgpt llama": 105616, "boost performance introduce": 18823, "extensive experiments standard": 55887, "llms ability learn": 94259, "fewshot learning models": 57971, "learning extensive experiments": 90449, "survey evaluation large": 159628, "processing nlp witnessed": 129267, "performance gains wide": 121559, "applications realworld scenarios": 10658, "better evaluate llms": 17858, "solving challenging math": 153198, "gpt4 code interpreter": 66944, "like gpt4 palm2": 92300, "brought significant advancements": 19247, "latest version gpt4": 89572, "shows remarkable performance": 150471, "enhancing llms reasoning": 49515, "generating executing code": 64207, "insight propose novel": 77499, "effective prompting method": 45855, "effectiveness majority voting": 46231, "achieve impressive zeroshot": 3674, "accuracy math dataset": 3305, "personalized text generation": 122627, "emerging research area": 47531, "generation using large": 65238, "framework teach llms": 61452, "results significant improvements": 143794, "significant improvements variety": 150755, "improvements variety baselines": 73962, "intelligence ai large": 78750, "chatgpt bard bing": 22733, "bard bing ai": 15553, "serve valuable tools": 149018, "field humancomputer interaction": 58176, "leverages power chatgpt": 91763, "deployment large language": 39281, "use cases knowledge": 172528, "possible paper propose": 124445, "management large language": 98880, "remains underexplored work": 140098, "effectiveness approach terms": 46131, "extensive experiments llms": 55854, "modeling mathematical reasoning": 105045, "large language modeldriven": 87511, "natural programming languages": 111939, "provide userfriendly interface": 133020, "natural language computer": 111565, "diverse applications various": 43463, "paper systematically study": 119360, "leverage capabilities llms": 91570, "curriculum learning strategy": 34353, "significantly boosts retrieval": 150960, "shows strong zeroshot": 150483, "models llms tremendous": 107990, "language understanding successfully": 86861, "domains computer vision": 44375, "computer vision robotics": 28511, "robotics reinforcement learning": 145211, "llms image generation": 95538, "image generation tasks": 72268, "generation tasks directly": 65156, "work using llms": 179361, "introductory programming education": 80273, "paper investigates performance": 119057, "solving introductory programming": 153217, "introductory programming tasks": 80275, "used input llms": 173116, "llms programming education": 96218, "data extraction using": 35035, "language models best": 84184, "models best model": 105504, "best model performance": 17706, "language processing transformerbased": 86651, "models developed openai": 105953, "models encounter challenges": 106115, "fewshot learning emerged": 57958, "known chainofthought prompting": 82587, "multistep reasoning paper": 111189, "model iteratively generate": 103908, "iteratively generate code": 81153, "significantly enhance code": 150986, "code generation accuracy": 24868, "code generation effectiveness": 24883, "question answering multihop": 134761, "framework multihop qa": 61314, "improvement compared baselines": 73771, "crucial role various": 33855, "intellectual property protection": 78711, "novel approach leverages": 114391, "models mllms demonstrated": 108201, "remarkable capabilities visual": 140180, "visual textual understanding": 177327, "inspired observation proposed": 77743, "types prompts including": 170408, "extensive experiments realworld": 55874, "experiments realworld datasets": 54431, "stateoftheart performance benchmark": 155268, "furthermore conduct comprehensive": 62029, "conduct comprehensive ablation": 29037, "comprehensive ablation studies": 27943, "demonstrate performance improvements": 38462, "unified framework consolidates": 171714, "visual recognition visual": 177295, "demonstrating comparable performance": 38922, "relies heavily quality": 139800, "training data previous": 168322, "data previous work": 35540, "models foundational visionlanguage": 106393, "foundational visionlanguage models": 60853, "data curation pipeline": 34880, "pipeline using pretrained": 123103, "automatic data curation": 14655, "pipeline significantly outperforms": 123092, "significantly outperforms baselines": 151093, "design choices downstream": 39572, "materials science knowledge": 99514, "knowledge base enables": 81768, "discovery language models": 42772, "models demonstrated capability": 105899, "answer domainspecific questions": 9701, "concepts language models": 28666, "zeroshot chain thought": 180135, "error analysis revealed": 50273, "social media mining": 152616, "analysis offer insights": 9038, "strong performance benchmark": 156423, "insights llms capabilities": 77601, "newly released large": 113542, "llms open new": 95971, "recently researchers shown": 137984, "possibilities using llms": 124373, "llms chatgpt generate": 94582, "generate malicious content": 63605, "enhancing reasoning capabilities": 49559, "approach large language": 11334, "llms showcased impressive": 96524, "impressive reasoning capabilities": 73369, "specifically designed prompts": 154181, "reasoning tasks math": 137183, "tasks math word": 162787, "tasks using chainofthought": 163426, "enhancing reasoning abilities": 49558, "model training paper": 104793, "solutions generated llms": 153027, "method significantly enhances": 101096, "significantly enhances reasoning": 150999, "models reasoning performance": 108814, "materials science research": 99515, "prior works suggested": 127961, "models text classification": 109385, "text classification named": 164889, "classification named entity": 24036, "complex model architecture": 27476, "extractive qa model": 56382, "extraction scientific literature": 56353, "work introduce endtoend": 179053, "stateoftheart sota image": 155360, "different transformerbased models": 42062, "conduct set experiments": 29177, "error rate cer": 50315, "larger larger language": 89214, "programming tasks llms": 129881, "llms applied tasks": 94415, "llms specific domains": 96658, "domain propose novel": 44259, "evaluate performance models": 51059, "llms results demonstrate": 96438, "catering unique demands": 21169, "downstream tasks domains": 44775, "training data particular": 168318, "language paper introduce": 86456, "bridge gap language": 19048, "allows users easily": 8481, "modalities natural language": 102941, "natural language large": 111666, "natural language encoding": 111589, "generalpurpose foundation models": 63343, "demonstrates promising performance": 38881, "models codes datasets": 105660, "codes datasets available": 25298, "combining fast slow": 25974, "trend using large": 169709, "tasks remains underexplored": 163135, "framework evaluating performance": 61145, "reasoning tasks different": 137173, "tasks different levels": 162228, "experiments demonstrate superiority": 54240, "prompting capabilities large": 130872, "information generated llm": 76475, "presents innovative approach": 126594, "models llms clinical": 107200, "include task description": 74341, "novelty work lies": 114762, "interpretable ml models": 79681, "ml models medical": 102782, "extract key insights": 56142, "holds significant promise": 70283, "zeroshot fewshot prompt": 180180, "performance openais chatgpt": 121875, "models different data": 105968, "aim provide insights": 7481, "effectiveness prompt engineering": 46266, "paper bridges gap": 118772, "proposing novel methodology": 132502, "decision support systems": 37385, "highlights transformative potential": 69883, "design domain knowledge": 39609, "language models cognitive": 84255, "models cognitive architectures": 105666, "paper explores integration": 118933, "models llms cognitive": 107205, "llms cognitive architectures": 94626, "development robust ai": 41213, "ai systems discuss": 7244, "challenges associated approach": 21786, "logical reasoning used": 97394, "gpt35 gpt4 using": 66826, "stable diffusion sd": 154694, "produced large language": 129498, "model llm pretrained": 104020, "models experimental results": 106237, "extend large language": 55629, "present study introduces": 126462, "empirical evidence demonstrates": 47691, "visual spatial reasoning": 177313, "evaluate model using": 51022, "new dataset comprising": 113134, "visual language tasks": 177220, "ai models comprehend": 7093, "llms visionlanguage models": 96983, "llms generate final": 95363, "supervised finetuning approach": 159113, "requires large amounts": 141403, "dilemma propose novel": 42312, "vision language problems": 176941, "interact natural language": 79070, "natural language conversation": 111568, "twostage training process": 170273, "tasks results suggest": 163182, "fusion vision language": 62207, "language models importantly": 84674, "dense retrieval models": 39105, "training data struggle": 168350, "address challenge work": 5175, "challenge work introduce": 21751, "retrieval models directly": 144094, "different retrieval models": 41972, "propose novel llm": 132010, "advancement large language": 5846, "significantly outperforms baseline": 151090, "achieves stateoftheart zeroshot": 4112, "stateoftheart zeroshot performance": 155414, "editing large language": 45466, "llms showcased remarkable": 96525, "remarkable potential various": 140262, "potential various tasks": 125065, "considerable human effort": 29620, "end paper proposes": 48671, "llms enable automatic": 95056, "helps llms better": 69250, "extensive experiments 24": 55796, "text classification recent": 164898, "capabilities various nlp": 20249, "lead improved performance": 89752, "performance opensource models": 121878, "smaller models like": 152418, "model selection based": 104530, "training data leads": 168297, "simple effective solution": 151437, "languageguided image editing": 86916, "model generate diverse": 103719, "improves classification accuracy": 73988, "recent surge research": 137695, "world knowledge embedded": 179565, "knowledge embedded llms": 81918, "generalization capabilities stateoftheart": 63144, "growing need new": 68038, "empirical results highlight": 47725, "transfer learning potential": 168955, "models specific domains": 109200, "finetuning base model": 59177, "build large language": 19325, "model paper propose": 104210, "steering language models": 155569, "open problem existing": 116265, "problem existing methods": 128247, "supervised finetuning reinforcement": 159120, "prompt engineering guided": 130457, "specified natural language": 154334, "natural language specification": 111870, "remarkable multimodal capabilities": 140217, "development multimodal large": 41165, "models llms primary": 107753, "generative capabilities models": 65397, "mitigate limitations propose": 102622, "instruction tuning approach": 78069, "approach harnesses power": 11273, "harnesses power generative": 68811, "power generative models": 125178, "texttoimage generative models": 165819, "significantly enhances model": 150995, "experiments conducted various": 54199, "conducted various datasets": 29300, "stateoftheart results multiple": 155335, "good large language": 66278, "language models outofdistribution": 85832, "outofdistribution detection outofdistribution": 117519, "detection outofdistribution ood": 40579, "outofdistribution ood detection": 117526, "learning ml models": 90697, "models emergence large": 106076, "models llms catalyzed": 107163, "diverse natural language": 43583, "tasks existing research": 162347, "like bert roberta": 92204, "ranging 7b 65b": 135745, "pretraining objective llms": 127401, "downstream tasks findings": 44787, "tasks findings unveil": 162409, "bert family models": 17533, "nlp models despite": 113768, "dalvi et al": 34535, "significantly enhances efficiency": 150994, "advanced ai systems": 5700, "systems paper introduce": 160510, "novel artificial intelligence": 114407, "extract meaningful information": 56148, "models multiple tasks": 108259, "multiple tasks including": 111064, "represents significant advancement": 140994, "opening new possibilities": 116525, "problems using large": 128645, "reasoning capabilities approach": 136697, "dataset framework large": 36317, "demonstrated commendable performance": 38633, "commendable performance myriad": 26052, "tasks existing llms": 162344, "existing llms exhibit": 53422, "question answering sqa": 134803, "study explores integration": 157346, "intelligence ai specifically": 78770, "ai specifically large": 7227, "study demonstrates potential": 157276, "language models educational": 84412, "demonstrate impressive capabilities": 38377, "capabilities generate accurate": 19914, "generate accurate code": 63384, "accurate code snippets": 3441, "high computational costs": 69415, "challenges previous research": 22014, "contextually relevant prompts": 31150, "finetuning peft techniques": 59435, "promising approach efficiently": 130223, "llms taskspecific data": 96776, "study peft techniques": 157522, "peft techniques llms": 120686, "llms automated code": 94452, "automated code generation": 14529, "code generation scenario": 24919, "diverse set llms": 43649, "furthermore study highlights": 62165, "software engineering scenarios": 152806, "scenarios code available": 146552, "models success large": 109279, "largely unexplored existing": 89185, "evaluation metrics benchmarks": 51713, "models like clip": 106979, "paper examine potential": 118894, "propose novel llmbased": 132011, "task new benchmark": 161570, "facilitating future research": 56709, "research direction release": 141713, "direction release code": 42446, "release code datasets": 139446, "language models retrievalaugmented": 86100, "models llms information": 107575, "llms information retrieval": 95631, "information retrieval systems": 76736, "generation address gap": 64400, "address gap present": 5237, "opensource framework designed": 116610, "large models rise": 88931, "significantly accelerated development": 150924, "development large models": 41153, "chinese english data": 23623, "models similar scale": 109136, "llms evaluation benchmark": 95108, "advanced model gpt4": 5778, "gap compared human": 62620, "compared human evaluation": 26835, "models llms growing": 107510, "knowledge distillation based": 81879, "use pretrained bert": 172810, "teacher train student": 163624, "multiple different tasks": 110892, "intellectual property ip": 78710, "anomaly detection paper": 9659, "detection paper presents": 40583, "visuallanguage model clip": 177375, "potential industrial applications": 124786, "overcome issues propose": 118293, "text encoder clip": 165052, "generate diverse set": 63468, "samples using generated": 146077, "feedforward neural network": 57835, "method achieves stateoftheart": 100643, "options multiplechoice questions": 117146, "previous works shown": 127703, "works shown models": 179501, "models models powerful": 108226, "conduct various experiments": 29203, "percentage points improvement": 120782, "investigate feasibility using": 80416, "using chatgpt translate": 174045, "models trained specific": 109475, "trained specific downstream": 168082, "downstream tasks data": 44768, "models hugging face": 106635, "models model library": 108222, "allows users explore": 8483, "gpt 35 turbo": 66377, "principles prompt engineering": 127867, "prompt engineering large": 130463, "prompt engineering help": 130458, "prompt engineering critical": 130450, "different types prompts": 42072, "similar large language": 151261, "large language ai": 87296, "language ai models": 83144, "order fully understand": 117201, "process prompt engineering": 128947, "prompt engineering learning": 130466, "knowledge graph prompting": 82064, "pretrain prompt predict": 126741, "prompt predict paradigm": 130631, "paradigm large language": 119473, "question answering mdqa": 134756, "propose knowledge graph": 131891, "quality extensive experiments": 134124, "knowledge bases large": 81785, "bases large language": 16399, "language processing struggle": 86620, "struggle issues regarding": 156761, "llms external knowledge": 95223, "integration knowledge bases": 78663, "bases kbs remains": 16397, "questions requiring world": 135260, "requiring world knowledge": 141519, "compared vanilla llms": 26964, "neural networks transformers": 112956, "idea large language": 71735, "llms demonstrated superior": 94890, "superior generalization ability": 159007, "text rewriting large": 165435, "rewriting large language": 144738, "impressive capabilities text": 73274, "model text rewriting": 104741, "presents formidable challenge": 126581, "training data human": 168273, "data bridge performance": 34727, "bridge performance gap": 19073, "propose effective approach": 131790, "text rewriting tasks": 165438, "empirical experiments demonstrate": 47700, "surpasses current stateoftheart": 159479, "models open ais": 108341, "gpt models proficient": 66462, "included training data": 74355, "gpt models applied": 66452, "performance overall study": 121886, "overall study provides": 118242, "improvements gpt models": 73907, "size number parameters": 152036, "pretrained models despite": 127072, "despite recent advancements": 40188, "resulting model named": 143119, "results significant reduction": 143798, "reduction number tokens": 138619, "fewshot learning tasks": 57985, "model compared traditional": 103313, "llms despite advancements": 94904, "despite advancements llms": 40077, "inference existing methods": 76002, "existing methods primarily": 53461, "question answering commonsense": 134693, "answering commonsense reasoning": 9826, "compared stateoftheart approaches": 26932, "stateoftheart approaches large": 155077, "human values survey": 71082, "big models big": 18383, "models big models": 105517, "exemplified large language": 52995, "pretrained massive data": 127039, "significantly improved performance": 151034, "poses potential risks": 124219, "efforts align llms": 46889, "conduct comprehensive survey": 29058, "human values alignment": 71076, "llms based results": 94471, "alignment big models": 8128, "large multilingual models": 88937, "imagetotext texttoimage generation": 72542, "success typically limited": 158302, "typically limited english": 170499, "lack largescale highquality": 82979, "data work propose": 35972, "training paradigm training": 168626, "large multimodal models": 88943, "models nonenglish languages": 108307, "future research opensource": 62360, "sequence generation large": 148738, "llms capable performing": 94536, "conditional sequence generation": 28967, "tasks translation summarization": 163395, "risk instruction forgetting": 144947, "demonstrate approach consistently": 38233, "data annotation costs": 34635, "industrial automation control": 75849, "automation control systems": 14897, "systems using large": 160662, "models llms approach": 107118, "aims provide insights": 7653, "identify potential areas": 71939, "design implementation evaluation": 39651, "finetune model generate": 58948, "introduce new method": 80033, "recent surge generative": 137691, "language tasks experiments": 86762, "language models consistently": 84295, "improves performance downstream": 74049, "performance downstream language": 121428, "downstream language tasks": 44728, "zeroshot fewshot incontext": 180176, "llms generative ai": 95396, "data models trained": 35399, "softmax regression problem": 152762, "language models way": 86390, "models foundational language": 106391, "reinforcement learning approach": 139045, "models llms usually": 108014, "consistent performance improvements": 29830, "careful data selection": 20778, "consistently outperforms baseline": 29899, "significantly improve llm": 151022, "common practice training": 26177, "ai paper presents": 7139, "presents novel approach": 126605, "results demonstrate promising": 143324, "demonstrate promising potential": 38487, "potential humanai collaboration": 124761, "capabilities human intelligence": 19943, "tasks traditional nlp": 163380, "nlp applications existing": 113685, "applications existing approaches": 10516, "realworld scenarios prior": 136506, "large language multimodal": 88881, "language multimodal models": 86429, "interpretable queries data": 79687, "tasks manual data": 162782, "foundational models fms": 60847, "concepts using large": 28701, "bottleneck models cbms": 18895, "effectiveness llms generating": 46228, "performance using fewer": 122224, "models paper provide": 108421, "paper provide overview": 119286, "provide overview existing": 132917, "generative ai paper": 65342, "ai paper present": 7138, "using advanced ai": 173963, "gpt4 stable diffusion": 67173, "deploying models practice": 39252, "significant background knowledge": 150622, "optimization paper introduce": 117020, "provide natural language": 132894, "largescale pretrained vision": 89389, "models vlms proven": 109661, "structural semantic information": 156527, "clip image encoder": 24404, "strategy comprehensive experiments": 156119, "comprehensive experiments various": 28051, "largescale visionlanguage models": 89424, "visionlanguage models lvlms": 177049, "models lvlms designed": 108111, "answering visual grounding": 9983, "settings zeroshot fewshot": 149666, "code demo models": 24780, "demo models available": 38178, "language processing enabling": 86512, "significant progress various": 150845, "various applications key": 175803, "knowledge bases kb": 81782, "using powerful models": 174587, "tasks paper proposes": 162923, "efficient instruction tuning": 46646, "base models using": 15624, "using low rank": 174459, "rank adaptation lora": 135769, "adaptation lora technique": 4640, "passage retrieval dpr": 120336, "model achieved average": 103029, "equipped chainofthought cot": 50181, "shown impressive reasoning": 150285, "impressive reasoning ability": 73368, "reasoning ability various": 136649, "external knowledge llms": 56069, "issue propose framework": 80947, "incontext learning demonstrations": 74888, "success rate 80": 158286, "outperforms stateoftheart baselines": 117856, "achieving significant improvement": 4212, "performance code data": 121256, "facial expression recognition": 56586, "recognition paper presents": 138113, "descriptions generated using": 39459, "generated using large": 64037, "helps model learn": 69254, "relevant context information": 139583, "training extensive experiments": 168443, "stateoftheart results compared": 155331, "uses word embeddings": 173922, "model generate new": 103726, "finetuned gpt2 model": 59029, "gpt2 model model": 66563, "level large language": 91485, "traffic safety research": 167737, "common practice recent": 26176, "interfaces chatgpt bard": 79458, "domain specific large": 44295, "specific large language": 154028, "automating instruction generation": 14885, "eliminates need manual": 47077, "domainspecific knowledge graphs": 44590, "language models traditional": 86299, "language models symbolic": 86253, "models symbolic knowledge": 109332, "graphs kgs play": 67629, "search question answering": 147400, "question answering recommendation": 134795, "contemporary language models": 30413, "trained extensive textual": 167919, "extensive textual data": 55963, "researchers extensively explored": 142214, "volume training data": 177539, "training data enhances": 168250, "varying sizes capabilities": 176305, "additionally propose novel": 5116, "novel evaluation metrics": 114491, "extensive evaluation various": 55776, "proposed evaluation metrics": 132290, "despite superior performance": 40235, "superior performance large": 159033, "models generate natural": 106452, "natural language texts": 111893, "information natural language": 76589, "guide language model": 68183, "domain knowledge language": 44204, "language models finally": 84530, "graphs language models": 67633, "language models convergence": 84312, "convergence experimental results": 31753, "effective efficient compared": 45745, "traditional language models": 167638, "mechanism language models": 100004, "affective computing tasks": 6325, "foundation models new": 60787, "using general purpose": 174226, "purpose foundation models": 133740, "models gpt4 gpt35": 106546, "affective computing problems": 6324, "extraction sentiment analysis": 56355, "sentiment analysis sentiment": 148637, "suicide tendency detection": 158682, "detection toxicity detection": 40644, "gpt4 shown strong": 67163, "shown strong performance": 150384, "transformerbased models bert": 169267, "led significant advancements": 91244, "models computationally expensive": 105720, "reduce size complexity": 138473, "effectiveness knowledge distillation": 46210, "models range natural": 108770, "introduce multimodal multilingual": 80022, "multiple modalities including": 110979, "audio video text": 14202, "improved performance compared": 73707, "models survey language": 109323, "gpt models revolutionized": 66463, "processing nlp remarkable": 129246, "relatively small models": 139421, "mechanistic interpretability seeks": 100062, "behaviors large language": 16708, "models llms leveraging": 107617, "capture factual knowledge": 20651, "imageconditioned text generation": 72373, "reinforcement learning generative": 139063, "like text generation": 92419, "model maximum likelihood": 104073, "learned reward model": 90129, "limits generative ai": 92916, "survey aims shed": 159605, "aims shed light": 7672, "llms chatgpt received": 94597, "attention past year": 13960, "biases models exhibit": 18291, "models exhibit work": 106215, "learning rl based": 90941, "deep rl algorithms": 37825, "using proposed approach": 174621, "previous studies relied": 127670, "natural text prompts": 111957, "dataset annotated rich": 36113, "language model task": 83923, "existing methods depend": 53441, "supported large language": 159363, "training data introduce": 168288, "development artificial intelligence": 41056, "second language acquisition": 147486, "acquisition introduce new": 4287, "evaluate effectiveness llms": 50955, "knowledge addition investigate": 81734, "addition investigate influence": 4875, "various prompting techniques": 176127, "prompting techniques zero": 131109, "chainofthought cot think": 21503, "cot think stepbystep": 32913, "evaluation popular llms": 51776, "methods achieved significant": 101278, "achieved significant performance": 3892, "performance improvements compared": 121653, "mathematical problemsolving capabilities": 99581, "ai systems including": 7249, "finally outline potential": 58501, "make ai systems": 98481, "new technology potential": 113461, "diffusion models shown": 42254, "capabilities incontext learning": 19954, "texttoimage generation editing": 165815, "hope paper provides": 70363, "cost model compression": 32712, "efficient adaptation downstream": 46562, "adaptation downstream tasks": 4614, "capable matching surpassing": 20447, "matching surpassing performance": 99485, "prior research explored": 127925, "transfer learning effects": 168938, "remain unclear study": 139940, "study addresses gap": 157133, "adversely affects performance": 6262, "recent advances pretrained": 137424, "advances pretrained language": 6054, "taskspecific labeled data": 163529, "application scenarios data": 10380, "data access privacy": 34570, "access privacy constraints": 2900, "plms fewshot text": 123600, "initialization extensive experiments": 77068, "multiple nlp tasks": 110986, "previously unseen tasks": 127754, "learning training sets": 91092, "conversational agent using": 31823, "verbal nonverbal cues": 176439, "gpt35 model generate": 66838, "realworld task planning": 136524, "assess performance llms": 13108, "baselines experiments reveal": 16319, "experiments reveal llms": 54449, "decompose complex tasks": 37614, "visionlanguage models large": 177045, "models large visionlanguage": 106911, "performance various visual": 122281, "various visual tasks": 176251, "extensive training datasets": 55966, "paper explore utilization": 118923, "generate training data": 63763, "realm embodied artificial": 136352, "embodied artificial intelligence": 47305, "llms play pivotal": 96109, "effective methods like": 45813, "underexplored address gap": 170765, "code reasoning abilities": 25087, "abstract syntax tree": 2660, "reasoning code data": 136749, "generation tasks extensive": 65160, "tasks extensive results": 162382, "demonstrates effectiveness proposed": 38839, "proposed approach code": 132234, "smart grid applications": 152478, "paper provide comprehensive": 119282, "provide comprehensive review": 132715, "comprehensive review recent": 28117, "finally future research": 58465, "research directions discussed": 141717, "model multimodal large": 104104, "language models garnered": 84568, "propose large language": 131895, "endtoend trained large": 48774, "trained large multimodal": 167974, "instruction following dataset": 78011, "recent years remarkable": 137798, "years remarkable advancements": 179931, "performance transformerbased large": 122201, "llms various domains": 96950, "various domains llms": 175903, "llms long sequences": 95823, "llms struggle generate": 96701, "generate fluent coherent": 63508, "publicly available following": 133642, "generating realistic diverse": 64311, "including computer vision": 74471, "survey aims provide": 159602, "variants model architectures": 175634, "deep learning frameworks": 37743, "neural networks large": 112932, "networks large language": 112767, "performance multimodal large": 121823, "individual pretrained models": 75732, "process input data": 128878, "experiments conducted study": 54196, "study using gpt4": 157699, "various evaluation metrics": 175931, "benchmark assessing large": 16838, "generation useful tool": 65230, "knowledge graph generation": 82055, "prompt engineering model": 130474, "speech large language": 154427, "current speech large": 34242, "language models build": 84202, "designed speech language": 39950, "language models established": 84464, "speech language model": 154424, "largelanguage models llms": 89142, "text ranking tasks": 165402, "limitations using llms": 92685, "simple surprisingly effective": 151532, "existing approaches use": 53278, "baseline performance using": 16250, "largescale annotated data": 89270, "human domain experts": 70704, "promptbased tuning pretrained": 130799, "models lvlms recently": 108112, "abilities paper propose": 1982, "propose evaluation method": 131810, "comprehensively evaluate various": 28171, "aligning human preferences": 8087, "human preferences hope": 70970, "hope work serve": 70402, "models using common": 109584, "models continues grow": 105781, "models memory computation": 108172, "neural network training": 112910, "inference paper proposes": 76064, "pretrained vision models": 127232, "efficacy proposed approach": 46408, "limits large language": 92919, "strategy improving efficiency": 156158, "lead worse performance": 89789, "worse performance compared": 179663, "comprehensive experimental evaluation": 28033, "experimental evaluation demonstrates": 53938, "striking margin range": 156321, "margin range popular": 99189, "popular nlp tasks": 124031, "tasks including question": 162570, "including question answering": 74688, "shed light future": 149854, "light future research": 92118, "future research large": 62350, "aim better understand": 7432, "situational awareness large": 151938, "awareness large language": 15377, "models llms model": 107657, "model size findings": 104594, "findings offer foundation": 58736, "llms code available": 94619, "models paper studies": 108422, "additional contextual information": 4943, "contextual information provided": 31097, "information provided llm": 76661, "list fewshot examples": 93126, "propose multitask training": 131944, "rate wer evaluation": 136021, "relative wer improvement": 139392, "language models linking": 84809, "methods deep learning": 101421, "deep learning general": 37744, "learning general purpose": 90493, "model hugging face": 103807, "text data processing": 164992, "data processing tasks": 35556, "efficient model tuning": 46678, "context using llms": 30954, "introduce reinforcement learning": 80095, "reinforcement learning technique": 139116, "difficult collect large": 42136, "speech encoder llm": 154409, "prompts llm generate": 131365, "speech recognition speech": 154460, "recognition speech translation": 138128, "translation spoken language": 169519, "accomplish complex tasks": 3004, "tasks growing trend": 162487, "apis work introduce": 10202, "framework realworld applications": 61373, "realworld applications based": 136395, "based opensource llms": 15993, "model training multiple": 104791, "model training evaluation": 104785, "practical realworld applications": 125441, "realworld applications finally": 136401, "recent advancements field": 137350, "field generative ai": 58170, "utilize pretrained llms": 175080, "textual visual data": 165965, "driven object detection": 44992, "object detection task": 115121, "address challenge paper": 5165, "challenge paper propose": 21700, "task propose novel": 161660, "wide range data": 178275, "achieves optimal performance": 4046, "complexity machine learning": 27685, "machine learning pipeline": 98067, "domain knowledge experimental": 44199, "knowledge experimental results": 81970, "reduces time effort": 138536, "ability leverage vast": 2252, "vast knowledge encoded": 176337, "knowledge encoded large": 81930, "encoded large language": 48396, "common challenges faced": 26129, "jailbreaking large language": 81186, "models llms designed": 107302, "align user intent": 8039, "genetic algorithm ga": 65681, "llms model architecture": 95895, "potentially harmful outputs": 125106, "experiments demonstrate efficacy": 54224, "ongoing discussion responsible": 116062, "discussion responsible ai": 43006, "responsible ai development": 142956, "agi artificial general": 6794, "chatgpt stable diffusion": 23351, "overall translation quality": 118254, "language models just": 84741, "just incontext learning": 81375, "language models exhibited": 84481, "exhibited emergent abilities": 53129, "emergent abilities demonstrating": 47457, "exceptional performance diverse": 52826, "complex reasoning abilities": 27551, "prompting techniques incontext": 131103, "techniques incontext learning": 163931, "incontext learning instruction": 74933, "learning instruction following": 90585, "study provide comprehensive": 157565, "million 175 billion": 102219, "abilities providing valuable": 1999, "insights underlying mechanisms": 77663, "vital role llms": 177413, "llms performance existing": 96088, "improve llms performance": 73510, "model performance different": 104235, "faces unique challenges": 56579, "impact llms performance": 72684, "improvements stateoftheart llms": 73952, "face main challenges": 56541, "generation pipeline generates": 64927, "models lvlms significantly": 108113, "llm visionlanguage models": 94093, "understanding vision language": 171531, "vision language modalities": 176932, "questionanswer pairs evaluation": 134967, "instruction tuning method": 78114, "tuning extensive experiments": 170010, "language agents recent": 83141, "models llms external": 107412, "tabletop manipulation tasks": 160775, "higher success rates": 69641, "81 success rate": 1676, "propose hypotheses explain": 131865, "recent social science": 137644, "systems automatically generate": 160259, "exhibits superior performance": 53229, "superior performance terms": 159042, "demonstrated remarkable potential": 38783, "gap present novel": 62706, "domain knowledge knowledge": 44203, "knowledge knowledge graphs": 82155, "knowledge graphs large": 82081, "graphs large language": 67635, "solve different tasks": 153113, "emergent ability generalizability": 47463, "ability generalizability llms": 2178, "graph neural networks": 67557, "neural networks gnns": 112928, "llms strong abilities": 96694, "retrieval paper propose": 144107, "simple effective prompt": 151434, "zeroshot manner additionally": 180258, "conduct experiments datasets": 29089, "use conversational agents": 172567, "conversational agents powered": 31834, "code data public": 24755, "process requiring minimal": 128976, "dataset tuning large": 36593, "essential large language": 50616, "models llms interactive": 107581, "existing models using": 53487, "using instruction dataset": 174330, "models quantitative qualitative": 108752, "relatively small llms": 139420, "instruction tuning instruction": 78101, "implementation publicly available": 72859, "publicly available online": 133657, "information extraction large": 76425, "extraction large language": 56311, "despite potential large": 40173, "stateoftheart supervised methods": 155382, "generate structured output": 63731, "assess capabilities llms": 13055, "task particularly propose": 161608, "incontext learning strategies": 74973, "strategies enhance llms": 155994, "benchmark datasets approach": 16899, "methods quantitatively qualitatively": 101754, "technical report large": 163718, "longer sequence lengths": 97531, "7b parameter models": 1639, "parameter models 8k": 119632, "models achieve comparable": 105218, "results compared stateoftheart": 143243, "modeling tasks shows": 105105, "llms social media": 96629, "social media influence": 152613, "shape public opinion": 149780, "discourse large language": 42709, "text indistinguishable humanwritten": 165244, "explores potential impact": 55415, "conversational agents large": 31829, "language models latest": 84776, "models latest advancements": 106927, "ai deep learning": 6945, "deep learning led": 37752, "breakthrough large language": 19008, "conversational agent development": 31822, "generating training data": 64365, "training data extracting": 168260, "nlp multimodal tasks": 113774, "multimodal tasks despite": 110771, "llms recently showcased": 96347, "recently showcased remarkable": 137990, "remarkable ability generate": 140122, "ability generate fitting": 2187, "generate fitting responses": 63503, "fitting responses natural": 59692, "open research question": 116284, "data used tune": 35921, "current research work": 34230, "answer question using": 9762, "using model finetuned": 174495, "model finetuned text": 103671, "high computational efficiency": 69417, "hope work draw": 70393, "work draw broader": 178921, "decoding contrasting layers": 37565, "models llms prone": 107766, "layers vocabulary space": 89687, "contrasting layers dola": 31340, "tasks openended generation": 162887, "llama family models": 93305, "ondevice large language": 115968, "directly mobile devices": 42570, "models llms limited": 107638, "limited memory capacity": 92801, "ondevice inference engine": 115966, "generative natural language": 65519, "tasks core idea": 162135, "incorporates novel techniques": 75071, "extensive series experiments": 55948, "existing inference engines": 53388, "models llms progress": 107758, "various realworld tasks": 176137, "llm evaluation methods": 93643, "evaluation methods mainly": 51704, "llms address issues": 94351, "propose novel deep": 131991, "furthermore proposed framework": 62141, "proposed method extensive": 132354, "method extensive experiments": 100860, "volumes text data": 177546, "datasets higher quality": 36907, "data quality used": 35594, "original training dataset": 117395, "stateoftheart sota nlp": 155370, "realworld applications users": 136407, "test systems ability": 164644, "sota models including": 153358, "conduct thorough analysis": 29193, "prompt engineering chatgpt": 130448, "open research questions": 116285, "multimodal incontext learning": 110656, "real world knowledge": 136268, "task question answering": 161672, "data types including": 35895, "images challenging task": 72399, "llm incontext learning": 93750, "incontext learning strategy": 74974, "results demonstrate framework": 143302, "baselines methods trained": 16350, "llms unlike existing": 96890, "created comprehensive dataset": 33253, "exhibits higher correlation": 53202, "traditional text similarity": 167709, "given blackbox access": 65837, "blackbox access language": 18621, "parameters paper present": 119829, "detecting generated text": 40408, "hand large language": 68489, "chatgpt shown great": 23314, "displaying high degree": 43078, "natural language llms": 111671, "sequence labeling problem": 148754, "crf layer models": 33414, "powerful language model": 125286, "powerful obtains new": 125315, "obtains new stateoftheart": 115559, "f1 points average": 56482, "respectively large language": 142564, "language models difficulty": 84384, "language models aid": 84102, "language models reduce": 86071, "diversity large language": 43740, "llms led surge": 95752, "models human feedback": 106638, "language models development": 84376, "fluent large language": 59906, "models llms prompted": 107765, "reasoning problemsolving capabilities": 137050, "research advancements field": 141567, "doubleblind peer review": 44676, "construct comprehensive dataset": 30126, "analyzing experimental results": 9368, "smaller transformerbased language": 152452, "model produce coherent": 104351, "produce coherent english": 129379, "use existing large": 172606, "enhance learning process": 49225, "natural language create": 111572, "inputs generate outputs": 77408, "text images videos": 165234, "images videos audio": 72512, "curate highquality dataset": 33999, "language models nowadays": 85808, "capabilities pretrained large": 20118, "models llms attracted": 107124, "llms results gpt4": 96439, "achieve performance competitive": 3705, "models like llama": 106994, "demonstrate significant potential": 38548, "sources large language": 153516, "propose mechanism allows": 131913, "scores large language": 147157, "various languages domains": 175999, "inductive reasoning core": 75843, "work propose improve": 179203, "ask human annotators": 12845, "automated pipeline using": 14587, "downstream tasks recent": 44829, "tasks recent times": 163094, "field language models": 58187, "language models particularly": 85860, "particularly emergence large": 120181, "generated previous iterations": 63942, "research aims investigate": 141583, "comparative analysis language": 26637, "roberta pretrained using": 145159, "potential gender bias": 124738, "using sentiment analysis": 174704, "series experiments demonstrate": 148919, "significant impact performance": 150724, "text generated llms": 165118, "language model science": 83893, "models llms augment": 107126, "theoretical computer science": 166024, "llms complex problemsolving": 94665, "llms shedding light": 96518, "model deep learning": 103414, "learning capabilities large": 90272, "models finally propose": 106337, "finally propose novel": 58511, "language modeling experiments": 83994, "catastrophic forgetting crosslingual": 21069, "forgetting crosslingual transfer": 60418, "languages empirical study": 86985, "source language crosslingual": 153449, "previously acquired knowledge": 127710, "hate speech detection": 68860, "evaluating catastrophic forgetting": 51271, "existing methods focus": 53448, "semantics method evaluated": 148306, "language model serving": 83899, "serving large language": 149100, "models llms requires": 107833, "algorithm inspired classical": 7820, "throughput popular llms": 166310, "compared stateoftheart systems": 26940, "larger models complex": 89230, "generalization diverse tasks": 63165, "break text smaller": 18991, "bridge modality gap": 19071, "capability language models": 20320, "language models generalize": 84570, "issue large language": 80923, "models llms predominant": 107738, "diverse prompting strategies": 43608, "reasoning processes llms": 137065, "decoderonly causal language": 37534, "potentially missing rich": 125124, "effective prompting strategy": 45858, "drawing inspiration human": 44931, "enhance reasoning capabilities": 49275, "findings demonstrate approach": 58653, "approach seamlessly integrates": 11522, "seamlessly integrates various": 147305, "data augmentation using": 34690, "using llms improves": 174438, "state art models": 154988, "domain adaptation methods": 44071, "growing body research": 68009, "models answer question": 105359, "qa models natural": 133901, "experiments different datasets": 54248, "datasets experiments demonstrate": 36851, "multiple language models": 110955, "model consistently outperforms": 103355, "multiple evaluation metrics": 110905, "models llms variants": 108017, "human annotators significantly": 70590, "poses great challenges": 124207, "evaluation paper propose": 51758, "including text images": 74755, "average accuracy rate": 15271, "metrics including accuracy": 102088, "models weak supervision": 109679, "data annotation evaluation": 34636, "presented significant challenges": 126530, "performance human annotators": 121633, "semantic textual similarity": 148239, "llms various tasks": 96962, "textual similarity sts": 165951, "strong performance multiple": 156424, "models newly collected": 108291, "social media content": 152603, "tasks requiring world": 163166, "strategies achieve stateoftheart": 155953, "domainspecific sts tasks": 44626, "developers data scientists": 40942, "language prompts executable": 86670, "prompt optimization techniques": 130618, "offline inverse reinforcement": 115875, "inverse reinforcement learning": 80341, "arithmetic reasoning datasets": 12487, "sentiment large language": 148657, "models llms discern": 107312, "share novel dataset": 149801, "compare performance llms": 26712, "opportunities future research": 116850, "efficient large language": 46658, "study provides valuable": 157572, "ai language modeling": 7055, "comparable performance fullysupervised": 26602, "effectiveness proposed framework": 46273, "source code generated": 153403, "finetuning llms downstream": 59361, "realworld applications work": 136408, "focus parameterefficient finetuning": 60032, "finetuning peft methods": 59434, "memory footprint training": 100399, "maintaining improving performance": 98361, "comprehensive comparison existing": 27982, "existing peft methods": 53518, "paper propose dynamic": 119213, "causal directed acyclic": 21181, "task nexttoken prediction": 161572, "present theoretical framework": 126482, "multilayer perceptrons mlps": 110454, "power language models": 125185, "language models attributed": 84143, "task conduct experiments": 161270, "neural network dnn": 112897, "blackbox nature dnns": 18653, "trained using data": 168107, "demonstrate remarkable capability": 38529, "generating highquality images": 64242, "recent research suggests": 137638, "effective mitigation strategies": 45817, "address gap paper": 5235, "gap paper introduces": 62694, "employ large language": 47836, "remains challenge paper": 139979, "challenge paper introduce": 21694, "novel geometric perspective": 114532, "parameter gpt2 model": 119616, "findings reveal clear": 58777, "outputs large language": 118076, "models llms primarily": 107752, "llms primarily trained": 96188, "comprehending complex instructions": 27869, "study aims improve": 157153, "based masked language": 15940, "investigate use llms": 80515, "use llms augment": 172743, "augment training data": 14258, "training data small": 168346, "model based agents": 103180, "agents mainly focus": 6653, "building general ai": 19412, "present general framework": 126324, "open problems field": 116268, "enhanced large language": 49344, "models llms grown": 107512, "llms grown exponentially": 95459, "extensive background knowledge": 55724, "information incontext learning": 76514, "incontext learning vlms": 74984, "complex multimodal prompts": 27484, "visionlanguage tasks paper": 177087, "ability understand complex": 2402, "new stateoftheart zeroshot": 113434, "zeroshot performance wide": 180293, "wide range general": 178285, "benchmarks including mme": 17274, "including mme mmbench": 74620, "impressive icl ability": 73303, "paper presents unified": 119192, "model llm planner": 104017, "llm planner translate": 93888, "task plans generated": 161627, "plans generated llms": 123360, "generated llms based": 63915, "widely applied wide": 178364, "applied wide range": 10823, "wide range software": 178308, "range software engineering": 135699, "advantages limitations chatgpt": 6142, "largescale software systems": 89401, "capabilities chatgpt perform": 19813, "future academic research": 62212, "role daily lives": 145477, "pose significant threat": 124178, "automated program repair": 14591, "sophisticated deep learning": 153299, "explanations existing datasets": 54841, "commit messages explanations": 26106, "language modelbased approach": 83968, "tasks like web": 162732, "achieving decent performance": 4165, "performance previous methods": 121939, "guide model reason": 68196, "suboptimal performance address": 157912, "performance address issue": 121136, "outperforms previous methods": 117821, "new era llms": 113169, "experimental results confirm": 53977, "proposed method generating": 132358, "chatgpt opensource llms": 23164, "applications reducing need": 10663, "need labeled data": 112331, "demonstrate significant performance": 38545, "various benchmark datasets": 175832, "benchmark datasets including": 16914, "making versatile various": 98824, "various nlp applications": 176067, "introduce carefully crafted": 79928, "method reinforcement learning": 101066, "traditional chinese language": 167599, "language models comprehensive": 84272, "language models essential": 84462, "evaluate capabilities language": 50916, "evaluate language models": 50996, "traditional chinese benchmarks": 167598, "encompass wide range": 48529, "tasks including contextual": 162552, "offer comprehensive evaluation": 115641, "evaluation results highlight": 51830, "performance comparable gpt35": 121272, "datasets using large": 37181, "received significant attention": 137316, "generative models generative": 65488, "gpt diffusion models": 66410, "diffusion models new": 42253, "robust outofdistribution performance": 145300, "language models instructionfollowing": 84719, "models instructionfollowing abilities": 106785, "performance heavily relies": 121621, "data difficult obtain": 34916, "instruction following introduce": 78012, "architecture seamlessly integrates": 12215, "seamlessly integrates image": 147304, "models release dataset": 108900, "models novel approach": 108317, "diffusion models generative": 42249, "unlike conventional methods": 171991, "byte pair encoding": 19578, "textual entailment methods": 165909, "fall short human": 57127, "short human performance": 149975, "recognition asr models": 138045, "data inspired recent": 35232, "tasks propose using": 163037, "models text augmentation": 109384, "word error rates": 178641, "multiple times using": 111071, "code interpreter able": 24953, "enabling large language": 48316, "predefined set tools": 125659, "prompt chatgpt generate": 130384, "datasets experimental analysis": 36845, "language models dynamic": 84409, "generative nlp tasks": 65524, "efficacy proposed method": 46410, "proposed method demonstrated": 132348, "dataset instruction following": 36363, "results superior performance": 143848, "memory usage inference": 100475, "chatgpt recently developed": 23256, "natural language based": 111556, "text generation llms": 165153, "prompt template design": 130691, "recently pretrained large": 137956, "pretrained llms specialized": 127025, "limited understanding llms": 92874, "research shown large": 142079, "rely spurious correlations": 139886, "following research question": 60309, "ground truth labels": 67843, "truth labels training": 169887, "training data specifically": 168348, "data specifically propose": 35790, "language models spoken": 86210, "domains represented training": 44518, "represented training data": 140965, "expensive obtain paper": 53794, "paper address challenge": 118699, "improves performance 30": 74045, "prompt large language": 130562, "new domains experiments": 113155, "chatgpt provides correct": 23232, "influences large language": 76234, "language models revealing": 86105, "tasks related content": 163114, "consistently enhances performance": 29868, "various tasks different": 176202, "7b language model": 1627, "model achieves competitive": 103040, "performance domainspecific models": 121424, "improve models performance": 73526, "model code data": 103293, "require labeled training": 141130, "training data train": 168358, "novel paradigm called": 114624, "called zeroshot learning": 19676, "zeroshot learning dataset": 180234, "learning dataset generation": 90349, "llm prompted task": 93918, "used train downstream": 173274, "generated data used": 63842, "range downstream nlp": 135612, "experiments using llms": 54513, "using llms help": 174436, "rarely paid attention": 135955, "understanding reasoning paper": 171444, "ability existing models": 2155, "using different methods": 174135, "different methods including": 41848, "methods including rulebased": 101595, "models primarily focus": 108643, "remain underexplored study": 139943, "speech recognition tasks": 154463, "llms findings highlight": 95267, "language model family": 83639, "shed light capabilities": 149849, "language models automating": 84153, "despite recent advances": 40189, "models commonsense reasoning": 105686, "dialogue response generation": 41510, "natural language dataset": 111577, "training model predict": 168584, "model predict natural": 104299, "generation model conditioned": 64838, "publicly release code": 133675, "release code dataset": 139445, "does chatgpt know": 43965, "natural science engineering": 111949, "language model openai": 83815, "capabilities perform systematic": 20103, "perform systematic empirical": 121057, "systematic empirical assessment": 160115, "language models qualitative": 86007, "improving user engagement": 74234, "language processing methods": 86533, "quantitative qualitative measures": 134374, "reducing need extensive": 138586, "largescale multilingual language": 89360, "outperforms opensource models": 117810, "opensource models similar": 116657, "models similar size": 109137, "benchmarks like mmlu": 17292, "research community better": 141649, "community better understanding": 26454, "language models intelligent": 84726, "intelligent agents robots": 78937, "agents robots increasingly": 6721, "robots increasingly deployed": 145221, "deployed realworld safetycritical": 39222, "realworld safetycritical settings": 136492, "safetycritical settings vital": 145907, "settings vital agents": 149658, "vital agents able": 177402, "agents able explain": 6521, "able explain reasoning": 2499, "explain reasoning decisions": 54711, "reasoning decisions human": 136800, "decisions human counterparts": 37461, "human counterparts behavior": 70674, "counterparts behavior produced": 32969, "behavior produced uninterpretable": 16632, "produced uninterpretable models": 129512, "uninterpretable models deep": 171810, "models deep neural": 105871, "neural networks propose": 112941, "networks propose approach": 112785, "propose approach generate": 131714, "approach generate natural": 11247, "language explanations agents": 83300, "explanations agents behavior": 54812, "agents behavior based": 6550, "behavior based observations": 16566, "based observations states": 15985, "observations states actions": 115354, "produce plausible explanations": 129450, "plausible explanations minimal": 123429, "explanations minimal hallucination": 54877, "minimal hallucination affording": 102330, "hallucination affording user": 68351, "affording user interaction": 6359, "user interaction pretrained": 173437, "interaction pretrained large": 79164, "user studies empirical": 173508, "studies empirical experiments": 156987, "empirical experiments approach": 47696, "experiments approach generates": 54150, "approach generates explanations": 11253, "generates explanations helpful": 64070, "human domain expert": 70701, "domain expert enabling": 44146, "expert enabling beneficial": 54564, "enabling beneficial interactions": 48274, "beneficial interactions clarification": 17408, "interactions clarification counterfactual": 79210, "clarification counterfactual queries": 23854, "strengths weaknesses modern": 156278, "chatgpt gpt4 bard": 23011, "careful attention paid": 20774, "llms viable approach": 96971, "solve programming tasks": 153149, "models exhibit superior": 106213, "model framework generates": 103694, "evaluation model instruction": 51734, "generate higher quality": 63533, "enhance capabilities large": 49162, "models educational applications": 106042, "models accurately predict": 105213, "understand user needs": 171094, "deploying language models": 39240, "language models largescale": 84773, "prompts make difference": 131370, "models produce better": 108662, "years machine learning": 179915, "models exhibit impressive": 106204, "provides novel insights": 133187, "conditional generative model": 28957, "improved incontext learning": 73692, "achieving impressive performance": 4190, "chainofthought prompting experimental": 21521, "prompting experimental results": 130929, "yields substantial improvements": 180045, "various numerical reasoning": 176080, "reading comprehension tasks": 136192, "investigate factors contributing": 80414, "empirical results indicate": 47729, "enhances incontext learning": 49412, "baseline prompting strategies": 16253, "analysis ai era": 8809, "ai especially largescale": 6982, "qualitative data analysis": 133991, "data analysis research": 34626, "chatgpt qualitative analysis": 23240, "training paper aims": 168623, "performance trained models": 122193, "best configuration outperforms": 17667, "13b model trained": 366, "training tokens significant": 168793, "assistants powered large": 13423, "llms chatgpt assist": 94571, "language instructions code": 83445, "qualitative user study": 134022, "open challenges opportunities": 116211, "document information extraction": 43834, "localization large language": 97274, "visually rich document": 177388, "paper introduce language": 118990, "joint modeling dialogue": 81255, "model paper explores": 104205, "closely aligns human": 24509, "linguistic features using": 93032, "spoken dialogue systems": 154571, "zeroshot learning performance": 180247, "tasks especially text": 162318, "generative tasks large": 65596, "nlp tasks simultaneously": 113900, "nlp tasks proposed": 113887, "method achieve good": 100626, "models various domains": 109611, "math problem solving": 99529, "conventional natural language": 31719, "impact programming language": 72717, "language extensive experiments": 83310, "results provide valuable": 143710, "datasets code publicly": 36700, "recent efforts explored": 137483, "human reference genome": 71014, "pretrained models languages": 127085, "models llms learn": 107604, "language pretraining data": 86477, "language models really": 86034, "downstream tasks addition": 44760, "pursuit better performance": 133789, "llms existing evaluation": 95169, "existing evaluation methods": 53361, "evaluation methods rely": 51705, "generation capabilities contemporary": 64464, "challenging open questions": 22229, "extensive empirical experiments": 55758, "results demonstrate llms": 143308, "finetuning sft rlhf": 59537, "language modelling research": 84032, "number tokens model": 114965, "framework knowledge graph": 61248, "question answering despite": 134700, "performance knowledgeintensive tasks": 121704, "memorizing world knowledge": 100360, "knowledge existing work": 81966, "advancements pretrained language": 5951, "bert roberta gpt": 17594, "breaks new ground": 19003, "question answering findings": 134722, "competitive performance models": 27187, "question answering current": 134696, "retrieval dense retrieval": 144038, "text generation furthermore": 165145, "paves way future": 120595, "storytelling large language": 155911, "language models generation": 84584, "longform text generation": 97552, "versatile multimodal large": 176568, "superior performance zeroshot": 159050, "data lake data": 35282, "limit access data": 92482, "solution problem use": 152966, "models llms design": 107301, "methods require manual": 101781, "methods utilize llms": 101919, "generating additional context": 64132, "using llms directly": 174429, "llms directly infer": 94941, "preliminary experimental results": 126124, "experimental results effectiveness": 54011, "results effectiveness proposed": 143370, "interaction real world": 79171, "real world existing": 136265, "world existing methods": 179552, "tasks introduce method": 162625, "reasoning techniques like": 137201, "evaluation llms large": 51675, "models llms presents": 107742, "risk generating harmful": 144941, "llms generate unexpected": 95383, "llms publicly available": 96270, "attack success rate": 13663, "study propose novel": 157560, "generative framework based": 65422, "framework based large": 60980, "introduces simple effective": 80218, "semantic similarity furthermore": 148225, "provide empirical guidance": 132766, "practical scenarios code": 125446, "scenarios code released": 146553, "burgeoning field artificial": 19524, "processing nlp offers": 129238, "nlp offers opportunity": 113780, "proposes paradigm shift": 132483, "llms represent revolution": 96405, "way interact computers": 177835, "study evaluate performance": 157322, "performance llms based": 121750, "llms based 13": 94468, "evaluate effectiveness models": 50957, "efficiency prompt tuning": 46509, "multilabel text classification": 110449, "multilabel classification problem": 110441, "improves classification performance": 73989, "head classification head": 68905, "improves performance significantly": 74054, "performance significantly reducing": 122067, "significantly reducing computational": 151145, "reducing computational costs": 138557, "overall results indicate": 118228, "language models highquality": 84643, "models highquality conversational": 106614, "highquality conversational datasets": 70006, "approach notably enhances": 11405, "subject matter expert": 157835, "model finetuned llama": 103670, "code models datasets": 25014, "models datasets available": 105848, "carrying freeform conversations": 20851, "present large language": 126354, "understanding task planning": 171498, "average error rate": 15281, "trained fail learn": 167922, "basic failure logical": 16418, "failure logical deduction": 57011, "compared control group": 26770, "effectiveness language models": 46212, "language models tools": 86297, "artificial intelligence exemplified": 12719, "impact academic integrity": 72616, "high school students": 69537, "aims explore generative": 7611, "explore generative ai": 55213, "generative ai social": 65353, "inherent biases potential": 76941, "review recent advancements": 144540, "peer review process": 120664, "peer review systems": 120665, "discussion emphasizes need": 42993, "emphasizes need critically": 47645, "social ethical regulatory": 152576, "opportunities challenges large": 116835, "challenges large language": 21932, "zero shot performance": 180089, "nlp tasks demonstrating": 113834, "creating high quality": 33302, "datasets downstream tasks": 36805, "downstream tasks work": 44845, "used augment existing": 172969, "evaluate performance gpt4": 51053, "replacement human annotators": 140466, "set evaluation metrics": 149187, "generic large language": 65658, "llmbased evaluation metrics": 94141, "evaluation metrics specifically": 51731, "subsequently present comprehensive": 157986, "evaluation metrics designed": 51719, "realworld clinical tasks": 136419, "present study investigate": 126463, "evaluation metrics bleu": 51716, "tasks question generation": 163065, "automatic evaluation metric": 14666, "generated questions answerable": 63955, "align human evaluations": 8001, "leveraging generative capabilities": 91855, "generative capabilities large": 65393, "natural language facilitating": 111599, "llms gained significant": 95327, "attention nlp community": 13951, "chainofthought prompting particularly": 21530, "research topics field": 142122, "introduce new prompting": 80038, "prompting strategy called": 131089, "incontext learning prompt": 74962, "data method achieves": 35365, "method achieves superior": 100647, "performance compared fullysupervised": 121288, "effective data augmentation": 45726, "problem paper proposes": 128345, "additional trainable parameters": 5009, "trainable parameters computational": 167850, "parameters computational cost": 119730, "high resource consumption": 69525, "methods text classification": 101874, "classification tasks benchmark": 24110, "ways improve performance": 177905, "pretrained models based": 127065, "based attention mechanism": 15671, "attention mechanism bert": 13928, "bert albert roberta": 17509, "leveraging advanced capabilities": 91798, "offered large language": 115722, "language models exemplified": 84477, "generation automatic evaluation": 64444, "enhance reading comprehension": 49272, "using historical data": 174300, "chatgpt prompt patterns": 23221, "generation automated evaluation": 64442, "improve quality generated": 73596, "multiagent framework designed": 110323, "enhances collaborative reasoning": 49402, "superior performance code": 159019, "intergovernmental panel climate": 79485, "panel climate change": 118683, "climate change ipcc": 24309, "knowledge graph knowledge": 82057, "graph knowledge graph": 67540, "future work using": 62413, "work using large": 179358, "valuable information users": 175419, "existing methods rely": 53462, "methods rely manual": 101770, "datasets propose novel": 37049, "solution using large": 152988, "llms generate rich": 95378, "using llms generate": 174434, "llms generate user": 95384, "address propose new": 5353, "research provides new": 142010, "provides new framework": 133183, "minimal human effort": 102334, "models llms mathematical": 107654, "llms mathematical reasoning": 95869, "present generated text": 126326, "generated text llms": 64012, "novel framework integrates": 114521, "prompting llms generate": 130999, "solve challenging mathematical": 153099, "challenging mathematical problems": 22204, "enhances reasoning capability": 49441, "reasoning capability llms": 136723, "approach enables llms": 11167, "language models presents": 85940, "traditional finetuning approaches": 167622, "compared previous sota": 26890, "model achieved improvement": 103032, "previous sota models": 127651, "community develop better": 26463, "explore potential large": 55262, "models complex reasoning": 105706, "potentials pitfalls large": 125154, "llms emerged important": 95023, "emerged important breakthroughs": 47361, "important breakthroughs natural": 73100, "impressive skills language": 73377, "skills language generation": 152166, "text classification sentiment": 164899, "compare performance stateoftheart": 26715, "performance stateoftheart finetuned": 122108, "stateoftheart finetuned models": 155140, "resources pose challenges": 142465, "pose challenges practical": 124151, "studies explore potential": 156998, "explore potential leveraging": 55265, "potential leveraging llms": 124824, "tabletotext generation tasks": 160778, "experimental results shown": 54074, "llms like gpt35turbo": 95783, "scientific tabletotext generation": 146993, "framework case study": 61002, "llms human expertise": 95515, "training data token": 168357, "training data recent": 168329, "finetuning pretrained llms": 59462, "downstream tasks training": 44840, "specific task paper": 154101, "llms additionally design": 94345, "performance evaluation metrics": 121472, "evaluation metrics better": 51714, "metrics better suited": 102018, "models different levels": 105970, "dialogue text generation": 41534, "causal large language": 21201, "criteria natural language": 33436, "natural language users": 111921, "generative ai chatbots": 65309, "platforms like stack": 123408, "like stack overflow": 92409, "rise generative ai": 144895, "software development process": 152791, "answering yesno questions": 9991, "answering qa models": 9929, "chainofthought prompting generate": 21523, "work provides promising": 179243, "large volumes data": 89129, "speech recognition translation": 154464, "data collection training": 34791, "pretrained models training": 127113, "area large language": 12327, "work investigate llms": 179068, "additionally discuss potential": 5048, "shift computer vision": 149904, "visual perception understanding": 177245, "ability align human": 2062, "benchmark encourage research": 16943, "encourage research community": 48604, "architecture enables users": 12158, "query large language": 134603, "interesting directions future": 79393, "llms significant advancements": 96583, "significant advancements widely": 150581, "advancements widely used": 5977, "various domains unfortunately": 175913, "llms human values": 95517, "furthermore provide theoretical": 62146, "provide theoretical analysis": 133001, "experiments opensource large": 54387, "reducing attack success": 138544, "attack success rates": 13665, "demonstrated large language": 38718, "natural language knowledge": 111663, "including planning memory": 74664, "planning memory tool": 123296, "providing fresh perspective": 133301, "solid foundation future": 152880, "end paper provide": 48672, "research field hope": 141789, "offering valuable insights": 115773, "humanities social sciences": 71210, "capacities large language": 20487, "models llms present": 107739, "llms present unprecedented": 96168, "semantic change detection": 148110, "requiring expert knowledge": 141482, "document question answering": 43848, "generate accurate answers": 63383, "language model tasks": 83925, "adaptability new tasks": 4580, "llms varying scales": 96966, "future research endeavors": 62336, "users build trust": 173590, "dialogue systems using": 41530, "manipulation language models": 98952, "language models store": 86218, "store vast amounts": 155864, "knowledge logical reasoning": 82208, "chain thoughts cots": 21473, "language model efficiently": 83614, "knowledge pretraining data": 82298, "pretraining data knowledge": 127294, "fundamental cognitive capabilities": 61945, "build machine learning": 19331, "advanced reasoning ability": 5799, "interfaces large language": 79462, "human cognitive processes": 70650, "large models work": 88932, "highly efficient scalable": 69916, "extremely long sequence": 56442, "models llms exploded": 107404, "llms exploded popularity": 95199, "ability perform wide": 2316, "perform wide array": 121089, "array natural language": 12523, "toxic content detection": 167454, "llms gpt3 gpt35": 95420, "gpt4 gemini pro": 67021, "gemini pro llama": 62866, "increases model size": 75285, "avenues future work": 15249, "problem solving capabilities": 128404, "standardized test preparation": 154909, "research questions does": 142025, "does chatgpt perform": 43966, "100 randomly selected": 156, "prompts original questions": 131394, "multimodal models lmm": 110723, "alignment human annotators": 8158, "visionlanguage model trained": 177036, "training data vision": 168363, "proposed approach realworld": 132243, "approach realworld scenarios": 11494, "new evaluation benchmark": 113171, "approach achieves remarkable": 10953, "opensource code model": 116583, "code model data": 25001, "learning factual knowledge": 90452, "factual knowledge incontext": 56883, "knowledge incontext learning": 82115, "models llms aims": 107104, "knowledge learned llms": 82185, "llms fewshot learning": 95257, "based prior knowledge": 16031, "evaluate proposed approaches": 51080, "multiple text classification": 111068, "substantially outperforms strong": 158137, "traditional finetuning methods": 167623, "llms gained prominence": 95326, "study investigate potential": 157432, "text classification specifically": 164905, "remarkable performance gain": 140226, "parameters achieves accuracy": 119704, "achieves accuracy exceeding": 3956, "importance prompt engineering": 73051, "generative ai systems": 65358, "artificial intelligence technologies": 12771, "contexts using natural": 31063, "natural language perform": 111690, "enable llms perform": 48108, "llms perform context": 96072, "errors language models": 50370, "llms generate factually": 95361, "factually incorrect text": 56936, "constraint satisfaction problems": 30054, "use framework investigate": 172636, "scales 7b 13b": 146363, "7b 13b 70b": 1622, "lowrank adaptation large": 97884, "language modeling based": 83979, "like bert shown": 92206, "shown superior performance": 150390, "model adapt new": 103066, "adapt new domains": 4545, "new domains using": 113156, "interfaces powered large": 79465, "recently popular way": 137952, "introduce factual errors": 79965, "improved user experience": 73732, "models training large": 109485, "stateoftheart results natural": 155336, "image text embeddings": 72337, "methods computationally expensive": 101391, "llms foundation models": 95302, "recent developments large": 137475, "developments large language": 41285, "llms shown promise": 96558, "processing nlp despite": 129217, "questions spanning various": 135282, "question types including": 134950, "including multiple choice": 74628, "prompting strategies like": 131084, "strategies like chainofthought": 156030, "like chainofthought cot": 92211, "especially smaller models": 50545, "generative speech recognition": 65591, "error correction large": 50283, "correction large language": 32440, "models llms act": 107087, "rescoring error correction": 141553, "llms perform task": 96078, "zero fewshot incontext": 180071, "incontext learning novel": 74948, "prompting method combines": 131009, "incontext learning frozen": 74901, "achieves results competitive": 4068, "achieve error rates": 3634, "model achieve better": 103024, "better performance deep": 17963, "largescale deep learning": 89295, "learning models llms": 90723, "models llms foundation": 107435, "challenges including high": 21911, "present comprehensive survey": 126263, "summarize recent progress": 158912, "neural networks create": 112917, "model fusion propose": 103703, "noninvasive brain recordings": 114084, "semantic information code": 148159, "results indicate llms": 143510, "zeroshot fewshot video": 180186, "question answering multimodal": 134764, "recent visionlanguage models": 137716, "data presents challenges": 35527, "settings code available": 149537, "enhance reasoning planning": 49276, "reasoning planning capability": 137031, "response generation process": 142653, "generates executable plans": 64068, "response generation tasks": 142655, "llm knowledge graph": 93786, "neural knowledge base": 112853, "approach shows significant": 11536, "shows significant improvement": 150476, "ablation experiments reveal": 2433, "way bridge gap": 177779, "gap large language": 62674, "models demonstrate high": 105885, "results underscore need": 143886, "need deeper understanding": 112262, "understanding cognitive processes": 171161, "systems machine learning": 160475, "lack interpretability address": 82968, "overcome challenges propose": 118276, "baseline methods including": 16237, "llms demonstrated humanlevel": 94847, "demonstrated humanlevel performance": 38682, "humanlevel performance vast": 71234, "performance vast spectrum": 122284, "vast spectrum natural": 176355, "brought great success": 19243, "extensive experiments carried": 55809, "human evaluations results": 70771, "effectiveness versatility approach": 46320, "exhibited remarkable reasoning": 53154, "great success code": 67732, "data pretraining stage": 35534, "deepen understanding llms": 37836, "framework reinforcement learning": 61381, "hub large language": 70496, "language model llmempowered": 83786, "rapid advancement large": 135849, "models llms pressing": 107744, "need comprehensive evaluation": 112248, "comprehensive evaluation suite": 28024, "assess capabilities limitations": 13053, "capabilities limitations existing": 20017, "results work introduce": 143939, "models offers valuable": 108336, "data improves llms": 35194, "analysis sheds light": 9162, "language models report": 86082, "improving multistep reasoning": 74174, "multistep reasoning abilities": 111176, "cot prompting leads": 32892, "new questions regarding": 113373, "ask chatgpt complete": 12835, "complex data structures": 27391, "based survey results": 16123, "complete programming tasks": 27282, "comprehension large language": 27912, "based visual inputs": 16178, "root mean square": 145602, "mean square error": 99755, "square error rmse": 154646, "like chainofthought prompting": 92212, "commonsense reasoning benchmarks": 26304, "reasoning benchmarks furthermore": 136685, "hate speech classification": 68859, "models llms advancing": 107100, "significant improvements natural": 150747, "improvements natural language": 73922, "ability parse understand": 2306, "commercially available llms": 26102, "gpt35 gpt4 claude": 66814, "offers indepth understanding": 115818, "understanding strengths shortcomings": 171489, "strengths shortcomings llms": 156269, "guide large language": 68185, "language model decoding": 83596, "capabilities llms using": 20041, "prompting pretrained model": 131044, "address limitations present": 5316, "learning framework llms": 90482, "language models size": 86175, "llm empirical results": 93618, "outperforms existing approaches": 117752, "selfconsistency large language": 147953, "generating correct solution": 64179, "prompt llms generate": 130597, "llms generate diverse": 95358, "generate diverse outputs": 63467, "models chatgpt paper": 105617, "various benchmarks including": 175837, "retrievalaugmented generation rag": 144170, "multimodal models lmms": 110724, "interleaved multimodal inputs": 79497, "new humancomputer interaction": 113220, "visual referring prompting": 177297, "research nextgeneration multimodal": 141933, "solve realworld problems": 153154, "large training sets": 89080, "work study problem": 179320, "order facilitate research": 117199, "available data large": 15090, "paper assesses potential": 118760, "assesses potential large": 13158, "llm use cases": 94075, "provide flexible means": 132794, "specialized machine learning": 153900, "learning models finetuning": 90716, "sequences natural language": 148831, "analysis sentiment analysis": 9157, "labeled data scarce": 82718, "llms chainofthought cot": 94559, "suggest llms used": 158560, "language models attention": 84141, "training sequence length": 168728, "llama2 mpt falcon": 93369, "efficient language modeling": 46654, "language models agent": 84096, "reality large language": 136317, "virtual reality vr": 176869, "online interactions complex": 116110, "environments work propose": 50122, "synthetic instruction data": 160052, "generation rapidly growing": 65014, "rapidly growing research": 135932, "research direction existing": 141712, "scenario large language": 146512, "language model generates": 83656, "prompts sent llm": 131467, "supervised learning sl": 159144, "learning sl reinforcement": 91000, "sl reinforcement learning": 152207, "optimized supervised learning": 117095, "supervised learning reinforcement": 159140, "learning reinforcement learning": 90908, "reinforcement learning train": 139118, "expertise large language": 54616, "selfalignment large language": 147929, "language model aligned": 83522, "effective improving zeroshot": 45780, "artificial intelligence feedback": 12721, "prior knowledge large": 127904, "model llm agent": 103972, "agents reinforcement learning": 6710, "significantly outperforms existing": 151097, "investigating efficacy large": 80595, "proficiency complex reasoning": 129649, "solving math word": 153225, "primary aim research": 127801, "critical thinking skills": 33560, "models llms evolving": 107374, "realm natural language": 136361, "typical nlp tasks": 170454, "llms autonomous agents": 94461, "inspired human behaviors": 77725, "think outside box": 166137, "types reasoning tasks": 170415, "substantially better performance": 158113, "results indepth analysis": 143497, "indepth analysis demonstrate": 75515, "language models applications": 84127, "kg large language": 81634, "language models roberta": 86116, "set new stateoftheart": 149252, "model seen training": 104523, "models orders magnitude": 108374, "ai models available": 7090, "conditional language modeling": 28961, "human automatic evaluation": 70608, "detailed analysis shows": 40270, "datasets publicly available": 37059, "publicly available language": 133647, "instruction tuning critical": 78075, "pretrained models focus": 127077, "impact instruction tuning": 72668, "pretrained instructiontuned models": 126849, "models approach provides": 105379, "findings reveal significant": 58787, "lay groundwork future": 89620, "akin human learning": 7717, "human learning processes": 70912, "subsequently model undergoes": 157984, "framework enables model": 61123, "improves response quality": 74074, "enhance capabilities llms": 49165, "models llms yield": 108043, "considerable computational resources": 29610, "challenges paper introduces": 21985, "novel simple effective": 114693, "pretraining process llms": 127414, "approach enables models": 11169, "various stateoftheart llms": 176186, "models trained using": 109477, "exhibit superior performance": 53113, "theory mind tasks": 166093, "relative strengths weaknesses": 139388, "generative ai revolution": 65351, "computing education recent": 28538, "source code natural": 153410, "address challenges leverage": 5182, "ethical issues raised": 50819, "language models computing": 84278, "blind low vision": 18699, "create natural language": 33216, "method consists steps": 100760, "computer vision techniques": 28516, "using quantitative qualitative": 174638, "models llm demonstrated": 107027, "generate multiple types": 63617, "tasks simple finetuning": 163250, "achieves stateoftheart competitive": 4093, "research shed light": 142072, "shed light new": 149857, "generation generated tests": 64690, "models generative artificial": 106475, "artificial intelligence genai": 12726, "intelligence genai large": 78825, "genai large language": 62876, "development reliable llms": 41208, "mitigate issue introduce": 102615, "language models referred": 86072, "previous studies primarily": 127669, "detect factual errors": 40357, "applications different domains": 10483, "approach automatically generates": 11014, "solutions large language": 153039, "retrieve relevant information": 144225, "approach conducted experiments": 11072, "conducted experiments datasets": 29240, "outperform generic counterparts": 117597, "labeled training examples": 82743, "achieves stateoftheart comparable": 4092, "significantly reducing number": 151148, "diverse table tasks": 43671, "build unified model": 19358, "text question answering": 165397, "presents substantial challenge": 126644, "language processing data": 86503, "answering natural language": 9914, "questions tabular data": 135299, "logical reasoning understanding": 97393, "wide range strategies": 178312, "models llms incontext": 107555, "compressing large language": 28204, "models llms leads": 107603, "performance extensive experiments": 121496, "enable language models": 48096, "quality model responses": 134204, "responses address challenge": 142722, "various approaches proposed": 175808, "enhance performance llms": 49253, "human annotation efforts": 70576, "training data recently": 168330, "human preference data": 70967, "train reward models": 167820, "human efforts specifically": 70712, "objective reinforcement learning": 115221, "training data points": 168319, "learning models improving": 90718, "makes challenging use": 98636, "language models texttoimage": 86286, "models texttoimage models": 109393, "largescale generative ai": 89309, "computational memory efficiency": 28379, "finetuning techniques lora": 59586, "orders magnitude faster": 117262, "learning ability large": 90169, "require enormous computational": 141093, "enormous computational resources": 49605, "data generation finetuning": 35109, "llms improve downstream": 95556, "improve downstream performance": 73447, "source code datasets": 153401, "tasks program repair": 163013, "program repair code": 129746, "repair code completion": 140406, "training data code": 168235, "publicly available source": 133664, "available source code": 15204, "source code opensource": 153412, "privacy concerns paper": 127989, "question using code": 134954, "using code models": 174058, "membership inference attack": 100315, "attack method specifically": 13649, "models results reveal": 108975, "true positive rate": 169810, "low false positive": 97757, "success rate attacks": 158289, "significant attention academia": 150600, "attention academia industry": 13832, "capabilities opensource llms": 20090, "guided natural language": 68234, "classification tasks limited": 24120, "finetuned lowrank adaptation": 59065, "intricate prompt engineering": 79857, "work shed light": 179288, "novel approach adapting": 114365, "approach adapting llms": 10964, "llms various downstream": 96951, "llms generative models": 95397, "powered generative models": 125236, "remarkable success field": 140290, "introduce novel framework": 80056, "llms ability identify": 94258, "allows llm agent": 8450, "infer mental states": 75946, "explore current limitations": 55177, "current limitations llms": 34160, "llms terms safety": 96787, "retrieval augmented language": 144008, "language models hallucination": 84630, "retrievalaugmented language models": 144183, "processing large amounts": 129178, "significantly reducing computation": 151144, "performance zeroshot retrieval": 122321, "despite remarkable achievements": 40197, "models llms encounter": 107359, "reducing bitwidth bits": 138548, "bitwidth bits weight": 18609, "bits weight negligible": 18605, "recent research efforts": 137621, "efforts focused developing": 46917, "work takes step": 179335, "understanding reasoning generation": 171443, "llm compression methods": 93549, "zeroshot oneshot fewshot": 180271, "oneshot fewshot learning": 116031, "study underscores value": 157687, "representation engineering repe": 140686, "control large language": 31556, "language models showcase": 86148, "research hope work": 141831, "safety ai systems": 145833, "model capabilities large": 103240, "human cognition llms": 70643, "llms generate humanlike": 95368, "enhancing user experience": 49582, "opensourced large language": 116696, "language models does": 84399, "achieved unprecedented performance": 3921, "existing studies shown": 53597, "align language models": 8011, "language models supervised": 86241, "models supervised finetuning": 109304, "careful prompt designs": 20786, "reinforcement learning requires": 139094, "parsing large language": 119962, "tasks additional training": 161906, "semantics language models": 148301, "models prompt tuning": 108687, "popular method adapting": 124022, "models remains challenge": 108917, "remains challenge work": 139982, "challenge work propose": 21752, "work propose zeroshot": 179224, "results confirm effectiveness": 143256, "effectiveness method showing": 46239, "case natural language": 20882, "quadratic complexity attention": 133963, "approximating attention matrix": 12036, "attention matrix require": 13926, "language models selfcorrect": 86138, "generation capabilities various": 64472, "suggestions future research": 158637, "future research practical": 62362, "research practical applications": 141975, "practical applications field": 125388, "method reduces memory": 101062, "models llms different": 107307, "gpu memory consumption": 67344, "language model automatic": 83544, "fixed context window": 59709, "promising solution current": 130317, "finite context window": 59628, "methods fall short": 101520, "recently advances large": 137826, "models llms transformed": 107987, "domains current llms": 44378, "novel framework automatically": 114507, "humanlike reasoning abilities": 71275, "reasoning abilities tasks": 136633, "offers new opportunities": 115828, "realworld web applications": 136543, "false positives potentially": 57170, "understand llms capabilities": 171038, "language model endtoend": 83620, "model endtoend speech": 103540, "models llms multimodal": 107661, "models based llms": 105459, "impressive ability comprehend": 73257, "complex tasks like": 27616, "scenarios paper introduces": 146665, "large multimodal model": 88941, "multimodal model designed": 110720, "downstream task finetuning": 44755, "surpassing previous models": 159524, "lays foundation future": 89713, "foundation future research": 60719, "future research open": 62359, "conducted empirical study": 29232, "empirical study systematically": 47764, "research questions rqs": 142028, "knowledge chatgpt capabilities": 81810, "llms perform tasks": 96079, "perform tasks zeroshot": 121064, "prior work focused": 127944, "logical reasoning code": 97378, "code generation using": 24929, "achieves absolute improvement": 3954, "alexa prize taskbot": 7757, "prize taskbot challenge": 128062, "nlp systems increasingly": 113815, "multiple large language": 110961, "elicited large language": 47050, "experience large language": 53833, "answer factoid questions": 9710, "structured knowledge large": 156650, "models significantly improves": 109131, "significantly improves results": 151051, "pretrained texttotext language": 127176, "information knowledge graphs": 76540, "knowledge graph based": 82044, "fail large language": 56960, "indepth error analysis": 75533, "explore prompting methods": 55282, "methods mitigate issue": 101664, "text comprehension generation": 164942, "generation recent advances": 65026, "programaided language models": 129763, "models generate better": 106441, "written programming language": 179789, "according given utility": 3037, "given utility function": 66048, "querying language model": 134653, "language model times": 83934, "set downstream tasks": 149181, "downstream tasks resulting": 44832, "significantly better performance": 150948, "language model including": 83685, "data analysis aim": 34623, "external sources including": 56088, "proficiency handling complex": 129660, "encoding large language": 48510, "help users understand": 69195, "llms recently emerged": 96337, "llms provide reliable": 96258, "recent academic literature": 137334, "llms susceptible providing": 96745, "answering vqa task": 9987, "openended generative models": 116491, "leverage incontext learning": 91606, "better correlates human": 17838, "correlates human judgment": 32527, "human judgment compared": 70883, "compared existing metrics": 26801, "policy gradient methods": 123842, "markov decision processes": 99260, "decision processes mdps": 37381, "language models contrast": 84308, "policy gradient called": 123841, "dynamic policy gradient": 45147, "llms revolutionized various": 96465, "llms visual models": 96986, "task adaptation large": 161163, "llms ability solve": 94263, "tasks text summarization": 163363, "model compression technique": 103331, "bayesian optimization bo": 16485, "gaussian process gp": 62836, "shown neural networks": 150315, "model highly complex": 103803, "existing methods different": 53443, "improving zeroshot chainofthought": 74238, "language models warning": 86387, "models warning paper": 109673, "paper contains examples": 118821, "contains examples harmful": 30371, "examples harmful language": 52603, "reader discretion recommended": 136163, "models llms facilitated": 107418, "llms facilitated development": 95238, "ensure ai safety": 49671, "learning recent advances": 90902, "showcased remarkable capabilities": 150095, "exemplars incontext learning": 52987, "knowledge extensive experiments": 81983, "significantly outperforms prior": 151111, "incontext learning opens": 74949, "employing large language": 47930, "language understanding slu": 86857, "understanding slu tasks": 171476, "models conduct preliminary": 105738, "language models broadly": 84200, "using just single": 174340, "synthetic realworld datasets": 160072, "datasets compared existing": 36718, "recent advancements texttoimage": 137375, "advancements texttoimage t2i": 5969, "involving multiple images": 80800, "instruction tuning curated": 78077, "ask large language": 12847, "require external knowledge": 141106, "require llm produce": 141146, "answer users question": 9794, "produce correct code": 129387, "based execution results": 15787, "offers distinct advantages": 115795, "points success rate": 123768, "model demonstrate method": 103422, "knowledge downstream tasks": 81902, "using rag responses": 174643, "solving problem providing": 153235, "strategy substantially improve": 156208, "data training evaluation": 35878, "evaluation paper introduce": 51756, "number language models": 114890, "models ranging finetuning": 108774, "ranging finetuning instructionbased": 135752, "finetuning instructionbased texttotext": 59314, "instructionbased texttotext transformer": 78163, "texttotext transformer flant5": 165869, "transformer flant5 zeroshot": 169126, "perform detailed study": 120924, "closed opensource llms": 24463, "human evaluations involving": 70766, "demonstrate significant room": 38549, "significant room improvement": 150869, "fewshot prompting method": 58033, "relevant uptodate information": 139663, "future work release": 62412, "model size increases": 104598, "model code generation": 103294, "llms chatgpt recently": 94598, "issues applying llms": 80981, "open questions related": 116279, "parallelism distributed training": 119583, "adoption paper introduce": 5648, "exploiting large language": 55032, "models llms tackle": 107963, "garnered growing attention": 62779, "achieve satisfactory results": 3731, "satisfactory results complex": 146163, "task smaller subtasks": 161731, "casual reasoning steps": 21047, "light propose novel": 92142, "experimental results popular": 54051, "mining large language": 102411, "language processing particularly": 86602, "processing particularly development": 129274, "models pretrained vast": 108628, "pretrained vast amounts": 127224, "vast amounts knowledge": 176315, "investigate usage large": 80508, "zeroshot incontext learning": 180212, "incontext learning settings": 74971, "samples fewshot learning": 146014, "fewshot learning findings": 57960, "obtaining sufficient training": 115549, "deep learningbased natural": 37787, "learningbased natural language": 91164, "models llms combined": 107206, "generalizing unseen tasks": 63296, "model able improve": 103013, "improve zeroshot results": 73666, "results unseen tasks": 143894, "defending large language": 37901, "language models jailbreaking": 84739, "models jailbreaking attacks": 106830, "despite efforts align": 40096, "efforts align large": 46886, "llms gpt llama": 95412, "given input prompt": 65911, "reduces attack success": 138505, "instructs large language": 78432, "zeroshot reasoning abilities": 180316, "reasoning process large": 137058, "process large language": 128895, "language models approach": 84130, "language models tasks": 86270, "tasks study performance": 163301, "method boosts performance": 100719, "models large margin": 106901, "outperforms zeroshot gpt35": 117891, "instruction following tasks": 78018, "tasks zeroshot settings": 163502, "challenges leveraging llms": 21940, "models hold great": 106620, "great promise enhancing": 67718, "promise enhancing programming": 130174, "enhancing programming education": 49550, "programming education automatically": 129813, "feedback students investigate": 57800, "ai models providing": 7113, "buggy programs recent": 19284, "failing test cases": 56992, "extensive evaluation using": 55773, "evaluation using realworld": 51922, "using realworld datasets": 174651, "realworld datasets python": 136435, "datasets python programs": 37061, "using pandas library": 174568, "concept using large": 28627, "benchmark future studies": 16987, "application programming interface": 10366, "rapid advancements llm": 135856, "advancements llm capabilities": 5923, "interactive text generation": 79345, "retaining original meaning": 143964, "simplification paraphrase generation": 151586, "generation style transfer": 65114, "terms semantic consistency": 164472, "ability models generate": 2285, "language generation research": 83381, "significant recent advances": 150853, "finetuning prompting large": 59480, "finegrained human evaluation": 58869, "human evaluation framework": 70736, "effective collaboration humans": 45711, "models llms notable": 107674, "using llms various": 174450, "various coordination scenarios": 175881, "framework specifically designed": 61425, "complex longhorizon tasks": 27465, "reinforcement learning baselines": 139049, "promising capabilities llms": 130239, "potential llms building": 124834, "rapidly evolving landscape": 135922, "aimediated communication aimc": 7529, "communication aimc tools": 26347, "tools powered large": 167229, "models llms integral": 107579, "cultural barriers study": 33949, "processing tasks especially": 129317, "tasks especially reasoning": 162317, "achieving artificial general": 4139, "commonly used benchmarks": 26240, "models realworld scenarios": 108804, "realworld scenarios address": 136497, "findings indicate models": 58704, "limitations current llms": 92561, "training data increase": 168287, "structured unstructured data": 156685, "models knowledge retrieval": 106847, "reduction inference time": 138614, "generating code natural": 64156, "language using large": 86877, "inherent ambiguity natural": 76936, "ambiguity natural language": 8635, "unified model language": 171735, "evaluation generated code": 51617, "language models autoregressive": 84155, "models autoregressive large": 105429, "knowledge training data": 82464, "tasks including sequence": 162579, "address limitation using": 5309, "problem demonstrate approach": 128223, "llms tasks require": 96772, "planning language models": 123284, "impressive performance range": 73339, "capabilities llms planning": 20039, "monte carlo tree": 110090, "modelbased reinforcement learning": 104936, "limitations existing techniques": 92584, "improves long context": 74029, "propose novel functional": 132006, "relative position encoding": 139379, "zeroshot language modeling": 180221, "language modeling long": 84002, "modeling long text": 105038, "finegrained natural language": 58886, "contrastive visionlanguage model": 31386, "utilizes pretrained large": 175155, "tasks like code": 162710, "solve problem introduce": 153143, "finetuning opensource llms": 59417, "different applications including": 41654, "applications including code": 10560, "including code completion": 74458, "commonsense reasoning results": 26318, "significant challenges deployment": 150647, "relu activation function": 139819, "minimal performance tradeoffs": 102351, "reinforcement learning offline": 139081, "previously collected data": 127716, "multiagent rl marl": 110331, "setting distribution shift": 149446, "models demonstrated surprising": 105918, "document retrieval using": 43854, "scientific research ability": 146988, "effectively retrieve relevant": 46078, "effort required annotate": 46870, "address propose novel": 5354, "propose novel task": 132033, "field computer science": 58141, "compromising quality furthermore": 28288, "incontext learning does": 74889, "number parameters large": 114921, "ability recall facts": 2343, "ui task automation": 170567, "models llms opened": 107696, "user interfaces uis": 173445, "ground natural language": 67831, "language instructions given": 83449, "recently exhibited remarkable": 137881, "language models critical": 84321, "introduce unified evaluation": 80138, "unified evaluation framework": 171707, "evaluation framework assessing": 51598, "highquality natural language": 70056, "completion question answering": 27339, "question answering evaluate": 134707, "evaluate multiple llms": 51036, "llms struggle achieve": 96699, "struggle achieve satisfactory": 156725, "achieve satisfactory performance": 3730, "improve task performance": 73636, "performance various models": 122262, "models hope study": 106630, "research including development": 141849, "knowledge widely used": 82511, "provide comprehensive survey": 132717, "knowledge extraction reasoning": 81994, "case study financial": 20906, "multimodal visionlanguage models": 110790, "models vlms enable": 109655, "llm unlike prior": 94071, "tasks assess performance": 161976, "assess performance model": 13109, "search generative ai": 147361, "language models ultimately": 86332, "search engine results": 147339, "results models struggle": 143615, "investigation large language": 80639, "language models pass": 85861, "lack suitable datasets": 83014, "language understanding benchmark": 86808, "primary school level": 127822, "smaller models bloomz": 152413, "finetuning evaluating large": 59252, "models llms specialized": 107934, "insights effectively adapting": 77551, "effectively adapting llms": 45937, "evaluation framework includes": 51601, "llms specialized tasks": 96656, "chainofthought prompting strategies": 21533, "strategy large language": 156173, "comprehensive analysis factors": 27953, "analysis factors influence": 8929, "propose future directions": 131842, "present new benchmark": 126376, "establish baseline performance": 50653, "prompted large language": 130823, "results proposed approaches": 143699, "llms garnered widespread": 95342, "15 contemporary llms": 405, "holds significant value": 70284, "significant value tool": 150912, "value tool wider": 175503, "tool wider nlp": 167061, "wider nlp community": 178439, "nlp community potential": 113710, "community potential serve": 26506, "potential serve rubric": 124973, "serve rubric airelated": 149003, "rubric airelated policymaking": 145684, "llms shown superior": 96578, "knowledge improve performance": 82109, "multiple datasets demonstrate": 110884, "models llms finetuning": 107429, "achieve best results": 3587, "results paper propose": 143656, "text graph structure": 165216, "information raw text": 76675, "generate qa pairs": 63666, "qa pairs based": 133910, "model empirical results": 103524, "able achieve comparable": 2458, "better results baselines": 18012, "labeled unlabeled data": 82745, "techniques chainofthought cot": 163849, "conduct comprehensive experiments": 29050, "experiments various benchmarks": 54529, "consistently significantly improves": 29921, "improves llms performance": 74022, "chatgpt achieves competitive": 22677, "achieves competitive superior": 3999, "competitive superior results": 27209, "superior results compared": 159058, "performance varies greatly": 122236, "models llms effective": 107333, "llms chatgpt palm": 94594, "various language understanding": 175995, "generation tasks capabilities": 65149, "llms generating desired": 95388, "experimental results datasets": 53978, "body research focused": 18778, "integrating pretrained language": 78624, "language models tailored": 86267, "prompts iterative refinement": 131342, "iterative refinement processes": 81140, "performance complex tasks": 121311, "language models success": 86233, "success language models": 158251, "multiplechoice question answering": 111096, "commonsense language models": 26284, "language models reveal": 86103, "essential task natural": 50638, "zeroshot detection machinegenerated": 180157, "mitigating risks associated": 102680, "best knowledge research": 17689, "mitchell et al": 102585, "code snippets generated": 25144, "achieving stateoftheart detection": 4222, "code language model": 24965, "understanding multimodal large": 171358, "based multimodal large": 15955, "pretraining finetuning paradigms": 127329, "finetuned wide range": 59142, "vision encoder processing": 176912, "single model achieves": 151833, "explore feasibility using": 55206, "feasibility using llms": 57369, "using llms solve": 174448, "order guide llms": 117204, "task proposed approach": 161662, "facts large language": 56837, "performance improvements range": 121654, "knowledge acquired pretraining": 81726, "pretraining instruction tuning": 127348, "question answering language": 134747, "examples extensive experiments": 52581, "llms existing llms": 95172, "trustworthy artificial intelligence": 169865, "artificial intelligence dataset": 12717, "tools based large": 167113, "essay scoring aes": 50569, "accuracy baseline model": 3155, "chainofthought prompting strategy": 21534, "significant improvements models": 150746, "optimizing large language": 117117, "work conduct assessment": 178856, "tasks data sizes": 162152, "optimization step llm": 117041, "step llm generates": 155657, "llm generates new": 93707, "generates new solutions": 64089, "generated solutions values": 63982, "solutions values new": 153086, "values new solutions": 175548, "new solutions evaluated": 113416, "evaluating llm performance": 51332, "performance broad spectrum": 121212, "like data size": 92261, "dialogue systems recent": 41528, "language models empower": 84437, "different models including": 41863, "findings underscore pressing": 58827, "underscore pressing need": 170925, "language models fundamental": 84560, "selfsupervised learning method": 148059, "new training paradigm": 113474, "paradigm allows language": 119429, "providing model language": 133332, "generation despite remarkable": 64569, "remain open question": 139928, "complex natural language": 27491, "framework offers explanatory": 61329, "generation tasks experiments": 65159, "language models learning": 84783, "explore potential models": 55267, "supervised finetuning data": 159114, "math reasoning code": 99536, "model performance various": 104261, "various factors including": 175937, "experiments reveal distinct": 54445, "generally superior performance": 63329, "offers promising solution": 115842, "reports large language": 140599, "publicly listed companies": 133673, "environmental social governance": 50053, "social governance esg": 152580, "using information extraction": 174323, "information extraction methods": 76428, "introductory computer engineering": 80262, "responses produced chatgpt": 142883, "approach overcoming limitations": 11439, "suggests large language": 158661, "models llms applied": 107116, "llms applied various": 94416, "prompting incontext learning": 130964, "exceeding tens thousands": 52751, "cost paper presents": 32722, "high compression ratios": 69409, "alignment language models": 8180, "conduct experiments analysis": 29087, "showing proposed approach": 150190, "user perceptions using": 173465, "using llmbased conversational": 174421, "model llm created": 103984, "questions visionlanguage models": 135323, "models llms vision": 108026, "requiring training data": 141516, "model performance particular": 104254, "improve zeroshot performance": 73665, "models deep generative": 105866, "language models denoising": 84359, "recently gained attention": 137889, "attention ability generate": 13830, "ability generate diverse": 2186, "generate diverse highquality": 63466, "address computational challenges": 5205, "recent work suggests": 137747, "improvements compared stateoftheart": 73888, "compared stateoftheart solutions": 26936, "stateoftheart solutions like": 155355, "understanding commonsense reasoning": 171164, "models work explore": 109704, "models vlms large": 109656, "vlms large language": 177462, "vlms perform visual": 177470, "datasets models trained": 36989, "lms external tools": 97138, "fewshot prompting techniques": 58035, "prompting techniques offtheshelf": 131106, "generated gpt4 leads": 63880, "novel approach finetuning": 114383, "tasks prompting methods": 163030, "applied reasoning tasks": 10803, "reasoning tasks experiments": 137175, "various types including": 176239, "language models identified": 84660, "tools github copilot": 167173, "ability develop software": 2128, "models llms celebrated": 107164, "remarkable success natural": 140293, "reasoning program synthesis": 137067, "program synthesis tasks": 129758, "confidence scores language": 29364, "texttospeech synthesis using": 165836, "brings new challenges": 19146, "automatically using large": 14874, "language models optimus": 85830, "llmbased agent designed": 94113, "problems natural language": 128574, "mixed integer linear": 102717, "integer linear programming": 78471, "linear programming milp": 92974, "risks quality outputs": 145020, "systematic experimental study": 160127, "effects different prompting": 46329, "different prompting methods": 41943, "using llms like": 174441, "paper aims address": 118725, "aims address gap": 7573, "address gap conducting": 5230, "significantly affect quality": 150940, "achieve similar better": 3741, "llms present comprehensive": 96164, "present comprehensive evaluation": 126256, "comprehensive evaluation popular": 28019, "popular llms llama": 124018, "generation capabilities prompting": 64470, "demonstrate capabilities llms": 38261, "earlier generalpurpose models": 45232, "highest performance compared": 69669, "performance compared human": 121291, "evolution natural language": 52274, "language processing technology": 86647, "general purpose ai": 63027, "communication natural language": 26395, "played central role": 123480, "vast amounts textual": 176321, "amounts textual data": 8704, "data using deep": 35928, "using deep learning": 174124, "using vast amounts": 174849, "language models second": 86135, "rescoring asr hypothesis": 141551, "nlp applications involve": 113687, "systems dialogue systems": 160338, "previous work demonstrated": 127688, "models effectively perform": 106049, "present preliminary results": 126415, "small set examples": 152359, "dynamic power consumption": 45149, "leak sensitive information": 89930, "mitigating potential risks": 102676, "based graph neural": 15852, "neural networks gnn": 112927, "registertransfer level rtl": 138947, "uses largelanguage models": 173878, "llm automatically generate": 93490, "mitigating hallucination large": 102660, "knowledgeintensive tasks including": 82567, "tasks including questionanswering": 162572, "including questionanswering qa": 74690, "questionanswering qa tasks": 134997, "tasks practical deployment": 162967, "issue hallucination models": 80908, "hallucination models generate": 68396, "models generate plausiblesounding": 106456, "answers experimental results": 10020, "results automatic human": 143183, "natural language poses": 111691, "reasoning tasks multiple": 137188, "llms varying sizes": 96967, "texttosql large language": 165844, "incontext learning demonstrated": 74886, "impressive generalization capabilities": 73298, "points execution accuracy": 123749, "derived large language": 39360, "aligned language models": 8060, "generating malicious content": 64270, "power incontext learning": 125181, "alignment ability llms": 8116, "aligned language model": 8059, "models generating harmful": 106469, "provide new perspective": 132900, "safety alignment llms": 145838, "personality traits users": 122574, "compared previous work": 26895, "increasing capabilities large": 75308, "task systematically evaluate": 161764, "word sentence levels": 178680, "november 2022 chatgpt": 114765, "concrete suggestions improvement": 28924, "prior research mainly": 127926, "research mainly focused": 141898, "enhancing semantic understanding": 49568, "understanding pretrained language": 171416, "language models optimizing": 85829, "models optimizing single": 108370, "tackle issue present": 160826, "retrieval model uses": 144092, "furthermore introduce novel": 62102, "efficiency experimental results": 46455, "reasoning abilities multimodal": 136630, "language models counterfactual": 84316, "aspect human cognition": 12906, "test counterfactual reasoning": 164539, "counterfactual reasoning capabilities": 32954, "language models dataset": 84327, "visionlanguage models using": 177061, "models using dataset": 109586, "significant gap current": 150712, "code dataset publicly": 24766, "performance incontext learning": 121662, "adoption generative ai": 5636, "ai technologies including": 7270, "technologies including large": 164090, "autonomous agents paper": 14926, "agents paper introduces": 6678, "important role improving": 73194, "improving reasoning abilities": 74202, "require quantitative reasoning": 141177, "showing models trained": 150180, "hugging face hub": 70536, "help spur advances": 69183, "advances reasoning abilities": 6059, "language models geometry": 84595, "structure large language": 156579, "language model representations": 83879, "llms impressive capabilities": 95553, "recent work developed": 137725, "language models linearly": 84807, "superior performance efficiency": 159027, "7b outperforms llama": 1637, "mathematics code generation": 99612, "provide model finetuned": 132889, "model finetuned follow": 103665, "chat model human": 22545, "models released apache": 108902, "released apache 20": 139504, "apache 20 license": 10138, "teaching language models": 163644, "language models hallucinate": 84629, "abstractive summarization tasks": 2685, "downstream tasks method": 44810, "finetuning entire model": 59246, "finetune large language": 58932, "models llms simulate": 107924, "use gpt4 generate": 172661, "scores highly correlated": 147151, "llms long context": 95822, "scenarios large language": 146635, "llms face main": 95233, "inspired findings propose": 77722, "address challenges conduct": 5177, "wide range long": 178288, "summarization synthetic tasks": 158882, "synthetic tasks code": 160079, "tasks code completion": 162052, "benchmark respectively additionally": 17076, "language models source": 86198, "models llms provide": 107775, "language models change": 84227, "testing paper explore": 164741, "prompt engineering approaches": 130444, "assess extent llms": 13080, "provide insights prompt": 132856, "open questions research": 116280, "error large language": 50302, "models recent research": 108836, "recent research shows": 137636, "unobservable mental states": 172064, "possible directions future": 124414, "rapid progress opensource": 135901, "progress opensource large": 130000, "prompts work propose": 131528, "increase misalignment rate": 75214, "models lms t5": 108083, "yield promising results": 179974, "generated candidates based": 63806, "syntactic semantic word": 159902, "semantic word sense": 148259, "mainstream language models": 98308, "reasoning tasks extensive": 137176, "empirical analysis results": 47672, "enhancing language models": 49501, "data requires significant": 35656, "requires significant time": 141438, "analysis paper introduce": 9048, "linguistic sense disambiguation": 93063, "sense disambiguation finegrained": 148384, "disambiguation finegrained multimodal": 42642, "finegrained multimodal retrieval": 58884, "challenges persist including": 21991, "order overcome challenges": 117227, "leveraging pretrained models": 91930, "models feature extraction": 106313, "demonstrate proposed model": 38512, "operations large language": 116785, "models llms heralds": 107520, "like mistral 7b": 92355, "jin et al": 81228, "brave new world": 18974, "autonomous ai agents": 14928, "xie et al": 179835, "hendrycks et al": 69270, "language model despite": 83600, "despite remarkable progress": 40201, "remarkable progress natural": 140275, "language understanding pretrained": 86846, "transformers neural language": 169339, "crowdworkers large language": 33742, "model llm used": 104031, "experimental results revealed": 54070, "code data models": 24750, "data models available": 35394, "llms complex tasks": 94668, "long contexts poses": 97446, "context paper presents": 30866, "handle long contexts": 68552, "llm performance various": 93882, "generators large language": 65640, "conduct extensive empirical": 29107, "different types llms": 42070, "llms widely studied": 97007, "strategies prompt engineering": 156057, "prompt engineering knowledge": 130462, "released facilitate future": 139512, "foundation models gpt4": 60771, "stable diffusion models": 154693, "models paradigm shift": 108424, "paradigm shift realm": 119512, "realm artificial intelligence": 136345, "models wireless communication": 109698, "based case studies": 15693, "systems specifically propose": 160623, "language models chinese": 84236, "models llms artificial": 107120, "provides valuable findings": 133246, "explore impact llm": 55218, "methods instruction data": 101604, "solving various tasks": 153258, "provides comprehensive review": 133124, "knowledge retraining scratch": 82378, "provide indepth comparisons": 132836, "discuss existing challenges": 42889, "highlight future directions": 69743, "significant milestone field": 150782, "applications diverse domains": 10489, "topological data analysis": 167387, "data analysis tda": 34628, "bridge gap theoretical": 19060, "furthermore explore application": 62072, "decisionmaking process paper": 37429, "suite large language": 158729, "particularly artificial intelligence": 120150, "new trend large": 113478, "trend large language": 169702, "showing great potential": 150169, "root cause analysis": 145599, "performance current llms": 121350, "leading large language": 89837, "newly emerging llms": 113537, "models llms continues": 107224, "emerged scalable costeffective": 47400, "scalable costeffective alternative": 146235, "costeffective alternative human": 32756, "alternative human evaluations": 8564, "paper investigates efficacy": 119051, "substantial room improvement": 158101, "future research developing": 62322, "better instructionfollowing models": 17916, "tuning dataset including": 169987, "outperforms existing mllms": 117758, "wide range settings": 178307, "transformer architecture designed": 169091, "ranking large language": 135805, "llms key idea": 95698, "models llms retrieval": 107839, "effectiveness instruction tuning": 46204, "significant improvement instruction": 150734, "achieving comparable results": 4159, "results highlight promising": 143461, "instruction tuning code": 78072, "training data crucial": 168244, "text classification models": 164888, "models superior performance": 109301, "researchers recently explored": 142256, "llms generate synthetic": 95380, "generate synthetic datasets": 63740, "models trained synthetic": 109476, "trained synthetic data": 168092, "performance model trained": 121808, "conclude discussing implications": 28864, "explanation large language": 54788, "complex tasks including": 27611, "tasks including creative": 162553, "including creative writing": 74478, "present method using": 126366, "learning algorithms large": 90199, "language model augment": 83541, "range benchmark tasks": 135590, "predicting molecular properties": 125744, "advantage large language": 6111, "framework open new": 61331, "open new avenues": 116256, "new avenues ai": 113079, "llm based agents": 93498, "development processes paper": 41195, "allows language model": 8445, "acquire new skills": 4261, "task prompting large": 161654, "expertise prompt engineering": 54627, "domain question answering": 44262, "particularly development large": 120170, "used llm generate": 173138, "llm generate answers": 93700, "chat gpt35 gpt4": 22534, "paper set investigate": 119324, "language models context": 84302, "gpt4 stateoftheart llm": 67177, "number false positives": 114867, "memory footprint inference": 100398, "latency work propose": 89489, "work propose plugandplay": 179217, "reducing memory computational": 138582, "computational cost processing": 28348, "use gpt 35": 172657, "gpt models openai": 66460, "models openai pretrained": 108347, "llms exhibited exceptional": 95157, "recent studies focused": 137663, "knowledge structure llms": 82431, "knowledge structures llms": 82434, "shedding light models": 149869, "language models universal": 86339, "unified embedding model": 171705, "work make initial": 179117, "english data provide": 49043, "data provide comprehensive": 35581, "models achieve competitive": 105220, "results provide evidence": 143707, "factually incorrect responses": 56932, "despite success various": 40231, "success various applications": 158306, "various applications paper": 175806, "results reveal llms": 143760, "scaling model sizes": 146428, "model sizes finetuning": 104617, "reliable language models": 139729, "question answering information": 134735, "answering information retrieval": 9875, "language models vocabulary": 86384, "language model enhance": 83622, "enhance language model": 49217, "hidden test set": 69341, "set data set": 149170, "link prediction task": 93096, "fewshot knowledge base": 57937, "question generation task": 134886, "methods heavily rely": 101565, "shown impressive generalization": 150273, "fewshot tasks inspired": 58071, "demonstrate prompting method": 38490, "reasoning capabilities llm": 136708, "diverse ai models": 43457, "ai models complex": 7092, "identify key challenges": 71910, "designed investigate model": 39903, "framework enables dynamic": 61121, "language model specialized": 83909, "better performance finetuned": 17966, "models capabilities limitations": 105560, "context limited context": 30832, "llms limited context": 95793, "limited context window": 92736, "llms context window": 94720, "create conversational agents": 33181, "code data experiments": 24744, "visionlanguage models recent": 177057, "advances development visionlanguage": 6002, "image understanding introduce": 72354, "code datasets released": 24775, "reflection large language": 138813, "tasks transformer language": 163390, "work mechanistic interpretability": 179123, "behaviors language models": 16706, "indirect object identification": 75677, "object identification ioi": 115130, "attention heads middle": 13892, "overall results provide": 118229, "language models behavior": 84169, "conduct comprehensive study": 29057, "impact models downstream": 72690, "models downstream performance": 106024, "performance training inference": 122195, "effectiveness method various": 46240, "casebased reasoning cbr": 20936, "developments deep learning": 41278, "llms make progress": 95848, "molecular property prediction": 110031, "approach fewshot learning": 11229, "new tasks finetuning": 113452, "underpinning incontext learning": 170897, "predict molecular properties": 125693, "method surpasses performance": 101131, "generative ai approach": 65308, "produced impressive results": 129494, "ai models like": 7105, "poses significant hurdle": 124231, "propose novel paradigm": 132022, "novel paradigm termed": 114626, "generating highquality training": 64244, "unsupervised reinforcement learning": 172268, "harnessing large language": 68828, "approach employs key": 11159, "empirical evaluations demonstrate": 47687, "leveraged large language": 91699, "enhances models performance": 49428, "help model learn": 69149, "range tasks training": 135718, "training costs compared": 168215, "hallucination detection large": 68367, "detection large language": 40539, "poses significant risk": 124232, "common approach address": 26119, "approach address issue": 10970, "incurs high training": 75488, "high training costs": 69552, "cause catastrophic forgetting": 21242, "montecarlo tree search": 110095, "propose novel tokenlevel": 132036, "hallucination detection method": 68370, "detection method called": 40556, "generation tasks language": 65168, "set candidate outputs": 149147, "large number tasks": 88970, "comprehension commonsense reasoning": 27894, "results highlight promise": 143460, "work offers unique": 179141, "offers unique perspective": 115855, "reasoning end propose": 136826, "propose knowledge distillation": 131890, "knowledge distillation framework": 81881, "framework leverages llms": 61283, "significantly improves quality": 151047, "training data explore": 168259, "domain results indicate": 44274, "open large language": 116246, "models generate synthetic": 106460, "remarkable capabilities range": 140168, "physical world paper": 122917, "reason physical world": 136578, "preliminary findings indicate": 126130, "indicate llms chatgpt": 75601, "data reasoning tasks": 35615, "et al 2023b": 50784, "gives rise novel": 66059, "fairness natural language": 57062, "language generation gpt2": 83349, "existing approaches primarily": 53271, "overcome limitation propose": 118297, "propose utilizing large": 132206, "improved retrieval performance": 73720, "opensource blackbox llms": 116574, "experiments demonstrate llms": 54226, "demonstrate llms achieve": 38411, "llms achieve impressive": 94296, "achieve impressive performance": 3672, "llms relational reasoning": 96373, "training data ii": 168275, "using imagelevel labels": 174315, "significant attention existing": 150604, "existing approaches mainly": 53270, "pseudo labels utilizing": 133479, "paper tackle problem": 119363, "introducing novel approach": 80244, "novel approach called": 114371, "prompts leading generation": 131356, "vision transformer vit": 176996, "surpasses existing stateoftheart": 159481, "existing stateoftheart methods": 53581, "stateoftheart methods effect": 155208, "assessing reliability large": 13204, "model knowledge large": 103915, "knowledge bases strong": 81789, "llms typically evaluated": 96869, "answers paper propose": 10060, "llms demonstrate effectiveness": 94812, "factual reliability llms": 56901, "maintaining low computational": 98365, "low computational overhead": 97740, "llms powerful general": 96148, "increasingly integrated various": 75415, "various web applications": 176255, "generating harmful content": 64236, "elicit harmful content": 47038, "scenarios paper introduce": 146664, "model identify underlying": 103818, "achieves attack success": 3959, "seen considerable advancements": 147689, "models llms previous": 107751, "proximal policy optimization": 133428, "policy optimization ppo": 123864, "tasks mathematical reasoning": 162790, "code generation end": 24884, "generation end propose": 64607, "develop novel method": 40815, "method automatically generate": 100701, "similar improved performance": 151250, "performance code generation": 121257, "inference reasoning tasks": 76089, "roleplaying large language": 145554, "agents simulate human": 6731, "simulate human behaviors": 151640, "powerful ability understand": 125251, "understand human instructions": 171016, "plays significant role": 123537, "artificial neural network": 12790, "neural network ann": 112889, "uncertainty quantification uq": 170678, "language models thanks": 86290, "remains unexplored study": 140104, "scene graph generation": 146736, "new approach large": 113062, "showing significant improvements": 150192, "model training small": 104798, "large language modelempowered": 87512, "language modelempowered agents": 83974, "paradigm shift traditional": 119513, "agentbased modeling abm": 6512, "approach leverages llms": 11354, "agents exhibit humanlike": 6603, "disparate areas knowledge": 43057, "advent artificial intelligence": 6162, "artificial intelligence explore": 12720, "use finetuned large": 172628, "foundation model used": 60748, "billion 70 billion": 18424, "70 billion parameters": 1526, "strategies agentbased modeling": 155959, "automated software engineering": 14606, "stateoftheart llm gpt4": 155183, "learning taskspecific prompting": 91060, "code generation code": 24875, "generation code summarization": 64500, "finetuned model outperforms": 59074, "model outperforms gpt4": 104178, "human provides feedback": 70990, "automated prompt engineering": 14595, "fundamental task computer": 61980, "task computer vision": 161265, "computer vision aims": 28494, "tasks address issue": 161916, "issue propose universal": 80956, "eliminating need taskspecific": 47086, "need taskspecific finetuning": 112404, "finetuning methodology offers": 59380, "recent texttoimage models": 137701, "texttoimage models like": 165823, "models like stable": 106998, "like stable diffusion": 92407, "robust language models": 145279, "models trained largescale": 109451, "highquality image generation": 70033, "image generation provide": 72265, "comparable human experts": 26582, "human experts providing": 70788, "openai large language": 116361, "language models consistent": 84294, "llms specifically propose": 96670, "experimental results standard": 54075, "outperforms stateoftheart supervised": 117864, "evaluation framework grounded": 51600, "help students teachers": 69186, "conduct largescale evaluation": 29155, "supporting students learning": 159385, "models llms assist": 107122, "evaluate performance stateoftheart": 51061, "consistently improve original": 29878, "sheds light potential": 149879, "light potential limitations": 92135, "potential limitations using": 124827, "limitations using current": 92684, "using current llms": 174104, "evaluate stateoftheart models": 51107, "solving problems require": 153237, "comprehensive case studies": 27975, "stateoftheart llm notably": 155184, "language models excelled": 84476, "techniques fall short": 163904, "recent works propose": 137757, "challenging reasoning tasks": 22253, "require multiple rounds": 141161, "llm api calls": 93466, "natural question arises": 111942, "end propose new": 48680, "new concept called": 113121, "average accuracy improvement": 15270, "llmbased agents multiagent": 94116, "highorder theory mind": 69977, "theory mind capabilities": 166092, "limitations llmbased agents": 92620, "explicit belief state": 54919, "exploring incontext learning": 55473, "models llms using": 108011, "using limited number": 174411, "study focuses key": 157375, "evaluate approach using": 50907, "performance just 10": 121699, "types tasks questionanswering": 170428, "retrieval reasoning abilities": 144121, "training data llms": 168301, "performance recent works": 121998, "recent works use": 137766, "extremely large lms": 56438, "predictions large language": 125916, "achieving strong performance": 4227, "method aims minimize": 100671, "superiority proposed method": 159072, "achieving better performance": 4155, "project page available": 130082, "academic writing process": 2764, "ai tools data": 7291, "underscores potential ai": 170952, "ai tools chatgpt": 7290, "chatgpt enhance academic": 22890, "witnessed paradigm shift": 178565, "transformative influence large": 169069, "influence large language": 76205, "interaction module generate": 79148, "guide segment model": 68209, "segment model segment": 147726, "understanding visual concepts": 171536, "llms increasingly popular": 95605, "role social media": 145535, "posts news articles": 124522, "data collected multiple": 34778, "language models explain": 84492, "chatgpt demonstrated superior": 22840, "demonstrated superior performance": 38807, "tasks including sentiment": 162577, "including sentiment analysis": 74720, "task sentiment analysis": 161717, "study different ways": 157287, "entity matching using": 49900, "matching using large": 99493, "language models entity": 84454, "enabler ecommerce applications": 48154, "significant amounts taskspecific": 150590, "amounts taskspecific training": 8698, "data ii finetuned": 35170, "using generative large": 174241, "llms opensource llms": 95994, "models zeroshot scenario": 109743, "training data available": 168230, "different prompt designs": 41934, "single best prompt": 151783, "selection incontext demonstrations": 147856, "llms require training": 96415, "reach similar performance": 136119, "knowledge leveraging large": 82194, "paper delves potential": 118840, "delves potential large": 38116, "quantitative investment research": 134358, "question answering zeroshot": 134827, "effectiveness approach outperforms": 46129, "approach outperforms baselines": 11425, "outperforms baselines using": 117722, "codes model checkpoints": 25307, "utilising large language": 174938, "rapidly increasing number": 135935, "limited resources data": 92839, "technologies artificial intelligence": 164077, "incontext learning method": 74945, "demonstrating promising performance": 38952, "promising performance automatic": 130285, "models based incontext": 105454, "based incontext learning": 15869, "time incontext learning": 166419, "harnesses large language": 68806, "models llms adopted": 107097, "language model work": 83961, "design choices prompt": 39575, "systematic analysis propose": 160102, "gain insight capabilities": 62444, "different llms prompt": 41841, "new visual prompting": 113499, "visual prompting method": 177257, "models lmms gpt4v": 108052, "different levels granularity": 41828, "empirical study validate": 47768, "study validate effectiveness": 157710, "multimodal tasks example": 110772, "models varying scales": 109619, "validate efficacy proposed": 175317, "findings highlight critical": 58678, "human behavior using": 70616, "behavior using llms": 16662, "using llms simulate": 174447, "public opinion surveys": 133589, "bridge gaps present": 19065, "evaluating incontext learning": 51315, "humans possess remarkable": 71444, "possess remarkable ability": 124349, "models llms knowledge": 107590, "llms learn novel": 95741, "paper systematically analyse": 119358, "facilitate study introduce": 56653, "texttosql semantic parsing": 165852, "demonstrate llms exhibit": 38412, "llms exhibit surprisingly": 95151, "findings highlight need": 58680, "models previous studies": 108640, "stored large language": 155869, "leveraging knowledge graphs": 91873, "framework automatically generates": 60972, "ai systems abilities": 7237, "holistic evaluation framework": 70297, "significant differences models": 150685, "social commonsense reasoning": 152541, "synthesis model generate": 159958, "need extensive human": 112289, "llms recently shown": 96349, "recently shown great": 137992, "highstakes decisionmaking scenarios": 70119, "prediction performance llms": 125839, "adapt llm specific": 4536, "llm specific task": 94016, "specific task hand": 154100, "benchmark method improves": 17029, "approximate nearest neighbor": 12016, "nearest neighbor search": 112097, "present overview existing": 126404, "models provide new": 108727, "step natural language": 155665, "guides large language": 68263, "reasoning intermediate steps": 136926, "steps natural language": 155755, "step step llms": 155684, "based prompt tuning": 16039, "classification relation extraction": 24071, "relation extraction results": 139253, "outperforms baselines achieves": 117714, "baselines achieves stateoftheart": 16281, "llms shown possess": 96555, "explore behavior llms": 55158, "new light spatial": 113259, "light spatial organization": 92151, "models pave way": 108450, "data multiple languages": 35406, "openais whisper model": 116436, "texts large language": 165741, "methods require large": 101780, "require large corpus": 141139, "using bradleyterry model": 174015, "strongly human judgments": 156500, "additional labeled data": 4970, "evaluate ability large": 50893, "llms perform multiple": 96073, "studies mainly focused": 157041, "llms smaller language": 96625, "demonstrate excellent performance": 38327, "task parameterefficient finetuning": 161604, "promising direction tackle": 130246, "model size pretraining": 104609, "size pretraining corpus": 152058, "llms large size": 95729, "training natural language": 168596, "openai gpt3 model": 116348, "like chatgpt gpt4": 92228, "guide research community": 68203, "learning selfsupervised learning": 90976, "selfsupervised learning pretrained": 148060, "tasks specific domains": 163273, "comprehensive survey paper": 28136, "survey paper serve": 159663, "paper serve good": 119319, "study performance gpt4": 157527, "state art llms": 154985, "performance variety nlp": 122245, "nlp tasks remains": 113892, "remains unclear existing": 140084, "human users paper": 71073, "provides comprehensive analysis": 133119, "current nlp research": 34196, "real user queries": 136259, "traditional nlp benchmarks": 167672, "better aligned user": 17798, "paper analyze behavior": 118744, "llms generate harmful": 95365, "prompts incontext learning": 131327, "incontext learning furthermore": 74902, "learning furthermore propose": 90490, "experiments different llms": 54249, "llms validate effectiveness": 96938, "effectiveness proposed attack": 46272, "transferable adversarial attacks": 169019, "using instruction tuning": 174331, "adversarial machine learning": 6210, "develop method automatically": 40801, "method automatically generating": 100703, "multiple llms including": 110971, "llms including gpt4": 95577, "experimental results llms": 54034, "parametric knowledge knowledge": 119892, "adversarial examples generated": 6200, "diverse tasks involving": 43679, "text audio image": 164846, "models like gpt4v": 106990, "computer vision language": 28501, "study draw inspiration": 157294, "problemsolving large language": 128665, "models llms driven": 107328, "intelligence recent years": 78886, "tasks including mathematical": 162561, "methods propose novel": 101737, "benchmarks gsm8k math": 17259, "approach outperforms existing": 11428, "models using small": 109597, "used language models": 173125, "models lms typically": 108085, "twostage training pipeline": 170272, "large diverse dataset": 87243, "large model pretraining": 88914, "learning human preferences": 90531, "human preferences introduce": 70972, "llama2 falcon families": 93359, "remains challenging work": 139992, "reasoning datasets demonstrate": 136793, "aligning large language": 8096, "models llms specific": 107935, "acquired llm pretraining": 4272, "capabilities artificial intelligence": 19791, "artificial intelligence research": 12764, "memorized training data": 100354, "training data makes": 168306, "pretrained transformer gptbased": 127194, "design artificial intelligence": 39550, "artificial intelligence algorithms": 12711, "largescale multimodal models": 89365, "multimodal models clip": 110722, "work bridge gap": 178826, "insights pave way": 77619, "pave way future": 120585, "way future research": 177819, "llms perform wide": 96083, "generative ability llms": 65295, "incorporated training process": 75047, "artificial intelligence act": 12656, "pretraining large amounts": 127361, "finetuning human preferences": 59295, "transformers like gpt": 169329, "rate large language": 136001, "language models transformers": 86323, "passages large language": 120347, "fall short task": 57131, "task zeroshot manner": 161819, "multimodal information using": 110660, "information using llms": 76837, "llms produce final": 96204, "produce final answer": 129408, "significantly closes gap": 150964, "gap supervised methods": 62738, "lms achieved notable": 97101, "specific tasks limited": 154105, "unlabeled test data": 171959, "data work investigate": 35970, "demonstrates significant performance": 38892, "abilities natural language": 1974, "learning paradigm paradigm": 90810, "effectiveness method code": 46234, "method code available": 100736, "widespread use various": 178482, "balance old new": 15502, "training data finetune": 168263, "instruction tuning using": 78140, "llms like llama": 95788, "responses paper propose": 142869, "obtain better results": 115465, "baselines code data": 16299, "world models llms": 179598, "interactions physical social": 79256, "physical social environment": 122911, "growth large language": 68082, "augmentation furthermore investigate": 14281, "prompt formats report": 130508, "language models prompting": 85983, "models prompting large": 108694, "small mediumsized enterprises": 152323, "mediumsized enterprises smes": 100263, "classifier multilayer perceptron": 24161, "results indicate significant": 143521, "performance gap stateoftheart": 121565, "gap stateoftheart llms": 62733, "using smaller model": 174729, "train small model": 167830, "language model student": 83917, "focus classification tasks": 59957, "models generate correct": 106443, "paper delves capabilities": 118837, "language generation framework": 83347, "provide theoretical justification": 133006, "language models xlmr": 86411, "languages particularly lowresource": 87087, "effective crosslingual transfer": 45723, "consistently outperforms strong": 29911, "strong baselines different": 156355, "different language pairs": 41814, "public large language": 133579, "models llms chatgptgpt4": 107198, "language models mllm": 85750, "empowering llms ability": 48019, "model specially designed": 104643, "models future research": 106412, "enhancing efficiency accuracy": 49481, "study highlights importance": 157391, "highlights importance incorporating": 69858, "need balanced approach": 112233, "future research focus": 62343, "chatgpt artificial intelligence": 22714, "survey paper highlights": 159662, "language models memorize": 85734, "language models lens": 84787, "research highlights need": 141827, "potential impact future": 124767, "higher degree similarity": 69591, "attention heads gpt2": 13891, "remains poorly understood": 140060, "curated test set": 34029, "impressive progress natural": 73361, "automatic prompt refinement": 14722, "data selection approach": 35721, "cases experimental results": 20963, "task logical fallacy": 161530, "logical fallacy detection": 97359, "paradigm shift nlp": 119511, "models llms examine": 107375, "latest generation llms": 89545, "multilingual llms mllms": 110502, "finetuning smaller llms": 59550, "analyses ablation studies": 8750, "database management systems": 35997, "notably large language": 114281, "language models demand": 84337, "similarity scores query": 151373, "instruction finetuning ift": 78000, "zeroshot capabilities large": 180125, "new evaluation metric": 113174, "practical industrial settings": 125425, "deployment language models": 39279, "models understand better": 109542, "evaluation methods using": 51706, "question answering natural": 134768, "fact verification fact": 56750, "verification fact verification": 176477, "fact verification systems": 56752, "explanations accurately reflect": 54809, "model recent works": 104421, "recent works focused": 137754, "directly natural language": 42575, "natural language capturing": 111560, "languages end propose": 86989, "end propose use": 48685, "use question answering": 172837, "annotated training data": 9497, "prompt engineering lens": 130467, "potential significantly enhance": 124981, "significantly enhance efficiency": 150988, "warrant future research": 177723, "language models past": 85863, "models past decade": 108446, "academic industrial fields": 2735, "engineering natural language": 48960, "llms recently received": 96346, "extremely large model": 56439, "methods assess quality": 101318, "insufficient training data": 78455, "application natural language": 10355, "spam detection models": 153645, "data augmentation strategies": 34686, "outperform models trained": 117610, "basic data augmentation": 16416, "assistance generative ai": 13371, "study paper explores": 157519, "item response theory": 81080, "exploratory factor analysis": 55125, "predictions experimental results": 125903, "chatgpt thematic analysis": 23396, "language processing tool": 86649, "additionally explore potential": 5064, "assess strengths limitations": 13125, "intervention remains necessary": 79794, "instruction tuned large": 78066, "llms chatgpt demonstrate": 94574, "chatgpt demonstrate remarkable": 22830, "range tasks despite": 135707, "remains lack comprehensive": 140019, "analysis reveals existing": 9138, "llms struggle understand": 96702, "instruction tuning achieving": 78068, "previous research focused": 127637, "generalizability compared previous": 63109, "research development project": 141703, "remarkable advances large": 140141, "strong correlations human": 156374, "correlations human judgments": 32561, "like gpt35 chatgpt": 92292, "generation models large": 64848, "search engines built": 147344, "introduce novel conceptual": 80052, "offering potential enhance": 115758, "challenges associated implementing": 21788, "language model field": 83641, "tasks current research": 162147, "current research landscape": 34227, "limited paper aims": 92812, "address gap presenting": 5238, "conducting comparative analysis": 29305, "reasoning tasks application": 137166, "multistep reasoning llms": 111188, "reasoning llms propose": 136969, "multiple reasoning steps": 111019, "reasoning steps llms": 137147, "varying levels granularity": 176294, "approach demonstrated effective": 11099, "recommender large language": 138271, "conversational recommender systems": 31913, "recommender systems crss": 138275, "rely external knowledge": 139840, "llms generate responses": 95376, "previous work explored": 127690, "experiments realworld dataset": 54430, "llms diverse reasoning": 94962, "prompting methods extensive": 131015, "empirical results suggest": 47738, "framework code available": 61010, "benchmark evaluating large": 16956, "cornerstone language modeling": 32198, "landscape large language": 83096, "evaluation benchmarks focus": 51454, "focus specific tasks": 60056, "assessing llm performance": 13184, "llm word representations": 94097, "detection using large": 40650, "language models linguistic": 84808, "generative power large": 65531, "efficient language model": 46652, "generative models create": 65483, "promising results terms": 130311, "make use data": 98620, "comprehensive review paper": 28116, "review paper delves": 144528, "pivotal role prompt": 123154, "role prompt engineering": 145526, "models llms prompt": 107763, "llms prompt engineering": 96231, "prompt engineering process": 130478, "chainofthought treeofthoughts prompting": 21548, "artificial intelligencegenerated content": 12786, "intelligencegenerated content aigc": 78932, "content aigc tools": 30431, "application prompt engineering": 10370, "comprehensive survey aims": 28130, "cot prompting recently": 32895, "different model architectures": 41855, "generalization ability outofdistribution": 63132, "structured knowledge bases": 156647, "models lms proposed": 108077, "language generation large": 83353, "llms encode vast": 95062, "vast amounts world": 176325, "world knowledge models": 179574, "language work study": 86900, "prompting improving zeroshot": 130960, "zeroshot chainofthought reasoning": 180139, "explicitly generate reasoning": 54973, "generate reasoning paths": 63676, "attracting increasing attention": 14063, "achieves remarkable improvements": 4063, "zeroshot prompting techniques": 180306, "limited single language": 92851, "language making challenging": 83503, "aiming improve zeroshot": 7556, "consists main components": 29974, "representations different languages": 140791, "hope work inspire": 70398, "language models share": 86146, "instructgpt chatgpt gpt4": 77942, "framework allows llms": 60951, "zeroshot prompting gpt4": 180305, "achieving best performance": 4151, "llms zeroshot setting": 97037, "code dataset released": 24768, "user generated content": 173415, "extract structured information": 56165, "final model achieves": 58384, "stateoftheart baselines including": 155088, "baselines including large": 16335, "new knowledge paper": 113244, "benchmarks evaluate llms": 17234, "propose approach called": 131712, "introduce benchmark named": 79924, "llms abilities knowledge": 94252, "models llms poised": 107722, "recent stateoftheart llms": 137647, "introduce task documentlevel": 80123, "commonly used data": 26241, "sentencelevel membership inference": 148549, "membership inference attacks": 100316, "models llms research": 107834, "learning icl framework": 90544, "results case studies": 143206, "case studies proposed": 20896, "proposed framework yields": 132310, "improves large language": 74017, "language model evaluation": 83626, "generation evaluation tasks": 64622, "challenging natural language": 22220, "evaluation constrained text": 51507, "text generation evaluate": 165142, "effectiveness multiple llms": 46249, "llms including vicuna": 95582, "visual question generation": 177282, "work introduces novel": 179063, "introduces novel task": 80212, "gpt4 produce diverse": 67122, "information proposed method": 76657, "proposed method outperforms": 132364, "method outperforms baselines": 101009, "coherence automatic evaluation": 25506, "adversarial attacks large": 6192, "attacks large language": 13719, "language models safety": 86121, "models safety alignment": 109029, "safety alignment large": 145835, "gradientbased adversarial attack": 67403, "high attack success": 69398, "evaluation suite large": 51883, "models rapid development": 108782, "llms led great": 95747, "paper propose using": 119256, "evaluation suite llms": 51886, "test set contamination": 164626, "combining language models": 25980, "task artificial intelligence": 161202, "enable large language": 48098, "natural language expressions": 111598, "approach observe significant": 11408, "observe significant performance": 115393, "failure modes provide": 57015, "logical reasoning natural": 97386, "autoregressive transformer language": 15014, "small number attention": 152334, "new complex tasks": 113116, "taken findings suggest": 160968, "understanding visionlanguage models": 171534, "framework combines pretrained": 61016, "additional semantic knowledge": 4998, "prompts llms generate": 131368, "video action recognition": 176682, "videototext texttovideo retrieval": 176800, "language models epistemic": 84455, "despite growing prevalence": 40117, "applications remains unexplored": 10667, "remains unexplored paper": 140102, "unexplored paper presents": 171633, "evaluations various llms": 52037, "insights developing robust": 77543, "challenge human evaluation": 21652, "models llms costeffective": 107227, "human evaluation dataset": 70729, "given relevant context": 65985, "model llm prompting": 104023, "users interactively refine": 173695, "positive negative feedback": 124297, "user study 14": 173516, "study 14 participants": 157125, "findings inform future": 58708, "present new corpus": 126377, "unknown large language": 171935, "data privacy concerns": 35545, "empirical analysis llms": 47670, "model size expands": 104593, "queries information retrieval": 134490, "hallucinations llms present": 68443, "common failure modes": 26138, "open source contributions": 116294, "retrieval augmented large": 144011, "models llms increase": 107561, "leveraging incontext learning": 91865, "user queries leveraging": 173479, "model finetuned datasets": 103661, "evaluate effectiveness proposed": 50958, "process elimination poe": 128803, "tasks illustrate effectiveness": 162520, "settings large language": 149603, "role natural language": 145516, "models chatgpt demonstrate": 105613, "work leveraged llms": 179103, "empirical study shows": 47763, "prevention large language": 127557, "models llms prevalent": 107750, "strategies significantly reduce": 156075, "text summarization task": 165516, "llms improving performance": 95562, "prompt design strategies": 130422, "lightweight large language": 92181, "artificial intelligence general": 12729, "training deploying llms": 168385, "resources paper present": 142462, "13 billion billion": 323, "billion billion parameters": 18427, "process including data": 128867, "data construction model": 34843, "instruction tuning framework": 78093, "domains law finance": 44454, "control model behavior": 31565, "framework leveraging large": 61289, "stateoftheart models generating": 155228, "human evaluation demonstrates": 70732, "surpasses stateoftheart models": 159501, "simple reasoning tasks": 151522, "overall work provides": 118265, "work provides novel": 179241, "provides novel perspective": 133189, "zeroshot visual question": 180373, "multimodal llms multimodal": 110709, "llms multimodal large": 95908, "models mllms recently": 108209, "model llm automatically": 103976, "approaches reinforcement learning": 11886, "document object model": 43839, "object model dom": 115146, "use incontext learning": 172680, "method achieves similar": 100642, "achieves similar better": 4080, "models llms equipped": 107365, "chainofthought prompting demonstrated": 21519, "tasks specified natural": 163280, "performance better understand": 121203, "opportunities large language": 116862, "llms increasingly employed": 95603, "data science tasks": 35706, "contextual data retrieval": 31079, "complex tasks adapting": 27607, "continual learning benchmarks": 31168, "training visionlanguage models": 168822, "models openais clip": 108351, "framework utilizing large": 61491, "dataset synthetic data": 36568, "advanced machine learning": 5769, "instructionfollowing language models": 78186, "information retrieval mechanism": 76725, "internal mechanisms llms": 79553, "tasks little known": 162745, "propose theoretical approach": 132165, "insights internal mechanisms": 77591, "recent pretrained language": 137585, "language models additionally": 84079, "models exhibit limitations": 106205, "components large language": 27761, "comprehensive accurate evaluation": 27946, "language models allows": 84115, "tasks falls short": 162393, "ai systems present": 7258, "performance specific task": 122096, "language models vs": 86385, "models vs human": 109668, "problemsolving capabilities large": 128658, "models llms evaluating": 107371, "llms evaluating performance": 95106, "performance stateoftheart llms": 122110, "davinci2 davinci3 gpt35turbo": 37235, "surpass human performance": 159458, "graph embedding methods": 67519, "various tasks knowledge": 176214, "tasks knowledge graphs": 162662, "lack interpretability explainability": 82969, "graph reasoning tasks": 67570, "structures textual data": 156717, "enables llms process": 48213, "link prediction tasks": 93097, "datasets respectively compared": 37088, "respectively compared existing": 142543, "various graph reasoning": 175963, "domain knowledge struggle": 44211, "language models transformerbased": 86320, "models transformerbased large": 109497, "extending context window": 55675, "context window length": 30965, "length extrapolation methods": 91365, "context window training": 30969, "methods designed specific": 101432, "performance practical tasks": 121924, "rotary position embedding": 145614, "impact training inference": 72735, "experimental results reveal": 54068, "extend context window": 55623, "exhibits competitive performance": 53189, "competitive performance stateoftheart": 27189, "stateoftheart opensource models": 155264, "context lengths 32k": 30827, "llms generate helpful": 95366, "instructiontuning dataset named": 78408, "exhibits balanced distribution": 53179, "gpt4 human evaluations": 67046, "human evaluations notably": 70769, "representation large language": 140703, "certain demographic groups": 21379, "generated responses paper": 63964, "present evaluation datasets": 126300, "metrics measure diversity": 102108, "measure diversity generated": 99841, "new prompting technique": 113363, "handcrafted examples prompt": 68504, "human automated evaluations": 70606, "proposed approach effective": 132236, "language understanding visual": 86865, "impressive performance english": 73327, "answering questions related": 9940, "gender race age": 62893, "understanding tasks including": 171501, "language understanding benchmarks": 86809, "performance visual understanding": 122292, "results reveal ability": 143753, "performance various reasoning": 122273, "produce inaccurate results": 129431, "existing studies utilize": 53599, "propose novel prompting": 132027, "novel prompting method": 114653, "outperforms existing cot": 117754, "cot prompting methods": 32894, "achieved significant improvements": 3891, "demonstrate chatgpt potential": 38268, "architecture search large": 12217, "tasks work explore": 163483, "performance machine translation": 121778, "translation mt tasks": 169490, "mean absolute error": 99742, "visionandlanguage models clip": 177012, "investigate inherent knowledge": 80430, "models strong evidence": 109241, "provides novel method": 133188, "publicly available exploring": 133640, "evaluation paper presents": 51757, "presents comprehensive evaluation": 126558, "assess models performance": 13101, "recognition table structure": 138137, "table structure recognition": 160754, "models fully utilize": 106402, "fully utilize pretrained": 61800, "utilize pretrained generalpurpose": 175077, "tasks diffusion models": 162234, "bridge gap proposing": 19059, "diffusion models significantly": 42255, "parameterefficient finetuning large": 119661, "llms widely adopted": 97005, "paper study novel": 119343, "augmenting training data": 14403, "training data based": 168231, "consistently outperforms baselines": 29900, "understanding visual textual": 171537, "attracted considerable attention": 14040, "shared semantic space": 149821, "machine translation mmt": 98117, "visual information text": 177191, "novel approach proposed": 114397, "models llms explicitly": 107403, "experimental results widelyused": 54087, "approach code data": 11050, "ai academic writing": 6845, "humanai collaborative framework": 71112, "ai writing process": 7322, "humanai collaborative writing": 71113, "effective prompting techniques": 45859, "efficient llms inference": 46666, "llms inference time": 95624, "models llms hundreds": 107539, "llms hundreds billions": 95524, "speedup modern hardware": 154526, "quality incontext learning": 134164, "compared widely used": 26968, "computational demands models": 28359, "shorter training times": 150039, "efficiency language models": 46477, "various methods including": 176032, "traditional machine translation": 167656, "translation information retrieval": 169469, "human evaluation metrics": 70742, "contribute future research": 31401, "language models practical": 85931, "models llms enable": 107354, "answer selection experimental": 9775, "selection experimental results": 147847, "language modelbased agents": 83966, "experiments reveal interesting": 54446, "submission babylm challenge": 157889, "llms trained data": 96822, "existing benchmarks metrics": 53298, "llms efficiently effectively": 95014, "neural network modules": 112906, "plays central role": 123510, "vision bert gpt": 176893, "gpt natural language": 66468, "propose effective efficient": 131792, "longrange arena benchmark": 97568, "messages large language": 100547, "language model assistance": 83538, "electronic medical record": 47004, "knowledge representations large": 82364, "dimensions exceedingly high": 42333, "exceedingly high variance": 52754, "error rate results": 50317, "recommender systems crs": 138274, "users lack background": 173700, "performance terms fluency": 122170, "make data available": 98517, "models llms infer": 107573, "artificial intelligence gai": 12725, "highfidelity synthetic data": 69679, "models models trained": 108228, "modeling structured data": 105100, "underscoring transformative potential": 170970, "potential synthetic data": 125011, "targeted data generation": 161130, "models rapid advancement": 108779, "highquality synthetic datasets": 70081, "tasks superglue benchmark": 163320, "encoderonly encoderdecoder decoderonly": 48474, "incorporating instruction tuning": 75108, "synthetic dataset demonstrates": 160037, "settings unlike previous": 149653, "llms directly produce": 94942, "language models knowing": 84744, "great potential natural": 67706, "potential natural language": 124877, "utilization paper propose": 175015, "recently released llms": 137978, "dataset sentiment analysis": 36527, "languages paper introduce": 87082, "carry comprehensive evaluation": 20835, "models llms dedicated": 107241, "superior performance various": 159045, "conducted extensive experiments": 29250, "abstract concepts like": 2636, "column type annotation": 25807, "annotation using large": 9562, "existing deeplearning approaches": 53341, "type annotation cta": 170296, "require large number": 141141, "number training samples": 114972, "range tasks paper": 135714, "tasks paper explore": 162912, "language models grant": 84619, "language models benefit": 84172, "work present new": 179177, "navigation using large": 112070, "llms emerged promising": 95030, "improving llms performance": 74166, "approach prompt learning": 11470, "work provides valuable": 179245, "capabilities current llms": 19842, "efficient finetuning method": 46622, "llms medical applications": 95876, "high cost finetuning": 69433, "simultaneously propose novel": 151761, "novel parameterefficient finetuning": 114628, "multitask learning lora": 111222, "lora parameterefficient finetuning": 97648, "pair lowrank matrices": 118521, "small number trainable": 152342, "tasks validate effectiveness": 163446, "dataset experimental results": 36286, "methods implementation available": 101578, "importance urban planning": 73067, "natural language supervision": 111878, "visual representation learning": 177301, "loss language modeling": 97679, "stateoftheart methods code": 155207, "does require finetuning": 44022, "align human annotations": 8000, "finally extend method": 58459, "modalities image text": 102930, "assisting users complex": 13451, "built large language": 19488, "setting new standard": 149481, "models llms shifted": 107857, "endtoend multitask learning": 48754, "multitask learning paradigm": 111224, "traditional supervised learning": 167702, "based labeled data": 15897, "capabilities existing llms": 19885, "llms gpt3 gpt4": 95422, "appropriate prompts especially": 11990, "prompts especially fewshot": 131252, "especially fewshot zeroshot": 50474, "fewshot zeroshot scenarios": 58089, "shed light promising": 149859, "promising research directions": 130302, "research directions future": 141721, "framework future research": 61175, "meet challenge introduce": 100273, "challenge introduce novel": 21662, "introduce novel text": 80077, "model specifically tailored": 104648, "studentwritten responses science": 156918, "accuracy precision recall": 3338, "precision recall f1": 125619, "recall f1 score": 137266, "improved model performance": 73703, "notably using just": 114293, "compare models trained": 26700, "responses findings indicate": 142795, "existing supervised unsupervised": 53603, "supervised unsupervised approaches": 159184, "complex questionanswering qa": 27543, "existing promptbased approaches": 53536, "empirically evaluate performance": 47790, "evaluate performance generative": 51051, "transfer learning based": 168936, "languages available datasets": 86950, "unified information extraction": 171723, "tackle challenges propose": 160808, "types experimental results": 170354, "models llms benefit": 107144, "reasoning generate answers": 136880, "models trained make": 109453, "neural tangent kernel": 112984, "tangent kernel ntk": 161030, "addition providing theoretical": 4900, "student model learns": 156820, "solution code generation": 152909, "tools increasingly prevalent": 167184, "increasingly prevalent software": 75432, "notable examples tools": 114224, "examples tools include": 52712, "openais chatgpt github": 116394, "chatgpt github copilot": 22991, "github copilot amazon": 65811, "copilot amazon codewhisperer": 32105, "recent publications explored": 137608, "practical software engineering": 125451, "conducted literature review": 29268, "develop research agenda": 40831, "requirements engineering software": 141288, "engineering software design": 48987, "design software engineering": 39759, "field software engineering": 58245, "mechanism large language": 100006, "correcting factual errors": 32431, "exhibit impressive performance": 53062, "linguistic knowledge acquired": 93040, "categories llms focusing": 21111, "limitation hinders practical": 92503, "hinders practical applications": 70162, "understanding paper conduct": 171390, "furthermore explore potential": 62073, "llm models gpu": 93834, "proposed method achieve": 132336, "paper propose fully": 119220, "stateoftheart models trained": 155237, "models trained generate": 109440, "experiments method outperforms": 54355, "method outperforms baseline": 101008, "strong correlation human": 156372, "correlation human evaluation": 32542, "fully automated solution": 61743, "require human intervention": 141120, "proposed method performs": 132367, "language models illuminate": 84666, "multilingual models mbert": 110512, "models mbert xlmr": 108158, "massive multilingual language": 99363, "model prompt engineering": 104366, "squad dataset evaluate": 154642, "evaluate effectiveness different": 50953, "play werewolf game": 123477, "potential wide range": 125075, "abilities propose novel": 1996, "social deduction game": 152559, "perform deductive reasoning": 120921, "existing llmbased agents": 53419, "provides test bed": 133229, "test bed evaluating": 164517, "exhibit impressive reasoning": 53063, "models different parameters": 105971, "indicate data augmentation": 75581, "verification large language": 176486, "users information needs": 173681, "novel large language": 114562, "knowledge encoded llms": 81933, "proposed method allows": 132341, "outperforms baselines significantly": 117720, "language models lmms": 85664, "massive computation resources": 99347, "demonstrate proposed method": 38506, "method performs favorably": 101029, "dropin replacement standard": 45039, "generative adversarial network": 65297, "calibration language models": 19638, "language models outputs": 85837, "detecting mitigating hallucinations": 40417, "methods require finetuning": 101779, "original model parameters": 117357, "gpt llama families": 66446, "following key findings": 60287, "models despite having": 105938, "having fewer parameters": 68877, "llms chatgpt increasingly": 94589, "chatgpt increasingly sophisticated": 23069, "playing essential role": 123496, "essential role assisting": 50626, "role assisting humans": 145463, "systems language model": 160450, "ability generate highquality": 2191, "effectiveness improving factual": 46199, "improving factual consistency": 74141, "text summarization large": 165505, "llms generate summaries": 95379, "hallucinations text generation": 68461, "small models bart": 152328, "current llms make": 34168, "text summarization paper": 165511, "hallucinations experimental results": 68429, "generative models like": 65498, "generative ai gained": 65320, "compared conventional deep": 26772, "network intrusion detection": 112663, "machine learning shown": 98075, "llms provide explanations": 96256, "systems introduce new": 160441, "new human evaluation": 113217, "providing better understanding": 133268, "comprehensive survey large": 28133, "remarkable capabilities broad": 140149, "broad spectrum tasks": 19191, "numerous downstream applications": 115037, "harmful misleading content": 68740, "raises concerns potential": 135480, "comprehensive review evaluation": 28114, "evaluation methodologies benchmarks": 51698, "llms performance specialized": 96090, "guiding responsible development": 68285, "responsible development llms": 142965, "minimizing potential risks": 102397, "language models biomedical": 84191, "models biomedical natural": 105526, "language processing bionlp": 86495, "combined multitask learning": 25912, "gpt4 language model": 67054, "llms biomedical domain": 94503, "tasks results performance": 163179, "dataset serves valuable": 36532, "serves valuable resource": 149058, "selection large language": 147865, "new tasks incontext": 113453, "learning icl icl": 90546, "does require parameter": 44024, "require parameter updates": 141170, "active learning approach": 4435, "experiments datasets seven": 54215, "scheme large language": 146790, "various aspects daily": 175815, "aspects daily lives": 12932, "impacted numerous domains": 72749, "intelligence ai assistance": 78726, "conducted controlled experiment": 29224, "complex tasks collaborative": 27609, "tasks project website": 163018, "zeroshot information retrieval": 180216, "embeddingbased retrieval models": 47208, "work shows promising": 179306, "labeled data target": 82720, "generationaugmented retrieval gar": 65272, "previous best results": 127578, "set human participants": 149212, "turing test participants": 170163, "despite known limitations": 40147, "context bridge gap": 30700, "bridge gap paper": 19052, "addressing issue training": 5455, "training data scarcity": 168341, "different training strategies": 42058, "rejection sampling strategy": 139139, "enhances model performance": 49423, "vital strategy enhancing": 177417, "strategy enhancing model": 156142, "model performance specific": 104258, "rapid development artificial": 135864, "enhance user experience": 49308, "evaluation experimental results": 51576, "capability multimodal large": 20347, "extension large language": 55701, "spatial relationships objects": 153802, "paper proposes using": 119278, "providing accurate responses": 133259, "information scene graphs": 76745, "experiments conducted benchmarks": 54188, "language models experimental": 84488, "recently emergence large": 137874, "remarkable capabilities generating": 140154, "capabilities generating humanlike": 19917, "generating humanlike texts": 64251, "ir systems llms": 80837, "automatically generated llms": 14818, "quantitative evaluation different": 134340, "neural retrieval models": 112973, "understand semantic information": 171076, "objective experimental results": 115195, "facilitate future explorations": 56615, "datasets realworld scenarios": 37067, "given recent advances": 65978, "models llms fewshot": 107422, "offline rl methods": 115884, "method demonstrates superior": 100776, "llama 2chat collection": 93278, "collection large language": 25739, "language models meta": 85737, "access model weights": 2885, "model weights released": 104896, "inspired success large": 77771, "multitask generative pretrained": 111209, "model specifically designed": 104647, "instruction tuning improving": 78098, "tasks instruction tuning": 162613, "models llms massive": 107653, "tasks improve performance": 162535, "models remains open": 108919, "performance work propose": 122312, "selection instruction tuning": 147859, "developing intelligent agents": 41000, "intelligent agents capable": 78936, "general intelligence existing": 62965, "high quality human": 69513, "data readily available": 35607, "available realworld scenarios": 15193, "realworld scenarios study": 136509, "building observation propose": 19436, "experimental evaluations conducted": 53941, "evaluations conducted overcookedai": 51953, "conducted overcookedai environment": 29274, "better alignment human": 17800, "alignment human preferences": 8160, "new loss function": 113266, "higher test accuracy": 69643, "performance lowresource languages": 121772, "lowresource languages bangla": 97906, "semantically similar prompts": 148276, "language models mplms": 85772, "zeroshot performance large": 180282, "evaluation capabilities llms": 51463, "capabilities llms recent": 20040, "various generative models": 175961, "generative models study": 65514, "models study delve": 109258, "factual consistency summaries": 56862, "introduce innovative approach": 79983, "metrics human evaluations": 102082, "limitation current llms": 92498, "language model handle": 83677, "code completion tasks": 24726, "mind language model": 102282, "challenging problem solving": 22243, "llms achieved tremendous": 94322, "achieved tremendous progress": 3917, "problem solving strategies": 128408, "multiple reasoning chains": 111016, "additionally propose effective": 5112, "final answer approach": 58374, "problems math dataset": 128562, "language models design": 84362, "labeling extensive datasets": 82757, "models plms exhibited": 108531, "conduct thorough assessment": 29194, "context llms lack": 30837, "smart home tasks": 152482, "significantly outperforming existing": 151085, "growing popularity large": 68043, "language models github": 84596, "models github copilot": 106501, "llms help developers": 95480, "generate insecure code": 63572, "code generation existing": 24886, "potential security risks": 124971, "security generated code": 147587, "functional correctness generated": 61873, "correctness generated code": 32490, "generated code ignoring": 63821, "generate secure code": 63701, "test generated code": 164559, "expert linguistic knowledge": 54584, "improves generalization unseen": 74008, "access language technology": 2871, "natural language rules": 111866, "assist various tasks": 13365, "described natural language": 39381, "answer wide range": 9800, "wide range questions": 178301, "questions various domains": 135319, "llms particularly context": 96051, "answer challenging questions": 9682, "utilize structured knowledge": 175086, "structured knowledge base": 156646, "knowledge knowledge base": 82153, "demonstrate approach enhances": 38236, "ai teaching learning": 7266, "engineering education study": 48907, "study shed light": 157622, "shed light benefits": 149848, "study contributes understanding": 157252, "substantial advancements field": 158025, "plms extensive experiments": 123598, "models llms gpts": 107502, "llms better suit": 94495, "external knowledge remains": 56072, "models ability produce": 105188, "suggested prior work": 158605, "chatgpt generative models": 22987, "models achieved tremendous": 105253, "neural network approaches": 112891, "leverage user feedback": 91681, "results study propose": 143823, "propose novel generative": 132007, "reward model training": 144699, "method eliminates need": 100817, "eliminates need additional": 47075, "domain machine learning": 44223, "important aspects overlooked": 73088, "performance different approaches": 121388, "energy consumption carbon": 48786, "consumption carbon footprint": 30278, "models llms extensively": 107408, "llms extensively adopted": 95218, "extensively adopted address": 55976, "achieve performance close": 3703, "driven natural language": 44990, "text natural language": 165320, "consistency language models": 29769, "taken results provide": 160971, "promising results various": 130312, "various multimodal tasks": 176046, "immense potential multimodal": 72599, "potential multimodal llms": 124874, "complex reasoning ability": 27552, "complex visual reasoning": 27645, "approach improving zeroshot": 11296, "zeroshot generalization capability": 180195, "visual instruction datasets": 177197, "instruction datasets various": 77983, "paper aim investigate": 118722, "particularly effective improving": 120178, "effective improving performance": 45779, "systematic approach automatically": 160104, "enhances performance compared": 49432, "publicly available link": 133651, "domain adaptation traditional": 44078, "traditional chinese medicine": 167600, "nlp tasks effectiveness": 113838, "potential applications field": 124583, "yields suboptimal results": 180043, "lack domain knowledge": 82929, "domain knowledge unique": 44212, "propose novel domain": 131992, "novel domain specific": 114475, "approach efficient pretraining": 11148, "lora freezes pretrained": 97642, "freezes pretrained models": 61585, "pretrained models weights": 127116, "rank decomposition matrices": 135772, "best performance datasets": 17721, "respectively best knowledge": 142538, "best knowledge study": 17690, "systems increasingly popular": 160437, "complex data analysis": 27389, "llms specifically chatgpt": 96662, "suggest future research": 158538, "models trained detect": 109426, "detect given text": 40360, "texts generated gpt35": 165721, "evolving landscape large": 52316, "evaluation methodologies remains": 51699, "remains crucial challenge": 140000, "need unified evaluation": 112419, "range visionlanguage tasks": 135731, "model inspired recent": 103871, "evaluation natural language": 51743, "language processing use": 86653, "artificial intelligence healthcare": 12736, "widespread use chatgpt": 178477, "attention potential ethical": 13966, "potential ethical issues": 124708, "ethical issues especially": 50816, "especially highstakes applications": 50489, "systematic scoping review": 160154, "significant progress development": 150833, "capabilities llms enabling": 20031, "address introduce novel": 5253, "capabilities experimental results": 19887, "demonstrate approach exhibits": 38237, "incontext learning present": 74957, "modality large language": 102975, "pairs generated using": 118583, "generate text response": 63754, "evaluate models incontext": 51028, "incontext learning various": 74981, "benchmark results demonstrate": 17078, "results demonstrate efficacy": 143297, "interacting large language": 79091, "small subset attention": 152368, "subset attention heads": 157997, "applied inference time": 10770, "time does require": 166380, "llms ability follow": 94255, "integrate new knowledge": 78504, "boosting code llms": 18836, "finetuning pretrained models": 59465, "requiring extensive training": 141485, "resources posing challenges": 142467, "tasks overcome limitations": 162904, "finetuning multiple tasks": 59398, "varying difficulty levels": 176285, "demonstrated multitask finetuning": 38725, "multitask finetuning approach": 111206, "finetuning approach outperforms": 59171, "compared traditional finetuning": 26953, "mainstream opensource llms": 98315, "anomaly detection large": 9657, "conduct qualitative quantitative": 29167, "possible future works": 124428, "future works code": 62415, "works code available": 179433, "proven effective approach": 132641, "study explore application": 157338, "methods rely limited": 101769, "instances experimental results": 77825, "outperforms traditional methods": 117881, "studies demonstrated large": 156974, "learning instruction tuning": 90586, "learning multimodal large": 90747, "various 2d 3d": 175786, "anomaly detection models": 9658, "study explores use": 157353, "tasks including image": 162556, "video point cloud": 176724, "time series data": 166500, "conducted extensive evaluations": 29249, "incorporating human feedback": 75104, "opening new avenue": 116523, "capabilities performing complex": 20106, "selfcorrection capabilities llms": 147966, "llms enhance performance": 95076, "performance work investigate": 122311, "llms conduct experiments": 94693, "focusing key aspects": 60188, "depending specific aspect": 39171, "process introducing new": 128883, "lms capable generating": 97114, "question answering prior": 134774, "answering prior work": 9923, "175b parameter gpt3": 502, "improve downstream task": 73448, "quantitative evaluation metrics": 134343, "given intricate nature": 65917, "extensive manual efforts": 55923, "data setups work": 35744, "current evaluation metrics": 34116, "evaluation metrics method": 51726, "information extraction aims": 76418, "extraction aims extract": 56254, "entities relations events": 49869, "code generation framework": 24887, "generation framework based": 64670, "examples different tasks": 52561, "example retrieval strategies": 52501, "experiments representative tasks": 54437, "tasks datasets demonstrate": 162155, "ai tools generate": 7294, "comprehend natural language": 27855, "identify strengths weaknesses": 71967, "chainofthought reasoning chainofthought": 21540, "opening new research": 116526, "domains like healthcare": 44461, "models lms acquire": 108059, "models billion parameters": 105520, "open llm leaderboard": 116251, "using machine learning": 174467, "methods shown great": 101818, "yield suboptimal performance": 179984, "extensive domain knowledge": 55752, "utilize domain knowledge": 175037, "domain knowledge limited": 44209, "develop large language": 40790, "model llmbased pipeline": 104037, "makes generated content": 98650, "entity linking knowledge": 49896, "models llms proposed": 107770, "proposed recent years": 132424, "recent years including": 137778, "cost training models": 32746, "foundation model pretrained": 60745, "significantly outperforms models": 151106, "models multiple benchmarks": 108254, "current large visionlanguage": 34151, "detection network achieve": 40572, "images text prompts": 72496, "model generate natural": 103724, "natural language responses": 111865, "users interact model": 173690, "various levels granularity": 176008, "grounded conversation generation": 67859, "introduce comprehensive evaluation": 79936, "uncertainty natural language": 170674, "llms increasingly used": 95609, "increasingly used powerful": 75452, "nlp applications recent": 113691, "llms end propose": 95068, "propose novel metrics": 132018, "integration artificial intelligence": 78641, "intelligence ai education": 78738, "address gap study": 5242, "perceived ease use": 120761, "findings provide insights": 58762, "training finetuning inference": 168455, "finetuning inference large": 59306, "13 70 billion": 320, "help better understand": 69089, "techniques training inference": 164044, "opportunities future work": 116851, "sequence labeling problems": 148755, "base pretrained language": 15627, "address challenge leverage": 5164, "examples finetuning process": 52588, "compared incontext learning": 26842, "directly impacts user": 42551, "impacts user experience": 72772, "gap paper present": 62695, "supervised fine tuning": 159108, "fine tuning sft": 58845, "model llm supervised": 104027, "beam search generate": 16502, "search generate multiple": 147358, "introduce contrastive learning": 79941, "prove effectiveness method": 132622, "bridging semantic gap": 19099, "models llms huge": 107533, "offers promising potential": 115841, "promising potential advancing": 130294, "existing works focused": 53649, "mechanisms reinforcement learning": 100052, "language models biased": 84188, "models llms developed": 107305, "human ai feedback": 70564, "supervised finetuning llms": 159117, "uses reinforcement learning": 173903, "tasks statistically significant": 163286, "exhibit strong capabilities": 53108, "language models enhancing": 84451, "augmented generation large": 14344, "llms shown capable": 96533, "shown capable performing": 150217, "humans frozen llms": 71389, "acquire new knowledge": 4260, "models based problemsolving": 105461, "explore use retrieval": 55316, "use retrieval augmented": 172857, "lewis et al": 91970, "positive influence performance": 124294, "paper present method": 119122, "present method named": 126365, "responses single prompt": 142920, "single prompt approach": 151849, "method improving performance": 100924, "improve performance different": 73547, "performance different models": 121395, "tasks provide comprehensive": 163041, "provide comprehensive comparison": 132709, "enhancing llm performance": 49509, "rules large language": 145717, "models llms deployed": 107300, "rules natural language": 145722, "models gpt4 llama": 106547, "bestperforming model additionally": 17779, "generation recent advancements": 65023, "address limitations introduce": 5311, "limitations introduce novel": 92606, "thought prompting approach": 166235, "tree search mcts": 169667, "enhancing llms capabilities": 49512, "showcasing remarkable proficiency": 150122, "events mentioned text": 52122, "models yield impressive": 109726, "yield impressive results": 179968, "impressive results nlp": 73372, "benchmark designed evaluate": 16929, "language models demonstrating": 84358, "models perform worse": 108479, "researchers face challenges": 142216, "approaches recent advances": 11881, "model llm development": 103987, "hallucinations retrievalaugmented llms": 68456, "external data sources": 56039, "augment training process": 14259, "training process models": 168655, "work critically evaluate": 178882, "models ability perform": 105185, "reasoning tasks end": 137174, "passages findings suggest": 120344, "variety complex tasks": 175697, "level model parameters": 91490, "tasks demonstrating effectiveness": 162187, "realworld use case": 136533, "models llms greatly": 107507, "llms greatly advanced": 95452, "field multimodal understanding": 58211, "emergence large multimodal": 47432, "introduce novel paradigm": 80066, "reasoning comprehensive experiments": 136766, "select correct answer": 147771, "reading comprehension tests": 136193, "joint embedding space": 81251, "frozen llms perform": 61672, "llms perform understanding": 96080, "perform understanding generation": 121074, "generation tasks involving": 65167, "maintain high performance": 98325, "performance textual understanding": 122180, "achieves substantial improvements": 4119, "pretraining llms using": 127380, "llms shown success": 96577, "babylm shared task": 15403, "smaller number tokens": 152424, "generative information retrieval": 65429, "information retrieval natural": 76728, "retrieval natural language": 144102, "models study human": 109262, "generate meaningful text": 63608, "llms recent works": 96325, "human behavior simulation": 70615, "capabilities remains unclear": 20157, "remains unclear gap": 140086, "gap present extensive": 62705, "present extensive study": 126314, "ability llms perform": 2264, "llms perform basic": 96065, "asked answer questions": 12865, "answer question requires": 9761, "result substantial performance": 143066, "substantial performance drop": 158087, "language models collective": 84259, "models llms facilitate": 107417, "llms facilitate group": 95236, "llms evaluate performance": 95102, "performance novel approach": 121853, "conducting user study": 29325, "user study results": 173523, "study results indicate": 157597, "involving human participants": 80788, "assess systems ability": 13128, "exhibits strong performance": 53225, "dimensions large language": 42342, "models trained nextword": 109461, "trained nextword prediction": 168028, "representations inspired recent": 140821, "models exhibit behaviors": 106199, "need model parameter": 112350, "prompting strategies large": 131081, "model multiple times": 104111, "text generation optimizing": 165163, "general question answering": 63038, "question answering facilitate": 134717, "tasks open source": 162880, "does require training": 44028, "entity recognition information": 49909, "recognition information retrieval": 138075, "previous approaches mainly": 127568, "stateoftheart contextual language": 155113, "language models underperform": 86334, "knowledge closely related": 81814, "observed significant improvement": 115434, "significant improvement stateoftheart": 150737, "method outperformed stateoftheart": 101005, "supervised unsupervised methods": 159186, "wide range languages": 178286, "conversational agents ca": 31825, "human daily lives": 70683, "multiple domains furthermore": 110900, "scenarios address challenges": 146528, "models llms increased": 107562, "used reinforcement learning": 173211, "findings underscore importance": 58823, "underscore importance ensuring": 170919, "combating misinformation age": 25817, "misinformation age llms": 102481, "llms opportunities challenges": 96000, "misinformation fake news": 102488, "fake news rumors": 57104, "llms doubleedged sword": 94980, "world knowledge strong": 179579, "strong reasoning abilities": 156436, "paper systematically review": 119359, "achieves comparable superior": 3990, "superior performance current": 159026, "performance current stateoftheart": 121351, "prompt engineering prompt": 130479, "requires complex reasoning": 141346, "recent works indicate": 137756, "automatic prompt engineering": 14718, "play critical role": 123441, "tasks pose challenges": 162959, "reach human performance": 136113, "decisionmaking languageprocessing capabilities": 37418, "deep natural language": 37796, "natural language feature": 111600, "propose general method": 131849, "using weak labels": 174863, "model llm llm": 104011, "systematic literature review": 160135, "highlights significant potential": 69878, "supervised machine learning": 159150, "classification models using": 24033, "performance chatgpt significant": 121238, "plans decomposes complex": 123352, "complexity leveraging llms": 27682, "training data languages": 168293, "dense retrieval dense": 39100, "available multiple languages": 15168, "retrieval training dataset": 144158, "model llm generates": 104003, "llm generates textual": 93710, "generates textual summary": 64118, "retrieval models evaluate": 144095, "llms incorporating external": 95593, "incorporating external information": 75097, "methods improving performance": 101586, "improving performance large": 74181, "use highly technical": 172668, "training data set": 168343, "concerns large language": 28787, "comprehensive understanding complex": 28153, "work highlights potential": 179021, "highlights potential limitations": 69871, "language models zero": 86412, "models zero shot": 109736, "scientific literature data": 146970, "scientific discovery large": 146951, "openworld multitask agents": 116727, "plans perform embodied": 123366, "language models map": 85717, "different tasks using": 42039, "exploring generative ai": 55470, "prompt engineering fewshot": 130454, "engineering fewshot learning": 48918, "providing personalized feedback": 133348, "fewshot learning techniques": 57986, "intersection artificial intelligence": 79761, "artificial intelligence human": 12737, "unlike conventional search": 171992, "conventional search engines": 31730, "search engines llms": 147348, "potential transformative impact": 125029, "concerns regarding difficulty": 28820, "development usage llms": 41249, "downstream task adaptation": 44753, "large number trainable": 88971, "fast fourier transform": 57269, "parameterefficient finetuning method": 119664, "finetuning method called": 59376, "finally conduct extensive": 58425, "vision transformers large": 176998, "texttoimage diffusion models": 165813, "developments artificial intelligence": 41273, "ai big data": 6891, "like open ais": 92367, "sentiment analysis using": 148644, "using nlp techniques": 174537, "language models personalized": 85883, "requires understanding users": 141464, "smart agentbased modeling": 152471, "modeling natural language": 105055, "integrating large language": 78607, "agentbased modeling sabm": 6513, "enabling profound understanding": 48339, "data generation approach": 35107, "given resourceintensive nature": 65989, "explored different strategies": 55345, "performance standard finetuning": 122102, "synthetic data evaluation": 160027, "data evaluation dataset": 34999, "generated text remains": 64018, "different parameter sizes": 41893, "data processing pipeline": 35555, "enhance various aspects": 49311, "output language model": 117953, "additional training recently": 5015, "endtoend neural networks": 48757, "llmbased code generation": 94134, "natural language instead": 111648, "highresource languages chatgpt": 70101, "performance highresource languages": 121629, "languages nlp tasks": 87073, "llms domainspecific question": 94974, "question answering recently": 134794, "recently development large": 137861, "attracted wide attention": 14055, "llms real scenarios": 96300, "present novel pipeline": 126393, "incorporates domain knowledge": 75053, "outofdistribution ood test": 117529, "ood test samples": 116189, "data assess effectiveness": 34659, "counterfactually augmented data": 32958, "finally propose new": 58510, "propose new approaches": 131954, "amazon product reviews": 8622, "language models documentlevel": 84398, "largescale labeled data": 89331, "inspired analogical reasoning": 77712, "analogical reasoning human": 8732, "prompting enables llms": 130916, "tasks like sentiment": 162725, "like sentiment analysis": 92399, "fact verification task": 56753, "recently emerged powerful": 137870, "emerged powerful tool": 47387, "study investigates key": 157446, "investigates key research": 80564, "key research questions": 81564, "research questions chatgpt": 142024, "fact verification tasks": 56754, "comparing performance different": 27002, "performance different prompts": 121396, "remarkable ability large": 140123, "models llms understand": 107995, "understand follow instructions": 171007, "lowresource languages address": 97905, "crosslingual retrievalaugmented incontext": 33667, "retrievalaugmented incontext learning": 144180, "generation tasks evaluation": 65157, "promising avenue enhancing": 130229, "robots natural language": 145225, "response generation capabilities": 142648, "powerful language processing": 125289, "capability evaluate performance": 20289, "evaluate performance framework": 51050, "criteria including relevance": 33432, "despite identified limitations": 40128, "llms trained webscale": 96841, "evaluation dataset based": 51525, "detailed analysis design": 40267, "demand substantial computational": 38138, "computational resources making": 28402, "adapting models downstream": 4750, "particularly complex tasks": 120161, "designed enhance performance": 39865, "llms orders magnitude": 96007, "including finetuning incontext": 74522, "finetuning incontext learning": 59304, "prompts propose novel": 131427, "popular texttoimage generation": 124064, "current generative models": 34130, "foundation models represented": 60804, "foundation models shown": 60807, "models shown exciting": 109100, "enabling llms tackle": 48324, "threestage training scheme": 166296, "improve instruction following": 73491, "instruction following capability": 78009, "benchmark datasets results": 16916, "language model utilizing": 83951, "cornerstone natural language": 32200, "sentiment analysis named": 148620, "analysis named entity": 9026, "handling diverse array": 68591, "demonstrate stateoftheart sota": 38561, "teaching large language": 163646, "llms generate intermediate": 95369, "fewshot chainofthought prompting": 57890, "chainofthought prompting incontext": 21524, "work investigates llms": 179077, "traditional large language": 167640, "time work propose": 166531, "improved language model": 73697, "model achieves consistent": 103042, "achieves consistent improvement": 4003, "paper focus problem": 118953, "anomaly detection video": 9662, "test data unseen": 164541, "training recent studies": 168678, "paper takes step": 119367, "semantic knowledge large": 148166, "detection task design": 40632, "classification task semantic": 24106, "extensive experiments widelyused": 55904, "benchmarks demonstrate model": 17209, "demonstrate model achieves": 38441, "prompt optimization framework": 130616, "reasoning capability large": 136720, "developed prompt engineering": 40905, "language models textbased": 86284, "detection performance compared": 40587, "model built large": 103234, "capabilities various natural": 20246, "tasks demonstration examples": 162193, "adapt target tasks": 4562, "models largescale pretrained": 106921, "tasks knowledge distillation": 162661, "compress large language": 28188, "language model small": 83905, "submitted search engine": 157899, "language model assign": 83536, "domains human annotations": 44427, "systematically evaluating llms": 160184, "evaluating llms capabilities": 51335, "vision language modules": 176936, "llms answer question": 94401, "existing multimodal large": 53492, "knowledge recently large": 82348, "recently large pretrained": 137928, "superior language understanding": 159012, "language understanding abilities": 86806, "unclear extent capabilities": 170693, "human behavior experiments": 70614, "recent llms like": 137553, "code collected data": 24711, "language models attribution": 84144, "concept large language": 28606, "llms existing approaches": 95167, "open book qa": 116207, "case study demonstrate": 20905, "increase f1 score": 75204, "consistent various model": 29847, "various model sizes": 176040, "methods prompt engineering": 101733, "prompt engineering improve": 130459, "publicly accessible dataset": 133623, "models llms explain": 107402, "reasoning recent work": 137091, "models inner workings": 106771, "tests code available": 164775, "training data biases": 168233, "language models nexttoken": 85797, "models nexttoken prediction": 108297, "trained using autoregressive": 168106, "autoregressive blank infilling": 14974, "exhibits better resilience": 53183, "propose novel training": 132037, "novel training method": 114722, "mitigate reversal curse": 102635, "pretrained causal language": 126764, "causal attention mechanism": 21176, "llms order achieve": 96005, "order achieve higher": 117169, "achieve higher level": 3662, "models llms poses": 107724, "llms poses significant": 96126, "key performance indicators": 81549, "performance indicators kpis": 121672, "necessitates profound understanding": 112179, "incar conversational question": 74302, "highlight limitations current": 69756, "individuals different backgrounds": 75771, "pretrained transformer multimodal": 127204, "models llm achieved": 107023, "powerful capabilities visual": 125265, "semantic understanding recent": 148252, "understanding recent years": 171447, "metrics furthermore introduce": 102069, "editing method based": 45473, "demonstrate use cases": 38599, "word cooccurrence statistics": 178620, "language models mlm": 85765, "data performance declines": 35483, "language models accuracy": 84053, "accuracy question answering": 3354, "graphs kgs enhance": 67628, "study aims evaluate": 157149, "multimodal large models": 110699, "extensive experiments indicate": 55850, "achieves sota performance": 4084, "social media analysis": 152601, "extraordinary capabilities large": 56403, "capabilities large multimodal": 19996, "models lmms various": 108053, "general vision language": 63066, "language tasks growing": 86764, "perform specialized domains": 121043, "remains challenging problem": 139988, "representative tasks including": 140946, "detection fake news": 40506, "using existing benchmark": 174178, "existing benchmark datasets": 53295, "multimodal social media": 110765, "known hallucination problem": 82599, "robustness incontext learning": 145393, "incontext learning natural": 74946, "language inference recent": 83431, "llms excel diverse": 95121, "improve robustness llms": 73614, "evaluate popular llms": 51067, "furthermore prompt selection": 62134, "dataset model outperforms": 36415, "groundwork future research": 67947, "model llm pretraining": 104021, "realworld synthetic data": 136520, "human pose estimation": 70964, "scenarios additionally propose": 146525, "various network architectures": 176063, "benchmarks hope work": 17264, "hope work cast": 70390, "work cast light": 178836, "mllm research code": 102804, "models llms presented": 107741, "study evaluated capabilities": 157324, "capabilities leading llms": 20008, "leading llms including": 89841, "gpt4 gpt35 palm2": 67035, "gpt4 achieved highest": 66904, "highest average score": 69662, "different prompts results": 41949, "study explores linguistic": 157347, "llms ability generate": 94257, "interpreter large language": 79725, "generating source code": 64339, "source code common": 153397, "language model responses": 83884, "media large language": 100094, "words text including": 178757, "failure modes gpt4": 57014, "used search engines": 173225, "learning theorem proving": 91080, "challenges review focuses": 22056, "llms based transformer": 94472, "explore strengths limitations": 55298, "modeling transformer architecture": 105112, "research paper aims": 141952, "hope paper serve": 70364, "neural networks deep": 112918, "networks deep learning": 112728, "technique deep learning": 163757, "provide strong evidence": 132983, "outside training data": 118155, "training data prevents": 168321, "generative models recent": 65508, "llm generate text": 93703, "llm generate correct": 93701, "generation experimental results": 64634, "results method significantly": 143604, "baselines achieves new": 16278, "research efforts aimed": 141742, "guides future work": 68260, "require intensive human": 141126, "demonstrates potential llms": 38875, "synthetic querydocument pairs": 160068, "tasks training data": 163387, "relevant vs irrelevant": 139668, "synthetic queries generated": 160066, "language models logical": 85698, "models logical reasoning": 108090, "reasoning logical reasoning": 136972, "significant advancements large": 150572, "struggle complex logical": 156736, "complex logical reasoning": 27462, "logical reasoning problems": 97389, "abilities llms context": 1954, "context logical reasoning": 30840, "findings suggest existing": 58808, "existing llms struggle": 53426, "reasoning tasks mathematical": 137186, "word problems gsm8k": 178665, "using smaller models": 174730, "finetuning larger model": 59344, "models image video": 106671, "methods encounter challenges": 101478, "encounter challenges effectively": 48565, "challenges effectively handling": 21839, "visual tokens work": 177331, "unified visionlanguage model": 171756, "number visual tokens": 114981, "challenges language models": 21930, "trained static data": 168087, "information realworld scenarios": 76677, "novel benchmark designed": 114419, "existing continual learning": 53322, "training method involves": 168576, "model output training": 104191, "instances experiments datasets": 77828, "approach demonstrates superior": 11102, "models reasoning abilities": 108809, "llms ai chatbots": 94376, "necessary knowledge answering": 112148, "external knowledge knowledge": 56068, "response pressing need": 142685, "llms possess ability": 96133, "information external knowledge": 76415, "remarkable capabilities general": 140153, "reasoning tasks recent": 137195, "tasks recent studies": 163093, "methods study underscores": 101844, "novel dataset benchmark": 114459, "information extraction extracting": 76424, "extracting key information": 56232, "key information scientific": 81518, "information present text": 76633, "report performance stateoftheart": 140547, "models proposed benchmark": 108713, "explore potential capability": 55258, "results analysis validate": 143172, "analysis validate effectiveness": 9230, "validate effectiveness efficiency": 175310, "discuss remaining limitations": 42940, "models recently multimodal": 108857, "lots attention researchers": 97722, "generalization ability llms": 63130, "pretrained multimodal models": 127130, "model large number": 103933, "analysis diverse datasets": 8896, "method consistently improves": 100754, "current stateoftheart model": 34264, "zeroshot setting large": 180337, "llms truly understand": 96862, "study seeks explore": 157615, "adopting natural language": 5621, "increasing number training": 75341, "comprehension ability llms": 27878, "llmgenerated text detection": 94209, "misuse large language": 102572, "recent studies presented": 137666, "llms generate texts": 95382, "demonstrated remarkable proficiency": 38785, "text closely resembles": 164922, "llms led widespread": 95753, "led widespread use": 91261, "traditional search engines": 167695, "language models prone": 85987, "language models factual": 84520, "recent works proposed": 137758, "works proposed methods": 179486, "direct preference optimization": 42397, "answering medical questions": 9901, "logical reasoning errors": 97380, "llms demonstrate llms": 94822, "alternative reinforcement learning": 8576, "training data context": 168241, "llms deep learning": 94794, "language models great": 84622, "great strides natural": 67729, "strides natural language": 156310, "sota results downstream": 153366, "retrieval language models": 144077, "al 2022 new": 7731, "document identifiers given": 43831, "given input query": 65912, "nature large language": 112012, "limited paper propose": 92813, "seven classification tasks": 149692, "decisionmaking large language": 37420, "llms recently impressive": 96345, "tasks despite remarkable": 162211, "despite remarkable performance": 40200, "dataset question answering": 36489, "graph attention networks": 67489, "attention networks gat": 13948, "quantitative qualitative evaluations": 134372, "evaluations demonstrate potential": 51962, "demonstrate potential dataset": 38468, "improve incontext learning": 73485, "llms enhance interpretability": 95075, "field explainable ai": 58164, "deeper understanding llms": 37848, "given blackbox nature": 65839, "pretrained models large": 127086, "models llms use": 108003, "model robust different": 104496, "multilingual question answering": 110537, "pretrained multilingual large": 127123, "ablation experiments study": 2434, "experiments study effect": 54480, "diverse tasks languages": 43680, "ensemble large language": 49636, "language models complementary": 84270, "consistently better performance": 29859, "reward models propose": 144704, "different domains tasks": 41748, "domains large language": 44450, "address question examine": 5357, "classification tasks results": 24124, "performance larger models": 121726, "models 70b parameters": 105168, "sophisticated alignment methods": 153295, "language models leading": 84780, "memoryaugmented large language": 100480, "propose novel memory": 132012, "dialogues covering wide": 41553, "contexts large language": 31028, "models llms ushered": 108009, "tasks related text": 163115, "response challenges introduce": 142625, "plugandplay module seamlessly": 123665, "propose comprehensive framework": 131757, "harnessing capabilities llms": 68823, "outperforms competitive baseline": 117740, "models learn rules": 106942, "learning paradigm llms": 90809, "learning examples llms": 90431, "number supervised examples": 114952, "inspired humans learn": 77729, "paper aim explore": 118721, "learning incontext learning": 90570, "transfer learning setting": 168960, "examples available target": 52529, "domain transfer learning": 44316, "large volumes unlabeled": 89132, "unlabeled data target": 171951, "addition labeled data": 4877, "language models bllms": 84194, "using benchmark datasets": 174003, "brings significant improvements": 19152, "outperforms large margin": 117791, "large margin stateoftheart": 88906, "models trained source": 109474, "labeled data limited": 82714, "large training dataset": 89078, "entity recognition large": 49911, "recognition large language": 138084, "language models exploring": 84503, "models exploring application": 106260, "recognition ner task": 138109, "explore various strategies": 55327, "experimental analysis study": 53926, "paper presents initial": 119167, "prompt engineering incorporating": 130460, "concepts large language": 28668, "technique called linear": 163749, "model performance large": 104250, "models pretraining data": 108633, "software development effective": 152788, "models specifically chatgpt": 109204, "code review process": 25118, "context given input": 30784, "models previous research": 108638, "address limitation introduce": 5303, "improve response generation": 73611, "using supervised finetuning": 174770, "method trains model": 101149, "ablation studies understand": 2444, "common ground shared": 26143, "models llms leverage": 107615, "instruction tuning reinforcement": 78131, "tuning reinforcement learning": 170106, "work highlights need": 179019, "language models unified": 86338, "human intelligence remains": 70860, "domain experimental results": 44143, "results demonstrate current": 143290, "demonstrate current llms": 38280, "face challenges comprehending": 56513, "language models facilitated": 84518, "significantly improve quality": 151028, "finally showcase potential": 58527, "recent times large": 137704, "times large language": 166593, "tasks document classification": 162249, "gpt35 gpt4 palm2": 66822, "gpt4 performs best": 67113, "verifiable text generation": 176463, "reducing effort required": 138564, "llms able directly": 94267, "natural language systems": 111879, "significant challenges particularly": 150651, "innovative approach leverages": 77160, "approach leverages large": 11350, "models llms integrate": 107580, "significant potential realm": 150822, "potential realm natural": 124931, "demonstrate potential large": 38469, "achieved remarkable advancements": 3866, "llms small language": 96621, "mitigate adverse effects": 102588, "produce better results": 129374, "abstract reasoning abilities": 2655, "experimental results support": 54077, "artificial intelligence particularly": 12757, "proliferation large language": 130125, "question answer qa": 134678, "demonstrate remarkable ability": 38528, "processing generating humanlike": 129161, "work tackle challenges": 179329, "tackle challenges data": 160804, "models project page": 108676, "language models finegrained": 84536, "leveraged human feedback": 91695, "inference work propose": 76139, "exploration search space": 55102, "conduct experiments text": 29096, "tasks including machine": 162559, "including machine translation": 74607, "using labeled task": 174349, "labeled task data": 82738, "data significantly improve": 35757, "llms downstream task": 94983, "lack labeled data": 82974, "paper propose improve": 119224, "leverage unlabeled data": 91679, "cases labeled data": 20982, "diffusion models diffusion": 42245, "fully understood paper": 61792, "behaviour large language": 16738, "models llms demonstrating": 107299, "ability solve complex": 2375, "paper shed light": 119326, "tasks investigation reveals": 162635, "investigation reveals llms": 80649, "trec ikat 2023": 169654, "models including bert": 106704, "using search engines": 174694, "classes higher education": 23908, "answers multiplechoice questions": 10054, "courses higher education": 33020, "differences capabilities models": 41621, "assessments originally designed": 13300, "originally designed humans": 117403, "capabilities limitations models": 20022, "study provides evidence": 157569, "collect passing scores": 25669, "passing scores effort": 120363, "scores effort whatsoever": 147134, "effort whatsoever today": 46874, "whatsoever today counts": 178214, "today counts viable": 166662, "counts viable programming": 32993, "viable programming knowledge": 176650, "programming knowledge skills": 129829, "knowledge skills assessments": 82407, "leveraged educators institutions": 91691, "recent technological developments": 137699, "adapt design programming": 4514, "design programming assessments": 39728, "programming assessments fuel": 129788, "assessments fuel necessary": 13285, "fuel necessary discussions": 61704, "programming classes updated": 129800, "effective large language": 45796, "language model adaptation": 83517, "grounding large language": 67900, "real world generate": 136266, "end paper focuses": 48668, "testtime adaptation tta": 164805, "tuning pretrained llms": 170092, "data construction method": 34842, "enhance existing models": 49194, "incorporating additional context": 75081, "training smaller models": 168755, "recent work large": 137730, "demonstrated impressive reasoning": 38709, "reasoning tasks focus": 137177, "fundamental questions persist": 61973, "performing reasoning tasks": 122415, "human judgment results": 70886, "emphasize urgent need": 47635, "methods commonly use": 101381, "tokens employ large": 166800, "come cost increased": 26004, "data train small": 35873, "small student model": 152366, "answers input questions": 10040, "achieves consistent improvements": 4004, "qualitative analysis demonstrate": 133980, "reasoning chains provide": 136740, "knearest neighbors knn": 81693, "face challenges stemming": 56520, "bias mitigation method": 18164, "demonstrate methods effectiveness": 38438, "enhancing language model": 49499, "knowledge learning language": 82188, "models llms serve": 107854, "introduce novel problem": 80068, "dynamic nature world": 45143, "evaluation metric designed": 51709, "previously learned knowledge": 127730, "empirical evaluation conducted": 47679, "evaluation conducted using": 51499, "stateoftheart methods establishes": 155209, "results reveal existing": 143757, "continual learning approaches": 31167, "generation machine learning": 64809, "leveraging recent progress": 91941, "design specific prompts": 39767, "llms chatgpt google": 94583, "computer science students": 28488, "chatgpt popular llm": 23196, "llm released openai": 93955, "instruction tuning methods": 78115, "present new approach": 126374, "parametric knowledge instruction": 119891, "instruction tuning data": 78078, "improves models ability": 74035, "ability estimate uncertainty": 2150, "language models creative": 84320, "capabilities modern large": 20058, "tasks requiring domainspecific": 163160, "requiring domainspecific knowledge": 141480, "detailed error analysis": 40288, "error analysis llms": 50272, "llms demonstrate potential": 94824, "potential enhancing problemsolving": 124701, "enhancing problemsolving ability": 49546, "novel prompting techniques": 114657, "prompt engineering performance": 130477, "prompt optimization apo": 130614, "optimization apo framework": 116979, "gpt35 gpt4 results": 66824, "gpt4 results highlight": 67146, "recent advancement large": 137339, "investigate extent llms": 80411, "following correct reasoning": 60267, "correct reasoning path": 32409, "verification language models": 176484, "language models minimal": 85744, "findings underscore need": 58824, "model llm inference": 104008, "tasks like machine": 162717, "like machine translation": 92344, "llm inference time": 93760, "explore different llm": 55183, "upper bound 25": 172382, "sequence intermediate reasoning": 148750, "leading error propagation": 89815, "multistep mathematical reasoning": 111167, "reasoning datasets gsm8k": 136794, "offer novel perspective": 115677, "novel perspective role": 114634, "reasoning tasks provide": 137194, "tasks provide theoretical": 163044, "llms ushered new": 96917, "search engines use": 147351, "use generative models": 172653, "generate accurate personalized": 63385, "search engines like": 147346, "engines like google": 49016, "queries synthesizing information": 134546, "synthesizing information multiple": 160009, "information multiple sources": 76585, "facilitate systematic evaluation": 56656, "opens new frontier": 116555, "models chainofthought cot": 105594, "multistep reasoning capabilities": 111181, "models llms generating": 107472, "reach correct answer": 136109, "specifically leverage llms": 154245, "performance compared previous": 121296, "existing prompt engineering": 53532, "lora lowrank adaptation": 97645, "methodology involves generating": 101243, "fewshot prompt engineering": 58020, "llm performance work": 93883, "work propose incontext": 179204, "promising future research": 130259, "context natural language": 30857, "instructions natural language": 78314, "representations api calls": 140765, "language models collecting": 84257, "llms generating diverse": 95389, "llms capability generate": 94529, "study investigate llms": 157431, "llms capacity generating": 94543, "methods various tasks": 101927, "tasks llms generate": 162750, "prompting llms various": 131001, "humangenerated training data": 71190, "lexical syntactic semantic": 91999, "finetuning experiments various": 59263, "linguistic capabilities llms": 93010, "representation paper presents": 140728, "conversational agent based": 31820, "language models systematic": 86259, "study present systematic": 157541, "ai systems code": 7243, "systems code data": 160292, "google bard microsoft": 66312, "bard microsoft bing": 15565, "llms demonstrate promise": 94825, "learning temporal knowledge": 91072, "temporal knowledge graphs": 164264, "various methods proposed": 176033, "relations large language": 139299, "context experimental results": 30755, "models achieve better": 105215, "visionlanguage model lvlm": 177035, "understanding existing approaches": 171228, "language models lack": 84756, "model llm learn": 104009, "language feature space": 83316, "broad range image": 19184, "notably extensive experiments": 114270, "llm generative ai": 93716, "processing generating text": 129163, "research article aims": 141602, "moral foundations theory": 110114, "resulting model called": 143116, "advancements generative ai": 5898, "ai comprehensive review": 6925, "field generative artificial": 58171, "artificial intelligence generative": 12734, "led development release": 91223, "stable diffusion dalle": 154690, "transformer models like": 169180, "variational autoencoders generative": 175647, "autoencoders generative adversarial": 14472, "advancement generative ai": 5843, "generative ai presents": 65349, "transformer gpt language": 169134, "gpt language models": 66438, "study investigates efficacy": 157442, "semantic syntactic properties": 148234, "aim contribute ongoing": 7442, "ethical social implications": 50837, "direct comparison human": 42377, "causal reasoning ability": 21216, "generation using image": 65236, "combine image recognition": 25879, "skills propose novel": 152182, "generation method generates": 64826, "model handle multiple": 103784, "answering text summarization": 9975, "training large model": 168530, "higher training throughput": 69646, "language model agents": 83521, "propose framework conducting": 131835, "generation encounter challenges": 64605, "encounter challenges dealing": 48564, "introduces novel approach": 80203, "novel approach enhance": 114378, "approach enhance llms": 11178, "remarkable performance improvement": 140227, "models directly finetuned": 105982, "raises crucial question": 135483, "dynamic time warping": 45170, "time warping dtw": 166528, "simulation results suggest": 151716, "existing work mainly": 53643, "helpful honest harmless": 69209, "paving way future": 120602, "significant progress large": 150835, "models llms provides": 107777, "llm paper propose": 93866, "llms domainspecific knowledge": 94972, "knowledge enhance performance": 81940, "substantially improve performance": 158123, "performance llms specific": 121762, "domains language model": 44447, "sophisticated natural language": 153318, "language generation modules": 83361, "propose comprehensive evaluation": 131756, "understanding human perceptions": 171284, "aspect large language": 12911, "information various modalities": 76844, "public datasets demonstrate": 133561, "improves performance compared": 74047, "compared previous methods": 26888, "task generalization paper": 161420, "paper introduces method": 119010, "arbitrary downstream tasks": 12081, "efficiently language models": 46793, "models llms dominant": 107318, "pretrained word embeddings": 127251, "leveraging contextual information": 91828, "pos tagging named": 124142, "tagging named entity": 160895, "paper aims establish": 118730, "results providing insights": 143713, "data collection methods": 34786, "proposes novel approach": 132477, "potential aigenerated synthetic": 124569, "emulating human behavior": 48052, "discuss open problems": 42916, "issues like hallucinations": 81026, "chatgpt generative ai": 22983, "ai computer science": 6928, "research generative artificial": 141814, "ai particularly tools": 7144, "particularly tools like": 120267, "diverse applications chatgpt": 43460, "images audio text": 72395, "uses generative ai": 173858, "approaches using llms": 11949, "interface enables users": 79430, "generated different llms": 63852, "qualitatively evaluate effectiveness": 134026, "systems paper presents": 160513, "methods paper explores": 101699, "effectiveness various ai": 46315, "especially fewshot prompting": 50473, "fewshot prompting methods": 58034, "marks significant leap": 99274, "challenges opportunities incorporating": 21980, "100 success rate": 160, "success rate demonstrate": 158291, "increasing leveraging large": 75330, "model selection process": 104534, "like chatgpt demonstrated": 92218, "proficiency various natural": 129684, "research conducted extensive": 141659, "extensive empirical evaluation": 55756, "including textdavinci003 gpt35turbo": 74758, "textdavinci003 gpt35turbo gpt4": 165623, "support vector machine": 159348, "vector machine svm": 176384, "based diverse datasets": 15764, "chatgpt consistently outperforms": 22808, "findings underscore potential": 58825, "underscore potential llms": 170923, "potential llms domain": 124836, "models mllms increasingly": 108205, "mllms increasingly prominent": 102830, "increasingly prominent field": 75434, "prominent field artificial": 130146, "visionlanguage tasks demonstrate": 177085, "reasoning capabilities mllms": 136710, "benchmark dataset specifically": 16896, "tasks benchmark comprises": 162001, "methods commonly used": 101382, "compared existing benchmarks": 26797, "relation extraction recently": 139252, "chatgpt named entity": 23137, "english news articles": 49086, "impact performance chatgpt": 72711, "diverse biomedical tasks": 43475, "biomedical question answering": 18570, "finetuned llms diverse": 59059, "llms diverse biomedical": 94961, "nlp tasks different": 113836, "tasks different languages": 162227, "biomedical text mining": 18578, "optimize model performance": 117072, "results experimental results": 143399, "extraction text classification": 56364, "performance compared general": 121289, "compared general llms": 26814, "case study involving": 20911, "supervised finetuning tasks": 159128, "advance large language": 5685, "models llms offers": 107687, "direct prompting llms": 42402, "study investigates application": 157437, "existing embedding models": 53354, "generalization paper propose": 63209, "entire training process": 49820, "matching extensive experiments": 99460, "potential applications llms": 124590, "making difficult handle": 98727, "image quality evaluation": 72310, "marks significant advancement": 99273, "chainofthought reasoning language": 21542, "llms dramatically enhanced": 94986, "emergent reasoning capabilities": 47486, "handling complex reasoning": 68587, "cot reasoning approach": 32902, "autonomous language agents": 14942, "wide audience including": 178255, "unlike existing work": 172001, "model vision language": 104877, "visual textual information": 177324, "extensive quantitative qualitative": 55939, "quantitative qualitative experiments": 134373, "tasks results provide": 163180, "reason natural language": 136575, "documents recent advances": 43937, "gpt4 opened new": 67093, "opened new opportunities": 116481, "provide detailed description": 132748, "workflow using llms": 179380, "using llms text": 174449, "easier scale large": 45292, "rapid advancements large": 135853, "capabilities various scenarios": 20251, "effective attack method": 45698, "examine impact various": 52393, "high success rates": 69547, "research code available": 141637, "empowering multimodal large": 48022, "knowledge multimodal large": 82236, "experiments multimodal benchmarks": 54369, "frontier ai systems": 61646, "ai systems enable": 7245, "approaches artificial intelligence": 11696, "randomized controlled experiment": 135556, "fostering critical thinking": 60696, "based findings provide": 15816, "sensitive private information": 148439, "affect user experience": 6317, "proposed framework achieves": 132296, "framework adapting llms": 60925, "information retrieval methods": 76726, "traditional information retrieval": 167632, "user privacy data": 173472, "processing tasks knowledge": 129319, "offers effective solution": 115797, "context external knowledge": 30760, "retrieved documents paper": 144238, "augmented language model": 14355, "model evaluate model": 103565, "document classification tasks": 43817, "classification tasks experimental": 24116, "longcontext large language": 97513, "models llms paved": 107711, "path artificial general": 120422, "realworld settings paper": 136514, "current transformerbased models": 34287, "future research domain": 62334, "data artificial intelligence": 34657, "physics education research": 122935, "code generated code": 24856, "generated code interpreter": 63822, "offers new insights": 115827, "new insights capabilities": 113231, "generalist large language": 63093, "experimental results possible": 54053, "pretrained models finetuned": 127075, "models finetuned task": 106355, "models llms healthcare": 107516, "research primarily investigates": 141988, "reveal llms exhibit": 144351, "exhibit exceptional performance": 53047, "absolute error mae": 2606, "mean absolute percentage": 99744, "absolute percentage error": 2615, "study highlights llms": 157392, "insights recommendations future": 77636, "data curation assessment": 34879, "models engineering design": 106123, "undergoing transformative shift": 170790, "transformative shift advent": 169079, "model wide spectrum": 104899, "apis like chatgpt": 10194, "better utilize power": 18070, "downstream tasks lack": 44799, "tasks lack systematic": 162671, "interaction large language": 79138, "potential future research": 124734, "models llms including": 107550, "llms including llama": 95578, "various generaldomain natural": 175955, "generaldomain natural language": 63074, "responses response challenge": 142904, "response challenge propose": 142623, "novel llamabased model": 114569, "model supervised finetuning": 104689, "supervised finetuning using": 159129, "generated qa questionanswer": 63951, "qa questionanswer instances": 133919, "data race detection": 35600, "comparable performance existing": 26597, "performance existing methods": 121480, "aim pave way": 7475, "commonsense knowledge work": 26282, "knowledge specifically propose": 82416, "pipeline uses large": 123099, "language model critique": 83593, "external large language": 56079, "test time making": 164649, "model generate extensive": 103721, "general ai assistants": 62911, "notable performance disparity": 114241, "tasks requiring professional": 163163, "tasks difficult humans": 162232, "advent artificial general": 6159, "proficiency large language": 129665, "like chatgpt significantly": 92245, "chatgpt significantly advanced": 23328, "significantly advanced language": 150931, "advanced language understanding": 5752, "broad spectrum applications": 19190, "information study introduces": 76782, "paves way new": 120597, "future llm research": 62285, "language models passively": 85862, "provide mental health": 132886, "mental health professionals": 100499, "requires addressing challenges": 141334, "individuals mental health": 75776, "methods use llms": 101906, "conditions like depression": 29012, "support clinical decisionmaking": 159265, "application foundation models": 10321, "intelligence ai algorithms": 78725, "different neural network": 41873, "incontext learning makes": 74944, "finetuning tailored specific": 59577, "recent studies indicate": 137664, "achieve effective icl": 3629, "capabilities foundation models": 19907, "model based autonomous": 103182, "based autonomous agents": 15678, "regarding responsible ai": 138887, "latest large language": 89558, "models address limitation": 105281, "paper begins defining": 118769, "furthermore introduce range": 62103, "major technology companies": 98456, "multimodal models present": 110728, "algorithms commonly used": 7908, "discuss challenges associated": 42875, "challenges associated development": 21787, "address issues present": 5289, "model performance extensive": 104241, "exhibit enhanced performance": 53044, "finetuning multimodal large": 59394, "empirical evidence suggests": 47693, "tasks including text": 162582, "including text detection": 74753, "text detection recognition": 165017, "detection recognition spotting": 40607, "visual encoder large": 177161, "encoder large language": 48425, "process extensive experiments": 128830, "numerous practical applications": 115062, "text detection text": 165019, "detection text recognition": 40639, "languages like english": 87048, "deep learningbased models": 37786, "manually annotated datasets": 99076, "underexplored work conduct": 170781, "work conduct systematic": 178861, "large videolanguage models": 89106, "challenging inherent complexity": 22176, "following user instructions": 60322, "specifically designed measure": 154179, "attacks defenses large": 13700, "defenses large language": 37917, "capabilities coding tasks": 19819, "coding tasks including": 25411, "tasks code summarization": 162064, "vulnerable adversarial examples": 177648, "models llms vulnerable": 108029, "llms vulnerable adversarial": 96994, "transferability adversarial examples": 169010, "models llms furthermore": 107439, "llms performance proposed": 96089, "overcome problem propose": 118309, "proposed method code": 132344, "models llms modern": 107659, "choice natural language": 23694, "processing tasks text": 129332, "novel effective approach": 114480, "scenarios conduct extensive": 146565, "comprehensive experiments benchmarks": 28037, "owing unprecedented performance": 118469, "unprecedented performance various": 172090, "nlp tasks currently": 113831, "reasoning agent achieve": 136661, "achieve best zeroshot": 3589, "zeroshot performance using": 180289, "incontext prompting large": 74992, "detection paper introduce": 40582, "yielding competitive performance": 179998, "showing promising results": 150188, "past year large": 120401, "data available inspired": 34706, "conduct error analyses": 29079, "gpt models improve": 66458, "language model language": 83707, "llms prone generating": 96238, "generation rag enabling": 65006, "controlling large language": 31665, "remarkable progress large": 140272, "models llms opens": 107701, "llms opens new": 95992, "llms pretrained extensive": 96176, "different languages domains": 41817, "integration vision language": 78694, "language models marked": 85718, "advent visionlanguage models": 6183, "poses substantial challenge": 124235, "tasks address introduce": 161915, "indicate significant performance": 75624, "significant performance gap": 150806, "existing opensource models": 53514, "llms capable answering": 94532, "setting approach outperforms": 149426, "approach outperforms sota": 11432, "outperforms sota methods": 117849, "language models enhance": 84449, "chatgpt provide formative": 23228, "provide formative feedback": 132797, "provide wide range": 133033, "utilizing generative pretrained": 175189, "language models showcased": 86149, "existing studies overlook": 53596, "inherent realworld scenarios": 76970, "gap present comprehensive": 62704, "framework evaluate language": 61140, "chatgpt higher education": 23046, "higher education scoping": 69598, "education scoping review": 45587, "chatgpt generative artificial": 22985, "trained large amounts": 167965, "higher education institutions": 69594, "education institutions heis": 45550, "academic articles written": 2721, "articles written english": 12627, "written english chinese": 179778, "english chinese japanese": 49034, "implications higher education": 72934, "information textual data": 76806, "textual data increasingly": 165892, "language processing led": 86529, "address question evaluating": 5356, "indicate gpt models": 75590, "practitioners limited resources": 125538, "models context information": 105771, "insights guide future": 77577, "openai released new": 116374, "significant memory usage": 150780, "models mllms shown": 108210, "mllms shown remarkable": 102852, "capabilities broad range": 19802, "broad range tasks": 19185, "range tasks knowledge": 135712, "development disaster response": 41089, "models benchmark publicly": 105479, "language models prioritize": 85957, "undergraduate graduate students": 170808, "large class settings": 87207, "defect detection clone": 37888, "detection clone detection": 40460, "clone detection code": 24437, "task texttocode generation": 161776, "pretrained code models": 126774, "plbart codet5 codet5": 123544, "different tasks models": 42035, "tasks models source": 162817, "llms chatgpt openai": 94593, "language models heavily": 84636, "presents novel study": 126610, "exploitation large language": 55021, "language models susceptible": 86252, "require language models": 141134, "accurate safe responses": 3492, "great success large": 67734, "domains remains unclear": 44516, "comprehensively assess capabilities": 28164, "experiments nlp datasets": 54381, "eu ai act": 50860, "llms demonstrate significant": 94828, "perform prompt engineering": 121012, "overall work contributes": 118262, "environment large language": 50011, "llms achieved impressive": 94307, "consists key components": 29969, "achieves 15 times": 3937, "tasks compared previous": 162087, "propose framework automatically": 131833, "model finetuning llms": 103674, "existing work evaluate": 53639, "work evaluate performance": 178938, "evaluate performance proposed": 51060, "performance proposed framework": 121958, "potential powerful tool": 124910, "improve performance text": 73573, "automatically generate qa": 14813, "bleu rouge metrics": 18687, "compared model finetuning": 26858, "study demonstrates effectiveness": 157274, "machine learning possible": 98069, "possible use language": 124472, "models supervised manner": 109307, "techniques used extract": 164050, "language models labeled": 84755, "employed zeroshot learning": 47907, "zeroshot learning approach": 180229, "check quality generated": 23530, "demonstrating effectiveness approach": 38929, "zeroshot visual recognition": 180375, "latest advancements generative": 89534, "advancements generative artificial": 5900, "rich textual descriptions": 144810, "conduct extensive series": 29134, "modalities images videos": 102933, "widely recognized benchmark": 178382, "top1 top5 accuracy": 167300, "leveraging gpt4s advanced": 91861, "generate rich descriptions": 63691, "hope research contribute": 70376, "20 large language": 599, "work develop release": 178906, "language models parameters": 85857, "incorporate prior knowledge": 75033, "dataset high quality": 36337, "achieves good performance": 4016, "benchmark designed assess": 16928, "models make errors": 108128, "recent advancements generative": 137357, "machine learning enabled": 98029, "neurons large language": 113025, "llms text classification": 96793, "existing llms experiments": 53423, "models datasets demonstrate": 105850, "models efficient training": 106058, "efficient training inference": 46732, "performance text classification": 122175, "classification tasks recently": 24123, "models plms paper": 108541, "classification tasks gender": 24118, "replicate experiments available": 140492, "machines think like": 98169, "evaluates current state": 51230, "language models domains": 84401, "models demonstrate notable": 105888, "demonstrate notable proficiency": 38453, "proposed approach empirically": 132237, "able answer questions": 2467, "answer questions robot": 9768, "research paper introduces": 141955, "paper introduces innovative": 119008, "using vision transformer": 174855, "encoder gpt2 decoder": 48423, "seamless integration visual": 147290, "departing conventional practices": 39127, "enhancing overall user": 49539, "overall user experience": 118258, "performance providing valuable": 121966, "reasoning skills reasoning": 137129, "directed acyclic graphs": 42419, "acyclic graphs dags": 4498, "experiments conducted verify": 54201, "engineering code generation": 48893, "generating domainspecific code": 64200, "data splitting data": 35794, "techniques improve semantic": 163927, "study demonstrate effectiveness": 157271, "generation rag method": 65010, "code generation problems": 24914, "dataset creation methodology": 36210, "information retrieval augment": 76708, "primary challenge resolution": 127806, "open source datasets": 116296, "questionanswer pairs containing": 134966, "novel approach creating": 114373, "approach creating highquality": 11088, "models software development": 109172, "models llms profoundly": 107757, "computer science community": 28483, "particular software engineering": 120124, "ai pair programming": 7136, "challenges open problems": 21974, "covering various domains": 33092, "multimodal understanding reasoning": 110782, "new benchmark designed": 113089, "reasoning domainspecific knowledge": 136819, "room improvement believe": 145586, "unified multimodal large": 171737, "advances multimodal large": 6034, "significant leap forward": 150768, "video understanding generation": 176743, "diffusion generative model": 42233, "requiring additional training": 141474, "wide range models": 178290, "language models suffer": 86236, "loop large language": 97627, "generate large amounts": 63594, "llms trained datasets": 96823, "usually collected internet": 174892, "using novel dataset": 174542, "quality diversity generated": 134102, "investigating large language": 80605, "tackle challenge propose": 160801, "generated text approach": 64004, "multiple samples generated": 111033, "open language models": 116244, "decoderonly models trained": 37548, "models permissive license": 108502, "answer human questions": 9724, "llms closedsource llms": 94616, "generally outperform opensource": 63319, "provide exhaustive overview": 132775, "memorization training data": 100336, "model prior knowledge": 104339, "knowledge training dataset": 82465, "training data opensource": 168314, "current alignment techniques": 34061, "prompting large multimodal": 130985, "range vision language": 135729, "vision language vl": 176945, "advanced lmms struggle": 5767, "compositional visual reasoning": 27826, "data lead catastrophic": 35299, "response extensive experiments": 142644, "make use semantic": 98625, "complexity paper propose": 27693, "study compares performance": 157223, "domainadapted language model": 44327, "difference statistically significant": 41614, "growing importance ai": 68028, "study language models": 157460, "language models core": 84314, "language models today": 86293, "performance gains various": 121558, "multiple reasoning paths": 111018, "sampled large language": 145974, "including mathematical reasoning": 74611, "prompt generation large": 130518, "models llms driving": 107329, "substantial computational overhead": 158039, "requires model training": 141417, "enhanced performance llms": 49355, "prompt types including": 130733, "questions multiplechoice questions": 135201, "summary proposed framework": 158938, "advancements various tasks": 5975, "overcome limitations paper": 118302, "multiagent collaboration framework": 110306, "llms trained extensive": 96824, "inspired human cognition": 77726, "unveiling implicit toxicity": 172310, "toxicity large language": 167477, "recent studies primarily": 137667, "studies primarily focus": 157053, "llms pose significant": 96123, "aims pave way": 7645, "potential llm applications": 124830, "parameterefficient finetuning prompt": 119670, "finetuning prompt engineering": 59475, "key challenges future": 81472, "community question answering": 26513, "pretrained models answer": 127060, "stateoftheart performance datasets": 155275, "use llm generate": 172739, "understanding generation leading": 171261, "applications chatbots virtual": 10447, "llmpowered autonomous agents": 94227, "handle complex tasks": 68533, "model recent advances": 104420, "recent advances deep": 137382, "advances deep reinforcement": 5995, "tackling complex tasks": 160868, "visual control tasks": 177147, "stateoftheart reinforcement learning": 155323, "reinforcement learning models": 139079, "models main objective": 108120, "technique reinforcement learning": 163801, "reinforcement learning leveraging": 139074, "models humanrobot interaction": 106647, "extracted visual features": 56214, "visual features language": 177173, "summarization content generation": 158815, "unstructured text data": 172223, "labeled data model": 82715, "llms presents opportunity": 96172, "llms specifically designed": 96663, "domain address gap": 44086, "tackle diverse natural": 160819, "contextually relevant responses": 31151, "scores sampled responses": 147171, "training incontext learning": 168489, "extending large language": 55680, "trained text modality": 168099, "existing methods typically": 53470, "methods typically train": 101895, "pretrained vision transformer": 127233, "level sentence level": 91508, "datasets address issue": 36640, "visual instruction model": 177198, "capabilities largelanguage models": 20002, "stable diffusion xl": 154696, "multimodal language model": 110677, "experiments validate efficacy": 54523, "validate efficacy approach": 175316, "quality experience qoe": 134118, "improving incontext learning": 74154, "incontext learning visionlanguage": 74982, "visionlanguage models recently": 177059, "received great attention": 137303, "following research questions": 60310, "performance study investigates": 122123, "incontext example selection": 74848, "visual language modalities": 177209, "language social media": 86729, "tasks sentiment classification": 163219, "mit license facilitate": 102582, "automatic framework leverages": 14677, "framework leverages large": 61280, "models llms propose": 107769, "models vlms use": 109665, "results real datasets": 143726, "results synthetic datasets": 143856, "synthetic datasets demonstrate": 160040, "models generative adversarial": 106473, "tool help humans": 166985, "address challenges posed": 5187, "language model best": 83561, "percentage points macro": 120783, "reinforcement learning language": 139069, "methods generally lead": 101551, "ask clarifying questions": 12838, "modeling capabilities llms": 104978, "play text games": 123473, "effectively train llms": 46091, "improving reinforcement learning": 74207, "different language tasks": 41815, "tasks require multiple": 163146, "text games large": 165103, "games large language": 62584, "artificial intelligence researchers": 12765, "model life cycle": 103956, "generation models paper": 64853, "machine learning social": 98076, "language models social": 86183, "language models capability": 84208, "language models instructgpt": 84715, "results suggest dataset": 143833, "language models stateoftheart": 86213, "knowledge generated gpt3": 82033, "trained knowledge distillation": 167960, "scores experimental results": 147140, "ai based large": 6883, "explores use generative": 55436, "generative ai context": 65312, "answer generate final": 9717, "different ways thinking": 42089, "recently emerged promising": 137872, "reinforcement learning agents": 139039, "performance realworld applications": 121991, "realworld applications involve": 136403, "underexplored work introduce": 170782, "train new model": 167810, "llms understand complex": 96881, "generation incontext learning": 64737, "incontext learning reasoning": 74965, "subjectdriven image generation": 157847, "instruction tuning demonstrated": 78084, "llms paper introduce": 96032, "paper introduce simple": 119002, "highquality instruction tuning": 70041, "model performs comparably": 104270, "language models backdoor": 84159, "inappropriate content unfortunately": 74287, "design extensive experiments": 39630, "artificial intelligence techniques": 12770, "models holds significant": 106625, "holds significant potential": 70281, "data generating synthetic": 35105, "plays substantial role": 123539, "prevailing large language": 127491, "language model inputs": 83693, "mitigate data scarcity": 102600, "propose natural language": 131946, "natural language audio": 111555, "competitive results compared": 27200, "llms llmbased agents": 95812, "study introduces novel": 157422, "ontology alignment evaluation": 116166, "alignment evaluation initiative": 8147, "evaluation initiative oaei": 51649, "achieve close results": 3599, "tasks significantly improve": 163245, "improve performance complex": 73544, "pretraining finetuning transformer": 127332, "language models lead": 84779, "training data result": 168337, "model new domain": 104130, "language models algorithmic": 84104, "rapid growth large": 135891, "llms driving force": 94995, "computational memory demands": 28378, "present substantial challenges": 126466, "academic research practical": 2756, "practical applications address": 125386, "applications address issues": 10411, "typically focus specific": 170489, "techniques paper aims": 163979, "aims serve valuable": 7668, "serve valuable resource": 149014, "valuable resource researchers": 175449, "laying groundwork future": 89694, "groundwork future innovations": 67946, "critical research area": 33542, "repository relevant references": 140634, "detection models detect": 40564, "model responses large": 104469, "responses large language": 142838, "model llm powered": 104019, "explore different options": 55185, "generate personalized responses": 63643, "integration natural language": 78684, "graphical user interfaces": 67606, "extraction using large": 56369, "text paper explore": 165343, "explore using large": 55319, "compared benchmark models": 26752, "questions using large": 135314, "novel approach utilizes": 114401, "approach utilizes promptbased": 11658, "current questionanswering qa": 34223, "pretrained transformerbased large": 127214, "falls short human": 57152, "shows better results": 150411, "various prompt settings": 176122, "models zeroshot text": 109746, "llms extensively used": 95220, "processing nlp nlp": 129237, "nlp text classification": 113922, "text classification problems": 164895, "expensive computational cost": 53778, "step step reasoning": 155686, "capability gpt models": 20311, "scenarios compare performance": 146557, "text classification methods": 164886, "traditional machine learning": 167651, "methods experimental results": 101500, "results demonstrate performance": 143322, "spatial reasoning abilities": 153796, "spatial reasoning capabilities": 153797, "tasks zeroshot prompting": 163500, "laying solid foundation": 89698, "study delves capabilities": 157268, "capabilities limitations large": 20018, "models like t5": 107000, "performance llms diverse": 121755, "llms surpass stateoftheart": 96740, "points exact match": 123747, "evaluation metrics performance": 51727, "enhance llm performance": 49227, "using single gpu": 174721, "code available github": 24674, "explores integration large": 55400, "prompts guide gpt4": 131299, "sentiment analysis results": 148633, "analysis results reveal": 9133, "results reveal gpt4": 143758, "processing nlp methods": 129232, "llms offer new": 95955, "evaluations large language": 51991, "cognitive capacities large": 25449, "using llms research": 174446, "discussion best practices": 42989, "best practices rapidly": 17734, "rapidly growing field": 135930, "ability retrieve relevant": 2361, "case study marathi": 20916, "systems play vital": 160532, "nlp applications machine": 113688, "applications machine translation": 10601, "translation summarization questionanswering": 169525, "despite extensive research": 40110, "received adequate attention": 137295, "traditional deep learning": 167609, "pretrained models like": 127090, "comprehensive empirical analysis": 27997, "analysis benchmark dataset": 8828, "language models norwegian": 85804, "models norwegian recent": 108313, "transformed natural language": 169087, "absence comprehensive benchmarks": 2589, "particularly lowresource languages": 120222, "bridge gaps introduce": 19064, "comprehensive benchmark tailored": 27969, "lowresource language use": 97903, "study explore current": 157339, "instruction dataset covering": 77981, "dataset topic classification": 36586, "provide insights capabilities": 132848, "vision transformers recent": 177001, "studies demonstrated effectiveness": 156973, "transformer models particularly": 169183, "models llms additionally": 107090, "image classification task": 72209, "performance propose novel": 121956, "using half parameters": 174289, "parameters furthermore provide": 119765, "furthermore provide results": 62145, "exhibit greater potential": 53053, "educational applications paper": 45600, "applications paper presents": 10628, "traditional learning methods": 167644, "experiments language models": 54333, "introduce formal definition": 79967, "realworld machine learning": 136476, "finetuning llama27b model": 59356, "step direction showing": 155617, "question answering inspired": 134738, "leading suboptimal results": 89863, "strategies consistently improve": 155977, "llms computer vision": 94684, "novel prompting strategy": 114655, "complex visual data": 27643, "characterizing large language": 22491, "search engine enables": 147337, "enables users perform": 48258, "results indicate proposed": 143519, "proposed framework significantly": 132307, "allowing users express": 8398, "logical arithmetic reasoning": 97349, "language modelsllms chatgpt": 86421, "excelled nlp tasks": 52785, "nlp tasks involving": 113862, "language model data": 83594, "llama 13b model": 93275, "error detection data": 50294, "detection data imputation": 40476, "data imputation schema": 35198, "imputation schema matching": 74246, "schema matching entity": 146771, "ensuring data security": 49735, "proficiency understanding natural": 129682, "natural language allows": 111551, "tasks unlike existing": 163417, "existing methods heavily": 53452, "capabilities compared gpt35": 19825, "data management large": 35346, "models survey data": 109322, "plays fundamental role": 123520, "role training large": 145543, "pretraining supervised finetuning": 127451, "providing systematic analysis": 133386, "attracted attention research": 14037, "research community survey": 141651, "supervised finetuning stages": 159127, "llms covering various": 94752, "field survey serves": 58250, "latest papers available": 89565, "model generation process": 103739, "llms chatgpt revolutionized": 94599, "descriptions code snippets": 39441, "results tackle challenge": 143860, "tackle challenge introduce": 160800, "improves overall quality": 74041, "free copy paper": 61546, "copy paper supplemental": 32118, "paper supplemental materials": 119350, "supplemental materials available": 159233, "communication large language": 26382, "incorrect reasoning chains": 75169, "achieves superior results": 4125, "marking promising advancement": 99248, "hot research topic": 70437, "vqa model answer": 177576, "capability existing models": 20292, "paper propose zeroshot": 119257, "scenarios experimental results": 146595, "perspective paper proposes": 122683, "finetuned model requiring": 59076, "llms code released": 94622, "models recently proposed": 108858, "significantly lower number": 151072, "models simple efficient": 109142, "demonstrates notable zeroshot": 38869, "reduced computational cost": 138489, "vision encoders multimodal": 176915, "good bad ugly": 66256, "bad ugly large": 15469, "ugly large language": 170560, "humanlike text generation": 71283, "tasks paper explores": 162913, "interesting findings example": 79396, "code security code": 25134, "code vulnerability detection": 25211, "instruction tuning recent": 78129, "hope work shed": 70404, "generated stateoftheart llms": 63990, "llms commercial opensource": 94639, "llms results suggest": 96442, "evaluators large language": 52055, "potential data contamination": 124666, "paper aims evaluate": 118731, "reasoning capacities llms": 136725, "competitionlevel programming problems": 27154, "task considering various": 161273, "foster development llms": 60683, "using chainofthought cot": 174028, "chainofthought cot prompt": 21489, "correct answer address": 32373, "variance gradient estimates": 175608, "generative deep learning": 65410, "prior work shows": 127952, "pretrained diffusion model": 126790, "generate synthetic training": 63742, "domain adaptation techniques": 44077, "input output data": 77296, "advantage using large": 6124, "language processing problems": 86606, "comparing language models": 26991, "realm large language": 136355, "llms various scales": 96960, "tasks using natural": 163434, "processing nlp technologies": 129264, "generative models shown": 65513, "information input data": 76521, "results demonstrate models": 143321, "tasks study building": 163298, "building embodied agents": 19398, "tasks existing methods": 162345, "abstract language instructions": 2642, "language model textual": 83932, "openworld game minecraft": 116724, "given freeform language": 65889, "freeform language instructions": 61563, "language instructions addition": 83444, "addition propose novel": 4894, "emergence incontext learning": 47425, "tasks semantic segmentation": 163212, "scenarios address issue": 146530, "address issue present": 5271, "results demonstrate model": 143318, "performance compared specialized": 121298, "evaluations widely used": 52043, "shows competitive superior": 150420, "competitive superior performance": 27207, "performance compared baselines": 121282, "similarity large language": 151353, "models llms uses": 108008, "llms 7b parameters": 94250, "using representational similarity": 174669, "tedious manual process": 164186, "process propose novel": 128950, "model synthetic dataset": 104709, "dataset synthetically generated": 36570, "results suggest model": 143840, "address issue investigate": 5264, "assess effectiveness llms": 13073, "performance automatic human": 121178, "furthermore conduct extensive": 62032, "conduct extensive analyses": 29106, "reading comprehension models": 136186, "datasets results reveal": 37093, "multimodal models recent": 110729, "advancements large multimodal": 5914, "recent efforts enable": 137482, "capabilities better evaluate": 19800, "systematic review provides": 160149, "models highlighting potential": 106608, "highlighting potential limitations": 69828, "emerging research directions": 47533, "chatgpt similar models": 23333, "models spatial reasoning": 109190, "reasoning abilities chatgpt": 136617, "evaluation reveals key": 51836, "reveals key insights": 144428, "reasoning visionlanguage models": 137233, "complex visual tasks": 27647, "prior knowledge recent": 127910, "knowledge recent work": 82346, "tasks using large": 163430, "visionlanguage model vlm": 177037, "ability llms using": 2268, "description reasoning steps": 39424, "vision tasks including": 176990, "realworld applications limited": 136404, "language models seen": 86137, "seen rapid progress": 147702, "models wide variety": 109690, "safetycritical applications paper": 145904, "technique large language": 163783, "fewshot learning capability": 57956, "models work proposes": 109714, "proposes novel prompting": 132480, "novel prompting technique": 114656, "traditional fewshot learning": 167619, "models llms generation": 107473, "use llms generating": 172746, "language models additional": 84078, "llama large language": 93318, "key findings reveal": 81506, "effective knowledge integration": 45792, "models llms spurred": 107942, "learning icl chainofthought": 90539, "icl chainofthought cot": 71663, "study seeks bridge": 157613, "seeks bridge gap": 147674, "findings validate effectiveness": 58834, "shed light impact": 149856, "llms text comprehension": 96794, "offering insights potential": 115747, "recent studies reveal": 137670, "images medical images": 72449, "high computation cost": 69411, "propose weakly supervised": 132219, "robustness computation efficiency": 145365, "images proposed method": 72471, "methods downstream tasks": 101456, "utilize machine learning": 175067, "novel approach employing": 114377, "language processing ability": 86485, "models support vector": 109311, "language representation model": 86705, "using stateoftheart models": 174757, "performance baseline models": 121189, "pretrain prompt paradigm": 126740, "prompting techniques llms": 131105, "shown great promise": 150255, "achieving goal paper": 4176, "prompting techniques provide": 131108, "provide concise survey": 132720, "identify open problems": 71933, "direction future research": 42437, "imagetext alignment models": 72522, "test set comprising": 164625, "outperforming strong baselines": 117700, "classification explanation generation": 23996, "generation tasks method": 65172, "tasks significant margin": 163243, "llmbased ai agent": 94118, "singleagent multiagent systems": 151880, "plays essential role": 123518, "role extracting valuable": 145492, "demonstrates effectiveness various": 38841, "language models conditional": 84281, "potential serve versatile": 124976, "models survey large": 109324, "language understanding language": 86830, "potential make substantial": 124852, "systematic comprehensive review": 160111, "created github repository": 33261, "symbolic neural approaches": 159817, "detoxifying large language": 40737, "models using simple": 109596, "compared previous approaches": 26882, "learning entity resolution": 90420, "models plms require": 108547, "large languages models": 88889, "languages models llms": 87063, "llms gpt4 shown": 95440, "ability perform tasks": 2312, "llms address problem": 94352, "address problem paper": 5340, "provide comprehensive study": 132716, "different design choices": 41731, "demonstration selection strategy": 38984, "cost conduct thorough": 32658, "compared plmbased methods": 26876, "extensive labeled data": 55918, "provide guidance selecting": 132813, "guidance selecting appropriate": 68162, "comparing large language": 26993, "llm based artificial": 93499, "ais like chatgpt": 7703, "support future research": 159293, "future research prompt": 62365, "generation multimodal llms": 64864, "issue introduce novel": 80915, "introduce novel inference": 80057, "novel inference method": 114544, "experiments confirm effectiveness": 54203, "graphs natural language": 67642, "hard model generate": 68648, "gap propose simple": 62717, "simple effective framework": 151429, "labels experimental results": 82799, "visual reasoning capabilities": 177288, "presents indepth analysis": 126590, "opensource foundational model": 116608, "recent language models": 137531, "results various complex": 143917, "inherent limitations knowledge": 76964, "opensource closedsource models": 116578, "foundational large language": 60839, "llms make decisions": 95844, "llms perform comparably": 96067, "perform comparably better": 120891, "llms promising tool": 96227, "specific objects image": 154051, "language understanding particular": 86844, "finally shed light": 58525, "models llms widespread": 108038, "paper explores applications": 118927, "gpt models including": 66459, "including gpt3 instructgpt": 74538, "model achieves accuracy": 103036, "models yields accuracy": 109732, "significant progress code": 150831, "progress code generation": 129951, "transform natural language": 169049, "code code llms": 24707, "performance llms practical": 121759, "realworld applications paper": 136405, "critical issue existing": 33512, "existing code llms": 53313, "generating vulnerable code": 64376, "code llms generate": 24991, "users using natural": 173806, "extensive experiments analyses": 55800, "success rate asr": 158288, "datasets generated large": 36890, "educational histopathology videos": 45612, "comprehensive evaluation dataset": 28009, "significantly outperforms sota": 151113, "data model publicly": 35386, "20 times faster": 613, "performance findings indicate": 121525, "language models 3d": 84040, "accelerating llm inference": 2797, "compromising output quality": 28285, "facilitate research adoption": 56641, "research adoption release": 141565, "inference generative large": 76023, "llms opened numerous": 95989, "llms reducing memory": 96358, "reducing memory bandwidth": 138581, "downstream tasks language": 44800, "reasoning planning despite": 137032, "despite tremendous success": 40242, "present new perspective": 126382, "language models law": 84778, "discuss future research": 42893, "image captions poses": 72198, "significant challenge lack": 150640, "using lora method": 174457, "approach involves training": 11323, "stateoftheart computer vision": 155111, "memory storage requirements": 100466, "program synthesis program": 129757, "corpus natural language": 32334, "50 billion parameters": 1293, "arithmetic word problems": 12492, "incorporate natural language": 75028, "llms external tools": 95224, "external tools calculator": 56094, "high overall accuracy": 69495, "potential safety concerns": 124964, "models based multimodal": 105460, "based multimodal models": 15958, "embedding space clip": 47190, "diagnosis large language": 41364, "models using language": 109591, "recent evolution generative": 137498, "evolution generative artificial": 52262, "digital content production": 42279, "complex data distributions": 27390, "offers great potential": 115815, "model learn input": 103942, "infer latent variables": 75944, "presents comprehensive investigation": 126559, "employed adapt large": 47874, "llms variety tasks": 96946, "performance finetuning lora": 121535, "leveraging llms incontext": 91898, "llms trained reinforcement": 96833, "performance various evaluation": 122257, "evaluation metrics compared": 51717, "domainspecific large language": 44596, "software development introduce": 152789, "various software systems": 176176, "recognition ner relation": 138107, "ner relation extraction": 112601, "extraction link prediction": 56316, "specialized llms software": 153897, "llms software development": 96631, "models llms conversational": 107226, "various domains paper": 175908, "valuable insights models": 175433, "models generative capabilities": 106477, "findings indicate gpt4": 58700, "training data consequently": 168239, "incorporate new information": 75030, "significant challenge study": 150645, "variety knowledgeintensive tasks": 175716, "knowledgeintensive tasks different": 82566, "new knowledge llms": 113243, "knowledge llms struggle": 82204, "areas large language": 12374, "traditional methods like": 167660, "bridge gap introducing": 19047, "work presents novel": 179186, "presents novel prompting": 126609, "generations language models": 65282, "language models proliferation": 85971, "proliferation social media": 130131, "given rise new": 65996, "active area research": 4426, "language modeling capabilities": 83981, "evaluate proposed model": 51083, "meme datasets demonstrate": 100319, "datasets demonstrate superiority": 36777, "additionally qualitative analysis": 5127, "leveraging largelanguage models": 91889, "series experiments investigate": 148921, "opportunities challenges using": 116840, "challenges using llms": 22097, "llms trained corpus": 96821, "exhibit remarkable ability": 53092, "study llms used": 157476, "contrast prior works": 31324, "llms identify important": 95530, "experiments llms exhibit": 54344, "prior work demonstrated": 127942, "suggest insecure code": 158544, "realworld settings developers": 136513, "survey results revealed": 159688, "visual studio code": 177315, "study results showed": 157598, "expert domain knowledge": 54561, "survey foundation models": 159638, "encounters various challenges": 48588, "components recent advances": 27776, "visionlanguage models prompt": 177056, "models prompt learning": 108685, "llms emerged recent": 95031, "consequently propose novel": 29551, "prompt tuning hpt": 130707, "model handle complex": 103783, "existing sota methods": 53575, "methods code available": 101371, "performance gains large": 121554, "incontext demonstrations extensive": 74844, "extensive experiments diverse": 55839, "experiments diverse range": 54257, "significantly outperforms traditional": 151119, "opportunities challenges paper": 116838, "open source software": 116304, "scientific research software": 146989, "world code data": 179537, "code data source": 24760, "providing solid foundation": 133371, "llms llama falcon": 95801, "final model weights": 58385, "code technical reports": 25176, "training code data": 168186, "llm training process": 94063, "models finetuning language": 106360, "limited quantity diversity": 92829, "data paper explore": 35460, "scales favorably model": 146367, "favorably model size": 57331, "model size significantly": 104612, "finetuning human data": 59294, "replacement standard attention": 140468, "touvron et al": 167441, "et al 2023a": 50783, "exhibit wide range": 53123, "wide range capabilities": 178269, "perform diverse set": 120929, "foundation models vision": 60822, "models vision tasks": 109634, "performance existing benchmarks": 121479, "performance matches exceeds": 121788, "enhances models capabilities": 49427, "model behavior outperforms": 103200, "methods like finetuning": 101640, "represented large language": 140955, "statistical symbolic ai": 155512, "article focuses large": 12579, "focuses large language": 60150, "garnered substantial attention": 62793, "broad array natural": 19167, "emerged highly promising": 47359, "generate unsafe responses": 63772, "framework shed light": 61405, "critical factor success": 33495, "accurate modeling user": 3473, "modeling user preferences": 105120, "highlighting pivotal role": 69825, "systems paper introduces": 160511, "novel approach combining": 114372, "programming problems using": 129866, "paper address challenges": 118700, "efficient finetuning techniques": 46625, "training evaluation datasets": 168426, "source code large": 153407, "models power systems": 108578, "large foundation model": 87255, "foundation model gpt4": 60739, "applications paper explore": 10626, "paper explore challenges": 118910, "inherent large language": 76959, "issue especially pronounced": 80904, "domains findings reveal": 44413, "used complex tasks": 173003, "complex tasks requiring": 27619, "lacking bridge gap": 83033, "keyvalue kv cache": 81610, "execution efficiency experiments": 52947, "generated textual content": 64026, "text propose new": 165389, "image generation task": 72267, "generation task called": 65138, "new paradigm image": 113317, "cc byncsa 40": 21291, "using transfer learning": 174818, "transfer learning methodology": 168947, "massive multilingual pretrained": 99365, "language models mmplms": 85767, "accommodate new language": 2986, "play role teaching": 123467, "introductory programming course": 80271, "models llms expected": 107398, "explores potential using": 55425, "potential using chatgpt": 125046, "evaluate chatgpts capabilities": 50924, "students introductory programming": 156870, "code correctness code": 24738, "represented natural language": 140960, "llm used generate": 94077, "generate action plans": 63389, "performance stateoftheart methods": 122111, "stuck local optima": 156798, "llms text data": 96795, "text data propose": 164993, "balance exploration exploitation": 15499, "visual language pretraining": 177218, "data instruction finetuning": 35238, "enhanced incontext learning": 49339, "models lmms demonstrated": 108051, "visual contents images": 177143, "robustness distribution shift": 145372, "gpt4v texttoimage models": 67260, "question answering model": 134758, "model exceeds performance": 103582, "comparison existing models": 27038, "underlying technology chatgpt": 170876, "language modeling complex": 83988, "innovative framework integrates": 77172, "exhibits exceptional performance": 53195, "performance tasks involving": 122157, "complex linguistic structures": 27458, "complex temporal dependencies": 27624, "framework utilizes large": 61487, "deeper insights community": 37845, "highlighting transformative role": 69842, "paper emphasizes potential": 118875, "llms multibillion parameters": 95905, "paper explores emerging": 118932, "human language models": 70903, "understand human language": 171017, "models llms experiments": 107400, "llms experiments demonstrate": 95189, "manipulation compositional generalization": 98939, "unexplored paper empirically": 171632, "paper empirically investigate": 118877, "human effort experiments": 70707, "experiments method achieves": 54352, "tasks llms finetuned": 162749, "recognition machine translation": 138090, "like google translate": 92280, "google translate chatgpt": 66331, "past work demonstrated": 120398, "parameters neural networks": 119814, "neural networks use": 112957, "specialized fields like": 153891, "cater specific needs": 21161, "responses given prompt": 142811, "models llms crucial": 107232, "security risks paper": 147622, "deploying downstream applications": 39238, "new evaluation protocols": 113177, "evaluation protocols code": 51801, "helping language models": 69229, "specific knowledge llms": 154022, "task prompt learning": 161652, "settings ablation experiments": 149520, "language models embedding": 84422, "empowered large language": 48000, "language models objective": 85813, "takes advantage large": 160979, "relation extraction task": 139254, "binary classification problem": 18467, "context window size": 30968, "opensource llms results": 116643, "distinct relation types": 43248, "curated benchmark dataset": 34007, "medical expert evaluation": 100171, "evaluation results indicate": 51831, "performance comparable gpt4": 121273, "model enables range": 103534, "supervision propose novel": 159213, "model outperforms strong": 104188, "unified foundation model": 171711, "given small number": 66014, "novel transformerbased architecture": 114731, "multiple public datasets": 111011, "large margin addition": 88902, "models llms highly": 107527, "examples prompt llms": 52667, "propose novel model": 132019, "prompts guiding llms": 131302, "based current state": 15737, "outperforms baselines terms": 117721, "processing nlp capabilities": 129212, "demonstrating significant potential": 38957, "engineering applications despite": 48880, "information reliable sources": 76691, "reliable sources limited": 139753, "sources limited time": 153523, "employed prompt engineering": 47900, "utilizes vector embedding": 175165, "integration external knowledge": 78654, "external knowledge significantly": 56073, "systems project website": 160554, "pruning large language": 133460, "fit context window": 59679, "significantly outperforms various": 151120, "baselines various llms": 16386, "llms llama27b 13b": 95809, "serves plugandplay module": 149050, "complex mathematical reasoning": 27473, "work explore potential": 178959, "explore potential enhancing": 55260, "human annotations paper": 70584, "annotations paper present": 9607, "paper present innovative": 119120, "series opensource llms": 148945, "demonstrates exceptional performance": 38845, "leverages multimodal large": 91754, "training data processing": 168323, "generation current stateoftheart": 64551, "effective generating highquality": 45766, "generating highquality text": 64243, "provide accurate responses": 132667, "model proposed pipeline": 104379, "code generation dataset": 24879, "evaluation publicly available": 51807, "available datasets approach": 15097, "datasets approach achieves": 36657, "semistructured data large": 148360, "exhibit limitations handling": 53072, "complex questions lack": 27545, "llms tabular data": 96757, "reduce energy consumption": 138422, "based recently published": 16065, "language model matches": 83793, "single batch inference": 151781, "existing research mainly": 53556, "data sources varying": 35782, "zeroshot transfer new": 180364, "tasks specifically employ": 163275, "image encoder text": 72235, "encoder text encoder": 48444, "downstream tasks maintaining": 44807, "tackling downstream tasks": 160871, "integrated large language": 78535, "systems model code": 160483, "models achieved great": 105237, "existing visionlanguage models": 53629, "work aim develop": 178788, "captioning generates captions": 20579, "visionlanguage tasks including": 177086, "text speech images": 165482, "ai technologies large": 7271, "technologies large language": 164096, "history generative ai": 70221, "integrated everyday life": 78527, "emulate human cognition": 48043, "ability llms comprehend": 2257, "tasks findings revealed": 162408, "llms particularly gpt4": 96053, "potential text analysis": 125018, "llms using human": 96921, "remarkable progress development": 140271, "significant implications development": 150728, "learning analytics tool": 90210, "openais gpt4 model": 116420, "enhancing educational outcomes": 49477, "context window large": 30962, "window large language": 178522, "demonstrate method effectively": 38425, "extends context window": 55689, "context window llms": 30967, "llms range tasks": 96289, "summarization fewshot learning": 158832, "learning information retrieval": 90579, "based generative large": 15833, "language models simulating": 86173, "real user behavior": 136258, "query generation approaches": 134589, "conclude directions future": 28862, "engagement large language": 48837, "models llms disrupted": 107315, "limitations existing llms": 92581, "llms compare students": 94653, "video language models": 176720, "reasoning introduce new": 136931, "task proposed dataset": 161663, "video understanding tasks": 176747, "dataset code model": 36153, "code model checkpoints": 24999, "recognition spoken language": 138130, "contextual information improve": 31093, "improve performance considering": 73545, "proposed approach using": 132250, "benchmarks downstream tasks": 17225, "recognition named entity": 138098, "models llms resulted": 107836, "human values especially": 71078, "offer insights current": 115663, "outline potential future": 117494, "future directions field": 62253, "time requires significant": 166488, "models knowledge graphs": 106845, "knowledge graphs uses": 82088, "knowledge language model": 82159, "language model alignment": 83523, "alignment supervised finetuning": 8242, "enabling align human": 48268, "align human instructions": 8002, "capabilities downstream tasks": 19865, "improve performance specific": 73569, "model training phase": 104794, "leverage world knowledge": 91685, "increasing instruction data": 75324, "provides additional benefits": 133106, "additional benefits performance": 4928, "tasks indicating potential": 162596, "knowledge retrieval large": 82381, "learning ai feedback": 90190, "model achieves comparable": 103038, "comparable performance challenging": 26593, "tuning multimodal large": 170066, "recently achieved impressive": 137820, "mllms primarily focus": 102845, "falling short achieving": 57145, "advancements paper propose": 5945, "understanding achieve goal": 171110, "input experimental results": 77241, "instruction tuning particular": 78125, "truthfulness ethical alignment": 169896, "models inference time": 106762, "human evaluation model": 70743, "reasoning look leap": 136975, "solving challenging problems": 153199, "problems language models": 128546, "models lms able": 108055, "models sizes ranging": 109152, "ranging 125 million": 135739, "demonstrate proof concept": 38493, "complex spatial relationships": 27594, "connecting large language": 29482, "llms vision models": 96980, "vision models mllms": 176958, "advancements large visionlanguage": 5918, "led significant progress": 91246, "significant progress generating": 150834, "descriptions visual content": 39516, "powerful models produce": 125306, "natural image captioning": 111534, "factual errors generated": 56870, "factual error correction": 56867, "advent foundation models": 6170, "foundation models pretrained": 60794, "remarkable zeroshot generalization": 140309, "impact foundation models": 72655, "models like large": 106991, "language processing visual": 86655, "developments computer vision": 41276, "undertake comprehensive examination": 171565, "provide valuable insight": 133025, "language models aligning": 84110, "models aligning large": 105338, "capabilities wide array": 20259, "current instruction tuning": 34136, "ensuring data quality": 49734, "degrade model performance": 37994, "highquality instruction data": 70038, "data instruction tuning": 35239, "outperforms conventional methods": 117743, "complex multistep planning": 27486, "crucial achieving successful": 33752, "achieving successful outcomes": 4231, "finetuning transformerbased language": 59597, "reduce memory consumption": 138446, "reduce computation cost": 138408, "extensive experiments evaluate": 55844, "knowledge base large": 81771, "owing rapid development": 118467, "rapid development pretraining": 135873, "development pretraining techniques": 41191, "finegrained crossmodal alignment": 58862, "suboptimal performance paper": 157913, "paper propose multimodal": 119233, "largescale imagetext pairs": 89318, "potential ai models": 124563, "current models limitations": 34186, "adaptation generative pretrained": 4623, "models vlms pretrained": 109660, "pretrained large corpora": 126992, "demonstrated notable success": 38727, "rapidly increasing size": 135936, "different pretrained vlms": 41921, "social media realm": 152626, "paper addresses challenge": 118705, "model outperforms methods": 104179, "evaluate stateoftheart lmms": 51106, "sheet music image": 149892, "labeled data set": 82719, "using data set": 174111, "baseline large language": 16227, "structured data extraction": 156629, "achieves average improvement": 3962, "entity recognition using": 49929, "data source code": 35775, "llms like bert": 95763, "gained significant prominence": 62487, "computational memory costs": 28377, "reducing number parameters": 138588, "making suitable deployment": 98810, "suitable deployment resourceconstrained": 158696, "remarkable performance large": 140228, "tasks deployment poses": 162198, "poses substantial challenges": 124236, "challenges high computational": 21897, "high computational memory": 69418, "computational resource costs": 28399, "capabilities smaller models": 20183, "approach enhance capabilities": 11177, "enhance capabilities smaller": 49166, "bridging gap llms": 19091, "models achieve impressive": 105225, "understand large language": 171033, "language model captures": 83572, "semantic syntactic features": 148233, "neural network layer": 112903, "layer feedforward network": 89631, "learning modern machine": 90741, "modern machine learning": 109818, "challenges introduce novel": 21921, "social media post": 152621, "model performed best": 104266, "google gemini openai": 66322, "current state future": 34247, "like healthcare finance": 92310, "study highlighted importance": 157388, "ai research focuses": 7194, "captioning large language": 20585, "language models augment": 84145, "datasets object detection": 37007, "remote sensing images": 140350, "aims address issue": 7576, "simple effective way": 151445, "language models augmenting": 84147, "coherent concise summaries": 25522, "collected multiple sources": 25696, "automatic evaluation results": 14669, "outperforms baselines large": 117718, "security large language": 147599, "providing indepth analysis": 133315, "addressing security concerns": 5478, "evaluate natural language": 51038, "improvements state art": 73950, "results human evaluations": 143473, "domain shift finetuned": 44280, "models varying parameter": 109618, "provide finegrained analysis": 132792, "analysis potential limitations": 9070, "significant improvements achievable": 150741, "using relatively small": 174666, "small amounts training": 152272, "retrievalaugmented generation retrievalaugmented": 144175, "generation retrievalaugmented generation": 65055, "generation rag grounds": 65009, "model llm output": 104012, "lack comprehensive evaluation": 82903, "different language families": 41812, "evaluate llm robustness": 51005, "hallucination rate measuring": 68409, "important avenue future": 73095, "avenue future research": 15238, "future research improve": 62345, "transform large language": 169044, "yield strong performance": 179982, "parameter finetuning lora": 119614, "gpu memory usage": 67346, "data improve efficiency": 35187, "comprehensive analysis explore": 27952, "openai gpt series": 116344, "solving math problems": 153224, "languages generating code": 87018, "generating code acting": 64155, "generation nonenglish languages": 64893, "complex reasoning chains": 27553, "processing nlp question": 129243, "research primarily centered": 141985, "general qa tasks": 63035, "challenges posed complex": 22001, "logical reasoning process": 97390, "tables extensive experiments": 160769, "extensive experiments results": 55880, "table qa datasets": 160748, "approach significantly outperforms": 11543, "outperforms previous work": 117827, "previous work datasets": 127687, "experiments large language": 54335, "dynamic rapidly evolving": 45157, "social media detecting": 152608, "evade detection existing": 50877, "detection existing methods": 40500, "address challenges proposed": 5193, "neural networks recently": 112946, "widespread attention research": 178464, "performance large models": 121723, "specifically propose new": 154269, "benchmark datasets different": 16908, "reasoning foundation models": 136868, "pivotal role various": 123156, "field artificial general": 58124, "development foundation models": 41116, "llms growing exploring": 95457, "tasks paper introduce": 162915, "foundation models proposed": 60796, "reasoning abilities foundation": 136620, "discussing future research": 42981, "foundation models contribute": 60758, "models contribute development": 105787, "models code large": 105648, "code large language": 24969, "significant popularity ability": 150812, "humanlike text potential": 71284, "text potential applications": 165361, "potential applications various": 124591, "applications various fields": 10724, "various fields software": 175943, "fields software engineering": 58306, "software engineering large": 152800, "code commonly trained": 24718, "commonly trained large": 26235, "corpora source code": 32250, "source code scraped": 153421, "code scraped internet": 25127, "scraped internet content": 147207, "internet content datasets": 79583, "data extraction attacks": 35033, "models trained natural": 109458, "natural language adopt": 111548, "models perform data": 108463, "data extraction attack": 35032, "attack large language": 13646, "like natural language": 92364, "generative ai learning": 65332, "learning software engineering": 91005, "conversational generative ai": 31870, "tasks work evaluate": 163482, "se tasks study": 147278, "focusing case study": 60176, "language models play": 85887, "model llm agents": 103973, "llm agent interact": 93450, "evaluation human experts": 51639, "performance llm agents": 121747, "llm agents game": 93452, "encompassing aspects like": 48548, "model llmbased framework": 104036, "unseen data ablation": 172154, "data ablation study": 34566, "models llm prompt": 107043, "llm prompt learning": 93916, "proposed method consists": 132347, "decoderonly transformer architecture": 37550, "sizes training data": 152119, "training data incorporate": 168286, "chatgpt employed annotate": 22883, "minimizing false positives": 102390, "composed image retrieval": 27791, "image retrieval visual": 72323, "image retrieval cir": 72322, "sequential controlled text": 148864, "structure generated text": 156561, "remains challenging research": 139989, "research question paper": 142021, "question paper propose": 134916, "manner extensive experiments": 98991, "demonstrate stateoftheart performance": 38558, "text generation verified": 165204, "training opensource llms": 168616, "llm safety training": 93977, "improves attack success": 73976, "success rate harmful": 158293, "binary segmentation masks": 18476, "boosts models reasoning": 18854, "wide range vl": 178327, "vl tasks demonstrate": 177437, "performance strong baselines": 122118, "surge multimodal large": 159434, "llms powerful capabilities": 96147, "diverse multimodal tasks": 43581, "multimodal tasks recently": 110774, "tasks recently google": 163100, "superior reasoning capabilities": 159056, "paper present preliminary": 119134, "leverages recent advances": 91773, "recent advances segmentation": 137427, "language models indispensable": 84705, "crucial large language": 33816, "scenarios paper propose": 146667, "evaluate commonsense reasoning": 50930, "form commonsense knowledge": 60446, "commonsense reasoning capability": 26306, "tasks including commonsense": 162550, "wide variety existing": 178348, "customer service using": 34385, "analysis ability large": 8796, "chatgpt bing chat": 22745, "lowresource languages using": 97918, "highlight potential llmbased": 69772, "generative neural networks": 65522, "control language models": 31554, "stateoftheart performance recent": 155290, "power natural language": 125206, "providing unified interface": 133395, "free text structured": 61553, "text structured knowledge": 165492, "converting natural language": 32002, "natural language sql": 111872, "programming languages design": 129839, "need large lms": 112338, "tasks specifically pretrained": 163276, "task parallel code": 161601, "parallel code generation": 119560, "large multimodal language": 88939, "appropriate prompting techniques": 11988, "hold promise improving": 70253, "language model recent": 83873, "model recent years": 104422, "models llms rapidly": 107786, "research dialogue systems": 141706, "potential addressing gap": 124553, "potential limitations llms": 124826, "limitations llms context": 92622, "remain underexplored address": 139942, "appropriately respond users": 12006, "insights vast amounts": 77670, "domain expertise human": 44151, "study explores potential": 157348, "models llms automate": 107128, "leveraging recent advances": 91938, "propose new evaluation": 131959, "llms drawn significant": 94990, "prompting techniques particular": 131107, "utilize zeroshot fewshot": 175093, "llms generate fluent": 95364, "evaluating tool utilization": 51400, "language models step": 86217, "contrast previous works": 31321, "capability step step": 20379, "providing new perspective": 133338, "new perspective llm": 113333, "zeroshot video generation": 180370, "including images videos": 74563, "images videos text": 72513, "text audio training": 164847, "models llms consisting": 107217, "video generation tasks": 176711, "generation tasks present": 65177, "present empirical results": 126294, "empirical results demonstrating": 47724, "video generation specifically": 176710, "language models vector": 86371, "language models enable": 84440, "information retrieval data": 76715, "privacy large language": 128007, "language models directly": 84388, "using retrieval augmented": 174675, "paper investigate performance": 119032, "models llms performing": 107719, "assess compare performance": 13064, "performance different llms": 121394, "visual perception ability": 177243, "tasks ranging visual": 163076, "visual reasoning image": 177289, "perception abilities mllms": 120788, "existing multimodal llms": 53495, "multimodal llms including": 110707, "opensource dataset code": 116597, "research opensource code": 141943, "generative ai software": 65354, "landscape artificial intelligence": 83092, "ai software engineering": 7221, "generative ai techniques": 65360, "improve code quality": 73428, "language model attacks": 83540, "leads higher accuracy": 89892, "models llms adept": 107096, "text summarization models": 165509, "dialogue summarization tasks": 41523, "paper presents new": 119173, "transformerbased models additionally": 169266, "models conduct thorough": 105740, "sequence length context": 148762, "prompt learning prompt": 130584, "learning prompt learning": 90872, "demonstrated impressive efficacy": 38700, "existing prompt learning": 53533, "ignore structural information": 72073, "structural information inherent": 156518, "issues introduce novel": 81017, "novel prompt learning": 114650, "graph convolutional network": 67506, "used prompt pretrained": 173196, "pretrained multimodal large": 127128, "local large language": 97247, "llms chatgpt llama": 94592, "strengths limitations llms": 156262, "highlighting necessity robust": 69821, "using social choice": 174732, "support wide range": 159352, "conversational agents creative": 31827, "agents creative writing": 6572, "domains like medicine": 44463, "prompted multiple times": 130829, "need large training": 112340, "policy large language": 123853, "problems paper presents": 128583, "effectiveness method results": 46238, "models llms critical": 107231, "research introduces new": 141867, "new benchmark named": 113093, "designed evaluate reasoning": 39871, "measure reasoning ability": 99872, "benchmark dataset code": 16890, "language models local": 85697, "local knowledge base": 97244, "llms rich knowledge": 96469, "lack domainspecific expertise": 82932, "knowledge base lkb": 81772, "task description natural": 161311, "natural language program": 111841, "cloudbased llm service": 24572, "enhancing mathematical reasoning": 49524, "mathematical reasoning capability": 99590, "findings suggest prompting": 58814, "processing artificial intelligence": 129117, "artificial intelligence paper": 12754, "intelligence paper presents": 78868, "experiments evaluate performance": 54277, "offering comprehensive perspective": 115733, "way future advancements": 177817, "comprehensive qualitative analysis": 28101, "yang et al": 179874, "methods suffer limitations": 101850, "empirical study zeroshot": 47770, "extraction aims build": 56253, "challenging worthwhile zeroshot": 22323, "time effort data": 166385, "effort data labeling": 46837, "data labeling takes": 35273, "labeling takes recent": 82764, "takes recent efforts": 160993, "promising performance zeroshot": 130290, "zeroshot settings inspiring": 180342, "settings inspiring explore": 149591, "inspiring explore promptbased": 77782, "explore promptbased methods": 55280, "promptbased methods paper": 130788, "models constructed directly": 105763, "constructed directly prompting": 30176, "chatgpt experimental results": 22918, "experimental results chatgpt": 53972, "compared existing stateoftheart": 26805, "unsupervised supervised models": 172274, "models simple effective": 109141, "nlp tasks inspired": 113861, "inspired recent efforts": 77757, "available apache 20": 15071, "answering multihop question": 9906, "question answering mqa": 134760, "comprehension reasoning abilities": 27928, "avoiding expensive retraining": 15358, "datasets validate superiority": 37189, "models llms expanding": 107397, "simulating complex social": 151677, "experiments involving human": 54327, "involving human subjects": 80789, "use llm agents": 172738, "indicate llms hold": 75605, "directly applying models": 42519, "framework comprises modules": 61032, "llms neural networks": 95935, "simple effective methods": 151432, "iterative magnitude pruning": 81130, "magnitude pruning imp": 98208, "et al 2015": 50768, "improve performance compared": 73543, "drastically reduces compute": 44905, "billion parameter models": 18434, "single nvidia a100": 151842, "nvidia a100 gpu": 115084, "evolving landscape artificial": 52313, "models llms stand": 107943, "state future directions": 155003, "insights researchers practitioners": 77643, "foundation models recent": 60800, "remains limited address": 140032, "strategy designed enhance": 156126, "access vast amounts": 2924, "vast amounts information": 176314, "diverse information needs": 43547, "end paper propose": 48670, "models llms agents": 107101, "effectiveness proposed model": 46278, "difficulty information extraction": 42216, "recent work proposed": 137737, "work proposed methods": 179226, "methods based large": 101337, "different information extraction": 41797, "data information extraction": 35224, "stateoftheart performance chinese": 155272, "comparable performance english": 26596, "chatgpt models large": 23130, "tasks attracted increasing": 161984, "recently large visionlanguage": 137931, "models vlms like": 109659, "end paper introduces": 48669, "dataset training evaluation": 36591, "prompt template second": 130693, "image text features": 72338, "report preliminary results": 140549, "preliminary results demonstrate": 126141, "evaluating performance large": 51366, "models llms domain": 107316, "llms domain computer": 94968, "additionally present extensive": 5107, "extensive evaluation prominent": 55769, "evaluation prominent llms": 51791, "prominent llms including": 130156, "llms including gpt35turbo": 95575, "including gpt35turbo gpt4": 74542, "gpt35turbo gpt4 llama2": 66878, "study offers insights": 157513, "offers insights current": 115820, "current state llms": 34250, "reasoning knowledge graph": 136939, "achieved outstanding performance": 3853, "outstanding performance various": 118163, "powerful natural language": 125312, "performance question answering": 121976, "knowledge knowledge graph": 82154, "knowledge graph using": 82071, "given question guide": 65970, "knowledge graph enhanced": 82053, "fully supervised models": 61785, "human values social": 71080, "values social norms": 175558, "alignment techniques supervised": 8248, "techniques supervised finetuning": 164033, "external memory store": 56082, "proposed method effectively": 132352, "makes large language": 98665, "models better incontext": 105510, "learning abilities prompt": 90166, "prompt engineering recent": 130482, "largescale generative models": 89312, "applications critical challenge": 10465, "language understanding question": 86848, "understanding question answering": 171433, "work explored use": 178965, "models llms highlights": 107525, "llms highlights potential": 95496, "recommendation large language": 138204, "tasks enhance model": 162304, "performance paper introduce": 121890, "instruction tuning llm": 78111, "diverse training data": 43687, "conventional recommendation models": 31727, "ranking tasks pointwise": 135829, "tasks pointwise pairwise": 162954, "pointwise pairwise listwise": 123782, "tasks empirical evaluations": 162285, "scales large language": 146370, "language models project": 85970, "language models burgeoning": 84205, "field multimodal large": 58208, "remarkable performance diverse": 140224, "visual scene understanding": 177305, "framework designed enhance": 61071, "extensive experiments multimodal": 55859, "mechanistic interpretability research": 100061, "contamination language models": 30402, "various zeroshot fewshot": 176259, "fewshot tasks success": 58072, "llm training data": 94062, "training data creation": 168243, "strongly indicates llms": 156502, "llms training data": 96843, "statistically significant improvements": 155520, "fewshot settings llms": 58058, "ensure data quality": 49678, "demand machine learning": 38131, "challenges propose new": 22025, "finetuning llms domainspecific": 59360, "llms domainspecific data": 94971, "examples different data": 52560, "growing capabilities large": 68012, "models llms comes": 107207, "use llms simulate": 172751, "work uses llms": 179356, "tabular data remains": 160788, "data remains underexplored": 35646, "remains underexplored area": 140092, "context study investigates": 30928, "specific tasks notably": 154106, "achieving sota performance": 4217, "learning crossmodal alignment": 90338, "valuable semantic information": 175453, "person reidentification reid": 122542, "prompt learning language": 130572, "language models fully": 84559, "models specifically gpt35": 109208, "models demonstrated proficiency": 105908, "long texts paper": 97495, "performance level comparable": 121736, "diverse large language": 43562, "simulate human conversation": 151641, "model based generative": 103184, "theoretical upper bound": 166055, "involving natural language": 80802, "agents recent advancements": 6706, "brought significant changes": 19248, "need human involvement": 112312, "use past experiences": 172798, "shown impressive fewshot": 150272, "larger models lead": 89233, "high computational demands": 69416, "capabilities larger models": 20004, "models existing methods": 106225, "outputs larger models": 118080, "highly sensitive selection": 69955, "abilities smaller models": 2016, "models specifically introduce": 109209, "specifically introduce alignment": 154233, "extensive experiments analysis": 55801, "experiments analysis demonstrate": 54143, "consistently outperform existing": 29894, "outperform existing baselines": 117584, "understanding reasoning coding": 171442, "evaluation paradigm large": 51760, "language models challenges": 84225, "reveal potential cognitive": 144366, "advocates paradigm shift": 6285, "cognitive abilities llms": 25435, "language models modern": 85770, "models modern language": 108231, "models contain billions": 105766, "contain billions parameters": 30291, "generalize unseen data": 63273, "larger models better": 89227, "artificial intelligence machine": 12748, "intelligence machine learning": 78856, "natural language intuitive": 111662, "operations natural language": 116790, "natural language opensource": 111683, "language opensource language": 86448, "opensource language model": 116618, "language model limited": 83718, "effectively bridges gap": 45952, "distinguish different instances": 43276, "multiturn dialogue ability": 111272, "model shows significant": 104567, "foundational model diverse": 60845, "language model assistant": 83539, "user input model": 173421, "reasoning paper explores": 137016, "approach extracting structured": 11221, "models llm enhanced": 107030, "generation rag techniques": 65011, "capabilities various llms": 20245, "knowledge graph conversational": 82050, "performance address problem": 121138, "problem propose reinforcement": 128363, "reformulations generated large": 138831, "leverage llms textbased": 91629, "proposed framework provides": 132306, "conducted case studies": 29214, "limitations adopting llms": 92536, "llms offering systematic": 95966, "future research streams": 62372, "optimal solutions problems": 116955, "reasoning experimental results": 136847, "surpassing performance stateoftheart": 159521, "performance stateoftheart baselines": 122107, "spectrum tasks including": 154369, "abilities llms humans": 1955, "findings language models": 58717, "observed finetuned models": 115407, "agents ad hoc": 6531, "models llms demonstrates": 107298, "findings reveal potential": 58786, "potential llm agents": 124829, "address issue develop": 5255, "especially reasoning tasks": 50530, "tasks recent years": 163098, "address knowledge gap": 5298, "quantitative reasoning tasks": 134377, "reasoning tasks compared": 137170, "models generative information": 106478, "plain natural language": 123200, "recently generative large": 137899, "remarkable capabilities text": 140169, "comprehensive systematic review": 28141, "models aligned human": 105332, "aligned human values": 8055, "interaction users models": 79189, "models paper explores": 108408, "paper explores use": 118943, "open generative large": 116235, "models llms annotation": 107109, "study highlights challenges": 157390, "sentiment analysis tweets": 148643, "evaluates performance different": 51247, "results indicate need": 143516, "question answering face": 134716, "information knowledge graph": 76539, "experimental results kbqa": 54027, "results kbqa datasets": 143545, "present comparative analysis": 126247, "inspired large language": 77736, "various computer vision": 175867, "contrastive learning based": 31363, "learning based methods": 90246, "applied downstream tasks": 10752, "tasks parameter tuning": 162929, "models llms scientific": 107851, "generation rag framework": 65008, "extracting valuable information": 56247, "prompts demonstrate effectiveness": 131219, "framework outperforms conventional": 61339, "generating accurate responses": 64128, "study delves investigation": 157269, "optimized prompt templates": 117091, "integrating llms knowledge": 78612, "llms led development": 95745, "various evaluation benchmarks": 175930, "llms set diverse": 96511, "specific downstream task": 153983, "conduct evaluations multiple": 29082, "strengths limitations current": 156260, "sophisticated models like": 153316, "significant advancement artificial": 150567, "advancement artificial intelligence": 5826, "especially environments limited": 50468, "architecture design pretraining": 12143, "evaluation metrics datasets": 51718, "fair comparisons different": 57032, "adopt mixedmethods approach": 5578, "using zero shot": 174878, "deployment ai systems": 39258, "models llms numerous": 107678, "training datasets llms": 168376, "validate approach conduct": 175300, "content misuse llm": 30548, "study significant implications": 157637, "llms highlighting need": 95493, "revolution natural language": 144622, "study use sentiment": 157693, "use sentiment analysis": 172869, "model sentiment analysis": 104545, "comprehensively evaluate llms": 28169, "entire evaluation process": 49805, "representative llms chatgpt": 140931, "facilitate research improving": 56646, "conditional random fields": 28965, "data pretrained llms": 35531, "remains relatively unexplored": 140064, "models llms propelled": 107767, "writing assistance code": 179712, "demonstrated ability reason": 38620, "remains challenge existing": 139977, "downstream tasks directly": 44774, "data leakage limited": 35305, "improves logical reasoning": 74026, "results provide insights": 143709, "provide insights llms": 132853, "including gpt3 chatgpt": 74537, "demonstration examples incontext": 38976, "code data results": 24759, "errors large language": 50372, "extensive knowledge pretraining": 55916, "concerns critical areas": 28773, "critical areas like": 33459, "areas like healthcare": 12377, "data leakage need": 35306, "extensive human labor": 55911, "tackle problem introduce": 160842, "introduce novel automatic": 80050, "involves main steps": 80752, "factual knowledge graph": 56882, "leveraging knowledge graph": 91872, "accuracy incontext learning": 3277, "incontext learning finetuning": 74898, "making code data": 98715, "available future research": 15117, "parameterefficient instruction tuning": 119673, "tuning code large": 169973, "language models high": 84640, "fullparameter finetuning fft": 61728, "comprehension code generation": 27892, "tradeoff cost performance": 167555, "loss task performance": 97698, "code empowers large": 24803, "serve intelligent agents": 148991, "combination natural language": 25837, "natural language formal": 111607, "survey present overview": 159667, "integrating code llms": 78584, "enhancing llms code": 49513, "present key challenges": 126349, "ai particularly large": 7142, "enhancing teaching learning": 49574, "teaching learning experiences": 163651, "like gpt4 vision": 92303, "gpt4 vision gpt4v": 67217, "processing multimodal data": 129200, "multimodal data including": 110616, "learning paper explores": 90798, "paper explores transformative": 118942, "opportunities challenges data": 116834, "ethical use ai": 50843, "models finetuning large": 106361, "tasks significantly improving": 163246, "performance supervised finetuning": 122141, "pretrained model finetuned": 127051, "finetuned using largescale": 59136, "largescale instruction dataset": 89320, "demonstrate solution outperforms": 38556, "previously unseen datasets": 127753, "state space models": 155018, "space models ssms": 153596, "language models makes": 85714, "results suggest possible": 143842, "models demonstrated significant": 105914, "downstream tasks existing": 44781, "visionlanguage model clip": 177034, "proposed approach underscoring": 132247, "approach underscoring potential": 11623, "potential advance field": 124556, "advance field multimodal": 5681, "involves initial pretraining": 80741, "initial pretraining phase": 77043, "chatbot designed assist": 22571, "designed assist researchers": 39819, "field materials science": 58201, "models previous methods": 108637, "focus improving generation": 59996, "improving generation quality": 74150, "performance consequently propose": 121327, "improve image generation": 73483, "specifically create dataset": 154164, "debiasing large language": 37308, "performance previous works": 121941, "exhibit position bias": 53082, "existing methods mitigating": 53457, "facilitate reproducibility results": 56639, "models llms potential": 107730, "llms potential transform": 96143, "makes key contributions": 98660, "llms legal tasks": 95755, "multiple llm agents": 110968, "extensive experimentation demonstrates": 55793, "frameworks superior performance": 61526, "weak language models": 177931, "models strong language": 109242, "supervised finetuned model": 159111, "generates training data": 64121, "method benchmark datasets": 100712, "huggingface open llm": 70544, "models trained direct": 109428, "trained direct preference": 167897, "preference optimization dpo": 126018, "preference data sheds": 126005, "performance llms need": 121758, "based neural networks": 15974, "ai systems better": 7241, "suggesting large language": 158616, "data like images": 35317, "grounding abstract concepts": 67886, "object recognition models": 115160, "remarkable capabilities understanding": 140172, "natural language various": 111927, "research development models": 141702, "instructions complete tasks": 78218, "remains major challenge": 140040, "ample room improvement": 8714, "image captioning model": 72188, "userdriven artistic typography": 173546, "artistic typography synthesis": 12812, "paper introduces wordart": 119022, "introduces wordart designer": 80222, "efficient alternative traditional": 46569, "approach leverages power": 11355, "leverages power llms": 91764, "various case studies": 175846, "indicate significant improvements": 75623, "new possibilities personalized": 113339, "teach large language": 163602, "systematically evaluate llms": 160180, "representation learning trained": 140717, "using models text": 174497, "text language models": 165266, "image generation ability": 72260, "language models numerous": 85811, "generated text models": 64013, "generative ai exemplified": 65317, "hold immense promise": 70248, "applications generative ai": 10545, "identify critical challenges": 71877, "critical challenges including": 33468, "high resource demands": 69526, "federated learning security": 57628, "annotations study investigates": 9614, "content analysis social": 30437, "evaluate gpt35 gpt4": 50982, "substantial agreement human": 158028, "macro f1 scores": 98177, "model llm garnered": 103998, "feedback recent research": 57771, "chatgpt led significant": 23099, "architecture pretraining tasks": 12206, "provides insights future": 133169, "insights future development": 77565, "improvement large language": 73813, "traditional evaluation methods": 167617, "low correlation human": 97743, "correlation human judgments": 32545, "highstakes applications like": 70117, "unlike existing llmbased": 171999, "stateoftheart methods large": 155213, "approach substantially reduces": 11576, "preliminary case study": 126115, "case study large": 20912, "demonstrated powerful ability": 38742, "artificial intelligence generation": 12733, "comprehensive case study": 27976, "study utilizing gpt4v": 157708, "images prompts used": 72467, "used study available": 173247, "students generative ai": 156863, "models rapidly adopted": 108789, "vary depending task": 176267, "harness capabilities llms": 68787, "llms discuss potential": 94949, "discuss potential implications": 42929, "model paper introduce": 104206, "marks notable advancement": 99269, "visual comprehension reasoning": 177138, "language models conventional": 84311, "research introduces innovative": 141866, "introduces innovative approach": 80185, "using chatgpt 35": 174033, "offering promising solution": 115764, "challenge information retrieval": 21658, "trained large corpora": 167967, "models trained new": 109460, "foundation models specific": 60808, "llms new tasks": 95938, "additional parameters data": 4986, "smaller model trained": 152410, "lowresource languages results": 97915, "tasks like translation": 162728, "models social networks": 109165, "models llms transforming": 107988, "transforming way people": 169387, "applications social networks": 10691, "contrastive chainofthought prompting": 31345, "detailed image information": 40300, "including gpt4v gemini": 74546, "models method requires": 108181, "comprehension capabilities large": 27885, "areas natural language": 12382, "processing visual recognition": 129356, "human financial resources": 70831, "models parameters result": 108431, "significant challenges including": 150649, "researchers actively explored": 142165, "foundation models various": 60820, "stateoftheart methods including": 155211, "perspective future development": 122666, "guidance future research": 68145, "recent popular large": 137581, "language models argue": 84131, "extensive experiments confirm": 55818, "shortterm longterm memory": 150050, "memory maintain context": 100423, "potential broader applications": 124631, "applications work contributes": 10731, "taken world storm": 160975, "human language analyze": 70900, "complex patterns data": 27513, "advancing opensource language": 6093, "conduct supervised finetuning": 29183, "sft direct preference": 149739, "models evaluation results": 106169, "comprehensive benchmark designed": 27964, "data analysis capabilities": 34624, "capabilities llms context": 20029, "education rapid evolution": 45578, "rapid evolution artificial": 135880, "evolution artificial intelligence": 52256, "opened new avenues": 116480, "benchmark assess performance": 16835, "analysis shows llms": 9168, "case study research": 20921, "potential complex problemsolving": 124650, "study sheds light": 157624, "sheds light llms": 149878, "emphasizes need careful": 47644, "research sets stage": 142069, "finetuned downstream tasks": 59016, "unstructured data processing": 172212, "study introduces innovative": 157420, "introduces innovative methodology": 80186, "approach significantly advances": 11539, "handle diverse data": 68542, "diverse data types": 43499, "multimodal information extraction": 110658, "information extraction mie": 76429, "unify mie tasks": 171778, "indepth analysis demonstrates": 75516, "limitation paper proposes": 92515, "text classification short": 164903, "classification short text": 24093, "traditional pretrained language": 167679, "graph convolutional networks": 67507, "integrating external knowledge": 78594, "fundamental nlp tasks": 61961, "nlp tasks consequently": 113829, "knowledge abilities llms": 81720, "llms address challenges": 94349, "datasets significant improvements": 37118, "identify correct mistakes": 71875, "timeconsuming large language": 166548, "models llms promise": 107759, "little known regarding": 93242, "study investigate capacity": 157426, "capacity generative ai": 20508, "reallife tutoring dialogues": 136339, "errors models exhibit": 50382, "errors human evaluators": 50366, "future work focus": 62407, "work focus enhancing": 178986, "llms paper presents": 96038, "independent identically distributed": 75500, "domain shifts address": 44282, "detailed textual descriptions": 40326, "experimental results various": 54084, "settings demonstrated effectiveness": 149553, "demonstrated effectiveness proposed": 38648, "empirical study large": 47754, "example large language": 52487, "capabilities tasks involving": 20208, "tasks involving natural": 162645, "language generation reasoning": 83379, "representative large language": 140927, "statistical machine learning": 155495, "techniques face challenges": 163901, "extensive experiments showcase": 55885, "approach leveraging large": 11358, "explores potential llms": 55423, "efficient utilization llms": 46751, "demonstrate efficiency effectiveness": 38320, "efficiency effectiveness proposed": 46443, "generate chinese classical": 63413, "chinese classical poetry": 23614, "language model head": 83679, "following complex instructions": 60261, "closely resembles human": 24529, "paper provides overview": 119294, "instruction following ability": 78007, "new metric evaluating": 113276, "evaluation advanced llms": 51425, "advanced llms using": 5765, "future llm development": 62284, "development deep learning": 41080, "learning dl frameworks": 90381, "existing approaches tools": 53274, "learning models support": 90731, "language model recommend": 83875, "performance study provides": 122124, "practitioners better understand": 125525, "question language models": 134899, "preliminary research suggests": 126139, "research suggests llms": 142103, "recent years especially": 137776, "address aforementioned problem": 5157, "like bert gpt2": 92202, "trained large language": 167972, "strong performance various": 156427, "pretrained text encoder": 127171, "features text embedding": 57591, "image text information": 72339, "model significantly enhance": 104571, "yields significantly better": 180038, "contemporary deep learning": 30410, "model achieves remarkable": 103049, "based deep learning": 15744, "great performance various": 67700, "various tasks especially": 176206, "large amounts unlabeled": 87189, "modeling human language": 105012, "language processing bert": 86494, "prospects large language": 132545, "rely ground truth": 139848, "provide rich information": 132961, "propose unsupervised approach": 132192, "sets new state": 149386, "using ground truth": 174284, "ground truth information": 67841, "llms promising direction": 96226, "tablebased question answering": 160760, "open question effectively": 116272, "leverage tabular data": 91669, "llms using incontext": 96923, "language model project": 83860, "performance diverse natural": 121411, "processing tasks report": 129331, "designed enhance capabilities": 39862, "tasks including named": 162563, "opensource model community": 116650, "7b large language": 1629, "text processing capabilities": 165378, "introduce new capabilities": 80028, "texts various domains": 165800, "data processing model": 35554, "language models article": 84132, "demonstrate strong correlation": 38565, "essential role training": 50628, "refinement large language": 138761, "models llms lack": 107593, "lack principled understanding": 82989, "natural language rationale": 111856, "conduct comparative study": 29034, "agents based large": 6545, "human values current": 71077, "llm alignment methods": 93458, "general tasks effectiveness": 63055, "open closedsource llms": 116218, "outcomes mental health": 117459, "orders magnitude compute": 117260, "individual task performance": 75743, "performance specific tasks": 122097, "tasks poses challenges": 162961, "answers large language": 10046, "models directly generate": 105983, "answers factual questions": 10024, "quality generated answers": 134138, "systematic way measure": 160164, "generated answers results": 63795, "human judgments cases": 70888, "long context processing": 97443, "approach requires large": 11510, "context length extension": 30820, "language models user": 86355, "paper introduce large": 118991, "preference learning human": 126014, "gpt4 consistently outperformed": 66951, "overall work offers": 118263, "language agents achieved": 83140, "single model multiple": 151834, "task conduct comprehensive": 161269, "artificial intelligence including": 12739, "like chatgpt potential": 92237, "discuss strengths weaknesses": 42949, "strengths weaknesses existing": 156275, "european union united": 50870, "union united states": 171816, "united states united": 171877, "states united kingdom": 155442, "combines strengths llms": 25958, "incorporates key aspects": 75058, "derive final answer": 39342, "experimental analysis shows": 53925, "outperforms traditional llms": 117880, "analysis tasks paper": 9196, "specifically designed evaluate": 154177, "agent framework incorporates": 6447, "framework incorporates llms": 61220, "trustworthiness large language": 169852, "llms present challenges": 96163, "present challenges particularly": 126243, "llms emerges important": 95037, "emerges important topic": 47493, "raising concerns potential": 135501, "concerns potential risks": 28809, "important note llms": 73166, "using current stateoftheart": 174105, "including supervised finetuning": 74742, "reinforcement learning adversarial": 139037, "remove backdoor behavior": 140358, "models trained produce": 109467, "used train evaluate": 173275, "models best performing": 105505, "primary care physicians": 127803, "realworld settings results": 136515, "results represent milestone": 143747, "language models video": 86372, "videobased large language": 176753, "training method improve": 168575, "improve efficiency finetuning": 73456, "model achieves performance": 103048, "models llms context": 107221, "various information retrieval": 175978, "results offer valuable": 143645, "offer valuable insights": 115715, "future innovations field": 62274, "sheds light specific": 149880, "evolving landscape digital": 52315, "advancement capabilities large": 5831, "models llms triggered": 107991, "language rarely explored": 86687, "explored work examine": 55374, "work examine ability": 178944, "natural formal language": 111530, "language incontext learning": 83419, "experiments models different": 54363, "todays stateoftheart llms": 166684, "llms understanding logical": 96885, "effective use llms": 45917, "natural language training": 111895, "language training data": 86794, "answering questions llms": 9939, "indicate models exhibit": 75613, "similar natural language": 151278, "benchmarks large language": 17285, "models llms strong": 107950, "major obstacle widespread": 98444, "llm systems developed": 94040, "openai google meta": 116340, "risk assessment llm": 144929, "llms perform reasoning": 96075, "reasoning tasks current": 137171, "cumulative reasoning cr": 33991, "overcome challenges introduce": 118275, "achieves remarkable results": 4065, "reasoning generation tasks": 136884, "baseline approaches stateoftheart": 16196, "gpt4 backbone model": 66928, "generation qg natural": 64991, "qg natural language": 133948, "applies large language": 10832, "rooted information theory": 145607, "adopt contrastive decoding": 5569, "enhanced multimodal grounding": 49353, "performance tasks require": 122158, "model excels tasks": 103585, "specific regions images": 154073, "dataset construction pipeline": 36193, "dataset model training": 36416, "health records using": 68969, "healthcare providers make": 69011, "text generation techniques": 165192, "develop machine learning": 40796, "learning models using": 90738, "memory lstm model": 100421, "biomedical generative pretrained": 18544, "utilizing openai api": 175226, "bertscore cosine similarity": 17647, "performance compared models": 121295, "remarkably low perplexity": 140321, "capabilities recent multimodal": 20148, "recent multimodal llms": 137571, "multimodal llms mllms": 110708, "issues propose mixture": 81049, "learning remains open": 90915, "language models decoderonly": 84330, "models decoderonly large": 105859, "decoderonly large language": 37541, "showcase significant performance": 150086, "llms emerged pivotal": 95027, "exceptional zeroshot generalization": 52846, "paper conduct indepth": 118800, "conduct indepth investigation": 29149, "release code generated": 139447, "natural language aligns": 111550, "experiments benchmarks demonstrate": 54164, "benchmarks demonstrate approach": 17205, "performance state art": 122104, "generating synthetic qa": 64353, "issue propose new": 80950, "method called chain": 100726, "interactions large language": 79237, "chest xray images": 23586, "medical foundation models": 100178, "models llms abilities": 107056, "pretraining data model": 127298, "data model development": 35383, "pretraining data source": 127299, "claimed large language": 23830, "published experimental evidence": 133694, "evidence support claim": 52223, "small models learn": 152330, "different llm architectures": 41832, "generative models recently": 65509, "study machine learning": 157478, "especially emergence large": 50463, "llms significantly transformed": 96607, "trustworthiness ml models": 169856, "ml models production": 102783, "processing tasks despite": 129310, "concepts natural language": 28675, "potential instruction tuning": 124791, "instruction tuning enhance": 78086, "tuning enhance llms": 170002, "tasks introduce novel": 162627, "introduce novel instruction": 80059, "novel instruction tuning": 114552, "datasets manually written": 36974, "empirical results reveal": 47737, "tasks furthermore conduct": 162438, "extensive experiments analyze": 55803, "models publicly accessible": 108742, "challenging requires checking": 22260, "customized score rubrics": 34412, "opensource code dataset": 116580, "code dataset model": 24765, "latest generative large": 89547, "finetune downstream models": 58918, "models research needed": 108951, "research needed assess": 141923, "data selection strategies": 35723, "datasets downstream models": 36804, "clinical text mining": 24371, "health records ehrs": 68967, "records ehrs challenging": 138313, "dataset annotated human": 36112, "generate synthetic clinical": 63737, "allow researchers quickly": 8350, "llms used simulate": 96910, "intelligence ai text": 78778, "ai text generation": 7277, "study conducted systematic": 157234, "conducted systematic review": 29291, "work make attempt": 179116, "language model vlm": 83959, "fewshot prompting finetuning": 58028, "prompting finetuning techniques": 130938, "automated manual evaluation": 14568, "multilingual training data": 110562, "aiming align reasoning": 7536, "align reasoning processes": 8032, "achieves significant improvements": 4072, "comprehensive evaluation stateoftheart": 28022, "evaluation stateoftheart llms": 51872, "techniques public health": 163998, "health prediction tasks": 68960, "exhibits comparable performance": 53187, "comparable performance larger": 26603, "larger models gpt35": 89231, "performance 13 tasks": 121105, "capability finetuned models": 20295, "models training datasets": 109484, "enhances overall performance": 49430, "language models misinformation": 85745, "models misinformation mitigation": 108190, "llms shown effective": 96535, "limitations commonly used": 92555, "widely used model": 178402, "excellent performance english": 52795, "generalization bridge gap": 63140, "gap different languages": 62638, "highresource languages lowresource": 70103, "languages lowresource languages": 87054, "multilingual reasoning ability": 110540, "training lowresource languages": 168565, "lowresource languages crosslingual": 97907, "experimental results previous": 54054, "benchmarks demonstrate superior": 17212, "reducing gap different": 138567, "demonstrated remarkable capability": 38768, "28k data points": 907, "varying number parameters": 176298, "capabilities smaller language": 20181, "evaluation llms ability": 51673, "nlp tasks approach": 113822, "multiple languages including": 110958, "languages including english": 87028, "questions generated using": 135144, "leading fast convergence": 89818, "neural network trained": 112909, "models including generative": 106710, "including generative adversarial": 74529, "modern generative ai": 109798, "generative ai era": 65315, "large language modelpowered": 87522, "language modelpowered chatbot": 84037, "rapid evolution large": 135883, "models llms provided": 107776, "language models event": 84469, "approach relies knowledge": 11506, "relies knowledge graph": 139803, "language model causal": 83575, "recent work demonstrates": 137724, "using domainspecific knowledge": 174154, "context address limitation": 30681, "incorporates parameterefficient finetuning": 75073, "code available httpsgithubcommicrosoftlmops": 24676, "chatgpt exhibited remarkable": 22912, "downstream tasks prominent": 44821, "language models aiming": 84103, "reasoning factual knowledge": 136857, "models transformer models": 109494, "comprehensive study era": 28127, "social media work": 152635, "bilstm gru bigru": 18459, "effectiveness llms especially": 46227, "experiment results proposed": 53910, "results proposed model": 143703, "effectiveness zeroshot fewshot": 46324, "external tools apis": 56093, "llms understand user": 96883, "effectively train framework": 46090, "introduce twostage training": 80134, "explores use large": 55438, "preferences provide personalized": 126065, "human decision maker": 70688, "make recommendations based": 98589, "data data generated": 34885, "evaluation parameter efficient": 51765, "efficient finetuning large": 46619, "efficient finetuning peft": 46624, "large gap performance": 87261, "languages large gap": 87039, "performance smaller opensource": 122081, "smaller opensource models": 152427, "finetuning effective way": 59238, "finetuning improves performance": 59300, "aspects natural language": 12958, "significant attention potential": 150612, "current quantum computers": 34220, "tokenization large language": 166758, "information limited context": 76563, "size context window": 151974, "context window extended": 30959, "window extended finetuning": 178519, "extended finetuning result": 55659, "substantial cost training": 158043, "cost training inference": 32745, "information context window": 76330, "arbitrary context length": 12078, "context length inference": 30821, "llms existing capabilities": 95168, "perform comprehensive experiments": 120907, "language modeling understanding": 84026, "modeling understanding tasks": 105117, "extend llms context": 55635, "model source code": 104635, "tasks tend perform": 163351, "given training data": 66041, "incurs high cost": 75487, "alignment train model": 8252, "abilities experimental results": 1906, "leads consistent improvements": 89883, "language models faithful": 84522, "llms excel tasks": 95123, "intricate scientific concepts": 79863, "address data scarcity": 5214, "framework leverages existing": 61278, "consistently improves base": 29882, "wider research community": 178445, "widespread adoption large": 178454, "adoption large language": 5640, "models llms commonplace": 107208, "ai tasks despite": 7263, "choice question mcq": 23704, "artificial intelligence field": 12722, "case study recent": 20920, "study transformer models": 157676, "transformer models implement": 169178, "llms vision transformers": 96981, "entire machine learning": 49809, "terms hardware resources": 164429, "current approaches tackling": 34070, "comprehensive data collection": 27988, "relative performance llms": 139377, "llms using existing": 96920, "faces significant challenges": 56577, "computational costs memory": 28353, "models scientific research": 109047, "current state user": 34251, "pinpoint future research": 122998, "human interactions realworld": 70867, "overall study contributes": 118239, "study contributes field": 157250, "generation rag finetuning": 65007, "understood paper propose": 171552, "paper propose pipeline": 119249, "popular llms including": 124017, "questions answers using": 135042, "assess performance different": 13106, "demonstrate finetuned model": 38345, "answer specific questions": 9785, "systems built using": 160280, "built using llms": 19508, "using llms adapted": 174425, "humanai collaboration large": 71108, "applications case study": 10440, "extensive analysis shows": 55714, "fluent humanlike text": 59903, "like mental health": 92352, "important research topics": 73189, "topics natural language": 167359, "exploring application llms": 55453, "sentiment analysis models": 148618, "analysis models focus": 9020, "models focus single": 106374, "tuning datasets evaluation": 169989, "datasets evaluation benchmarks": 36832, "useful downstream tasks": 173323, "annotations paper propose": 9608, "analysis instruction dataset": 8980, "data samples based": 35688, "llm instruction tuning": 93768, "ability llms propose": 2265, "models outperform opensourced": 108384, "chatgpt gpt4 tasks": 23032, "llm propose approach": 93924, "use knowledge graph": 172691, "highlight key findings": 69754, "performance model downstream": 121805, "general capabilities large": 62923, "knowledge reasoning safety": 82343, "answering vqa techniques": 9989, "qualitative analyses using": 133978, "methods findings reveal": 101531, "findings reveal gpt4v": 58779, "models ability process": 105187, "image classification performance": 72208, "prompts paper introduces": 131400, "novel prompt generation": 114649, "systems particularly large": 160521, "recent machine learning": 137557, "gpt4 experiments demonstrate": 67005, "models large multimodal": 106903, "lack robust tom": 83002, "images social media": 72488, "social media online": 152617, "media online reviews": 100102, "usergenerated content ugc": 173562, "fabricate indistinguishable fake": 56503, "processing units gpus": 129349, "process vast amounts": 129031, "models llms extract": 107414, "evaluation using chatgpt": 51918, "sequential decisionmaking problem": 148870, "propose method named": 131924, "models llms conduct": 107215, "finetuning sft using": 59538, "harmful biased toxic": 68724, "scientific literature presents": 146971, "presents significant challenges": 126638, "introduce novel retrieval": 80070, "novel retrieval augmented": 114675, "different llm models": 41833, "different settings including": 41993, "summarizing academic papers": 158922, "widely applied various": 178363, "knowledge demonstrate effectiveness": 81863, "wide range realworld": 178302, "range realworld applications": 135683, "investigates potential application": 80578, "agents natural language": 6667, "natural language capabilities": 111558, "agent designed tackle": 6433, "achieving average performance": 4148, "reasoning benchmarks models": 136688, "models surpassing human": 109318, "closedsource opensource llms": 24498, "opensource llms significant": 116644, "significant performance drop": 150799, "llms lack robust": 95714, "long video generation": 97503, "various foundation models": 175952, "models play critical": 108516, "video diffusion model": 176702, "finally extensive experiments": 58461, "generation prediction tasks": 64940, "code model available": 24998, "attention large language": 13912, "face limitations high": 56538, "handling long contexts": 68600, "enables lossless compression": 48218, "memory computational demands": 100379, "specialized training finetuning": 153917, "memory usage achieving": 100474, "improving classification performance": 74114, "classification performance human": 24049, "models poses significant": 108564, "ai models human": 7099, "paper focuses understanding": 118957, "accuracy recall precision": 3365, "improve model accuracy": 73515, "just labeled examples": 81378, "text classification performance": 164894, "processing recent studies": 129284, "recent studies llms": 137665, "challenges accurately assessing": 21758, "assessing natural language": 13192, "language understanding llms": 86834, "llms paper provides": 96040, "development robust language": 41215, "language models raising": 86017, "model gpt architecture": 103756, "highquality content generation": 70003, "enhances incontext reasoning": 49414, "specific nlp tasks": 154046, "intelligent systems capable": 78958, "reasoning capabilities paper": 136712, "capabilities paper presents": 20097, "acquire necessary knowledge": 4258, "reasoning results demonstrate": 137108, "case studies reveal": 20898, "provide users concise": 133022, "automated approach leverages": 14518, "generation capabilities llms": 64469, "offering practical solution": 115761, "llms emergent abilities": 95035, "domains like science": 44465, "significantly improved llms": 151033, "natural language problem": 111695, "reasoning conduct experiments": 136769, "models llms suggested": 107960, "datatotext d2t generation": 37211, "generating coherent relevant": 64164, "text structured data": 165491, "using dataset collected": 174115, "generation tasks recent": 65180, "twostage instruction tuning": 170261, "method significantly improve": 101097, "significantly improve zeroshot": 151031, "models llms handle": 107514, "comparable results using": 26615, "terms average score": 164392, "openai gpt models": 116343, "approach overcomes limitations": 11437, "methods depend manually": 101428, "understand execute complex": 171003, "datasets code models": 36698, "llms vice versa": 96973, "ai understanding human": 7307, "understanding human mind": 171283, "perspective knowledge editing": 122671, "knowledge editing large": 81905, "require access model": 141062, "access model parameters": 2884, "knowledge fusion large": 82019, "fusion large language": 62196, "models llms scratch": 107852, "validate approach using": 175301, "using popular llms": 174585, "llms improve performance": 95558, "improve performance target": 73570, "performance target model": 122152, "model weights data": 104893, "weights data public": 178106, "reasoning tasks multilingual": 137187, "models specialized different": 109196, "language models lowresource": 85704, "models lowresource languages": 108106, "natural language comprehension": 111564, "information paper propose": 76618, "dataset dataset contains": 36219, "language models electronic": 84419, "models electronic health": 106064, "data clinical notes": 34758, "models llms dynamic": 107331, "tasks following human": 162425, "external knowledge present": 56070, "knowledge embedded foundation": 81914, "various applications llms": 175804, "dataset radiation oncology": 36493, "nlp community past": 113709, "specifically designed address": 154174, "qa text summarization": 133935, "language models highlyspecialized": 84642, "deep machine learning": 37792, "augmentation using chatgpt": 14325, "created using chatgpt": 33278, "using chatgpt using": 174046, "entity relation annotations": 49932, "complex information needs": 27436, "experimental data materials": 53931, "literature large language": 93181, "capabilities advanced large": 19767, "information extraction named": 76430, "extraction named entity": 56330, "benchmarked traditional models": 17125, "models based bert": 105451, "based bert architecture": 15686, "approach enhance performance": 11179, "performance generative large": 121586, "existing models including": 53483, "recent years rapid": 137794, "foundation models tailored": 60814, "models tailored specific": 109352, "data types tasks": 35896, "segmentation critical task": 147733, "conduct comprehensive comparative": 29043, "comprehensive comparative analysis": 27980, "prominent foundation models": 130149, "semantic segmentation tasks": 148221, "experimental findings reveal": 53948, "models diverse range": 106010, "diverse range datasets": 43617, "research contributes valuable": 141670, "contributes valuable insights": 31453, "feature extractor domain": 57407, "manipulation generative ai": 98947, "possess humanlevel linguistic": 124341, "misinformation social media": 102499, "models mllms significant": 108215, "significant impact various": 150725, "tasks extensive knowledge": 162381, "remains open research": 140055, "open research problem": 116283, "model generate text": 103730, "generate text descriptions": 63753, "simultaneously extensive experiments": 151750, "experiments demonstrate superior": 54238, "technology large language": 164147, "basic building block": 16411, "code available online": 24677, "chest xray report": 23587, "freetext radiology reports": 61578, "challenging traditional rulebased": 22309, "fall short capturing": 57123, "short capturing nuances": 149958, "address issues study": 5293, "computer vision datasets": 28499, "encompasses range tasks": 48539, "object detection semantic": 115119, "detection semantic segmentation": 40615, "semantic segmentation 3d": 148218, "study undertakes thorough": 157690, "various metrics including": 176035, "results study reveal": 143824, "despite impressive natural": 40135, "language comprehension capabilities": 83204, "natural languages propose": 111935, "natural language specifically": 111869, "leveraging external tools": 91846, "sentiment analysis social": 148638, "social media experimental": 152610, "media experimental results": 100088, "limitation large language": 92507, "real world llms": 136269, "tasks empirically validate": 162289, "safe deployment llms": 145801, "common technical approaches": 26205, "facilitated recent advancements": 56668, "framework allows researchers": 60952, "mathematical reasoning capabilities": 99589, "capabilities small language": 20178, "work addresses challenge": 178777, "chainofthought cot programofthought": 21487, "cot programofthought pot": 32880, "enables models achieve": 48223, "presents significant risks": 126640, "constitute significant threat": 30014, "code publicly accessible": 25077, "previous studies shown": 127671, "model takes account": 104718, "models using different": 109587, "models llms relatively": 107818, "llms relatively little": 96375, "experiments reveal significant": 54450, "reveal significant bias": 144371, "valuable insights advancing": 175422, "current augmentation methods": 34075, "diverse user needs": 43691, "informed formative study": 76893, "domainoriented large language": 44345, "continue advance evaluating": 31190, "advance evaluating performance": 5679, "advanced knowledge reasoning": 5746, "knowledge reasoning abilities": 82338, "11 opensource llms": 231, "reasoning multimodal large": 136992, "foundation models multimodal": 60784, "understanding reasoning abilities": 171438, "methods chainofthought prompting": 101362, "language models basic": 84168, "gpt2 models trained": 66572, "entropy token distribution": 49967, "monolingual multilingual models": 110071, "explores ethical challenges": 55394, "increasingly integrated daily": 75410, "data sources paper": 35781, "threats prompt injection": 166284, "prompt injection jailbreaking": 130547, "personal identifiable information": 122561, "sexually explicit content": 149734, "deployed realworld applications": 39221, "realworld applications existing": 136398, "training data pair": 168316, "correct incorrect answers": 32392, "model direct preference": 103467, "similar larger sizes": 151264, "using minimal data": 174490, "labelled training data": 82774, "hold significant potential": 70257, "developed recent years": 40912, "transfer learning prompt": 168959, "applications different tasks": 10484, "achieve high accuracy": 3658, "neural networks used": 112958, "llms higher education": 95488, "academic integrity issues": 2741, "enable llms generate": 48107, "llms generate explanations": 95360, "varying levels expertise": 176293, "multiple input modalities": 110939, "models llms traditionally": 107975, "research aims bridge": 141579, "enhancing llms comprehension": 49514, "assess llms ability": 13096, "empirical analysis shows": 47674, "baseline methods terms": 16238, "major foundation model": 98432, "approach model agnostic": 11392, "posthoc explainability methods": 124501, "model llm experiments": 103992, "llm experiments llms": 93651, "intelligence ai poised": 78761, "particular remains unclear": 120118, "multimodal chainofthoughts reasoning": 110600, "chainofthoughts reasoning large": 21555, "computational cost requires": 28350, "reasoning knowledge graphs": 136940, "questions requiring external": 135259, "achieve average accuracy": 3583, "models lms solve": 108081, "tasks answering questions": 161948, "previous methods using": 127617, "paper investigates ability": 119045, "models learn structural": 106943, "introduce general framework": 79970, "sequence modeling problems": 148772, "certain edge cases": 21384, "complex tasks smaller": 27620, "tasks smaller manageable": 163259, "wide array tasks": 178252, "integration external tools": 78655, "gap propose new": 62714, "including reinforcement learning": 74697, "perform indepth analysis": 120967, "future directions research": 62255, "medical knowledge injection": 100187, "incorporating medical knowledge": 75119, "evaluate method using": 51017, "fewshot learning requiring": 57981, "despite remarkable advances": 40198, "scale language models": 146301, "xai large language": 179820, "explainable artificial intelligence": 54743, "artificial intelligence xai": 12781, "model llm developed": 103986, "key feature model": 81502, "promising direction llms": 130245, "replaced token detection": 140462, "new training procedure": 113475, "training procedure consisting": 168647, "provide extensive analysis": 132784, "question answering question": 134786, "answering question answering": 9936, "align human judgments": 8003, "freeform answers large": 61559, "understanding capabilities facilitating": 171140, "presents substantial challenges": 126645, "performance diverse scenarios": 121416, "current evaluation frameworks": 34114, "evaluation framework tailored": 51608, "evaluation llm agents": 51670, "evaluation toolkit features": 51904, "light capabilities limitations": 92100, "limitations llm agents": 92618, "specialized language model": 153894, "language model discrete": 83607, "consists key steps": 29970, "challenges terms cost": 22083, "model finetuning llama": 103673, "training data generated": 168268, "outperform baseline models": 117567, "use crowdsourcing platforms": 172574, "fewshot fully supervised": 57915, "annotated data address": 9452, "data address issues": 34599, "address issues paper": 5286, "know dont know": 81704, "ai assistants based": 6876, "make factual errors": 98535, "knowledge intensive tasks": 82141, "tasks like opendomain": 162722, "risks practical applications": 145017, "method reducing hallucinations": 101064, "paper ask question": 118754, "express natural language": 55563, "language answer question": 83155, "known unknown questions": 82633, "recent advancements ai": 137343, "advancements ai led": 5864, "ai led development": 7065, "diverse realworld scenarios": 43627, "reveal significant performance": 144372, "human capabilities using": 70629, "using human evaluation": 174305, "addition human evaluations": 4866, "provide qualitative analysis": 132940, "framework future advancements": 61174, "answering information extraction": 9874, "covers wide range": 33110, "enhance generalization performance": 49203, "recent years particularly": 137788, "problemsolving various domains": 128679, "llms capable identifying": 94535, "llms specialized domains": 96655, "different llms developed": 41836, "diverse range models": 43618, "detection aigenerated content": 40442, "language understanding paper": 86843, "model specifically tuned": 104649, "prominent language models": 130151, "models including chatgpt35": 106708, "present compelling results": 126249, "models past year": 108448, "reasoning decisionmaking capabilities": 136798, "decisionmaking capabilities llms": 37404, "tasks paper provide": 162924, "explainability large language": 54727, "applied different tasks": 10747, "impressive results tasks": 73373, "chatgpt perform tasks": 23179, "results stateoftheart methods": 143813, "potential llms chatgpt": 124835, "taskoriented dialogue tod": 161847, "dialogue tod systems": 41536, "belief state tracking": 16756, "single language model": 151819, "human expertise ai": 70782, "llms open source": 95973, "using inhouse developed": 174326, "code generation gpt4": 24891, "llm specifically finetuned": 94020, "synergy human expertise": 159872, "human expertise llm": 70783, "existing approaches heavily": 53267, "approaches heavily rely": 11795, "llm inference introduce": 93758, "extensive experiments reasoning": 55877, "student models performance": 156822, "models medical report": 108164, "medical report generation": 100215, "like gpt35turbo gpt4": 92295, "medical applications despite": 100136, "challenging medical scenarios": 22208, "findings underscore critical": 58822, "underscore critical need": 170914, "future research address": 62307, "information extraction clinical": 76420, "extraction clinical notes": 56272, "domain expertise timeconsuming": 44153, "llms demonstrated promising": 94866, "performed significantly better": 122380, "complex tasks large": 27615, "simpler supervised models": 151565, "supervised models large": 159160, "llms demonstrated potential": 94862, "models advancement large": 105292, "applications real world": 10656, "create new benchmark": 33218, "analysis recent years": 9116, "artificial intelligence applications": 12712, "language processing software": 86617, "processing software engineering": 129298, "llms software testing": 96634, "study chatgpt gpt4": 157207, "chatgpt enhance human": 22891, "generate test cases": 63750, "test cases generated": 164526, "chatbots powered large": 22629, "user experience ux": 173409, "selfplay reinforcement learning": 148026, "7b 13b 34b": 1621, "achieves performance par": 4053, "llms achieve superior": 94300, "paper specifically focus": 119334, "chatgpt gpt 35": 23001, "performs significantly worse": 122459, "downstream tasks prompt": 44822, "tasks prompt engineering": 163023, "prompt engineering methods": 130472, "think like humans": 166135, "improves performance llms": 74052, "performance llms furthermore": 121757, "demonstrate broad applicability": 38259, "extreme compression large": 56418, "size poses significant": 152048, "traditional compression methods": 167603, "distillation lowrank approximation": 43154, "context paper introduces": 30864, "llama2 7b model": 93352, "prompting largescale pretrained": 130991, "based largescale pretrained": 15915, "downstream tasks pretraining": 44818, "provide theoretical insights": 133005, "models llms captured": 107162, "longrange temporal dependencies": 97574, "sensory inputs computational": 148473, "chains trees graphs": 21569, "nlp witnessed significant": 113929, "witnessed significant progress": 178578, "significant progress recent": 150843, "progress recent years": 130011, "design choices lead": 39574, "advances performance large": 6049, "emergence theory mind": 47448, "beliefs desires intentions": 16761, "attribute mental states": 14082, "models exhibit similar": 106210, "exhibit similar bias": 53102, "similar observed humans": 151281, "language models sequence": 86142, "modeling mlm objective": 105049, "equivalent model size": 50205, "forgetting previously acquired": 60432, "work seeks address": 179281, "encountered training data": 48581, "training data limited": 168299, "rigorous experiments demonstrate": 144862, "proposed method stateoftheart": 132373, "superiority proposed model": 159073, "ablation experiments demonstrate": 2432, "scientific large language": 146968, "llms emerged transformative": 95032, "enhancing natural language": 49536, "significant stride artificial": 150884, "stride artificial general": 156300, "providing thorough review": 133391, "challenges point promising": 21996, "point promising research": 123719, "expanding role large": 53702, "human traits behaviors": 71065, "code available project": 24680, "available project page": 15183, "understanding generation performance": 171263, "high number parameters": 69492, "neural architectures allows": 112831, "source training material": 153482, "additionally propose new": 5114, "propose new metrics": 131968, "real world paper": 136271, "world paper presents": 179602, "paper presents work": 119194, "end conducted empirical": 48644, "conducted focus group": 29254, "exhibited remarkable success": 53156, "llms ability produce": 94261, "spanning various domains": 153687, "llms prompted generate": 96233, "mllms shown impressive": 102850, "impressive abilities generating": 73254, "causal reasoning capabilities": 21218, "reasoning capabilities recent": 136716, "performance chatgpt gpt4": 121237, "framework including task": 61216, "foster critical thinking": 60680, "avoid negative effects": 15346, "matches human performance": 99443, "ai case study": 6899, "best practices adapting": 17733, "proprietary large language": 132517, "using major medical": 174474, "benchmark datasets experimental": 16909, "performance gains achieving": 121552, "model parameter size": 104214, "release data code": 139461, "biomedical clinical domains": 18537, "language models tool": 86295, "models tool use": 109410, "tabular data analysis": 160784, "finance large language": 58552, "capabilities face challenges": 19894, "face challenges like": 56518, "explore potential language": 55261, "using financial domain": 174203, "language models finance": 84531, "models finance domain": 106339, "generate false information": 63497, "information known hallucination": 76542, "generation rag approach": 65003, "capture multifaceted nature": 20669, "datasets best knowledge": 36682, "learning models large": 90721, "approach addresses limitations": 10973, "efficacy accurately identifying": 46357, "research paper explores": 141954, "explores potential large": 55417, "human experts investigate": 70787, "study investigates integration": 157445, "concerns regarding accuracy": 28817, "study underscores need": 157684, "importance developing llms": 73022, "collaboration healthcare providers": 25587, "generative linguistic steganography": 65455, "linguistic steganography ls": 93069, "generate steganographic text": 63726, "address problems paper": 5348, "problems paper proposes": 128585, "utilized model training": 175111, "finding right model": 58622, "natural language leverage": 111670, "leverage reasoning capabilities": 91652, "propose training strategy": 132173, "presents important step": 126587, "reduce environmental impact": 138424, "openvocabulary object detection": 116715, "based designed prompt": 15752, "plugandplay framework need": 123662, "stateoftheart pretrained models": 155309, "computational memory resources": 28380, "second investigate impact": 147483, "large model introduce": 88913, "gpt4v gemini pro": 67251, "poses significant threat": 124233, "specific groups people": 154006, "work investigate potential": 179070, "investigate potential implications": 80470, "model llm facilitate": 103994, "wide range diverse": 178277, "pretrained llms finetuning": 127022, "llms finetuning large": 95276, "strategy natural language": 156188, "classification tasks approach": 24108, "proposed framework demonstrates": 132301, "reviews social media": 144592, "illustrate proposed model": 72158, "proposed model improves": 132393, "integrated development environments": 78522, "development environments ides": 41104, "open foundation models": 116232, "aim improve performance": 7465, "improve performance efficiency": 73549, "faster inference speed": 57292, "scripts pretrained models": 147258, "models llms wide": 108031, "approaches use llms": 11942, "requires extensive human": 141371, "framework leverages capabilities": 61277, "leverages capabilities multiple": 91712, "remote sensing domain": 140348, "demonstrated remarkable success": 38787, "remote sensing rs": 140351, "1m imagetext pairs": 576, "domain extensive experiments": 44160, "availability large language": 15055, "existing plagiarism detection": 53520, "plagiarism detection systems": 123192, "annotated dataset available": 9464, "dataset available community": 36125, "chat large language": 22540, "fundamentally change way": 61989, "way people engage": 177862, "natural social sciences": 111954, "explored potential llms": 55361, "cognitive science paper": 25482, "central role human": 21349, "diffusion models trained": 42256, "recommendation leveraging large": 138209, "models llms recommendation": 107814, "recently garnered considerable": 137894, "garnered considerable attention": 62777, "limits practical application": 92929, "adapt llms new": 4540, "coreset selection methods": 32192, "pruning method based": 133465, "llms empirical results": 95045, "empirical results realworld": 47735, "results realworld datasets": 143728, "realworld datasets validate": 136437, "datasets validate effectiveness": 37187, "proposed method uses": 132374, "visionlanguage models current": 177042, "models current large": 105832, "crucial enhancing performance": 33795, "paper proposes use": 119277, "image encoders pretrained": 72244, "effectively addressing issue": 45941, "technique significantly reduces": 163805, "models like sam": 106997, "significant performance boost": 150795, "resources project website": 142471, "robust prompt optimization": 145309, "remain vulnerable adversarial": 139954, "vulnerable adversarial attacks": 177647, "significantly improves robustness": 151052, "exhibit limitations ability": 53070, "limitations ability incorporate": 92529, "application machine learning": 10346, "language models revolutionised": 86106, "machine learning large": 98035, "ngram language models": 113625, "language models trillion": 86328, "text analysis improving": 164829, "models use small": 109569, "humanwritten machinegenerated text": 71520, "natural language communication": 111563, "llmgenerated data effectively": 94198, "predict human behavior": 125686, "preliminary study using": 126148, "use llms software": 172752, "vulnerabilities source code": 177636, "model provides accurate": 104387, "better results current": 18014, "code test cases": 25179, "based training data": 16147, "training data evaluate": 168252, "prompt engineering compare": 130449, "widely used static": 178406, "results using llms": 143907, "use prompt engineering": 172825, "llms access external": 94277, "enables llms learn": 48212, "consistently outperforms previous": 29906, "language model size": 83903, "size training time": 152076, "models rapid evolution": 108785, "models llms epitomized": 107364, "attention heads transformer": 13894, "heads transformer models": 68926, "contextual information inherent": 31094, "terms accuracy efficiency": 164384, "llms work contributes": 97017, "striking balance computational": 156319, "models significantly advanced": 109129, "llm serving systems": 93996, "lead significant performance": 89776, "performance degradation existing": 121365, "existing llm serving": 53416, "publicly available encourage": 133638, "context retrievalaugmented generation": 30905, "factors influencing effectiveness": 56805, "generative ai data": 65313, "report experience using": 140523, "using new approach": 174530, "phenomenon inverse scaling": 122832, "including gpt2 gpt3": 74535, "remains explored work": 140007, "explored work propose": 55377, "prompting method enhances": 131010, "recent methods using": 137562, "novel dataset comprising": 114461, "providing deeper insight": 133279, "evaluating generated questions": 51305, "llm achieves accuracy": 93434, "language model robust": 83890, "sequential recommender systems": 148883, "traditional defense strategies": 167612, "comprehensive experiments validate": 28050, "realtime strategy game": 136382, "ii large language": 72099, "llms recently garnered": 96343, "reinforcement learningbased methods": 139125, "different difficulty levels": 41735, "advent chatgpt large": 6165, "llms demonstrated considerable": 94836, "wide array domains": 178249, "parameters training data": 119880, "design discovery novel": 39606, "discovery novel materials": 42784, "formidable challenge study": 60581, "materials discovery design": 99509, "highlights critical need": 69851, "evaluates factual accuracy": 51235, "models including gpt35": 106714, "including gpt35 gpt4": 74540, "ai benefits fairly": 6889, "language models spatial": 86201, "analysis multimodal large": 9023, "novel framework designed": 114513, "framework designed enable": 61070, "leverage rich knowledge": 91659, "manner paper propose": 99003, "extensive experiments popular": 55865, "llms ability understand": 94264, "models exhibit social": 106211, "create dataset called": 33186, "build high quality": 19321, "learning directly generate": 90373, "training new models": 168605, "empirical study despite": 47751, "impressive capabilities multimodal": 73269, "finegrained image understanding": 58871, "marking notable advancement": 99245, "stateoftheart llms generate": 155190, "llms generate novel": 95372, "neural networks llms": 112936, "despite significant progress": 40209, "capable handling diverse": 20433, "strong generalization capability": 156390, "validation results demonstrate": 175378, "widely recognized datasets": 178383, "proposed model outperforms": 132394, "model outperforms baseline": 104170, "language modeling research": 84020, "content scientific papers": 30615, "open source data": 116295, "open language model": 116243, "language model framework": 83648, "computer science course": 28484, "gained attention recent": 62455, "chatgpt potential enhance": 23198, "students critical thinking": 156852, "integrating ai tools": 78578, "ai tools educational": 7293, "methods like prompt": 101642, "various class labels": 175855, "class labels address": 23878, "issues paper introduces": 81040, "efficient finetuning approach": 46616, "designed classification tasks": 39836, "improvement training efficiency": 73862, "compared traditional approaches": 26952, "complex language tasks": 27453, "engage moral reasoning": 48824, "language model embeddings": 83615, "affordances large language": 6354, "general text embeddings": 63059, "stateoftheart sentence embedding": 155351, "new challenges opportunities": 113105, "important overlooked aspect": 73169, "paper explores concept": 118931, "leveraging chatgpt enhanced": 91818, "chatgpt serve viable": 23301, "serve viable alternative": 149021, "alternative human annotators": 8562, "potential replace human": 124941, "possibility using llms": 124390, "tasks lack comprehensive": 162669, "lack comprehensive research": 82905, "effective different tasks": 45738, "insights models strengths": 77606, "task offers valuable": 161581, "using chatgpt recent": 174043, "prompt tuning techniques": 130728, "text classification datasets": 164883, "extended support additional": 55665, "vulnerabilities large language": 177619, "requires substantial human": 141453, "leveraging domain specific": 91836, "domain specific language": 44293, "large scale study": 89052, "existing alignment training": 53257, "llms hold significant": 95507, "hold significant promise": 70258, "generation rag emerges": 65004, "rag emerges promising": 135425, "emerges promising approach": 47497, "domain knowledge llms": 44210, "existing conversational agents": 53325, "chatgpt largelanguage models": 23093, "adversely affect performance": 6258, "usage generative ai": 172450, "processing tasks question": 129327, "use cases work": 172539, "processing tasks like": 129322, "tasks like summarization": 162727, "real world problems": 136273, "precision f1 score": 125613, "f1 score llm": 56488, "highest f1 score": 69666, "emergence generative ai": 47420, "llms shown powerful": 96557, "shown powerful capabilities": 150329, "powerful capabilities generating": 125260, "known prompt engineering": 82621, "prompt engineering assess": 130445, "results experiments demonstrated": 143403, "questions generate new": 135140, "human reasoning decisionmaking": 71008, "computer programming courses": 28480, "requires considerable human": 141351, "considerable human cost": 29619, "real application scenarios": 136217, "conducted comprehensive evaluations": 29221, "comprehensive evaluations various": 28030, "generating chinese content": 64153, "convolutional recurrent neural": 32046, "low arithmetic intensity": 97732, "context address challenge": 30680, "facilitates efficient llm": 56683, "inference experimental results": 76004, "accuracy gpt2 model": 3256, "transfer learning pretrained language": 168957, "learning pretrained language models": 90845, "pretrained language models growing": 126911, "language models pretrained large": 85945, "present conceptually simple effective": 126267, "does require pretraining finetuning": 44027, "tasks question answering qa": 163063, "field natural language processing": 58215, "outperforms existing methods significant": 117757, "revolutionized natural language processing": 144657, "natural language understanding tasks": 111917, "conducted extensive empirical study": 29248, "results machine translation text": 143582, "machine translation text summarization": 98133, "using pretrained language models": 174596, "pretrained language models lms": 126926, "various natural language processing": 176051, "natural language processing tasks": 111813, "neural machine translation nmt": 112875, "recurrent neural network rnn": 138350, "long shortterm memory lstm": 97484, "including natural language processing": 74636, "natural language processing speech": 111808, "significantly reduce number parameters": 151131, "using transformerbased language models": 174822, "transformerbased language models automated": 169244, "language models large language": 84765, "models large language models": 106883, "large language models range": 88658, "models recurrent neural networks": 108870, "range natural language understanding": 135659, "large language models produce": 88630, "tools large language models": 167193, "large language models image": 87877, "empirical results demonstrate proposed": 47723, "results demonstrate proposed algorithm": 143326, "large pretrained language model": 88994, "pretrained language model bert": 126858, "bert devlin et al": 17525, "devlin et al 2019": 41341, "diverse set nlp tasks": 43651, "nlp tasks including natural": 113854, "tasks including natural language": 162567, "including natural language inference": 74635, "natural language inference question": 111637, "language inference question answering": 83428, "pretrained masked language models": 127035, "masked language models mlms": 99313, "transformerbased language models propose": 169249, "gpt radford et al": 66483, "radford et al 2018": 135397, "generative models reinforcement learning": 65511, "models reinforcement learning algorithms": 108889, "study pretrained language models": 157546, "usergenerated content social media": 173561, "neural network language models": 112902, "transformer based large language": 169103, "based large language models": 15907, "large language models vllms": 88856, "natural language understanding nlu": 111905, "language understanding nlu tasks": 86842, "train machine learning models": 167795, "modelfree deep reinforcement learning": 104950, "pretrained language models recent": 126972, "pretraining large language models": 127365, "new stateoftheart sota results": 113433, "large pretrained language models": 88995, "pretrained language models achieved": 126873, "documents using natural language": 43949, "large language model serve": 87480, "extensive automatic human evaluations": 55722, "assistance track overview conversational": 13380, "pretrained language models paper": 126938, "language models paper presents": 85849, "paper presents empirical study": 119159, "pretrained language models plms": 126942, "texttotext transfer transformer t5": 165867, "natural language paper propose": 111688, "language generation understanding tasks": 83389, "structure extensive experimental results": 156555, "optical character recognition ocr": 116924, "largescale pretrained language models": 89377, "pretrained language models bert": 126880, "language models bert gpt2": 84178, "inference time experimental results": 76122, "pretrained models source code": 127110, "code facilitate future research": 24835, "paper propose alternative approach": 119203, "despite simplicity approach experimental": 40212, "simplicity approach experimental results": 151578, "recent work demonstrated substantial": 137722, "work demonstrated substantial gains": 178896, "model 175 billion parameters": 102998, "pretrained transformerbased language models": 127211, "transformerbased language models bert": 169245, "code reproduce results available": 25106, "knowledge pretrained language models": 82289, "neural language models trained": 112868, "lens large language models": 91416, "deep neural network architectures": 37804, "propose new method called": 131966, "investigating pretrained language models": 80615, "achieve new stateoftheart results": 3692, "neural network language model": 112901, "paper proposes novel method": 119275, "word error rate wer": 178639, "deep learning natural language": 37768, "learning natural language processing": 90756, "natural language processing deep": 111716, "language processing deep learning": 86505, "wide range natural language": 178292, "range natural language processing": 135655, "natural language processing applications": 111701, "measuring massive multitask language": 99953, "massive multitask language understanding": 99370, "possess extensive world knowledge": 124338, "advanced neural language models": 5788, "neural language models paper": 112866, "industry government civil society": 75878, "current limitations language models": 34159, "parameters pretrained language models": 119836, "pretrained language models gpt3": 126909, "language models gpt3 brown": 84609, "models gpt3 brown et": 106529, "gpt3 brown et al": 66657, "brown et al 2020": 19253, "successful natural language understanding": 158350, "work natural language processing": 179133, "natural language processing latin": 111737, "achieves new state art": 4040, "tasks natural language processing": 162841, "natural language processing especially": 111725, "larger models perform better": 89235, "african american vernacular english": 6379, "improve language model performance": 73498, "modern deep neural networks": 109796, "unconditional generation conditional generation": 170711, "language model like gpt2": 83717, "large scale pretrained language": 89050, "scale pretrained language models": 146331, "achieved great success various": 3820, "great success various natural": 67743, "success various natural language": 158311, "various natural language understanding": 176060, "achieved great success nlp": 3819, "models like bert gpt": 106969, "extensive experiments benchmark datasets": 55806, "using deep reinforcement learning": 174128, "deep reinforcement learning drl": 37821, "pretrained neural language models": 127137, "success pretrained language models": 158280, "pretrained language models motivated": 126932, "sentiment analysis natural language": 148624, "analysis natural language inference": 9030, "pretrained language model finetuning": 126861, "stateoftheart natural language understanding": 155254, "pretraining large language model": 127364, "text generation model gpt2": 165159, "evaluations model outperforms existing": 52002, "deep neural networks dnns": 37810, "language models paper present": 85848, "downstream tasks named entity": 44814, "tasks named entity recognition": 162833, "language understanding nlu generation": 86838, "understanding nlu generation nlg": 171375, "current pretraining objectives masked": 34214, "extensive experimental results method": 55788, "experiments proposed model achieves": 54411, "proposed model achieves stateoftheart": 132390, "model achieves stateoftheart performance": 103054, "pretrained deep learning models": 126784, "chinese pretrained language model": 23658, "language model pretrained language": 83846, "model pretrained language models": 104319, "language models plms proven": 85910, "various downstream nlp tasks": 175918, "gpt3 175 billion parameters": 66632, "learning artificial intelligence ai": 90227, "research natural language processing": 141918, "natural language processing nlp": 111747, "neural language models bert": 112859, "framework based conditional generative": 60979, "large generative language models": 87271, "application programming interfaces apis": 10368, "text classification paper proposes": 164893, "main contribution paper propose": 98231, "large language models designed": 87710, "making pretrained language models": 98795, "pretrained language models better": 126884, "et al 2020 achieves": 50774, "range nlp tasks including": 135666, "nlp tasks including classification": 113850, "makes minimal assumptions task": 98671, "capability largescale language models": 20330, "training largescale language models": 168538, "language models bert xlnet": 84183, "finetuning largescale language models": 59347, "leverage large pretrained language": 91622, "pretrained language models perform": 126939, "natural language generation tasks": 111626, "leveraging commonsense knowledge large": 91824, "commonsense knowledge large language": 26273, "knowledge large language model": 82164, "large language model pretrained": 87461, "pretrained language models gpt2": 126908, "superior performance wide range": 159049, "performance wide range nlp": 122301, "wide range nlp tasks": 178297, "natural language understanding generation": 111900, "distilling large language models": 43190, "achieve state art results": 3751, "effective natural language processing": 45827, "work propose unified framework": 179222, "text based visual textual": 164858, "based visual textual inputs": 16180, "visual question answering referring": 177273, "question answering referring expression": 134797, "answering referring expression comprehension": 9953, "shows better generalization ability": 150409, "models code publicly available": 105656, "progress natural language processing": 129995, "natural language generation nlg": 111616, "address problem propose novel": 5343, "artificial intelligence ai increasingly": 12679, "using natural language processing": 174517, "models gpt bert xlnet": 106519, "models outperform strong baselines": 108388, "using automated metrics human": 173982, "tasks provided natural language": 163047, "large language models increasingly": 87895, "model extensive experiments demonstrate": 103621, "pretrained language models contain": 126889, "language models contain humanlike": 84301, "largescale transformerbased language models": 89415, "transformerbased language models lms": 169248, "language models lms bert": 85671, "significantly improves zeroshot performance": 151054, "reasoning natural language inference": 136999, "language models bert gpt": 84176, "task large language models": 161508, "large models like bert": 88926, "models like bert gpt3": 106971, "communication major bottleneck especially": 26390, "major bottleneck especially commodity": 98411, "bottleneck especially commodity systems": 18889, "neural language models recently": 112867, "applications including language modeling": 10562, "pretrained transformer language models": 127197, "large language models shown": 88733, "language models shown promising": 86156, "models shown promising results": 109111, "radford et al 2019": 135398, "model multiple downstream tasks": 104110, "colossal clean crawled corpus": 25800, "corpus large language models": 32325, "large language models led": 87947, "raffel et al 2020": 135416, "despite success conventional supervised": 40221, "success conventional supervised learning": 158225, "generative pretrained language models": 65538, "pretrained language models encode": 126896, "transformerbased language models tlms": 169250, "data improve prediction performance": 35190, "performance machine learning models": 121777, "performance natural language processing": 121835, "natural language processing machine": 111740, "language processing machine learning": 86532, "deep learningbased language models": 37784, "language model large language": 83709, "model large language models": 103929, "language models led stateoftheart": 84785, "models led stateoftheart accuracies": 106949, "led stateoftheart accuracies range": 91249, "stateoftheart accuracies range tasks": 155063, "language models plms new": 85905, "models plms new paradigm": 108540, "new paradigm natural language": 113320, "paradigm natural language processing": 119489, "performances natural language understanding": 122338, "data wide range domains": 35963, "text summarization question answering": 165513, "question answering dialogue generation": 134704, "tasks experimental results demonstrate": 162362, "experimental results demonstrate superior": 54002, "extracted pretrained large language": 56203, "pretrained large language model": 126996, "tasks general language understanding": 162447, "learning based language models": 90243, "russian natural language understanding": 145775, "pretrained language models like": 126919, "language models like gpt3": 84800, "models like gpt3 bert": 106985, "modern transformerbased language models": 109844, "training large language models": 168527, "large language models notably": 88551, "widelyused pretrained language models": 178424, "reinforcement learning rl sequence": 139107, "language models plms knowledge": 85902, "models bert gpt roberta": 105492, "large language modeling dialogue": 87518, "language modeling dialogue tasks": 83991, "introduce new type programming": 80042, "experimental results indicate approach": 54020, "learning deep neural networks": 90356, "twin delayed deep deterministic": 170220, "delayed deep deterministic policy": 38033, "deep deterministic policy gradient": 37714, "deterministic policy gradient algorithm": 40730, "achieves better performance stateoftheart": 3973, "openai gym benchmark tasks": 116354, "todays large language models": 166677, "large language models enriched": 87764, "compression large language models": 28216, "models natural language processing": 108268, "language processing nlp led": 86560, "downstream tasks glue benchmark": 44791, "language models lms trained": 85695, "trained general domain text": 167930, "present novel endtoend framework": 126387, "datasets demonstrate proposed approach": 36773, "demonstrate proposed approach outperforms": 38499, "proposed approach outperforms stateoftheart": 132242, "language models recent years": 86058, "size pretrained language models": 152054, "downstream tasks experimental results": 44783, "language models like gpt": 84799, "propose new framework called": 131961, "parameter count training data": 119600, "machine learning ml methods": 98044, "accelerating large language models": 2795, "large language models llms": 87983, "knowledge enhanced pretraining language": 81944, "enhanced pretraining language understanding": 49358, "pretraining language understanding generation": 127358, "language understanding generation pretrained": 86823, "understanding generation pretrained models": 171266, "models achieved stateoftheart results": 105251, "achieved stateoftheart results various": 3909, "stateoftheart results various natural": 155340, "results various natural language": 143919, "language processing nlp tasks": 86582, "processing nlp tasks recent": 129260, "gpt3 shown scaling pretrained": 66756, "shown scaling pretrained language": 150374, "scaling pretrained language models": 146439, "gpt3 model 175 billion": 66724, "unified framework named ernie": 171718, "framework named ernie 30": 61321, "pretraining largescale knowledge enhanced": 127373, "largescale knowledge enhanced models": 89326, "language understanding generation tasks": 86824, "zeroshot learning fewshot learning": 180237, "trained model 10 billion": 168008, "model 10 billion parameters": 102987, "model outperforms stateoftheart models": 104187, "library information science lis": 92042, "wide range end tasks": 178283, "setting new stateoftheart performance": 149483, "context large language models": 30809, "large language models achieve": 87536, "language models achieve stateoftheart": 84062, "models achieve stateoftheart performance": 105234, "pretrained language models good": 126905, "language models massive gpus": 85722, "conduct indepth analysis largescale": 29147, "adaptable wide range downstream": 4596, "wide range downstream tasks": 178280, "deep learning transfer learning": 37780, "speech recognition language models": 154451, "recognition language models lms": 138082, "language models lms pretrained": 85684, "models lms pretrained massive": 108074, "bidirectional encoder representations transformers": 18347, "encoder representations transformers bert": 48440, "representations transformers bert generative": 140903, "technology natural language processing": 164153, "language processing tasks paper": 86639, "automatic speech recognition asr": 14742, "relative word error rate": 139396, "leveraging pretrained language models": 91926, "pretrained language models t5": 126982, "improve performance pretrained language": 73567, "performance pretrained language models": 121931, "tasks conduct extensive experiments": 162111, "conduct extensive experiments study": 29126, "common sense world knowledge": 26192, "transfer learning large pretrained": 168946, "applications natural language processing": 10617, "language processing nlp recently": 86576, "pretrained models bert gpt2": 127067, "using reinforcement learning rl": 174664, "improving zeroshot learning abilities": 74241, "language models instruction tuning": 84718, "instruction tuning finetuning language": 78091, "tuning finetuning language models": 170016, "finetuning language models collection": 59327, "model achieves 80 accuracy": 103035, "deep neural language models": 37801, "performance comparable stateoftheart models": 121275, "models ability large language": 105183, "ability large language models": 2243, "large language models fewshot": 87807, "orders magnitude smaller gpt3": 117268, "pretrained language models promptbased": 126967, "pretrained language models existing": 126897, "similarity measures cosine similarity": 151362, "measures cosine similarity euclidean": 99921, "cosine similarity euclidean distance": 32639, "static word embedding models": 155470, "remarkable incontext learning ability": 140209, "largescale language models lms": 89344, "transformerbased pretrained language models": 169286, "obtained large language models": 115525, "language models large pretrained": 84769, "models large pretrained language": 106908, "code trained models available": 25187, "question answering recent advances": 134793, "visual question answering propose": 177272, "enhance pretrained language models": 49260, "pretrained language models performance": 126940, "neural language models lms": 112864, "language models lms exhibit": 85675, "performance improves model size": 121658, "dataset covering wide range": 36204, "dense passage retriever dpr": 39098, "absolute improvement exact match": 2611, "improvement exact match accuracy": 73788, "measure large language models": 99854, "large language models known": 87930, "knowledge large language models": 82166, "models proposing method evaluating": 108717, "language models method based": 85739, "visionlanguage models pretrained visionlanguage": 177054, "models pretrained visionlanguage models": 108631, "large amounts labeled data": 87185, "prompt tuning novel paradigm": 130717, "particular large language models": 120091, "large language models work": 88864, "pretrained language models shown": 126975, "language models shown promise": 86155, "large language models used": 88842, "paper introduces novel method": 119019, "stateoftheart deep learning methods": 155121, "model able generate images": 103012, "openais generative pretrained transformer": 116405, "generative pretrained transformer gpt3": 65554, "reinforcement learning rl achieved": 139096, "pretrained language models ptlms": 126970, "chaining large language model": 21479, "large language model prompts": 87467, "prompts large language models": 131352, "language models llms demonstrated": 85009, "models llms demonstrated impressive": 107272, "llms demonstrated impressive potential": 94859, "bias large language models": 18149, "language models gpt3 t5": 84612, "language models generative pretrained": 84592, "models generative pretrained transformer": 106486, "success field natural language": 158240, "largescale pretrained language model": 89376, "language model zeroshot fewshot": 83964, "fewshot learning recent work": 57980, "fewshot learning natural language": 57973, "tasks scaling model size": 163199, "new classes training data": 113113, "models large language model": 106881, "large language model pretraining": 87462, "source code publicly available": 153416, "building chinese biomedical language": 19381, "language models plms bert": 85893, "chinese biomedical language understanding": 23609, "extracted large language models": 56193, "mixture experts moe models": 102754, "using natural language queries": 174521, "create synthetic training data": 33237, "high quality training data": 69517, "pretrained language models downstream": 126893, "language models downstream tasks": 84405, "generalization large language models": 63188, "large language models recently": 88679, "language models recently shown": 86067, "pretraining radford et al": 127421, "model raffel et al": 104410, "strong zeroshot performance standard": 156459, "zeroshot performance standard datasets": 180288, "demonstrate large language models": 38395, "adapting pretrained language models": 4758, "models like gpt3 t5": 106986, "catastrophic forgetting address issues": 21068, "data experimental results demonstrate": 35016, "large language models bert": 87603, "bender et al 2021": 17400, "propose simple effective approach": 132121, "classification tasks sentiment analysis": 24126, "tasks sentiment analysis product": 163218, "fake news detection using": 57102, "finetuning large language models": 59334, "large language models commonly": 87648, "achieve stateoftheart performance natural": 3757, "stateoftheart performance natural language": 155282, "modern natural language processing": 109825, "computational cost grows quadratically": 28345, "current pretrained language models": 34211, "models performance terms accuracy": 108496, "methods large language models": 101627, "combining large language models": 25983, "large language models knowledge": 87925, "language models knowledge bases": 84747, "use large language model": 172702, "large language model provide": 87468, "language models plms achieve": 85890, "plms achieve comparable performance": 123569, "language models generate highquality": 84575, "tease apart possibilities introduce": 163678, "training generative pretrained transformer": 168468, "generative pretrained transformer gpt": 65546, "pretrained transformer gpt proposed": 127188, "privacy risks language models": 128023, "pretrained language models survey": 126981, "various pretrained language models": 176111, "pretrained language models specialized": 126977, "images using natural language": 72508, "enhance autoregressive language models": 49158, "autoregressive language models conditioning": 14990, "work opens new avenues": 179145, "objectives masked language modeling": 115255, "tasks visual question answering": 163467, "visual question answering imagetext": 177268, "question answering imagetext retrieval": 134733, "language models bert t5": 84181, "building block nlp applications": 19377, "large language models new": 88548, "language models new languages": 85793, "make code models publicly": 98504, "code models publicly available": 25018, "significant progress natural language": 150841, "achieve strong results incontext": 3766, "strong results incontext learning": 156443, "computing resources paper propose": 28557, "reward model trained predict": 144696, "280 billion parameter model": 893, "tasks achieving stateoftheart performance": 161898, "cuttingedge large language model": 34438, "large language model gpt3": 87365, "language models powered deep": 85928, "models powered deep learning": 108581, "natural language understanding models": 111904, "posits large language models": 124326, "prompt tuning model tuning": 130714, "natural language inference nli": 111636, "natural language generation techniques": 111627, "question answering knowledge bases": 134744, "learning methods natural language": 90683, "methods natural language processing": 101674, "natural language processing recent": 111798, "train large language models": 167783, "large language models main": 88498, "pretrained language models artificial": 126877, "language models artificial intelligence": 84134, "models artificial intelligence ai": 105395, "artificial intelligence ai technologies": 12704, "implications large language models": 72939, "prompt learning pretrained language": 130582, "language models increasing scale": 84696, "generalpurpose pretrained language models": 63364, "modeling capabilities large language": 104976, "capabilities large language models": 19989, "language models increasingly rely": 84702, "training corpora language models": 168209, "structured data knowledge graphs": 156631, "pretrained language models propose": 126968, "relation extraction event extraction": 139246, "extraction event extraction knowledge": 56295, "event extraction knowledge graph": 52078, "knowledge graph completion datasets": 82046, "datasets experimental results demonstrate": 36847, "experimental results demonstrate approach": 53981, "pretrained generalpurpose language models": 126820, "natural language processing domains": 111722, "language models natural language": 85785, "finetuning reinforcement learning rl": 59507, "reinforcement learning rl models": 139106, "promptbased learning large language": 130778, "learning large language models": 90624, "large language models demonstrate": 87697, "t0 sanh et al": 160681, "sanh et al 2021": 146133, "especially large language models": 50497, "large language models use": 88841, "large transformer language models": 89083, "output large language models": 117956, "natural language processing models": 111744, "machine learning ml model": 98045, "tasks using zeroshot fewshot": 163440, "gpt3 model generate semantic": 66727, "potential large language models": 124806, "large language models capture": 87621, "using large language models": 174369, "recent advances language models": 137406, "large language models information": 87903, "large pretrained transformer models": 89015, "capabilities large pretrained language": 19999, "language models synthetic data": 86258, "synthetic data achieve better": 160024, "reasoning pretrained language models": 137043, "language models lms demonstrated": 85672, "experiments demonstrate effectiveness proposed": 54222, "masked language modeling masked": 99305, "outline potential research directions": 117497, "failures large language models": 57024, "large language models human": 87869, "cognitive biases large language": 25444, "biases large language models": 18282, "large language models generate": 87833, "prompt set trainable vectors": 130670, "frozen pretrained language models": 61683, "filters lowquality data using": 58370, "augmentation large language models": 14290, "large language models emotional": 87749, "work leverage large language": 179099, "leverage large language models": 91618, "large language models improving": 87886, "fewshot named entity recognition": 58000, "named entity recognition ner": 111404, "efficient language models transformer": 46656, "neural architecture search nas": 112828, "architecture search nas algorithm": 12221, "frozen pretrained language model": 61681, "pretrained language model plm": 126863, "language generation nlg tasks": 83371, "conceptually simple empirically powerful": 28734, "achieve comparable better performance": 3603, "social media social media": 152629, "language processing nlp large": 86557, "practical large language models": 125430, "large language models translation": 88825, "prompting large language models": 130980, "large language models providing": 88651, "providing natural language instructions": 133335, "performance large language models": 121719, "large language models zeroshot": 88873, "language models zeroshot setting": 86417, "instructions large language models": 78292, "question answering qa task": 134784, "pretrained language models prlms": 126965, "provide insights future directions": 132850, "models pretrained natural language": 108623, "natural language data trained": 111576, "text generation various tasks": 165203, "visual prompt tuning vpt": 177255, "tuning large language models": 170044, "trainable parameters input space": 167853, "achieves significant performance gains": 4074, "significant performance gains compared": 150804, "abilities pretrained language models": 1989, "paper provides valuable insights": 119298, "models trained large text": 109449, "trained large text corpora": 167978, "work propose novel way": 179215, "downstream natural language tasks": 44739, "natural language findings indicate": 111605, "language models deep learning": 84335, "language vision domains learning": 86888, "vision domains learning useful": 176906, "domains learning useful representations": 44457, "internal prediction construction process": 79558, "make substantial step unveiling": 98612, "language models increasingly popular": 84701, "transformer language models lms": 169155, "language models lms gpt3": 85677, "model sizes sequence lengths": 104622, "training large neural networks": 168533, "large pretrained foundation models": 88990, "image captions large language": 72196, "captions large language models": 20615, "large language models lms": 88486, "shown achieve remarkable performance": 150209, "achieve remarkable performance variety": 3723, "remarkable performance variety natural": 140242, "performance variety natural language": 122242, "variety natural language tasks": 175735, "natural language tasks using": 111890, "pathways language model palm": 120456, "language model palm trained": 83823, "related large language models": 139180, "language models lms shown": 85690, "models lms shown memorize": 108080, "generation nlg tasks recent": 64891, "transformerbased natural language processing": 169275, "recent advances natural language": 137419, "advances natural language processing": 6040, "incontext learning pretrained language": 74959, "generative pretrained transformer model": 65559, "results highlight potential approach": 143459, "deep learning based nlp": 37733, "despite success large language": 40225, "success large language models": 158256, "large language models text": 88800, "evaluating capability large language": 51268, "capability large language models": 20325, "large language models making": 88502, "centers disease control prevention": 21333, "disease control prevention cdc": 43027, "modern large language models": 109808, "large language models require": 88697, "transformer language models gpt": 169152, "language models gpt series": 84606, "opens new possibilities using": 116559, "language models paper introduces": 85845, "13 billion parameters trained": 326, "despite order magnitude smaller": 40165, "stanford question answering dataset": 154938, "automated natural language generation": 14580, "natural language generation metrics": 111612, "berts masked language modeling": 17644, "masked language modeling mlm": 99306, "tasks pretrained language models": 162980, "queries natural language questions": 134512, "controlled text generation ctg": 31651, "question answering qa tasks": 134785, "natural language processing computer": 111713, "language processing computer vision": 86500, "combines large language models": 25942, "language models external knowledge": 84512, "models external knowledge sources": 106280, "ushered new era ai": 173930, "generative adversarial networks gans": 65300, "text generation pretrained language": 165167, "generation pretrained language models": 64945, "language models plms remarkable": 85911, "models plms remarkable progress": 108546, "various text generation tasks": 176231, "future research code data": 62320, "research code data available": 141639, "visual question answering vqa": 177276, "vl models downstream tasks": 177434, "available facilitate future research": 15110, "extractive question answering extractive": 56385, "question answering extractive question": 134714, "answering extractive question answering": 9850, "tasks machine reading comprehension": 162766, "machine reading comprehension mrc": 98097, "language models plms existing": 85899, "issue propose novel framework": 80953, "propose novel framework named": 132005, "demonstrate method consistently outperforms": 38423, "method consistently outperforms stateoftheart": 100758, "challenge natural language processing": 21689, "language processing nlp systems": 86580, "dialogue generative pretrained transformer": 41480, "huggingface hub public access": 70541, "large language models motivated": 88533, "augmentative alternative communication aac": 14334, "power pretrained large language": 125213, "pretrained large language models": 126999, "language models llms zeroshot": 85661, "fewshot incontext learning icl": 57927, "incontext learning icl enables": 74916, "new peft method called": 113330, "improving large language models": 74163, "large language models humanlike": 87872, "language models llms benchmark": 84913, "language models plms downstream": 85896, "advancements various nlp tasks": 5974, "power large language models": 125189, "language models llms nlp": 85350, "convolutional neural networks cnns": 32044, "extensive experiments demonstrate method": 55829, "benefits large language models": 17478, "translation summarization question answering": 169524, "reasoner large language models": 136609, "large language models achieved": 87538, "question answering qa benchmarks": 134779, "problems large language models": 128549, "large language models standard": 88765, "based pretrained large language": 16023, "large language models like": 87953, "language models like bert": 84794, "pitfalls large language models": 123128, "based pretrained language models": 16019, "models large number parameters": 106906, "large language modeling datasets": 87517, "fewshot learning language models": 57964, "language models incontext learning": 84690, "natural language task descriptions": 111882, "descriptions large language models": 39471, "large language models able": 87527, "language models able perform": 84047, "incontext learning language models": 74937, "language model developed openai": 83603, "machine learning models like": 98055, "sparsity large language models": 153770, "large language models finetuning": 87815, "number parameters language models": 114920, "models address problem propose": 105283, "reduce number trainable parameters": 138456, "bert roberta gpt2 dozens": 17596, "roberta gpt2 dozens datasets": 145149, "training small number parameters": 168753, "parameters achieve comparable performance": 119701, "benchmark evaluating natural language": 16961, "language generation nlg models": 83369, "language models recent works": 86056, "models recent works shown": 108841, "text classification question answering": 164897, "future large language models": 62282, "large language models downstream": 87729, "extensive experiments various tasks": 55898, "promising directions future research": 130249, "multitask learning large language": 111220, "large language models trained": 88813, "language model trained using": 83938, "task natural language inference": 161560, "inference large language models": 76040, "language models llms widely": 85649, "models llms widely used": 108037, "subfields natural language processing": 157812, "chain thought cot prompting": 21463, "lets think step step": 91437, "language models shown struggle": 86161, "suggests promising directions future": 158673, "promising directions future work": 130250, "need large language models": 112337, "language models lms achieved": 85668, "language processing nlp benchmarks": 86545, "significantly improve model performance": 151024, "ability generative language models": 2205, "generative language models glms": 65439, "downstream tasks question answering": 44828, "reinforcement learning large language": 139072, "large language models readily": 88664, "used natural language processing": 173156, "natural language processing scenarios": 111805, "multiple tasks demonstrate method": 111062, "tasks demonstrate method achieves": 162178, "method achieves better performance": 100634, "high bandwidth memory hbm": 69403, "learning better sentence representations": 90262, "general language understanding evaluation": 62979, "language understanding evaluation glue": 86815, "understanding evaluation glue benchmark": 171223, "cooperative multiagent reinforcement learning": 32080, "multiagent reinforcement learning marl": 110329, "recent work shown language": 137741, "work shown language models": 179299, "language models scaled billions": 86128, "scaling number parameters language": 146432, "achieves best performance single": 3968, "large language models mainly": 88500, "pretrained programming language models": 127144, "programming language models pretrained": 129833, "language models pretrained programming": 85947, "models pretrained programming language": 108626, "automate software engineering tasks": 14506, "tasks involving code understanding": 162644, "code understanding code generation": 25197, "natural language processing using": 111838, "improve model performance finetuning": 73520, "language processing nlp models": 86565, "know pretrained language models": 81713, "language models plms use": 85918, "specifically large language models": 154241, "large language models drawn": 87731, "research demonstrates effectiveness using": 141690, "pretrained language models plm": 126941, "work present simple effective": 179182, "model achieves new sota": 103045, "achieves new sota results": 4038, "model achieves sota results": 103052, "language models language models": 84760, "language models demonstrate quantitative": 84340, "models demonstrate quantitative improvement": 105892, "demonstrate quantitative improvement new": 38517, "quantitative improvement new qualitative": 134353, "improvement new qualitative capabilities": 73827, "recurrent neural networks rnns": 138352, "emergent abilities large language": 47459, "abilities large language models": 1944, "large language models scaling": 88721, "range downstream tasks paper": 135615, "large language models consider": 87665, "achieves competitive performance wide": 3997, "competitive performance wide range": 27193, "code pretrained models available": 25057, "strong pretrained language models": 156434, "language models bert albert": 84174, "model pretraining finetuning downstream": 104331, "pretraining finetuning downstream tasks": 127327, "largescale language models like": 89339, "method outperforms previous approaches": 101015, "language models widely used": 86396, "language understanding nlu natural": 86840, "understanding nlu natural language": 171378, "nlu natural language generation": 113944, "large language models efficient": 87740, "pretrained language models infer": 126914, "pretrained language models specifically": 126978, "large language models ability": 87526, "capabilities transformerbased language models": 20224, "large language models incontext": 87891, "models incontext learning abilities": 106726, "learning approaches large language": 90221, "large language model study": 87489, "study aims answer question": 157148, "language models lms achieve": 85667, "reasoning tasks natural language": 137190, "tasks natural language inference": 162838, "state art large language": 154983, "art large language models": 12547, "large language models humans": 87873, "recent advances transformerbased large": 137429, "advances transformerbased large language": 6070, "transformerbased large language models": 169255, "language models llms led": 85297, "models llms led significant": 107612, "generative pretrained language model": 65536, "pretrained language model text": 126868, "language model multimodal taskoriented": 83809, "experiments public dataset verify": 54421, "achieve stateoftheart performance downstream": 3756, "information present training data": 76635, "steer language model generating": 155552, "zeroshot image captioning methods": 180207, "tasks like visual question": 162730, "like visual question answering": 92426, "visual question answering paper": 177271, "performance visual question answering": 122291, "visual question answering captioning": 177264, "based artificial neural networks": 15667, "pretrained language models recently": 126973, "area natural language processing": 12334, "tasks machine translation summarization": 162769, "synthesis large language models": 159952, "large language models codex": 87641, "codex large language model": 25348, "large language model llm": 87382, "language model llm trained": 83777, "feedforward networks ffns transformers": 57833, "tasks summarization machine translation": 163318, "translation especially lowresource languages": 169461, "largescale language model llm": 89334, "advancements large language models": 5910, "large language models based": 87596, "language models based transformers": 84167, "new pretrained language model": 113345, "ability pretrained language models": 2323, "comprehensive analyses demonstrate effectiveness": 27949, "language models llms possible": 85398, "prompting large language model": 130977, "large language model generate": 87358, "large language models training": 88818, "language models training data": 86313, "frozen pretrained large language": 61686, "language model llm perform": 83763, "large pretrained models gpt3": 89011, "personally identifiable information pii": 122639, "offtheshelf pretrained language models": 115924, "retrieval aims retrieve relevant": 143992, "harness power large language": 68798, "large language models ask": 87579, "large language model code": 87326, "language models llms openai": 85366, "compare different language models": 26670, "language models including chatgpt": 84684, "models including chatgpt gpt4": 106707, "using language models knowledge": 174357, "language models knowledge base": 84746, "language models lms proven": 85689, "translation question answering text": 169507, "question answering text classification": 134813, "current deep learning models": 34103, "large language models natural": 88543, "models natural language understanding": 108271, "language understanding large language": 86832, "understanding large language models": 171324, "language models llms achieved": 84849, "models llms achieved stateoftheart": 107080, "llms achieved stateoftheart performance": 94320, "learning language models introduce": 90611, "recent advancements large language": 137362, "language models llms language": 85288, "models llms language understanding": 107595, "execution dialog history edh": 52944, "dialog history edh trajectory": 41420, "paper investigate effectiveness using": 119028, "reasoning using large language": 137224, "contemporary large language models": 30416, "advances large language models": 6024, "graph neural network gnn": 67556, "achieves new stateoftheart results": 4044, "aligning language models human": 8092, "language models human values": 84654, "benefit using large language": 17451, "language models llms 100": 84840, "models llms 100 billion": 107054, "llms 100 billion parameters": 94241, "models requires highend hardware": 108946, "finetuning methods large language": 59384, "large language models know": 87924, "ability reason mental states": 2340, "makes language models better": 98663, "remarkable abilities large language": 140117, "large language models large": 87936, "large language models perform": 88596, "compared stateoftheart supervised finetuning": 26939, "language models varying sizes": 86369, "annotations large language models": 9600, "language models increasingly applied": 84698, "pretrained autoregressive language model": 126754, "finetuning language models lms": 59328, "masked language modeling problem": 99308, "recently large language models": 137925, "deep learning based approaches": 37732, "introduce novel dataset called": 80054, "warning paper contains offensive": 177716, "language models llms offer": 85360, "models llms offer potential": 107683, "scaling large language models": 146409, "large language models systematically": 88792, "llms work provide comprehensive": 97023, "makes use large language": 98697, "use large language models": 172705, "transformers shown remarkable success": 169358, "especially natural language processing": 50518, "chinese large language models": 23638, "large language models pretrained": 88621, "demonstrated impressive zeroshot generalization": 38712, "covering wide range topics": 33095, "multilingual language models pretrained": 110493, "deep learning language model": 37747, "text generation natural language": 165162, "generation natural language generation": 64875, "low latency high throughput": 97767, "generation large language models": 64775, "language models llms recent": 85459, "models llms recent years": 107793, "leverages large language models": 91744, "large language models llm": 87963, "language models llms gpt3": 85190, "problem large language models": 128302, "gordon van durme 2013": 66345, "larger language models llms": 89211, "large language models gpt3": 87849, "xglm lin et al": 179831, "math word problems mwp": 99546, "experimental results method outperforms": 54040, "study neural machine translation": 157506, "transfer learning large language": 168944, "language models llms emerged": 85062, "models llms emerged powerful": 107342, "nlp tasks text classification": 113908, "language models llms solve": 85553, "examples retrieved training data": 52687, "standard natural language processing": 154859, "given task instruction input": 66024, "reasoning abilities large language": 136626, "large language models multilingual": 88536, "reasoning abilities language models": 136624, "recent success large language": 137682, "language models text generation": 86283, "llms demonstrated impressive capabilities": 94852, "paper explore use llms": 118922, "prompting recently shown improve": 131060, "language models llms shown": 85513, "models llms shown exceptional": 107868, "generation prompting large language": 64974, "large language models case": 87622, "language models case study": 84213, "prompting pretrained language models": 131043, "transformers large language models": 169323, "language models llms saturated": 85502, "language model demonstrate ability": 83598, "shown large language models": 150300, "language models llms generally": 85169, "llms achieve strong performance": 94299, "reasoning chains highly consistent": 136739, "baseline future research code": 16217, "explanations large language models": 54872, "large language models make": 88501, "incontext learning large language": 74939, "language models llm shown": 84834, "significantly outperform finetuning baselines": 151078, "generated text comprehensive survey": 64007, "stateoftheart natural language generation": 155252, "language generation nlg systems": 83370, "capacity large language models": 20518, "influence campaigns social media": 76190, "address challenge propose new": 5171, "language models llms contrast": 84983, "reliable large language models": 139732, "language models llms impressive": 85243, "advent large language models": 6175, "language models question generation": 86012, "modules natural language understanding": 109996, "models dialogue state tracking": 105964, "dialogue state tracking dst": 41519, "language model pretrained large": 83848, "model pretrained large scale": 104322, "language model gpt3 test": 83670, "stateoftheart large language model": 155171, "large language model palm": 87453, "commonsense reasoning question answering": 26315, "question answering reasoning tasks": 134791, "knowledge embedded large language": 81916, "embedded large language models": 47143, "language models llms help": 85220, "performance downstream tasks improving": 121432, "grade school math problems": 67369, "question answering mathematical reasoning": 134754, "models llms achieved excellent": 107066, "finetune llm using selfgenerated": 58943, "evaluation large language models": 51661, "large language models understand": 88830, "questions large language models": 135180, "language models llms grow": 85211, "improvements large language models": 73913, "large language models learn": 87944, "language large language models": 83479, "models leveraging large language": 106960, "leveraging large language models": 91882, "large language models multiple": 88540, "language models multiple choice": 85781, "multiple choice question answering": 110863, "question answering large language": 134749, "answering large language models": 9891, "language models llms like": 85309, "models llms like gpt3": 107630, "prompt tuning prompt tuning": 130722, "efficiency large language models": 46480, "prediction large language model": 125814, "event argument extraction eae": 52070, "outperforms current stateoftheart sota": 117747, "language models llm trained": 84837, "capabilities wide range tasks": 20261, "significantly boosts performance llms": 150959, "popularity large language models": 124093, "language models llms realworld": 85454, "large language models survey": 88783, "large pretrained transformerbased language": 89017, "transformerbased language models like": 169246, "landscape natural language processing": 83103, "language models introduce new": 84733, "pretrained language models lm": 126925, "information pretrained language models": 76641, "language models masked language": 85720, "stateoftheart large language models": 155174, "language models zeroshot fewshot": 86415, "benchmark large language models": 17011, "different large language models": 41821, "recent advances generative models": 137401, "despite widespread use llms": 40256, "human evaluation expensive timeconsuming": 70734, "inverse text normalization itn": 80348, "decoding large language models": 37573, "large language models decoding": 87692, "large language models using": 88844, "distillation large language models": 43152, "models llms shown impressive": 107873, "llms shown impressive results": 96551, "language models shown remarkable": 86158, "models shown remarkable performance": 109115, "existing methods usually use": 53475, "multiple natural language tasks": 110984, "outperforms large language models": 117790, "different plms bert roberta": 41910, "question answering tabular data": 134808, "language model text generation": 83930, "language models work present": 86405, "language models llms general": 85168, "simple effective twostage finetuning": 151444, "experimental results public datasets": 54063, "achieved impressive results various": 3833, "2022 large language models": 672, "large language models humanlevel": 87871, "natural language instructions large": 111652, "language instructions large language": 83451, "language models llms displayed": 85040, "models llms displayed impressive": 107314, "achieve better comparable performance": 3592, "conduct extensive qualitative quantitative": 29133, "large language models rapidly": 88663, "robustness large language models": 145400, "large language models experiments": 87787, "challenge large language models": 21671, "large language models including": 87888, "approaches large language models": 11821, "generated large language models": 63902, "language models llms capable": 84926, "models llms capable generating": 107159, "large language models developing": 87717, "conduct largescale user study": 29158, "large neural language models": 88955, "large language models gpt4": 87852, "crowdsourcing large language models": 33735, "large language models instead": 87905, "requests large language models": 141054, "large language models replace": 88694, "improve large language models": 73503, "large language models propose": 88643, "openaccess multilingual language model": 116318, "memory large language models": 100416, "breakthroughs natural language processing": 19028, "language models paper investigates": 85847, "reliability large language models": 139694, "large language models semantic": 88726, "performance natural language tasks": 121838, "natural language tasks recent": 111889, "tasks recent work shown": 163096, "lexical equality single multiword": 91982, "equality single multiword answers": 50160, "consistency generative text sequences": 29764, "language models trained code": 86301, "language models plms shown": 85914, "evaluating natural language understanding": 51357, "performance natural language understanding": 121839, "use large transformerbased language": 172718, "large transformerbased language models": 89087, "language processing tasks language": 86635, "processing tasks language models": 129321, "generation power large language": 64936, "language models knowledge graph": 84748, "models knowledge graph reasoning": 106844, "entities pretrained language models": 49865, "external knowledge sources knowledge": 56076, "knowledge sources knowledge graphs": 82413, "asr large language model": 13000, "factual consistency large language": 56859, "consistency large language models": 29772, "large language models news": 88549, "language models news summarization": 85795, "models news summarization large": 108294, "news summarization large language": 113587, "summarization large language models": 158841, "language models llms proven": 85438, "models llms proven effective": 107773, "large language models ranging": 88659, "generative language models shown": 65444, "shown great performance tasks": 150251, "improve performance various nlp": 73576, "performance various nlp tasks": 122271, "indistribution id outofdistribution ood": 75702, "knowledgebased visual question answering": 82538, "question answering vqa involves": 134823, "answer large language models": 9731, "random layerwise token dropping": 135530, "novel random layerwise token": 114663, "audio samples dataset publicly": 14189, "samples dataset publicly available": 146002, "math word problem mwp": 99542, "machine learning tasks particularly": 98083, "language models llms exhibited": 85109, "models llms exhibited remarkable": 107392, "llms exhibited remarkable capabilities": 95161, "natural language processing field": 111726, "efficiency using large language": 46551, "using large language model": 174364, "using natural language prompting": 174519, "pretrained code generation models": 126773, "code generation generate executable": 24889, "generation generate executable code": 64688, "specifically propose novel approach": 154271, "different natural language processing": 41868, "using masked language modeling": 174479, "masked language modeling task": 99309, "models ability follow instructions": 105177, "largescale generative language models": 89311, "generation large pretrained language": 64781, "large language model generated": 87359, "information large language models": 76550, "given natural language description": 65939, "play key role enabling": 123460, "adapting large language model": 4742, "language models lms perform": 85682, "multilingual large language model": 110496, "analysis large language models": 8997, "language models llms automated": 84903, "stateoftheart natural language processing": 155253, "finetuned large language models": 59048, "natural language processing present": 111794, "named entity recognition relation": 111410, "entity recognition relation extraction": 49926, "leverages pretrained large language": 91769, "language model llm gpt3": 83753, "large language models demonstrated": 87700, "language models demonstrated outstanding": 84351, "models demonstrated outstanding performance": 105907, "performance wide range tasks": 122303, "wide range tasks question": 178319, "range tasks question answering": 135716, "question answering code generation": 134692, "language models specific tasks": 86205, "text generation tools like": 165195, "new directions future research": 113150, "remarkable performance wide range": 140255, "contrastive languageimage pretraining clip": 31358, "pretrained language models nlp": 126934, "language models nlp tasks": 85801, "address issues propose novel": 5292, "codes data publicly available": 25295, "improve large language model": 73502, "language model llm performance": 83764, "prior work mainly focused": 127946, "artificial intelligence ai potential": 12692, "reasoning capabilities large language": 136705, "large language models achieving": 87542, "performance arithmetic commonsense symbolic": 121165, "arithmetic commonsense symbolic reasoning": 12475, "opendomain qa opendomain question": 116464, "qa opendomain question answering": 133906, "opendomain question answering odqa": 116468, "knowledge stored parameters llms": 82428, "surpasses previous sota methods": 159496, "larger language models improve": 89210, "language models improve performance": 84678, "promising large language models": 130271, "language models like gpt35": 84802, "nlp large language models": 113752, "language models perform new": 85873, "models perform new tasks": 108470, "current language models lms": 34145, "knowledge base question answering": 81777, "base question answering kbqa": 15634, "fewshot incontext learning kbqa": 57928, "stateoftheart pretrained language models": 155307, "large language models reasoning": 88670, "language models solve complex": 86193, "models solve complex reasoning": 109177, "solve complex reasoning tasks": 153106, "complex reasoning tasks stepbystep": 27566, "models reduce model size": 108874, "text style transfer tasks": 165497, "training transformer language model": 168802, "reasoning large language models": 136954, "reasoning fundamental aspect human": 136874, "fundamental aspect human intelligence": 61933, "recent years large language": 137783, "years large language models": 179907, "language models llms significant": 85536, "models llms significant progress": 107911, "llms significant progress natural": 96591, "paper provides comprehensive overview": 119291, "provides comprehensive overview current": 133122, "comprehensive overview current state": 28086, "corpora large language models": 32235, "tasks large language models": 162685, "language models lms struggle": 85693, "encode wealth world knowledge": 48389, "nlp machine learning ml": 113760, "automatic metrics human evaluation": 14712, "reranking natural language generation": 141536, "natural language generation pretrained": 111622, "language generation pretrained language": 83376, "successful natural language generation": 158349, "success large language model": 158254, "language model llm reasoning": 83772, "language models llms trained": 85598, "models llms trained text": 107982, "large language models explore": 87791, "explore use large language": 55313, "frozen large language models": 61667, "visual questionanswering vqa remains": 177285, "achieves comparable better performance": 3982, "large language models efficiently": 87741, "methods prompt tuning proposed": 101735, "language models llms ai": 84876, "large pretrained models bert": 89010, "wide variety downstream tasks": 178346, "natural language tasks like": 111885, "work shown finetuning large": 179296, "finetuning large pretrained language": 59340, "pretrained language models collection": 126888, "advanced artificial intelligence ai": 5707, "artificial intelligence ai agents": 12659, "agent large language model": 6461, "increasingly popular recent years": 75423, "tasks like information retrieval": 162716, "outperform larger language models": 117606, "language model capable generating": 83571, "gained significant attention research": 62483, "significant attention research community": 150616, "potential using large language": 125048, "language models like chatgpt": 84796, "models like chatgpt improve": 106975, "large language model inference": 87372, "language models llms various": 85640, "llms various natural language": 96956, "address issue propose novel": 5274, "approach does require additional": 11133, "does require additional training": 44018, "explanations improve performance llms": 54864, "consisting large language models": 29949, "large language models developed": 87716, "suggest large language models": 158551, "large language models potential": 88611, "augmented large language models": 14361, "existing large language model": 53401, "large language models identify": 87875, "large pretrained vision language": 89021, "pretrained vision language models": 127230, "language models demonstrated remarkable": 84353, "language models llms making": 85331, "code publicly available model": 25081, "models including large language": 106718, "including large language models": 74583, "attention academic industrial communities": 13835, "impacts large language models": 72763, "models llms like chatgpt": 107620, "dataset human chatgpt comparison": 36343, "human chatgpt comparison corpus": 70635, "chatgpt comparison corpus hc3": 22790, "dataset code models publicly": 36155, "chatgpt natural language processing": 23142, "natural language processing model": 111743, "efficient inference large language": 46642, "samples large language models": 146035, "fewshot incontext learning setting": 57931, "commonsense qa arithmetic reasoning": 26294, "achieving better comparable performance": 4154, "using computational language models": 174074, "automatic scoring science education": 14735, "pretrained language models adapted": 126874, "automatically score student responses": 14853, "automatic scoring student responses": 14737, "assessment tasks science education": 13270, "language models recent advancements": 86042, "models recent advancements large": 108821, "language models llms drawn": 85051, "pretrained largescale datasets shown": 127014, "performance compared supervised baselines": 121301, "effect model size prompt": 45667, "prediction large language models": 125815, "large language models future": 87827, "language model llm generate": 83749, "language models including gpt3": 84687, "language models pretrained code": 85942, "large language models visionlanguage": 88853, "language models visionlanguage models": 86377, "advancements natural language processing": 5936, "insights social media data": 77647, "contributions include development novel": 31496, "large language model chatgpt": 87325, "understanding effectiveness large language": 171205, "effectiveness large language models": 46215, "performance various natural language": 122266, "nlp tasks question answering": 113889, "tasks question answering summarization": 163064, "language models llms used": 85625, "instructgpt large language model": 77947, "multilingual pretrained language models": 110532, "pretrained language models provides": 126969, "languages multilingual language models": 87066, "high low resource languages": 69484, "significantly outperforms strong baselines": 151118, "frozen image encoders large": 61660, "image encoders large language": 72242, "encoders large language models": 48489, "large language models cost": 87680, "offtheshelf frozen pretrained image": 115906, "frozen pretrained image encoders": 61678, "pretrained image encoders frozen": 126844, "image encoders frozen large": 72239, "encoders frozen large language": 48482, "achieves stateoftheart performance various": 4100, "despite having significantly fewer": 40122, "follow natural language instructions": 60221, "language models llms perform": 85385, "models llms perform complex": 107714, "llms perform complex reasoning": 96071, "practical applications large language": 125390, "applications large language models": 10582, "language models llms significantly": 85541, "models llms significantly impacted": 107920, "applications multimodal large language": 10613, "multimodal large language model": 110683, "large language model enhanced": 87344, "visual commonsense reasoning vcr": 177135, "commonsense reasoning vcr task": 26322, "recently multimodal large language": 137942, "multimodal large language models": 110688, "large language models mllms": 88519, "transformer recent work shown": 169207, "recent work shown large": 137743, "work shown large language": 179301, "language models llms incredibly": 85265, "chen et al 2021": 23578, "natural language nl questions": 111681, "language nl questions structured": 86445, "usually suffer significant performance": 174924, "suffer significant performance degradation": 158453, "significant performance degradation huge": 150798, "explaining large language modelbased": 54766, "abstract large language models": 2645, "models llms demonstrated strong": 107294, "large language models easily": 87734, "language models achieved impressive": 84067, "models achieved impressive performance": 105240, "achieved impressive performance various": 3830, "impressive performance various natural": 73347, "large language models model": 88530, "techniques large language models": 163946, "work focus fewshot learning": 178989, "billion parameter language models": 18432, "believe large language models": 16780, "large language models understood": 88832, "large language models similar": 88741, "language models shown impressive": 86152, "models shown impressive capabilities": 109106, "fewshot learning wide range": 57989, "language models bert roberta": 84179, "classification large language models": 24024, "power pretrained language models": 125211, "pretrained language models semantic": 126974, "bugs large language models": 19295, "large language models novel": 88552, "language models llms openais": 85368, "models llms openais codex": 107694, "llms openais codex demonstrated": 95983, "framework large language models": 61259, "large language models predict": 88615, "language models predict human": 85933, "large language models unlock": 88836, "large language models recent": 88671, "largescale knowledge graph kg": 89328, "algorithms large language models": 7941, "large language models support": 88782, "knowledge graph completion kgc": 82047, "knowledge graph embedding models": 82052, "uses large language model": 173872, "math word problem solvers": 99543, "mathematical reasoning natural language": 99596, "address issues propose new": 5291, "strategies pretrained language models": 156054, "pretrained language models pretrained": 126963, "language models pretrained language": 85943, "models pretrained language models": 108613, "pretrained language models llms": 126921, "general purpose large language": 63031, "purpose large language models": 133748, "large language models answer": 87568, "language models answer set": 84122, "models answer set programming": 105361, "models llms gpt3 chatgpt": 107486, "framework quantitatively evaluating interactive": 61370, "publicly available data sets": 133635, "generative artificial intelligence ai": 65380, "artificial intelligence ai enabled": 12674, "make code publicly available": 98507, "rise artificial intelligence ai": 144891, "artificial intelligence ai technology": 12705, "language models exploit artifacts": 84498, "models exploit artifacts benchmarks": 106252, "recent largescale language models": 137545, "language models empirical study": 84434, "language processing nlp natural": 86567, "processing nlp natural language": 129236, "models plms shown promising": 108549, "instruction tuning incontext learning": 78100, "experimental results diverse set": 54009, "results diverse set tasks": 143363, "large language models code": 87635, "adversarial testing large language": 6233, "testing large language models": 164726, "generating functionally correct code": 64230, "language models llms contain": 84978, "retrievalaugmented large language models": 144189, "large language models despite": 87711, "generative large language models": 65451, "large language models common": 87647, "solution augmenting llms retrieval": 152901, "use artificial intelligence ai": 172507, "artificial intelligence ai systems": 12702, "incontext learning recent years": 74967, "settings demonstrate effectiveness approach": 149550, "demonstrate effectiveness approach code": 38292, "question answering knowledge graphs": 134745, "natural language processing task": 111812, "spurred advancements scale large": 154624, "advancements scale large language": 5962, "scale large language models": 146304, "models llms demonstrated ability": 107257, "llms demonstrated ability perform": 94833, "demonstrated ability perform variety": 38618, "ability perform variety natural": 2314, "perform variety natural language": 121081, "variety natural language processing": 175732, "chatgpt drawn great deal": 22866, "drawn great deal attention": 44951, "attention natural language processing": 13943, "language processing nlp community": 86547, "representative task categories extensive": 140943, "task categories extensive empirical": 161236, "extensive empirical studies demonstrate": 55762, "additionally provide indepth analysis": 5123, "prompttuning large language models": 131546, "empirical evaluation different lms": 47682, "tuning pretrained large language": 170091, "language models llms able": 84845, "tracin pruthi et al": 167510, "pruthi et al 2020": 133473, "language models fewshot prompting": 84528, "pretrained language models chatgpt": 126886, "language models robust training": 86118, "models robust training methods": 109019, "large transformerbased pretrained language": 89090, "like bert gpt t5": 92201, "pretrained generative language models": 126824, "model neural scaling laws": 104127, "observed large language models": 115422, "large language models exhibit": 87780, "computer vision natural language": 28505, "vision natural language processing": 176965, "drawn attention recent years": 44944, "recently chatgpt attracted great": 137843, "chatgpt attracted great attention": 22725, "prior studies shown chatgpt": 127938, "chat generative pretrained transformer": 22531, "generative pretrained transformer chatgpt": 65545, "wellknown natural language processing": 178176, "generative ai models chatgpt": 65335, "artificial intelligence ai models": 12686, "use generative ai models": 172649, "work explore large language": 178953, "explore large language models": 55234, "large language models help": 87860, "visual question answering visual": 177275, "question answering vqa challenging": 134822, "challenging task natural language": 22289, "task natural language processing": 161561, "language processing nlp computer": 86548, "processing nlp computer vision": 129215, "nlp computer vision cv": 113716, "models visual question answering": 109643, "powerful pretrained language model": 125325, "pretrained language model based": 126857, "model based transformer architecture": 103191, "language models plms t5": 85917, "success natural language processing": 158271, "opens new avenues research": 116553, "different pretrained language models": 41919, "pretrained language models fewshot": 126900, "results demonstrate significant improvements": 143335, "language models llms introduce": 85276, "models external knowledge automated": 106279, "feedback large language models": 57723, "language models llms chatgpt": 84937, "models llms chatgpt able": 107169, "llms chatgpt able generate": 94568, "chatgpt able generate humanlike": 22666, "able generate humanlike fluent": 2514, "generate humanlike fluent responses": 63552, "text data augmentation methods": 164982, "inspired recent success large": 77762, "large language models especially": 87768, "pretrained language models gplms": 126906, "search engine used retrieve": 147342, "based generative pretrained language": 15837, "available large language model": 15153, "math word problems mwps": 99547, "baseline machine learning models": 16233, "machine learning models predict": 98056, "various domains including healthcare": 175900, "size large language models": 152018, "large language models continue": 87673, "language models continue scale": 84307, "existing large language models": 53403, "importantly method does require": 73227, "method does require access": 100800, "modes large language models": 109856, "large language models framework": 87826, "various large language models": 176002, "language models llms inference": 85268, "content large language models": 30539, "large language models field": 87809, "language processing nlp tools": 86596, "limitations adopting large language": 92534, "adopting large language models": 5615, "language models llms study": 85576, "reinforcement learning rl challenging": 139100, "fail meet user expectations": 56966, "models demonstrated impressive performance": 105905, "demonstrated impressive performance various": 38705, "natural language inference sentiment": 111642, "language inference sentiment analysis": 83433, "recent success large pretrained": 137684, "language models llms variety": 85638, "important automatic speech recognition": 73093, "knowledge pretrained language model": 82288, "use transformerbased language models": 172923, "large language models interpreting": 87914, "data generation large language": 35112, "language models llms effectively": 85059, "chatgpt large language models": 23090, "large language models evolutionary": 87774, "design large language models": 39673, "language models llms taken": 85587, "evolution large language models": 52269, "ideas large language models": 71767, "large language models complex": 87655, "programming large language models": 129852, "large language models answering": 87570, "language models answering questions": 84125, "programming languages large language": 129841, "languages large language models": 87042, "language models llms enabling": 85079, "experimental results demonstrate method": 53990, "results demonstrate method achieves": 143310, "large language models feasibility": 87806, "recent advances large language": 137408, "finetuning prohibitively expensive model": 59473, "language models trained large": 86304, "text corpora used train": 164968, "large language models paper": 88572, "chainofthought cot prompting enables": 21492, "cot prompting enables large": 32887, "prompting enables large language": 130914, "enables large language models": 48203, "explanations finetuning language models": 54851, "ai systems like chatgpt": 7252, "dataset language models grow": 36380, "hyperparameter optimization large language": 71594, "optimization large language model": 117004, "large language model generation": 87362, "language models llms sparked": 85555, "pretrained models natural language": 127094, "language models prompt engineering": 85976, "based natural language processing": 15966, "natural language processing language": 111733, "language processing language models": 86524, "language models recently large": 86064, "models recently large language": 108855, "language models llms methods": 85337, "critical cooling rates metallic": 33476, "cooling rates metallic glasses": 32064, "visual language models vlms": 177215, "boom large language models": 18811, "generating natural language descriptions": 64279, "natural language descriptions images": 111583, "utilize pretrained language model": 175079, "pretrained language model gpt2": 126862, "model gpt2 language model": 103761, "models continual learning cl": 105775, "languageimage pretraining clip model": 86920, "address challenge propose novel": 5172, "code generation large language": 24896, "language models demonstrated impressive": 84347, "models demonstrated impressive ability": 105903, "method large language model": 100948, "code generation tasks large": 24923, "compare large language models": 26689, "language models results indicate": 86097, "wide range use cases": 178326, "responses generated models results": 142808, "powerful large language model": 125296, "knowledgebased question answering kbqa": 82534, "language use large language": 86869, "large language models gpt": 87847, "pretrained transformer gpt models": 127185, "programming courses postsecondary level": 129807, "potential uses exercise generation": 125043, "uses exercise generation code": 173850, "exercise generation code explanation": 53005, "generation code explanation misuses": 64496, "code explanation misuses programming": 24828, "based natural language descriptions": 15963, "interface using natural language": 79451, "chatgpt large language model": 23087, "analyze large language models": 9309, "language models llms represent": 85482, "collected electronic health records": 25688, "bidirectional long shortterm memory": 18359, "language models llms remarkable": 85477, "models llms remarkable strides": 107821, "large language models socratic": 88747, "language models socratic method": 86188, "paper presents systematic approach": 119188, "interact large language models": 79062, "inductive deductive abductive reasoning": 75840, "zeroresource blackbox hallucination detection": 180105, "large language models generative": 87838, "language models generative large": 84590, "models generative large language": 106482, "fluent responses wide variety": 59912, "responses wide variety user": 142946, "natural language processing large": 111735, "language processing large language": 86526, "processing large language models": 129180, "language models llms rely": 85476, "chain thought cot reasoning": 21464, "generate intermediate reasoning steps": 63583, "performance range natural language": 121984, "embedding matrix multiplication gelu": 47177, "matrix multiplication gelu softmax": 99642, "multiplication gelu softmax layer": 111114, "gelu softmax layer normalization": 62860, "softmax layer normalization intermediate": 152753, "layer normalization intermediate results": 89640, "normalization intermediate results case": 114183, "generative pretrained transformers gpt": 65565, "pass assessments higher education": 120314, "assessments higher education programming": 13289, "higher education programming courses": 69597, "evaluated capability generative pretrained": 51154, "pass assessments introductory intermediate": 120317, "assessments introductory intermediate python": 13294, "introductory intermediate python programming": 80265, "intermediate python programming courses": 79520, "python programming courses postsecondary": 133847, "intensified date rigorous analysis": 78990, "assessments ranging simple multiplechoice": 13304, "ranging simple multiplechoice questions": 135759, "simple multiplechoice questions code": 151499, "multiplechoice questions code involved": 111100, "questions code involved complex": 135065, "code involved complex programming": 24958, "involved complex programming projects": 80702, "complex programming projects code": 27531, "programming projects code bases": 129869, "projects code bases distributed": 130109, "code bases distributed multiple": 24690, "bases distributed multiple files": 16393, "distributed multiple files 599": 43330, "multiple files 599 exercises": 110916, "files 599 exercises overall": 58327, "leverage feedback provided autograder": 91593, "models exhibit remarkable capabilities": 106208, "recent advances diffusion models": 137392, "unsupervised object discovery learning": 172262, "learning large corpus data": 90621, "extensive experiments ablation studies": 55798, "experiments ablation studies demonstrate": 54131, "models gpt series models": 106522, "chatgpt gained considerable attention": 22962, "attention exceptional natural language": 13875, "exceptional natural language processing": 52822, "natural language processing capabilities": 111711, "fewshot scenarios extensive experiments": 58048, "enhances models ability generate": 49426, "models ability generate humanlike": 105180, "ability generate humanlike responses": 2195, "large language models pretraining": 88624, "models pretrained large datasets": 108617, "large language models greatly": 87853, "generation survey large language": 65123, "survey large language models": 159648, "language models llms popular": 85394, "artificial intelligence ai tools": 12707, "large language model capabilities": 87321, "recent works explored use": 137753, "computer vision cv natural": 28497, "vision cv natural language": 176899, "cv natural language processing": 34454, "processing nlp tasks including": 129253, "impressive performance various downstream": 73345, "performance various downstream tasks": 122256, "augmenting large language models": 14392, "large language models conversational": 87678, "conversational large language models": 31885, "language models llms open": 85365, "large language model recently": 87473, "language models gained significant": 84566, "models gained significant attention": 106420, "models shown impressive performance": 109107, "shown impressive performance natural": 150277, "impressive performance natural language": 73334, "tasks language understanding reasoning": 162679, "llms including chatgpt gpt4": 95568, "experiments gpt4 artificial intelligence": 54303, "gpt4 artificial intelligence ai": 66914, "artificial intelligence ai researchers": 12696, "refining large language models": 138782, "language models llms exhibit": 85106, "models llms exhibit remarkable": 107386, "llms exhibit remarkable capabilities": 95149, "artificial general intelligence agi": 12650, "chatgpt chatgpt large language": 22773, "demonstrated remarkable performance numerous": 38774, "remarkable performance numerous natural": 140236, "performance numerous natural language": 121857, "numerous natural language tasks": 115053, "reinforcement learning human feedback": 139066, "learning human feedback rlhf": 90524, "language models llms reason": 85456, "research work aims investigate": 142152, "recently garnered significant attention": 137897, "attention computational linguistics community": 13861, "transition large language models": 169396, "experimental results large language": 54032, "results large language models": 143556, "language models llm exhibit": 84822, "knowledge graph question answering": 82066, "graph question answering kgqa": 67568, "usage large language models": 172460, "large language models fake": 87805, "text generated large language": 165115, "recent advances artificial intelligence": 137380, "models recently attracted significant": 108850, "recently attracted significant attention": 137838, "work propose framework called": 179202, "language processing nlp increasingly": 86554, "large language model trained": 87494, "various areas software engineering": 175812, "underexplored paper conduct comprehensive": 170772, "paper conduct comprehensive analysis": 118795, "help large language models": 69136, "discovery large language models": 42775, "large language models typically": 88827, "language models typically trained": 86331, "datasets demonstrate method significantly": 36771, "demonstrate method significantly outperforms": 38434, "method significantly outperforms strong": 101106, "models pretrained large language": 108618, "language models recently achieved": 86061, "variety language understanding tasks": 175720, "investigate large language models": 80439, "large language models successfully": 88777, "setting large language models": 149470, "large language models assist": 87582, "models llms gpt3 demonstrated": 107488, "remarkable natural language processing": 140220, "paper explores potential integrating": 118939, "large language models enables": 87758, "foundation models foundation models": 60765, "models foundation models chatgpt": 106388, "largescale multilingual machine translation": 89363, "models trained highresource languages": 109442, "conventional neural machine translation": 31722, "neural machine translation models": 112874, "nlp tasks including semantic": 113858, "tasks including semantic parsing": 162576, "finetuned publicly available code": 59094, "publicly available code github": 133632, "using zero fewshot learning": 174877, "chatbot powered large language": 22583, "powered large language models": 125242, "language models llms gpt35": 85195, "models llms gpt35 gpt4": 107491, "engineering hope work help": 48931, "foundation models like chatgpt": 60780, "incontext learning code generation": 74883, "training language models language": 168519, "language models language feedback": 84758, "pretrained language models generate": 126903, "language models generate outputs": 84579, "text factually incorrect summaries": 165079, "factually incorrect summaries recent": 56934, "incorrect summaries recent work": 75176, "summaries recent work approaches": 158781, "learning simple form human": 90996, "outputs comparison feedback conveys": 118036, "comparison feedback conveys limited": 27042, "feedback conveys limited information": 57657, "conveys limited information human": 32024, "limited information human preferences": 92782, "imitation learning language feedback": 72583, "learning language feedback ilf": 90607, "output feedback generate refinements": 117929, "feedback generate refinements second": 57691, "language model maximize likelihood": 83795, "model maximize likelihood chosen": 104070, "maximize likelihood chosen refinement": 99675, "likelihood chosen refinement given": 92436, "chosen refinement given input": 23742, "large language models accurately": 87535, "language models accurately incorporate": 84056, "models accurately incorporate feedback": 105212, "making large language models": 98768, "large language models better": 87606, "models demonstrated remarkable fewshot": 105912, "documents large language models": 43920, "language models llms leveraged": 85307, "humans large language models": 71421, "language models llms generate": 85170, "pretrained language models generative": 126904, "models generative pretrained transformers": 106488, "results natural language processing": 143626, "exploration large language model": 55080, "writing single line code": 179753, "using stateoftheart large language": 174754, "language model llm finetuned": 83744, "artificial intelligence ai particularly": 12690, "study highlights potential using": 157394, "large language models language": 87932, "recently pretrained language models": 137955, "achieve significant performance improvement": 3737, "involving large language models": 80794, "shown exceptional performance various": 150235, "exceptional performance various natural": 52832, "large language modelbased automated": 87510, "generalpurpose large language models": 63353, "language models llms training": 85605, "quality large language models": 134181, "fields computer vision natural": 58267, "exceptional performance variety tasks": 52830, "natural language inference natural": 111634, "language inference natural language": 83425, "logic large language models": 97332, "language models llms set": 85508, "analysis era large language": 8908, "era large language models": 50230, "automated machine learning automl": 14565, "language models llms gpt4": 85199, "language models llms develop": 85031, "large language models multimodal": 88537, "language models multimodal models": 85779, "artificial intelligence large language": 12746, "intelligence large language model": 78850, "large language model gpt": 87363, "language models llms gained": 85156, "models llms gained widespread": 107450, "llms gained widespread popularity": 95331, "large language models revolutionized": 88710, "language models revolutionized field": 86109, "revolutionized field artificial intelligence": 144645, "generate humanlike responses understand": 63555, "article provides comprehensive overview": 12599, "emphasizes importance ethical considerations": 47642, "review large language models": 144518, "large language models research": 88699, "language models llms class": 84958, "ability generate humanlike language": 2194, "deep neural networks particularly": 37811, "leverages large language model": 91742, "experiments demonstrate effectiveness framework": 54220, "language models llms fundamental": 85153, "cohen lee song stoc": 25499, "lee song stoc 2019": 91266, "song stoc 2019 brand": 153280, "stoc 2019 brand soda": 155816, "2019 brand soda 2020": 650, "large language models introduced": 87918, "emergence large language models": 47429, "large language models chatgpt": 87631, "type annotation using chatgpt": 170298, "models llms perform zeroshot": 107717, "existing relation extraction methods": 53553, "large language models neural": 88546, "language models neural network": 85791, "language models llms make": 85328, "rely large language models": 139865, "language models llms paper": 85379, "search engines recommendation systems": 147350, "systems recently large language": 160575, "demonstrated impressive capabilities wide": 38697, "impressive capabilities wide range": 73284, "potential multimodal large language": 124872, "generative pretrained transformer gpt4": 65555, "milestone large language models": 102211, "language models llms billions": 84917, "models llms billions parameters": 107147, "llms offer significant potential": 95963, "multistep reasoning large language": 111186, "programs natural language specifications": 129921, "talking large language models": 161019, "large language models gained": 87829, "impressive performance various tasks": 73351, "provide valuable insights potential": 133027, "paper propose novel approach": 119240, "using social media data": 174735, "reading comprehension natural language": 136189, "comprehension natural language inference": 27923, "natural language inference tasks": 111644, "despite impressive capabilities large": 40133, "impressive capabilities large language": 73266, "language models llms great": 85206, "performance range downstream tasks": 121982, "large language models capabilities": 87618, "language models continue advance": 84306, "recent large language models": 137537, "large language models expected": 87784, "agi large language models": 6801, "language models llms promising": 85427, "tasks presented natural language": 162975, "programming languages like python": 129844, "limitations large language models": 92614, "large language models access": 87531, "openais large language model": 116427, "language models llms gpt": 85187, "models llms gpt family": 107483, "understanding capabilities limitations llms": 171145, "chatbots based large language": 22599, "openai chatgpt google bard": 116329, "downstream tasks text generation": 44839, "expertise machine learning systems": 54623, "role large language models": 145507, "impact large language models": 72677, "language models llm like": 84827, "models llm like openais": 107039, "llm like openais chatgpt": 93809, "paper introduce novel approach": 118997, "recent breakthroughs large language": 137453, "breakthroughs large language models": 19023, "pursuit artificial general intelligence": 133787, "novel benchmark specifically designed": 114424, "models including gpt4 chatgpt": 106716, "providing valuable insights future": 133400, "valuable insights future directions": 175430, "applications various domains natural": 10722, "various domains natural language": 175905, "domains natural language processing": 44478, "input sparsity time algorithm": 77349, "questions generated large language": 135143, "controllable text generation ctg": 31627, "large language models huge": 87868, "foundation models geospatial artificial": 60769, "models geospatial artificial intelligence": 106498, "geospatial artificial intelligence geoai": 65750, "models zeroshot fewshot learning": 109739, "integrates large language models": 78562, "language models llms key": 85283, "models achieved remarkable performance": 105245, "achieved remarkable performance tasks": 3869, "large language models set": 88729, "language models llms highlighting": 85226, "yields significant performance enhancements": 180035, "visual models natural language": 177232, "retrieval visual question answering": 144164, "conversational search conversational search": 31922, "systems large language models": 160454, "largescale language models llms": 89342, "instruction following large language": 78015, "following large language model": 60292, "instructiontuning large language models": 78414, "large language models crucial": 87686, "research field natural language": 141791, "parameterefficient tuning techniques lora": 119689, "generalization capabilities various downstream": 63148, "capabilities various downstream tasks": 20244, "language models llms recently": 85461, "models llms recently gained": 107805, "concerns regarding misuse llms": 28822, "use generative language models": 172652, "perspectives large language models": 122708, "chatgpt generative pretrained transformer": 22989, "facilitated use large language": 56674, "functioning large language models": 61897, "generation despite great success": 64568, "natural language processing work": 111839, "large language models responsible": 88701, "field artificial intelligence ai": 58127, "artificial intelligence ai chatgpt": 12667, "translate natural language code": 169411, "large language models domain": 87727, "language models llms successfully": 85579, "models llms successfully applied": 107957, "various tasks face challenges": 176208, "improves reasoning large language": 74069, "large language models performance": 88599, "language models performance large": 85879, "models performance large language": 108487, "language models llms reasoning": 85457, "models llms achieved remarkable": 107072, "llms achieved remarkable progress": 94314, "solving various natural language": 153256, "reviews large language models": 144584, "using generative pretrained transformers": 174248, "machine learning natural language": 98063, "natural language processing remains": 111802, "generative pretrained transformer models": 65560, "large language models languages": 87935, "big data large models": 18380, "language understanding incontext learning": 86828, "language models llms revolutionizing": 85501, "revolutionizing natural language processing": 144675, "question answering vqa tasks": 134825, "llms large language models": 95723, "powered generative large language": 125235, "generative large language model": 65448, "language model llm design": 83734, "language models openais gpt3": 85826, "features large language models": 57530, "large language models particular": 88587, "commonsense knowledge bases cskb": 26269, "challenging large language models": 22189, "language models llm chatgpt": 84815, "artificial intelligence ai chatbots": 12665, "intelligence ai chatbots chatgpt": 78732, "release large language model": 139476, "language models chatgpt demonstrated": 84234, "chatgpt demonstrated significant potential": 22839, "various aspects human life": 175819, "large language models combining": 87646, "advanced large language models": 5757, "sophisticated large language models": 153309, "advanced large language model": 5755, "natural language understanding reasoning": 111913, "reasoning natural language understanding": 137000, "using large pretrained language": 174397, "pretrained language models large": 126915, "models llms shown significant": 107899, "llms offer promising alternative": 95960, "general purpose language models": 63029, "language models perform arithmetic": 85870, "large language model automated": 87314, "integration large language model": 78668, "large language model technologies": 87490, "models openais chatgpt demonstrated": 108350, "recent studies demonstrated promising": 137658, "architecture designing foundation model": 12147, "designing foundation model based": 40001, "foundation model based systems": 60734, "address challenges paper presents": 5185, "large language models strong": 88769, "large language models meet": 88510, "personalization large language models": 122579, "text classification text generation": 164913, "finetuned language models demonstrate": 59043, "various natural language tasks": 176058, "language models bert variants": 84182, "models various nlp tasks": 109614, "various nlp tasks large": 176075, "combined large language models": 25906, "achieved encouraging results complex": 3803, "encouraging results complex reasoning": 48627, "results complex reasoning tasks": 143249, "task converts natural language": 161284, "natural language questions sql": 111855, "tasks work propose new": 163488, "background large language models": 15442, "language models chatgpt capable": 84232, "models chatgpt capable generating": 105612, "medical texts clinical notes": 100231, "artificial intelligence generated content": 12731, "findings reveal chatgpts performance": 58776, "astronomy large language models": 13594, "gpt4 large language model": 67057, "recent development large language": 137467, "development large language models": 41149, "language models llms demonstrate": 85002, "models llms demonstrate emergent": 107246, "language models instruction finetuned": 84717, "improve model performance generalization": 73521, "model performance generalization unseen": 104245, "performance generalization unseen tasks": 121578, "abstract meaning representation amr": 2650, "semantic role labeling srl": 148215, "datasets large language models": 36947, "large language models rise": 88713, "language models rise large": 86113, "models rise large language": 109003, "rise large language models": 144900, "information retrieval question answering": 76732, "number input output tokens": 114882, "input output tokens processed": 77300, "recent advances generative pretrained": 137402, "generative chat models chatgpt": 65402, "multihop question answering qa": 110427, "language models able learn": 84046, "large language models current": 87687, "large language models study": 88772, "natural language tasks work": 111891, "softmax regression large language": 152760, "regression large language models": 138958, "language models llms known": 85286, "attention mechanism transformer architecture": 13932, "llms various nlp tasks": 96959, "minx langle expax bf": 102444, "langle expax bf 1n": 83118, "expax bf 1n rangle1": 53731, "bf 1n rangle1 expax": 18085, "enhancing large language model": 49504, "address limitation paper propose": 5305, "framework comprises key components": 61029, "summarization experimental results demonstrate": 158828, "entity recognition ner partofspeech": 49919, "recognition ner partofspeech pos": 138105, "ner partofspeech pos tagging": 112598, "language models llms downstream": 85046, "downstream natural language processing": 44737, "cases large language models": 20986, "large language models various": 88850, "tasks traditional natural language": 163379, "present various use cases": 126499, "aims provide researchers practitioners": 7656, "exceptional performance various tasks": 52834, "practical applicability realworld scenarios": 125382, "models trained humanlabeled data": 109445, "cloudbased large language models": 24570, "extensive experiments demonstrate proposed": 55830, "demonstrate proposed methods significantly": 38511, "transformerbased large language model": 169253, "chatgpt natural language understanding": 23143, "demonstrated exceptional performance various": 38660, "various natural language generation": 176049, "experiments publicly available datasets": 54424, "empowers large language models": 48030, "multimodality large language models": 110803, "llms demonstrated impressive zeroshot": 94861, "experimental results model outperforms": 54044, "chatgpt similar generative ai": 23331, "engineering large language models": 48943, "models llms shown great": 107870, "llms shown great potential": 96539, "increasingly powerful large language": 75429, "powerful large language models": 125298, "language models lms increasingly": 85679, "general natural language processing": 63004, "promising performance various tasks": 130289, "unleashing power large language": 171986, "large language models solving": 88754, "paper aim bridge gap": 118717, "framework leverages stateoftheart large": 61285, "leverages stateoftheart large language": 91782, "large language models develop": 87715, "automated circuit discovery mechanistic": 14525, "circuit discovery mechanistic interpretability": 23774, "claims large language models": 23843, "data models perform better": 35396, "information retrieval clir systems": 76711, "large language model used": 87498, "automatic human evaluations demonstrate": 14688, "pretrained language models surprisingly": 126980, "parallel large language models": 119571, "language models llms increasingly": 85260, "models llms increasingly applied": 107565, "domain adaptation large language": 44069, "adaptation large language models": 4633, "adapt large language models": 4533, "language models llms task": 85589, "language models plms achieved": 85891, "models plms achieved remarkable": 108523, "plms achieved remarkable success": 123572, "achieved remarkable success nlp": 3878, "remarkable success nlp tasks": 140296, "advanced field natural language": 5732, "visual word sense disambiguation": 177341, "word sense disambiguation vwsd": 178677, "chainofthought cot prompting cot": 21491, "paper presents thorough empirical": 119190, "presents thorough empirical study": 126651, "improving large language model": 74162, "mediqachat 2023 clinical note": 100253, "conversations using large language": 31971, "2023 shared task automatic": 713, "incontext learning icl large": 74922, "learning icl large language": 90549, "language model llm achieve": 83721, "diverse range tasks including": 43621, "computer science education paper": 28486, "provides valuable insights chatgpts": 133248, "deploying large language models": 39243, "language models llms challenging": 84935, "require large amounts training": 141137, "large amounts training data": 87188, "llms achieve better performance": 94287, "reasoning ability language models": 136640, "method leverages chainofthought prompting": 100961, "leverage power large language": 91639, "language models finetuning downstream": 84540, "embedding space extensive experiments": 47192, "extensive experiments effectiveness proposed": 55843, "stateoftheart prompt tuning methods": 155313, "apis large language models": 10191, "language models llms power": 85403, "language processing models extremely": 86536, "language models llms specifically": 85559, "models llms specifically openais": 107941, "planning large language models": 123288, "language models demonstrate remarkable": 84342, "remains challenging paper propose": 139987, "planning algorithm lookahead search": 123245, "achieves stateoftheart performance standard": 4099, "compared large language models": 26848, "language models generate text": 84582, "inverse scaling model size": 80345, "extensive case studies demonstrate": 55730, "language model pretraining masked": 83853, "acceleration large language model": 2810, "natural language processing generative": 111727, "language processing generative pretrained": 86516, "processing generative pretrained transformer": 129166, "advancements field natural language": 5891, "language processing nlp research": 86579, "contextual understanding reasoning capabilities": 31116, "data large language models": 35290, "models llms achieved unprecedented": 107084, "performance complex reasoning tasks": 121310, "knowledgeintensive tasks paper propose": 82575, "models require significant amounts": 108941, "paper investigate using chatgpt": 119042, "models llms recently demonstrated": 107797, "llms recently demonstrated exceptional": 96332, "processing nlp tasks shown": 129261, "propose novel method termed": 132016, "method achieves new stateoftheart": 100640, "achieves new stateoftheart performance": 4042, "response given dialogue history": 142660, "science large language models": 146884, "language processing tasks zeroshot": 86645, "network large language models": 112669, "randomized controlled trials rcts": 135559, "instructiontuned large language models": 78391, "language models llms unlike": 85619, "zeroshot fewshot chainofthought cot": 180172, "large language models unlocked": 88837, "language models unlocked strong": 86344, "incorporates large language models": 75063, "advances artificial intelligence ai": 5985, "instruction tuning large language": 78108, "models llms demonstrated significant": 107292, "vast amounts text data": 176320, "following natural language instructions": 60300, "multimodal incontext instruction tuning": 110654, "incontext instruction tuning mimicit": 74858, "instruction tuning mimicit dataset": 78117, "large language model developed": 87334, "large language models hold": 87865, "study offers valuable insights": 157515, "offers valuable insights developing": 115860, "tuning pretrained language models": 170089, "pretrained language models despite": 126892, "method significantly improves performance": 101101, "paper propose simple efficient": 119252, "propose simple efficient approach": 132128, "models llms demonstrated remarkable": 107283, "llms demonstrated remarkable language": 94876, "demonstrates impressive multimodel chat": 38856, "impressive multimodel chat abilities": 73315, "multimodel chat abilities exhibiting": 110808, "chat abilities exhibiting behaviors": 22519, "abilities exhibiting behaviors multimodal": 1903, "exhibiting behaviors multimodal gpt4": 53166, "behaviors multimodal gpt4 unseen": 16718, "multimodal gpt4 unseen imagesinstructions": 110647, "gpt4 unseen imagesinstructions yields": 67206, "relative score compared gpt4": 139385, "score compared gpt4 synthetic": 147052, "compared gpt4 synthetic multimodal": 26823, "gpt4 synthetic multimodal instructionfollowing": 67190, "synthetic multimodal instructionfollowing dataset": 160057, "chainofthought prompting large language": 21527, "language models llms achieve": 84847, "models llms achieve strong": 107063, "large language models decision": 87691, "gpt35 large language model": 66833, "artificial intelligence trained vast": 12776, "intelligence trained vast amounts": 78914, "vast amounts natural language": 176317, "amounts natural language data": 8695, "natural language data enabling": 111575, "guiding large language models": 68276, "models llms significantly advanced": 107916, "llms significantly advanced natural": 96598, "significantly advanced natural language": 150933, "advanced natural language processing": 5784, "language processing nlp impressive": 86553, "impressive language understanding generation": 73309, "language understanding generation capabilities": 86820, "tasks require specialized knowledge": 163151, "address challenges propose novel": 5192, "compositional generalization paper present": 27813, "model pretrained large corpus": 104321, "biomedical named entity recognition": 18560, "address challenges paper proposes": 5186, "results demonstrate effectiveness proposed": 143294, "demonstrate effectiveness proposed method": 38310, "knowledge distillation large language": 81884, "large language models introduce": 87916, "language models llms address": 84865, "manually labeled training data": 99102, "approach depending specific use": 11107, "depending specific use case": 39173, "generation generative pretrained transformer": 64695, "generative pretrained transformer large": 65557, "pretrained transformer large language": 127200, "transformer large language models": 169159, "language models llms generative": 85182, "models llms generative pretrained": 107478, "llms generative pretrained transformer": 95399, "achieved tremendous success various": 3919, "number large language models": 114896, "language models llms users": 85628, "llms shown impressive abilities": 96544, "arithmetic reasoning commonsense reasoning": 12485, "recent release large language": 137614, "language model llm based": 83727, "model llm based chatbots": 103981, "test large language models": 164576, "large language models evaluate": 87769, "performance transformer language models": 122199, "fundamental task natural language": 61982, "language models lms paper": 85681, "language models llms pretrained": 85414, "models llms pretrained massive": 107747, "llms pretrained massive corpora": 96178, "tasks code generation tasks": 162060, "approach using large language": 11646, "large language models medical": 88509, "research large language models": 141880, "artificial intelligence ai research": 12695, "models trained massive amounts": 109455, "trained massive amounts data": 167996, "wide range tasks including": 178316, "text generation question answering": 165177, "large language models automated": 87587, "using pretrained large language": 174598, "language models demonstrate method": 84339, "question large language models": 134902, "models like chatgpt recently": 106977, "recently demonstrated impressive capabilities": 137852, "demonstrated impressive capabilities natural": 38692, "impressive capabilities natural language": 73271, "capabilities natural language understanding": 20073, "finding large language model": 58612, "based artificial intelligence ai": 15665, "artificial intelligence ai remarkable": 12694, "open world lifelong learning": 116312, "tasks extensive experiments demonstrate": 162380, "language models llms dominate": 85045, "spurious correlations training datasets": 154617, "finetune pretrained language models": 58963, "various tasks domains paper": 176205, "programming languages python java": 129849, "aibased language models like": 7341, "models llms demonstrate impressive": 107248, "abstraction reasoning corpus arc": 2669, "stateoftheart neural language models": 155257, "llms significantly advanced field": 96596, "significantly advanced field natural": 150929, "significantly improves reasoning ability": 151049, "search large language models": 147370, "information retrieval information retrieval": 76720, "retrieval information retrieval ir": 144070, "language models llms revolutionized": 85496, "quality machine translation mt": 134196, "large language models remarkable": 88693, "discussion large language models": 42998, "large language models temporal": 88797, "exploring use large language": 55514, "language models llms multiple": 85344, "size poses challenges terms": 152046, "poses challenges terms computational": 124199, "small language models slms": 152307, "paper introduce novel method": 118999, "remains largely untapped study": 140029, "evaluates performance large language": 51249, "large language model extensive": 87349, "language model extensive experiments": 83635, "pretraining finetuning pretrained language": 127331, "finetuning pretrained language model": 59454, "generative ai large language": 65330, "ai large language models": 7059, "large language models suggest": 88779, "focus large language models": 60012, "increasing popularity large language": 75347, "models llms chatgpt led": 107187, "paper aims provide overview": 118739, "models llms shown increasing": 107880, "tasks natural language understanding": 162843, "demonstrate effectiveness method codes": 38304, "novel approach aimed improving": 114368, "autoregressive large language models": 14995, "directions verify effectiveness proposed": 42506, "language models despite remarkable": 84369, "models despite remarkable success": 105942, "knowledge graph construction kgc": 82049, "propose new task called": 131977, "models natural language feedback": 108267, "recent advancements artificial intelligence": 137345, "paper large language models": 119065, "language models llms follow": 85148, "experiments demonstrate method consistently": 54231, "framework large language model": 61258, "zeroshot reasoning ability large": 180318, "reasoning ability large language": 136642, "ability large language modelsllms": 2248, "question answering tasks based": 134811, "significantly boost performance chatgpt": 150953, "wide spectrum natural language": 178336, "spectrum natural language processing": 154362, "achieve significant performance gains": 3736, "language models llms brought": 84921, "models llms brought significant": 107151, "llms including chatgpt llama": 95569, "enhancing large language models": 49505, "language models longterm memory": 85702, "domain natural language processing": 44233, "designed natural language processing": 39919, "natural language processing related": 111800, "paper aims provide comprehensive": 118738, "large language models automatically": 87589, "language models automatically generate": 84152, "neural networks reinforcement learning": 112948, "reinforcement learning rl machine": 139104, "learning rl machine learning": 90947, "assessment large language models": 13242, "large language models given": 87845, "language model llm reliably": 83773, "generate factually correct answers": 63492, "problem solving large language": 128406, "solving large language models": 153220, "models language models increasingly": 106867, "solving wide range tasks": 153264, "success rate 74 code": 158285, "autoregressive language models based": 14989, "paper propose new paradigm": 119238, "experiments approach substantially improves": 54154, "report large language models": 140542, "language models able generate": 84045, "ability masked language models": 2274, "language models experiments demonstrate": 84491, "ability artificial intelligence ai": 2070, "large language models focus": 87818, "language models llms encode": 85080, "model significantly outperforms previous": 104577, "empowering large language models": 48016, "abilities multimodal large language": 1968, "step artificial general intelligence": 155599, "finetuning experimental results demonstrate": 59261, "shown finetuning large language": 150244, "language models llms largescale": 85293, "wang et al 2022": 177686, "language models llms notably": 85353, "vision foundation models vfms": 176923, "parameters large language models": 119787, "model size inference latency": 104600, "llms shown great success": 96541, "address issue paper proposes": 5270, "wide range complex tasks": 178274, "finetuning language models agreement": 59326, "remarkable performance reasoning tasks": 140239, "large language models people": 88594, "turning large language models": 170184, "language models llms complex": 84968, "language models llms based": 84909, "generative pretraining transformer gpt": 65576, "achieving stateoftheart performance various": 4224, "responses generated llms furthermore": 142806, "automatic human evaluation demonstrate": 14685, "human evaluation demonstrate effectiveness": 70731, "language models llms observe": 85357, "large language model perform": 87456, "answering large language model": 9890, "language model llm gained": 83746, "extensive experiments demonstrate approach": 55822, "debate large language models": 37289, "llms shown impressive capabilities": 96546, "shown impressive capabilities various": 150271, "extensive experiments various datasets": 55897, "methods codes data available": 101376, "large language model incontext": 87370, "language models llms substantially": 85578, "natural language processing demonstrating": 111719, "language processing demonstrating exceptional": 86508, "results various tasks study": 143925, "strong language understanding generation": 156406, "model achieves superior performance": 103057, "language models llms garnered": 85165, "models llms garnered significant": 107457, "llms garnered significant attention": 95340, "reasoning skills large language": 137127, "skills large language models": 152170, "open pretrained transformers opt": 116263, "high school graduation examination": 69534, "dataset large language models": 36383, "evaluating large language models": 51328, "language models llms introduced": 85277, "vietnamese national high school": 176806, "national high school graduation": 111492, "question answering text generation": 134814, "recent years deep learningbased": 137773, "multimodal named entity recognition": 110735, "named entity recognition mner": 111402, "existing studies mainly focus": 53595, "knowledge explicit knowledge bases": 81976, "language models llms powerful": 85404, "powerful multimodal large language": 125309, "visual question answering image": 177266, "question answering image captioning": 134731, "methods use large language": 101904, "adopted language models lms": 5601, "language models finetuning pretrained": 84544, "finetuning pretrained language models": 59455, "large language models llama": 87962, "factuality large language models": 56913, "language models llms current": 84991, "llms exhibited remarkable performance": 95162, "exhibited remarkable performance various": 53152, "remarkable performance various natural": 140249, "processing nlp tasks current": 129251, "language models recent progress": 86050, "recent progress large language": 137597, "progress large language models": 129977, "large language models enabled": 87757, "language models different architectures": 84380, "speech recognition using large": 154466, "human evaluations demonstrate effectiveness": 70762, "integration large language models": 78670, "language models llms llms": 85324, "models llms llms exhibit": 107644, "language models domainspecific data": 84403, "gpt large language models": 66442, "models llms like gpt": 107629, "achieved remarkable progress various": 3873, "remarkable progress various natural": 140278, "progress various natural language": 130030, "emergence generative large language": 47422, "language models llms raises": 85451, "grammatical error correction task": 67456, "set large language models": 149231, "pipeline large language models": 123071, "models llms revolutionized field": 107843, "paper propose efficient llm": 119216, "propose efficient llm inference": 131796, "models llms chatgpt gpt4": 107182, "llms chatgpt gpt4 shown": 94588, "shown impressive performance complex": 150275, "impressive performance complex reasoning": 73325, "large language models models": 88531, "techniques yield significant improvements": 164062, "using natural language explanations": 174514, "natural language explanations nles": 111597, "perform automatic human evaluations": 120872, "human evaluations assess quality": 70760, "pretraining data large language": 127296, "propose novel evaluation metric": 131998, "pretrained visual language models": 127242, "visual language models vlm": 177214, "contrast large language models": 31312, "language models llms emerge": 85061, "ability large language model": 2242, "large language model visual": 87503, "study contributes deeper understanding": 157249, "behavior large language models": 16608, "external information large language": 56056, "language models llms tool": 85594, "emerged promising solution addressing": 47395, "unlike large language models": 172008, "large language models excel": 87778, "specific tasks work present": 154110, "summarization using large language": 158894, "language models llms potentially": 85402, "pretrained language models work": 126987, "knowledge encoded pretrained language": 81935, "encoded pretrained language models": 48401, "propose using large language": 132201, "analysis pretrained language models": 9080, "generative pretrained transformers gpts": 65566, "large multilingual language models": 88936, "combined achieve stateoftheart results": 25893, "despite impressive performance large": 40138, "impressive performance large language": 73331, "training data incontext learning": 168285, "training data improve performance": 168281, "improves fewshot performance llms": 74003, "systems based large language": 160263, "work conduct comprehensive analysis": 178858, "demonstrated remarkable capabilities various": 38764, "remarkable capabilities various tasks": 140179, "ability address issue propose": 2058, "machine learning automl tools": 98019, "utilize large language models": 175060, "incontext learning capability large": 74878, "learning capability large language": 90281, "language models propose data": 85991, "multihop question answering fact": 110423, "question answering fact verification": 134720, "improves model performance significantly": 74032, "exploring large language models": 55484, "large language models existing": 87783, "paper make attempt investigate": 119076, "reasoning benchmarks demonstrate effectiveness": 136684, "conduct extensive ablation studies": 29105, "large language models vision": 88852, "language models vision language": 86374, "performance various language tasks": 122259, "models specifically investigate performance": 109212, "large language models introduction": 87919, "capabilities recent large language": 20146, "underlying large language model": 170846, "large language models struggle": 88770, "models reasoning large language": 108812, "language models llms excel": 85099, "language models llms bring": 84919, "code generation paper propose": 24909, "produce text indistinguishable humangenerated": 129471, "age artificial intelligence ai": 6388, "methods limited specific tasks": 101646, "especially training data scarce": 50556, "popular large language model": 124008, "large language model results": 87476, "large language model large": 87379, "compared existing moe architectures": 26804, "theory mind theory mind": 166095, "mind theory mind tom": 102287, "theory mind tom ability": 166098, "human reasoning decision making": 71007, "data model checkpoints publicly": 35380, "model checkpoints publicly available": 103276, "language models llms models": 85339, "using natural language instructions": 174516, "finetuned synthetically generated dataset": 59122, "easily trained using lora": 45338, "language models llms answer": 84884, "models llms answer questions": 107111, "alpaca experimental results demonstrate": 8510, "experimental results demonstrate effectiveness": 53985, "array large language models": 12519, "zhou et al 2023": 180391, "based findings propose new": 15814, "compared standard prompting method": 26929, "plays pivotal role human": 123533, "models llms shown remarkable": 107892, "question answering experiments reveal": 134711, "pose significant challenge existing": 124175, "natural language programming language": 111843, "strong baselines codes data": 156354, "language models llms proficient": 85424, "navigation large language models": 112060, "language models llms struggle": 85574, "approach outperforms previous stateoftheart": 11431, "neural language models generate": 112860, "language models generate new": 84578, "large language model zeroshot": 87506, "language models llms play": 85392, "study large language models": 157464, "large language models computational": 87658, "models llms exhibited impressive": 107391, "llms demonstrated remarkable capabilities": 94869, "indicate approach significantly enhances": 75573, "human feedback large language": 70807, "compositional zeroshot learning czsl": 27829, "mitstates utzappos cgqa datasets": 102709, "utilization large language model": 175002, "language model llm enhance": 83739, "field large language models": 58190, "data code released github": 34774, "comprehensive evaluation large language": 28014, "large language models automatic": 87588, "datasets showcasing superior performance": 37112, "make data code publicly": 98519, "data code publicly available": 34772, "text generation machine translation": 165155, "applicability large language models": 10260, "large language models robust": 88715, "tasks prior work studied": 163003, "language model llm prompted": 83770, "hallucination large language models": 68388, "large language models inference": 87902, "tasks like question answering": 162724, "llms perform significantly worse": 96077, "improve performance large language": 73555, "models llms complex reasoning": 107210, "llms complex reasoning tasks": 94667, "speech recognition asr systems": 154447, "large language model produce": 87463, "geopolitical biases language models": 65739, "language model llm answer": 83724, "language models llms improve": 85245, "question answering qa datasets": 134780, "instructing large language models": 77956, "combination large language models": 25830, "language models llms increasing": 85259, "training llms follow instructions": 168554, "models benefit instruction tuning": 105486, "zeroshot generalization downstream tasks": 180198, "large language models diffusion": 87721, "language models diffusion models": 84386, "collaboration large language models": 25592, "language models llms diffusion": 85035, "models llms diffusion models": 107310, "language models llms produce": 85423, "methods including large language": 101593, "large language models gpt35": 87850, "language models gpt35 chatgpt": 84614, "large language models guide": 87856, "instructiontuned large language model": 78390, "language models llms natural": 85345, "models llms natural language": 107666, "llms natural language processing": 95924, "large language models order": 88567, "reveals large language models": 144431, "models llms shown perform": 107882, "language models plms large": 85903, "models plms large language": 108537, "plms large language models": 123616, "language models llms additional": 84863, "llms shown remarkable reasoning": 96571, "shown remarkable reasoning capabilities": 150369, "intermediate reasoning steps chainofthought": 79526, "overcome limitations propose new": 118305, "language models llms gap": 85164, "finetuning strategies pretrained language": 59565, "language models plms demonstrated": 85894, "models plms demonstrated remarkable": 108527, "plms demonstrated remarkable performance": 123585, "language models llms serving": 85507, "models llms demonstrated powerful": 107279, "llms demonstrated powerful capabilities": 94865, "mathematical reasoning large language": 99593, "models process store information": 108659, "models recent large language": 108831, "large language models encode": 87760, "language models recent advances": 86046, "models recent advances large": 108825, "language models llms stimulated": 85568, "bridges gap vision language": 19083, "method leverages large language": 100963, "language models llms synthesize": 85585, "event extraction relation extraction": 52080, "instruction learning large language": 78035, "models llms significantly improved": 107921, "language generation instruction following": 83351, "question answering fact checking": 134719, "recent studies shown large": 137673, "studies shown large language": 157084, "language models llms possess": 85396, "artificial intelligence ai machine": 12684, "intelligence ai machine learning": 78753, "language models llms particularly": 85381, "dealing complex tasks involving": 37270, "demonstrations large language models": 39023, "language models llms capture": 84930, "tuning large language model": 170043, "large language model capable": 87322, "harnessing power large language": 68837, "translation translating natural language": 169540, "translating natural language sentences": 169431, "supervised finetuning sft reinforcement": 159124, "finetuning sft reinforcement learning": 59535, "sft reinforcement learning human": 149745, "world large language models": 179583, "capable performing diverse tasks": 20459, "information using natural language": 76839, "adopted large language models": 5605, "language models llms hard": 85217, "study present novel approach": 157540, "hallucinations large language models": 68439, "large language models evaluation": 87771, "mitigation large language models": 102691, "current large language models": 34148, "large language models openais": 88563, "language models openais chatgpt": 85825, "artificial intelligence language models": 12744, "language models llms dramatically": 85049, "learned large language models": 90107, "compositional visual question answering": 27825, "tasks paper introduces novel": 162917, "large language model llmbased": 87437, "downstream tasks evaluation results": 44779, "empower large language models": 47992, "large language models visual": 88855, "conversational question answering large": 31907, "opendomain question answering systems": 116471, "large language models widespread": 88863, "widespread use large language": 178479, "models llms nlp tasks": 107673, "evaluation using large language": 51920, "higher correlation human evaluations": 69588, "framework integrates large language": 61232, "large language models significantly": 88740, "models significantly outperform stateoftheart": 109133, "english large language models": 49073, "language processing nlp applications": 86542, "family large language models": 57197, "large language models serve": 88728, "deep learning models based": 37757, "employs large language model": 47968, "language models propose method": 85992, "textonly large language models": 165665, "complex interactive reasoning tasks": 27445, "language models llms enhance": 85084, "performance variety language tasks": 122240, "clear large language models": 24274, "large language models finetuned": 87814, "finetuned reinforcement learning human": 59099, "ouyang et al 2022": 118170, "limitations reinforcement learning human": 92655, "natural language processing techniques": 111830, "dataset evaluation code available": 36268, "scenarios limited data availability": 146643, "leveraging advanced natural language": 91800, "large language models scientific": 88722, "models llms trained large": 107980, "llms trained large corpus": 96829, "large language model gpt4": 87367, "data conduct extensive experiments": 34826, "natural language processing tools": 111834, "large language models testing": 88799, "utility large language models": 174959, "language models generative ai": 84586, "use natural language processing": 172775, "language processing nlp techniques": 86593, "large language models realistic": 88665, "reasoning chainofthought cot prompting": 136736, "chainofthought cot prompting large": 21494, "cot prompting large language": 32890, "large language models proven": 88647, "language models proven effective": 85997, "numerous natural language processing": 115051, "et al 2022 proposed": 50779, "large language model program": 87464, "large language models prompted": 88638, "lin et al 2022": 92937, "recent multimodal large language": 137569, "visual captioning question answering": 177127, "students large language models": 156874, "language models increasingly integrated": 84699, "language models gpt3 chatgpt": 84611, "based pretrained language model": 16018, "use large pretrained language": 172715, "domain large language model": 44217, "fine tuning domain specific": 58843, "challenges need addressed paper": 21965, "representations large language model": 140833, "language models knowledgeintensive tasks": 84753, "knowledgeintensive tasks large language": 82569, "models llms shown promising": 107888, "llms shown promising performance": 96562, "deployment llms realworld applications": 39290, "knowledge retrieved external knowledge": 82387, "external knowledge base propose": 56061, "thorough evaluation chatgpts performance": 166186, "text summarization code generation": 165504, "provide insights future research": 132851, "performance diverse nlp tasks": 121415, "complex reasoning large language": 27558, "benchmark experimental results demonstrate": 16971, "experimental results demonstrate superiority": 54004, "results demonstrate superiority approach": 143340, "language model outperforms gpt2": 83819, "using generative pretrained transformer": 174246, "language models llms incorporate": 85254, "used large language model": 173130, "language models question answering": 86010, "thinking large language models": 166154, "llms like chatgpt shown": 95775, "like chatgpt shown remarkable": 92243, "chatgpt shown remarkable performance": 23321, "performance general language tasks": 121571, "language tasks struggle complex": 86776, "struggle complex reasoning tasks": 156738, "language models llms ability": 84843, "recent advances visionlanguage models": 137432, "tasks remains unclear paper": 163134, "models performance overall work": 108491, "results using large language": 143905, "introduce novel task counterfactual": 80074, "language models shown tremendous": 86162, "models shown tremendous performance": 109119, "benchmark evaluating language models": 16955, "shown improve performance nlp": 150289, "improve performance nlp tasks": 73564, "text generation large language": 165150, "llms shown remarkable success": 96573, "remarkable success wide range": 140303, "success wide range natural": 158318, "range natural language generation": 135654, "generation tasks including summarization": 65165, "tasks including summarization translation": 162581, "outperforms existing prompting methods": 117764, "methods achieves stateoftheart performance": 101282, "achieves stateoftheart performance multiple": 4097, "text generation tasks provide": 165190, "models llms led remarkable": 107610, "paper introduces novel automated": 119016, "dataset examples diverse samples": 36274, "examples diverse samples better": 52564, "neuron behaviour graphs visualised": 113012, "behaviour graphs visualised aid": 16735, "neurons ground truth activations": 113022, "complex multistep reasoning stateoftheart": 27488, "conversation user elicit information": 31815, "tasks including classification qa": 162547, "models llms like gpt4": 107634, "offer potential solutions issues": 115685, "research highlights potential llms": 141829, "events large language models": 52118, "language models llms dialogue": 85033, "propose novel transfer learning": 132041, "models achieved significant progress": 105249, "existing language models capture": 53398, "models recently shown promising": 108860, "perception tasks paper propose": 120827, "conduct extensive experiments verify": 29130, "language modeling large language": 83999, "modeling large language models": 105029, "large language models output": 88570, "llms like gpt4 outperform": 95785, "models llms specifically gpt4": 107940, "common natural language processing": 26164, "paper explore potential llms": 118919, "propose future research directions": 131844, "guided generation large language": 68226, "english foreign language efl": 49054, "endtoend automatic speech recognition": 48728, "vast amounts training data": 176324, "model inference large language": 103856, "language models llms large": 85290, "models llms gained considerable": 107443, "llms gained considerable attention": 95323, "intelligence generated content aigc": 78831, "remains open question paper": 140054, "adapting large language models": 4743, "language models llms decisionmaking": 84997, "performance popular llms gpt4": 121918, "clinical notes using large": 24353, "notes using large language": 114311, "ensembling large language models": 49659, "opensource large language models": 116623, "language models llms framework": 85152, "tasks including language understanding": 162558, "recent research focused enhancing": 137624, "incorporating large language model": 75113, "language model llm gpt35": 83754, "language models llms capability": 84925, "visual auditory content video": 177122, "performance generative pretrained transformer": 121590, "pretrained transformer gpt model": 127184, "capacity pretrained language models": 20538, "language models llms flexibly": 85146, "blackbox large language models": 18639, "models large language modelsllms": 106900, "downstream tasks code data": 44767, "tasks code data publicly": 162055, "code data publicly available": 24757, "large generative ai models": 87268, "work large language models": 179087, "language models llms incurs": 85266, "models trained massive corpora": 109457, "models expensive train deploy": 106234, "systems remains challenging task": 160585, "large language models examining": 87776, "language models llms particular": 85380, "large language models prompt": 88636, "language models llms providing": 85445, "models llms providing explicit": 107779, "llms excel various tasks": 95125, "prompt lets think step": 130591, "think step step prompt": 166141, "extensive experiments widely used": 55903, "consistently outperforms competitive baselines": 29903, "text data generation large": 164986, "models llms used generate": 108005, "capabilities generative pretrained transformer": 19922, "llms experimental results demonstrate": 95186, "prompting fewshot incontext learning": 130935, "recent emergence large language": 137488, "llms like chatgpt exhibited": 95769, "evaluating robustness large language": 51387, "large language models adversarial": 87554, "increasing reliance large language": 75356, "reliance large language models": 139781, "tasks sentiment analysis natural": 163216, "natural language inference reading": 111639, "language inference reading comprehension": 83430, "far large language models": 57226, "llms shown remarkable abilities": 96565, "fundamental aspect human language": 61934, "experiments pretrained language models": 54399, "models llms face challenges": 107416, "language models llms llama": 85320, "various nlp tasks enhance": 176071, "language models work introduces": 86404, "realworld use cases paper": 136535, "utilization large language models": 175003, "models llms achieved great": 107067, "llms achieved great success": 94305, "natural language processing paper": 111791, "models using large language": 109593, "language model llm use": 83778, "large language models software": 88749, "language models software testing": 86191, "language models llms suggest": 85582, "examining large language models": 52450, "general intelligence large language": 62967, "intelligence large language models": 78851, "lowresource nonlatin script languages": 97930, "large vision language models": 89109, "capable understanding generating humanlike": 20480, "language models demonstrated ability": 84344, "model generalization unseen tasks": 103710, "popularity ability generate humanlike": 124080, "face challenges using chatgpt": 56522, "evaluating large language model": 51326, "language model generated text": 83655, "processing nlp led development": 129229, "led development large language": 91220, "language instructions complete complex": 83447, "instructions complete complex tasks": 78217, "language models llms building": 84923, "paper propose novel method": 119244, "methods trained limited data": 101884, "pretrained large text corpora": 127011, "modifying factual knowledge large": 109891, "factual knowledge large language": 56886, "language models llms store": 85570, "large language models specifically": 88760, "school graduation examination vnhsge": 146832, "deep neural networks trained": 37814, "stateoftheart results wide variety": 155344, "large language models impressive": 87881, "propose general language model": 131848, "large language models emerged": 87744, "natural language processing human": 111729, "multimodal instruction tuning dataset": 110665, "extensive experiments validate effectiveness": 55895, "multimodal instruction tuning datasets": 110666, "models plms shown remarkable": 108550, "shown remarkable performance various": 150363, "remains largely unexplored study": 140026, "social determinants health sdoh": 152564, "machine translation large language": 98114, "translation large language models": 169476, "tasks like image captioning": 162713, "like image captioning visual": 92317, "image captioning visual question": 72191, "captioning visual question answering": 20600, "assistant large language model": 13393, "considering large language models": 29720, "language models llms showcased": 85509, "large generative models language": 87274, "pretrained texttoimage diffusion model": 127174, "agents large language models": 6641, "language models llms computer": 84971, "incontext learning icl performance": 74925, "issues limited context length": 81030, "general language model glm": 62974, "conversations large language models": 31954, "work propose novel method": 179213, "named entity recognition model": 111403, "require costly human annotation": 141084, "large language model agent": 87302, "language model llm dynamically": 83737, "largescale language model rescoring": 89335, "largescale language models llm": 89341, "llm automated speech recognition": 93487, "automated speech recognition asr": 14611, "artificial intelligence ai language": 12680, "intelligence ai language models": 78749, "internet things iot devices": 79596, "language model llm chatgpt": 83731, "achieved stateoftheart performance wide": 3905, "stateoftheart performance wide range": 155299, "language models gpt35 gpt4": 84615, "recent research large language": 137629, "llms led remarkable advancements": 95750, "capable using natural language": 20484, "large language models ai": 87557, "systems powered large language": 160539, "emerge rapidly promising direction": 47334, "rapidly promising direction achieve": 135940, "agi natural language processing": 6807, "models llms proven useful": 107774, "gained significant attention recent": 62481, "significant attention recent years": 150614, "amazon mechanical turk amt": 8620, "conversational question answering cqa": 31906, "world knowledge large language": 179571, "large language models unprecedented": 88839, "language models unprecedented performance": 86346, "models unprecedented performance large": 109558, "unprecedented performance large language": 172088, "language models llms necessitates": 85347, "openparticipation leaderboard publicly released": 116545, "language models perform complex": 85871, "models perform complex reasoning": 108462, "perform complex reasoning generating": 120900, "large language models wide": 88861, "language models llms enabled": 85078, "scaling laws large language": 146415, "laws large language models": 89614, "large language models limited": 87960, "resources large language models": 142448, "models llms revolutionized natural": 107846, "llms revolutionized natural language": 96463, "effects large language models": 46338, "language models llms llmbased": 85322, "findings highlight transformative potential": 58686, "highlight transformative potential llms": 69792, "using text generated large": 174799, "experiments standard document ranking": 54474, "standard document ranking benchmarks": 154817, "chatgpt education artificial intelligence": 22870, "understanding capabilities large language": 171142, "model properties model size": 104376, "embeddings large language models": 47249, "use llms like chatgpt": 172749, "data collection processing analysis": 34789, "pretrained language models address": 126875, "benchmark natural language understanding": 17042, "language understanding nlu datasets": 86837, "existing data selection methods": 53330, "increase language model performance": 75211, "potential artificial general intelligence": 124603, "language models llms appear": 84887, "models llms appear offer": 107114, "perspective large language models": 122676, "evaluation using standard test": 51926, "zeroshot learning capabilities chatgpt": 180232, "language models llms exploit": 85124, "aligning llms human preferences": 8102, "transfer capabilities language generation": 168901, "networks including large language": 112763, "models llms chatgpt gained": 107177, "llms chatgpt gained significant": 94580, "chatgpt gained significant attention": 22966, "gained significant attention impressive": 62480, "significant attention impressive natural": 150607, "attention impressive natural language": 13900, "impressive natural language processing": 73319, "machine learning deep learning": 98027, "law large language models": 89603, "work paves way development": 179158, "reshaped natural language processing": 142304, "new large language model": 113250, "llms achieved remarkable performance": 94312, "referencebased metrics bleu rouge": 138683, "better human judgment existing": 17902, "existing automatic evaluation metrics": 53288, "investigating potential large language": 80611, "promising avenues future research": 130233, "impact natural language processing": 72698, "training deep neural networks": 168382, "process reduces computational requirements": 128965, "foundation models large language": 60777, "ai chain engineering methodology": 6903, "language models advent large": 84091, "models advent large language": 105304, "large language models solve": 88752, "evaluate large language models": 50999, "language models llms seen": 85505, "language models exhibit biases": 84479, "language models probabilistic models": 85961, "construction large language models": 30225, "language models llms support": 85584, "language models llms work": 85656, "models llms work propose": 108042, "incontext learning capability llms": 74880, "achieves stateoftheart results wellestablished": 4109, "language processing models like": 86537, "processing models like gpt3": 129198, "driven large language models": 44985, "language models llms stirred": 85569, "llms demonstrated impressive performance": 94855, "impressive performance various nlp": 73349, "enhance llms questionanswering abilities": 49232, "address issue introduce new": 5260, "new benchmark evaluating llms": 113091, "benchmark multimodal large language": 17036, "language models multimodal large": 85777, "models multimodal large language": 108249, "large language model mllm": 87447, "experts large language models": 54666, "natural language tasks including": 111884, "language models llms focus": 85147, "representations large language models": 140834, "recent studies shown llms": 137675, "reinforcement learning problems typically": 139087, "survey presents comprehensive overview": 159670, "comprehensive overview recent works": 28092, "potential avenues future research": 124618, "advancements artificial intelligence ai": 5867, "risks large language models": 145000, "emerging large language models": 47519, "language models llms code": 84960, "models llms code generation": 107202, "generative inference large language": 65426, "language models llms despite": 85030, "sequence length batch size": 148761, "orders magnitude fewer parameters": 117264, "promptbased large language models": 130774, "pretraining significantly improve performance": 127440, "grounding multimodal large language": 67913, "large language models world": 88869, "language understanding generation work": 86825, "big convergence language multimodal": 18376, "convergence language multimodal perception": 31760, "language multimodal perception action": 86431, "multimodal perception action world": 110742, "perception action world modeling": 120792, "action world modeling key": 4347, "world modeling key step": 179595, "modeling key step artificial": 105023, "key step artificial general": 81573, "language processing nlp introduce": 86555, "finetuning parameterefficient finetuning peft": 59428, "latest instructiontuned large language": 89555, "large language model based": 87317, "language model based llama": 83554, "analysis using large language": 9225, "coding widely used qualitative": 25418, "natural language processing reasoning": 111797, "recent years language models": 137780, "years language models lms": 179904, "domains including natural language": 44437, "current multimodal large language": 34190, "aligned large language models": 8065, "large language models tuned": 88826, "reasoning language models language": 136949, "models llms increasingly integrated": 107567, "large language models provide": 88649, "large language models data": 87688, "language models data augmentation": 84326, "exams large language models": 52733, "large language models emergence": 87745, "emergence advanced natural language": 47413, "large language models empirical": 87750, "represents significant step forward": 140996, "large language models setting": 88730, "tasks large language model": 162684, "present comprehensive empirical study": 126255, "age large language models": 6397, "commercial large language models": 26077, "language models llms gpt35turbo": 85197, "models llms gpt35turbo gpt4": 107493, "llms chatgpt gpt4 demonstrated": 94587, "states medical licensing examination": 155433, "demonstrated remarkable capabilities wide": 38766, "remarkable capabilities wide range": 140182, "benchmarking large language model": 17148, "large language models plms": 88607, "deep learning large language": 37749, "models llms openais chatgpt": 107692, "natural language generation natural": 111614, "language generation natural language": 83363, "efforts large language models": 46923, "large language models effective": 87737, "documents using large language": 43946, "language models llms directly": 85038, "fewshot learning large language": 57966, "language models impressive results": 84676, "text classification tasks including": 164910, "demonstrated exceptional capabilities wide": 38657, "exceptional capabilities wide range": 52815, "framework significantly outperforms strong": 61414, "natural language feedback nlf": 111603, "align large language models": 8014, "language models llms human": 85232, "models llms human preferences": 107536, "english pretrained language models": 49097, "significant impact model performance": 150723, "large language model text": 87491, "tasks applying large language": 161959, "applying large language models": 10901, "large language models realworld": 88667, "language models generate rich": 84580, "generation capability large language": 64475, "language models make better": 85713, "underpin large language models": 170892, "generative ai genai models": 65322, "including named entity recognition": 74631, "triple extraction event extraction": 169777, "large language models emergent": 87747, "language models gpt4 claude": 84617, "pretrained language models capable": 126885, "large language models focusing": 87819, "large language models augmented": 87585, "data augmented synthetic data": 34697, "large language models outperform": 88569, "language models llms text": 85591, "proprietary models like chatgpt": 132527, "comparison large language models": 27052, "models llms openai chatgpt": 107690, "findings study contribute understanding": 58803, "performance models heavily relies": 121812, "address issue paper presents": 5268, "language comprehension text generation": 83207, "research underscores potential llms": 142131, "multimodel large language models": 110813, "pretrained language models graph": 126910, "language models graph neural": 84621, "chatgpt potential valuable tool": 23201, "nlp tasks large language": 113867, "language models llms typically": 85613, "model sizes paper propose": 104620, "various baselines including larger": 175829, "overcome context window limitation": 118282, "education large language models": 45554, "large language models rapid": 88660, "llms play significant role": 96112, "enhance performance large language": 49251, "large language models pruning": 88652, "annotators large language models": 9635, "language models llms construct": 84976, "language models ai chatbots": 84100, "language models like gpt4": 84803, "models like gpt4 exhibit": 106989, "changes significantly improve accuracy": 22392, "work highlights importance highquality": 179018, "conventional supervised learning methods": 31734, "recent advances development large": 137388, "advances development large language": 6000, "complex decision making problems": 27395, "motivated recent advances large": 110192, "masked language model mlm": 99301, "language model mlm objective": 83802, "efficacy large language models": 46389, "large language models generating": 87836, "gpt4 fewshot incontext learning": 67010, "model using reinforcement learning": 104854, "natural language descriptions image": 111582, "language model llm uses": 83780, "results indicate large language": 143508, "large language model domainspecific": 87337, "explored large language models": 55354, "language models llms overcome": 85378, "data code data available": 34766, "large language models present": 88619, "artificial intelligence ai capabilities": 12664, "foundation large language models": 60729, "widely used large language": 178396, "synergy large language models": 159875, "rapid development large language": 135869, "large language models meticulously": 88516, "models exhibited exceptional performance": 106218, "tasks using publicly available": 163438, "using publicly available datasets": 174634, "paper presents case study": 119147, "large language model create": 87329, "language models llms explore": 85125, "superior performance compared existing": 159021, "exploring large language model": 55483, "large language model graph": 87368, "job recommendations large language": 81234, "recommendations large language models": 138252, "exceptional capabilities various domains": 52813, "remains largely unexplored paper": 140025, "large language models understanding": 88831, "provided large language models": 133071, "large language models analyze": 87567, "natural language processing offer": 111790, "large language models artificial": 87577, "ai tool large language": 7284, "tool large language model": 167000, "pretrained transformer language model": 127196, "overview large language models": 118438, "llms recently demonstrated remarkable": 96336, "demonstrated remarkable capabilities natural": 38759, "remarkable capabilities natural language": 140163, "capabilities natural language processing": 20071, "training transformerbased language models": 168805, "unsupervised domain adaptation task": 172244, "language models paper proposes": 85852, "knowledge learned large language": 82183, "language models perform zeroshot": 85877, "large language models capable": 87619, "language models llms representing": 85487, "stateoftheart models image captioning": 155231, "compression large language model": 28215, "leveraging power large language": 91920, "large language models stable": 88764, "causal language model trained": 21196, "massive text embedding benchmark": 99383, "stack overflow large language": 154711, "overflow large language models": 118347, "lowresource named entity recognition": 97924, "data augmentation widely used": 34692, "artificial intelligence recent advances": 12761, "recent advances machine learning": 137414, "general large language models": 62983, "large language model knowledge": 87376, "language model knowledge graph": 83703, "knowledge graph large language": 82060, "graph large language models": 67544, "models llms achieved significant": 107078, "llms achieved significant success": 94317, "achieved significant success various": 3895, "compressed large language models": 28195, "large language models parameterefficient": 88584, "models llms downstream tasks": 107322, "techniques experimental results demonstrate": 163895, "attention computation large language": 13857, "computation large language models": 28306, "models llms demonstrated exceptional": 107262, "llms demonstrated exceptional performance": 94839, "exceptional performance wide range": 52836, "wide range tasks models": 178317, "advanced deep learning techniques": 5726, "revolutionized field natural language": 144647, "achieved remarkable results various": 3875, "sentiment analysis question answering": 148631, "generating coherent contextually relevant": 64163, "coherent contextually relevant text": 25528, "architecture large language models": 12182, "challenging aspect natural language": 22118, "aspect natural language processing": 12916, "language processing nlp existing": 86551, "existing evaluation benchmarks primarily": 53360, "pretraining architectures large language": 127267, "architectures large language models": 12274, "language models llms results": 85494, "generation generative pretrained transformers": 64696, "code generation models prompt": 24905, "vision large language models": 176948, "models llms demonstrated extraordinary": 107266, "poses significant challenge paper": 124228, "significant challenge paper introduces": 150642, "different deep learning architectures": 41726, "developed openai ushered new": 40899, "openai ushered new era": 116384, "sota large language models": 153350, "physics chemistry biology history": 122929, "chemistry biology history geography": 23566, "biology history geography civic": 18525, "history geography civic education": 70224, "demonstrates superior performance compared": 38909, "retrieval large language models": 144081, "llms demonstrated remarkable abilities": 94868, "data recent advancements llms": 35618, "language models work propose": 86406, "experimental results language modeling": 54030, "language models code available": 84244, "openai google deepmind anthropic": 116338, "google deepmind anthropic stated": 66319, "deepmind anthropic stated goal": 37864, "anthropic stated goal building": 10101, "stated goal building artificial": 155034, "goal building artificial general": 66154, "building artificial general intelligence": 19371, "general intelligence agi ai": 62962, "intelligence agi ai systems": 78721, "llms shown impressive ability": 96545, "health large language model": 68952, "large language model multimodal": 87449, "classical machine learning approaches": 23937, "using generative artificial intelligence": 174237, "gained popularity field natural": 62471, "popularity field natural language": 124087, "paper presents novel method": 119177, "presents novel method enhance": 126608, "extensive qualitative quantitative experiments": 55937, "results demonstrate significant improvement": 143334, "combines strengths large language": 25956, "strengths large language models": 156257, "scaling model data size": 146426, "recent work natural language": 137735, "meets large language models": 100298, "llms demonstrated exceptional capabilities": 94838, "capabilities text understanding generation": 20214, "llms like chatgpt bard": 95765, "language models llms emerging": 85072, "models synthetic data improve": 109338, "categories large language models": 21108, "tools natural language processing": 167215, "language models llms bert": 84916, "impact large language model": 72676, "language models identify social": 84662, "downstream tasks finally present": 44786, "demonstrates competitive performance compared": 38832, "models shown remarkable success": 109116, "remarkable success various natural": 140299, "existing benchmarks primarily focus": 53302, "large language models methods": 88514, "results reveal current llms": 143755, "progress artificial intelligence ai": 129944, "use deep learning dl": 172583, "large language models retrieval": 88704, "knowledgeintensive tasks opendomain question": 82572, "tasks opendomain question answering": 162884, "opendomain question answering qa": 116469, "question answering qa require": 134782, "models llms chatgpt demonstrated": 107174, "language models recently growing": 86063, "context length large language": 30823, "length large language models": 91374, "language models llms aiming": 84877, "evaluation models large language": 51738, "uses large language models": 173875, "examples large language models": 52627, "models llms achieved humanlevel": 107069, "distillation large language model": 43151, "large language model empirical": 87339, "language model empirical study": 83617, "domain knowledge large language": 44207, "models llms trained using": 107983, "language models llms lately": 85294, "large language models speech": 88762, "speech recognition asr used": 154448, "paper present novel method": 119130, "realization artificial general intelligence": 136325, "prevalence large language models": 127505, "models llms like gpt35": 107632, "llms like gpt35 gpt4": 95782, "capabilities language comprehension generation": 19981, "multiple llms results indicate": 110973, "large language models applied": 87572, "biomedical natural language processing": 18563, "models zero fewshot scenarios": 109735, "natural language processing demonstrated": 111718, "demonstrated potential large language": 38738, "assessing large language models": 13182, "propose novel framework called": 132002, "models llms recently achieved": 107795, "introduces large language models": 80192, "large language models significant": 88738, "language models significant progress": 86165, "large language models larger": 87938, "linking large language models": 93108, "large language models inspired": 87904, "large language models contain": 87670, "processing computer vision tasks": 129136, "accuracy large language models": 3288, "compared standard fewshot prompting": 26926, "propose novel technique called": 132035, "chainofthought reasoning large language": 21544, "stepbystep chainofthought cot reasoning": 155696, "daily tasks natural language": 34517, "current stateoftheart large language": 34258, "shown impressive performance various": 150282, "science natural language processing": 146898, "valuable insights potential chatgpt": 175438, "performance pretrained large language": 121933, "using synthetic real data": 174779, "models llms widely employed": 108036, "models generate descriptive text": 106447, "generating fluent coherent text": 64220, "outperforms existing stateoftheart models": 117767, "probing large language models": 128157, "competencies large language models": 27130, "large language models parallel": 88582, "language models llms major": 85327, "critical review large language": 33545, "language models llms addressing": 84868, "models llms addressing challenges": 107095, "challenge reinforcement learning rl": 21726, "information using large language": 76835, "method large language models": 100949, "language models llms received": 85458, "language models llms involves": 85282, "language models mllms gained": 85756, "questions accurate human annotations": 135025, "multiplechoice questions groundtruth options": 111103, "questions groundtruth options derived": 135152, "groundtruth options derived human": 67941, "options derived human annotation": 117143, "derived human annotation enables": 39357, "human annotation enables objective": 70578, "annotation enables objective efficient": 9526, "enables objective efficient assessment": 48235, "objective efficient assessment model": 115186, "efficient assessment model performance": 46578, "assessment model performance eliminating": 13251, "model performance eliminating need": 104239, "performance eliminating need human": 121446, "eliminating need human gpt": 47083, "need human gpt intervention": 112309, "human gpt intervention evaluation": 70839, "gpt intervention evaluation evaluate": 66434, "intervention evaluation evaluate performance": 79791, "revealing limitations existing mllms": 144404, "performance existing stateoftheart approaches": 121482, "models llms exhibit impressive": 107385, "llms exhibit impressive capabilities": 95142, "impressive capabilities generating realistic": 73264, "llms chatgpt demonstrated remarkable": 94576, "chatgpt demonstrated remarkable performance": 22835, "demonstrated remarkable performance various": 38778, "remarkable performance various tasks": 140253, "longterm action anticipation lta": 97596, "action anticipation lta task": 4309, "lta task aims predict": 97968, "hypothesize large language models": 71636, "demonstrate effectiveness proposed approach": 38307, "achieves stateoftheart performance benchmarks": 4095, "opportunities advent large language": 116824, "filtering large language models": 58356, "today large language models": 166667, "large language models personalization": 88602, "emerged large language models": 47368, "language models llms currently": 84992, "models llms currently forefront": 107235, "llms currently forefront intertwining": 94772, "ai systems human communication": 7247, "systems human communication everyday": 160425, "human communication everyday life": 70657, "large language models ontology": 88560, "approach utilizes large language": 11655, "utilizes large language models": 175142, "significant advancements natural language": 150576, "application large language models": 10339, "paper aims bridge gap": 118729, "chatgpt teaching learning data": 23382, "large language models education": 87735, "training data study address": 168352, "methods automatic human evaluations": 101329, "language models exhibit emergent": 84480, "language models consider problem": 84290, "language models llms novel": 85355, "able achieve stateoftheart performance": 2460, "achieve stateoftheart performance challenging": 3755, "generation current models struggle": 64550, "robust generalization capabilities novel": 145270, "language models llms especially": 85090, "directed acyclic graph dag": 42418, "language models increasingly used": 84703, "retrieval augmented generation rag": 144004, "remarkable advancements recent years": 140139, "capabilities multimodal large language": 20065, "models achieve remarkable performance": 105231, "models particularly large language": 108440, "particularly large language models": 120216, "improve model performance downstream": 73519, "legal reasoning large language": 91312, "models revolutionized various applications": 108996, "models hundreds billions parameters": 106652, "evaluate ability ai agents": 50889, "leveraging largescale language model": 91893, "recent advent large language": 137435, "leverage pretrained large language": 91647, "large language models extract": 87798, "large language models create": 87682, "large language models enhanced": 87762, "models llms demonstrate remarkable": 107253, "language models llms obtain": 85359, "large language models mathematical": 88506, "language models mathematical reasoning": 85726, "large language models computer": 87659, "program large language models": 129740, "performance different large language": 121392, "graphical user interface gui": 67605, "language models machine learning": 85707, "main research question study": 98269, "evaluate models chatgpt based": 51026, "models chatgpt based gpt35": 105609, "chatgpt based gpt35 gpt4": 22737, "assess performance using expertbased": 13112, "performance using expertbased annotations": 122223, "developing techniques improve performance": 41030, "artificial intelligence language model": 12743, "llms information extraction tasks": 95630, "agents powered large language": 6691, "use pretrained large language": 172815, "large language models industrial": 87900, "prior knowledge obtained pretraining": 127909, "modern standard arabic msa": 109838, "visionlanguage models visionlanguage models": 177063, "models visionlanguage models vlms": 109638, "visionlanguage models vlms shown": 177075, "models vlms shown impressive": 109663, "vlms shown impressive performance": 177483, "strategies large language models": 156024, "llms demonstrated remarkable performance": 94877, "demonstrated remarkable performance wide": 38781, "paper presents comprehensive review": 119153, "conduct extensive experiments tasks": 29127, "extensive experiments tasks using": 55892, "large language modelbased ai": 87509, "task planning tool usage": 161621, "recent advancements natural language": 137373, "llms emerged powerful tools": 95029, "tasks necessitate combination task": 162848, "necessitate combination task planning": 112164, "combination task planning usage": 25847, "task planning usage external": 161624, "planning usage external tools": 123337, "planning tool usage tptu": 123330, "tool usage tptu abilities": 167047, "capabilities large language model": 19987, "large language model expert": 87348, "llms achieved remarkable breakthroughs": 94311, "rely supervised finetuning sft": 139890, "performance wide range natural": 122299, "range natural language tasks": 135658, "significant challenges terms computational": 150654, "challenges terms computational costs": 22082, "national transportation safety board": 111497, "language models llms likely": 85318, "assistance large language models": 13374, "given rise large language": 65995, "berts masked language model": 17643, "conduct empirical evaluation using": 29071, "generative machine learning models": 65463, "augmented language models alms": 14357, "task formats prompting modules": 161410, "recent advancements foundation models": 137356, "natural language processing nlpbased": 111789, "data augmentation method based": 34680, "language model iterative process": 83698, "language models future prospects": 84563, "recent advancements multimodal large": 137370, "advancements multimodal large language": 5931, "alignment large language models": 8183, "general pretrained transformer gpt": 63020, "tasks remains unclear models": 163133, "gpt models gpt35 gpt4": 66456, "generative ai tools like": 65367, "tools like large language": 167202, "like large language models": 92330, "language models llms need": 85348, "qa large language models": 133894, "models llms shown outstanding": 107881, "performance wide range downstream": 122297, "tackling complex reasoning tasks": 160867, "chainofthought cot prompting method": 21496, "smaller models knowledge distillation": 152417, "process paper introduces novel": 128935, "language models shown exhibit": 86151, "et al 2023 train": 50782, "knowledge transfer large language": 82470, "transfer large language models": 168928, "large language models conduct": 87662, "conduct empirical study using": 29076, "generalization ability large language": 63128, "language models llms software": 85551, "models llms software engineering": 107928, "llms software engineering tasks": 96633, "software engineering tasks api": 152811, "performance various software engineering": 122276, "various software engineering tasks": 176175, "training large language model": 168526, "large language model scratch": 87479, "substantial data computational resources": 158048, "zero fewshot text classification": 180079, "empirical study using large": 47766, "study using large language": 157701, "language models llms analyze": 84881, "inspiration recent success large": 77691, "expressed natural language descriptions": 55574, "language models llms consistent": 84974, "tasks glue superglue benchmarks": 162472, "large language models alignment": 87565, "alignment refers making models": 8224, "refers making models behave": 138720, "making models behave accordance": 98781, "models behave accordance human": 105472, "behave accordance human intentions": 16552, "paper presents comprehensive survey": 119155, "models tend perform better": 109372, "gpt4 metas llama googles": 67077, "segment model sam exhibited": 147724, "model sam exhibited remarkable": 104502, "datasets demonstrate superior performance": 36776, "demonstrate superior performance approach": 38573, "large language models comparative": 87652, "language models comparative study": 84267, "investigate potential large language": 80472, "language models llms automatically": 84906, "artificial intelligence ai based": 12662, "complex reasoning tasks chainofthought": 27563, "code generated large language": 24859, "utilizing large language models": 175206, "artificial intelligence ai paper": 12689, "generation models like chatgpt": 64852, "address limitation propose novel": 5308, "exploiting power pretrained language": 55037, "abundant domain knowledge inherent": 2704, "domain knowledge inherent llms": 44202, "large language models open": 88561, "language models llms exemplified": 85104, "models llms exemplified chatgpt": 107383, "chatgpt openai bard google": 23160, "instructionfollowing large language models": 78189, "language models llms represented": 85485, "models llms represented chatgpt": 107830, "data pose significant challenges": 35503, "information retrieval ir systems": 76723, "face challenges data scarcity": 56515, "language models llms typified": 85614, "chatgpt gpt4 revolutionized natural": 23026, "gpt4 revolutionized natural language": 67149, "remarkable language understanding generation": 140212, "systems given rapid evolution": 160409, "given rapid evolution research": 65976, "language models llms researchers": 85491, "address research gap propose": 5366, "reinforcement learning rl framework": 139103, "source code summarization code": 153425, "gpt generative pretrained transformer": 66427, "large language models driven": 87732, "survey serves invaluable resource": 159693, "serves invaluable resource researchers": 149046, "invaluable resource researchers practitioners": 80315, "evaluation large language model": 51660, "language models llms hold": 85228, "models llms chatgpt exhibit": 107176, "survey evaluation large language": 159629, "language processing nlp witnessed": 86597, "llms like gpt4 palm2": 95786, "personalized text generation using": 122628, "text generation using large": 165199, "generation using large language": 65239, "results significant improvements variety": 143795, "significant improvements variety baselines": 150756, "artificial intelligence ai large": 12682, "intelligence ai large language": 78751, "deployment large language models": 39282, "management large language models": 98881, "widely used various applications": 178411, "language models llms tremendous": 85611, "large language models best": 87604, "language models best model": 84185, "natural language processing transformerbased": 111835, "significantly enhance code generation": 150987, "multihop question answering multihop": 110425, "achieve new stateoftheart performance": 3691, "plays crucial role various": 123516, "propose novel approach leverages": 131984, "language models mllms demonstrated": 85753, "extensive experiments realworld datasets": 55875, "experiments realworld datasets demonstrate": 54432, "stateoftheart performance benchmark datasets": 155269, "conduct comprehensive ablation studies": 29038, "comprehensive ablation studies demonstrate": 27944, "large language models foundational": 87825, "models foundational visionlanguage models": 106394, "automatic data curation pipeline": 14656, "language models demonstrated capability": 84345, "performance gpt35 gpt4 models": 121604, "enhancing reasoning capabilities large": 49560, "approach large language models": 11336, "models llms showcased impressive": 107859, "complex reasoning tasks math": 27565, "reasoning tasks math word": 137184, "tasks math word problems": 162788, "text classification named entity": 164890, "classification named entity recognition": 24037, "extractive question answering qa": 56387, "character error rate cer": 22427, "larger larger language models": 89215, "large generative language model": 87270, "trend using large language": 169710, "extensive experiments demonstrate superiority": 55834, "experiments demonstrate superiority proposed": 54241, "prompting capabilities large language": 130873, "language models llms clinical": 84959, "clinical decision support systems": 24326, "large language models cognitive": 87642, "language models cognitive architectures": 84256, "language models llms cognitive": 84964, "development robust ai systems": 41214, "produced large language model": 129499, "language model llm pretrained": 83768, "models experimental results demonstrate": 106239, "vision language models vlms": 176935, "extend large language models": 55630, "llms visionlanguage models vlms": 96984, "advancement large language models": 5847, "large language models extensive": 87797, "significantly outperforms baseline methods": 151091, "editing large language model": 45467, "models llms showcased remarkable": 107860, "remarkable potential various tasks": 140263, "conduct extensive experiments 24": 29116, "tasks experimental results indicate": 162365, "language models text classification": 86282, "models demonstrated remarkable capabilities": 105910, "remarkable capabilities various nlp": 140177, "capabilities various nlp tasks": 20250, "extensive world knowledge embedded": 55971, "world knowledge embedded llms": 179566, "stateoftheart language models like": 155168, "large language models specific": 88758, "large language model paper": 87454, "language model paper propose": 83828, "retrieval large language model": 144080, "supervised finetuning reinforcement learning": 159121, "finetuning reinforcement learning human": 59505, "development multimodal large language": 41166, "language models llms primary": 85421, "comprehensive experiments conducted various": 28039, "experiments conducted various datasets": 54200, "model achieves stateoftheart results": 103055, "achieves stateoftheart results multiple": 4107, "good large language models": 66279, "large language models outofdistribution": 88568, "outofdistribution detection outofdistribution ood": 117520, "detection outofdistribution ood detection": 40580, "machine learning ml models": 98046, "models emergence large language": 106077, "language models llms catalyzed": 84932, "diverse natural language processing": 43584, "like bert roberta gpt2": 92205, "language models multiple tasks": 85782, "problems using large language": 128646, "dataset framework large language": 36318, "spoken question answering sqa": 154579, "artificial intelligence ai specifically": 12699, "intelligence ai specifically large": 78771, "ai specifically large language": 7228, "large language models educational": 87736, "llms demonstrate impressive capabilities": 94816, "parameterefficient finetuning peft techniques": 119669, "llms automated code generation": 94453, "models success large language": 109280, "future research direction release": 62325, "research direction release code": 141714, "large language models retrievalaugmented": 88705, "language models llms information": 85269, "models llms information retrieval": 107576, "llms information retrieval systems": 95634, "language models llms growing": 85212, "automated natural language processing": 14582, "demonstrate method achieves stateoftheart": 38419, "method achieves stateoftheart performance": 100644, "tasks previous works shown": 162994, "investigate feasibility using chatgpt": 80417, "prompt engineering large language": 130464, "large language ai models": 87297, "pretrain prompt predict paradigm": 126742, "paradigm large language models": 119475, "llms achieved remarkable success": 94315, "knowledge bases large language": 81786, "bases large language models": 16400, "natural language processing struggle": 111809, "knowledge bases kbs remains": 81784, "questions requiring world knowledge": 135261, "idea large language models": 71736, "models llms demonstrated superior": 107296, "text rewriting large language": 165436, "rewriting large language models": 144739, "language model text rewriting": 83931, "data bridge performance gap": 34728, "language models open ais": 85823, "performance overall study provides": 121887, "overall study provides insights": 118243, "llms despite advancements llms": 94905, "question answering commonsense reasoning": 134694, "big models big models": 18384, "exemplified large language models": 52996, "better follow user instructions": 17878, "paper conduct comprehensive survey": 118796, "success typically limited english": 158303, "sequence generation large language": 148739, "models llms capable performing": 107160, "demonstrate approach consistently outperforms": 38234, "industrial automation control systems": 75850, "systems using large language": 160663, "language models llms approach": 84892, "study aims provide insights": 157156, "popular large language models": 124010, "language models perform tasks": 85876, "performance downstream language tasks": 121429, "zeroshot fewshot incontext learning": 180177, "optimization large language models": 117005, "models llms generative ai": 107476, "large language model training": 87495, "language models foundational language": 84556, "models foundational language models": 106392, "language models llms usually": 85634, "paper presents novel approach": 119175, "using artificial intelligence ai": 173977, "nlp applications existing approaches": 113686, "large language multimodal models": 88882, "concept bottleneck models cbms": 28588, "using generative ai paper": 174232, "generative ai paper present": 65343, "largescale pretrained vision language": 89390, "largescale visionlanguage models lvlms": 89425, "visionlanguage models lvlms designed": 177051, "question answering visual grounding": 134820, "code demo models available": 24781, "large language models advent": 87552, "natural language processing enabling": 111724, "using low rank adaptation": 174460, "low rank adaptation lora": 97782, "dense passage retrieval dpr": 39096, "issue propose framework called": 80948, "datasets demonstrate effectiveness proposed": 36766, "recognition paper presents novel": 138114, "generated using large language": 64038, "training extensive experiments demonstrate": 168444, "extensive experiments demonstrate effectiveness": 55823, "achieves stateoftheart results compared": 4106, "level large language models": 91486, "domain specific large language": 44296, "specific large language models": 154030, "achieves stateoftheart results various": 4108, "large language models traditional": 88812, "knowledge graphs kgs play": 82079, "models varying sizes capabilities": 109621, "propose novel evaluation metrics": 131999, "despite superior performance large": 40236, "superior performance large language": 159034, "language models generate natural": 84576, "models generate natural language": 106453, "domain knowledge language models": 44205, "transformerbased models bert gpt": 169268, "models range natural language": 108771, "transformer gpt models revolutionized": 169138, "language processing nlp remarkable": 86578, "challenges future research directions": 21884, "behaviors large language models": 16709, "language models llms leveraging": 85308, "survey aims shed light": 159606, "models llms chatgpt received": 107192, "biases models exhibit work": 18292, "deep reinforcement learning rl": 37823, "reinforcement learning rl based": 139099, "supported large language models": 159364, "development artificial intelligence ai": 41057, "chainofthought cot think stepbystep": 21504, "methods achieved significant performance": 101279, "significant performance improvements compared": 150809, "models shown remarkable capabilities": 109114, "efficient adaptation downstream tasks": 46563, "capable matching surpassing performance": 20448, "recent advances pretrained language": 137425, "advances pretrained language models": 6055, "data access privacy constraints": 34571, "plms fewshot text classification": 123601, "knowledge extracted large language": 81991, "large visionlanguage models large": 89116, "visionlanguage models large visionlanguage": 177046, "models large visionlanguage models": 106912, "large visionlanguage models lvlms": 89118, "achieved remarkable performance various": 3870, "realm embodied artificial intelligence": 136353, "llms play pivotal role": 96110, "paper provide comprehensive review": 119283, "finally future research directions": 58466, "future research directions discussed": 62328, "model multimodal large language": 104105, "endtoend trained large multimodal": 48775, "recent years remarkable advancements": 137799, "performance transformerbased large language": 122202, "models llms various domains": 108022, "propose simple effective solution": 132125, "neural networks large language": 112933, "networks large language models": 112768, "performance multimodal large language": 121824, "language model multimodal large": 83807, "speech large language models": 154429, "current speech large language": 34243, "large language models build": 87615, "tasks code models available": 162062, "promptbased tuning pretrained language": 130800, "visionlanguage models lvlms recently": 177052, "limits large language models": 92920, "comprehensive experimental evaluation demonstrates": 28034, "striking margin range popular": 156322, "nlp tasks including question": 113856, "tasks including question answering": 162571, "large language models hope": 87867, "shed light future research": 149855, "future research large language": 62351, "situational awareness large language": 151939, "awareness large language models": 15378, "language models llms model": 85338, "language models paper studies": 85853, "error rate wer evaluation": 50319, "speech recognition speech translation": 154461, "address challenge paper propose": 5167, "vast knowledge encoded large": 176338, "knowledge encoded large language": 81931, "encoded large language models": 48397, "jailbreaking large language models": 81187, "language models llms designed": 85029, "extensive experiments demonstrate efficacy": 55827, "ongoing discussion responsible ai": 116063, "discussion responsible ai development": 43007, "agi artificial general intelligence": 6795, "large language models exhibited": 87781, "prompting techniques incontext learning": 131104, "incontext learning instruction following": 74934, "million 175 billion parameters": 102220, "speech large language model": 154428, "understanding vision language modalities": 171532, "language models llms external": 85129, "llms demonstrated remarkable potential": 94881, "demonstrated remarkable potential various": 38784, "knowledge knowledge graphs large": 82156, "knowledge graphs large language": 82082, "graphs large language models": 67636, "emergent ability generalizability llms": 47464, "graph neural networks gnns": 67559, "knowledge external knowledge bases": 81987, "conversational agents powered large": 31835, "based large language model": 15904, "large language model designed": 87333, "dataset tuning large language": 36594, "large language models instruction": 87907, "essential large language models": 50617, "language models llms interactive": 85275, "information extraction large language": 76426, "extraction large language models": 56312, "despite potential large language": 40174, "technical report large language": 163719, "discourse large language models": 42710, "conversational agents large language": 31830, "large language models latest": 87940, "language models latest advancements": 84777, "models llms recently showcased": 107810, "llms recently showcased remarkable": 96348, "ability generate fitting responses": 2188, "generate fitting responses natural": 63504, "fitting responses natural language": 59693, "responses natural language instructions": 142858, "hope work draw broader": 70394, "language models despite impressive": 84368, "language models llms prone": 85433, "decoding contrasting layers dola": 37566, "tasks openended generation tasks": 162888, "ondevice large language model": 115969, "language models llms limited": 85319, "effectiveness proposed method extensive": 46275, "proposed method extensive experiments": 132355, "large volumes text data": 89131, "task experimental results demonstrate": 161378, "models llms unlike existing": 107999, "traditional text similarity metrics": 167710, "given blackbox access language": 65838, "hand large language models": 68490, "chatgpt shown great potential": 23315, "human natural language llms": 70935, "understanding reasoning capabilities llms": 171441, "powerful obtains new stateoftheart": 125316, "obtains new stateoftheart results": 115560, "large language models difficulty": 87720, "large language models aid": 87559, "diversity large language models": 43741, "large language models development": 87718, "fluent large language models": 59907, "language models llms prompted": 85432, "smaller transformerbased language models": 152453, "use existing large language": 172607, "text images videos audio": 165235, "large language models nowadays": 88553, "capabilities pretrained large language": 20119, "language models llms attracted": 84898, "sources large language models": 153517, "scores large language models": 147158, "particularly emergence large language": 120182, "llms trained vast amounts": 96840, "large language model science": 87478, "language models llms augment": 84900, "incontext learning capabilities large": 74875, "learning capabilities large language": 90273, "large language models finally": 87810, "catastrophic forgetting crosslingual transfer": 21070, "method significantly improves accuracy": 101100, "large language model serving": 87481, "serving large language models": 149101, "language models llms requires": 85489, "issue large language models": 80924, "language models llms predominant": 85408, "decoderonly causal language models": 37535, "language models llms variants": 85637, "large language models weak": 88859, "language models weak supervision": 86392, "models llms various tasks": 108023, "semantic textual similarity sts": 148240, "llms significantly outperform existing": 96606, "tasks requiring world knowledge": 163167, "strategies achieve stateoftheart performance": 155954, "natural language prompts executable": 111847, "offline inverse reinforcement learning": 115876, "language models llms discern": 85039, "large language models need": 88545, "efficient large language models": 46659, "study provides valuable insights": 157573, "fewshot natural language generation": 58004, "parameterefficient finetuning peft methods": 119668, "deep neural network dnn": 37805, "advances large language model": 6023, "large language model finetuning": 87355, "models demonstrate remarkable capability": 105895, "address gap paper introduces": 5236, "employ large language model": 47837, "models empirical results demonstrate": 106091, "challenge paper introduce novel": 21695, "outputs large language models": 118077, "language models llms primarily": 85420, "bridge gap propose novel": 19058, "llms shown remarkable capabilities": 96566, "work investigate use llms": 179072, "potential large language model": 124805, "language model based agents": 83550, "language models llms grown": 85214, "models llms grown exponentially": 107513, "zeroshot performance wide range": 180294, "benchmarks including mme mmbench": 17275, "language model llm planner": 83765, "model llm planner translate": 104018, "task plans generated llms": 161628, "comprehensive experiments demonstrate effectiveness": 28042, "widely applied wide range": 178365, "applied wide range software": 10824, "wide range software engineering": 178309, "range software engineering tasks": 135700, "performance address issue propose": 121137, "demonstrate significant performance improvements": 38547, "evaluate capabilities language models": 50917, "address gap propose novel": 5240, "datasets using large language": 37182, "generative models generative pretrained": 65489, "large language models instructionfollowing": 87909, "used large language models": 173131, "large language models results": 88703, "fall short human performance": 57128, "speech recognition asr models": 154446, "data inspired recent advances": 35233, "large language models employ": 87753, "enabling large language models": 48317, "large language models dynamic": 87733, "understanding generating humanlike text": 171249, "recently pretrained large language": 137957, "recent research shown large": 137634, "research shown large language": 142080, "ground truth labels training": 67844, "training data specifically propose": 168349, "large language models spoken": 88763, "domains represented training data": 44519, "prompt large language models": 130565, "influences large language models": 76235, "large language models revealing": 88707, "consistently enhances performance various": 29869, "enhances performance various tasks": 49438, "various tasks different domains": 176203, "model achieves competitive performance": 103041, "require labeled training data": 141131, "zeroshot learning dataset generation": 180235, "data used train downstream": 35918, "generated data used train": 63843, "supports wide range downstream": 159401, "range downstream nlp tasks": 135613, "downstream nlp tasks text": 44742, "tasks text classification question": 163359, "language understanding reasoning paper": 86855, "large language models growing": 87854, "large language model family": 87353, "large language models automating": 87591, "large language models commonsense": 87649, "language models commonsense reasoning": 84264, "perform systematic empirical assessment": 121058, "large language models qualitative": 88654, "natural language processing methods": 111742, "demonstrated remarkable performance variety": 38776, "largescale multilingual language models": 89361, "opensource models similar size": 116658, "large language models intelligent": 87912, "intelligent agents robots increasingly": 78938, "agents robots increasingly deployed": 6722, "robots increasingly deployed realworld": 145222, "increasingly deployed realworld safetycritical": 75393, "deployed realworld safetycritical settings": 39223, "realworld safetycritical settings vital": 136493, "safetycritical settings vital agents": 145908, "settings vital agents able": 149659, "vital agents able explain": 177403, "agents able explain reasoning": 6522, "able explain reasoning decisions": 2500, "explain reasoning decisions human": 54712, "reasoning decisions human counterparts": 136801, "decisions human counterparts behavior": 37462, "human counterparts behavior produced": 70675, "counterparts behavior produced uninterpretable": 32970, "behavior produced uninterpretable models": 16633, "produced uninterpretable models deep": 129513, "uninterpretable models deep neural": 171811, "models deep neural networks": 105872, "deep neural networks propose": 37812, "neural networks propose approach": 112942, "networks propose approach generate": 112786, "propose approach generate natural": 131715, "approach generate natural language": 11248, "generate natural language explanations": 63622, "natural language explanations agents": 111595, "language explanations agents behavior": 83301, "explanations agents behavior based": 54813, "agents behavior based observations": 6551, "behavior based observations states": 16567, "based observations states actions": 15986, "produce plausible explanations minimal": 129451, "plausible explanations minimal hallucination": 123430, "explanations minimal hallucination affording": 54878, "minimal hallucination affording user": 102331, "hallucination affording user interaction": 68352, "affording user interaction pretrained": 6360, "user interaction pretrained large": 173438, "interaction pretrained large language": 79165, "large language model user": 87499, "user studies empirical experiments": 173509, "studies empirical experiments approach": 156988, "empirical experiments approach generates": 47697, "experiments approach generates explanations": 54151, "approach generates explanations helpful": 11254, "human domain expert enabling": 70702, "domain expert enabling beneficial": 44147, "expert enabling beneficial interactions": 54565, "enabling beneficial interactions clarification": 48275, "beneficial interactions clarification counterfactual": 17409, "interactions clarification counterfactual queries": 79211, "recent advances generative ai": 137398, "model experimental results demonstrate": 103598, "enhance capabilities large language": 49163, "large language model prompt": 87465, "large language models powerful": 88613, "achieving impressive performance various": 4191, "chainofthought prompting experimental results": 21522, "enhances incontext learning performance": 49413, "assistants powered large language": 13424, "models llms chatgpt assist": 107172, "localization large language models": 97275, "nlp tasks especially text": 113841, "language models various domains": 86367, "datasets code publicly available": 36701, "multilingual large language models": 110497, "language models llms learn": 85296, "large language models really": 88666, "llms existing evaluation methods": 95170, "existing evaluation methods rely": 53362, "extensive empirical experiments demonstrate": 55759, "framework knowledge graph question": 61249, "advancements pretrained language models": 5952, "publicly available research community": 133663, "work paves way future": 179159, "storytelling large language models": 155912, "large language models generation": 87837, "versatile multimodal large language": 176569, "language models llms design": 85028, "evaluation llms large language": 51676, "language models llms presents": 85412, "framework based large language": 60981, "significantly outperforms previous models": 151108, "practical scenarios code released": 125447, "burgeoning field artificial intelligence": 19525, "language processing nlp offers": 86570, "processing nlp offers opportunity": 129239, "models llms represent revolution": 107826, "large language models highquality": 87863, "language models highquality conversational": 84644, "models highquality conversational datasets": 106615, "utilize large language model": 175058, "code models datasets available": 25015, "present large language model": 126355, "basic failure logical deduction": 16419, "paper aims explore generative": 118733, "opportunities challenges large language": 116836, "challenges large language models": 21933, "paper evaluate performance gpt4": 118888, "generic large language models": 65660, "leveraging generative capabilities large": 91856, "generative capabilities large language": 65394, "models llms gained significant": 107448, "llms gained significant attention": 95328, "achieves superior performance compared": 4124, "effective data augmentation method": 45727, "solve problem paper proposes": 153145, "trainable parameters computational cost": 167851, "text classification tasks benchmark": 164909, "offered large language models": 115723, "natural language reasoning tasks": 111860, "intergovernmental panel climate change": 79486, "panel climate change ipcc": 118684, "knowledge graph knowledge graph": 82058, "work using large language": 179359, "solution using large language": 152989, "using llms generate user": 174435, "research provides new framework": 142011, "language models llms mathematical": 85335, "models llms mathematical reasoning": 107655, "paper propose novel framework": 119242, "propose novel framework integrates": 132003, "solve challenging mathematical problems": 153100, "large language models good": 87846, "large language models presents": 88620, "explore potential large language": 55263, "potentials pitfalls large language": 125155, "models llms emerged important": 107339, "llms emerged important breakthroughs": 95024, "emerged important breakthroughs natural": 47362, "important breakthroughs natural language": 73101, "impressive skills language generation": 73378, "text classification sentiment analysis": 164900, "performance stateoftheart finetuned models": 122109, "pose challenges practical deployment": 124152, "models llms human expertise": 107535, "evaluation metrics better suited": 51715, "causal large language model": 21202, "platforms like stack overflow": 123409, "question answering qa models": 134781, "area large language models": 12328, "query large language models": 134604, "interesting directions future research": 79394, "models llms significant advancements": 107908, "significant advancements widely used": 150582, "furthermore provide theoretical analysis": 62147, "experiments opensource large language": 54388, "including planning memory tool": 74665, "capacities large language models": 20488, "language models llms present": 85409, "interfaces large language models": 79463, "language models llms exploded": 85122, "models llms exploded popularity": 107405, "llms gpt3 gpt35 gpt4": 95421, "large multimodal models lmm": 88944, "opensource code model data": 116584, "factual knowledge incontext learning": 56884, "icl large language models": 71682, "language models llms aims": 84878, "substantially outperforms strong baselines": 158138, "models llms gained prominence": 107447, "language understanding reasoning capabilities": 86851, "generate factually incorrect text": 63494, "scales 7b 13b 70b": 146364, "lowrank adaptation large language": 97885, "adaptation large language model": 4632, "interfaces powered large language": 79466, "models training large language": 109486, "llms achieved stateoftheart results": 94321, "achieved stateoftheart results natural": 3907, "stateoftheart results natural language": 155337, "tasks zeroshot fewshot settings": 163498, "recent developments large language": 137476, "developments large language models": 41286, "models llms shown promise": 107886, "language processing nlp despite": 86550, "strategies like chainofthought cot": 156031, "error correction large language": 50284, "correction large language models": 32441, "language models llms act": 84861, "zero fewshot incontext learning": 180072, "largescale deep learning models": 89296, "models llms foundation models": 107436, "video question answering benchmarks": 176732, "fewshot settings code available": 58055, "approach shows significant improvement": 11537, "gap large language models": 62675, "models llms demonstrated humanlevel": 107270, "llms demonstrated humanlevel performance": 94848, "demonstrated humanlevel performance vast": 38683, "humanlevel performance vast spectrum": 71235, "performance vast spectrum natural": 122285, "vast spectrum natural language": 176356, "spectrum natural language tasks": 154363, "automatic human evaluations results": 14690, "exhibited remarkable reasoning capabilities": 53155, "framework reinforcement learning rl": 61382, "hub large language model": 70497, "large language model llmempowered": 87441, "benchmarking large language models": 17149, "rapid advancement large language": 135850, "language models llms pressing": 85413, "assess capabilities limitations existing": 13054, "models offers valuable insights": 108337, "multistep reasoning abilities large": 111177, "comprehension large language models": 27913, "root mean square error": 145603, "mean square error rmse": 99756, "improve reasoning abilities large": 73603, "arithmetic commonsense reasoning benchmarks": 12473, "language models llms advancing": 84874, "significant improvements natural language": 150748, "large language model decoding": 87331, "selfconsistency large language models": 147954, "large multimodal models lmms": 88945, "recent advances language modeling": 137405, "available data large language": 15091, "data large language model": 35289, "large language model approach": 87310, "paper assesses potential large": 118761, "assesses potential large language": 13159, "machine learning models finetuning": 98053, "results suggest llms used": 143839, "reality large language models": 136318, "generation rapidly growing research": 65015, "large language model generates": 87361, "supervised learning sl reinforcement": 159145, "learning sl reinforcement learning": 91001, "sl reinforcement learning rl": 152208, "supervised learning reinforcement learning": 159141, "expertise large language models": 54617, "large language model aligned": 87304, "prior knowledge large language": 127905, "language model llm agent": 83722, "method significantly outperforms existing": 101104, "significantly outperforms existing approaches": 151098, "investigating efficacy large language": 80596, "proficiency complex reasoning tasks": 129650, "solving math word problems": 153227, "language models llms evolving": 85097, "realm natural language processing": 136362, "performance compared existing methods": 121286, "results indepth analysis demonstrate": 143498, "kg large language models": 81635, "models orders magnitude larger": 108375, "language models llms yield": 85658, "source code natural language": 153411, "code natural language instructions": 25025, "large language models computing": 87660, "language models llm demonstrated": 84818, "models generative artificial intelligence": 106476, "generative artificial intelligence genai": 65386, "artificial intelligence genai large": 12727, "intelligence genai large language": 78826, "genai large language models": 62877, "prowess natural language processing": 133422, "large language models assessing": 87581, "large language models referred": 88687, "training machine learning models": 168568, "solutions large language models": 153040, "tasks different model scales": 162230, "natural language processing data": 111715, "language models llms incontext": 85252, "models llms incontext learning": 107556, "compressing large language models": 28205, "language models llms leads": 85295, "machine learning models improving": 98054, "large language models texttoimage": 88804, "language models texttoimage models": 86287, "models incontext learning ability": 106727, "incontext learning ability large": 74866, "learning ability large language": 90170, "require enormous computational resources": 141094, "tasks program repair code": 163014, "publicly available source code": 133665, "gained significant attention academia": 62479, "llms various downstream tasks": 96952, "retrieval augmented language models": 144010, "large language models hallucination": 87857, "retrievalaugmented language models lms": 144184, "employ large language models": 47839, "language models llms encounter": 85082, "reducing bitwidth bits weight": 138549, "bitwidth bits weight negligible": 18610, "language understanding reasoning generation": 86854, "zeroshot oneshot fewshot learning": 180272, "control large language models": 31557, "large language models showcase": 88732, "language model capabilities large": 83568, "model capabilities large language": 103241, "significantly outperforms existing prompting": 151101, "models llms generate humanlike": 107465, "opensourced large language models": 116697, "large language models does": 87726, "performance natural language generation": 121833, "language models supervised finetuning": 86242, "models supervised finetuning sft": 109305, "parsing large language models": 119963, "language models prompt tuning": 85978, "popular method adapting large": 124023, "method adapting large language": 100653, "remains challenge work propose": 139983, "models experimental results confirm": 106238, "large language models selfcorrect": 88725, "text generation capabilities various": 165135, "future research practical applications": 62363, "research practical applications field": 141976, "language models llms different": 85034, "large language model automatic": 87315, "recently advances large language": 137827, "language models llms transformed": 85608, "large language model endtoend": 87342, "language model endtoend speech": 83621, "language models llms multimodal": 85342, "llms demonstrated significant potential": 94887, "large multimodal model designed": 88942, "alexa prize taskbot challenge": 7758, "supporting wide range tasks": 159390, "multiple large language models": 110962, "elicited large language models": 47051, "experience large language models": 53834, "structured knowledge large language": 156651, "language models significantly improves": 86168, "pretrained texttotext language models": 127177, "fail large language models": 56961, "language models solve problems": 86195, "language models generate better": 84574, "according given utility function": 3038, "encoding large language models": 48511, "models llms recently emerged": 107802, "question answering vqa task": 134824, "markov decision processes mdps": 99261, "solving sequential decisionmaking problems": 153248, "large language models contrast": 87675, "models llms revolutionized various": 107848, "task adaptation large language": 161164, "consistently outperforms existing methods": 29905, "language models warning paper": 86388, "models warning paper contains": 109674, "warning paper contains examples": 177714, "paper contains examples harmful": 118822, "contains examples harmful language": 30372, "language models llms facilitated": 85135, "models llms facilitated development": 107419, "llms showcased remarkable capabilities": 96526, "knowledge extensive experiments demonstrate": 81984, "outperforms prior stateoftheart methods": 117833, "employing large language models": 47933, "spoken language understanding slu": 154574, "language understanding slu tasks": 86858, "models recent advancements texttoimage": 108823, "recent advancements texttoimage t2i": 137376, "ask large language models": 12848, "number language models ranging": 114891, "language models ranging finetuning": 86020, "models ranging finetuning instructionbased": 108775, "ranging finetuning instructionbased texttotext": 135753, "finetuning instructionbased texttotext transformer": 59315, "instructionbased texttotext transformer flant5": 78164, "texttotext transformer flant5 zeroshot": 165870, "large language models search": 88723, "demonstrate significant room improvement": 38550, "agent large language models": 6462, "models llms chatgpt recently": 107193, "exploiting large language models": 55033, "language models llms tackle": 85586, "significantly outperforms previous stateoftheart": 151109, "outperforms previous stateoftheart methods": 117824, "mining large language models": 102412, "models recent advancements field": 108820, "recent advancements field natural": 137353, "natural language processing particularly": 111792, "language processing particularly development": 86603, "largescale language models pretrained": 89345, "language models pretrained vast": 85949, "models pretrained vast amounts": 108629, "paper investigate usage large": 119038, "investigate usage large language": 80509, "obtaining sufficient training data": 115550, "deep learningbased natural language": 37788, "learningbased natural language processing": 91165, "language models llms combined": 84965, "defending large language models": 37902, "large language models jailbreaking": 87922, "language models jailbreaking attacks": 84740, "despite efforts align large": 40097, "efforts align large language": 46887, "models llms human values": 107537, "reduces attack success rate": 138506, "code publicly available following": 25079, "instructs large language models": 78433, "large language models general": 87831, "reasoning process large language": 137059, "process large language models": 128896, "large language models approach": 87574, "large language models tasks": 88796, "demonstrated remarkable capabilities performing": 38761, "language models hold great": 84647, "models hold great promise": 106621, "hold great promise enhancing": 70245, "great promise enhancing programming": 67719, "promise enhancing programming education": 130175, "enhancing programming education automatically": 49551, "programming education automatically generating": 129814, "role generative ai models": 145498, "extensive evaluation using realworld": 55774, "evaluation using realworld datasets": 51923, "using realworld datasets python": 174652, "realworld datasets python programs": 136436, "concept using large language": 28628, "rapid advancements llm capabilities": 135857, "natural language generation research": 111625, "finetuning prompting large language": 59481, "language models llms notable": 85352, "aimediated communication aimc tools": 7530, "tools powered large language": 167230, "language models llms integral": 85273, "language processing tasks especially": 86632, "achieving artificial general intelligence": 4140, "language models knowledge retrieval": 84751, "generating code natural language": 64157, "natural language using large": 111923, "language using large language": 86878, "inherent ambiguity natural language": 76937, "large language models autoregressive": 87593, "language models autoregressive large": 84156, "models autoregressive large language": 105430, "demonstrated impressive performance range": 38704, "monte carlo tree search": 110091, "language modeling long text": 84003, "generates natural language descriptions": 64086, "utilizes pretrained large language": 175156, "reasoning commonsense reasoning results": 136760, "performance significantly reducing computation": 122068, "language models demonstrated surprising": 84356, "number parameters large language": 114922, "language models llms opened": 85371, "model outperforms stateoftheart methods": 104186, "large language models critical": 87684, "struggle achieve satisfactory performance": 156726, "future research including development": 62347, "multimodal visionlanguage models vlms": 110791, "visionlanguage models vlms enable": 177070, "methods large language model": 101625, "large language models ultimately": 88829, "investigation large language models": 80640, "large language models pass": 88589, "finetuning evaluating large language": 59253, "language models llms specialized": 85557, "insights effectively adapting llms": 77552, "comprehensive evaluation framework includes": 28012, "strategy large language models": 156174, "prompted large language models": 130824, "experimental results proposed approaches": 54058, "models llms garnered widespread": 107459, "holds significant value tool": 70285, "significant value tool wider": 150913, "value tool wider nlp": 175504, "tool wider nlp community": 167062, "wider nlp community potential": 178440, "nlp community potential serve": 113711, "community potential serve rubric": 26507, "potential serve rubric airelated": 124974, "serve rubric airelated policymaking": 149004, "models llms shown superior": 107903, "llms shown superior performance": 96579, "language models llms finetuning": 85145, "conduct comprehensive experiments various": 29054, "language models llms effective": 85058, "remarkable performance various language": 140247, "performance various language understanding": 122260, "large language models success": 88776, "make code data available": 98502, "essential task natural language": 50639, "models extensive experiments conducted": 106275, "understanding multimodal large language": 171359, "based multimodal large language": 15956, "facts large language models": 56838, "tools based large language": 167114, "advances natural language generation": 6039, "automated essay scoring aes": 14545, "optimizing large language models": 117118, "optimization step llm generates": 117042, "step llm generates new": 155658, "llm generates new solutions": 93708, "generated solutions values new": 63983, "solutions values new solutions": 153087, "values new solutions evaluated": 175549, "large language models empower": 87754, "findings underscore pressing need": 58828, "pretrained language models including": 126913, "paradigm allows language models": 119430, "paper present novel framework": 119129, "complex natural language tasks": 27493, "large language models perspective": 88604, "large language models learning": 87946, "despite orders magnitude smaller": 40168, "reports large language models": 140600, "environmental social governance esg": 50054, "suggests large language models": 158662, "language models llms applied": 84890, "prompting incontext learning icl": 130965, "language model llm created": 83733, "language models llms vision": 85645, "models deep generative models": 105867, "compared stateoftheart solutions like": 26937, "language models work explore": 86403, "models vlms large language": 109657, "vlms large language models": 177463, "text generated language model": 165113, "language models llms celebrated": 84933, "remarkable success natural language": 140294, "automatically using large language": 14875, "large language models optimus": 88566, "mixed integer linear programming": 102718, "integer linear programming milp": 78472, "using llms like chatgpt": 174442, "paper aims address gap": 118726, "aims address gap conducting": 7574, "achieve similar better performance": 3742, "present comprehensive evaluation popular": 126258, "comprehensive evaluation popular llms": 28020, "evolution natural language processing": 52275, "natural language processing technology": 111831, "applied natural language processing": 10791, "vast amounts textual data": 176322, "large language model present": 87460, "graph neural networks gnn": 67558, "uses largelanguage models llm": 173879, "mitigating hallucination large language": 102661, "texttosql large language models": 165845, "llms incontext learning demonstrated": 95586, "remarkable success various tasks": 140301, "increasing capabilities large language": 75309, "processing nlp tasks models": 129257, "data address challenges propose": 34598, "character word sentence levels": 22443, "launch november 2022 chatgpt": 89590, "understanding pretrained language models": 171417, "large language models dataset": 87690, "code dataset publicly available": 24767, "paradigm large language model": 119474, "adoption generative ai gai": 5637, "technologies including large language": 164091, "plays important role improving": 123526, "improving reasoning abilities large": 74203, "large language models example": 87777, "advances reasoning abilities large": 6060, "large language models geometry": 87843, "models llms impressive capabilities": 107547, "provide model finetuned follow": 132890, "model finetuned follow instructions": 103666, "models released apache 20": 108903, "released apache 20 license": 139505, "finetune large language models": 58934, "language models llms simulate": 85548, "scenarios large language models": 146636, "language models llms face": 85132, "llms face main challenges": 95234, "synthetic tasks code completion": 160080, "language models llms provide": 85442, "large language models change": 87630, "paper explore potential large": 118917, "error large language models": 50303, "language models recent research": 86052, "rapid progress opensource large": 135902, "progress opensource large language": 130001, "language models lms t5": 85694, "paper present novel approach": 119128, "syntactic semantic word sense": 159903, "data requires significant time": 35657, "linguistic sense disambiguation finegrained": 93064, "sense disambiguation finegrained multimodal": 148385, "disambiguation finegrained multimodal retrieval": 42643, "order overcome challenges propose": 117228, "results demonstrate proposed model": 143330, "demonstrate proposed model achieves": 38513, "operations large language models": 116786, "language models llms heralds": 85222, "remarkable progress natural language": 140276, "transformers neural language models": 169340, "language model llm used": 83779, "code data models available": 24751, "generators large language models": 65641, "conduct extensive empirical analysis": 29108, "released facilitate future research": 139513, "large language models chinese": 87634, "language models llms artificial": 84894, "paper provides comprehensive review": 119292, "provides comprehensive review recent": 133125, "topological data analysis tda": 167388, "suite large language models": 158730, "new trend large language": 113479, "trend large language models": 169703, "leading large language models": 89838, "large language models evaluating": 87770, "language models llms continues": 84982, "emerged scalable costeffective alternative": 47401, "scalable costeffective alternative human": 146236, "costeffective alternative human evaluations": 32757, "models paper investigates efficacy": 108415, "instruction tuning dataset including": 78080, "ranking large language models": 135806, "language models llms retrieval": 85495, "results highlight promising direction": 143462, "models llms generate synthetic": 107470, "model trained synthetic data": 104776, "explanation large language models": 54789, "tasks including creative writing": 162554, "learning algorithms large language": 90200, "large language model augment": 87312, "framework open new avenues": 61332, "development large language model": 41147, "model llm based agents": 103978, "software development processes paper": 152793, "task prompting large language": 161655, "particularly development large language": 120171, "large language models context": 87671, "structure large language models": 156580, "models llms exhibited exceptional": 107389, "llms exhibited exceptional performance": 95158, "exhibited exceptional performance various": 53133, "models achieve competitive performance": 105221, "question answering information retrieval": 134737, "large language models chainofthought": 87626, "fewshot knowledge base question": 57938, "llms shown impressive generalization": 96548, "conduct extensive experiments public": 29124, "llm large language model": 93792, "available large language models": 15154, "llms limited context window": 95794, "visionlanguage models recent advances": 177058, "recent advances development visionlanguage": 137390, "tasks transformer language models": 163391, "language models recent work": 86054, "indirect object identification ioi": 75678, "large language models behavior": 87600, "impact models downstream performance": 72691, "transformer language models large": 169153, "achieving state art performance": 4220, "ai models like chatgpt": 7106, "propose novel paradigm termed": 132023, "harnessing large language models": 68829, "large language models assess": 87580, "leveraged large language models": 91700, "hallucination detection large language": 68368, "detection large language models": 40541, "natural language generation capabilities": 111611, "common approach address issue": 26120, "generation tasks language models": 65169, "work offers unique perspective": 179142, "indicate large language models": 75599, "open large language models": 116248, "models generate synthetic data": 106461, "demonstrated remarkable capabilities range": 38763, "propose utilizing large language": 132207, "improved retrieval performance compared": 73721, "extensive experiments demonstrate llms": 55828, "experiments demonstrate llms achieve": 54227, "assessing reliability large language": 13205, "reliability large language model": 139693, "language model knowledge large": 83704, "model knowledge large language": 103916, "models llms powerful general": 107736, "achieves attack success rate": 3960, "language models llms previous": 85419, "proximal policy optimization ppo": 133430, "novel method automatically generate": 114584, "performance code generation tasks": 121258, "roleplaying large language models": 145555, "artificial neural network ann": 12791, "large language models thanks": 88808, "new approach large language": 113063, "approach large language model": 11335, "large language modelempowered agents": 87513, "novel approach leverages llms": 114394, "use finetuned large language": 172629, "finetuned large language model": 59046, "billion 70 billion parameters": 18425, "tasks code generation code": 162058, "code generation code summarization": 24876, "tasks address issue propose": 161917, "address issue propose universal": 5277, "eliminating need taskspecific finetuning": 47087, "texttoimage models like stable": 165824, "models like stable diffusion": 106999, "language models trained largescale": 86305, "large language model complete": 87328, "large language models consistent": 87667, "approach outperforms stateoftheart supervised": 11435, "language models llms assist": 84896, "work sheds light potential": 179291, "large language models excelled": 87779, "language models llms using": 85632, "predictions large language models": 125917, "large language models prompts": 88641, "address challenge paper introduces": 5166, "transformative influence large language": 169070, "influence large language models": 76206, "large language models explain": 87788, "chatgpt demonstrated superior performance": 22841, "nlp tasks including sentiment": 113859, "tasks including sentiment analysis": 162578, "matching using large language": 99494, "large language models entity": 87765, "require significant amounts taskspecific": 141190, "significant amounts taskspecific training": 150591, "amounts taskspecific training data": 8699, "taskspecific training data ii": 163554, "training data ii finetuned": 168276, "data ii finetuned models": 35171, "using generative large language": 174242, "knowledge leveraging large language": 82195, "leveraging large language model": 91880, "delves potential large language": 38117, "demonstrate effectiveness approach outperforms": 38294, "models based incontext learning": 105455, "harnesses large language models": 68807, "language models llms adopted": 84871, "new visual prompting method": 113500, "multimodal models lmms gpt4v": 110726, "comprehensive empirical study validate": 28002, "empirical study validate effectiveness": 47769, "large language models generalize": 87832, "humans possess remarkable ability": 71445, "language models llms knowledge": 85284, "large language models previous": 88626, "language models previous studies": 85954, "knowledge stored large language": 82425, "stored large language models": 155870, "leveraging knowledge graphs kgs": 91874, "models llms recently shown": 107812, "llms recently shown great": 96350, "including natural language understanding": 74638, "work propose novel framework": 179212, "adapt llm specific task": 4537, "llm specific task hand": 94017, "language models provide new": 85999, "guides large language models": 68264, "outperforms baselines achieves stateoftheart": 117715, "baselines achieves stateoftheart performance": 16282, "models llms shown possess": 107883, "shed new light spatial": 149864, "new light spatial organization": 113260, "texts large language models": 165743, "evaluate ability large language": 50894, "models llms perform multiple": 107716, "llms smaller language models": 96626, "models llms vision language": 108027, "llms vision language models": 96979, "task parameterefficient finetuning peft": 161605, "achieves competitive performance compared": 3995, "gpt4 large language models": 67059, "training natural language processing": 168597, "models like chatgpt gpt4": 106974, "comprehensive survey paper serve": 28137, "survey paper serve good": 159664, "models exhibit remarkable performance": 106209, "remarkable performance variety nlp": 140244, "performance variety nlp tasks": 122246, "nlp tasks remains unclear": 113893, "paper provides comprehensive analysis": 119290, "problemsolving large language models": 128666, "language models llms driven": 85053, "approach outperforms existing methods": 11429, "used language models lms": 173126, "language models lms typically": 85696, "finetuning large pretrained models": 59342, "aligning large language models": 8097, "language models llms specific": 85558, "large language model using": 87500, "generative pretrained transformer gptbased": 65556, "pave way future research": 120586, "llms perform wide range": 96084, "perform wide range tasks": 121091, "rate large language models": 136002, "large language models transformers": 88823, "passages large language models": 120348, "llms produce final answer": 96205, "models question answering recent": 108757, "models lms achieved notable": 108058, "demonstrates significant performance improvements": 38893, "learning large language model": 90623, "abilities natural language processing": 1975, "demonstrate effectiveness method code": 38302, "effectiveness method code available": 46235, "models llms like llama": 107636, "baselines code data available": 16300, "interactions physical social environment": 79257, "growth large language models": 68083, "large language models prompting": 88639, "language models prompting large": 85984, "models prompting large language": 108695, "small mediumsized enterprises smes": 152324, "experimental results indicate significant": 54026, "performance gap stateoftheart llms": 121566, "large language models largescale": 87939, "models llms specifically focusing": 107938, "consistently outperforms strong baselines": 29912, "public large language models": 133580, "language models llms chatgptgpt4": 84957, "large language models mllm": 88518, "ai tools like chatgpt": 7297, "chatgpt artificial intelligence ai": 22715, "large language models lens": 87949, "editing large language models": 45468, "impressive progress natural language": 73362, "significantly outperforms existing methods": 151100, "task logical fallacy detection": 161531, "language models llms examine": 85098, "notably large language models": 114282, "large language models demand": 87696, "zeroshot capabilities large language": 180126, "fact verification fact verification": 56751, "large language models past": 88591, "language models past decade": 85864, "masked language model task": 99303, "natural language processing tool": 111833, "additionally explore potential chatgpt": 5065, "models llms chatgpt demonstrate": 107173, "wide range tasks despite": 178315, "remarkable advances large language": 140142, "strong correlations human judgments": 156375, "remains limited paper aims": 140035, "llms natural language understanding": 95926, "conversational recommender systems crss": 31915, "models llms generate responses": 107468, "conduct extensive experiments realworld": 29125, "challenge propose novel framework": 21719, "benchmark evaluating large language": 16957, "landscape large language models": 83097, "detection using large language": 40651, "generative power large language": 65532, "efficient language model finetuning": 46653, "large language models comprehensive": 87656, "language models llms prompt": 85430, "models llms prompt engineering": 107764, "artificial intelligencegenerated content aigc": 12787, "comprehensive survey aims serve": 28131, "structured knowledge bases kbs": 156648, "language models lms proposed": 85688, "language generation large language": 83354, "models llms encode vast": 107358, "vast amounts world knowledge": 176326, "prompting improving zeroshot chainofthought": 130961, "improving zeroshot chainofthought reasoning": 74239, "large language models share": 88731, "baselines including large language": 16336, "models llms excel various": 107379, "language models llms poised": 85393, "language models llms research": 85490, "incontext learning icl framework": 74918, "large language model evaluation": 87346, "evaluation constrained text generation": 51508, "models work introduces novel": 109708, "work introduces novel task": 179064, "proposed method outperforms baselines": 132365, "adversarial attacks large language": 6193, "attacks large language models": 13720, "large language models safety": 88717, "language models safety alignment": 86122, "safety alignment large language": 145836, "high attack success rates": 69399, "evaluation suite large language": 51884, "language models rapid development": 86026, "models rapid development large": 108783, "models llms led great": 107608, "enable large language models": 48099, "logical reasoning natural language": 97387, "autoregressive transformer language models": 15015, "small number attention heads": 152335, "demonstrate effectiveness proposed framework": 38309, "language models llms costeffective": 84985, "language model llm prompting": 83771, "user study 14 participants": 173517, "unknown large language models": 171936, "finetuning large language model": 59333, "large language model instruction": 87373, "retrieval augmented large language": 144012, "augmented large language model": 14360, "language models llms increase": 85257, "evaluate effectiveness proposed methods": 50959, "settings large language models": 149604, "role natural language processing": 145517, "large language model use": 87497, "language models llms prevalent": 85418, "lightweight large language model": 92182, "13 billion billion parameters": 324, "models language models lms": 106868, "framework leveraging large language": 61290, "stateoftheart models like chatgpt": 155234, "work provides novel perspective": 179242, "zeroshot visual question answering": 180374, "visual question answering multimodal": 177270, "multimodal llms multimodal large": 110710, "llms multimodal large language": 95909, "language models mllms recently": 85760, "exploration large language models": 55081, "language model llm automatically": 83726, "document object model dom": 43840, "language models llms equipped": 85088, "tasks specified natural language": 163281, "opportunities large language models": 116863, "framework utilizing large language": 61492, "recent pretrained language models": 137586, "large language models allows": 87566, "large language models vs": 88857, "language models vs human": 86386, "language models llms evaluating": 85094, "models llms evaluating performance": 107372, "knowledge graph reasoning tasks": 82069, "various graph reasoning tasks": 175964, "large language models transformerbased": 88821, "language models transformerbased large": 86321, "models transformerbased large language": 109498, "language models emergence large": 84426, "representation large language models": 140704, "metrics measure diversity generated": 102109, "language understanding tasks including": 86863, "performance various reasoning tasks": 122274, "propose novel prompting method": 132028, "architecture search large language": 12218, "nlp tasks work explore": 113915, "machine translation mt tasks": 98121, "paper presents comprehensive evaluation": 119152, "recognition table structure recognition": 138138, "models fully utilize pretrained": 106403, "parameterefficient finetuning large language": 119662, "models llms widely adopted": 108035, "extensive experimental results effectiveness": 55787, "language models llms explicitly": 85121, "approach code data available": 11051, "time large language models": 166430, "language models llms hundreds": 85237, "models llms hundreds billions": 107540, "llms hundreds billions parameters": 95525, "automatic human evaluation metrics": 14686, "language models llms enable": 85077, "answer selection experimental results": 9776, "large language modelbased agents": 87508, "large language models scalable": 88719, "large language model assistance": 87311, "knowledge representations large language": 82365, "dimensions exceedingly high variance": 42334, "conversational recommender systems crs": 31914, "leveraging recent advancements large": 91936, "language models llms infer": 85267, "generative artificial intelligence gai": 65385, "potential synthetic data generation": 125012, "language models rapid advancement": 86024, "models rapid advancement large": 108780, "various language models including": 175993, "shown great potential natural": 150253, "great potential natural language": 67707, "potential natural language processing": 124878, "conduct comprehensive experiments demonstrate": 29051, "experiments demonstrate effectiveness method": 54221, "language models llms dedicated": 84998, "superior performance various natural": 159046, "trained vast amounts text": 168121, "column type annotation using": 25809, "annotation using large language": 9563, "column type annotation cta": 25808, "wide range tasks paper": 178318, "establishes new stateoftheart performance": 50704, "large language models benefit": 87602, "large language models method": 88512, "navigation using large language": 112071, "models llms emerged promising": 107344, "work provides valuable insights": 179246, "provides valuable insights future": 133249, "valuable insights future research": 175431, "small number trainable parameters": 152343, "dataset experimental results demonstrate": 36287, "built large language models": 19490, "appropriate prompts especially fewshot": 11991, "large language model specifically": 87484, "language model specifically tailored": 83913, "accuracy precision recall f1": 3339, "precision recall f1 score": 125620, "existing supervised unsupervised approaches": 53604, "tackle challenges propose novel": 160809, "language models llms benefit": 84915, "language models trained make": 86306, "neural tangent kernel ntk": 112985, "tools increasingly prevalent software": 167185, "notable examples tools include": 114225, "openais chatgpt github copilot": 116395, "chatgpt github copilot amazon": 22992, "github copilot amazon codewhisperer": 65812, "requirements engineering software design": 141289, "mechanism large language models": 100007, "llms exhibit impressive performance": 95143, "linguistic knowledge acquired pretraining": 93041, "understanding paper conduct comprehensive": 171391, "stateoftheart text generation models": 155393, "experiments method outperforms baseline": 54356, "multilingual models mbert xlmr": 110513, "massive multilingual language models": 99364, "provides test bed evaluating": 133230, "verification large language models": 176487, "novel large language model": 114563, "results demonstrate method outperforms": 143314, "demonstrate method outperforms baselines": 38429, "benchmarks demonstrate proposed method": 17211, "conduct comprehensive evaluation popular": 29047, "models llms chatgpt increasingly": 107185, "llms chatgpt increasingly sophisticated": 94590, "playing essential role assisting": 123497, "essential role assisting humans": 50627, "text summarization large language": 165506, "models llms generate summaries": 107469, "generative models like chatgpt": 65499, "work explore use large": 178962, "language models comprehensive survey": 84273, "comprehensive survey large language": 28134, "large language models biomedical": 87608, "language models biomedical natural": 84192, "models biomedical natural language": 105527, "natural language processing bionlp": 111710, "dataset serves valuable resource": 36533, "selection large language models": 147866, "adapt new tasks incontext": 4548, "new tasks incontext learning": 113454, "tasks incontext learning icl": 162587, "incontext learning icl icl": 74920, "does require parameter updates": 44025, "scheme large language models": 146791, "various aspects daily lives": 175817, "artificial intelligence ai assistance": 12661, "labeled data target domain": 82721, "language learning models llms": 83486, "vital strategy enhancing model": 177418, "rapid development artificial intelligence": 135865, "capability multimodal large language": 20348, "large language models experimental": 87785, "language models experimental results": 84489, "recently emergence large language": 137875, "remarkable capabilities generating humanlike": 140156, "given recent advances large": 65979, "language models llms fewshot": 85139, "use pretrained language models": 172812, "collection large language models": 25740, "large language models meta": 88511, "multitask generative pretrained transformer": 111210, "language models llms massive": 85334, "datasets demonstrate method consistently": 36769, "developing intelligent agents capable": 41001, "artificial general intelligence existing": 12653, "employing large language model": 47931, "experimental evaluations conducted overcookedai": 53942, "evaluations conducted overcookedai environment": 51954, "performance proposed method compared": 121961, "better alignment human preferences": 17801, "pretrained language models mplms": 126933, "zeroshot performance large language": 180283, "models llms achieved tremendous": 107082, "large language models design": 87708, "language models plms exhibited": 85898, "growing popularity large language": 68044, "large language models github": 87844, "used evaluate large language": 173049, "functional correctness generated code": 61874, "large language model iterative": 87375, "answer wide range questions": 9801, "language models llms gpts": 85205, "models achieved tremendous success": 105254, "energy consumption carbon footprint": 48787, "language models llms extensively": 85126, "models llms extensively adopted": 107409, "llms extensively adopted address": 95219, "utilizes large language model": 175140, "shown promising results various": 150345, "complex visual reasoning tasks": 27646, "particularly effective improving performance": 120179, "propose novel domain specific": 131993, "models llms specifically chatgpt": 107937, "suggest future research directions": 158539, "rapidly evolving landscape large": 135925, "evolving landscape large language": 52317, "evaluation natural language processing": 51744, "natural language processing use": 111837, "potential ethical issues especially": 124709, "recently significant progress development": 138000, "results demonstrate approach exhibits": 143282, "evaluate models incontext learning": 51029, "results demonstrate efficacy proposed": 143299, "interacting large language models": 79092, "small subset attention heads": 152369, "compared traditional finetuning methods": 26954, "future works code available": 62416, "instances experimental results demonstrate": 77826, "recent studies demonstrated large": 137656, "studies demonstrated large language": 156975, "demonstrated large language models": 38719, "learning multimodal large language": 90748, "remarkable capabilities performing complex": 140167, "question answering prior work": 134775, "improve downstream task performance": 73449, "information extraction aims extract": 76419, "extensive experiments representative tasks": 55879, "tasks datasets demonstrate effectiveness": 162156, "language models lms acquire": 85670, "using machine learning methods": 174468, "develop large language model": 40791, "language model llmbased pipeline": 83785, "language models llms proposed": 85437, "cost training models scratch": 32747, "model 13 billion parameters": 102993, "model generate natural language": 103725, "generate natural language responses": 63624, "models llms increasingly used": 107569, "llms increasingly used powerful": 95610, "increasingly used powerful tools": 75453, "processing nlp applications recent": 129209, "llms end propose novel": 95069, "integration artificial intelligence ai": 78642, "artificial intelligence ai education": 12671, "finetuning inference large language": 59307, "13 70 billion parameters": 321, "directly impacts user experience": 42552, "supervised fine tuning sft": 159109, "finetune large language model": 58933, "language model llm supervised": 83775, "beam search generate multiple": 16503, "language models llms huge": 85231, "language models llms developed": 85032, "retrieval augmented generation large": 144002, "augmented generation large language": 14345, "llms shown capable performing": 96534, "explore use retrieval augmented": 55317, "use retrieval augmented generation": 172858, "lewis et al 2021": 91971, "paper present method named": 119123, "significantly improve performance different": 151026, "models wide range tasks": 109689, "rules large language models": 145718, "language models llms deployed": 85027, "generation recent advancements large": 65024, "address limitations introduce novel": 5312, "carlo tree search mcts": 20825, "models yield impressive results": 109727, "yield impressive results nlp": 179969, "large language models demonstrating": 87706, "language model llm development": 83736, "language models llms greatly": 85209, "models llms greatly advanced": 107508, "emergence large multimodal models": 47433, "frozen llms perform understanding": 61673, "llms perform understanding generation": 96081, "perform understanding generation tasks": 121075, "understanding generation tasks involving": 171268, "models llms shown success": 107902, "information retrieval natural language": 76729, "retrieval natural language processing": 144103, "language models study human": 86230, "result substantial performance drop": 143067, "large language models collective": 87645, "language models llms facilitate": 85134, "user study results indicate": 173524, "dimensions large language models": 42343, "models trained nextword prediction": 109462, "prompting strategies large language": 131082, "model inspired recent success": 103872, "entity recognition information retrieval": 49910, "scenarios address challenges propose": 146529, "language models llms increased": 85258, "used reinforcement learning human": 173212, "combating misinformation age llms": 25818, "misinformation fake news rumors": 102489, "models llms great potential": 107506, "achieves comparable superior performance": 3991, "transformer language model bert": 169150, "trained natural language inference": 168020, "obtained large language model": 115524, "language model llm llm": 83759, "dense retrieval dense retrieval": 39101, "retrieval dense retrieval models": 144039, "synthetic training data generation": 160086, "language model llm generates": 83751, "exhibit superior performance various": 53114, "conduct indepth analysis different": 29146, "potential research directions future": 124945, "improving performance large language": 74182, "concerns large language models": 28788, "work highlights potential limitations": 179022, "large language models zero": 88871, "language models zero shot": 86413, "scientific discovery large language": 146952, "prompt engineering fewshot learning": 130455, "generative ai specifically large": 65356, "unlike conventional search engines": 171993, "large number trainable parameters": 88972, "conduct extensive empirical study": 29109, "vision transformers large language": 176999, "developments artificial intelligence ai": 41274, "large language models personalized": 88603, "integrating large language models": 78609, "smart agentbased modeling sabm": 152472, "large language models map": 88503, "processing nlp tasks paper": 129258, "llms domainspecific question answering": 94975, "recently development large language": 137862, "paper present novel pipeline": 119131, "outofdistribution ood test samples": 117530, "large language models documentlevel": 87725, "tasks like sentiment analysis": 162726, "recently emerged powerful tool": 137871, "study investigates key research": 157447, "investigates key research questions": 80565, "remarkable ability large language": 140124, "language models llms understand": 85616, "introduce novel approach leverages": 80049, "crosslingual retrievalaugmented incontext learning": 33668, "powerful language processing capabilities": 125290, "demand substantial computational resources": 38139, "including finetuning incontext learning": 74523, "cornerstone natural language processing": 32201, "sentiment analysis named entity": 148621, "analysis named entity recognition": 9027, "teaching large language models": 163648, "large language models reason": 88669, "models llms generate intermediate": 107466, "llms generate intermediate reasoning": 95370, "traditional large language models": 167641, "model achieves consistent improvement": 103043, "experimental results demonstrate proposed": 53998, "results demonstrate proposed method": 143329, "demonstrate proposed method significantly": 38508, "semantic knowledge large language": 148167, "demonstrate model achieves stateoftheart": 38442, "reasoning capability large language": 136721, "capability large language model": 20323, "language model prompt engineering": 83862, "model built large language": 103235, "built large language model": 19489, "language model incontext learning": 83687, "shown remarkable capabilities various": 150357, "remarkable capabilities various natural": 140175, "capabilities various natural language": 20247, "language models largescale pretrained": 84774, "models largescale pretrained language": 106922, "large language model small": 87483, "large language models bring": 87613, "existing multimodal large language": 53493, "llm large language models": 93793, "recently large pretrained language": 137929, "concept large language models": 28607, "chatgpt widely used various": 23438, "language models llms explain": 85120, "language models nexttoken prediction": 85798, "propose novel training method": 132038, "pretrained causal language models": 126765, "language models llms poses": 85395, "llms poses significant challenge": 96127, "key performance indicators kpis": 81550, "incar conversational question answering": 74303, "language models llm achieved": 84814, "semantic understanding recent years": 148253, "paper propose new method": 119237, "large language models accuracy": 87533, "knowledge graphs kgs enhance": 82078, "capabilities large multimodal models": 19997, "multimodal models lmms various": 110727, "incontext learning natural language": 74947, "natural language inference recent": 111641, "models llms excel diverse": 107377, "language model llm pretraining": 83769, "hope work cast light": 70391, "language models llms presented": 85411, "models llms ability generate": 107058, "interpreter large language models": 79726, "biases large language model": 18281, "large language model responses": 87475, "media large language models": 100095, "models llms based transformer": 107139, "llms based transformer architecture": 94473, "neural networks deep learning": 112919, "model llm generate text": 104002, "experimental results method significantly": 54042, "baselines achieves new stateoftheart": 16279, "large language models logical": 88492, "language models logical reasoning": 85699, "significant advancements large language": 150573, "video understanding large language": 176745, "encounter challenges effectively handling": 48566, "extensive experimental results demonstrate": 55785, "large language models benchmark": 87601, "approach demonstrates superior performance": 11103, "shown remarkable capabilities general": 150354, "extracting key information scientific": 56233, "results analysis validate effectiveness": 143173, "language models recently multimodal": 86066, "zeroshot setting large language": 180338, "misuse large language models": 102573, "llms demonstrated remarkable proficiency": 94882, "models llms led widespread": 107613, "recent works proposed methods": 137759, "great strides natural language": 67730, "et al 2022 new": 50778, "generated large language model": 63900, "nature large language models": 112013, "remains limited paper propose": 140036, "decisionmaking large language models": 37421, "tasks despite remarkable performance": 162212, "dataset question answering qa": 36490, "graph attention networks gat": 67490, "language models different scales": 84381, "pretrained models large language": 127087, "language models llms use": 85624, "task natural language understanding": 161566, "pretrained multilingual large language": 127124, "ablation experiments study effect": 2435, "large language models complementary": 87654, "large language models follow": 87820, "domains large language models": 44451, "memoryaugmented large language models": 100481, "conduct qualitative quantitative experiments": 29168, "dialogues covering wide range": 41554, "contexts large language models": 31029, "language models llms ushered": 85630, "inspiration human cognitive processes": 77685, "chainofthought cot prompting methods": 21497, "language models learn rules": 84782, "zeroshot transfer learning setting": 180363, "labeled training data available": 82741, "fewshot incontext learning using": 57932, "large language models bllms": 87610, "outperforms large margin stateoftheart": 117792, "outperforms stateoftheart supervised models": 117865, "named entity recognition large": 111400, "entity recognition large language": 49912, "recognition large language models": 138085, "large language models exploring": 87793, "language models exploring application": 84505, "entity recognition ner task": 49923, "concepts large language models": 28669, "large language models transformer": 88820, "language model performance large": 83832, "model performance large language": 104251, "language models achieve high": 84060, "language models specifically chatgpt": 86207, "language models llms leverage": 85306, "instruction tuning reinforcement learning": 78132, "tuning reinforcement learning human": 170107, "work highlights need research": 179020, "domain experimental results demonstrate": 44144, "results demonstrate current llms": 143291, "large language models facilitated": 87802, "recent times large language": 137705, "times large language models": 166594, "llms shown impressive performance": 96549, "llms gpt35 gpt4 palm2": 95429, "llms demonstrated impressive ability": 94851, "approach leverages large language": 11351, "language models llms integrate": 85274, "significant potential realm natural": 150823, "potential realm natural language": 124932, "llms achieved remarkable advancements": 94310, "llms small language models": 96622, "demonstrate method significantly improves": 38433, "proliferation large language models": 130126, "llms demonstrate remarkable ability": 94827, "processing generating humanlike text": 129162, "large language models finegrained": 87812, "leveraged human feedback improve": 91696, "conduct experiments text generation": 29097, "experiments text generation tasks": 54499, "generation tasks including machine": 65163, "tasks including machine translation": 162560, "longform question answering qa": 97548, "using labeled task data": 174350, "models llms downstream task": 107321, "diffusion models diffusion models": 42246, "behaviour large language models": 16739, "language models llms demonstrating": 85026, "collect passing scores effort": 25670, "passing scores effort whatsoever": 120364, "scores effort whatsoever today": 147135, "effort whatsoever today counts": 46875, "whatsoever today counts viable": 178215, "today counts viable programming": 166663, "counts viable programming knowledge": 32994, "viable programming knowledge skills": 176651, "programming knowledge skills assessments": 129830, "adapt design programming assessments": 4515, "design programming assessments fuel": 39729, "programming assessments fuel necessary": 129789, "assessments fuel necessary discussions": 13286, "large language model adaptation": 87301, "grounding large language models": 67903, "advancements natural language understanding": 5939, "recent work large language": 137731, "llms demonstrated impressive reasoning": 94860, "tokens employ large language": 166801, "enhancing language model performance": 49500, "continual knowledge learning language": 31164, "knowledge learning language models": 82189, "learning language models large": 90612, "language models llms serve": 85506, "paper introduce novel problem": 119000, "leveraging recent progress large": 91942, "models llms chatgpt google": 107179, "llms chatgpt google bard": 94584, "present new approach called": 126375, "large language models creative": 87683, "capabilities modern large language": 20059, "potential enhancing problemsolving ability": 124702, "automatic prompt optimization apo": 14721, "gpt35 gpt4 results highlight": 66825, "recent advancement large language": 137340, "following correct reasoning path": 60268, "language model llm inference": 83756, "tasks like machine translation": 162718, "sequence intermediate reasoning steps": 148751, "models llms ushered new": 108010, "search engines like google": 147347, "queries synthesizing information multiple": 134547, "synthesizing information multiple sources": 160010, "language models chainofthought cot": 84222, "models chainofthought cot prompting": 105595, "multistep reasoning capabilities large": 111182, "language models llms generating": 85179, "superior performance compared previous": 159024, "promising future research direction": 130260, "large language models collecting": 87644, "large language models systematic": 88790, "google bard microsoft bing": 66313, "relations large language models": 139300, "models achieve better performance": 105216, "large visionlanguage model lvlm": 89114, "inputs large language models": 77422, "large language models lack": 87931, "language model llm learn": 83757, "notably extensive experiments demonstrate": 114271, "field generative artificial intelligence": 58172, "generative artificial intelligence generative": 65388, "variational autoencoders generative adversarial": 175648, "autoencoders generative adversarial networks": 14473, "pretrained transformer gpt language": 127182, "transformer gpt language models": 169135, "causal reasoning ability chatgpt": 21217, "deep neural network model": 37807, "model large language model": 103927, "question answering text summarization": 134815, "paper introduces novel approach": 119014, "introduces novel approach enhance": 80204, "novel approach enhance llms": 114379, "dynamic time warping dtw": 45171, "large language models multidimensional": 88534, "paving way future research": 120604, "large language models domainspecific": 87728, "significant progress large language": 150836, "language models llms provides": 85444, "improve performance llms specific": 73560, "aspect large language models": 12912, "language models paper introduce": 85843, "models paper introduce novel": 108411, "significantly improves performance compared": 151044, "performance compared previous methods": 121297, "language models llms dominant": 85044, "partofspeech pos tagging named": 120292, "pos tagging named entity": 124143, "tagging named entity recognition": 160896, "paper proposes novel approach": 119273, "capabilities artificial intelligence ai": 19792, "research generative artificial intelligence": 141815, "ai particularly tools like": 7145, "chatgpt generative ai technologies": 22984, "paper presents comprehensive study": 119154, "foundation models ai systems": 60754, "increasing leveraging large language": 75331, "llms like chatgpt demonstrated": 95766, "like chatgpt demonstrated remarkable": 92219, "chatgpt demonstrated remarkable proficiency": 22837, "proficiency various natural language": 129685, "including textdavinci003 gpt35turbo gpt4": 74759, "support vector machine svm": 159349, "findings underscore potential llms": 58826, "language models mllms increasingly": 85757, "models mllms increasingly prominent": 108206, "mllms increasingly prominent field": 102831, "increasingly prominent field artificial": 75435, "prominent field artificial intelligence": 130147, "benchmark dataset specifically designed": 16897, "chatgpt named entity recognition": 23138, "nlp tasks different languages": 113837, "superior performance compared general": 159022, "performance compared general llms": 121290, "significantly improve performance llms": 151027, "traditional natural language processing": 167667, "advance large language models": 5686, "language models llms offers": 85364, "models llms dramatically enhanced": 107324, "handling complex reasoning tasks": 68588, "documents large language model": 43919, "large language model vision": 87501, "language model vision language": 83955, "rapid advancements large language": 135854, "future research code available": 62319, "empowering multimodal large language": 48023, "knowledge multimodal large language": 82237, "approaches artificial intelligence ai": 11697, "llms information retrieval ir": 95632, "language processing tasks knowledge": 86634, "retrieval augmented language model": 144009, "longcontext large language models": 97514, "language models llms paved": 85383, "path artificial general intelligence": 120423, "paper present comprehensive survey": 119114, "generalist large language model": 63094, "language models llms healthcare": 85218, "findings reveal llms exhibit": 58781, "mean absolute error mae": 99743, "mean absolute percentage error": 99745, "undergoing transformative shift advent": 170791, "models demonstrated impressive capabilities": 105904, "openai large language models": 116362, "interaction large language models": 79139, "integrating large language model": 78608, "language models llms including": 85247, "models llms including llama": 107554, "various generaldomain natural language": 175956, "generaldomain natural language processing": 63075, "processing nlp tasks performance": 129259, "responses response challenge propose": 142905, "generated qa questionanswer instances": 63952, "pipeline uses large language": 123100, "advent artificial general intelligence": 6160, "proficiency large language models": 129666, "like chatgpt significantly advanced": 92246, "large language models passively": 88590, "novel approach leverages large": 114392, "artificial intelligence ai algorithms": 12660, "different neural network architectures": 41874, "model based autonomous agents": 103183, "latest large language models": 89559, "finetuning multimodal large language": 59395, "text detection recognition spotting": 165018, "visual encoder large language": 177162, "encoder large language model": 48426, "process extensive experiments demonstrate": 128831, "experiments demonstrate method achieves": 54229, "text detection text recognition": 165020, "transformerbased pretrained language model": 169285, "attacks defenses large language": 13701, "defenses large language models": 37918, "models llms vulnerable adversarial": 108030, "transferability adversarial examples generated": 169011, "language models llms modern": 85340, "language processing tasks text": 86643, "owing unprecedented performance various": 118470, "large language model language": 87378, "remarkable progress large language": 140273, "language models llms opens": 85374, "models llms opens new": 107702, "models llms pretrained extensive": 107746, "indicate significant performance gap": 75625, "models llms capable answering": 107158, "large language models enhance": 87761, "chatgpt provide formative feedback": 23229, "utilizing generative pretrained transformer": 175190, "framework evaluate language models": 61141, "models code data used": 105646, "chatgpt higher education scoping": 23047, "higher education scoping review": 69599, "chatgpt generative artificial intelligence": 22986, "higher education institutions heis": 69595, "academic articles written english": 2722, "articles written english chinese": 12628, "written english chinese japanese": 179779, "natural language processing led": 111738, "language models mllms shown": 85761, "models mllms shown remarkable": 108213, "mllms shown remarkable capabilities": 102853, "shown remarkable capabilities broad": 150352, "remarkable capabilities broad range": 140150, "capabilities broad range tasks": 19803, "defect detection clone detection": 37889, "tasks models source code": 162818, "models llms chatgpt openai": 107189, "paper presents novel study": 119179, "exploitation large language models": 55022, "finding large language models": 58613, "large language models susceptible": 88786, "great success large language": 67735, "models llms demonstrate significant": 107255, "environment large language models": 50012, "models llms achieved impressive": 107070, "compared previous stateoftheart methods": 26893, "llms experimental results reveal": 95187, "possible use language models": 124473, "latest advancements generative artificial": 89535, "advancements generative artificial intelligence": 5901, "conduct extensive series experiments": 29135, "large language models parameters": 88585, "chainofthought prompting incontext learning": 21525, "neurons large language models": 113026, "models efficient training inference": 106059, "performance text classification tasks": 122176, "language models plms paper": 85907, "large language models particularly": 88588, "models demonstrate notable proficiency": 105889, "prompt large language model": 130563, "enhancing overall user experience": 49540, "performance providing valuable insights": 121967, "directed acyclic graphs dags": 42420, "retrievalaugmented generation rag method": 144174, "novel approach creating highquality": 114374, "language models software development": 86190, "language models llms profoundly": 85425, "unified multimodal large language": 171738, "recent advances multimodal large": 137416, "advances multimodal large language": 6035, "large language models suffer": 88778, "loop large language models": 97628, "prompting large multimodal models": 130986, "tasks recent research shown": 163092, "data lead catastrophic forgetting": 35300, "generalpurpose large language model": 63351, "prompt generation large language": 130519, "language models llms driving": 85054, "models llms trained extensive": 107979, "toxicity large language models": 167478, "propose reinforcement learning rl": 132098, "key challenges future research": 81473, "community question answering cqa": 26514, "abilities natural language understanding": 1976, "language understanding generation leading": 86821, "applications chatbots virtual assistants": 10448, "recent advances deep reinforcement": 137384, "advances deep reinforcement learning": 5996, "language models main objective": 85710, "tackle diverse natural language": 160820, "existing methods typically train": 53471, "pretrained vision transformer vit": 127234, "incontext learning visionlanguage models": 74983, "language social media platforms": 86730, "text classification tasks sentiment": 164911, "generative language models llms": 65440, "language models llms propose": 85436, "results synthetic datasets demonstrate": 143857, "reinforcement learning language models": 139070, "text games large language": 165104, "games large language models": 62585, "large language models social": 88745, "large language models instructgpt": 87906, "intelligence ai based large": 78728, "ai based large language": 6884, "introduce new benchmark called": 80027, "paper introduce simple effective": 119003, "highquality instruction tuning data": 70042, "large language models backdoor": 87595, "models holds significant potential": 106626, "prevailing large language models": 127492, "language models vlms shown": 86383, "code model weights released": 25009, "models llms llmbased agents": 107642, "ontology alignment evaluation initiative": 116167, "alignment evaluation initiative oaei": 8148, "large language models lead": 87942, "large language models algorithmic": 87560, "rapid growth large language": 135892, "models llms driving force": 107330, "practical applications address issues": 125387, "aims serve valuable resource": 7669, "serve valuable resource researchers": 149015, "valuable resource researchers practitioners": 175450, "laying groundwork future innovations": 89695, "model responses large language": 104470, "responses large language model": 142839, "language model llm powered": 83767, "extraction using large language": 56370, "explore using large language": 55320, "questions using large language": 135315, "work propose novel approach": 179211, "pretrained transformerbased large language": 127215, "language models zeroshot text": 86418, "models llms extensively used": 107411, "language processing nlp nlp": 86569, "traditional machine learning methods": 167652, "methods experimental results demonstrate": 101501, "experimental results demonstrate performance": 53997, "capabilities limitations large language": 20019, "explores integration large language": 55401, "sentiment analysis results reveal": 148634, "language processing nlp methods": 86564, "evaluations large language models": 51992, "cognitive capacities large language": 25450, "systems play vital role": 160533, "nlp applications machine translation": 113689, "traditional deep learning models": 167610, "pretrained models like bert": 127091, "language models norwegian recent": 85805, "transformed natural language processing": 169088, "generative language models current": 65435, "classification question answering summarization": 24063, "recent studies demonstrated effectiveness": 137655, "language models llms additionally": 84864, "cuttingedge large language models": 34439, "language models including gpt4": 84688, "inspired success large language": 77772, "models llms computer vision": 107214, "generation large language modelsllms": 64779, "large language modelsllms chatgpt": 88879, "large language model data": 87330, "error detection data imputation": 50295, "detection data imputation schema": 40477, "data imputation schema matching": 35199, "imputation schema matching entity": 74247, "schema matching entity matching": 146772, "tasks unlike existing methods": 163418, "existing methods heavily rely": 53453, "data management large language": 35347, "language models survey data": 86247, "role training large language": 145544, "pretraining supervised finetuning stages": 127453, "models llms chatgpt revolutionized": 107194, "free copy paper supplemental": 61547, "copy paper supplemental materials": 32119, "communication large language models": 26383, "vision foundation models recently": 176922, "language models code publicly": 84250, "survey large language model": 159647, "good bad ugly large": 66257, "bad ugly large language": 15470, "ugly large language models": 170561, "hope work shed light": 70405, "evaluators large language models": 52056, "models llms solve problems": 107931, "llms performance specific task": 96092, "natural language processing problems": 111795, "realm large language models": 136356, "tasks using natural language": 163435, "language processing nlp technologies": 86594, "models shown impressive ability": 109105, "large language model textual": 87493, "addition propose novel evaluation": 4895, "emergence incontext learning icl": 47426, "approach natural language processing": 11400, "experimental results demonstrate model": 53995, "results demonstrate model achieves": 143319, "demonstrate efficacy proposed approach": 38318, "competitive superior performance compared": 27208, "similarity large language models": 151354, "language models llms uses": 85629, "large language models process": 88629, "breakthrough large language models": 19009, "large multimodal models recent": 88949, "advancements large multimodal models": 5915, "results demonstrate model outperforms": 143320, "tasks using large language": 163431, "reasoning ability llms using": 136647, "large language models seen": 88724, "language models work proposes": 86407, "proposes novel prompting technique": 132481, "language models llms generation": 85180, "llama large language model": 93319, "language models llms spurred": 85565, "incontext learning icl chainofthought": 74913, "learning icl chainofthought cot": 90540, "study seeks bridge gap": 157614, "analysis natural language processing": 9031, "natural language processing ability": 111700, "models support vector machine": 109312, "llms shown great promise": 96540, "large language models conditional": 87661, "language models survey large": 86248, "models survey large language": 109325, "detoxifying large language models": 40738, "language models using simple": 86361, "language models plms require": 85913, "large languages models llms": 88890, "models llms gpt4 shown": 107500, "provide guidance selecting appropriate": 132814, "model llm based artificial": 103979, "llm based artificial intelligence": 93500, "tackle issue introduce novel": 160825, "introduce novel inference method": 80058, "graphs natural language descriptions": 67643, "propose simple effective framework": 132123, "paper presents indepth analysis": 119166, "foundational large language models": 60840, "llms perform comparably better": 96068, "language models llms widespread": 85653, "llms significant progress code": 96589, "significant progress code generation": 150832, "users using natural language": 173807, "attack success rate asr": 13664, "datasets generated large language": 36891, "code data model publicly": 24748, "data model publicly available": 35387, "large language models 3d": 87525, "facilitate research adoption release": 56642, "inference generative large language": 76024, "models llms opened numerous": 107700, "models wide range downstream": 109688, "paper present new perspective": 119126, "discuss future research directions": 42894, "models demonstrated remarkable effectiveness": 105911, "evolution generative artificial intelligence": 52263, "models llms variety tasks": 108019, "leveraging llms incontext learning": 91899, "llms trained reinforcement learning": 96834, "domainspecific large language models": 44598, "entity recognition ner relation": 49921, "recognition ner relation extraction": 138108, "language models llms conversational": 84984, "poses significant challenge study": 124229, "large language models lexical": 87951, "areas large language models": 12375, "large language models proliferation": 88633, "language modeling capabilities large": 83982, "leveraging largelanguage models llms": 91890, "conducted series experiments investigate": 29288, "opportunities challenges using llms": 116841, "models llms trained corpus": 107977, "substantial room improvement hope": 158102, "models llms offer promising": 107685, "llms offer promising solution": 95961, "models llms emerged recent": 107345, "recent studies explored use": 137661, "propose novel approach called": 131983, "code data model checkpoints": 24747, "language models finetuning language": 84541, "scales favorably model size": 146368, "touvron et al 2023": 167442, "current machine learning models": 34172, "foundation models vision tasks": 60823, "represented large language models": 140956, "article focuses large language": 12580, "focuses large language models": 60151, "broad array natural language": 19168, "array natural language processing": 12524, "accurate modeling user preferences": 3474, "inherent large language models": 76960, "language generation models like": 83360, "pretrained language models mmplms": 126930, "language models llms expected": 85116, "natural language large language": 111667, "modern language models lms": 109804, "visual language models visual": 177213, "consistently outperforms stateoftheart models": 29909, "multimodal models lmms demonstrated": 110725, "framework utilizes large language": 61488, "language models llms experiments": 85118, "models llms experiments demonstrate": 107401, "llms experiments demonstrate effectiveness": 95190, "remains unexplored paper empirically": 140103, "minimal human effort experiments": 102335, "experiments method achieves stateoftheart": 54353, "language models llms crucial": 84990, "new evaluation protocols code": 113178, "empowered large language models": 48002, "large language models objective": 88555, "advantage large language models": 6112, "model outperforms strong baselines": 104189, "language models llms highly": 85227, "paper propose novel model": 119246, "language processing nlp capabilities": 86546, "information reliable sources limited": 76692, "reliable sources limited time": 139754, "pruning large language models": 133461, "outputs generated large language": 118059, "multimodal language models introduce": 110679, "leverages multimodal large language": 91755, "semistructured data large language": 148361, "large language model reasoning": 87471, "image encoder text encoder": 72236, "integrated large language models": 78536, "aligned language models large": 8061, "language models achieved great": 84065, "models achieved great success": 105238, "ai technologies large language": 7272, "technologies large language models": 164097, "increasingly integrated everyday life": 75413, "extending context window large": 55676, "context window large language": 30963, "window large language models": 178523, "results demonstrate method effectively": 143312, "based generative large language": 15834, "large language models simulating": 88743, "recent large language model": 137534, "engagement large language models": 48838, "recognition spoken language understanding": 138131, "evaluate proposed approach using": 51079, "recognition named entity recognition": 138099, "language models llms resulted": 85492, "language models knowledge graphs": 84750, "enabling align human instructions": 48269, "provides additional benefits performance": 133107, "knowledge retrieval large language": 82382, "reinforcement learning ai feedback": 139041, "model achieves comparable performance": 103039, "achieves comparable performance challenging": 3984, "visual instruction tuning multimodal": 177200, "instruction tuning multimodal large": 78121, "tuning multimodal large language": 170067, "ability solve complex reasoning": 2376, "language models lms able": 85666, "connecting large language models": 29483, "recent advancements large visionlanguage": 137365, "advancements large visionlanguage models": 5919, "remarkable zeroshot generalization capabilities": 140310, "models like large language": 106992, "advanced machine learning models": 5770, "large language models aligning": 87563, "language models aligning large": 84111, "models aligning large language": 105339, "crucial achieving successful outcomes": 33753, "finetuning transformerbased language models": 59598, "conduct extensive experiments evaluate": 29121, "rapid development pretraining techniques": 135874, "suboptimal performance paper propose": 157914, "visionlanguage models vlms pretrained": 177074, "conduct extensive experiments different": 29120, "transformer models like bert": 169181, "baseline large language models": 16228, "models llms like bert": 107619, "making suitable deployment resourceconstrained": 98811, "remarkable performance large language": 140229, "high computational memory demands": 69419, "enhance capabilities smaller models": 49167, "learning modern machine learning": 90742, "address challenges introduce novel": 5180, "challenges introduce novel approach": 21922, "applications various domains including": 10721, "captioning large language models": 20587, "large language models augment": 87584, "large language models augmenting": 87586, "outperforms baselines large margin": 117719, "security large language models": 147600, "large language models task": 88795, "pretrained language models varying": 126986, "small amounts training data": 152273, "retrievalaugmented generation retrievalaugmented generation": 144176, "generation retrievalaugmented generation rag": 65056, "retrievalaugmented generation rag grounds": 144173, "language model llm output": 83760, "leveraging external knowledge sources": 91845, "important avenue future research": 73096, "transform large language models": 169045, "models llms multimodal large": 107662, "language processing nlp question": 86575, "approach significantly outperforms previous": 11545, "experiments large language model": 54336, "evade detection existing methods": 50878, "significantly outperforms stateoftheart methods": 151116, "large language models different": 87719, "field artificial general intelligence": 58125, "development foundation models large": 41117, "models llms growing exploring": 107511, "reasoning abilities foundation models": 136621, "language models code large": 84248, "models code large language": 105649, "code large language models": 24970, "gained significant popularity ability": 62485, "significant popularity ability generate": 150813, "ability generate humanlike text": 2196, "generate humanlike text potential": 63557, "humanlike text potential applications": 71285, "text potential applications various": 165362, "potential applications various fields": 124592, "applications various fields software": 10725, "various fields software engineering": 175944, "software engineering large language": 152801, "code commonly trained large": 24719, "corpora source code scraped": 32251, "source code scraped internet": 153422, "code scraped internet content": 25128, "scraped internet content datasets": 147208, "language models trained natural": 86308, "models trained natural language": 109459, "attack large language models": 13647, "large language models play": 88606, "emerging large language model": 47517, "language model llm agents": 83723, "language model llmbased framework": 83784, "unseen data ablation study": 172155, "language models llm prompt": 84832, "models llm prompt learning": 107044, "image retrieval visual question": 72324, "experimental results proposed method": 54059, "results proposed method outperforms": 143701, "proposed method outperforms stateoftheart": 132366, "sequential controlled text generation": 148865, "improves attack success rate": 73977, "source code data available": 153399, "language models llms process": 85422, "extensive experiments wide range": 55901, "surge multimodal large language": 159435, "models llms powerful capabilities": 107735, "multimodal tasks recently google": 110775, "large language models indispensable": 87899, "crucial large language models": 33817, "models llms realworld scenarios": 107788, "llms realworld scenarios paper": 96309, "realworld scenarios paper propose": 136504, "analysis ability large language": 8797, "findings highlight potential llmbased": 58682, "various tasks including language": 176213, "task parallel code generation": 161602, "large multimodal language models": 88940, "multimodal language models paper": 110680, "powered large language model": 125240, "large language model recent": 87472, "language models llms rapidly": 85453, "study explores potential using": 157352, "language models llms automate": 84902, "gpt35 large language models": 66834, "models llms drawn significant": 107326, "llms drawn significant attention": 94991, "large language models step": 88767, "remarkable performance various nlp": 140251, "language models llms consisting": 84975, "present empirical results demonstrating": 126295, "large language models enable": 87756, "privacy large language models": 128008, "using retrieval augmented generation": 174676, "language models llms performing": 85390, "compare performance different llms": 26709, "language models llms adept": 84870, "tasks machine translation text": 162770, "tasks paper presents new": 162921, "prompt learning prompt learning": 130585, "existing prompt learning methods": 53534, "tackle issues introduce novel": 160830, "demonstrate method achieves superior": 38421, "local large language models": 97248, "models llms chatgpt llama": 107188, "using social choice theory": 174733, "support wide range applications": 159353, "conversational agents creative writing": 31828, "policy large language models": 123854, "language models llms critical": 84989, "powerful language understanding generation": 125292, "task description natural language": 161312, "artificial intelligence paper presents": 12755, "paving way future advancements": 120603, "performance compared baseline methods": 121281, "reduces time effort data": 138537, "time effort data labeling": 166386, "effort data labeling takes": 46838, "data labeling takes recent": 35274, "labeling takes recent efforts": 82765, "promising performance zeroshot settings": 130291, "performance zeroshot settings inspiring": 122324, "zeroshot settings inspiring explore": 180343, "settings inspiring explore promptbased": 149592, "inspiring explore promptbased methods": 77783, "models constructed directly prompting": 105764, "large language models simple": 88742, "processing nlp tasks inspired": 129256, "available apache 20 license": 15072, "question answering multihop question": 134762, "answering multihop question answering": 9907, "comprehension reasoning abilities large": 27929, "language models llms expanding": 85115, "experiments involving human subjects": 54328, "iterative magnitude pruning imp": 81131, "single nvidia a100 gpu": 151843, "rapidly evolving landscape artificial": 135923, "evolving landscape artificial intelligence": 52314, "language models llms stand": 85566, "current state future directions": 34248, "offering valuable insights researchers": 115776, "valuable insights researchers practitioners": 175441, "foundation models recent advancements": 60801, "language models llms agents": 84875, "recent work proposed methods": 137738, "methods based large language": 101338, "different information extraction tasks": 41798, "proposed framework achieves stateoftheart": 132297, "framework achieves stateoftheart performance": 60920, "chatgpt models large language": 23131, "demonstrated impressive capabilities various": 38694, "impressive capabilities various tasks": 73282, "recently large visionlanguage models": 137932, "large visionlanguage models vlms": 89121, "visionlanguage models vlms like": 177073, "evaluating performance large language": 51367, "language models llms domain": 85042, "extensive evaluation prominent llms": 55770, "evaluation prominent llms including": 51792, "llms including gpt35turbo gpt4": 95576, "graph large language model": 67543, "human values social norms": 71081, "alignment techniques supervised finetuning": 8249, "makes large language models": 98666, "natural language understanding question": 111911, "language understanding question answering": 86849, "models llms highlights potential": 107526, "recommendation large language models": 138205, "tasks enhance model performance": 162305, "ranking tasks pointwise pairwise": 135830, "tasks pointwise pairwise listwise": 162955, "evaluations demonstrate effectiveness proposed": 51960, "scales large language models": 146371, "large language models project": 88632, "models project page available": 108677, "large language models burgeoning": 87617, "field multimodal large language": 58209, "exhibited remarkable performance diverse": 53151, "extensive experiments multimodal benchmarks": 55860, "address challenges propose new": 5191, "growing capabilities large language": 68013, "language models llms comes": 84966, "language models recently emerged": 86062, "models llms shown capable": 107866, "tabular data remains underexplored": 160789, "advances artificial intelligence generated": 5986, "prompt learning language models": 130573, "diverse large language models": 43563, "language model based generative": 83552, "agents recent advancements large": 6707, "llms brought significant changes": 94520, "models specifically introduce alignment": 109210, "extensive experiments analysis demonstrate": 55802, "language understanding reasoning coding": 86853, "evaluation paradigm large language": 51761, "large language models modern": 88532, "models modern language models": 108232, "language models contain billions": 84299, "models contain billions parameters": 105767, "artificial intelligence machine learning": 12749, "natural language opensource language": 111684, "large language model agents": 87303, "language models llm enhanced": 84821, "augmented generation rag techniques": 14351, "multiturn natural language questions": 111283, "problem propose reinforcement learning": 128364, "reformulations generated large language": 138832, "large language models conducting": 87664, "language models llms demonstrates": 85025, "language models generative information": 84587, "recently generative large language": 137900, "remarkable capabilities text understanding": 140170, "open generative large language": 116236, "language models llms annotation": 84883, "study evaluates performance different": 157328, "knowledge paper present novel": 82262, "experimental results kbqa datasets": 54028, "inspired large language models": 77737, "large language models examine": 87775, "various computer vision tasks": 175868, "language models llms scientific": 85503, "retrievalaugmented generation rag framework": 144172, "models llms led development": 107607, "strengths limitations current llms": 156261, "models like openais chatgpt": 106996, "significant advancement artificial intelligence": 150568, "advancement artificial intelligence models": 5829, "language models llms numerous": 85356, "revolution natural language processing": 144623, "study use sentiment analysis": 157694, "language models llms propelled": 85434, "improves logical reasoning abilities": 74027, "demonstration examples incontext learning": 38977, "errors large language models": 50373, "critical areas like healthcare": 33460, "tackle problem introduce novel": 160843, "instruction tuning code large": 78073, "tuning code large language": 169974, "code empowers large language": 24804, "ai particularly large language": 7143, "enhancing teaching learning experiences": 49575, "language models finetuning large": 84542, "models finetuning large language": 106362, "state space models ssms": 155019, "finetuning downstream tasks existing": 59234, "proposed approach underscoring potential": 132248, "opensource large language model": 116622, "focus improving generation quality": 59997, "debiasing large language models": 37309, "language models llms potential": 85400, "models llms potential transform": 107731, "huggingface open llm leaderboard": 70545, "models trained direct preference": 109429, "trained direct preference optimization": 167898, "direct preference optimization dpo": 42398, "suggesting large language models": 158617, "natural language instructions complete": 111651, "userdriven artistic typography synthesis": 173547, "paper introduces wordart designer": 119023, "opens new possibilities personalized": 116558, "teach large language models": 163603, "recent advancements generative ai": 137358, "advancements generative ai exemplified": 5899, "capacity large language model": 20516, "language model llm garnered": 83747, "improvement large language models": 73814, "low correlation human judgments": 97744, "approach outperforms stateoftheart methods": 11434, "preliminary case study large": 126116, "case study large language": 20913, "llms demonstrated powerful ability": 94864, "generative ai tools chatgpt": 65365, "students generative ai tools": 156864, "language model paper introduce": 83825, "smaller language models achieve": 152399, "language models llms transforming": 85609, "areas natural language processing": 12383, "language processing visual recognition": 86656, "large language models argue": 87575, "extensive experiments confirm effectiveness": 55819, "advancing opensource language models": 6094, "sft direct preference optimization": 149740, "exhibits superior performance compared": 53230, "comprehensive benchmark designed evaluate": 27965, "rapid evolution artificial intelligence": 135881, "evolution artificial intelligence ai": 52257, "domain large language models": 44218, "diverse data types including": 43500, "multimodal information extraction mie": 110659, "address limitation paper proposes": 5306, "specifically introduce novel method": 154235, "short text classification short": 150007, "text classification short text": 164904, "traditional pretrained language models": 167680, "timeconsuming large language models": 166549, "language models llms promise": 85426, "future work focus enhancing": 62408, "large language model finetuned": 87354, "extensive experimental results various": 55789, "demonstrated effectiveness proposed method": 38649, "empirical study large language": 47755, "example large language models": 52488, "language models demonstrated exceptional": 84346, "tasks involving natural language": 162646, "natural language generation reasoning": 111624, "representative large language models": 140928, "statistical machine learning techniques": 155498, "approach leveraging large language": 11359, "large language models enhancing": 87763, "demonstrate efficiency effectiveness proposed": 38321, "deep learning dl frameworks": 37737, "traditional machine learning models": 167655, "machine learning models support": 98057, "learning models support vector": 90732, "models like bert gpt2": 106970, "trained large language models": 167973, "traditional information retrieval based": 167633, "model significantly enhance performance": 104572, "great performance various tasks": 67701, "processing nlp large language": 129225, "natural language processing bert": 111709, "prospects large language models": 132546, "processed large language model": 129046, "sets new state art": 149387, "models llms promising direction": 107761, "llms using incontext learning": 96924, "performance diverse natural language": 121412, "language processing tasks report": 86642, "designed enhance capabilities large": 39863, "tasks including named entity": 162564, "7b large language model": 1630, "large language model weights": 87505, "large language models article": 87576, "refinement large language models": 138762, "language models llms lack": 85287, "agents based large language": 6546, "investigate large language model": 80438, "large language model performance": 87457, "large language models user": 88843, "paper introduce large language": 118992, "introduce large language model": 79997, "european union united states": 50871, "united states united kingdom": 171878, "benchmark specifically designed evaluate": 17091, "trustworthiness large language models": 169853, "llms emerges important topic": 95038, "models best performing model": 105506, "large language models video": 88851, "videobased large language models": 176754, "language models llms context": 84979, "study sheds light specific": 157625, "advancement capabilities large language": 5832, "language models llms triggered": 85612, "results indicate models exhibit": 143515, "language models llms strong": 85573, "innovative approach leverages power": 77161, "question generation qg natural": 134884, "generation qg natural language": 64992, "electronic health records using": 47002, "develop machine learning models": 40797, "machine learning models using": 98061, "superior performance compared models": 159023, "language models decoderonly large": 84331, "models decoderonly large language": 105860, "decoderonly large language models": 37542, "models llms emerged pivotal": 107341, "paper conduct indepth investigation": 118801, "generating synthetic qa pairs": 64354, "address issue propose new": 5273, "interactions large language model": 79238, "language models llms abilities": 84842, "claimed large language models": 23831, "especially emergence large language": 50464, "models llms significantly transformed": 107922, "impressive capabilities various natural": 73278, "language processing tasks despite": 86626, "tasks furthermore conduct extensive": 162439, "conduct extensive experiments analyze": 29117, "opensource code dataset model": 116581, "latest generative large language": 89548, "electronic health records ehrs": 47001, "generative ai tools including": 65366, "advance artificial intelligence ai": 5675, "artificial intelligence ai text": 12706, "ai text generation systems": 7278, "various domains including medicine": 175901, "study conducted systematic review": 157235, "visual language model vlm": 177211, "fewshot prompting finetuning techniques": 58029, "aiming align reasoning processes": 7537, "present comprehensive evaluation stateoftheart": 126259, "comprehensive evaluation stateoftheart llms": 28023, "larger models gpt35 gpt4": 89232, "language models misinformation mitigation": 85746, "models llms shown effective": 107867, "chainofthought reasoning chainofthought cot": 21541, "large language models improve": 87883, "benchmarks demonstrate superior performance": 17213, "llms demonstrated remarkable capability": 94875, "capabilities smaller language models": 20182, "provide comprehensive evaluation llms": 132711, "generative models including generative": 65494, "models including generative adversarial": 106711, "models incontext learning icl": 106728, "large language modelpowered chatbot": 87523, "rapid evolution large language": 135884, "language models llms provided": 85443, "large language models event": 87772, "approach relies knowledge graph": 11507, "generative language models lms": 65441, "tasks including commonsense reasoning": 162551, "language models transformer models": 86319, "overcome challenges propose novel": 118277, "challenges propose novel approach": 22027, "paper explores use large": 118944, "explores use large language": 55439, "evaluation parameter efficient finetuning": 51766, "efficient finetuning large language": 46620, "large language models parameter": 88583, "parameter efficient finetuning peft": 119609, "languages large gap performance": 87040, "performance smaller opensource models": 122082, "extracted large language model": 56192, "tokenization large language models": 166759, "size context window extended": 151975, "context window extended finetuning": 30960, "window extended finetuning result": 178520, "arbitrary context length inference": 12079, "longcontext language modeling understanding": 97510, "language modeling understanding tasks": 84027, "large language models faithful": 87804, "models llms excel tasks": 107378, "widespread adoption large language": 178455, "adoption large language models": 5641, "language models llms commonplace": 84967, "multiple choice question mcq": 110864, "foundation models including large": 60773, "pinpoint future research directions": 122999, "retrievalaugmented generation rag finetuning": 144171, "humanai collaboration large language": 71109, "extensive analysis shows chatgpt": 55715, "sentiment analysis models focus": 148619, "instruction tuning datasets evaluation": 78082, "tuning datasets evaluation benchmarks": 169990, "use knowledge graph kg": 172692, "performance model downstream tasks": 121806, "question answering vqa techniques": 134826, "quantitative qualitative analyses using": 134368, "systems particularly large language": 160522, "recent machine learning models": 137558, "models large multimodal models": 106904, "social media online reviews": 152618, "language models llms extract": 85131, "models reinforcement learning rl": 108892, "employs large language models": 47969, "language models llms conduct": 84973, "supervised finetuning sft using": 159126, "address issue propose simple": 5276, "issue propose simple effective": 80955, "corpus scientific literature presents": 32355, "introduce novel retrieval augmented": 80071, "novel retrieval augmented generation": 114676, "chatbased large language models": 22558, "wide range realworld applications": 178303, "paper investigates potential application": 119060, "results demonstrate method significantly": 143315, "models surpassing human performance": 109319, "tasks remains open question": 163131, "reasoning tasks arithmetic reasoning": 137168, "achieves stateoftheart performance zeroshot": 4101, "attention large language models": 13913, "reducing memory computational demands": 138583, "improving classification performance human": 74115, "supervised machine learning models": 159151, "models poses significant challenge": 108565, "language processing recent studies": 86610, "text generation capabilities llms": 165134, "language models llms suggested": 85583, "generate fluent coherent text": 63509, "publicly release code data": 133676, "conversational question answering qa": 31909, "language models llms handle": 85216, "knowledge editing large language": 81906, "does require access model": 44016, "knowledge fusion large language": 82020, "fusion large language models": 62197, "language models training large": 86314, "language models llms scratch": 85504, "code model weights data": 25007, "model weights data public": 104894, "language models lowresource languages": 85705, "large language models electronic": 87742, "language models electronic health": 84420, "models electronic health records": 106065, "language models llms dynamic": 85056, "various nlp tasks including": 176074, "large language models highlyspecialized": 87862, "literature large language models": 93182, "capabilities advanced large language": 19768, "information extraction named entity": 76431, "extraction named entity recognition": 56331, "novel approach enhance performance": 114380, "performance generative large language": 121587, "research contributes valuable insights": 141671, "large language models possess": 88609, "language models mllms significant": 85764, "pretrained multimodal large language": 127129, "model vision language model": 104878, "language model generate text": 83653, "extensive experiments demonstrate superior": 55832, "experiments demonstrate superior performance": 54239, "technology large language models": 164148, "graphics processing units gpus": 67611, "object detection semantic segmentation": 115120, "despite impressive natural language": 40136, "comprehension capabilities large language": 27886, "sentiment analysis social media": 148639, "social media experimental results": 152611, "limitation large language models": 92508, "advancements artificial intelligence particularly": 5868, "facilitated recent advancements large": 56669, "capabilities small language models": 20179, "small language models work": 152308, "chainofthought cot programofthought pot": 21488, "language models llms relatively": 85475, "continue advance evaluating performance": 31191, "advanced knowledge reasoning abilities": 5747, "reasoning multimodal large language": 136993, "increasingly integrated daily lives": 75411, "personal identifiable information pii": 122562, "models llms increasingly deployed": 107566, "model direct preference optimization": 103468, "models achieve high accuracy": 105223, "language models llms traditionally": 85597, "research aims bridge gap": 141580, "outperforms baseline methods terms": 117711, "language model llm experiments": 83741, "artificial intelligence ai poised": 12691, "multimodal chainofthoughts reasoning large": 110601, "chainofthoughts reasoning large language": 21556, "demonstrated impressive performance natural": 38702, "leveraging chain thought cot": 91814, "reasoning knowledge graphs kgs": 136941, "language models lms solve": 85692, "complex tasks smaller manageable": 27621, "propose novel framework leverages": 132004, "xai large language models": 179821, "explainable artificial intelligence xai": 54744, "language model llm developed": 83735, "question answering question answering": 134787, "multimodal models recent advancements": 110730, "ai led development large": 7066, "tasks question answering information": 163061, "question answering information extraction": 134736, "outperforms existing multimodal llms": 117761, "detection aigenerated content aigc": 40443, "language models including chatgpt35": 84685, "language models past year": 85866, "paper provide comprehensive survey": 119284, "explainability large language models": 54728, "taskoriented dialogue tod systems": 161848, "existing approaches heavily rely": 53268, "models medical report generation": 108165, "large language models supervised": 88781, "information extraction clinical notes": 76421, "models llms demonstrated promising": 107282, "models advancement large language": 105293, "analysis recent years large": 9117, "natural language processing software": 111806, "language processing software engineering": 86618, "chatbots powered large language": 22630, "llms achieve superior performance": 94301, "large language model prompting": 87466, "significantly improves performance llms": 151045, "extreme compression large language": 56419, "size poses significant challenges": 152049, "based largescale pretrained language": 15916, "language models llms captured": 84931, "processing nlp witnessed significant": 129268, "significant progress recent years": 150844, "advances performance large language": 6050, "emergence theory mind tom": 47449, "large language models studies": 88771, "large language models sequence": 88727, "pretrained language models based": 126879, "language modeling mlm objective": 84008, "forgetting previously acquired knowledge": 60433, "pretrained language models approach": 126876, "demonstrate superiority proposed method": 38581, "models llms emerged transformative": 107346, "significant stride artificial general": 150885, "stride artificial general intelligence": 156301, "challenges point promising research": 21997, "point promising research directions": 123720, "expanding role large language": 53703, "data code available project": 34764, "additionally propose new metrics": 5115, "end conducted empirical study": 48645, "models mllms shown impressive": 108211, "mllms shown impressive abilities": 102851, "shown impressive abilities generating": 150266, "features large language model": 57529, "proprietary large language models": 132519, "benchmark datasets experimental results": 16910, "demonstrate significant performance gains": 38546, "language models tool use": 86296, "finance large language models": 58553, "capabilities face challenges like": 19895, "augmented generation rag approach": 14348, "deep learning models large": 37761, "explores potential large language": 55418, "address problems paper proposes": 5349, "leverage reasoning capabilities large": 91653, "frozen large language model": 61666, "language models trained massive": 86307, "language model llm facilitate": 83743, "task experimental results datasets": 161377, "integrated development environments ides": 78523, "language models llms wide": 85647, "models llms wide range": 108032, "llms wide range tasks": 97003, "domain extensive experiments conducted": 44161, "availability large language models": 15056, "existing plagiarism detection systems": 53521, "chat large language models": 22541, "change way people engage": 22357, "language models reasoning abilities": 86039, "play central role human": 123439, "recommendation leveraging large language": 138210, "language models llms recommendation": 85472, "recently garnered considerable attention": 137895, "empirical results realworld datasets": 47736, "results realworld datasets validate": 143729, "realworld datasets validate effectiveness": 136438, "datasets validate effectiveness proposed": 37188, "visionlanguage models current large": 177043, "models current large visionlanguage": 105833, "current large visionlanguage models": 34152, "remain vulnerable adversarial attacks": 139955, "reducing attack success rate": 138545, "exhibit limitations ability incorporate": 53071, "application machine learning models": 10348, "large language models revolutionised": 88708, "machine learning large language": 98036, "preliminary study using large": 126149, "work propose new method": 179209, "model size training time": 104614, "models rapid evolution large": 108786, "language models llms epitomized": 85087, "attention heads transformer models": 13895, "existing llm serving systems": 53417, "release large language models": 139477, "large language models write": 88870, "large language model robust": 87477, "ii large language models": 72100, "models llms recently garnered": 107808, "llms recently garnered significant": 96344, "advent chatgpt large language": 6166, "models llms demonstrated considerable": 107261, "large language models spatial": 88757, "analysis multimodal large language": 9024, "conducted extensive experiments validate": 29251, "models empirical study despite": 106093, "results demonstrate proposed framework": 143328, "demonstrate proposed framework achieves": 38503, "gained attention recent years": 62456, "address issues paper introduces": 5287, "large language model embeddings": 87338, "affordances large language models": 6355, "ai machine learning ml": 7076, "chatgpt serve viable alternative": 23302, "task offers valuable insights": 161582, "vulnerabilities large language models": 177620, "large language model alignment": 87305, "models llms hold significant": 107529, "llms hold significant promise": 95508, "augmented generation rag emerges": 14349, "generation rag emerges promising": 65005, "processing tasks question answering": 129328, "models llms shown powerful": 107885, "assistant large language models": 13394, "convolutional recurrent neural networks": 32047, "facilitates efficient llm inference": 56684, "transfer learning pretrained language models": 168958, "various natural language processing tasks": 176055, "language models large language models": 84767, "models large language models produce": 106897, "bert devlin et al 2019": 17526, "nlp tasks including natural language": 113855, "tasks including natural language inference": 162568, "natural language inference question answering": 111638, "gpt radford et al 2018": 66484, "transformer based large language models": 169104, "natural language understanding nlu tasks": 111909, "largescale pretrained language models bert": 89379, "pretrained language models bert gpt2": 126882, "despite simplicity approach experimental results": 40213, "recent work demonstrated substantial gains": 137723, "pretrained transformerbased language models bert": 127212, "deep learning natural language processing": 37769, "natural language processing deep learning": 111717, "wide range natural language processing": 178293, "measuring massive multitask language understanding": 99954, "language models gpt3 brown et": 84610, "models gpt3 brown et al": 106530, "gpt3 brown et al 2020": 66658, "large scale pretrained language models": 89051, "achieved great success various natural": 3821, "great success various natural language": 67744, "success various natural language understanding": 158313, "various natural language understanding tasks": 176061, "sentiment analysis natural language inference": 148625, "range natural language understanding nlu": 135661, "natural language understanding nlu generation": 111907, "language understanding nlu generation nlg": 86839, "proposed model achieves stateoftheart performance": 132391, "language model pretrained language models": 83847, "pretrained language models plms proven": 126958, "research natural language processing nlp": 141919, "making pretrained language models better": 98796, "range nlp tasks including classification": 135667, "leverage large pretrained language models": 91623, "leveraging commonsense knowledge large language": 91825, "commonsense knowledge large language model": 26274, "performance wide range nlp tasks": 122302, "effective natural language processing tasks": 45829, "text based visual textual inputs": 164859, "visual question answering referring expression": 177274, "question answering referring expression comprehension": 134798, "progress natural language processing nlp": 129996, "large pretrained language models contain": 88998, "large models like bert gpt3": 88927, "communication major bottleneck especially commodity": 26391, "major bottleneck especially commodity systems": 98412, "large pretrained language models plms": 89005, "large language models shown promising": 88735, "language models shown promising results": 86157, "despite success conventional supervised learning": 40222, "natural language processing machine learning": 111741, "language model large language models": 83711, "large language models led stateoftheart": 87948, "language models led stateoftheart accuracies": 84786, "models led stateoftheart accuracies range": 106950, "led stateoftheart accuracies range tasks": 91250, "largescale pretrained language models plms": 89382, "pretrained language models plms new": 126955, "language models plms new paradigm": 85906, "new paradigm natural language processing": 113321, "paradigm natural language processing nlp": 119490, "extracted pretrained large language model": 56204, "pretrained language models plms knowledge": 126953, "large language modeling dialogue tasks": 87519, "twin delayed deep deterministic policy": 170221, "delayed deep deterministic policy gradient": 38034, "deep deterministic policy gradient algorithm": 37715, "models natural language processing nlp": 108270, "natural language processing nlp led": 111765, "datasets demonstrate proposed approach outperforms": 36774, "demonstrate proposed approach outperforms stateoftheart": 38500, "size pretrained language models plms": 152055, "todays large language models llms": 166678, "knowledge enhanced pretraining language understanding": 81945, "enhanced pretraining language understanding generation": 49359, "pretraining language understanding generation pretrained": 127359, "models achieved stateoftheart results various": 105252, "achieved stateoftheart results various natural": 3910, "stateoftheart results various natural language": 155341, "results various natural language processing": 143920, "various natural language processing nlp": 176054, "natural language processing nlp tasks": 111783, "language processing nlp tasks recent": 86590, "gpt3 shown scaling pretrained language": 66757, "shown scaling pretrained language models": 150375, "gpt3 model 175 billion parameters": 66725, "unified framework named ernie 30": 171719, "pretraining largescale knowledge enhanced models": 127374, "natural language understanding generation tasks": 111903, "trained model 10 billion parameters": 168009, "large language models achieve stateoftheart": 87537, "language models achieve stateoftheart performance": 84063, "adaptable wide range downstream tasks": 4597, "speech recognition language models lms": 154452, "language models lms pretrained massive": 85685, "bidirectional encoder representations transformers bert": 18348, "encoder representations transformers bert generative": 48441, "natural language processing tasks paper": 111824, "improve performance pretrained language models": 73568, "natural language processing nlp recently": 111778, "instruction tuning finetuning language models": 78092, "tasks natural language processing nlp": 162842, "models ability large language models": 105184, "similarity measures cosine similarity euclidean": 151363, "measures cosine similarity euclidean distance": 99922, "language models large pretrained language": 84770, "models large pretrained language models": 106909, "visionlanguage models pretrained visionlanguage models": 177055, "large pretrained language models shown": 89006, "chaining large language model prompts": 21480, "prompts large language models llms": 131353, "large language models llms demonstrated": 88091, "language models llms demonstrated impressive": 85017, "models llms demonstrated impressive potential": 107276, "language models generative pretrained transformer": 84593, "success field natural language processing": 158241, "fewshot learning natural language processing": 57974, "learning natural language processing nlp": 90757, "pretrained language models plms bert": 126945, "extracted large language models llms": 56194, "pretrained language models downstream tasks": 126894, "large language models recently shown": 88684, "pretraining radford et al 2019": 127422, "model raffel et al 2020": 104411, "strong zeroshot performance standard datasets": 156460, "language models like gpt3 t5": 84801, "largescale pretrained language models shown": 89384, "achieve stateoftheart performance natural language": 3758, "stateoftheart performance natural language processing": 155283, "performance natural language processing nlp": 121836, "modern natural language processing nlp": 109826, "pretrained language models plms achieve": 126943, "generative pretrained transformer gpt proposed": 65550, "enhance autoregressive language models conditioning": 49159, "visual question answering imagetext retrieval": 177269, "large pretrained language models lms": 89004, "make code models publicly available": 98505, "significant progress natural language processing": 150842, "achieve strong results incontext learning": 3767, "language models powered deep learning": 85929, "posits large language models llms": 124327, "learning methods natural language processing": 90684, "pretrained language models artificial intelligence": 126878, "language models artificial intelligence ai": 84135, "prompt learning pretrained language models": 130583, "modeling capabilities large language models": 104977, "extraction event extraction knowledge graph": 56296, "various natural language processing domains": 176053, "promptbased learning large language models": 130779, "capabilities large pretrained language models": 20000, "pretrained language models lms demonstrated": 126927, "cognitive biases large language models": 25445, "frozen pretrained language models plms": 61684, "work leverage large language models": 179100, "fewshot named entity recognition ner": 58001, "neural architecture search nas algorithm": 112829, "frozen pretrained language model plm": 61682, "natural language generation nlg tasks": 111620, "natural language processing nlp large": 111763, "large language models zeroshot setting": 88875, "achieves significant performance gains compared": 4075, "models trained large text corpora": 109450, "language vision domains learning useful": 86889, "vision domains learning useful representations": 176907, "image captions large language models": 72197, "shown achieve remarkable performance variety": 150210, "achieve remarkable performance variety natural": 3724, "remarkable performance variety natural language": 140243, "performance variety natural language tasks": 122244, "pathways language model palm trained": 120457, "pretrained language models lms shown": 126928, "language models lms shown memorize": 85691, "language generation nlg tasks recent": 83372, "recent advances natural language processing": 137420, "despite success large language models": 40226, "evaluating capability large language models": 51269, "centers disease control prevention cdc": 21334, "automated natural language generation metrics": 14581, "natural language processing computer vision": 111714, "text generation pretrained language models": 165168, "generation pretrained language models plms": 64947, "pretrained language models plms remarkable": 126959, "language models plms remarkable progress": 85912, "future research code data available": 62321, "objectives masked language modeling mlm": 115256, "extractive question answering extractive question": 56386, "question answering extractive question answering": 134715, "pretrained language models plms existing": 126950, "demonstrate method consistently outperforms stateoftheart": 38424, "challenge natural language processing nlp": 21690, "natural language processing nlp systems": 111781, "power pretrained large language models": 125214, "pretrained large language models llms": 127001, "large language models llms zeroshot": 88484, "large language models llms benchmark": 88032, "pretrained language models plms downstream": 126947, "power large language models llms": 125192, "large language models llms nlp": 88297, "advances natural language processing nlp": 6043, "based pretrained large language models": 16024, "based pretrained language models bert": 16020, "pretrained language models bert gpt": 126881, "large language models able perform": 87529, "bert roberta gpt2 dozens datasets": 17597, "natural language generation nlg models": 111618, "language models recent works shown": 86057, "multitask learning large language models": 111221, "large language models llms widely": 88477, "language models llms widely used": 85652, "subfields natural language processing nlp": 157813, "suggests promising directions future work": 158674, "natural language processing nlp benchmarks": 111752, "reinforcement learning large language models": 139073, "multiple tasks demonstrate method achieves": 111063, "general language understanding evaluation glue": 62980, "language understanding evaluation glue benchmark": 86816, "recent work shown language models": 137742, "pretrained programming language models pretrained": 127145, "programming language models pretrained programming": 129834, "language models pretrained programming language": 85948, "natural language processing nlp models": 111769, "know pretrained language models plms": 81714, "pretrained language models plms use": 126962, "language models demonstrate quantitative improvement": 84341, "models demonstrate quantitative improvement new": 105893, "demonstrate quantitative improvement new qualitative": 38518, "quantitative improvement new qualitative capabilities": 134354, "emergent abilities large language models": 47460, "wide range downstream tasks paper": 178281, "achieves competitive performance wide range": 3998, "model pretraining finetuning downstream tasks": 104332, "natural language understanding nlu natural": 111908, "language understanding nlu natural language": 86841, "understanding nlu natural language generation": 171379, "nlu natural language generation nlg": 113945, "large language models incontext learning": 87892, "large language models lms achieve": 88487, "state art large language models": 154984, "recent advances transformerbased large language": 137430, "transformerbased large language models llms": 169256, "large language models llms led": 88266, "language models llms led significant": 85303, "tasks like visual question answering": 162731, "codex large language model llm": 25349, "large language model llm trained": 87432, "large language models based transformers": 87599, "training large language models llms": 168528, "large language models llms possible": 88328, "prompting large language model generate": 130978, "large language models training data": 88819, "pretrained large language model llm": 126998, "large language model llm perform": 87419, "harness power large language models": 68799, "large language models llms openai": 88308, "large language models natural language": 88544, "language models natural language understanding": 85787, "language understanding large language models": 86833, "understanding large language models llms": 171326, "large language models llms achieved": 87990, "language models llms achieved stateoftheart": 84856, "models llms achieved stateoftheart performance": 107081, "recent advancements large language models": 137363, "advancements large language models llms": 5913, "generative pretrained language models plms": 65540, "prompting large language models llms": 130982, "large language models llms language": 88260, "language models llms language understanding": 85289, "execution dialog history edh trajectory": 52945, "reasoning using large language models": 137225, "aligning language models human values": 8093, "benefit using large language models": 17452, "using large language models llms": 174385, "large language models llms 100": 87984, "language models llms 100 billion": 84841, "models llms 100 billion parameters": 107055, "finetuning methods large language models": 59385, "remarkable abilities large language models": 140118, "abilities large language models large": 1946, "large language models large language": 87937, "models large language models perform": 106894, "language models llms offer potential": 85361, "makes use large language models": 98698, "especially natural language processing nlp": 50519, "used natural language processing nlp": 173157, "models generative pretrained transformer gpt": 106487, "generation natural language generation nlg": 64876, "generation large language models llms": 64778, "large language models llms recent": 88373, "language models llms recent years": 85460, "leverages large language models llm": 91745, "models large language models llms": 106892, "large language models llms gpt3": 88195, "large pretrained language models gpt3": 89001, "transfer learning large language models": 168945, "learning large language models llms": 90628, "large language models llms emerged": 88121, "language models llms emerged powerful": 85066, "use large language models llms": 172709, "large language models llms solve": 88413, "reasoning abilities large language models": 136627, "recent success large language models": 137683, "large language models text generation": 88801, "models llms demonstrated impressive capabilities": 107274, "large language models llms shown": 88405, "language models llms shown exceptional": 85518, "generation prompting large language models": 64975, "large language models case study": 87623, "offtheshelf pretrained language models lms": 115925, "transformers large language models llms": 169324, "large language models llms saturated": 88396, "shown large language models llms": 150301, "large language models llms generally": 88187, "incontext learning large language models": 74940, "large language models llm shown": 87979, "natural language generation nlg systems": 111619, "large language models llms contrast": 88074, "large language models llms impressive": 88228, "modules natural language understanding nlu": 109997, "language model pretrained large scale": 83849, "knowledge embedded large language models": 81917, "large language models llms help": 88209, "language models llms achieved excellent": 84850, "questions large language models llms": 135181, "large language models llms grow": 88202, "models leveraging large language models": 106961, "large language models multiple choice": 88541, "question answering large language models": 134750, "answering large language models llms": 9892, "large language models llms like": 88271, "language models llms like gpt3": 85314, "models large language models llm": 106891, "large language models llm trained": 87981, "popularity large language models llms": 124094, "large language models llms realworld": 88369, "large pretrained transformerbased language models": 89018, "pretrained transformerbased language models like": 127213, "transformerbased language models like bert": 169247, "large language models zeroshot fewshot": 88874, "models large language models increasingly": 106890, "language models llms shown impressive": 85521, "models llms shown impressive results": 107879, "pretrained language models shown remarkable": 126976, "language models shown remarkable performance": 86159, "large language models llms general": 88186, "success large language models llm": 158258, "natural language instructions large language": 111653, "language instructions large language models": 83452, "instructions large language models llms": 78293, "large language models llms displayed": 88105, "language models llms displayed impressive": 85041, "large language models llms capable": 88043, "language models llms capable generating": 84928, "stateoftheart large language models gpt4": 155175, "model large language models llms": 103930, "memory large language models llms": 100417, "breakthroughs natural language processing nlp": 19029, "lexical equality single multiword answers": 91983, "large language models trained code": 88814, "pretrained language models plms shown": 126960, "use large transformerbased language models": 172719, "language processing tasks language models": 86636, "language models knowledge graph reasoning": 84749, "entities pretrained language models lms": 49866, "external knowledge sources knowledge graphs": 56077, "factual consistency large language models": 56860, "large language models news summarization": 88550, "language models news summarization large": 85796, "models news summarization large language": 108295, "news summarization large language models": 113588, "summarization large language models llms": 158842, "large language models llms proven": 88357, "language models llms proven effective": 85440, "improve performance various nlp tasks": 73577, "knowledgebased visual question answering vqa": 82539, "visual question answering vqa involves": 177278, "novel random layerwise token dropping": 114664, "audio samples dataset publicly available": 14190, "ability large language models lms": 2246, "large language models llms exhibited": 88151, "language models llms exhibited remarkable": 85112, "models llms exhibited remarkable capabilities": 107393, "advances natural language processing field": 6041, "using large language model llm": 174367, "code generation generate executable code": 24890, "generation large pretrained language models": 64782, "capabilities large language models lms": 19994, "large language models lms perform": 88489, "analysis large language models llms": 8998, "large language models llms automated": 88025, "named entity recognition relation extraction": 111411, "leverages pretrained large language model": 91770, "large language model llm gpt3": 87409, "models large language models demonstrated": 106884, "language models demonstrated outstanding performance": 84352, "wide range tasks question answering": 178320, "remarkable performance wide range tasks": 140258, "pretrained language models nlp tasks": 126935, "large language model llm performance": 87420, "reasoning capabilities large language models": 136706, "performance arithmetic commonsense symbolic reasoning": 121166, "opendomain qa opendomain question answering": 116465, "recently large language models llms": 137927, "large language models like gpt35": 87957, "language models perform new tasks": 85874, "knowledge base question answering kbqa": 81778, "language models solve complex reasoning": 86194, "solve complex reasoning tasks stepbystep": 153107, "reasoning fundamental aspect human intelligence": 136875, "recent years large language models": 137784, "years large language models llms": 179910, "large language models llms significant": 88407, "language models llms significant progress": 85539, "models llms significant progress natural": 107913, "llms significant progress natural language": 96592, "provides comprehensive overview current state": 133123, "large language models lms struggle": 88491, "natural language generation pretrained language": 111623, "language generation pretrained language models": 83377, "success large language model llm": 158255, "large language model llm reasoning": 87427, "large language models llms trained": 88446, "language models llms trained text": 85603, "explore use large language models": 55314, "large language models llms ai": 88004, "finetuning large pretrained language models": 59341, "potential using large language models": 125050, "large language models like chatgpt": 87954, "language models like chatgpt improve": 84797, "success large language models llms": 158259, "large language models llms various": 88473, "llms various natural language processing": 96957, "approach does require additional training": 11134, "large pretrained vision language models": 89022, "large language models llms making": 88282, "models including large language models": 106719, "impacts large language models llms": 72764, "language models llms like chatgpt": 85311, "dataset human chatgpt comparison corpus": 36344, "human chatgpt comparison corpus hc3": 70636, "dataset code models publicly available": 36156, "samples large language models llms": 146036, "language models recent advancements large": 86044, "models recent advancements large language": 108822, "large language models llms drawn": 88112, "large language model llm generate": 87406, "large language models visionlanguage models": 88854, "advancements natural language processing nlp": 5938, "understanding effectiveness large language models": 171206, "performance various natural language processing": 122267, "large language models llms used": 88463, "frozen image encoders large language": 61661, "image encoders large language models": 72243, "offtheshelf frozen pretrained image encoders": 115907, "frozen pretrained image encoders frozen": 61679, "pretrained image encoders frozen large": 126845, "image encoders frozen large language": 72240, "encoders frozen large language models": 48483, "ability large language models llms": 2245, "large language models llms perform": 88319, "language models llms perform complex": 85386, "models llms perform complex reasoning": 107715, "practical applications large language models": 125391, "applications large language models llms": 10585, "large language models llms significantly": 88408, "language models llms significantly impacted": 85544, "visual commonsense reasoning vcr task": 177136, "recently multimodal large language models": 137943, "multimodal large language models mllms": 110695, "recent work shown large language": 137744, "work shown large language models": 179302, "large language models llms incredibly": 88240, "natural language nl questions structured": 111682, "usually suffer significant performance degradation": 174925, "suffer significant performance degradation huge": 158454, "abstract large language models llms": 2646, "language models llms demonstrated strong": 85023, "large language models achieved impressive": 87540, "language models achieved impressive performance": 84068, "models achieved impressive performance various": 105241, "achieved impressive performance various natural": 3831, "impressive performance various natural language": 73348, "large language models shown impressive": 88734, "language models shown impressive capabilities": 86153, "pretrained language models bert roberta": 126883, "large language models llms openais": 88309, "language models llms openais codex": 85370, "models llms openais codex demonstrated": 107695, "large language models predict human": 88616, "large language models recent years": 88678, "uses large language model generate": 173873, "pretrained language models pretrained language": 126964, "language models pretrained language models": 85944, "large language models answer set": 87569, "language models answer set programming": 84123, "language models llms gpt3 chatgpt": 85191, "language models exploit artifacts benchmarks": 84499, "language models natural language processing": 85786, "natural language processing nlp natural": 111771, "language processing nlp natural language": 86568, "language models plms shown promising": 85915, "experimental results diverse set tasks": 54010, "learning large language models code": 90625, "adversarial testing large language models": 6234, "large language models llms contain": 88070, "settings demonstrate effectiveness approach code": 149551, "spurred advancements scale large language": 154625, "advancements scale large language models": 5963, "scale large language models llms": 146305, "language models llms demonstrated ability": 85010, "models llms demonstrated ability perform": 107259, "llms demonstrated ability perform variety": 94834, "demonstrated ability perform variety natural": 38619, "ability perform variety natural language": 2315, "perform variety natural language processing": 121082, "variety natural language processing nlp": 175733, "chatgpt drawn great deal attention": 22867, "attention natural language processing nlp": 13944, "natural language processing nlp community": 111754, "representative task categories extensive empirical": 140944, "largescale pretrained language models lms": 89381, "large language models llms able": 87987, "tracin pruthi et al 2020": 167511, "language models robust training methods": 86119, "large transformerbased pretrained language models": 89091, "pretrained language models like bert": 126920, "computer vision natural language processing": 28506, "recently chatgpt attracted great attention": 137844, "generative artificial intelligence ai models": 65382, "work explore large language models": 178954, "visual question answering vqa challenging": 177277, "challenging task natural language processing": 22290, "task natural language processing nlp": 161563, "natural language processing nlp computer": 111755, "language processing nlp computer vision": 86549, "processing nlp computer vision cv": 129216, "pretrained language models plms t5": 126961, "generative large language models llms": 65452, "large language models llms introduce": 88250, "language models external knowledge automated": 84513, "feedback large language models llms": 57724, "large language models llms chatgpt": 88051, "language models llms chatgpt able": 84938, "models llms chatgpt able generate": 107170, "llms chatgpt able generate humanlike": 94569, "chatgpt able generate humanlike fluent": 22667, "able generate humanlike fluent responses": 2515, "inspired recent success large language": 77763, "success large language models especially": 158257, "generative pretrained language models gplms": 65539, "based generative pretrained language models": 15839, "large language models continue scale": 87674, "various large language models llms": 176003, "large language models llms inference": 88243, "natural language processing nlp tools": 111787, "limitations adopting large language models": 92535, "adopting large language models llms": 5616, "large language models llms study": 88427, "prompting large language model llm": 130979, "demonstrated impressive performance various natural": 38706, "natural language inference sentiment analysis": 111643, "data generation large language models": 35113, "large language models llms effectively": 88118, "design large language models llms": 39674, "large language models llms taken": 88437, "programming languages large language models": 129842, "languages large language models llms": 87043, "large language models llms enabling": 88131, "experimental results demonstrate method achieves": 53991, "recent advances large language models": 137410, "advances large language models llms": 6027, "large pretrained language models bert": 88996, "large neural language models trained": 88956, "chainofthought cot prompting enables large": 21493, "cot prompting enables large language": 32888, "prompting enables large language models": 130915, "enables large language models llms": 48204, "hyperparameter optimization large language model": 71595, "inference large language models llms": 76042, "large language models llms sparked": 88414, "pretrained models natural language processing": 127095, "natural language processing language models": 111734, "language models recently large language": 86065, "models recently large language models": 108856, "large language models llms methods": 88286, "critical cooling rates metallic glasses": 33477, "boom large language models llms": 18812, "generating natural language descriptions images": 64280, "contrastive languageimage pretraining clip model": 31359, "code generation large language models": 24897, "generation large language models large": 64776, "large language models demonstrated impressive": 87703, "language models demonstrated impressive ability": 84348, "powerful large language model llm": 125297, "language use large language models": 86870, "generative pretrained transformer gpt models": 65549, "potential uses exercise generation code": 125044, "uses exercise generation code explanation": 173851, "exercise generation code explanation misuses": 53006, "generation code explanation misuses programming": 64497, "large language models llms represent": 88383, "large language models llms remarkable": 88379, "language models llms remarkable strides": 85478, "large language models socratic method": 88748, "large language models generative large": 87841, "language models generative large language": 84591, "models generative large language models": 106483, "fluent responses wide variety user": 59913, "natural language processing large language": 111736, "language processing large language models": 86527, "processing large language models llms": 129181, "large language models llms rely": 88378, "performance range natural language processing": 121985, "range natural language processing tasks": 135657, "embedding matrix multiplication gelu softmax": 47178, "matrix multiplication gelu softmax layer": 99643, "multiplication gelu softmax layer normalization": 111115, "gelu softmax layer normalization intermediate": 62861, "softmax layer normalization intermediate results": 152754, "layer normalization intermediate results case": 89641, "pass assessments higher education programming": 120315, "assessments higher education programming courses": 13290, "pass assessments introductory intermediate python": 120318, "assessments introductory intermediate python programming": 13295, "introductory intermediate python programming courses": 80266, "intermediate python programming courses postsecondary": 79521, "python programming courses postsecondary level": 133848, "assessments ranging simple multiplechoice questions": 13305, "ranging simple multiplechoice questions code": 135760, "simple multiplechoice questions code involved": 151500, "multiplechoice questions code involved complex": 111101, "questions code involved complex programming": 135066, "code involved complex programming projects": 24959, "involved complex programming projects code": 80703, "complex programming projects code bases": 27532, "programming projects code bases distributed": 129870, "projects code bases distributed multiple": 130110, "code bases distributed multiple files": 24691, "bases distributed multiple files 599": 16394, "distributed multiple files 599 exercises": 43331, "multiple files 599 exercises overall": 110917, "extensive experiments ablation studies demonstrate": 55799, "attention exceptional natural language processing": 13876, "exceptional natural language processing capabilities": 52823, "performance natural language understanding nlu": 121840, "generation survey large language models": 65124, "survey large language models llms": 159649, "large language models llms popular": 88325, "computer vision cv natural language": 28498, "vision cv natural language processing": 176900, "cv natural language processing nlp": 34455, "language processing nlp tasks including": 86585, "impressive performance various downstream tasks": 73346, "conversational large language models llms": 31886, "large language models llms open": 88307, "language models gained significant attention": 84567, "shown impressive performance natural language": 150278, "impressive performance natural language processing": 73335, "performance natural language processing tasks": 121837, "experiments gpt4 artificial intelligence ai": 54304, "refining large language models llms": 138783, "large language models llms exhibit": 88150, "language models llms exhibit remarkable": 85108, "models llms exhibit remarkable capabilities": 107387, "chatgpt large language model llm": 23089, "demonstrated remarkable performance numerous natural": 38775, "remarkable performance numerous natural language": 140237, "performance numerous natural language tasks": 121858, "reinforcement learning human feedback rlhf": 139068, "potential large language models llms": 124810, "large language models llms reason": 88370, "experimental results large language models": 54033, "large language models llm exhibit": 87971, "knowledge graph question answering kgqa": 82067, "text generated large language models": 165116, "models recently attracted significant attention": 108851, "natural language processing nlp increasingly": 111760, "large language models typically trained": 88828, "method significantly outperforms strong baselines": 101107, "language models pretrained large language": 85946, "models pretrained large language models": 108619, "pretrained large language models recently": 127005, "large language models recently achieved": 88680, "language models llms gpt3 demonstrated": 85193, "foundation models foundation models chatgpt": 60766, "finetuned publicly available code github": 59095, "powered large language models llms": 125244, "large language models llms gpt35": 88196, "language models llms gpt35 gpt4": 85196, "training language models language feedback": 168520, "text factually incorrect summaries recent": 165080, "factually incorrect summaries recent work": 56935, "incorrect summaries recent work approaches": 75177, "outputs comparison feedback conveys limited": 118037, "comparison feedback conveys limited information": 27043, "feedback conveys limited information human": 57658, "conveys limited information human preferences": 32025, "imitation learning language feedback ilf": 72584, "output feedback generate refinements second": 117930, "language model maximize likelihood chosen": 83796, "model maximize likelihood chosen refinement": 104071, "maximize likelihood chosen refinement given": 99676, "likelihood chosen refinement given input": 92437, "language models accurately incorporate feedback": 84057, "making large language models better": 98769, "documents large language models llms": 43921, "large language models llms leveraged": 88269, "modern large language models llms": 109809, "humans large language models llms": 71422, "large language models llms generate": 88188, "language models generative pretrained transformers": 84594, "models generative pretrained transformers gpt": 106489, "results natural language processing nlp": 143627, "using stateoftheart large language model": 174755, "stateoftheart large language model llm": 155173, "large language model llm finetuned": 87403, "exceptional performance various natural language": 52833, "generalpurpose large language models llms": 63354, "large language models llms training": 88447, "fields computer vision natural language": 58268, "natural language inference natural language": 111635, "logic large language models llms": 97333, "large language models llms set": 88402, "analysis era large language models": 8909, "large language models llms gpt4": 88198, "scaling large language models llms": 146410, "large language models llms develop": 88098, "large language models multimodal models": 88539, "large language models llms gained": 88182, "language models llms gained widespread": 85161, "models llms gained widespread popularity": 107451, "large language models revolutionized field": 88711, "large language models llms class": 88053, "range natural language processing nlp": 135656, "large language models llms fundamental": 88180, "cohen lee song stoc 2019": 25500, "lee song stoc 2019 brand": 91267, "song stoc 2019 brand soda": 153281, "stoc 2019 brand soda 2020": 155817, "language models llms perform zeroshot": 85388, "large language models neural network": 88547, "contemporary large language models llms": 30417, "large language models llms make": 88280, "train large language models llms": 167784, "large language models llms paper": 88315, "systems recently large language models": 160576, "demonstrated impressive capabilities wide range": 38698, "impressive capabilities wide range tasks": 73285, "milestone large language models llms": 102212, "large language models llms billions": 88036, "language models llms billions parameters": 84918, "reading comprehension natural language inference": 136190, "comprehension natural language inference tasks": 27924, "despite impressive capabilities large language": 40134, "impressive capabilities large language models": 73267, "large language models llms great": 88200, "largescale language models like chatgpt": 89340, "agi large language models llms": 6802, "large language models llms promising": 88348, "leveraging large language models llms": 91887, "large language models llms gpt": 88194, "language models llms gpt family": 85188, "chatbots based large language models": 22600, "based large language models llm": 15910, "impact large language models llm": 72678, "large language models llm like": 87975, "language models llm like openais": 84829, "models llm like openais chatgpt": 107040, "recent breakthroughs large language models": 137454, "breakthroughs large language models llms": 19025, "providing valuable insights future directions": 133401, "applications various domains natural language": 10723, "various domains natural language processing": 175906, "foundation models geospatial artificial intelligence": 60770, "models geospatial artificial intelligence geoai": 106499, "integrates large language models llms": 78563, "large language models llms key": 88256, "large language models llms highlighting": 88215, "instruction following large language model": 78016, "research field natural language processing": 141792, "generalization capabilities various downstream tasks": 63149, "large language models llms recently": 88374, "language models llms recently gained": 85468, "facilitated use large language models": 56675, "information large language models llms": 76551, "large language models llms successfully": 88430, "language models llms successfully applied": 85580, "improves reasoning large language models": 74070, "large language models performance large": 88600, "language models performance large language": 85880, "models performance large language models": 108488, "performance large language models llms": 121720, "large language models llms reasoning": 88371, "reasoning large language models large": 136955, "language models llms achieved remarkable": 84854, "models llms achieved remarkable progress": 107076, "solving various natural language processing": 153257, "machine learning natural language processing": 98064, "large language models llms revolutionizing": 88395, "visual question answering vqa tasks": 177280, "generative large language model llm": 65449, "large language model llm design": 87393, "large language models llm chatgpt": 87965, "artificial intelligence ai chatbots chatgpt": 12666, "large language models chatgpt demonstrated": 87632, "sophisticated large language models llm": 153310, "using large pretrained language models": 174399, "large pretrained language models large": 89002, "pretrained language models large pretrained": 126917, "large pretrained language models llms": 89003, "pretrained language models llms shown": 126924, "language models llms shown significant": 85531, "integration large language model technologies": 78669, "architecture designing foundation model based": 12148, "designing foundation model based systems": 40002, "combined large language models llms": 25907, "achieved encouraging results complex reasoning": 3804, "encouraging results complex reasoning tasks": 48628, "language models chatgpt capable generating": 84233, "capability large language models llms": 20327, "gpt4 large language model llm": 67058, "recent development large language models": 137468, "development large language models llms": 41152, "large language models llms demonstrate": 88090, "language models llms demonstrate emergent": 85003, "improve model performance generalization unseen": 73522, "model performance generalization unseen tasks": 104246, "large language models rise large": 88714, "language models rise large language": 86114, "models rise large language models": 109004, "rise large language models llms": 144901, "number input output tokens processed": 114883, "large language models paper presents": 88579, "large language models able learn": 87528, "softmax regression large language models": 152761, "regression large language models llms": 138959, "large language models llms known": 88258, "minx langle expax bf 1n": 102445, "langle expax bf 1n rangle1": 83119, "expax bf 1n rangle1 expax": 53732, "framework large language models llms": 61261, "tasks named entity recognition ner": 162834, "named entity recognition ner partofspeech": 111406, "entity recognition ner partofspeech pos": 49920, "recognition ner partofspeech pos tagging": 138106, "large language models llms downstream": 88110, "downstream natural language processing nlp": 44738, "shown exceptional performance various tasks": 150236, "demonstrated exceptional performance various natural": 38661, "various natural language generation tasks": 176050, "problems large language models llms": 128550, "language models llms shown great": 85520, "models llms shown great potential": 107871, "increasingly powerful large language models": 75430, "general natural language processing tasks": 63006, "unleashing power large language models": 171987, "framework leverages stateoftheart large language": 61286, "leverages stateoftheart large language models": 91784, "automated circuit discovery mechanistic interpretability": 14526, "parallel large language models llms": 119572, "large language models llms increasingly": 88239, "language models llms increasingly applied": 85261, "domain adaptation large language models": 44070, "adapt large language models llms": 4534, "large language models llms task": 88438, "pretrained language models plms achieved": 126944, "language models plms achieved remarkable": 85892, "models plms achieved remarkable success": 108524, "achieved remarkable success nlp tasks": 3879, "advanced field natural language processing": 5733, "field natural language processing nlp": 58217, "visual word sense disambiguation vwsd": 177342, "paper presents thorough empirical study": 119191, "conversations using large language models": 31972, "using large language models paper": 174387, "incontext learning icl large language": 74923, "large language model llm achieve": 87383, "deploying large language models llms": 39244, "large language models llms challenging": 88049, "require large amounts training data": 141138, "leverage power large language models": 91640, "large language models finetuning downstream": 87816, "apis large language models llms": 10192, "large language models llms power": 88331, "natural language processing models extremely": 111745, "large language models llms specifically": 88417, "language models llms specifically openais": 85564, "large language models demonstrate remarkable": 87699, "natural language processing generative pretrained": 111728, "language processing generative pretrained transformer": 86517, "advancements field natural language processing": 5892, "natural language processing nlp research": 111780, "data large language models llms": 35292, "language models llms achieved unprecedented": 84858, "language models llms recently demonstrated": 85464, "models llms recently demonstrated exceptional": 107798, "language processing nlp tasks shown": 86591, "method achieves new stateoftheart performance": 100641, "science large language models llms": 146885, "instructiontuned large language models llms": 78394, "abilities large language models llms": 1948, "large language models llms unlike": 88459, "large language models unlocked strong": 88838, "incorporates large language models llms": 75064, "recent advances artificial intelligence ai": 137381, "instruction tuning large language models": 78110, "tuning large language models llms": 170045, "language models llms demonstrated significant": 85022, "multimodal incontext instruction tuning mimicit": 110655, "incontext instruction tuning mimicit dataset": 74859, "chatgpt large language model developed": 23088, "large language model developed openai": 87335, "emergence large language models llms": 47431, "language models llms demonstrated remarkable": 85021, "models llms demonstrated remarkable language": 107286, "demonstrates impressive multimodel chat abilities": 38857, "impressive multimodel chat abilities exhibiting": 73316, "multimodel chat abilities exhibiting behaviors": 110809, "chat abilities exhibiting behaviors multimodal": 22520, "abilities exhibiting behaviors multimodal gpt4": 1904, "exhibiting behaviors multimodal gpt4 unseen": 53167, "behaviors multimodal gpt4 unseen imagesinstructions": 16719, "multimodal gpt4 unseen imagesinstructions yields": 110648, "relative score compared gpt4 synthetic": 139386, "score compared gpt4 synthetic multimodal": 147053, "compared gpt4 synthetic multimodal instructionfollowing": 26824, "gpt4 synthetic multimodal instructionfollowing dataset": 67191, "chainofthought prompting large language models": 21528, "large language models llms achieve": 87989, "language models llms achieve strong": 84848, "models llms achieve strong performance": 107064, "artificial intelligence trained vast amounts": 12777, "vast amounts natural language data": 176318, "amounts natural language data enabling": 8696, "guiding large language models llms": 68277, "language models llms significantly advanced": 85542, "models llms significantly advanced natural": 107918, "llms significantly advanced natural language": 96599, "significantly advanced natural language processing": 150934, "advanced natural language processing nlp": 5785, "natural language processing nlp impressive": 111759, "results demonstrate effectiveness proposed method": 143296, "knowledge distillation large language models": 81885, "large language models llms address": 87996, "approach depending specific use case": 11108, "generative pretrained transformer large language": 65558, "pretrained transformer large language models": 127201, "large language models llms generative": 88192, "language models llms generative pretrained": 85185, "models llms generative pretrained transformer": 107479, "llms generative pretrained transformer gpt": 95400, "number large language models llms": 114897, "large language models llms users": 88465, "models llms shown impressive abilities": 107874, "large language model llm based": 87389, "language model llm based chatbots": 83730, "pretrained language models llms demonstrated": 126923, "fundamental task natural language processing": 61983, "large language models llms pretrained": 88338, "language models llms pretrained massive": 85416, "models llms pretrained massive corpora": 107748, "approach using large language models": 11647, "research large language models llms": 141882, "models trained massive amounts data": 109456, "using pretrained large language models": 174599, "large language models demonstrate method": 87698, "language models like chatgpt recently": 84798, "demonstrated impressive capabilities natural language": 38693, "impressive capabilities natural language understanding": 73272, "capabilities natural language understanding generation": 20074, "large language models llms dominate": 88109, "language models llms demonstrate impressive": 85005, "models llms significantly advanced field": 107917, "llms significantly advanced field natural": 96597, "significantly advanced field natural language": 150930, "information retrieval information retrieval ir": 76721, "large language models llms revolutionized": 88394, "exploring use large language models": 55515, "large language models llms multiple": 88292, "size poses challenges terms computational": 152047, "evaluates performance large language models": 51250, "large language model extensive experiments": 87350, "generative ai large language models": 65331, "focus large language models llms": 60013, "increasing popularity large language models": 75348, "language models llms chatgpt led": 84949, "perspectives large language models llms": 122709, "language models llms shown increasing": 85522, "autoregressive large language models llms": 14996, "large language models despite remarkable": 87713, "language models despite remarkable success": 84370, "largescale language models llms gpt3": 89343, "paper large language models llms": 119066, "large language models llms follow": 88177, "zeroshot reasoning ability large language": 180319, "wide spectrum natural language processing": 178337, "large language models llms brought": 88039, "language models llms brought significant": 84922, "designed natural language processing tasks": 39921, "use large language models automatically": 172707, "large language models automatically generate": 87590, "reinforcement learning rl machine learning": 139105, "large language model llm reliably": 87428, "problem solving large language models": 128407, "large language models language models": 87934, "language models language models increasingly": 84761, "models large language models lms": 106893, "large language models lms shown": 88490, "large language models llms encode": 88132, "abilities multimodal large language models": 1969, "work shown finetuning large language": 179297, "shown finetuning large language models": 150245, "finetuning large language models llms": 59335, "large language models llms largescale": 88262, "tasks large language models llms": 162686, "large language models llms notably": 88299, "parameters large language models llms": 119788, "large language models llms complex": 88062, "large language models llms based": 88030, "capabilities large language models llms": 19993, "large language models llms observe": 88302, "large language model llm gained": 87404, "models llms shown impressive capabilities": 107876, "llms shown impressive capabilities various": 96547, "large language models llms substantially": 88429, "natural language processing demonstrating exceptional": 111720, "llms large language models llms": 95724, "strong language understanding generation capabilities": 156407, "output large language models llms": 117957, "large language models llms garnered": 88185, "language models llms garnered significant": 85166, "models llms garnered significant attention": 107458, "reasoning skills large language models": 137128, "evaluating large language models llms": 51329, "large language models llms introduced": 88251, "vietnamese national high school graduation": 176807, "national high school graduation examination": 111493, "multimodal named entity recognition mner": 110736, "making large language models llms": 98770, "large language models llms powerful": 88332, "powerful multimodal large language models": 125310, "visual question answering image captioning": 177267, "methods use large language models": 101905, "factuality large language models llms": 56914, "large language models llms current": 88082, "models llms exhibited remarkable performance": 107394, "llms exhibited remarkable performance various": 95163, "exhibited remarkable performance various natural": 53153, "remarkable performance various natural language": 140250, "language processing nlp tasks current": 86583, "era large language models recent": 50234, "large language models recent progress": 88675, "recent progress large language models": 137598, "integration large language models llms": 78673, "large language models llms llms": 88277, "language models llms llms exhibit": 85325, "gpt large language models llms": 66443, "language models llms like gpt": 85313, "remarkable progress various natural language": 140279, "emergence generative large language models": 47423, "large language models llms raises": 88366, "using large language models study": 174391, "pipeline large language models llms": 123072, "language models llms revolutionized field": 85498, "paper propose efficient llm inference": 119217, "language models llms chatgpt gpt4": 84947, "models llms chatgpt gpt4 shown": 107184, "shown impressive performance complex reasoning": 150276, "finetuning pretrained language models plms": 59456, "pretraining data large language models": 127297, "models large language models pretrained": 106896, "contrast large language models llms": 31313, "large language models llms emerge": 88120, "reasoning ability large language model": 136643, "external information large language models": 56057, "large language models llms tool": 88442, "summarization using large language models": 158895, "large language models llms potentially": 88330, "using large language model chatgpt": 174366, "existing large language models llms": 53404, "despite impressive performance large language": 40139, "impressive performance large language models": 73332, "systems based large language models": 160264, "based large language models llms": 15911, "demonstrated remarkable capabilities various tasks": 38765, "automated machine learning automl tools": 14566, "utilize large language models chatgpt": 175061, "knowledge large language models large": 82167, "incontext learning capability large language": 74879, "learning capability large language models": 90282, "multihop question answering fact verification": 110424, "capabilities recent large language models": 20147, "recent large language models llms": 137540, "underlying large language model llm": 170847, "models reasoning large language models": 108813, "reasoning large language models llms": 136956, "large language models llms excel": 88147, "large language models llms bring": 88037, "theory mind theory mind tom": 166096, "recent large language models chatgpt": 137538, "data model checkpoints publicly available": 35381, "large language models llms models": 88288, "large language models llms answer": 88011, "language models llms answer questions": 84885, "array large language models llms": 12520, "language models llms shown remarkable": 85530, "large language models llms proficient": 88345, "large language models llms struggle": 88426, "retrievalaugmented large language models large": 144190, "large language models llms play": 88323, "language models llms exhibited impressive": 85111, "models llms demonstrated remarkable capabilities": 107285, "human feedback large language models": 70808, "large language model llm enhance": 87398, "comprehensive evaluation large language models": 28015, "make data code publicly available": 98520, "pretrained large language models lms": 127002, "explore large language models llms": 55235, "large language model llm prompted": 87425, "improve performance large language models": 73556, "language models llms complex reasoning": 84969, "models llms complex reasoning tasks": 107211, "automatic speech recognition asr systems": 14744, "use large language model produce": 172704, "large language model llm answer": 87386, "large language models llms improve": 88229, "large language models llms increasing": 88238, "large language models diffusion models": 87722, "collaboration large language models llms": 25593, "large language models llms diffusion": 88102, "language models llms diffusion models": 85037, "large language models llms produce": 88344, "methods including large language models": 101594, "large language models llms natural": 88293, "language models llms natural language": 85346, "models llms natural language processing": 107667, "llms natural language processing nlp": 95925, "benchmark large language models llms": 17013, "language models llms shown perform": 85524, "pretrained language models plms large": 126954, "language models plms large language": 85904, "models plms large language models": 108538, "plms large language models llms": 123617, "large language models llms additional": 87994, "models llms shown remarkable reasoning": 107897, "llms shown remarkable reasoning capabilities": 96572, "large language models llms gap": 88184, "finetuning strategies pretrained language models": 59566, "strategies pretrained language models plms": 156055, "pretrained language models plms demonstrated": 126946, "language models plms demonstrated remarkable": 85895, "models plms demonstrated remarkable performance": 108528, "large language models llms serving": 88401, "language models llms demonstrated powerful": 85019, "models llms demonstrated powerful capabilities": 107281, "mathematical reasoning large language models": 99594, "models recent large language models": 108832, "large language models recent advances": 88673, "language models recent advances large": 86047, "models recent advances large language": 108826, "large language models llms stimulated": 88421, "method leverages large language models": 100964, "leverages large language models llms": 91746, "large language models llms synthesize": 88435, "instruction learning large language models": 78036, "language models llms significantly improved": 85545, "recent studies shown large language": 137674, "studies shown large language models": 157085, "large language models llms possess": 88327, "artificial intelligence ai machine learning": 12685, "large language models llms particularly": 88317, "large language models llms capture": 88044, "harnessing power large language models": 68838, "power large language models natural": 125193, "supervised finetuning sft reinforcement learning": 159125, "finetuning sft reinforcement learning human": 59536, "sft reinforcement learning human feedback": 149746, "world large language models llms": 179584, "large language models llms hard": 88206, "large language models openais chatgpt": 88564, "conversational question answering large language": 31908, "widespread use large language models": 178480, "language models llms nlp tasks": 85351, "evaluation using large language models": 51921, "reasoning large language models shown": 136958, "natural language processing nlp applications": 111750, "tasks visual question answering image": 163468, "textonly large language models llms": 165666, "large language models llms enhance": 88135, "clear large language models llms": 24275, "finetuned reinforcement learning human feedback": 59100, "limitations reinforcement learning human feedback": 92656, "leveraging advanced natural language processing": 91801, "language models llms trained large": 85601, "large language models generative ai": 87839, "use natural language processing nlp": 172776, "natural language processing nlp techniques": 111784, "chainofthought cot prompting large language": 21495, "cot prompting large language models": 32891, "large language models proven effective": 88648, "numerous natural language processing tasks": 115052, "hallucination large language models llms": 68390, "multimodal large language models recent": 110697, "recent multimodal large language models": 137570, "large language models increasingly integrated": 87896, "use large pretrained language models": 172716, "large pretrained language models downstream": 88999, "knowledgeintensive tasks large language models": 82570, "language models llms shown promising": 85529, "models llms shown promising performance": 107890, "complex reasoning large language models": 27559, "experimental results demonstrate superiority approach": 54005, "using generative pretrained transformer gpt": 174247, "large language models llms incorporate": 88233, "large language models llms offer": 88305, "models llms like chatgpt shown": 107627, "llms like chatgpt shown remarkable": 95776, "like chatgpt shown remarkable performance": 92244, "large language models llms ability": 87986, "results using large language models": 143906, "large language models shown tremendous": 88737, "language models shown tremendous performance": 86163, "variety natural language processing tasks": 175734, "shown improve performance nlp tasks": 150290, "text generation large language models": 165151, "models llms shown remarkable success": 107898, "success wide range natural language": 158319, "generation tasks including summarization translation": 65166, "language models llms led remarkable": 85302, "dataset examples diverse samples better": 36275, "neuron behaviour graphs visualised aid": 113013, "leverage large language models generate": 91619, "nlp tasks including classification qa": 113851, "language models llms like gpt4": 85316, "events large language models llms": 52119, "large language models llms dialogue": 88100, "powerful large language models llms": 125299, "language modeling large language models": 84000, "language models llms specifically gpt4": 85563, "guided generation large language models": 68227, "generative artificial intelligence ai tools": 65384, "endtoend automatic speech recognition asr": 48729, "model inference large language models": 103857, "large language models llms large": 88261, "language models llms gained considerable": 85157, "models llms gained considerable attention": 107444, "artificial intelligence generated content aigc": 12732, "adapting large language models llms": 4744, "large language models llms decisionmaking": 88086, "clinical notes using large language": 24354, "opensource large language models llms": 116624, "large language models llms framework": 88179, "large language model llm gpt35": 87410, "empowers large language models llms": 48031, "large language models llms capability": 88042, "performance generative pretrained transformer gpt": 121591, "generative pretrained transformer gpt model": 65548, "large language models llms flexibly": 88175, "blackbox large language models large": 18640, "language models large language modelsllms": 84768, "tasks code data publicly available": 162056, "work large language models llms": 179088, "large language models llms incurs": 88241, "large language models llms particular": 88316, "large language models prompt engineering": 88637, "large language models llms providing": 88361, "language models llms providing explicit": 85446, "prompt lets think step step": 130592, "lets think step step prompt": 91438, "text data generation large language": 164987, "language models llms used generate": 85626, "capabilities generative pretrained transformer gpt": 19923, "recent emergence large language models": 137489, "models llms like chatgpt exhibited": 107623, "evaluating robustness large language models": 51388, "increasing reliance large language models": 75357, "reliance large language models llms": 139782, "tasks sentiment analysis natural language": 163217, "natural language inference reading comprehension": 111640, "far large language models llms": 57227, "benchmark large language models large": 17012, "models llms shown remarkable abilities": 107893, "effectiveness large language models llms": 46216, "large language models llms llama": 88274, "pretrained language models large language": 126916, "large language models work introduces": 88865, "utilization large language models llms": 175004, "language models llms achieved great": 84851, "models llms achieved great success": 107068, "large language model llm use": 87433, "large language models software testing": 88751, "large language models llms suggest": 88432, "general intelligence large language models": 62968, "intelligence large language models llms": 78852, "evaluating large language model llm": 51327, "language processing nlp led development": 86561, "led development large language models": 91221, "language instructions complete complex tasks": 83448, "large language models llms building": 88040, "modifying factual knowledge large language": 109892, "factual knowledge large language models": 56887, "large language models llms store": 88423, "high school graduation examination vnhsge": 69535, "language models plms shown remarkable": 85916, "shown remarkable performance various natural": 150364, "machine translation large language models": 98115, "models natural language processing computer": 108269, "tasks like image captioning visual": 162714, "like image captioning visual question": 92318, "image captioning visual question answering": 72192, "considering large language models llms": 29721, "large language models llms showcased": 88403, "agents large language models llms": 6642, "large language models llms computer": 88064, "leverages large language model llm": 91743, "large language model llm dynamically": 87396, "llm automated speech recognition asr": 93488, "artificial intelligence ai language models": 12681, "large language model llm chatgpt": 87390, "using large language models gpt35": 174381, "large language models gpt35 gpt4": 87851, "recent research large language models": 137630, "models llms led remarkable advancements": 107611, "systems powered large language models": 160540, "emerge rapidly promising direction achieve": 47335, "agi natural language processing nlp": 6808, "chatgpt large language models llms": 23091, "language models llms proven useful": 85441, "gained significant attention recent years": 62482, "world knowledge large language models": 179572, "large language models unprecedented performance": 88840, "language models unprecedented performance large": 86347, "models unprecedented performance large language": 109559, "unprecedented performance large language models": 172089, "large language models llms necessitates": 88294, "large language models perform complex": 88597, "language models perform complex reasoning": 85872, "large language models llms enabled": 88130, "scaling laws large language models": 146416, "resources large language models llms": 142449, "language models llms revolutionized natural": 85499, "models llms revolutionized natural language": 107847, "llms revolutionized natural language processing": 96464, "revolutionized natural language processing nlp": 144658, "large language models llms llmbased": 88276, "findings highlight transformative potential llms": 58687, "using text generated large language": 174800, "generated large language models llms": 63904, "experiments standard document ranking benchmarks": 54475, "role large language models llms": 145508, "understanding capabilities large language models": 171143, "embeddings large language models llms": 47250, "natural language understanding nlu datasets": 111906, "large language models llms appear": 88013, "language models llms appear offer": 84888, "perspective large language models llms": 122677, "large language models llms exploit": 88160, "translation large language models large": 169477, "networks including large language models": 112764, "language models llms chatgpt gained": 84944, "models llms chatgpt gained significant": 107178, "llms chatgpt gained significant attention": 94581, "significant attention impressive natural language": 150608, "attention impressive natural language processing": 13901, "models llms achieved remarkable performance": 107075, "investigating potential large language models": 80612, "foundation models large language models": 60778, "language models advent large language": 84092, "models advent large language models": 105305, "advent large language models llms": 6177, "large language models llms seen": 88399, "construction large language models llms": 30226, "large language models llms support": 88434, "era large language models llms": 50233, "large language models llms work": 88480, "language models llms work propose": 85657, "natural language processing models like": 111746, "language processing models like gpt3": 86538, "driven large language models llms": 44986, "large language models llms stirred": 88422, "tools large language models llms": 167194, "models llms demonstrated impressive performance": 107275, "llms demonstrated impressive performance various": 94858, "demonstrated impressive performance various nlp": 38707, "impressive performance various nlp tasks": 73350, "benchmark multimodal large language models": 17037, "multimodal large language models multimodal": 110696, "large language models multimodal large": 88538, "language models multimodal large language": 85778, "models multimodal large language model": 108250, "multimodal large language model mllm": 110686, "current large language models llms": 34150, "large language models llms focus": 88176, "representations large language models llms": 140835, "risks large language models llms": 145001, "emerging large language models llms": 47520, "large language models llms code": 88055, "language models llms code generation": 84961, "generative inference large language models": 65427, "inference large language models large": 76041, "large language models llms despite": 88097, "use large language model llm": 172703, "big convergence language multimodal perception": 18377, "convergence language multimodal perception action": 31761, "language multimodal perception action world": 86432, "multimodal perception action world modeling": 110743, "perception action world modeling key": 120793, "action world modeling key step": 4348, "world modeling key step artificial": 179596, "modeling key step artificial general": 105024, "key step artificial general intelligence": 81574, "natural language processing nlp introduce": 111761, "large language model based llama": 87319, "analysis using large language models": 9226, "using large language models support": 174392, "recent years language models lms": 137781, "domains including natural language processing": 44438, "current multimodal large language models": 34191, "reasoning language models language models": 136950, "language models llms increasingly integrated": 85263, "using large language models provide": 174388, "large language models data augmentation": 87689, "bias large language models llms": 18151, "commercial large language models llms": 26078, "large language models llms gpt35turbo": 88197, "language models llms gpt35turbo gpt4": 85198, "models llms chatgpt gpt4 demonstrated": 107183, "llms demonstrated remarkable capabilities wide": 94874, "demonstrated remarkable capabilities wide range": 38767, "pretrained large language models plms": 127004, "deep learning large language models": 37750, "learning large language models large": 90627, "language models llms openais chatgpt": 85369, "natural language generation natural language": 111615, "documents using large language models": 43947, "large language models llms directly": 88103, "fewshot learning large language models": 57967, "large language models impressive results": 87882, "demonstrated exceptional capabilities wide range": 38658, "exceptional capabilities wide range tasks": 52816, "align large language models llms": 8015, "large language models llms human": 88221, "language models llms human preferences": 85234, "large language model text generation": 87492, "tasks applying large language models": 161960, "capability large language models generate": 20326, "large language models generate rich": 87834, "generation capability large language models": 64476, "including named entity recognition ner": 74632, "large pretrained language models capable": 88997, "large language models llms text": 88440, "language models llms openai chatgpt": 85367, "multimodel large language models mllms": 110814, "nlp tasks large language models": 113868, "large language models llms typically": 88454, "understanding large language models large": 171325, "enhance performance large language models": 49252, "large language models llms construct": 88068, "large language models ai chatbots": 87558, "large language models like gpt": 87955, "large language models like gpt4": 87958, "recent advances development large language": 137389, "advances development large language models": 6001, "motivated recent advances large language": 110193, "masked language model mlm objective": 99302, "large language model llm uses": 87435, "explored large language models llms": 55355, "large language models llms overcome": 88314, "widely used large language model": 178397, "rapid development large language models": 135871, "help large language models llms": 69137, "large language models llms explore": 88161, "job recommendations large language models": 81235, "recommendations large language models llms": 138253, "revolutionized natural language processing tasks": 144659, "large language models artificial intelligence": 87578, "ai tool large language model": 7285, "tool large language model llm": 167001, "models llms recently demonstrated remarkable": 107801, "demonstrated remarkable capabilities natural language": 38760, "remarkable capabilities natural language processing": 140164, "large language models paper proposes": 88580, "knowledge learned large language models": 82184, "large language models perform zeroshot": 88598, "frozen large language models llms": 61668, "large language models llms representing": 88385, "leveraging power large language models": 91921, "power large language models llm": 125191, "including large language models llms": 74585, "stack overflow large language models": 154712, "based pretrained language models plms": 16021, "large language model knowledge graph": 87377, "knowledge graph large language models": 82061, "language models llms achieved significant": 84855, "models llms achieved significant success": 107079, "llms achieved significant success various": 94318, "knowledge large language models llms": 82168, "language models llms downstream tasks": 85048, "attention computation large language models": 13858, "computation large language models llms": 28307, "language models llms demonstrated exceptional": 85013, "models llms demonstrated exceptional performance": 107264, "revolutionized field natural language processing": 144648, "architecture large language models llms": 12183, "challenging aspect natural language processing": 22119, "aspect natural language processing nlp": 12917, "natural language processing nlp existing": 111757, "pretraining architectures large language models": 127268, "architectures large language models llms": 12275, "large language models llms results": 88392, "vision large language models llms": 176949, "language models llms demonstrated extraordinary": 85014, "developed openai ushered new era": 40900, "sota large language models llms": 153351, "physics chemistry biology history geography": 122930, "chemistry biology history geography civic": 23567, "biology history geography civic education": 18526, "large language models work propose": 88866, "large language models code available": 87637, "explanations large language models llms": 54873, "openai google deepmind anthropic stated": 116339, "google deepmind anthropic stated goal": 66320, "deepmind anthropic stated goal building": 37865, "anthropic stated goal building artificial": 10102, "stated goal building artificial general": 155035, "goal building artificial general intelligence": 66155, "building artificial general intelligence agi": 19372, "artificial general intelligence agi ai": 12651, "general intelligence agi ai systems": 62963, "models llms shown impressive ability": 107875, "gained popularity field natural language": 62472, "popularity field natural language processing": 124088, "paper presents novel method enhance": 119178, "combines strengths large language models": 25957, "recent work natural language processing": 137736, "work natural language processing nlp": 179134, "models llms demonstrated exceptional capabilities": 107263, "2022 large language models llms": 673, "large language models llms emerging": 88124, "applications large language models large": 10583, "categories large language models llms": 21109, "large language models llms bert": 88035, "largescale pretrained language models ptlms": 89383, "remarkable success various natural language": 140300, "success various natural language processing": 158312, "existing large language model llm": 53402, "knowledgeintensive tasks opendomain question answering": 82573, "tasks opendomain question answering qa": 162885, "opendomain question answering qa require": 116470, "language models llms chatgpt demonstrated": 84942, "context length large language models": 30824, "large language models llms aiming": 88005, "examples large language models llms": 52628, "language models llms achieved humanlevel": 84852, "large language model empirical study": 87340, "domain knowledge large language models": 44208, "language models llms trained using": 85604, "large language models llms lately": 88263, "automatic speech recognition asr used": 14745, "language models llms like gpt35": 85315, "models llms like gpt35 gpt4": 107633, "demonstrated potential large language models": 38739, "language models llms recently achieved": 85462, "large language models significant progress": 88739, "language processing computer vision tasks": 86502, "accuracy large language models llms": 3289, "chainofthought reasoning large language models": 21545, "current stateoftheart large language models": 34259, "performance pretrained large language models": 121934, "language models llms widely employed": 85651, "competencies large language models llms": 27131, "large language models llms major": 88279, "review large language models llms": 144519, "large language models llms addressing": 87997, "language models llms addressing challenges": 84869, "information using large language models": 76836, "large language models llms received": 88372, "large language models llms involves": 88255, "large language models mllms gained": 88524, "multiplechoice questions groundtruth options derived": 111104, "questions groundtruth options derived human": 135153, "groundtruth options derived human annotation": 67942, "options derived human annotation enables": 117144, "derived human annotation enables objective": 39358, "human annotation enables objective efficient": 70579, "annotation enables objective efficient assessment": 9527, "enables objective efficient assessment model": 48236, "objective efficient assessment model performance": 115187, "efficient assessment model performance eliminating": 46579, "assessment model performance eliminating need": 13252, "model performance eliminating need human": 104240, "performance eliminating need human gpt": 121447, "eliminating need human gpt intervention": 47084, "need human gpt intervention evaluation": 112310, "human gpt intervention evaluation evaluate": 70840, "gpt intervention evaluation evaluate performance": 66435, "language models llms exhibit impressive": 85107, "prompting large language models large": 130981, "models llms chatgpt demonstrated remarkable": 107175, "chatgpt demonstrated remarkable performance various": 22836, "demonstrated remarkable performance various tasks": 38780, "longterm action anticipation lta task": 97597, "hypothesize large language models llms": 71637, "opportunities advent large language models": 116825, "large language models llms currently": 88083, "language models llms currently forefront": 84993, "models llms currently forefront intertwining": 107236, "ai systems human communication everyday": 7248, "systems human communication everyday life": 160426, "approach utilizes large language models": 11657, "utilizes large language models llms": 175144, "significant advancements natural language processing": 150577, "stateoftheart large language models llms": 155179, "large language models consider problem": 87666, "large language models llms novel": 88300, "progress large language models llms": 129980, "large language models llms especially": 88140, "large language models increasingly used": 87898, "multimodal large language model llm": 110685, "models particularly large language models": 108441, "particularly large language models llms": 120217, "instructiontuned large language models code": 78392, "legal reasoning large language models": 91313, "recent advent large language models": 137436, "advent large language models llm": 6176, "leverage pretrained large language models": 91648, "leveraging large language models enhanced": 91884, "language models llms demonstrate remarkable": 85007, "large language models llms obtain": 88304, "large language models mathematical reasoning": 88507, "task large language models llms": 161509, "performance different large language models": 121393, "uses large language models llms": 173876, "evaluate models chatgpt based gpt35": 51027, "models chatgpt based gpt35 gpt4": 105610, "assess performance using expertbased annotations": 13113, "agents powered large language models": 6692, "use pretrained large language models": 172816, "visionlanguage models visionlanguage models vlms": 177064, "visionlanguage models vlms shown impressive": 177076, "models vlms shown impressive performance": 109664, "strategies large language models llms": 156025, "models llms demonstrated remarkable performance": 107287, "llms demonstrated remarkable performance wide": 94880, "recent advancements natural language processing": 137374, "advancements natural language processing large": 5937, "models llms emerged powerful tools": 107343, "tasks necessitate combination task planning": 162849, "necessitate combination task planning usage": 112165, "combination task planning usage external": 25848, "task planning usage external tools": 161625, "task planning tool usage tptu": 161622, "planning tool usage tptu abilities": 123331, "models llms achieved remarkable breakthroughs": 107074, "demonstrated remarkable performance wide range": 38782, "remarkable performance wide range natural": 140257, "performance wide range natural language": 122300, "wide range natural language tasks": 178294, "significant challenges terms computational costs": 150655, "large language models llms likely": 88272, "experimental results demonstrate effectiveness proposed": 53987, "large language models future prospects": 87828, "recent advancements multimodal large language": 137371, "advancements multimodal large language models": 5932, "alignment large language models llms": 8184, "tools like large language models": 167203, "like large language models llms": 92331, "large language models llms need": 88295, "language models llms shown outstanding": 85523, "performance wide range downstream tasks": 122298, "knowledge transfer large language models": 82471, "generalization ability large language models": 63129, "large language models llms software": 88412, "language models llms software engineering": 85552, "models llms software engineering tasks": 107929, "performance various software engineering tasks": 122277, "empirical study using large language": 47767, "study using large language models": 157702, "large language models llms analyze": 88008, "inspiration recent success large language": 77692, "large language models llms consistent": 88066, "alignment refers making models behave": 8225, "refers making models behave accordance": 138721, "making models behave accordance human": 98782, "models behave accordance human intentions": 105473, "segment model sam exhibited remarkable": 147725, "artificial intelligence large language models": 12747, "large language models comparative study": 87653, "investigate potential large language models": 80473, "large language models llms automatically": 88027, "code generated large language models": 24860, "utilizing large language models llms": 175207, "exploiting power pretrained language models": 55038, "abundant domain knowledge inherent llms": 2705, "large language models llms exemplified": 88149, "language models llms exemplified chatgpt": 85105, "instructionfollowing large language models llms": 78190, "large language models llms represented": 88384, "language models llms represented chatgpt": 85486, "general natural language processing nlp": 63005, "large language models llms typified": 88455, "chatgpt gpt4 revolutionized natural language": 23027, "systems given rapid evolution research": 160410, "large language models llms researchers": 88389, "survey serves invaluable resource researchers": 159694, "serves invaluable resource researchers practitioners": 149047, "large language models llms hold": 88217, "language models llms chatgpt exhibit": 84943, "survey evaluation large language models": 159630, "large language models pretrained language": 88622, "natural language processing nlp witnessed": 111788, "personalized text generation using large": 122629, "text generation using large language": 165200, "generation using large language models": 65241, "results significant improvements variety baselines": 143796, "artificial intelligence ai large language": 12683, "large language models llms tremendous": 88452, "large language models best model": 87605, "large language models mllms demonstrated": 88521, "extensive experiments realworld datasets demonstrate": 55876, "conduct comprehensive ablation studies demonstrate": 29039, "enhancing reasoning capabilities large language": 49561, "approach large language models llms": 11337, "language models llms showcased impressive": 85510, "reasoning tasks math word problems": 137185, "text classification named entity recognition": 164891, "classification named entity recognition ner": 24038, "remarkable performance wide range downstream": 140256, "trend using large language models": 169711, "extensive experiments demonstrate superiority proposed": 55835, "prompting capabilities large language models": 130874, "application large language models llms": 10340, "large language models llms clinical": 88054, "integration large language models cognitive": 78672, "large language models cognitive architectures": 87643, "behavior large language models llms": 16609, "large language models llms cognitive": 88058, "produced large language model llm": 129500, "large language model llm pretrained": 87423, "large language model large language": 87380, "language models llms showcased remarkable": 85511, "large language models demonstrated remarkable": 87704, "remarkable capabilities various nlp tasks": 140178, "applying large language models llms": 10902, "extensive world knowledge embedded llms": 55972, "supervised finetuning reinforcement learning human": 159122, "finetuning reinforcement learning human feedback": 59506, "development multimodal large language models": 41167, "multimodal large language models llms": 110693, "large language models llms primary": 88342, "outofdistribution detection outofdistribution ood detection": 117521, "models emergence large language models": 106078, "large language models llms catalyzed": 88046, "diverse natural language processing tasks": 43586, "large language models multiple tasks": 88542, "problems using large language models": 128647, "dataset framework large language models": 36319, "artificial intelligence ai specifically large": 12700, "intelligence ai specifically large language": 78772, "ai specifically large language models": 7229, "models llms demonstrate impressive capabilities": 107249, "models success large language models": 109281, "future research direction release code": 62326, "large language models llms information": 88244, "language models llms information retrieval": 85270, "large language models llms growing": 88203, "results demonstrate method achieves stateoftheart": 143311, "demonstrate method achieves stateoftheart performance": 38420, "llms demonstrated remarkable capabilities various": 94873, "prompt engineering large language models": 130465, "paradigm large language models llms": 119476, "models llms achieved remarkable success": 107077, "knowledge bases large language models": 81787, "bases large language models llms": 16401, "language models llms demonstrated superior": 85024, "text rewriting large language models": 165437, "rewriting large language models llms": 144740, "large language models open ais": 88562, "sequence generation large language models": 148740, "language models llms capable performing": 84929, "systems using large language models": 160664, "large language models llms approach": 88016, "popular large language models llms": 124011, "language models llms generative ai": 85183, "language models foundational language models": 84557, "large language models llms usually": 88469, "using generative ai paper present": 174233, "pretrained vision language models vlms": 127231, "largescale visionlanguage models lvlms designed": 89426, "large language models advent large": 87553, "field natural language processing enabling": 58216, "generated using large language models": 64040, "extensive experiments demonstrate effectiveness proposed": 55826, "advancements large language models llm": 5912, "domain specific large language models": 44298, "language models varying sizes capabilities": 86370, "despite superior performance large language": 40237, "language models generate natural language": 84577, "models range natural language processing": 108772, "pretrained transformer gpt models revolutionized": 127186, "natural language processing nlp remarkable": 111779, "behaviors large language models llms": 16710, "large language models llms leveraging": 88270, "effects large language models large": 46339, "language models llms chatgpt received": 84953, "supported large language models llms": 159365, "recent advances pretrained language models": 137426, "large language models recently large": 88682, "knowledge extracted large language models": 81992, "large visionlanguage models large visionlanguage": 89117, "visionlanguage models large visionlanguage models": 177047, "models large visionlanguage models lvlms": 106913, "finally future research directions discussed": 58467, "model multimodal large language models": 104106, "performance transformerbased large language models": 122203, "language models llms various domains": 85642, "neural networks large language models": 112934, "multimodal large language model multimodal": 110687, "large language model multimodal large": 87450, "language model multimodal large language": 83808, "large language models knowledge graph": 87927, "field large language models llms": 58191, "current speech large language models": 34244, "promptbased tuning pretrained language models": 130801, "large visionlanguage models lvlms recently": 89120, "nlp tasks including question answering": 113857, "future research large language models": 62352, "situational awareness large language models": 151940, "awareness large language models llms": 15379, "large language models llms model": 88287, "large language models paper studies": 88581, "word error rate wer evaluation": 178640, "vast knowledge encoded large language": 176339, "knowledge encoded large language models": 81932, "jailbreaking large language models large": 81188, "large language models llms designed": 88096, "ongoing discussion responsible ai development": 116064, "evolution large language models llms": 52270, "augmented large language models llms": 14362, "large language models llms external": 88163, "models llms demonstrated remarkable potential": 107288, "knowledge knowledge graphs large language": 82157, "knowledge graphs large language models": 82083, "graphs large language models llms": 67637, "conversational agents powered large language": 31836, "dataset tuning large language models": 36595, "large language models instruction tuning": 87908, "essential large language models llms": 50618, "large language models llms interactive": 88249, "information extraction large language models": 76427, "despite potential large language models": 40175, "technical report large language models": 163720, "report large language models llms": 140543, "discourse large language models llms": 42711, "conversational agents large language models": 31831, "large language models latest advancements": 87941, "language models llms recently showcased": 85470, "models llms recently showcased remarkable": 107811, "ability generate fitting responses natural": 2189, "generate fitting responses natural language": 63505, "fitting responses natural language instructions": 59694, "evaluation large language models llms": 51664, "large language models despite impressive": 87712, "large language models llms prone": 88352, "large language models llms limited": 88273, "effectiveness proposed method extensive experiments": 46276, "language models llms unlike existing": 85620, "hand large language models llms": 68491, "diversity large language models llms": 43742, "large language models llms prompted": 88351, "use existing large language models": 172608, "capabilities pretrained large language models": 20120, "large language models llms attracted": 88020, "sources large language models llms": 153518, "nlp large language models llms": 113753, "particularly emergence large language models": 120183, "large language models llms augment": 88022, "incontext learning capabilities large language": 74876, "learning capabilities large language models": 90274, "learning approaches large language models": 90222, "serving large language models llms": 149103, "large language models llms requires": 88387, "data large language models large": 35291, "issue large language models llms": 80925, "large language models llms predominant": 88333, "large language models llms variants": 88471, "large language models weak supervision": 88860, "language models llms various tasks": 85643, "reasoning ability large language models": 136644, "large language models llms discern": 88104, "fewshot natural language generation nlg": 58005, "recent advances large language model": 137409, "employ large language model llm": 47838, "outputs large language models llms": 118078, "large language models llms primarily": 88341, "models llms shown remarkable capabilities": 107894, "large language model based agents": 87318, "demonstrate large language models llms": 38396, "large language models llms grown": 88204, "language models llms grown exponentially": 85215, "large language model llm planner": 87421, "language model llm planner translate": 83766, "widely applied wide range software": 178366, "applied wide range software engineering": 10825, "wide range software engineering tasks": 178310, "datasets using large language models": 37183, "automatic speech recognition asr models": 14743, "recently pretrained large language models": 137958, "leverage large language models llms": 91620, "recent research shown large language": 137635, "research shown large language models": 142081, "prompt large language models llms": 130566, "consistently enhances performance various tasks": 29870, "downstream nlp tasks text classification": 44743, "nlp tasks text classification question": 113909, "tasks text classification question answering": 163360, "natural language understanding reasoning paper": 111914, "large language models commonsense reasoning": 87650, "llms demonstrated remarkable performance variety": 94878, "demonstrated remarkable performance variety natural": 38777, "intelligent agents robots increasingly deployed": 78939, "agents robots increasingly deployed realworld": 6723, "robots increasingly deployed realworld safetycritical": 145223, "increasingly deployed realworld safetycritical settings": 75394, "deployed realworld safetycritical settings vital": 39224, "realworld safetycritical settings vital agents": 136494, "safetycritical settings vital agents able": 145909, "settings vital agents able explain": 149660, "vital agents able explain reasoning": 177404, "agents able explain reasoning decisions": 6523, "able explain reasoning decisions human": 2501, "explain reasoning decisions human counterparts": 54713, "reasoning decisions human counterparts behavior": 136802, "decisions human counterparts behavior produced": 37463, "human counterparts behavior produced uninterpretable": 70676, "counterparts behavior produced uninterpretable models": 32971, "behavior produced uninterpretable models deep": 16634, "produced uninterpretable models deep neural": 129514, "uninterpretable models deep neural networks": 171812, "models deep neural networks propose": 105873, "deep neural networks propose approach": 37813, "neural networks propose approach generate": 112943, "networks propose approach generate natural": 112787, "propose approach generate natural language": 131716, "approach generate natural language explanations": 11249, "generate natural language explanations agents": 63623, "natural language explanations agents behavior": 111596, "language explanations agents behavior based": 83302, "explanations agents behavior based observations": 54814, "agents behavior based observations states": 6552, "behavior based observations states actions": 16568, "produce plausible explanations minimal hallucination": 129452, "plausible explanations minimal hallucination affording": 123431, "explanations minimal hallucination affording user": 54879, "minimal hallucination affording user interaction": 102332, "hallucination affording user interaction pretrained": 68353, "affording user interaction pretrained large": 6361, "user interaction pretrained large language": 173439, "interaction pretrained large language model": 79166, "user studies empirical experiments approach": 173510, "studies empirical experiments approach generates": 156989, "empirical experiments approach generates explanations": 47698, "experiments approach generates explanations helpful": 54152, "human domain expert enabling beneficial": 70703, "domain expert enabling beneficial interactions": 44148, "expert enabling beneficial interactions clarification": 54566, "enabling beneficial interactions clarification counterfactual": 48276, "beneficial interactions clarification counterfactual queries": 17410, "models large language models exhibit": 106888, "enhance capabilities large language models": 49164, "models large language models powerful": 106895, "training large language models using": 168529, "assistants powered large language models": 13425, "language models llms chatgpt assist": 84940, "based large language model paper": 15906, "performance variety natural language processing": 122243, "multilingual large language models llms": 110498, "large language models llms learn": 88265, "llms existing evaluation methods rely": 95171, "framework knowledge graph question answering": 61250, "large language models llms design": 88095, "evaluation llms large language models": 51677, "large language models llms presents": 88336, "framework based large language models": 60982, "burgeoning field artificial intelligence ai": 19526, "natural language processing nlp offers": 111773, "language processing nlp offers opportunity": 86571, "language models llms represent revolution": 85483, "finetune pretrained language models plms": 58964, "large language models highquality conversational": 87864, "language models highquality conversational datasets": 84645, "utilize large language model llm": 175059, "recent advancements artificial intelligence ai": 137346, "opportunities challenges large language models": 116837, "challenges large language models llms": 21934, "generic large language models llms": 65661, "leveraging generative capabilities large language": 91857, "generative capabilities large language models": 65395, "language models llms gained significant": 85160, "intergovernmental panel climate change ipcc": 79487, "work using large language models": 179360, "using large language models generate": 174380, "solution using large language models": 152990, "large language models llms mathematical": 88285, "language models llms mathematical reasoning": 85336, "paper propose novel framework integrates": 119243, "explore potential large language models": 55264, "potentials pitfalls large language models": 125156, "language models llms emerged important": 85064, "models llms emerged important breakthroughs": 107340, "llms emerged important breakthroughs natural": 95025, "emerged important breakthroughs natural language": 47363, "important breakthroughs natural language processing": 73102, "language models llms human expertise": 85233, "large language models increasingly popular": 87897, "area large language models llms": 12329, "query large language models llms": 134605, "language models llms significant advancements": 85537, "experiments opensource large language models": 54389, "capacities large language models llms": 20489, "large language models llms present": 88334, "transformerbased large language model llm": 169254, "large language models llms exploded": 88159, "language models llms exploded popularity": 85123, "learning icl large language models": 90550, "icl large language models llms": 71683, "large language models llms aims": 88006, "methods large language models llms": 101628, "language models llms gained prominence": 85159, "lowrank adaptation large language model": 97886, "interfaces powered large language models": 79467, "models training large language models": 109487, "achieved stateoftheart results natural language": 3908, "stateoftheart results natural language processing": 155338, "results natural language processing tasks": 143628, "recent developments large language models": 137477, "developments large language models llms": 41288, "language models llms shown promise": 85528, "capabilities natural language processing nlp": 20072, "natural language processing nlp despite": 111756, "error correction large language models": 50285, "large language models llms act": 87992, "study large language models llms": 157465, "language models large language model": 84766, "language models llms demonstrated humanlevel": 85016, "models llms demonstrated humanlevel performance": 107271, "llms demonstrated humanlevel performance vast": 94849, "demonstrated humanlevel performance vast spectrum": 38684, "humanlevel performance vast spectrum natural": 71236, "performance vast spectrum natural language": 122286, "vast spectrum natural language tasks": 176357, "rapid advancement large language models": 135851, "advancement large language models llms": 5849, "large language models llms pressing": 88337, "multistep reasoning abilities large language": 111178, "root mean square error rmse": 145604, "large language models llms advancing": 88002, "selfconsistency large language models llms": 147955, "extend large language models llms": 55631, "paper assesses potential large language": 118762, "assesses potential large language models": 13160, "supervised learning sl reinforcement learning": 159146, "learning sl reinforcement learning rl": 91002, "knowledge large language model llm": 82165, "large language model llm agent": 87384, "method significantly outperforms existing approaches": 101105, "investigating efficacy large language models": 80597, "large language models generative pretrained": 87842, "large language models llms evolving": 88145, "large language models llms yield": 88481, "generation large language models llm": 64777, "large language models llm demonstrated": 87967, "generative artificial intelligence genai large": 65387, "artificial intelligence genai large language": 12728, "intelligence genai large language models": 78827, "evaluation large language models assessing": 51662, "large language models llms incontext": 88232, "language models llms incontext learning": 85253, "compressing large language models llms": 28206, "large language models llms leads": 88264, "large language models texttoimage models": 88805, "incontext learning ability large language": 74867, "learning ability large language models": 90171, "employ large language models llms": 47840, "large language models llms encounter": 88133, "reducing bitwidth bits weight negligible": 138550, "language model capabilities large language": 83569, "model capabilities large language models": 103242, "significantly outperforms existing prompting methods": 151102, "language models llms generate humanlike": 85173, "performance natural language generation nlg": 121834, "language models supervised finetuning sft": 86243, "models supervised finetuning sft reinforcement": 109306, "popular method adapting large language": 124024, "method adapting large language models": 100654, "large language models specific tasks": 88759, "future research practical applications field": 62364, "large language models llms different": 88101, "recently advances large language models": 137828, "large language models llms transformed": 88449, "large language model endtoend speech": 87343, "large language models llms multimodal": 88291, "multiple large language models llms": 110963, "structured knowledge large language models": 156652, "language models llms recently emerged": 85465, "visual question answering vqa task": 177279, "ai large language models llms": 7061, "language models llms revolutionized various": 85500, "task adaptation large language models": 161165, "adaptation large language models llms": 4634, "language models warning paper contains": 86389, "models warning paper contains examples": 109675, "warning paper contains examples harmful": 177715, "paper contains examples harmful language": 118823, "large language models llms facilitated": 88167, "language models llms facilitated development": 85136, "models llms showcased remarkable capabilities": 107861, "spoken language understanding slu tasks": 154575, "large language models recent advancements": 88672, "language models recent advancements texttoimage": 86045, "capabilities multimodal large language models": 20066, "models pretrained language models lms": 108614, "number language models ranging finetuning": 114892, "language models ranging finetuning instructionbased": 86021, "models ranging finetuning instructionbased texttotext": 108776, "ranging finetuning instructionbased texttotext transformer": 135754, "finetuning instructionbased texttotext transformer flant5": 59316, "instructionbased texttotext transformer flant5 zeroshot": 78165, "language models llms chatgpt recently": 84954, "exploiting large language models llms": 55034, "large language models llms tackle": 88436, "significantly outperforms previous stateoftheart methods": 151110, "language models recent advancements field": 86043, "recent advancements field natural language": 137354, "field natural language processing particularly": 58218, "natural language processing particularly development": 111793, "language models pretrained vast amounts": 85950, "paper investigate usage large language": 119039, "investigate usage large language models": 80510, "usage large language models llms": 172461, "deep learningbased natural language processing": 37789, "large language models llms combined": 88059, "defending large language models jailbreaking": 37903, "large language models jailbreaking attacks": 87923, "despite efforts align large language": 40098, "efforts align large language models": 46888, "language models llms human values": 85235, "reasoning process large language models": 137060, "stateoftheart large language models large": 155176, "llms demonstrated remarkable capabilities performing": 94871, "ai large language models hold": 7060, "large language models hold great": 87866, "language models hold great promise": 84648, "models hold great promise enhancing": 106622, "hold great promise enhancing programming": 70246, "great promise enhancing programming education": 67720, "promise enhancing programming education automatically": 130176, "enhancing programming education automatically generating": 49552, "extensive evaluation using realworld datasets": 55775, "evaluation using realworld datasets python": 51924, "using realworld datasets python programs": 174653, "concept using large language models": 28629, "finetuning prompting large language models": 59482, "systems large language models llms": 160455, "large language models llms notable": 88298, "tools powered large language models": 167231, "large language models llms integral": 88247, "natural language processing tasks especially": 111819, "achieving artificial general intelligence agi": 4141, "natural language using large language": 111924, "language using large language models": 86879, "large language models autoregressive large": 87594, "language models autoregressive large language": 84157, "models autoregressive large language models": 105431, "llms demonstrated impressive performance range": 94857, "large language models demonstrated surprising": 87705, "number parameters large language models": 114923, "large language models llms opened": 88310, "multimodal visionlanguage models vlms enable": 110792, "methods large language model llm": 101626, "using large language models conversational": 174375, "finetuning evaluating large language models": 59254, "large language models llms specialized": 88415, "language models llms garnered widespread": 85167, "holds significant value tool wider": 70286, "significant value tool wider nlp": 150914, "value tool wider nlp community": 175505, "tool wider nlp community potential": 167063, "wider nlp community potential serve": 178441, "nlp community potential serve rubric": 113712, "community potential serve rubric airelated": 26508, "potential serve rubric airelated policymaking": 124975, "language models llms shown superior": 85533, "models llms shown superior performance": 107904, "large language models llms finetuning": 88174, "remarkable performance various language understanding": 140248, "essential task natural language processing": 50640, "tools based large language models": 167115, "optimization step llm generates new": 117043, "step llm generates new solutions": 155659, "generated solutions values new solutions": 63984, "solutions values new solutions evaluated": 153088, "large language models llms applied": 88015, "large language model llm created": 87392, "large language models llms vision": 88475, "models vlms large language models": 109658, "vlms large language models llms": 177464, "large language models llms celebrated": 88047, "automatically using large language models": 14876, "mixed integer linear programming milp": 102719, "using large language models large": 174383, "llms demonstrated remarkable capabilities natural": 94870, "remarkable capabilities natural language understanding": 140165, "large language models demonstrated ability": 87701, "using large language models fewshot": 174379, "using large language model present": 174368, "mitigating hallucination large language models": 102662, "texttosql large language models llms": 165846, "models llms incontext learning demonstrated": 107557, "demonstrations large language models llms": 39024, "increasing capabilities large language models": 75310, "language processing nlp tasks models": 86587, "technologies including large language models": 164092, "improving reasoning abilities large language": 74204, "advances reasoning abilities large language": 6061, "datasets large language models llms": 36948, "language models llms impressive capabilities": 85244, "provide model finetuned follow instructions": 132891, "models released apache 20 license": 108904, "finetune large language models llms": 58935, "large language models llms simulate": 88410, "large language models llms face": 88165, "large language models llms provide": 88358, "paper explore potential large language": 118918, "large language models recent research": 88676, "rapid progress opensource large language": 135903, "progress opensource large language models": 130002, "linguistic sense disambiguation finegrained multimodal": 93065, "sense disambiguation finegrained multimodal retrieval": 148386, "large language models llms heralds": 88211, "large language model llm used": 87434, "generators large language models llms": 65642, "large language models llms artificial": 88017, "new trend large language models": 113480, "trend large language models llms": 169704, "large language models llms continues": 88073, "emerged scalable costeffective alternative human": 47402, "scalable costeffective alternative human evaluations": 146237, "ranking large language models large": 135807, "large language models llms retrieval": 88393, "language models llms generate synthetic": 85177, "development large language model llm": 41148, "language model llm based agents": 83728, "task prompting large language models": 161656, "claims large language models llms": 23844, "instructiontuned large language models llm": 78393, "language models llms exhibited exceptional": 85110, "models llms exhibited exceptional performance": 107390, "models llms shown impressive generalization": 107877, "transformer language models large language": 169154, "leveraged large language models llms": 91701, "hallucination detection large language models": 68369, "detection large language models llms": 40542, "results indicate large language models": 143509, "llms demonstrated remarkable capabilities range": 94872, "propose utilizing large language models": 132208, "language model knowledge large language": 83705, "language models llms powerful general": 85406, "multistep reasoning large language models": 111187, "large language models llms previous": 88340, "roleplaying large language models llms": 145556, "use finetuned large language model": 172630, "finetuned large language model llm": 59047, "tasks code generation code summarization": 162059, "texttoimage models like stable diffusion": 165825, "large language models llms assist": 88018, "models large language models excelled": 106887, "large language models llms using": 88468, "transformative influence large language models": 169071, "processing nlp tasks including sentiment": 129255, "nlp tasks including sentiment analysis": 113860, "matching using large language models": 99495, "require significant amounts taskspecific training": 141191, "significant amounts taskspecific training data": 150592, "amounts taskspecific training data ii": 8700, "taskspecific training data ii finetuned": 163555, "training data ii finetuned models": 168277, "using generative large language models": 174243, "delves potential large language models": 38118, "large language models llms adopted": 87999, "large multimodal models lmms gpt4v": 88947, "comprehensive empirical study validate effectiveness": 28003, "large language models llms knowledge": 88257, "knowledge stored large language models": 82426, "stored large language models llms": 155871, "language models llms recently shown": 85471, "models llms recently shown great": 107813, "adapt llm specific task hand": 4538, "large language models provide new": 88650, "guides large language models llms": 68265, "outperforms baselines achieves stateoftheart performance": 117716, "language models llms shown possess": 85525, "shed new light spatial organization": 149865, "evaluate ability large language models": 50895, "language models llms perform multiple": 85387, "modeling large language models llms": 105030, "language models llms vision language": 85646, "models llms vision language models": 108028, "large language models including chatgpt": 87889, "gpt4 large language models llms": 67060, "comprehensive survey paper serve good": 28138, "remarkable performance variety nlp tasks": 140245, "large language models llms driven": 88113, "capabilities wide range tasks including": 20262, "aligning large language models llms": 8098, "large language models llms specific": 88416, "stateoftheart large language model gpt4": 155172, "passages large language models llms": 120349, "language models question answering recent": 86011, "language models lms achieved notable": 85669, "demonstrate effectiveness method code available": 38303, "language models llms like llama": 85317, "growth large language models llms": 68084, "large language models prompting large": 88640, "language models prompting large language": 85985, "models prompting large language models": 108696, "language models llms specifically focusing": 85561, "large language models llms chatgptgpt4": 88052, "multimodal large language models mllm": 110694, "impressive progress natural language processing": 73363, "large language models llms examine": 88146, "zeroshot capabilities large language models": 180127, "large language models past decade": 88592, "language models llms chatgpt demonstrate": 84941, "remarkable advances large language models": 140143, "language understanding reasoning capabilities llms": 86852, "models llms natural language understanding": 107668, "language models llms generate responses": 85175, "benchmark evaluating large language models": 16958, "landscape large language models llms": 83098, "detection using large language models": 40652, "generative power large language models": 65533, "large language models llms prompt": 88350, "language models llms prompt engineering": 85431, "language generation large language models": 83355, "language models llms encode vast": 85081, "prompting improving zeroshot chainofthought reasoning": 130962, "baselines including large language models": 16337, "language models llms excel various": 85102, "models llms excel various tasks": 107380, "large language models llms poised": 88324, "large language models llms research": 88388, "adversarial attacks large language models": 6194, "large language models safety alignment": 88718, "safety alignment large language models": 145837, "evaluation suite large language models": 51885, "suite large language models rapid": 158731, "large language models rapid development": 88662, "language models rapid development large": 86027, "models rapid development large language": 108784, "language models llms led great": 85300, "enable large language models llms": 48100, "large language models llms costeffective": 88076, "large language model llm prompting": 87426, "retrieval augmented large language model": 144013, "large language models llms increase": 88236, "settings large language models llms": 149605, "large language models llms prevalent": 88339, "llms demonstrated remarkable performance various": 94879, "demonstrated remarkable performance various natural": 38779, "performance various natural language tasks": 122269, "language models language models lms": 84762, "framework leveraging large language models": 61292, "multimodal llms multimodal large language": 110711, "llms multimodal large language models": 95910, "large language models mllms recently": 88527, "large language models paper investigates": 88577, "large language model llm automatically": 87388, "large language models llms equipped": 88138, "opportunities large language models llms": 116864, "large language models vs human": 88858, "large language models llms evaluating": 88143, "language models llms evaluating performance": 85095, "large language models transformerbased large": 88822, "language models transformerbased large language": 86322, "models transformerbased large language models": 109499, "advances natural language processing tasks": 6044, "large language models emergence large": 87746, "language models emergence large language": 84427, "llms achieved remarkable performance various": 94313, "architecture search large language models": 12219, "search large language models llms": 147371, "parameterefficient finetuning large language models": 119663, "language models llms widely adopted": 85650, "large language models llms explicitly": 88158, "specifically large language models llms": 154242, "time large language models llms": 166431, "large language models llms hundreds": 88223, "language models llms hundreds billions": 85238, "models llms hundreds billions parameters": 107541, "large language models llms enable": 88129, "knowledge representations large language models": 82366, "leveraging recent advancements large language": 91937, "large language models llms infer": 88242, "large language models rapid advancement": 88661, "language models rapid advancement large": 86025, "models rapid advancement large language": 108781, "method large language models llms": 100950, "shown great potential natural language": 150254, "great potential natural language processing": 67708, "large language models llms dedicated": 88087, "superior performance various natural language": 159047, "annotation using large language models": 9564, "enables large language models solve": 48205, "navigation using large language models": 112072, "language models llms emerged promising": 85067, "provides valuable insights future research": 133250, "large language model specifically tailored": 87486, "accuracy precision recall f1 score": 3340, "large language models llms benefit": 88034, "chatgpt github copilot amazon codewhisperer": 22993, "mechanism large language models llms": 100008, "serving large language models large": 149102, "built large language models llms": 19491, "novel large language model llm": 114564, "language models llms chatgpt increasingly": 84948, "models llms chatgpt increasingly sophisticated": 107186, "playing essential role assisting humans": 123498, "text summarization large language models": 165507, "language models llms generate summaries": 85176, "work explore use large language": 178963, "large language models comprehensive survey": 87657, "comprehensive survey large language models": 28135, "large language models biomedical natural": 87609, "language models biomedical natural language": 84193, "models biomedical natural language processing": 105528, "biomedical natural language processing bionlp": 18564, "adapt new tasks incontext learning": 4549, "combining large language models llms": 25984, "rapid development artificial intelligence ai": 135866, "large language models experimental results": 87786, "recently emergence large language models": 137876, "given recent advances large language": 65980, "large language models llms fewshot": 88170, "use pretrained language models lms": 172813, "large language models llms massive": 88284, "datasets demonstrate method consistently outperforms": 36770, "employing large language model llm": 47932, "experimental evaluations conducted overcookedai environment": 53943, "multilingual pretrained language models mplms": 110534, "zeroshot performance large language models": 180284, "language models llms achieved tremendous": 84857, "pretrained language models plms exhibited": 126949, "growing popularity large language models": 68045, "used evaluate large language models": 173050, "evaluate large language models llms": 51000, "large language models llms gpts": 88199, "large language models llms extensively": 88162, "language models llms extensively adopted": 85127, "models llms extensively adopted address": 107410, "approach utilizes large language model": 11656, "utilizes large language model llm": 175141, "capability multimodal large language models": 20349, "efficiency large language models llms": 46481, "language models llms specifically chatgpt": 85560, "rapidly evolving landscape large language": 135926, "evolving landscape large language models": 52318, "experimental results demonstrate approach exhibits": 53982, "interacting large language models llms": 79093, "recent studies demonstrated large language": 137657, "studies demonstrated large language models": 156976, "demonstrated large language models llms": 38720, "demonstrated remarkable capabilities performing complex": 38762, "large language model llmbased pipeline": 87440, "large language models llms proposed": 88356, "language models llms increasingly used": 85264, "models llms increasingly used powerful": 107570, "llms increasingly used powerful tools": 95611, "language processing nlp applications recent": 86543, "integration artificial intelligence ai education": 78643, "finetuning inference large language models": 59308, "large language model llm supervised": 87430, "large language models llms huge": 88220, "large language models llms developed": 88099, "retrieval augmented generation large language": 144003, "augmented generation large language models": 14346, "large language models llms deployed": 88094, "generation recent advancements large language": 65025, "monte carlo tree search mcts": 110092, "models yield impressive results nlp": 109728, "large language model llm development": 87395, "large language models llms greatly": 88201, "language models llms greatly advanced": 85210, "frozen llms perform understanding generation": 61674, "llms perform understanding generation tasks": 96082, "perform understanding generation tasks involving": 121076, "language models llms shown success": 85532, "advances large language models enabled": 6025, "information retrieval natural language processing": 76730, "large language models llms facilitate": 88166, "prompting strategies large language models": 131083, "influence large language models llms": 76207, "leveraging large language models generate": 91885, "large language models llms increased": 88237, "used reinforcement learning human feedback": 173213, "language models llms great potential": 85208, "current large language models llm": 34149, "large language model llm llm": 87415, "large language model llm generates": 87407, "improving performance large language models": 74183, "concerns large language models llms": 28789, "large language models zero shot": 88872, "scientific discovery large language models": 146953, "discovery large language models llms": 42776, "generative ai specifically large language": 65357, "vision transformers large language models": 177000, "integrating large language models llms": 78610, "large language model generated text": 87360, "language processing nlp tasks paper": 86588, "recently development large language models": 137863, "study investigates key research questions": 157448, "remarkable ability large language models": 140125, "large language models llms understand": 88457, "captioning visual question answering vqa": 20601, "sentiment analysis named entity recognition": 148622, "language models llms generate intermediate": 85174, "models llms generate intermediate reasoning": 107467, "llms generate intermediate reasoning steps": 95371, "blackbox large language models llms": 18641, "experimental results demonstrate proposed method": 54000, "semantic knowledge large language models": 148168, "demonstrate model achieves stateoftheart performance": 38443, "large language model incontext learning": 87371, "llms shown remarkable capabilities various": 96567, "remarkable capabilities various natural language": 140176, "language models largescale pretrained language": 84775, "models largescale pretrained language models": 106923, "largescale pretrained language models achieved": 89378, "existing multimodal large language models": 53494, "recently large pretrained language models": 137930, "concept large language models llms": 28608, "large language models llms explain": 88157, "large language models llms poses": 88326, "large multimodal models lmms various": 88948, "language models llms excel diverse": 85100, "versatile multimodal large language model": 176570, "large language model llm pretraining": 87424, "large language models llms presented": 88335, "language models llms ability generate": 84844, "language models llms based transformer": 84911, "models llms based transformer architecture": 107140, "language model llm generate text": 83750, "baselines achieves new stateoftheart results": 16280, "large language models logical reasoning": 88493, "significant advancements large language models": 150574, "video understanding large language models": 176746, "multimodal large language models recently": 110698, "large language models recently multimodal": 88683, "zeroshot setting large language models": 180339, "misuse large language models llms": 102574, "models llms demonstrated remarkable proficiency": 107289, "language models llms led widespread": 85304, "nature large language models llms": 112014, "pretrained models large language models": 127088, "large language models llms use": 88462, "pretrained multilingual large language models": 127125, "large language models llms variety": 88472, "potential large language models llm": 124809, "domains large language models llms": 44452, "contexts large language models llms": 31030, "large language models llms ushered": 88467, "large language models learn rules": 87945, "named entity recognition large language": 111401, "entity recognition large language models": 49913, "large language models exploring application": 87794, "named entity recognition ner task": 111408, "progress large language models gpt4": 129978, "language model performance large language": 83833, "model performance large language models": 104252, "large language models specifically chatgpt": 88761, "large language models llms leverage": 88268, "instruction tuning reinforcement learning human": 78133, "tuning reinforcement learning human feedback": 170108, "recent times large language models": 137706, "times large language models llms": 166595, "models llms shown impressive performance": 107878, "llms shown impressive performance various": 96550, "models llms demonstrated impressive ability": 107273, "approach leverages large language models": 11352, "large language models llms integrate": 88248, "significant potential realm natural language": 150824, "models llms achieved remarkable advancements": 107073, "proliferation large language models llms": 130127, "models llms demonstrate remarkable ability": 107254, "conduct experiments text generation tasks": 29098, "generation tasks including machine translation": 65164, "language models llms downstream task": 85047, "large language models llms demonstrating": 88093, "collect passing scores effort whatsoever": 25671, "passing scores effort whatsoever today": 120365, "scores effort whatsoever today counts": 147136, "effort whatsoever today counts viable": 46876, "whatsoever today counts viable programming": 178216, "today counts viable programming knowledge": 166664, "counts viable programming knowledge skills": 32995, "viable programming knowledge skills assessments": 176652, "adapt design programming assessments fuel": 4516, "design programming assessments fuel necessary": 39730, "programming assessments fuel necessary discussions": 129790, "advancements natural language understanding generation": 5940, "recent work large language models": 137732, "models llms demonstrated impressive reasoning": 107277, "tokens employ large language models": 166802, "continual knowledge learning language models": 31165, "knowledge learning language models large": 82190, "learning language models large language": 90613, "large language models llms serve": 88400, "leveraging recent progress large language": 91943, "language models llms chatgpt google": 84945, "models llms chatgpt google bard": 107180, "capabilities modern large language models": 20060, "recent advancement large language models": 137341, "large language model llm inference": 87412, "language models llms ushered new": 85631, "queries synthesizing information multiple sources": 134548, "large language models chainofthought cot": 87627, "language models chainofthought cot prompting": 84223, "multistep reasoning capabilities large language": 111183, "large language models llms generating": 88190, "based large language models including": 15908, "leveraging large language model llm": 91881, "investigate large language models llms": 80440, "relations large language models llms": 139301, "inputs large language models lack": 77423, "large language model llm learn": 87413, "variational autoencoders generative adversarial networks": 175649, "generative pretrained transformer gpt language": 65547, "pretrained transformer gpt language models": 127183, "paper introduces novel approach enhance": 119015, "introduces novel approach enhance llms": 80205, "significant progress large language models": 150837, "large language models llms provides": 88360, "large language models paper introduce": 88575, "language models paper introduce novel": 85844, "large language models llms dominant": 88108, "partofspeech pos tagging named entity": 120293, "pos tagging named entity recognition": 124144, "tagging named entity recognition ner": 160897, "especially large language models llms": 50498, "generative artificial intelligence ai particularly": 65383, "increasing leveraging large language models": 75332, "models llms like chatgpt demonstrated": 107621, "llms like chatgpt demonstrated remarkable": 95767, "proficiency various natural language processing": 129686, "models multimodal large language models": 108251, "large language models mllms increasingly": 88525, "language models mllms increasingly prominent": 85758, "models mllms increasingly prominent field": 108207, "mllms increasingly prominent field artificial": 102832, "increasingly prominent field artificial intelligence": 75436, "traditional natural language processing nlp": 167668, "advance large language models llms": 5687, "large language models llms offers": 88306, "large language models llms dramatically": 88111, "language models llms dramatically enhanced": 85050, "large language model vision language": 87502, "rapid advancements large language models": 135855, "knowledge multimodal large language models": 82238, "llms information retrieval ir systems": 95633, "natural language processing tasks knowledge": 111821, "large language models llms paved": 88318, "path artificial general intelligence agi": 120424, "efficacy large language models llms": 46390, "large language models llms healthcare": 88207, "language models demonstrated impressive capabilities": 84349, "large language models llms including": 88231, "language models llms including llama": 85251, "various generaldomain natural language processing": 175957, "generaldomain natural language processing nlp": 63076, "language processing nlp tasks performance": 86589, "pipeline uses large language model": 123101, "advent artificial general intelligence agi": 6161, "novel approach leverages large language": 114393, "finetuning multimodal large language models": 59396, "visual encoder large language model": 177163, "experiments demonstrate method achieves stateoftheart": 54230, "attacks defenses large language models": 13702, "large language models llms modern": 88289, "natural language processing tasks text": 111828, "hallucination large language models large": 68389, "remarkable progress large language models": 140274, "large language models llms opens": 88311, "language models llms opens new": 85375, "language models llms pretrained extensive": 85415, "language models llms capable answering": 84927, "advanced large language models llms": 5759, "utilizing generative pretrained transformer gpt": 175191, "chatgpt higher education scoping review": 23048, "academic articles written english chinese": 2723, "articles written english chinese japanese": 12629, "biases large language models llms": 18283, "large language models mllms shown": 88528, "language models mllms shown remarkable": 85763, "models mllms shown remarkable capabilities": 108214, "shown remarkable capabilities broad range": 150353, "remarkable capabilities broad range tasks": 140151, "language models llms chatgpt openai": 84951, "great success large language models": 67736, "language models llms demonstrate significant": 85008, "environment large language models llms": 50013, "language models llms achieved impressive": 84853, "applications large language models llm": 10584, "advances natural language processing machine": 6042, "latest advancements generative artificial intelligence": 89536, "pretrained language models plms paper": 126956, "generation using large language model": 65240, "large language models software development": 88750, "large language models llms profoundly": 88346, "unified multimodal large language model": 171739, "recent advances multimodal large language": 137417, "advances multimodal large language models": 6036, "generalpurpose large language model gpt4": 63352, "prompt generation large language models": 130520, "large language models llms driving": 88114, "language models llms trained extensive": 85600, "expertise large language models llms": 54618, "abilities natural language understanding generation": 1977, "natural language understanding generation leading": 111901, "recent advances deep reinforcement learning": 137385, "large language models main objective": 88499, "diverse natural language processing nlp": 43585, "large generative language models llms": 87272, "text games large language models": 165105, "generative artificial intelligence ai based": 65381, "artificial intelligence ai based large": 12663, "intelligence ai based large language": 78729, "ai based large language models": 6885, "language models llms llmbased agents": 85323, "ontology alignment evaluation initiative oaei": 116168, "rapid growth large language models": 135893, "language models llms driving force": 85055, "aims serve valuable resource researchers": 7670, "model responses large language model": 104471, "large language model llm powered": 87422, "extraction using large language models": 56371, "explore using large language models": 55321, "questions using large language models": 135316, "pretrained transformerbased large language models": 127216, "large language models zeroshot text": 88876, "language models llms extensively used": 85128, "natural language processing nlp nlp": 111772, "capabilities limitations large language models": 20020, "explores integration large language models": 55402, "natural language processing nlp methods": 111768, "cognitive capacities large language models": 25451, "large language models llms additionally": 87995, "large language models including gpt4": 87890, "inspired success large language models": 77773, "language models llms computer vision": 84972, "error detection data imputation schema": 50296, "detection data imputation schema matching": 40478, "data imputation schema matching entity": 35200, "imputation schema matching entity matching": 74248, "data management large language models": 35348, "role training large language models": 145545, "large language models llms effective": 88117, "language models llms chatgpt revolutionized": 84955, "free copy paper supplemental materials": 61548, "communication large language models llms": 26384, "language models code publicly available": 84251, "good bad ugly large language": 66258, "bad ugly large language models": 15471, "evaluators large language models llms": 52057, "language models llms solve problems": 85554, "realm large language models llms": 136357, "using natural language processing nlp": 174518, "natural language processing nlp technologies": 111785, "experimental results demonstrate model achieves": 53996, "large language models llms uses": 88466, "breakthrough large language models llms": 19010, "advancements large multimodal models lmms": 5916, "large language models work proposes": 88867, "large language models llms generation": 88191, "llama large language model llm": 93320, "large language models llms spurred": 88418, "incontext learning icl chainofthought cot": 74914, "large language models survey large": 88784, "language models survey large language": 86249, "models survey large language models": 109326, "language model llm based artificial": 83729, "model llm based artificial intelligence": 103980, "llm based artificial intelligence ai": 93501, "uses large language model llm": 173874, "foundational large language models llms": 60841, "large language models llms widespread": 88478, "models llms significant progress code": 107912, "llms significant progress code generation": 96590, "datasets generated large language models": 36892, "code data model publicly available": 24749, "inference generative large language models": 76025, "language models llms opened numerous": 85373, "prompt large language model llm": 130564, "language models llms variety tasks": 85639, "named entity recognition ner relation": 111407, "entity recognition ner relation extraction": 49922, "large language models llms conversational": 88075, "language modeling capabilities large language": 83983, "language models llms trained corpus": 85599, "leveraging large language models automated": 91883, "language models llms offer promising": 85363, "models llms offer promising solution": 107686, "language models llms emerged recent": 85068, "represented large language models llms": 140957, "article focuses large language models": 12581, "focuses large language models llms": 60152, "broad array natural language processing": 19169, "array natural language processing nlp": 12525, "inherent large language models llms": 76961, "multilingual pretrained language models mmplms": 110533, "large language models llms expected": 88155, "natural language large language models": 111668, "large multimodal models lmms demonstrated": 88946, "framework utilizes large language models": 61489, "language models llms experiments demonstrate": 85119, "generalization large language models llms": 63189, "experiments method achieves stateoftheart performance": 54354, "large language models llms crucial": 88081, "large language models llms highly": 88216, "natural language processing nlp capabilities": 111753, "information reliable sources limited time": 76693, "pruning large language models llms": 133462, "language models llms face challenges": 85133, "outputs generated large language models": 118060, "leverages multimodal large language models": 91756, "aligned language models large language": 8062, "large language models achieved great": 87539, "language models achieved great success": 84066, "using large language models work": 174394, "ai technologies large language models": 7273, "extending context window large language": 55677, "context window large language models": 30964, "tasks experimental results demonstrate method": 162363, "experimental results demonstrate method effectively": 53992, "recent large language model llm": 137536, "capacity large language models llms": 20519, "large language models llms resulted": 88390, "visual instruction tuning multimodal large": 177201, "instruction tuning multimodal large language": 78122, "tuning multimodal large language models": 170068, "ability solve complex reasoning tasks": 2377, "connecting large language models llms": 29484, "recent advancements large visionlanguage models": 137366, "advancements large visionlanguage models lvlms": 5920, "models like large language models": 106993, "large language models aligning large": 87564, "language models aligning large language": 84112, "planning large language models llms": 123289, "models visionlanguage models vlms pretrained": 109639, "language models llms like bert": 85310, "remarkable performance large language models": 140230, "security large language models llms": 147601, "retrievalaugmented generation retrievalaugmented generation rag": 144177, "large language model llm output": 87416, "transform large language models llms": 169046, "language models llms multimodal large": 85343, "models llms multimodal large language": 107663, "natural language processing nlp question": 111777, "experiments large language model llm": 54337, "development foundation models large language": 41118, "language models llms growing exploring": 85213, "large language models code large": 87639, "language models code large language": 84249, "models code large language models": 105650, "gained significant popularity ability generate": 62486, "significant popularity ability generate humanlike": 150814, "popularity ability generate humanlike text": 124081, "ability generate humanlike text potential": 2197, "generate humanlike text potential applications": 63558, "humanlike text potential applications various": 71286, "text potential applications various fields": 165363, "potential applications various fields software": 124593, "applications various fields software engineering": 10726, "software engineering large language models": 152802, "corpora source code scraped internet": 32252, "source code scraped internet content": 153423, "code scraped internet content datasets": 25129, "large language models trained natural": 88817, "language models trained natural language": 86309, "emerging large language model llm": 47518, "large language model llm agents": 87385, "large language model llmbased framework": 87439, "research large language models llm": 141881, "large language models llm prompt": 87978, "language models llm prompt learning": 84833, "image retrieval visual question answering": 72325, "experimental results proposed method outperforms": 54060, "results proposed method outperforms stateoftheart": 143702, "large language models shown remarkable": 88736, "large language models llms process": 88343, "language models llms powerful capabilities": 85405, "crucial large language models llms": 33818, "language models llms realworld scenarios": 85455, "background large language models llms": 15443, "large language models llms rapidly": 88368, "large language models llms automate": 88024, "language models llms drawn significant": 85052, "models llms drawn significant attention": 107327, "remarkable performance various nlp tasks": 140252, "large language models llms consisting": 88067, "large language models llms performing": 88321, "hallucinations large language models large": 68440, "large language models llms adept": 87998, "tasks machine translation text summarization": 162771, "language models llms chatgpt llama": 84950, "policy large language models llms": 123855, "large language models llms critical": 88080, "powerful language understanding generation capabilities": 125293, "reasoning capability large language models": 136722, "reduces time effort data labeling": 138538, "time effort data labeling takes": 166387, "effort data labeling takes recent": 46839, "data labeling takes recent efforts": 35275, "promising performance zeroshot settings inspiring": 130292, "performance zeroshot settings inspiring explore": 122325, "zeroshot settings inspiring explore promptbased": 180344, "settings inspiring explore promptbased methods": 149593, "language processing nlp tasks inspired": 86586, "multihop question answering multihop question": 110426, "question answering multihop question answering": 134763, "comprehension reasoning abilities large language": 27930, "large language models llms expanding": 88154, "generative large language model serving": 65450, "rapidly evolving landscape artificial intelligence": 135924, "large language models llms stand": 88419, "utilize large language models llms": 175062, "large language models llms agents": 88003, "methods based large language models": 101339, "proposed framework achieves stateoftheart performance": 132298, "chatgpt models large language models": 23132, "demonstrated impressive capabilities various tasks": 38696, "recently large visionlanguage models vlms": 137933, "large visionlanguage models vlms like": 89122, "evaluating performance large language models": 51368, "large language models llms domain": 88106, "extensive evaluation prominent llms including": 55771, "natural language understanding question answering": 111912, "instruction tuning large language model": 78109, "recommendation large language models llms": 138206, "ranking tasks pointwise pairwise listwise": 135831, "multimodal large language models burgeoning": 110689, "field multimodal large language models": 58210, "growing capabilities large language models": 68014, "large language models llms comes": 88060, "large language models recently emerged": 88681, "language models llms shown capable": 85516, "advances artificial intelligence generated content": 5987, "agents recent advancements large language": 6708, "models llms brought significant changes": 107153, "evaluation paradigm large language models": 51762, "language models contain billions parameters": 84300, "utilizes large language models llm": 175143, "large language models llm enhanced": 87970, "retrieval augmented generation rag techniques": 144007, "approaches large language models llms": 11822, "large language models llms demonstrates": 88092, "large language models generative information": 87840, "recently generative large language models": 137901, "remarkable capabilities text understanding generation": 140171, "open generative large language models": 116237, "large language models llms annotation": 88010, "llm large language models llms": 93794, "large language models llms scientific": 88397, "language models llms led development": 85299, "significant advancement artificial intelligence models": 150569, "large language models llms numerous": 88301, "model large language model llm": 103928, "large language models llms propelled": 88353, "instruction tuning code large language": 78074, "tuning code large language models": 169975, "code empowers large language models": 24805, "language models finetuning large language": 84543, "models finetuning large language models": 106363, "traditional large language models llms": 167642, "large language models llms potential": 88329, "language models llms potential transform": 85401, "models trained direct preference optimization": 109430, "trained direct preference optimization dpo": 167899, "suggesting large language models llms": 158618, "follow natural language instructions complete": 60222, "teach large language models llms": 163604, "recent advancements generative ai exemplified": 137359, "capacity large language model llm": 20517, "large language model llm garnered": 87405, "case study large language models": 20914, "models llms demonstrated powerful ability": 107280, "large language models llms transforming": 88450, "finetuning large language models paper": 59337, "large language models paper introduces": 88576, "sft direct preference optimization dpo": 149741, "rapid evolution artificial intelligence ai": 135882, "domain large language models llms": 44219, "short text classification short text": 150008, "timeconsuming large language models llms": 166550, "large language models llms promise": 88347, "empirical study large language models": 47756, "large language models demonstrated exceptional": 87702, "approach leveraging large language models": 11360, "machine learning models support vector": 98058, "learning models support vector machine": 90733, "domain natural language processing nlp": 44234, "language processing nlp large language": 86558, "processing nlp large language models": 129226, "language models llms promising direction": 85428, "performance diverse natural language processing": 121413, "natural language processing tasks report": 111827, "designed enhance capabilities large language": 39864, "tasks including named entity recognition": 162565, "large language models llms lack": 88259, "agents based large language models": 6547, "using large language models user": 174393, "paper introduce large language model": 118993, "introduce large language model llmbased": 79998, "large language models llms context": 88071, "advancement capabilities large language models": 5833, "large language models llms triggered": 88453, "large language models llms strong": 88425, "question generation qg natural language": 134885, "multimodal large language models demonstrated": 110690, "language models demonstrated impressive performance": 84350, "language models decoderonly large language": 84332, "models decoderonly large language models": 105861, "language models llms emerged pivotal": 85065, "large language models llms abilities": 87985, "claimed large language models llms": 23832, "especially emergence large language models": 50465, "language models llms significantly transformed": 85546, "llms demonstrated impressive capabilities various": 94854, "demonstrated impressive capabilities various natural": 38695, "impressive capabilities various natural language": 73279, "capabilities various natural language processing": 20248, "natural language processing tasks despite": 111815, "latest generative large language models": 89549, "rely large language models llms": 139866, "language models llms shown effective": 85517, "generative models including generative adversarial": 65495, "rapid evolution large language models": 135885, "large language models llms provided": 88359, "paper explores use large language": 118945, "explores use large language models": 55440, "efficient finetuning large language models": 46621, "size context window extended finetuning": 151976, "context window extended finetuning result": 30961, "longcontext language modeling understanding tasks": 97511, "language models llms excel tasks": 85101, "widespread adoption large language models": 178456, "adoption large language models llms": 5642, "large language models llms commonplace": 88061, "foundation models including large language": 60774, "framework leveraging large language model": 61291, "humanai collaboration large language models": 71110, "instruction tuning datasets evaluation benchmarks": 78083, "genai large language models llm": 62878, "visual question answering vqa techniques": 177281, "systems particularly large language models": 160523, "large language models llms extract": 88164, "large language models llms conduct": 88065, "introduce novel retrieval augmented generation": 80072, "employing large language models llms": 47934, "field natural language processing recent": 58219, "natural language processing recent studies": 111799, "generated large language model llm": 63901, "large language models llms suggested": 88433, "open large language models llms": 116249, "results large language models llms": 143557, "large language models llms handle": 88205, "large language models introduce new": 87917, "knowledge editing large language models": 81907, "knowledge fusion large language models": 82021, "language models training large language": 86315, "large language models llms scratch": 88398, "code model weights data public": 25008, "large language models electronic health": 87743, "language models electronic health records": 84421, "large language models llms dynamic": 88115, "llms demonstrated exceptional performance various": 94840, "specifically propose novel approach called": 154272, "capabilities advanced large language models": 19769, "information extraction named entity recognition": 76432, "performance generative large language models": 121588, "multimodal large language model based": 110684, "large language models mllms significant": 88529, "language model vision language model": 83956, "extensive experiments demonstrate superior performance": 55833, "technology large language models llms": 164149, "comprehension capabilities large language models": 27887, "facilitated recent advancements large language": 56670, "large language models llms relatively": 88377, "reasoning multimodal large language models": 136994, "multimodal large language models large": 110692, "language models llms increasingly deployed": 85262, "model direct preference optimization dpo": 103469, "language models achieve high accuracy": 84061, "education large language models llms": 45555, "large language models llms traditionally": 88445, "capabilities large language model llm": 19988, "large language model llm experiments": 87400, "multimodal chainofthoughts reasoning large language": 110602, "chainofthoughts reasoning large language models": 21557, "llms demonstrated impressive performance natural": 94856, "demonstrated impressive performance natural language": 38703, "large language model llm developed": 87394, "large multimodal models recent advancements": 88950, "tasks question answering information extraction": 163062, "encoders large language models llms": 48490, "large language models past year": 88593, "explainability large language models llms": 54729, "language models llms demonstrated promising": 85020, "models advancement large language models": 105294, "analysis recent years large language": 9118, "natural language processing software engineering": 111807, "chatbots powered large language models": 22631, "extreme compression large language models": 56420, "networks large language models llms": 112769, "based largescale pretrained language models": 15917, "large language models llms captured": 88045, "language processing nlp witnessed significant": 86598, "advances performance large language models": 6051, "masked language modeling mlm objective": 99307, "incontext learning pretrained language models": 74960, "experiments demonstrate superiority proposed method": 54242, "language models llms emerged transformative": 85069, "significant stride artificial general intelligence": 150886, "challenges point promising research directions": 21998, "expanding role large language models": 53704, "language models mllms shown impressive": 85762, "models mllms shown impressive abilities": 108212, "proprietary large language models llms": 132520, "finance large language models llms": 58554, "retrieval augmented generation rag approach": 144005, "explores potential large language models": 55419, "impact large language models llms": 72679, "leverage reasoning capabilities large language": 91654, "large language models trained massive": 88816, "large language model llm facilitate": 87402, "utility large language models llms": 174960, "large language models llms wide": 88476, "language models llms wide range": 85648, "models llms wide range tasks": 108033, "chat large language models llms": 22542, "reasoning large language models reasoning": 136957, "deployment large language models llms": 39283, "recommendation leveraging large language models": 138211, "large language models llms recommendation": 88375, "results realworld datasets validate effectiveness": 143730, "realworld datasets validate effectiveness proposed": 136439, "models current large visionlanguage models": 105834, "machine learning large language models": 98037, "preliminary study using large language": 126150, "using large language models software": 174390, "models rapid evolution large language": 108787, "large language models llms epitomized": 88137, "language models llms recently garnered": 85469, "models llms recently garnered significant": 107809, "language models llms demonstrated considerable": 85012, "capability large language model llm": 20324, "demonstrate proposed framework achieves stateoftheart": 38504, "use large language models chatgpt": 172708, "tasks natural language inference nli": 162839, "intelligence ai machine learning ml": 78754, "problem large language models llms": 128303, "purpose large language models llms": 133749, "models llms hold significant promise": 107530, "retrieval augmented generation rag emerges": 144006, "augmented generation rag emerges promising": 14350, "bias large language models large": 18150, "empowered large language models llms": 48003, "language models llms shown powerful": 85527, "sst": 154665, "rnnbased": 145117, "broadcast": 19195, "cts": 33915, "milestones": 102213, "918": 1769, "871": 1721, "40gb": 1198, "knowledgegraphs": 82550, "distantly": 43129, "multiinstance": 110437, "wolf": 178596, "eloquent": 47101, "shortrange": 150047, "poda": 123690, "pointergenerator": 123732, "infinitely": 76174, "selfsimilarity": 148049, "intralayer": 79826, "sustains": 159750, "665": 1490, "632": 1459, "894": 1735, "fan": 57205, "alternating": 8543, "8bit": 1736, "646": 1469, "nonspecific": 114140, "traverse": 169625, "catches": 21080, "bonuses": 18795, "anonymized": 9666, "iri": 80839, "concluded": 28887, "doped": 44663, "kronecker": 82654, "doping": 44664, "lu": 97971, "hypothetically": 71644, "pcs": 120626, "volunteers": 177551, "pod": 123689, "diet": 41602, "discriminators": 42859, "unwritten": 172320, "endofsequence": 48709, "eos": 50133, "clinicalbert": 24380, "alternates": 8542, "600k": 1429, "gmm": 66134, "probabilistically": 128098, "plagued": 123195, "ebms": 45373, "ebm": 45372, "rough": 145629, "047": 37, "webcrawled": 178031, "cert": 21363, "enigma": 49585, "semeval2020": 148332, "9606": 1811, "contextindependent": 30994, "graphstructured": 67656, "factorize": 56782, "gshard": 68092, "elegant": 47005, "harvard": 68845, "flickr8k": 59845, "feeds": 57839, "premium": 126160, "told": 166907, "glancing": 66070, "interdependency": 79374, "815": 1680, "acute": 4493, "zhang": 180382, "largestscale": 89450, "522": 1344, "languagegeneration": 86913, "gedi": 62851, "negativity": 112546, "congruent": 29455, "thermodynamics": 166119, "theorizing": 166069, "reservoir": 142297, "meaningmaking": 99808, "mrg": 110260, "apparently": 10216, "roc": 145447, "preconditions": 125637, "confounders": 29431, "gin": 65801, "bartbased": 15587, "folds": 60205, "taxi": 163565, "wellunderstood": 178194, "qwk": 135378, "bernoulli": 17503, "sessionlevel": 149111, "connectionist": 29492, "aed": 6289, "524": 1345, "unobserved": 172065, "146": 392, "298": 918, "temporality": 164290, "scenespecific": 146757, "polyjuice": 123919, "substitutions": 158166, "syllable": 159792, "1489": 394, "nwp": 115089, "sparselyactivated": 153751, "instabilities": 77784, "serverless": 149027, "autotuning": 15027, "78x": 1613, "adams": 4507, "momentum": 110041, "5times": 1418, "packs": 118497, "accelerations": 2812, "deconstruction": 37651, "planned": 123228, "signature": 150546, "briefs": 19111, "345": 1040, "resonance": 142359, "prefrontal": 126107, "blanks": 18673, "ptuning": 133535, "perturb": 122746, "noncontrolled": 114029, "mesh": 100535, "waveforms": 177755, "317": 1001, "middleware": 102194, "partitioned": 120278, "throughputs": 166311, "underestimate": 170758, "primed": 127831, "hugely": 70532, "transformersbased": 169373, "singlevalue": 151908, "crystal": 33896, "semiconductor": 148348, "pronoun": 131573, "attentional": 14012, "outofthe": 117549, "alexnet": 7762, "hearing": 69026, "1267": 304, "spawned": 153824, "tension": 164351, "moores": 110103, "3dimensional": 1156, "gcns": 62846, "gcn": 62845, "dailydialog": 34520, "humanbot": 71144, "markets": 99241, "outpacing": 117560, "shortest": 150040, "hash": 68851, "hashes": 68853, "sacrifices": 145789, "retrains": 143984, "poi": 123699, "accent": 2818, "geolm": 65721, "tencent": 164297, "multiplatform": 110828, "revisited": 144613, "246x": 819, "costsensitive": 32852, "planet": 123225, "episode": 50142, "456": 1244, "pyx": 133862, "basics": 16449, "notations": 114296, "variances": 175615, "likes": 92474, "terabytes": 164362, "tokenbytoken": 166752, "dates": 37223, "taming": 161024, "dm": 43790, "extendable": 55649, "entityoriented": 49953, "wires": 178551, "oneonone": 115981, "meetings": 100292, "graphaware": 67588, "destructive": 40259, "nonmarkovian": 114102, "selfdisclosure": 147979, "rapport": 135944, "grafting": 67434, "graft": 67432, "born": 18872, "0613": 55, "overparameterization": 118395, "5050": 1324, "epic": 50137, "traded": 167550, "sa": 145782, "interleaves": 79499, "ablative": 2452, "finely": 58904, "ooo": 116190, "singlegpu": 151887, "expeditious": 53769, "cycleconsistency": 34482, "421": 1211, "dolphins": 44057, "prototypicality": 132607, "10times": 213, "rankbased": 135781, "kd": 81419, "hinton": 70180, "aspectthe": 12985, "jurassic": 81356, "distilgpt2": 43134, "distilroberta": 43197, "21k": 763, "biome": 18532, "ecological": 45378, "tagger": 160888, "heretofore": 69278, "upsampling": 172387, "downsampling": 44691, "hourglass": 70451, "templating": 164244, "verbalizing": 176450, "researchfriendly": 142280, "extendibility": 55669, "messy": 100552, "attends": 13827, "stretch": 156291, "multicontext": 110367, "autoregression": 14969, "openaigpt": 116387, "subquadratic": 157927, "hindienglish": 70166, "increment": 75465, "multidevice": 110370, "lg": 92012, "conundrum": 31680, "eliminative": 47092, "overparametrization": 118399, "machinetranslation": 98173, "risen": 144915, "smcalflow": 152490, "002": 4, "permit": 122490, "acrosstheboard": 4290, "4shot": 1283, "182": 523, "bake": 15485, "529": 1347, "wrapping": 179691, "forced": 60361, "winogrande": 178540, "27x": 886, "revisits": 144616, "singleword": 151909, "subsymbolic": 158174, "fixation": 59704, "classconditioned": 23901, "928": 1777, "2635": 865, "decisive": 37488, "rome": 145577, "zeroshort": 180109, "gpt2xl": 66628, "sgpt": 149756, "bucket": 19265, "languageindependent": 86921, "multiaspect": 110348, "timecomplexity": 166534, "014": 16, "hyperformer": 71583, "humandesigned": 71165, "hp": 70471, "13m": 370, "multiplicity": 111120, "chef": 23555, "onion": 116074, "confound": 29430, "avaliable": 15230, "pleasantness": 123547, "singly": 151910, "nonsemantic": 114129, "weat": 177983, "coarser": 24632, "homomorphic": 70326, "projective": 130102, "eyetracking": 56474, "wraps": 179692, "134x": 347, "adolphs": 5564, "outpaced": 117559, "280b": 894, "zeng": 180063, "cdialgpt": 21297, "eva20": 50873, "192": 540, "pluggable": 123667, "statisticsbased": 155524, "hurt": 71551, "richresource": 144824, "interannotator": 79359, "roman": 145574, "lid": 92057, "harmonize": 68765, "wrongly": 179805, "penalize": 120696, "70k": 1543, "cup": 33992, "francisco": 61533, "intricately": 79868, "moderatelysized": 109768, "195": 543, "datastore": 37208, "depart": 39124, "weightbased": 178085, "archetypes": 12103, "conflated": 29405, "flanpalm": 59747, "542": 1366, "nontarget": 114143, "encoderdecoderbased": 48469, "gamma": 62593, "attributerelated": 14101, "industryscale": 75891, "stuff": 157727, "labelguided": 82751, "copa": 32098, "850": 1710, "15000": 421, "ssl": 154660, "cm3": 24606, "applicationdependent": 10401, "counteracting": 32934, "commonality": 26217, "778": 1607, "selfguided": 147999, "carrier": 20830, "goodquality": 66305, "stratified": 156222, "terrible": 164500, "403": 1188, "stepaware": 155692, "581": 1394, "apex": 10148, "mixedprecision": 102740, "industriallevel": 75863, "estimations": 50763, "unpredictably": 172102, "viceversa": 176660, "vectorized": 176400, "discharge": 42673, "icu": 71710, "camps": 19703, "worried": 179647, "crosscutting": 33616, "godel": 66227, "mvp": 111352, "profitable": 129706, "reconsider": 138291, "midsized": 102197, "nlms": 113676, "statisticalbased": 155515, "inquires": 77459, "pursues": 133781, "silence": 151190, "sluggish": 152267, "epsilonapproximate": 50153, "twopart": 170243, "999": 1838, "dstc7": 45065, "rc": 136095, "784": 1610, "600x": 1430, "talks": 161020, "provoked": 133415, "commentary": 26058, "conserving": 29558, "921": 1773, "supreme": 159406, "nllb": 113674, "absolutely": 2623, "metaai": 100559, "sacrebleu": 145786, "resume": 143944, "716": 1550, "10000x": 175, "equalsize": 50168, "unpacking": 172068, "mountain": 110213, "perceiver": 120767, "resampler": 141542, "complexitybased": 27708, "100bscale": 178, "resultant": 143073, "regularizes": 138997, "underpins": 170899, "preconfigured": 125639, "publicavailable": 133620, "locus": 97311, "seeded": 147646, "textithuman": 165647, "timesaving": 166613, "trumps": 169823, "cda": 21295, "excerpts": 52850, "meaningless": 99807, "outbreak": 117438, "renyi": 140392, "bertsized": 17649, "medmcqa": 100267, "biolinkbert": 18507, "550": 1374, "pen": 120694, "beit3": 16752, "bt": 19262, "348": 1043, "bcq": 16494, "valuealigned": 175509, "1556": 432, "traditions": 167728, "classificationbased": 24141, "interestingness": 79414, "multicultural": 110369, "instantiating": 77858, "dss": 45063, "tempo": 164245, "clipping": 24424, "linearised": 92985, "deeplearningbased": 37855, "18k": 530, "chrf2": 23745, "115": 245, "nonequivalent": 114047, "permuted": 122495, "prophet": 131678, "farsi": 57245, "purified": 133730, "banking77": 15540, "opt13b": 116915, "gamebased": 62576, "sva": 159751, "assert": 13025, "torque": 167407, "defected": 37890, "machinetranslated": 98171, "certificate": 21430, "midlevel": 102196, "ada": 4502, "multicast": 110355, "harry": 68843, "potter": 125157, "alibaba": 7987, "fairs": 57072, "9x": 1847, "palms": 118672, "shareable": 149805, "traininginference": 168838, "pal": 118650, "ag": 6382, "ramifications": 135507, "rlprompt": 145109, "fec": 57612, "sari": 146146, "startup": 154975, "lowconfidence": 97796, "weakens": 177939, "exactmatch": 52347, "pass100": 120331, "decomposer": 37622, "registering": 138944, "cal": 19601, "reacted": 136142, "queryfocused": 134646, "2023s": 723, "bought": 18902, "melody": 100309, "finnish": 59638, "nontrivially": 114160, "sitting": 151926, "centre": 21356, "sphere": 154543, "rent": 140391, "azure": 15392, "crt": 33745, "22000": 776, "geval": 65786, "inputagnostic": 77373, "attracts": 14069, "commence": 26047, "opt66b": 116918, "reinvigorated": 139133, "nonvisual": 114167, "selfimitation": 148002, "ast": 13581, "voxpopuli": 177561, "deduced": 37685, "686": 1506, "751": 1581, "2373": 801, "simplifications": 151592, "noninteractive": 114081, "firstperson": 59668, "halting": 68470, "wellformedness": 178161, "191": 538, "regressors": 138970, "cosmo": 32641, "annotates": 9502, "shining": 149944, "svd": 159755, "babi": 15396, "anglocentric": 9420, "incapacity": 74299, "restriction": 143008, "750": 1579, "timesteps": 166625, "659": 1480, "eyegaze": 56471, "adequacy": 5504, "arabert": 12061, "att": 13624, "rm": 145111, "dsp": 45062, "839": 1699, "contemporaneous": 30406, "remainder": 139956, "composers": 27797, "drama": 44878, "berttextbase": 17652, "selfreport": 148044, "videosharing": 176792, "mpp": 110249, "advised": 6275, "inactive": 74273, "attaches": 13627, "214": 755, "hazardous": 68895, "concentration": 28580, "dennett": 39065, "recruited": 138332, "302": 982, "reversed": 144464, "lowerresource": 97853, "neuronlevel": 113016, "ingested": 76925, "mediocre": 100248, "001": 3, "manuallywritten": 99116, "stabilized": 154682, "appeals": 10223, "22times": 786, "customise": 34391, "109": 203, "meteoric": 100613, "selfexplanatory": 147995, "dictionarybased": 41589, "rollback": 145570, "entityaware": 49949, "pillar": 122985, "steppingstone": 155711, "outlying": 117512, "outweigh": 118166, "732": 1562, "vega": 176414, "transductive": 168892, "selfcalibrated": 147946, "pfms": 122785, "pfm": 122784, "invariances": 80321, "utterancelevel": 175251, "odyssey": 115611, "sidesteps": 150510, "rapidlygrowing": 135943, "borrowing": 18875, "6000": 1427, "insensitivity": 77468, "matchingbased": 99497, "mimo": 102276, "centralizing": 21355, "chatglm6b": 22655, "sincerely": 151768, "wechat": 178055, "visiolinguistic": 176884, "opted": 116920, "1148": 244, "waveform": 177754, "vectorquantized": 176401, "vqgan": 177587, "framelevel": 60902, "generalpurposed": 63375, "248": 821, "trainedfromscratch": 168131, "16gb": 476, "syntaxes": 159929, "pac": 118485, "spearmans": 153844, "cameras": 19698, "modelname": 105136, "levenshtein": 91561, "abstention": 2631, "presumed": 126722, "yahoo": 179870, "lightspeed": 92163, "exponent": 55527, "compels": 27110, "predicament": 125669, "llmsaugmented": 97038, "presentday": 126508, "multicomponent": 110366, "770": 1600, "mediumsize": 100260, "0514": 44, "uid": 170569, "personachat": 122545, "illusory": 72142, "humanproduced": 71325, "paradoxically": 119546, "chatgptassisted": 23459, "400k": 1186, "unverifiable": 172314, "discouraging": 42698, "rearranging": 136552, "nlibased": 113673, "tailormade": 160955, "dsa": 45058, "reconfigure": 138289, "twisted": 170224, "ocs": 115600, "warehouse": 177698, "co2e": 24621, "dsas": 45059, "lively": 93262, "fp32": 60873, "bct": 16495, "chatdoctor": 22651, "processingnlp": 129360, "summarily": 158787, "recommenders": 138279, "spanlevel": 153666, "clicks": 24296, "legality": 91323, "mysterious": 111362, "inventories": 80334, "757": 1585, "synthesizability": 159982, "kolmogorov": 82639, "traintime": 168851, "240times": 813, "sacrificed": 145788, "unheard": 171686, "organisation": 117278, "height": 69059, "migrated": 102202, "migration": 102203, "queryable": 134639, "926": 1775, "columbus": 25803, "overconfidently": 118325, "holdout": 70262, "559": 1378, "restful": 142989, "reorganizing": 140397, "calendar": 19619, "communicationintensive": 26428, "twoshot": 170250, "queryanswer": 134640, "4870": 1266, "selfinformation": 148008, "httpsgithubcomnlpxucanwizardlm": 70489, "ecologically": 45379, "glaring": 66071, "privacysensitive": 128039, "noninstructiontuned": 114079, "audiocaps": 14204, "ldm": 89723, "querys": 134668, "herd": 69277, "sizable": 151954, "societally": 152700, "entangled": 49778, "tunning": 170152, "exemplifies": 52997, "nway": 115088, "optimised": 116969, "widelystudied": 178415, "haystack": 68894, "3hop": 1159, "inferenceonly": 76142, "textitiid": 165649, "discerned": 42665, "334": 1027, "inflexibility": 76182, "lmgenerated": 97081, "braincomputer": 18948, "bci": 16493, "frontal": 61641, "towers": 167445, "mpc": 110244, "exempt": 53000, "sbic": 146205, "scheduler": 146760, "queues": 135329, "iclenabled": 71704, "cg": 21442, "chatgptannotated": 23458, "regenerate": 138909, "offerings": 115778, "belowpar": 16807, "p5": 118484, "13x": 371, "userpersonalized": 173568, "closeended": 24501, "multilinguality": 110573, "dataindependent": 36061, "cnl": 24610, "993": 1834, "recllm": 138034, "positivenegative": 124319, "chineseoriented": 23674, "rivaling": 145034, "modelplm": 105139, "aptly": 12054, "opaqueness": 116196, "imitates": 72576, "unsurprisingly": 172285, "multisubject": 111196, "130b": 338, "outofenglish": 117546, "promptconditioned": 130805, "doremi": 44665, "dro": 45028, "effortful": 46878, "hit1": 70229, "flowers": 59880, "flower": 59879, "musician": 111321, "lima": 92477, "946": 1790, "futureproof": 62417, "pseudocode": 133481, "1238": 289, "docstrings": 43803, "transduction": 168891, "172": 489, "selfinstruction": 148011, "multiuser": 111287, "delineation": 38062, "emphlocal": 47664, "interdocument": 79383, "nvidias": 115087, "h100": 68303, "fp": 60872, "18x": 532, "abduction": 1869, "modelasaservice": 104921, "asymptotically": 13600, "xi": 179832, "joins": 81245, "554": 1376, "2565": 849, "dimensiondependent": 42322, "overemphasize": 118330, "disposal": 43081, "httpsgithubcomzjunlpeasyedit": 70491, "instructiondriven": 78167, "conclusive": 28914, "computerassisted": 28520, "openloop": 116535, "lexicostatistics": 92009, "contextsensitivity": 31066, "subpopulation": 157923, "fingerprinting": 59620, "sysname": 160097, "bear": 16509, "synthesised": 159980, "510": 1334, "979": 1823, "queryrelevant": 134666, "800k": 1666, "lowfrequency": 97863, "corroborated": 32620, "clipped": 24423, "hessian": 69285, "preconditioner": 125636, "cka": 23815, "arab": 12060, "unfairness": 171639, "dancing": 34541, "rearrange": 136550, "dots": 44672, "naming": 111436, "ced": 21300, "television": 164192, "allies": 8318, "obtainable": 115510, "ordinal": 117271, "excited": 52866, "mi": 102169, "closedworld": 24500, "omitting": 115953, "editable": 45435, "bestfinetuned": 17770, "indicative": 75666, "deferral": 37922, "replicable": 140488, "modelsllm": 109749, "tennis": 164340, "machineinterpretable": 98154, "arsenal": 12540, "hobbies": 70239, "relaxation": 139430, "night": 113635, "contentindependent": 30658, "randomaccess": 135551, "earliest": 45238, "20th": 743, "garg": 62770, "knowledgegraphbased": 82549, "unwanted": 172317, "marries": 99282, "betterinformed": 18075, "formalisation": 60521, "implementable": 72830, "selflearner": 148016, "entailmentbased": 49775, "differentiator": 42114, "envisage": 50124, "aar": 1859, "zerothorder": 180380, "inplace": 77205, "80gb": 1671, "divergencebased": 43445, "planguided": 123227, "nyt": 115090, "modelpredicted": 105142, "skin": 152197, "lesion": 91424, "756": 1584, "lpms": 97947, "exchangeability": 52861, "prognosis": 129720, "crossroads": 33700, "705": 1536, "bluebert": 18756, "ostensibly": 117431, "reachability": 136121, "crossed": 33634, "denoiser": 39068, "pddl": 120630, "smilesbased": 152494, "covariate": 33030, "skipgram": 152201, "intercore": 79372, "semisynthetic": 148369, "negotiating": 112568, "undeniably": 170754, "buried": 19527, "unexplainable": 171620, "reversible": 144470, "inserts": 77475, "stablelm": 154703, "testsuite": 164800, "enablers": 48155, "multicharacter": 110356, "protects": 132572, "orin": 117412, "nodelevel": 113968, "preview": 127562, "trackers": 167530, "likelihoodfree": 92443, "042": 34, "catered": 21164, "prepositions": 126178, "amazons": 8625, "laptops": 87173, "parsimonious": 119949, "vicuna7b": 176677, "stringbased": 156328, "trustfulness": 169844, "enact": 48366, "pulls": 133714, "useragent": 173535, "unsound": 172204, "syllogism": 159794, "nls": 113934, "mrs": 110264, "forwarded": 60671, "debatable": 37282, "biochemical": 18499, "biochemistry": 18500, "preferencebased": 126030, "prism": 127981, "alpacas": 8520, "jurisprudence": 81359, "overload": 118373, "s3": 145781, "logisticregression": 97414, "knee": 81694, "diegetic": 41600, "deficits": 37929, "syllables": 159793, "rot": 145611, "segmentlevel": 147758, "precisions": 125625, "nonacceptable": 114012, "flavors": 59773, "284": 898, "346": 1041, "oneforall": 115975, "crossreferencing": 33699, "patternexploiting": 120513, "rectifies": 138339, "currentgeneration": 34306, "voicebased": 177523, "performanceenhanced": 122327, "technologys": 164179, "athletes": 13607, "reconciles": 138287, "finitesample": 59634, "userguided": 173564, "finelevel": 58903, "lowbandwidth": 97794, "collectives": 25775, "384": 1098, "ckg": 23816, "suboptimally": 157919, "ea": 45222, "adaptor": 4795, "paraphrasings": 119925, "peerreviewed": 120670, "paraphraser": 119911, "movielens1m": 110232, "acl": 4244, "rephrasings": 140452, "coworkers": 33120, "587": 1396, "290": 910, "rigidly": 144848, "fictive": 58109, "profits": 129707, "audiolm": 14208, "pi": 122957, "generalists": 63101, "docs": 43802, "negates": 112501, "postings": 124505, "stopwords": 155844, "architects": 12106, "habits": 68306, "digitalization": 42302, "regrettably": 138973, "maternity": 99519, "overestimation": 118333, "mle": 102798, "310": 995, "recsys": 138337, "seekers": 147663, "girl": 65802, "cvs": 34460, "ppobased": 125375, "deprecated": 39317, "2154": 758, "logarithm": 97318, "expenditure": 53770, "asic": 12831, "94x": 1794, "1344": 346, "possessed": 124356, "ifs": 72061, "vat": 176369, "semanticaware": 148279, "lighting": 92159, "multiissue": 110438, "negotiators": 112574, "negotiations": 112573, "salary": 145916, "stepgame": 155707, "sinc": 151767, "finegained": 58847, "substructures": 158171, "metainformation": 100572, "collie": 25783, "grammarbased": 67448, "gemm": 62870, "2540": 845, "landing": 83085, "proceeds": 128719, "spotlighting": 154592, "emphtext": 47665, "finitestate": 59635, "highefficiency": 69572, "demography": 38213, "caste": 21040, "profitability": 129705, "resumes": 143946, "medias": 100124, "commences": 26048, "amalgamating": 8608, "nonzero": 114169, "composability": 27784, "harmonious": 68763, "discretize": 42826, "stabilization": 154680, "lightning": 92161, "multipleturn": 111108, "httpswwwcluebenchmarkscom": 70492, "surroundings": 159591, "disregard": 43088, "fpga": 60874, "inaugural": 74291, "tpr": 167490, "mandatory": 98908, "068": 61, "modulebased": 109968, "waterfall": 177744, "univariate": 171891, "modellevel": 105127, "iso": 80872, "subjectively": 157865, "incisive": 74320, "knowledgeinformed": 82554, "sep": 148687, "reproducibly": 141025, "promptmodel": 131139, "complying": 27728, "thrive": 166305, "chomskys": 23721, "14times": 399, "295k": 915, "deplot": 39191, "superfluous": 158975, "321": 1009, "388": 1102, "textbfevaluation": 165606, "shepherd": 149896, "5387": 1356, "restructure": 143015, "dyslexia": 45220, "fragmented": 60895, "schemabased": 146773, "demonstrationbased": 38987, "summarybased": 158953, "frequentlyused": 61630, "6k": 1520, "echoing": 45377, "devil": 41322, "platypus": 123421, "topping": 167402, "25k": 853, "wellgrounded": 178162, "swim": 159777, "zsp": 180398, "underperformed": 170886, "memos": 100489, "intensifies": 78991, "restores": 142995, "flagged": 59734, "contaminated": 30398, "postedits": 124487, "a2c": 1855, "54k": 1370, "vladapter": 177438, "337": 1031, "dominates": 44652, "kickstart": 81655, "userinput": 173565, "escalates": 50415, "lapses": 87171, "233": 797, "foremost": 60395, "impurity": 74243, "centroid": 21358, "llama27bchat": 93385, "timestamp": 166621, "uptick": 172396, "kqa": 82653, "gray": 67675, "blogs": 18738, "312": 996, "056": 48, "textitlarge": 165650, "datacenter": 36029, "virtualized": 176875, "laplace": 87170, "discerns": 42672, "affirmatively": 6340, "appraisal": 10933, "voluminous": 177549, "lucene": 97972, "304": 984, "denser": 39115, "sides": 150509, "openstreetmap": 116710, "osm": 117429, "jais": 81194, "arabiccentric": 12069, "cautions": 21278, "openform": 116516, "standout": 154923, "discretization": 42825, "impairing": 72777, "data2vec": 35981, "affirming": 6342, "piqa": 123117, "resemblance": 142282, "v15": 175271, "optimizationbased": 117052, "textitalignment": 165642, "rrhf": 145663, "ba": 15393, "unnoticed": 172061, "vivid": 177425, "discounted": 42693, "epc": 50136, "aia": 7327, "manifolds": 98922, "2030": 727, "workaround": 179371, "reweighted": 144727, "398": 1114, "signed": 150548, "broadens": 19201, "nominal": 114010, "323": 1011, "841": 1702, "rewind": 144729, "misclassified": 102470, "173times": 491, "macroaveraged": 98180, "interferes": 79481, "installed": 77792, "synopsis": 159884, "recollection": 138182, "alipay": 8276, "llminduced": 94215, "downsampled": 44690, "condensing": 28942, "interrelated": 79748, "publiclyreleased": 133685, "2l": 936, "hellaswag": 69073, "itrelated": 81169, "collating": 25650, "humanvalidated": 71505, "948": 1792, "mer": 100518, "nsfw": 114785, "150000": 422, "erupted": 50411, "farther": 57246, "concerningly": 28757, "mediumscale": 100259, "refactored": 138638, "targetdomain": 161123, "promptgeneration": 130847, "rubert": 145681, "8192": 1683, "3gb": 1157, "deepl": 37851, "cyclic": 34485, "cyclically": 34486, "trex": 169732, "lagrange": 83064, "grained": 67439, "unguided": 171683, "imbued": 72566, "attuned": 14151, "cultivate": 33939, "cognizant": 25495, "unimaginable": 171785, "expertdriven": 54603, "7b13b": 1641, "multivalued": 111288, "defeasible": 37882, "aif": 7387, "furthest": 62181, "assessor": 13309, "drafted": 44869, "aroused": 12503, "connectors": 29503, "qformers": 133944, "16b": 474, "fixations": 59705, "401": 1187, "4135": 1205, "bleu1": 18691, "birthday": 18596, "respondent": 142602, "1015": 191, "shaky": 149759, "alpaca7b": 8515, "trapped": 169614, "unrolling": 172134, "sensitivities": 148450, "biomarker": 18530, "electroencephalographic": 46985, "routers": 145646, "underrepresent": 170900, "assertiveness": 13033, "neuro": 112997, "counterexample": 32937, "smt": 152502, "z3": 180057, "underserved": 170974, "predominance": 125970, "shap": 149772, "grappling": 67663, "nonspecialists": 114139, "rlcf": 145087, "dungeons": 45094, "dragons": 44875, "dd": 37256, "spacy": 153640, "llmsthe": 97044, "illuminates": 72137, "explainers": 54760, "textbfexplainable": 165607, "42k": 1216, "quadruple": 133970, "heldin": 69067, "titled": 166645, "279": 882, "alignmentbased": 8263, "solvability": 153089, "intractability": 79822, "iclr": 71705, "574": 1389, "validator": 175387, "hosts": 70434, "lingering": 92997, "warp": 177718, "slic": 152213, "counterargument": 32935, "caliber": 19620, "combo": 26000, "794": 1617, "763": 1594, "halve": 68471, "comprehends": 27872, "urdu": 172410, "attentionfree": 14018, "nearestneighbor": 112099, "deems": 37707, "anonymization": 9665, "rewarded": 144716, "tp": 167487, "llmagent": 94106, "everpresent": 52155, "biasvariance": 18328, "appraising": 10934, "618": 1446, "attainable": 13755, "postpruning": 124516, "selfrepair": 148043, "visualisations": 177347, "749": 1572, "morphing": 110129, "humandefined": 71163, "l0": 82665, "221": 779, "offsets": 115899, "12times": 315, "1240": 292, "surges": 159443, "oblivious": 115313, "striven": 156333, "compartmentalized": 27088, "moca": 102911, "mail": 98215, "violating": 176845, "underwhelming": 171578, "ring": 144881, "postconditions": 124482, "descriptionbased": 39429, "engendering": 48854, "lossbased": 97704, "relax": 139429, "ideate": 71774, "296": 916, "blocksworld": 18735, "purposedesigned": 133763, "tt": 169921, "disassembly": 42650, "graphlanguage": 67612, "prometheus": 130136, "stateoftheartsota": 155417, "handconstructed": 68499, "hardwired": 68708, "clicking": 24295, "sparking": 153705, "onehot": 115976, "trainfinetune": 168134, "rearranged": 136551, "subsystems": 158175, "tee": 164188, "blessing": 18681, "england": 49024, "reversibility": 144469, "mpt7binstruct": 110253, "falcon7binstruct": 57117, "understudy": 171560, "pasting": 120407, "canary": 19705, "984": 1828, "051": 43, "tricky": 169750, "fallible": 57142, "untouched": 172294, "qualitybased": 134299, "amateurs": 8612, "earlylayer": 45271, "subquadratically": 157929, "iep": 72060, "manipulable": 98923, "dirichlet": 42620, "smps": 152500, "tabula": 160780, "averagely": 15324, "labelaware": 82706, "ger": 65757, "fastevolving": 57307, "guards": 68126, "transmits": 169570, "5064": 1325, "longformer": 97553, "coreasoning": 32184, "chronicles": 23747, "precede": 125561, "precautions": 125560, "humanstyle": 71499, "beamsearch": 16508, "intersectional": 79769, "overestimate": 118331, "mundane": 111302, "elevation": 47030, "structurebased": 156622, "constraintbased": 30058, "153x": 428, "bus": 19534, "degenerating": 37978, "relationbased": 139280, "convex": 32011, "legitimately": 91336, "goyal": 66364, "exchangeable": 52862, "analyzers": 9353, "gpt335": 66785, "leaderfollower": 89799, "integrative": 78698, "rewardbased": 144714, "textbfcontrol": 165605, "rewarddriven": 144715, "ageappropriate": 6399, "younger": 180054, "crosspollination": 33698, "manifestations": 98917, "transformational": 169058, "indeterminate": 75551, "texttopython": 165833, "unachievable": 170613, "zoom": 180395, "pleasant": 123545, "pois": 123783, "unlearn": 171966, "removals": 140355, "explorationexploitation": 55112, "710": 1548, "chicken": 23589, "coop": 32065, "netherlands": 112616, "selfrefiner": 148035, "egs": 46953, "portrayal": 124133, "142": 386, "tb": 163587, "decider": 37355, "multinomial": 110817, "tricked": 169747, "injury": 77123, "subpopulations": 157924, "deteriorated": 40688, "r1": 135379, "762": 1592, "misleadingly": 102511, "37b": 1094, "nlq": 113933, "curator": 34042, "ensemblebased": 49648, "misalign": 102458, "correspondences": 32568, "accompaniment": 2999, "eth": 50786, "818": 1682, "39k": 1116, "24000": 812, "crossvalidation": 33711, "sufficiency": 158476, "fingpt": 59622, "finbench": 58588, "regressions": 138969, "lacuna": 83053, "23m": 803, "gravitates": 67674, "hr": 70476, "cogent": 25427, "biomarkers": 18531, "reannotating": 136546, "arrangement": 12506, "humanpreferred": 71323, "maximise": 99664, "singlechoice": 151884, "holidays": 70291, "geocultural": 65699, "1208": 280, "obviously": 115573, "outer": 117479, "labelefficient": 82746, "selfevolving": 147992, "modelenhanced": 104944, "intelligenceai": 78927, "comprehensibility": 27873, "805": 1668, "846": 1705, "48k": 1268, "nonconflicting": 114026, "erases": 50246, "quadrant": 133960, "612": 1442, "preliminarily": 126111, "rlhfs": 145107, "297": 917, "927": 1776, "precious": 125568, "confounds": 29435, "215": 757, "648": 1471, "3671": 1085, "erode": 50257, "reset": 142299, "2003": 621, "onesentence": 116028, "602": 1431, "980": 1827, "hardwarecentric": 68703, "1020": 193, "overseeing": 118408, "expecting": 53763, "babel": 15395, "670": 1496, "diagnostically": 41392, "leaning": 89949, "storybook": 155905, "narcissistic": 111438, "ego": 46944, "dependable": 39139, "telecommunications": 164189, "crosstalk": 33706, "mits": 102705, "geological": 65723, "snowball": 152519, "inspected": 77675, "uda": 170555, "dataaware": 35983, "newlycreated": 113543, "logging": 97322, "highefficient": 69573, "goodness": 66304, "spare": 153693, "incurred": 75477, "refinery": 138776, "badly": 15472, "214k": 756, "languagemodels": 86927, "nlm": 113675, "closesource": 24546, "extralinguistic": 56399, "transitivity": 169403, "volatility": 177528, "reassessment": 137255, "laid": 83069, "stitching": 155812, "palette": 118651, "onestage": 116041, "assorted": 13544, "logicaware": 97404, "taiwan": 160960, "resonant": 142361, "761": 1591, "erase": 50245, "erasing": 50247, "llmhuman": 94214, "llmbrain": 94180, "assistantstyle": 13439, "categorising": 21131, "089": 87, "605": 1432, "457": 1245, "fineturned": 59618, "sequencebased": 148800, "unequivocally": 171607, "holmes": 70307, "succumb": 158412, "coauthors": 24635, "paradigmatic": 119534, "unions": 171817, "uninformed": 171796, "consequent": 29531, "llama34b": 93392, "mh": 102168, "singletoken": 151902, "rsd": 145672, "cbt": 21288, "constituting": 30017, "attainment": 13762, "multitier": 111251, "noncontiguous": 114028, "15fold": 442, "metamorphic": 100587, "anticipatory": 10124, "billionsized": 18455, "gehman": 62852, "photorealism": 122876, "reconstructions": 138301, "bloat": 18712, "slowing": 152262, "2186": 761, "cds": 21298, "intentdriven": 79025, "reconstructionbased": 138300, "cfp": 21439, "conceive": 28573, "finegrain": 58848, "localglobal": 97261, "stripes": 156331, "thrilled": 166303, "tldr": 166652, "5386": 1355, "happening": 68625, "marathon": 99169, "strife": 156313, "reimplementation": 139030, "mda": 99732, "interrelationships": 79751, "528": 1346, "contiguous": 31155, "21000": 750, "957": 1804, "sift": 150511, "humanfacing": 71178, "cllm": 24430, "wasting": 177739, "tokenss": 166904, "citizens": 23807, "exascale": 52735, "remake": 140111, "2249": 783, "347": 1042, "cads": 19599, "mixtral8x7b": 102749, "wp": 179688, "nonprogrammers": 114122, "enigmatic": 49586, "fpgabased": 60875, "hls": 70237, "relocate": 139816, "llmsimulated": 97041, "wont": 178608, "biobjective": 18497, "epidemiology": 50141, "informationrich": 76855, "llamav27b": 93407, "globallocal": 66114, "highvalue": 70125, "389": 1103, "underutilization": 171572, "accumulating": 3093, "baidu": 15483, "textitsafety": 165654, "sem": 148092, "tropes": 169794, "2based": 922, "multipliers": 111123, "6b13b": 1518, "thirty": 166171, "notoriety": 114331, "defeasibility": 37881, "defeaters": 37884, "causeeffect": 21258, "condenses": 28941, "braininspired": 18951, "431": 1219, "claude21": 24242, "spells": 154535, "barack": 15546, "obama": 115095, "diacritical": 41351, "keypoint": 81602, "keypoints": 81603, "nonsignificant": 114136, "derivative": 39338, "leniency": 91411, "legible": 91330, "conviction": 32026, "2070": 735, "pomp": 123931, "pivotbased": 123160, "substantiation": 158154, "fuelled": 61706, "693": 1512, "181": 522, "nshot": 114787, "instructionoutput": 78197, "2035": 728, "transactions": 168872, "merchants": 100519, "asl": 12898, "gt": 68104, "how2": 70469, "38x": 1105, "domainspecificity": 44638, "caps": 20560, "nonbinary": 114019, "drafter": 44870, "354": 1065, "affinity": 6336, "12m": 314, "winners": 178533, "portrayals": 124134, "tpot": 167489, "wield": 178487, "gujarati": 68290, "freshness": 61635, "rolebased": 145550, "substrings": 158170, "hotspots": 70447, "servicelevel": 149073, "endeavour": 48704, "improperly": 73396, "prolex": 130118, "surged": 159440, "superpositions": 159081, "bita": 18598, "27times": 885, "honing": 70339, "championship": 22328, "sllms": 152240, "stanfords": 154941, "mixturesofexperts": 102769, "port": 124118, "explanationconsistency": 54806, "sparrows": 153714, "multitype": 111286, "unfriendly": 171680, "localityenhanced": 97266, "downloads": 44687, "unearthing": 171605, "malaysia": 98827, "unsatisfactorily": 172139, "mole": 110026, "co2": 24620, "interconnectivity": 79371, "aces": 3567, "spanbased": 153660, "iterates": 81098, "producers": 129518, "communicationheavy": 26427, "affinities": 6335, "weaver": 177989, "pseudorandom": 133484, "numpy": 115073, "stackexchange": 154719, "siloed": 151195, "a10080gb": 1853, "appreciate": 10935, "dovetails": 44683, "tons": 166924, "tripadvisor": 169772, "ibm": 71646, "intentbased": 79024, "sst new": 154666, "confidence models": 29357, "degrade rapidly": 37997, "representations contextual": 140784, "representations produced": 140867, "stateoftheart taskspecific": 155387, "requiring finegrained": 141489, "taskspecific transformer": 163556, "compare language": 26686, "integrate large": 78493, "advantage existing": 6105, "alternative uses": 8588, "procedures findings": 128713, "effective new": 45831, "new explanations": 113185, "techniques effective": 163874, "transformers transformer": 169366, "rnnbased models": 145118, "efficiency recently": 46518, "corpora surprisingly": 32255, "encoding transformer": 48520, "adding additional": 4821, "capture sequential": 20681, "problems average": 128460, "problem previous": 128357, "resolve problem": 142349, "problem methods": 128324, "model tackle": 104715, "distillation model": 43158, "model way": 104885, "significant speedup": 150879, "achieving automatic": 4143, "close human": 24447, "evaluate usefulness": 51124, "task perform": 161609, "perform set": 121034, "close achieved": 24440, "task publicly": 161668, "models performs": 108500, "incorporating pretrained": 75125, "systems framework": 160396, "action prediction": 4333, "task story": 161749, "prediction target": 125868, "helpful suggestions": 69218, "insights strengths": 77650, "consistently high": 29875, "performance provide": 121964, "language representations": 86707, "features explicitly": 57490, "training feature": 168448, "additional annotated": 4921, "annotated language": 9483, "source error": 153440, "implicit linguistic": 72984, "achieving test": 4235, "baselines model": 16351, "experiments source": 54468, "collecting data": 25709, "unlike current": 171994, "speedup wallclock": 154528, "time training": 166522, "parameter budget": 119597, "factor 10": 56775, "modeling modeling": 105052, "model mechanisms": 104077, "corpus annotated": 32276, "annotated text": 9495, "benchmark experiments": 16972, "additionally compare": 5030, "complete sentences": 27287, "knowledge showing": 82400, "distantly supervised": 43130, "linguistic contextual": 93020, "information efficiently": 76376, "types high": 170364, "stateoftheart auc": 155082, "auc score": 14154, "dataset performs": 36455, "learning shows": 90989, "model operates": 104155, "explicit policy": 54949, "wolf et": 178597, "taskoriented dialogues": 161849, "scarcity problem": 146498, "problem support": 128417, "neural dialogue": 112843, "coherence generated": 25514, "limited temporal": 92862, "generic responses": 65667, "outofvocabulary problem": 117557, "problem leading": 128304, "gpt2 demonstrated": 66524, "examine use": 52417, "likelihood objective": 92441, "including bleu": 74436, "ngram analysis": 113623, "encoding bpe": 48503, "based sequencetosequence": 16092, "gpt pretraining": 66477, "stage design": 154728, "speed convergence": 154502, "demonstrated stateoftheart": 38797, "multilingual version": 110568, "labeled english": 82727, "learning report": 90917, "representations comparing": 140777, "comparing geometry": 26988, "finite number": 59629, "upper layers": 172384, "providing justification": 133324, "understanding latest": 171329, "work language": 179082, "explicit contextual": 54924, "introduce improved": 79979, "light finetuning": 92115, "way substantial": 177878, "requiring extra": 141487, "learns solve": 91195, "model overall": 104195, "methods considerable": 101396, "multibillion parameter": 110353, "models advances": 105299, "art natural": 12554, "fully implemented": 61772, "illustrate approach": 72145, "30 peak": 967, "models advance": 105289, "advance state": 5693, "model similar": 104579, "sota accuracy": 153338, "datasets bert": 36680, "improve natural": 73530, "language commonsense": 83195, "role recent": 145529, "roberta bert": 145142, "datasets goal": 36897, "additional commonsense": 4932, "modelbased approaches": 104928, "approaches better": 11706, "work categorize": 178837, "performance does": 121419, "knowledge incorporation": 82118, "knowledge analyze": 81743, "text emerged": 165049, "anecdotal evidence": 9412, "text wide": 165575, "likely produce": 92464, "robustness data": 145368, "discrete latent": 42806, "variables generative": 175599, "architectures used": 12303, "used conditional": 173006, "modeling perform": 105064, "strongest results": 156488, "variable generation": 175593, "generation textual": 65203, "outperforms generative": 117774, "generation finding": 64660, "properties data": 131639, "solutions data": 153008, "exhibit fundamental": 53048, "computation communication": 28294, "communication development": 26366, "zero redundancy": 180084, "redundancy optimizer": 138630, "optimizer zero": 117100, "vastly improving": 176367, "efficiently trained": 46823, "zero eliminates": 180069, "low communication": 97736, "proportional number": 131683, "requirements communication": 141279, "zero potential": 180083, "models 13b": 105152, "parameters larger": 119789, "create worlds": 33247, "worlds largest": 179639, "annotations difficult": 9580, "language priors": 86479, "methods popular": 101711, "dialog datasets": 41415, "achieved state": 3901, "using lowrank": 174462, "great improvement": 67696, "production environments": 129589, "environments complex": 50070, "requiring large": 141495, "power resources": 125219, "minimal accuracy": 102311, "training discuss": 168394, "cuttingedge methods": 34442, "gpt elmo": 66411, "nature natural": 112018, "learn nuances": 90022, "nuances language": 114807, "models bagofwords": 105443, "knowledge gained": 82022, "effort providing": 46867, "providing succinct": 133379, "web question": 178013, "suffer information": 158431, "inferior models": 76156, "answering develop": 9835, "proved significantly": 132633, "problems recently": 128611, "makes computationally": 98637, "largescale realworld": 89396, "important develop": 73120, "retaining good": 143960, "aim conduct": 7440, "largescale model": 89355, "dataset able": 36088, "use autoregressive": 172513, "information speech": 76772, "identification extensive": 71792, "effective reducing": 45867, "transformers modeling": 169334, "conversational response": 31916, "reddit comment": 138379, "attain performance": 13753, "singleturn dialogue": 151905, "dialogue settings": 41516, "research neural": 141930, "systems learning": 160459, "automatic question": 14726, "generation questions": 65001, "rely heuristic": 139851, "rules generate": 145714, "variant selfattention": 175623, "decoder gpt2": 37514, "fashion language": 57252, "11 dataset": 221, "produce semantically": 129460, "questions additionally": 135027, "additionally assessed": 5027, "relatively improves": 139404, "reddit conversations": 138381, "generation challenge": 64484, "datasets building": 36688, "reasoning given": 136886, "set common": 149156, "inherently requires": 76991, "asks model": 12895, "syntactically semantically": 159913, "infilling task": 76168, "planning generation": 123275, "respectively leveraging": 142565, "gpt2 empirically": 66528, "representation generation": 140693, "generating missing": 64275, "approaching human": 11962, "cues large": 33926, "showed possible": 150147, "al 2016": 7722, "auxiliary supervision": 15040, "outperforms largest": 117794, "largest gpt2": 89436, "model setting": 104557, "tiny fraction": 166634, "similar techniques": 151314, "learning semantic": 90977, "text modeling": 165311, "world used": 179625, "focused specifically": 60123, "led improved": 91227, "effective modeling": 45819, "difficult problem": 42169, "text create": 164977, "create training": 33239, "corpus provide": 32343, "task believe": 161219, "model assisted": 103147, "elementary science": 47011, "text directly": 165027, "paraphrasing large": 119918, "gpt2 shown": 66595, "achieve highquality": 3665, "highquality results": 70072, "technique using": 163815, "given remarkable": 65986, "answering reading": 9943, "work investigating": 179078, "study commonsense": 157217, "larger training": 89257, "poorly tasks": 123969, "steps finally": 155738, "suggests learn": 158663, "deep level": 37790, "set named": 149247, "recognition systems": 138133, "systems training": 160648, "employed train": 47904, "network parameters": 112683, "parameters evaluated": 119748, "recognition text": 138143, "short natural": 149978, "text english": 165055, "outputs ranked": 118112, "relations annotated": 139282, "approach linking": 11364, "linking task": 93109, "model commonsense": 103308, "existing neural": 53500, "understanding causal": 171151, "planning entities": 123265, "paper devise": 118854, "capture causal": 20633, "automatic manual": 14701, "particularly terms": 120265, "global coherence": 66087, "accuracy lost": 3299, "kronecker product": 82655, "new regularization": 113380, "model lstm": 104050, "score respectively": 147095, "quality automatic": 134051, "systems asr": 160252, "asr errors": 12995, "multitask neural": 111231, "approaches perform": 11857, "models slm": 109154, "slm finetuned": 152242, "model rerank": 104461, "asr hypotheses": 12996, "models discriminatory": 105991, "output given": 117941, "ii proposed": 72108, "model word": 104904, "using decentralized": 174121, "increasingly larger": 75417, "250 million": 836, "handle large": 68547, "performance reliability": 122010, "thanks ability": 165982, "sequence information": 148746, "information efficient": 76374, "produce competitive": 129381, "training question": 168673, "pairs work": 118634, "models explores": 106257, "explores factors": 55395, "data synthesized": 35838, "task achieve": 161159, "solely synthetic": 152871, "removing access": 140366, "access real": 2907, "data synthesize": 35837, "synthetic corpus": 160021, "corpus generated": 32313, "access human": 2861, "apply methodology": 10862, "adaptation domain": 4611, "adaptation recently": 4658, "key problem": 81555, "systems works": 160674, "massive training": 99385, "domain ability": 44060, "train dialogue": 167761, "data standard": 35795, "standard method": 154847, "winning entry": 178535, "dataset data": 36217, "gains different": 62516, "autoencoder models": 14467, "conditional data": 28950, "methods preserve": 101721, "model reconstruct": 104430, "produce good": 129415, "propose sampleefficient": 132109, "detection instead": 40531, "generator network": 65627, "discriminative model": 42845, "task efficient": 161344, "task defined": 161300, "defined input": 37948, "using 14": 173940, "endofsequence eos": 48710, "learning generate": 90497, "results english": 143381, "pretraining experimental": 127319, "results chinese": 143226, "domain tuning": 44317, "models biobert": 105524, "lm model": 97061, "robust domain": 145258, "computationally lightweight": 28426, "require sampling": 141184, "conditions paper": 29014, "metrics comparing": 102031, "coherent stories": 25544, "single example": 151795, "systems learn": 160458, "commonly available": 26222, "realworld conditions": 136425, "multiple baseline": 110846, "currently facing": 34316, "errors hard": 50363, "hard spot": 68659, "modeling training": 105110, "high capacity": 69404, "practice pretrained": 125489, "able reduce": 2549, "reduce performance": 138458, "technologies enables": 164086, "mining text": 102416, "subjective information": 157857, "online conversations": 116086, "model speech": 104650, "factors accuracy": 56786, "spoken words": 154581, "extent program": 56022, "used pretrained": 173182, "number network": 114908, "parameters empirical": 119743, "effectively just": 46036, "networks test": 112808, "types language": 170375, "prior distribution": 127889, "main advantage": 98217, "advantage model": 6116, "potentially enable": 125097, "energybased models": 48799, "summarization dialogue": 158821, "process work": 129037, "models ebms": 106037, "make training": 98618, "representations bert": 140770, "support large": 159304, "process theory": 129012, "metalearning method": 100576, "reasoning challenge": 136741, "types information": 170368, "linguistic quality": 93057, "unexplored work": 171636, "scenarios results": 146692, "explicitly modeling": 54982, "models forgetting": 106381, "way pretraining": 177868, "leads suboptimal": 89918, "forgetting propose": 60435, "jointly learns": 81277, "learning downstream": 90388, "usage paper": 172466, "model lightweight": 103957, "model fewer": 103647, "support different": 159279, "size nearly": 152034, "improves online": 74038, "model taskoriented": 104722, "systems adopted": 160232, "train language": 167778, "results explainability": 143404, "set labeled": 149226, "reproducibility future": 141014, "use train": 172917, "generation dynamic": 64592, "tracking propose": 167538, "given outline": 65947, "model track": 104754, "track dynamic": 167522, "different writing": 42093, "parts narrative": 120302, "gpt2 grover": 66549, "simple language": 151480, "decomposed tasks": 37621, "model subtask": 104677, "leads stateoftheart": 89914, "approach taskoriented": 11599, "leverage transfer": 91674, "improves prior": 74062, "robustness noisy": 145411, "action decisions": 4315, "rate 81": 135970, "rate 97": 135973, "score 72": 147038, "approaches frame": 11782, "problem rely": 128380, "additional features": 4959, "leveraging transfer": 91960, "produce high": 129421, "evaluators rated": 52059, "corresponding natural": 32594, "set baseline": 149137, "verify robustness": 176539, "robustness pretrained": 145420, "words models": 178740, "host nlp": 70427, "embeddings encode": 47231, "tasks enable": 162292, "apply tasks": 10876, "encoded contextual": 48391, "dialog agents": 41408, "aim produce": 7476, "able utilize": 2571, "utilize abstract": 175023, "collection procedure": 25747, "procedure obtain": 128705, "comments demonstrate": 26063, "preference model": 126015, "distribution terms": 43395, "terms realism": 164456, "good source": 66296, "traditional statistical": 167699, "translation methods": 169483, "models measure": 108160, "pretrain finetune": 126731, "architectures tailored": 12295, "based pretraining": 16026, "major success": 98453, "focused injecting": 60106, "knowledge primary": 82302, "models complementing": 105701, "knowledge bert": 81795, "using adapter": 173959, "training overall": 168619, "1520 performance": 426, "performance points": 121913, "sentencelevel semantics": 148551, "simple use": 151548, "score 11": 147034, "experiments creating": 54208, "problems extracted": 128510, "semeval2020 task": 148333, "investigate commonsense": 80390, "task competition": 161254, "challenge uses": 21748, "finetuned classifiers": 58998, "classifiers propose": 24194, "method inspired": 100931, "problem multiple": 128330, "performance experimental": 121485, "better baseline": 17814, "future researches": 62376, "language gpt2": 83394, "rewriting aims": 144736, "accuracy 12": 3103, "limited amounts": 92699, "cases involve": 20977, "notable capability": 114215, "examine results": 52414, "results compare": 143240, "effect using": 45680, "stateoftheart ml": 155220, "strategy combined": 156115, "ensure high": 49687, "low memory": 97770, "networks graph": 112755, "gnns demonstrated": 66140, "graphstructured data": 67657, "requires abundant": 141328, "labeling effort": 82755, "transfer learned": 168931, "process comprehensive": 128762, "progressive generation": 130041, "long passages": 97463, "passages text": 120353, "examples conduct": 52541, "quality sample": 134259, "efficiency human": 46467, "critical improving": 33504, "quality realworld": 134240, "composed set": 27795, "set lightweight": 149233, "compiler provides": 27234, "minimal changes": 102315, "changes existing": 22370, "enabled scale": 48148, "scale multilingual": 146317, "lstm gpt2": 97954, "synthetic speech": 160075, "problems data": 128477, "attributes using": 14135, "using character": 174031, "learning openais": 90789, "data provided": 35582, "results argue": 143180, "data exposure": 35024, "classification scores": 24078, "style classification": 157738, "images previous": 72463, "issue ways": 80969, "based raw": 16058, "format propose": 60547, "approach converts": 11085, "image sequence": 72328, "classifier performance": 24165, "set unlabeled": 149339, "weights finetuning": 178109, "classifier small": 24167, "small labeled": 152301, "roberta language": 145152, "architectures outperform": 12286, "task trained": 161780, "used feature": 173067, "music feature": 111311, "costefficient approach": 32773, "approach recently": 11496, "scale transformerbased": 146354, "gpt2 xlnet": 66614, "training epoch": 168420, "time machine": 166441, "introduced large": 80160, "academic setting": 2758, "previously demonstrated": 127718, "fields natural": 58291, "recurrent units": 138354, "world applications": 179531, "quantization knowledge": 134409, "parameter sharing": 119639, "work deep": 178886, "fewshot learner": 57947, "nlg research": 113658, "gpt2 radford": 66586, "work adding": 178768, "task standard": 161747, "nlp years": 113931, "expensive pretraining": 53798, "memory requirement": 100452, "model incrementally": 103847, "faithful given": 57078, "effort human": 46848, "past approaches": 120376, "opendomain chatbots": 116446, "assumed user": 13553, "bring attention": 19115, "attention important": 13897, "empirically studying": 47804, "mitigation strategy": 102698, "introduce synthetic": 80119, "improvements demonstrating": 73893, "translation despite": 169455, "learning machine": 90658, "models google": 106512, "responses lack": 142834, "control responses": 31585, "achieve specific": 3747, "specific goals": 154003, "promising method": 130274, "method control": 100763, "leading incoherent": 89827, "frames present": 60905, "miss important": 102521, "movie recommendation": 110228, "adapter trained": 4717, "trained independently": 167952, "retraining entire": 143976, "process multiple": 128924, "highlevel control": 69687, "response styles": 142705, "evaluation comparing": 51489, "firstly demonstrate": 59652, "human machinegenerated": 70924, "quality content": 134079, "enables fast": 48184, "understand prevalence": 171062, "brain activity": 18941, "process mapping": 128915, "shown possible": 150324, "present model": 126370, "modern methods": 109820, "recently new": 137946, "nli tasks": 113671, "generation contextual": 64533, "popular topics": 124067, "community existing": 26472, "reasonable perplexity": 136597, "easily identified": 45317, "improve coherence": 73429, "coherence consistency": 25509, "model aim": 103097, "objective using": 115232, "method analogous": 100678, "generate lengthy": 63596, "conditioned given": 28979, "layer pretrained": 89645, "language generate": 83339, "text difficult": 165026, "contain significant": 30305, "lms generative": 97147, "generative discriminators": 65415, "make safer": 98593, "bayes rule": 16476, "desired attribute": 40038, "attribute control": 14077, "code conditioned": 24730, "additionally training": 5139, "sacrificing linguistic": 145793, "making far": 98740, "fast generation": 57270, "human replies": 71016, "leverage social": 91663, "number replies": 114938, "alleviate possible": 8296, "problem comparison": 128201, "response pairs": 142678, "pairs human": 118585, "sentence encoding": 148501, "encoding decoding": 48505, "similarity measure": 151358, "measure compare": 99833, "report experimental": 140525, "content planning": 30571, "relevant given": 139608, "challenging issues": 22182, "label distribution": 82682, "strong models": 156416, "mitigate label": 102619, "framework takes": 61447, "perturbations input": 122757, "generation multihop": 64860, "reasoning underlying": 137217, "approaches integrate": 11811, "ignoring rich": 72079, "paths extracted": 120446, "baselines text": 16379, "gpt3 increasingly": 66709, "purely textbased": 133727, "modeling learn": 105031, "learn world": 90077, "purely syntactic": 133726, "argue does": 12405, "use learn": 172730, "additional inputs": 4965, "inputs paper": 77433, "model suggests": 104684, "learn explain": 89978, "strategy ai": 156101, "main problem": 98262, "problem lies": 128310, "semantic dependencies": 148135, "traditional generative": 167625, "generation mrg": 64859, "module generates": 109942, "provides explanatory": 133147, "generation review": 65059, "review generation": 144510, "product description": 129569, "text strong": 165488, "method quantitatively": 101049, "quantitatively evaluates": 134389, "lms understanding": 97212, "set linguistic": 149234, "features derived": 57468, "community models": 26498, "clinical named": 24344, "additional domain": 4950, "evaluated generic": 51179, "generic tasks": 65671, "selection techniques": 147895, "improve coverage": 73438, "experience replay": 53842, "capabilities controllable": 19837, "generation incorporating": 64738, "diversity compared": 43712, "generate stories": 63729, "124 million": 291, "network framework": 112653, "task oriented": 161587, "tasks multiturn": 162830, "framework enjoys": 61134, "approaches low": 11837, "endtoend systems": 48767, "action policy": 4331, "approaches furthermore": 11784, "form logical": 60472, "information complementary": 76320, "prior text": 127940, "text annotations": 164834, "challenge tasks": 21743, "aimed testing": 7525, "general ability": 62908, "responses following": 142797, "task pretrained": 161641, "kl loss": 81678, "step order": 155666, "generation target": 65136, "target style": 161108, "wordlevel sentencelevel": 178708, "datasets indicate": 36929, "indicate model": 75611, "models considerable": 105749, "datasets reddit": 37072, "absence annotated": 2587, "datasets attribute": 36667, "specific generation": 154000, "used finetuning": 173078, "datasets does": 36799, "degree control": 38011, "generated conversational": 63834, "conversational responses": 31918, "causal discovery": 21182, "scenarios observed": 146658, "observed ones": 115427, "generated latent": 63908, "estimate latent": 50724, "identify causal": 71866, "develop recursive": 40826, "algorithm achieve": 7773, "suffers lack": 158465, "exhibited excellent": 53130, "terms used": 164491, "domainspecific key": 44588, "relevance study": 139567, "various technical": 176226, "restaurant domain": 142985, "objective model": 115217, "systems supported": 160633, "result better": 143023, "graphs recent": 67648, "questions quality": 135240, "work posit": 179167, "achieve coverage": 3619, "encountered nlp": 48577, "knowledge containing": 81837, "evaluate properties": 51075, "points lower": 123759, "methods neural": 101679, "generation particular": 64919, "particular employ": 120074, "employ gpt2": 47826, "analyzing results": 9382, "established automatic": 50683, "input sources": 77345, "sources largescale": 153519, "responses conditioned": 142749, "sources work": 153538, "fuse multiple": 62186, "stories generated": 155884, "twostage generation": 170259, "supervision signals": 159218, "language describes": 83240, "role user": 145548, "agent generate": 6448, "model predicting": 104301, "used prior": 173189, "potential detecting": 124670, "open knowledge": 116241, "manner requiring": 99008, "recent deep": 137463, "enabled language": 48139, "questions writing": 135326, "articles paper": 12615, "created humans": 33263, "models claim": 105624, "using paired": 174566, "code evaluations": 24813, "available researchers": 15197, "established new": 50694, "stateoftheart adhoc": 155066, "new comprehensive": 113118, "characteristics writing": 22474, "addressed previous": 5399, "techniques demonstrate": 163863, "demonstrate value": 38607, "unintended biases": 171798, "instead leverage": 77883, "richer linguistic": 144819, "sentence order": 148517, "results surprising": 143852, "surprising models": 159550, "model characteristics": 103265, "ner model": 112594, "significant experimental": 150706, "evaluating stateoftheart": 51396, "transformer methods": 169170, "benchmarks commonsense": 17188, "benchmarks model": 17308, "model generalizes": 103712, "issue designing": 80894, "rigorous scientific": 144871, "common benchmarks": 26125, "clear evidence": 24266, "moderate changes": 109761, "perform selective": 121029, "modeling learning": 105032, "representations raw": 140876, "results analyses": 143169, "simple pipeline": 151509, "metrics demonstrating": 102042, "learning wasserstein": 91131, "data central": 34744, "learning sciences": 90966, "achieving automated": 4142, "data popular": 35498, "long short": 97477, "short term": 150001, "capturing language": 20732, "score trained": 147107, "trained novel": 168029, "novel contrastive": 114450, "human analysis": 70569, "ml natural": 102786, "conducting qualitative": 29320, "qualitative studies": 134019, "generation longstanding": 64805, "despite encouraging": 40100, "masking technique": 99332, "templates proposed": 164238, "semantic preservation": 148194, "technique referred": 163799, "bernoulli distribution": 17504, "technique allows": 163740, "provide various": 133029, "paraphrased sentences": 119909, "methods shows": 101819, "appropriate answers": 11968, "examine question": 52412, "inputs experiments": 77403, "generate word": 63786, "model enhances": 103545, "objectives including": 115247, "original bert": 117317, "remarkably outperforms": 140324, "generates coherent": 64061, "significant margins": 150776, "democratizing data": 38198, "scientists practitioners": 147006, "adopts transformerbased": 5666, "bert lefttoright": 17565, "lefttoright autoregressive": 91273, "data transformation": 35886, "training fewshot": 168450, "questionanswering information": 134987, "extraction addition": 56250, "addition identify": 4868, "opportunities advance": 116821, "systems gpt2": 160412, "gpt2 sequence": 66594, "database result": 36005, "performances multiple": 122335, "settings improving": 149587, "thorough analyses": 166177, "study illustrate": 157402, "generation key": 64764, "methods task": 101865, "gpt2 produce": 66585, "produces competitive": 129524, "feedback alignment": 57642, "path better": 120425, "difficult model": 42163, "pipeline data": 123045, "bottleneck scaling": 18896, "scaling work": 146457, "alternative training": 8586, "compute random": 28451, "paper review": 119309, "decoder based": 37509, "needed corresponding": 112439, "network endtoend": 112646, "algorithms proposed": 7964, "networkbased systems": 112711, "conventional algorithms": 31691, "solve lowresource": 153129, "spoken languages": 154576, "work languages": 179084, "finegrained modeling": 58882, "using pseudo": 174628, "output speech": 118000, "tradeoff latency": 167563, "task dialogue": 161321, "aims reconstruct": 7661, "task suffer": 161758, "testing different": 164706, "tagging models": 160893, "model current": 103397, "human demonstration": 70691, "persuasion dialogue": 122729, "systems reflect": 160579, "strategic moves": 155944, "impact user": 72737, "approaches achieved": 11680, "require sophisticated": 141195, "limits application": 92909, "issues better": 80987, "better accomplish": 17790, "learns human": 91181, "persuasion behavior": 122728, "stateoftheart dialogue": 155129, "according user": 3062, "lexically constrained": 92002, "constrained language": 30033, "control models": 31566, "capable doing": 20416, "applied language": 10773, "model easy": 103503, "obtain comparable": 115466, "arabic language": 12066, "given trained": 66039, "primarily lack": 127783, "internet text": 79593, "parameters makes": 119801, "synthetic news": 160059, "showed significant": 150151, "generating news": 64282, "discriminator model": 42855, "detecting modelgenerated": 40420, "capture temporal": 20689, "model addresses": 103081, "original event": 117332, "completion models": 27332, "help ensure": 69112, "taskspecific text": 163551, "global knowledge": 66095, "total variation": 167425, "incorporates local": 75066, "encourages model": 48617, "pretrained lm": 127028, "experiments observe": 54382, "participants easily": 120001, "distinguish text": 43288, "generating counterfactuals": 64181, "limited types": 92872, "word substitutions": 178684, "substitutions present": 158167, "allows control": 8416, "datasets paired": 37023, "applications improving": 10558, "missed human": 102523, "abilities results": 2010, "represented using": 140966, "spread multiple": 154599, "natural thought": 111959, "benchmark approaches": 16831, "hindi bengali": 70164, "prediction nwp": 125832, "notable successes": 114249, "communication costs": 26363, "costs training": 32849, "routing algorithm": 145653, "improved models": 73704, "communication computational": 26357, "costs proposed": 32844, "techniques help": 163918, "lower precision": 97834, "design models": 39695, "speed computational": 154501, "advance current": 5677, "corpus achieve": 32274, "synthesize additional": 159984, "data shown": 35751, "shown helpful": 150259, "available generate": 15120, "large synthetic": 89070, "leveraging small": 91953, "domain finetune": 44170, "small indomain": 152299, "use resulting": 172854, "generate fully": 63514, "fully synthetic": 61786, "synthetic useful": 160089, "efficient active": 46559, "use fully": 172638, "learning service": 90980, "business users": 19550, "quickly easily": 135342, "simple construction": 151420, "experience users": 53849, "large video": 89104, "set video": 149346, "applications applications": 10422, "applications rely": 10665, "like intersection": 92324, "hardware used": 68700, "exponentially large": 55536, "users desired": 173619, "input video": 77368, "cost efficiency": 32668, "llama evaluate": 93301, "cloud platform": 24558, "technique reduce": 163798, "systems effective": 160345, "offers robust": 115845, "bert paper": 17579, "better scalability": 18019, "growing unprecedented": 68055, "release gpt3": 139471, "efficient distributed": 46597, "automatically adjusts": 14763, "freezing layers": 61587, "layers training": 89682, "training instead": 168506, "allocates resources": 8324, "design develop": 39603, "algorithm model": 7830, "strategies learning": 156026, "theory recently": 166101, "papers published": 119402, "test error": 164549, "data larger": 35296, "adaptive pretraining": 4784, "task 9th": 161153, "build endtoend": 19313, "evaluation user": 51915, "pretraining gpt2": 127339, "jointly solve": 81286, "understanding dialog": 171191, "dialog state": 41428, "inappropriate responses": 74288, "responses proposed": 142887, "endtoend dialogue": 48732, "brought considerable": 19240, "present considerable": 126269, "considerable risks": 29635, "diversity address": 43706, "augmentation backtranslation": 14265, "information potential": 76629, "uses hidden": 173865, "proposed evaluated": 132286, "ami meeting": 8667, "meeting corpus": 100289, "conversation evaluation": 31789, "significance tests": 150559, "prevailing methods": 127494, "novel capabilities": 114428, "learned task": 90133, "role prompts": 145527, "lens natural": 91417, "language explore": 83305, "problem components": 128204, "programming introduce": 129827, "introduce idea": 79978, "prompts range": 131439, "general methods": 62996, "models incorporated": 106730, "existing future": 53375, "benchmarks practical": 17327, "parallelism training": 119587, "modern largescale": 109810, "parallel approaches": 119558, "interactive generation": 79311, "targeting specific": 161146, "struggle applied": 156729, "examples address": 52521, "problem algorithm": 128180, "algorithm trained": 7868, "respect nlp": 142512, "generate prompt": 63660, "prompt token": 130696, "document summarization": 43858, "short document": 149967, "summarization methods": 158848, "long legal": 97459, "legal briefs": 91279, "pretrained abstractive": 126748, "summary using": 158947, "improvement method": 73820, "tend agree": 164299, "independent human": 75498, "introduce statistical": 80110, "magnetic resonance": 98195, "resonance imaging": 142360, "versatile framework": 176563, "bert achieve": 17506, "explicit consideration": 54921, "architecture experiments": 12165, "achieve consistent": 3614, "generation input": 64743, "sequence fed": 148736, "obtain representation": 115496, "contrary prior": 31292, "effectively models": 46056, "training graph": 168471, "outperforming state": 117695, "plm parameters": 123561, "types pretraining": 170401, "including autoencoding": 74423, "autoencoding models": 14478, "pretraining frameworks": 127336, "based autoregressive": 15679, "order predict": 117230, "pretrained different": 126788, "conditional unconditional": 28970, "tasks gpt": 162474, "prompts lead": 131354, "word prompt": 178669, "prompts empirically": 131242, "gap various": 62747, "large unlabeled": 89094, "unlabeled text": 171960, "generation takes": 65135, "target attributes": 161041, "attributes sentiment": 14130, "specific topics": 154116, "generation aligning": 64414, "token level": 166718, "level distribution": 91463, "changing original": 22405, "parameters evaluate": 119747, "methods retaining": 101793, "fluency diversity": 59888, "mixtureofexpert moe": 102763, "performance distributed": 121407, "communities paper": 26440, "interface flexible": 79433, "experts multiple": 54670, "multiple gpus": 110930, "enlarging number": 49597, "leading high": 89820, "environmental footprint": 50046, "20 model": 603, "smaller original": 152429, "model increase": 103846, "36 times": 1077, "combination model": 25835, "experiments compared": 54179, "popular frameworks": 123997, "exists training": 53667, "throughputs comparable": 166312, "experts base": 54642, "base layer": 15611, "specialized expert": 153888, "expert modules": 54588, "contain small": 30306, "auxiliary losses": 15037, "conversations dataset": 31942, "corpus building": 32282, "support interactions": 159302, "multistep procedures": 111171, "company policies": 26553, "policies study": 123821, "distinct user": 43263, "intents requiring": 79045, "sequences actions": 148804, "dialog tasks": 41435, "tasks action": 161899, "simpler models": 151558, "responsible extracting": 142970, "novel hybrid": 114540, "networks way": 112819, "way allow": 177768, "effectiveness graph": 46193, "graph models": 67550, "improve predictions": 73585, "common multiple": 26160, "challenging reasons": 22254, "impossible fit": 73242, "spending significant": 154540, "provide intuition": 132864, "perform training": 121070, "code open": 25034, "collection datasets": 25731, "datasets annotating": 36651, "measuring zeroshot": 99964, "models outofthebox": 108379, "multiple devices": 110888, "paradigm model": 119485, "devices reducing": 41316, "reducing redundancy": 138590, "speedup inference": 154524, "increase maximum": 75212, "patterns human": 120534, "performance languagespecific": 121715, "russian texts": 145777, "texts results": 165773, "relative importance": 139370, "language way": 86897, "xlm models": 179842, "eye tracking": 56469, "reflect human": 138794, "bias masked": 18159, "modeling statistical": 105096, "dependencies study": 39146, "predicting tokens": 125751, "tasks appealing": 161951, "used practice": 173179, "methods learning": 101634, "statistical dependencies": 155487, "method unsupervised": 101157, "indigenous languages": 75673, "components natural": 27768, "processing based": 129118, "investigating different": 80592, "approaches translate": 11935, "results specific": 143808, "templates input": 164236, "requires domain": 141360, "prompttuning approach": 131540, "specifically inject": 154227, "representation structured": 140741, "context better": 30698, "domain understanding": 44319, "neighboring entities": 112581, "bert baseline": 17514, "nlp proposed": 113794, "ways address": 177895, "available unlabeled": 15220, "provides substantial": 133223, "approach suggesting": 11578, "answering diverse": 9839, "dataset variety": 36612, "contains million": 30383, "answers collected": 10003, "engine using": 48869, "feature results": 57427, "expressed using": 55581, "responses collected": 142743, "containing textual": 30349, "textual answers": 165879, "shortanswer questions": 150017, "coherent accurate": 25520, "samples provided": 146058, "use development": 172585, "true fewshot": 169804, "instead use": 77904, "models construct": 105761, "based entropy": 15777, "controlled natural": 31643, "scalability paper": 146224, "augmentation technique": 14315, "leverages largescale": 91748, "mixture real": 102760, "real samples": 136248, "simultaneously perform": 151757, "methods ablation": 101266, "insights approach": 77510, "changed natural": 22360, "transformersbased models": 169374, "pretraining improved": 127343, "does contain": 43970, "masked tokens": 99323, "generator based": 65616, "loss computation": 97665, "train bertlike": 167749, "search nlp": 147383, "architectures recent": 12292, "primarily attributed": 127767, "nlp architectures": 113693, "greater efficiency": 67762, "accuracy recent": 3366, "examine current": 52377, "firststage model": 59671, "model retrieves": 104483, "set documents": 149178, "subsequent stages": 157958, "set using": 149344, "using contextualized": 174084, "new document": 113151, "index compared": 75553, "effectiveness metrics": 46243, "inverse design": 80337, "integrated circuits": 78517, "industry conventional": 75872, "conventional method": 31711, "simulation code": 151688, "given gpt": 65892, "better given": 17891, "questions definitive": 135094, "commands paper": 26045, "technical level": 163708, "step automated": 155600, "automated end": 14542, "human empirical": 70715, "largescale studies": 89403, "contrast models": 31315, "memory representations": 100451, "text toxic": 165533, "tokens proposed": 166866, "enriches representation": 49621, "gpt2 glove": 66542, "train serve": 167826, "unsupervised contrastive": 172238, "method ii": 100913, "evaluation 18": 51411, "demonstrates approach": 38825, "languages challenging": 86957, "shown positive": 150322, "efficiently scale": 46816, "scale 10b": 146262, "accuracy 34": 3107, "evaluating attribution": 51264, "progress models": 129990, "requires evaluation": 141364, "collect human": 25663, "assessing extent": 13176, "responses attributed": 142731, "begin analyze": 16524, "metrics metrics": 102113, "ones perform": 116008, "need sophisticated": 112391, "outofthe box": 117550, "core challenges": 32156, "database systems": 36007, "challenging control": 22132, "attributes generated": 14113, "product experts": 129575, "ensemble tokens": 49646, "high probability": 69507, "probability considered": 128106, "generation outperform": 64907, "undesirable attributes": 171580, "attention requires": 13980, "results efficient": 143372, "inference generation": 76021, "gpt2 summarization": 66599, "human commonsense": 70653, "shape structure": 149781, "analyze capabilities": 9270, "using benchmarks": 174004, "relations results": 139309, "overall best": 118179, "outperform word": 117647, "work extent": 178974, "extent pretrained": 56021, "abstract semantic": 2658, "learning workloads": 91143, "trend increasing": 169700, "increasing large": 75327, "large machine": 88897, "obtain best": 115461, "contains machine": 30380, "optimize program": 117077, "highlevel abstraction": 69683, "apply powerful": 10869, "reasoning current": 136789, "current situation": 34237, "intelligence focus": 78818, "iqa dataset": 80827, "emotional commonsense": 47577, "reasoning building": 136693, "pretrained roberta": 127150, "development tool": 41239, "millions lines": 102253, "code complete": 24723, "specifications available": 154315, "available deep": 15098, "learning needs": 90760, "adapts gpt2": 4798, "development toolchain": 41240, "understudied problem": 171558, "pairs specifically": 118619, "specifically offer": 154255, "task finding": 161396, "adopt curriculum": 5571, "data gold": 35133, "competitive cases": 27167, "standard methods": 154849, "finetuned following": 59022, "learning procedure": 90858, "current dialogue": 34106, "general semantic": 63047, "features obtained": 57550, "relied human": 139791, "employ pretrained": 47854, "incredible speed": 75462, "moores law": 110104, "communication cost": 26362, "1d 2d": 570, "impact finetuning": 72653, "content specifically": 30623, "task high": 161446, "certain models": 21403, "task discuss": 161329, "factors underlying": 56827, "solution use": 152986, "answering instead": 9877, "plausible answers": 123426, "datasets method": 36979, "representations meaning": 140847, "models derive": 105927, "represent reason": 140650, "functional similarities": 61879, "dynamic semantics": 45163, "learned text": 90135, "exceeds sota": 52762, "results seen": 143773, "graph networks": 67553, "performance showing": 122063, "impact incorporating": 72665, "data essential": 34987, "limited labelled": 92792, "dynamic information": 45134, "acceptable responses": 2835, "input predict": 77310, "introduce dynamic": 79950, "conversation quality": 31804, "low resources": 97789, "framework auxiliary": 60974, "universal language": 171906, "results positive": 143672, "65 training": 1475, "fast efficient": 57265, "different configurations": 41703, "training leveraging": 168545, "estimate optimal": 50725, "size contrary": 151977, "instead argue": 77865, "methods introduced": 101610, "achieve proposing": 3717, "benchmarks languages": 17283, "make results": 98590, "easily reproducible": 45334, "reproducible accessible": 141021, "dataset produced": 36469, "produced using": 129515, "multilingual transformers": 110563, "rely automatically": 139830, "expert annotated": 54550, "focus recent": 60042, "transfer chinese": 168903, "tasks 34": 161875, "chinese linguistic": 23641, "perform best": 120874, "struggle highlighting": 156756, "benchmark chinese": 16856, "different sets": 41991, "depending current": 39164, "algorithm study": 7862, "sizes input": 152099, "local features": 97239, "features work": 57606, "reasoning dialog": 136810, "understanding temporal": 171506, "massive pretrained": 99374, "largely underexplored": 89177, "english challenge": 49031, "rely shallow": 139882, "temporal patterns": 164273, "temporal concepts": 164250, "possible directly": 124415, "use popular": 172803, "using vanilla": 174840, "stage work": 154756, "imperative achieve": 72794, "strong alignment": 156344, "alignment pretrained": 8212, "taskspecific pretraining": 163539, "adapts pretrained": 4801, "model incorporating": 103845, "task reformulating": 161684, "datasets strong": 37133, "strong gains": 156383, "achieve f1": 3640, "data adaptation": 34590, "feasible using": 57380, "models 175b": 105157, "compared gpt3": 26819, "better finetuning": 17873, "additional inference": 4962, "pytorch models": 133859, "provide implementations": 132829, "generative dialogue": 65412, "objectives like": 115251, "negative loglikelihood": 112520, "response score": 142698, "loss auxiliary": 97662, "objective explore": 115196, "explore idea": 55215, "generation goal": 64698, "larger data": 89201, "useful semantic": 173351, "given success": 66019, "work building": 178829, "languages ii": 87024, "mllms based": 102809, "used automatic": 172972, "markov model": 99262, "easily incorporate": 45321, "models jointly": 106833, "information single": 76761, "dataset combined": 36165, "systems improving": 160430, "recognition local": 138087, "improves speech": 74084, "aspects firstly": 12938, "input feature": 77244, "improve recognition": 73606, "accuracy long": 3297, "geographic location": 65703, "precisely estimating": 125603, "estimating students": 50746, "method natural": 100987, "sequence interactions": 148748, "sequence masked": 148768, "sample efficient": 145947, "lower academic": 97810, "studies realworld": 157062, "network nn": 112680, "ml applications": 102774, "problem uses": 128428, "easily leverage": 45326, "allows developer": 8424, "algorithms leveraging": 7944, "scheme combines": 146782, "approaches compared": 11716, "nlp evaluation": 113733, "evaluation costs": 51513, "following principles": 60304, "evaluation public": 51805, "public leaderboard": 133581, "addition present": 4888, "approaches adapting": 11685, "objectives demonstrate": 115240, "internet search": 79591, "search work": 147431, "time point": 166466, "point model": 123710, "contrast propose": 31325, "method employ": 100818, "based access": 15641, "instead work": 77909, "uses construct": 173836, "t5 trained": 160725, "framework mobile": 61309, "inference times": 76127, "asr model": 13001, "using gpu": 174272, "training parameter": 168628, "pyx promptbased": 133863, "using template": 174792, "function model": 61848, "perform fewshot": 120948, "learning adapting": 90181, "paradigm unified": 119524, "unified set": 171747, "choice pretrained": 23697, "make field": 98537, "field accessible": 58115, "structured typology": 156683, "release resources": 139494, "size compared": 151966, "english ones": 49091, "pretrained dialogue": 126786, "used pretraining": 173183, "prompt verbalizer": 130742, "remarkable superiority": 140305, "problem masked": 128319, "high variances": 69557, "refine expanded": 138730, "models largest": 106924, "challenges deep": 21818, "communication overheads": 26399, "reduction memory": 138616, "performance variance": 122231, "times memory": 166600, "engineering effort": 48908, "current popular": 34204, "ignore crucial": 72070, "designed conduct": 39839, "sentence decoder": 148488, "text better": 164862, "tasks story": 163289, "summarization automatic": 158803, "automatic summarization": 14747, "summarization techniques": 158887, "preserving core": 126684, "ideas task": 71771, "task approached": 161199, "attempts produce": 13818, "solutions specifically": 153076, "ability summarize": 2386, "summarize texts": 158913, "metrics showing": 102146, "despite able": 40072, "entities present": 49862, "information summary": 76787, "task evolution": 161363, "provide good": 132808, "paper initially": 118976, "embeddings downstream": 47229, "finally highlight": 58473, "directions improve": 42479, "strongly believe": 156495, "good reference": 66292, "efficient unsupervised": 46745, "steps based": 155719, "pareto improvements": 119930, "improvements terms": 73956, "terms number": 164440, "demonstrate training": 38595, "training remains": 168691, "making particularly": 98785, "promising efficient": 130252, "efficient execution": 46608, "endtoend generative": 48741, "basic architecture": 16408, "basic components": 16413, "designed highly": 39890, "highly controllable": 69903, "easily extendable": 45312, "powerful deep": 125269, "attributes style": 14131, "toxic responses": 167463, "models continuously": 105782, "systems compose": 160298, "compose control": 27787, "entity typing": 49948, "tune pretrained": 169944, "results series": 143779, "series nlp": 148941, "classification knowledge": 24018, "zeroshot regime": 180325, "regime propose": 138915, "propose selfsupervised": 132113, "entity types": 49947, "dialogue present": 41499, "various neural": 176064, "automatically processed": 14847, "best response": 17744, "problematic responses": 128444, "classifier filter": 24156, "weaknesses approach": 177958, "big step": 18386, "require learning": 141144, "realworld dynamic": 136446, "environments propose": 50104, "updated memory": 172345, "propose parameter": 132061, "mitigates catastrophic": 102644, "capabilities largescale": 20005, "number different": 114852, "anecdotal experiences": 9416, "given fact": 65885, "text work": 165577, "focusing language": 60189, "shows outstanding": 150458, "particularly generative": 120195, "scale terms": 146351, "process nlp": 128928, "taskspecific require": 163543, "ways leverage": 177908, "leverage gpt3": 91599, "data labeler": 35271, "framework combining": 61017, "labels leads": 82810, "dialogue natural": 41496, "leverage largescale": 91624, "applying method": 10909, "problem pretrained": 128356, "finetuning leading": 59348, "unsatisfactory performance": 172141, "performance alleviate": 121146, "problems design": 128481, "entity generation": 49891, "results conducted": 143254, "like common": 92256, "data aggressive": 34608, "aggressive filtering": 6788, "lead decrease": 89736, "array downstream": 12514, "proxy metric": 133437, "harms performance": 68780, "need robust": 112383, "analysis effects": 8901, "intent detection": 79009, "based conditioned": 15718, "queries challenging": 134455, "information regarding": 76687, "apply zeroshot": 10879, "lastly use": 89468, "use expanded": 172609, "queries finetune": 134480, "finetune bert": 58914, "detection experimental": 40501, "better predicted": 17978, "smaller neural": 152422, "processing difficulty": 129144, "difference linguistic": 41610, "context humans": 30788, "communication cooperation": 26361, "mainly focuses": 98295, "focuses short": 60160, "interactions real": 79264, "meetings interviews": 100293, "thousand words": 166252, "tools understand": 167276, "approach generative": 11258, "topic segmentation": 167334, "domain discrepancy": 44132, "challenges introducing": 21923, "tasks typical": 163399, "commonsense corpus": 26258, "directly using": 42611, "extra input": 56111, "commonsense paper": 26289, "multiple applications": 110837, "successes pretrained": 158330, "versatile generative": 176564, "making available": 98706, "variety topics": 175775, "outperforming gpt3": 117678, "10 absolute": 103, "allows different": 8425, "used example": 173053, "types produces": 170403, "available hope": 15131, "efficacy classification": 46368, "generating novel": 64284, "generative aspects": 65390, "unfortunately despite": 171664, "text units": 165548, "better comprehension": 17832, "generate expressive": 63487, "feature streams": 57434, "coherent speech": 25543, "prompts utilize": 131520, "utilize language": 175055, "lately gained": 89474, "finetune paradigm": 58956, "paper attempt": 118763, "length prompt": 91386, "offer quick": 115693, "twostage prompt": 170267, "labels significantly": 82827, "performance sentence": 122052, "comes close": 26012, "consistent data": 29810, "psycholinguistic experiments": 133496, "discover new": 42734, "experiments experiments": 54283, "scientific communication": 146938, "definition dataset": 37962, "integrates transformer": 78573, "evaluate pretrained": 51069, "fewshot promptbased": 58023, "approaches allow": 11692, "performances fewshot": 122332, "advantages low": 6144, "promptbased models": 130790, "suffer common": 158421, "common pitfall": 26173, "heuristics based": 69316, "based lexical": 15920, "words interestingly": 178730, "present zeroshot": 126505, "model indicating": 103851, "useful knowledge": 173335, "adding regularization": 4832, "effective mitigating": 45815, "finetuning evaluation": 59255, "datasets demonstrates": 36779, "challenge datasets": 21616, "recently approaches": 137834, "gpt2 trained": 66603, "trained mix": 168003, "work establish": 178935, "model prove": 104381, "conducted benchmark": 29210, "comprehensive instruction": 28064, "instruction fewshot": 77993, "learning taskoriented": 91053, "tasks labeled": 162667, "recently prompting": 137961, "instructions customized": 78226, "validation data": 175358, "data empirical": 34961, "techniques finetune": 163907, "short prompts": 149985, "prompts enhancing": 131249, "neural dialog": 112842, "performance singleturn": 122075, "strategy employed": 156135, "humans employ": 71379, "topic model": 167326, "applications complex": 10454, "great advantages": 67683, "advantages proposed": 6150, "approach particular": 11442, "grafting pretrained": 67435, "bert encoder": 17530, "separately pretrained": 148705, "average improvements": 15293, "allow humans": 8338, "explore understand": 55308, "trivial tasks": 169786, "new modelagnostic": 113284, "measure degree": 99838, "theoretical model": 166042, "relying deep": 139897, "experiments user": 54508, "studies involving": 157030, "systems healthcare": 160417, "finance using": 58559, "including artificial": 74420, "values lower": 175545, "suggesting proposed": 158625, "measuring degree": 99947, "need finetune": 112293, "propose straightforward": 132145, "parameters called": 119720, "models surpasses": 109316, "furthermore empirical": 62053, "results domain": 143364, "languages grammatical": 87019, "complex process": 27527, "multilingual analysis": 110462, "shared embedding": 149810, "crosslingual language": 33660, "linguistic nonlinguistic": 93047, "analyses word": 8788, "alignment addition": 8118, "experiments thoroughly": 54500, "investigate prompting": 80483, "works different": 179438, "prompted language": 130820, "learning generating": 90499, "response selection": 142699, "according context": 3028, "selection module": 147872, "negative responses": 112529, "weak model": 177933, "issue employ": 80901, "models dialogpt": 105961, "instances enhance": 77823, "context pretrained": 30876, "negative ones": 112522, "improvements dialogue": 73894, "generate interesting": 63580, "text story": 165486, "generation lack": 64766, "coherence paper": 25517, "planning approach": 123247, "temporal difference": 164257, "deteriorates performance": 40690, "contains minimal": 30384, "fewshot multilingual": 57996, "performing par": 122412, "evaluate multilingual": 51032, "stateoftheart crosslingual": 155116, "focused generation": 60102, "publicly traded": 133680, "traded companies": 167551, "dataset largest": 36386, "35 tokens": 1056, "sentence making": 148513, "additionally perform": 5100, "difficulty dataset": 42206, "achieve maximum": 3684, "vanilla version": 175584, "models financial": 106340, "financial text": 58583, "models grown": 106571, "grown rapidly": 68069, "original transformer": 117396, "reducing training": 138600, "uses 13": 173830, "bias text": 18212, "identify mistakes": 71925, "mistakes text": 102553, "learning increasingly": 90574, "approaches simply": 11908, "information previous": 76643, "text specifically": 165479, "trained purely": 168054, "data core": 34857, "leveraging powerful": 91923, "leverages fewshot": 91722, "synthesize highquality": 159989, "data real": 35608, "annotations method": 9604, "plausible directions": 123427, "ensure specific": 49706, "poorly task": 123968, "generation simple": 65089, "described single": 39385, "single sentence": 151859, "used impose": 173103, "hard constraints": 68637, "diverse fluent": 43530, "fluent sentences": 59915, "perform user": 121078, "competing methods": 27141, "words appear": 178712, "text impact": 165236, "fluency generated": 59890, "important variety": 73214, "chain natural": 21456, "effect downstream": 45654, "models extracted": 106284, "extraction method": 56323, "context account": 30674, "step paper": 155667, "instead sampling": 77898, "perform knowledge": 120973, "previous method": 127607, "method perform": 101026, "summarization entire": 158824, "task collect": 161247, "modeling summarization": 105102, "models quickly": 108761, "humanwritten summaries": 71526, "testing robustness": 164751, "applying information": 10898, "input paper": 77301, "information prediction": 76631, "contextual cues": 31076, "appear simple": 10228, "irrelevant content": 80849, "clear impact": 24270, "generation controlled": 64537, "certain constraints": 21373, "certain emotions": 21385, "emotions using": 47608, "style finetuning": 157748, "process guided": 128853, "easier cheaper": 45287, "allows apply": 8409, "propose original": 132058, "provides theoretical": 133231, "pool diverse": 123934, "review polarity": 144531, "proposed decoding": 132273, "gradient computations": 67385, "resources gpu": 142442, "prioritizing critical": 127976, "operations propose": 116793, "scheduling algorithms": 146763, "singlegpu training": 151888, "prioritize critical": 127971, "sets evaluate": 149366, "points time": 123770, "units large": 171884, "basic perception": 16429, "approach shown": 11533, "shown outperform": 150316, "robustness proposed": 145424, "known encode": 82590, "answering factchecking": 9856, "world changes": 179535, "knowledge preserving": 82285, "problem called": 128193, "metric quantify": 101982, "acquisition new": 4288, "challenges addressed": 21765, "models say": 109034, "low efficiency": 97749, "efficiency model": 46493, "model order": 104161, "model maintain": 104055, "fast training": 57279, "systems promising": 160555, "promising area": 130227, "area nlp": 12336, "field previous": 58228, "techniques train": 164042, "domains compared": 44370, "evaluated proposed": 51205, "strategies gpt2": 156007, "translations small": 169561, "repeatedly generate": 140435, "method leverage": 100958, "gpt3s zeroshot": 66895, "learning building": 90269, "produce convincing": 129384, "challenge recent": 21722, "language dialogue": 83254, "performance simulating": 122073, "simulating humanlike": 151680, "singleturn conversations": 151904, "potential transfer": 125025, "language pretrained": 86475, "training different": 168390, "language conversational": 83218, "automated intrinsic": 14561, "selftraining makes": 148084, "methods adopt": 101292, "adopt promptbased": 5580, "additionally finetuning": 5071, "tasks share": 163231, "encoder backbone": 48408, "30 labeled": 964, "gpt3 incontext": 66707, "fewshot nlu": 58009, "tasks dolphins": 162251, "datasets capture": 36690, "setting model": 149475, "knowledge features": 82000, "datasets discuss": 36796, "evaluation challenging": 51470, "indomain evaluation": 75794, "work overcome": 179149, "embedding parameters": 47184, "provided api": 133036, "evaluations furthermore": 51976, "users goals": 173666, "use simulation": 172874, "simulations human": 151730, "error reduction": 50322, "fullysupervised model": 61814, "form knowledge": 60467, "distillation kd": 43148, "generally improves": 63311, "statistical significance": 155510, "model distill": 103478, "commonsense model": 26286, "trained critic": 167885, "distill highquality": 43136, "quantity quality": 134405, "100x smaller": 187, "size apply": 151962, "new symbolic": 113438, "dialogue challenge": 41453, "dialogue experiment": 41470, "evaluation uses": 51916, "hallucinations results": 68454, "systems real": 160567, "directly meaning": 42567, "challenge conversational": 21611, "ai current": 6941, "finetuning instead": 59311, "source learning": 153455, "training achieves": 168141, "performance fully": 121541, "classifier does": 24155, "finally combining": 58419, "learning skill": 90998, "humanlike response": 71277, "using dialogue": 174133, "autoregressive transformerbased": 15016, "model attracted": 103152, "success gpt": 158246, "pretraining huge": 127341, "deploying model": 39250, "devices limited": 41309, "mitigated using": 102642, "model undergone": 104822, "encoderbased models": 48451, "decoderbased models": 37529, "aims gap": 7617, "dl applications": 43782, "research despite": 141692, "practical adoption": 125379, "challenges users": 22091, "challenges enabling": 21844, "scalability model": 146222, "users train": 173796, "fully exploits": 61760, "rigorous model": 144867, "evaluate endtoend": 50963, "issues alleviated": 80978, "million 27": 102221, "27 billion": 872, "budget model": 19272, "performance 60": 121115, "code train": 25184, "trustworthy datasets": 169866, "datasets finetuning": 36875, "bert mbert": 17566, "entity span": 49942, "explore compare": 55172, "languages particular": 87085, "study accuracy": 157130, "textual databases": 165896, "introduce multiple": 80023, "pretrained stateoftheart": 127165, "literature training": 93209, "opendomain datasets": 116452, "attaining f1score": 13758, "model unsupervised": 104831, "distribution generated": 43363, "models latent": 106925, "approach produce": 11462, "inefficient costly": 75902, "efficiently handle": 46786, "task improves": 161460, "media datasets": 100082, "datasets 11": 36624, "11 languages": 228, "intrinsic evaluation": 79890, "evaluation best": 51457, "pain points": 118510, "functionality practical": 61888, "practical finetuned": 125415, "deployed resourceconstrained": 39226, "environments address": 50061, "aims achieve": 7569, "diverse network": 43589, "datasets consistently": 36733, "lms ability": 97097, "ability exploit": 2158, "supervision furthermore": 159198, "using larger": 174401, "humanlevel commonsense": 71225, "drastically changed": 44900, "prediction autoregressive": 125762, "modeling sequence": 105089, "standard implementation": 154830, "implementation framework": 72842, "existing promptlearning": 53540, "provide limited": 132874, "need considered": 112250, "quickly adapting": 135338, "combine different": 25875, "evaluate generalization": 50975, "learning implicit": 90560, "implicit bayesian": 72968, "learning emerge": 90405, "pretraining test": 127460, "prompts pretraining": 131415, "theory experiments": 166082, "contextaware prompt": 30982, "fully utilizing": 61802, "utilizing prior": 175232, "approach pretrained": 11457, "furthermore human": 62090, "help alleviate": 69083, "knowledge generating": 82034, "simultaneously work": 151766, "propose modular": 131935, "generates knowledge": 64079, "context produce": 30883, "qa dialogue": 133882, "responses zeroshot": 142949, "growing size": 68052, "dnn models": 43797, "datasets given": 36895, "strategies data": 155983, "grows combinatorially": 68074, "physical hardware": 122899, "inference models": 76057, "enable fast": 48081, "spanning 1000": 153669, "easily applied": 45302, "pytorch user": 133861, "similarity new": 151367, "recognition entity": 138060, "lies design": 92065, "model aims": 103099, "adapted story": 4693, "generative capability": 65398, "fails generate": 56999, "information plots": 76625, "objectives learn": 115250, "global features": 66091, "content learn": 30540, "learn informative": 89995, "predictions enable": 125901, "propose study": 132149, "study realistic": 157581, "collection existing": 25734, "size demonstrate": 151985, "progress fewshot": 129963, "improvement task": 73857, "challenge guiding": 21649, "techniques widely": 164057, "issues data": 80997, "tasks applicability": 161952, "artificial training": 12797, "improve classification": 73424, "performance aim": 121144, "process seed": 128980, "performance perform": 121904, "seed selection": 147643, "consistent classification": 29808, "avenues combining": 15242, "combining generative": 25976, "representation scale": 140738, "user embeddings": 173401, "great transferability": 67745, "performances online": 122339, "performance influenced": 121677, "factors training": 56825, "broader impacts": 19214, "performance response": 122021, "ongoing dialogue": 116059, "role contextual": 145474, "gptbased generation": 67280, "experiments response": 54438, "improvement automatic": 73757, "datasets lowresource": 36969, "vast pretrained": 176348, "generation psg": 64986, "extraction algorithm": 56255, "models proved": 108719, "systems current": 160318, "tasks neglecting": 162853, "policy paper": 123870, "explicitly learns": 54979, "task policy": 161629, "consistency regularization": 29788, "generating contextaware": 64174, "leveraged power": 91705, "embeddings resulting": 47279, "analysis widely": 9236, "transformerxl xlnet": 169377, "electra albert": 46981, "power using": 125226, "knearest neighbor": 81690, "neighbor knn": 112576, "models catastrophic": 105579, "manner large": 98996, "applied solve": 10808, "generic training": 65673, "methodology models": 101248, "hallucinations abstractive": 68420, "question adapt": 134673, "meet requirements": 100282, "distributions paper": 43428, "translation indian": 169466, "compare multitask": 26702, "better technique": 18043, "learning continual": 90325, "learns sequence": 91193, "goal achieving": 66145, "main objectives": 98256, "knowledge observation": 82251, "observation current": 115322, "example natural": 52493, "effective approaches": 45695, "question make": 134910, "make best": 98491, "domainspecific task": 44627, "short spans": 149993, "accurate fluent": 3458, "answers stateoftheart": 10085, "sota approaches": 153339, "approaches evaluation": 11753, "time reduced": 166483, "released research": 139538, "research contribution": 141672, "models exist": 106221, "images relatively": 72475, "relatively fewer": 139401, "understanding prior": 171418, "generic text": 65672, "objectives structural": 115264, "conversational text": 31930, "structural features": 156514, "representations perform": 140862, "consistently various": 29930, "prediction extensive": 125794, "era software": 50244, "engineering perspective": 48966, "modern software": 109835, "rely powerful": 139875, "vital stage": 177414, "models developers": 105954, "challenges developers": 21826, "community given": 26483, "given increasingly": 65905, "issues using": 81066, "using frameworks": 174221, "fix patterns": 59701, "software focusing": 152819, "efficient testing": 46725, "debugging techniques": 37321, "network configuration": 112636, "cloud platforms": 24559, "addressed problem": 5400, "programs control": 129900, "dual task": 45077, "lg model": 92013, "model labeled": 103918, "extra supervision": 56117, "data outperform": 35452, "outperform supervised": 117639, "substantial margin": 158079, "nlp leading": 113754, "enabled large": 48140, "learning neural": 90764, "vastly improve": 176365, "software code": 152778, "generating functioning": 64231, "eliminate need": 47069, "abstractions like": 2675, "like generative": 92272, "syntax programming": 159922, "language cognitive": 83192, "corpus model": 32331, "better reflects": 18004, "propose contrastive": 131765, "framework compatible": 61022, "knowledge finetuned": 82005, "intermediate models": 79514, "successfully achieves": 158361, "separately paper": 148704, "initialized pretrained": 77075, "furthermore design": 62042, "set compared": 149157, "subquadratic time": 157928, "problem training": 128421, "prohibitive large": 130058, "truly subquadratic": 169820, "deploy large": 39197, "transformers text": 169364, "title review": 166644, "tasks combining": 162076, "demonstrate utilizing": 38605, "domains powerful": 44498, "limited dataset": 92746, "chinese short": 23662, "explicitly uses": 54992, "model implicitly": 103826, "captures knowledge": 20707, "finetuning public": 59493, "observe similar": 115394, "simply extended": 151612, "humans usually": 71489, "use prior": 172821, "information people": 76621, "comprehensive information": 28062, "introduce customized": 79943, "dataset customized": 36216, "evaluations qualitative": 52021, "results examine": 143393, "data constructed": 34840, "evaluation text": 51898, "states model": 155434, "datasets terms": 37154, "developed promptbased": 40906, "humanwritten examples": 71514, "headtohead comparison": 68928, "improve axes": 73416, "providing novel": 133340, "create pipeline": 33224, "pipeline combines": 123038, "judgments humans": 81334, "humans loop": 71428, "explanations approach": 54817, "perform semantic": 121030, "data prompted": 35565, "recently models": 137939, "code like": 24979, "tasks equivalent": 162313, "representations directly": 140792, "similar code": 151220, "build generalpurpose": 19318, "including effects": 74504, "quality effects": 134108, "monolingual crosslingual": 110063, "crosslingual pretraining": 33662, "plan make": 123215, "tuning gpt2": 170020, "model parameterefficient": 104216, "systems automatic": 160257, "overhead work": 118361, "ideal choice": 71747, "lms used": 97214, "scale new": 146319, "unlabeled unstructured": 171963, "corpora typically": 32260, "contain text": 30313, "heterogeneous sources": 69303, "training indomain": 168492, "adaptation diverse": 4609, "efficient adapter": 46564, "gpt2 large": 66554, "learners models": 90150, "represent different": 140639, "train multilingual": 167802, "set languages": 149228, "gpt3 comparable": 66667, "32 training": 1005, "approaches showing": 11903, "examples finally": 52584, "social value": 152674, "set design": 149175, "design benchmark": 39560, "benchmark supports": 17098, "design selfsupervised": 39750, "controllable language": 31618, "carbon emission": 20747, "propose online": 132051, "teach students": 163609, "information narrative": 76587, "knowledge expensive": 81967, "accessible pretrained": 2963, "experiments generative": 54296, "lms produce": 97180, "generate good": 63519, "bake cake": 15486, "manual evaluations": 99042, "finetuned lm": 59061, "great room": 67723, "offering new": 115749, "success improving": 158247, "quality especially": 134111, "pieces model": 122978, "set fixed": 149200, "single expert": 151796, "mainly contains": 98287, "learning experts": 90442, "learning basic": 90250, "basic knowledge": 16423, "specifically instead": 154229, "experts evaluations": 54655, "manual writing": 99069, "shift foundation": 149911, "propose flexible": 131827, "gaussian noise": 62834, "information optimize": 76609, "sequencetosequence learning": 148851, "achieve human": 3667, "framework data": 61058, "players game": 123488, "ai using": 7311, "leads enhanced": 89887, "designer control": 39977, "demonstrate difficulty": 38286, "used game": 173081, "inference setup": 76099, "mapping label": 99146, "achieve excellent": 3636, "space discrete": 153564, "criterion zeroshot": 33441, "knowledge elicited": 81912, "elicited pretrained": 47053, "designed template": 39962, "template form": 164214, "settings models": 149615, "learn meaningful": 90007, "embeddings method": 47255, "method optimizes": 101002, "models contrastive": 105784, "approach compared": 11061, "scaling efficient": 146394, "present prompting": 126422, "automatically search": 14855, "search best": 147324, "nlp fairness": 113737, "receiving increasing": 137325, "model fairness": 103637, "bias generative": 18127, "methods gpt2": 101555, "model consistent": 103352, "bias reduction": 18189, "regularization technique": 138990, "serves reference": 149052, "allowing language": 8377, "paper conducts": 118807, "model avoid": 103174, "hallucination generate": 68376, "using semisupervised": 174701, "number researchers": 114940, "recognition significant": 138126, "evaluation common": 51483, "sense tasks": 148395, "model relatively": 104444, "result achieved": 143020, "method smaller": 101111, "model argue": 103137, "robustness smaller": 145436, "technique produces": 163794, "tasks performing": 162943, "performing better": 122392, "result literature": 143045, "remarkable consistency": 140188, "consistency models": 29780, "adversarial settings": 6230, "process realworld": 128960, "ar systems": 12059, "fulfill demands": 61709, "fast experimental": 57266, "proposed tackle": 132439, "knowledge infer": 82121, "conditions inference": 29008, "performance ones": 121867, "ones highly": 116000, "demonstrations provided": 39040, "models chain": 105592, "achieves state": 4087, "benchmark math": 17023, "help multilingual": 69152, "languages use": 87152, "measure effect": 99842, "mllms context": 102815, "world evaluate": 179548, "benchmark perform": 17050, "centered kernel": 21323, "kernel alignment": 81443, "automatically distill": 14794, "current works": 34303, "works train": 179514, "steps incorporates": 155748, "base small": 15636, "negligible loss": 112563, "knowledgeenhanced language": 82545, "effectively integrated": 46033, "models integration": 106794, "probe model": 128141, "integrate different": 78483, "advances needed": 6045, "factors traditional": 56824, "data review": 35680, "research suggesting": 142099, "provide deeper": 132739, "models consolidate": 105759, "probability word": 128129, "topic models": 167330, "used predict": 173180, "semantic integration": 148161, "internet sources": 79592, "expand existing": 53683, "embeddings trained": 47291, "tokens effectiveness": 166798, "multiword expressions": 111300, "focus detection": 59968, "english portuguese": 49094, "classification different": 23986, "settings zero": 149662, "shot shot": 150063, "determine given": 40706, "sentence contains": 148485, "testing sets": 164755, "paper train": 119372, "models settings": 109086, "setting f1": 149456, "implementation work": 72861, "prominent choice": 130142, "promising fewshot": 130255, "plm quality": 123562, "selected based": 147792, "generation probability": 64954, "applied finetuning": 10763, "using 32": 173947, "adaptive model": 4783, "training promptbased": 168663, "promptbased nlp": 130792, "attention community": 13853, "lm pretraining": 97068, "pretraining second": 127433, "data necessarily": 35415, "pretraining address": 127258, "settings method": 149613, "model editing": 103506, "task comparable": 161250, "direct manipulation": 42392, "feasible approach": 57375, "editing code": 45450, "interactive demo": 79300, "demo notebook": 38179, "communication efficiency": 26369, "communication reduction": 26408, "gpt paper": 66472, "states using": 155444, "convergence guarantee": 31756, "data volume": 35956, "communication rounds": 26412, "accuracy glue": 3253, "associated finetuning": 13478, "currently way": 34344, "investigate ways": 80523, "use unlabeled": 172925, "setting enables": 149449, "usage examples": 172444, "efficient zeroshot": 46754, "generation growing": 64705, "growing dataset": 68019, "dataset scratch": 36520, "embeddings semantic": 47281, "organizations train": 117290, "sparselyactivated mixtureofexperts": 153752, "parameters greatly": 119773, "given token": 66036, "given sample": 65997, "strategy resulting": 156201, "importance different": 73023, "propose heterogeneous": 131859, "experts experts": 54656, "result token": 143069, "study pretraining": 157547, "high ambiguity": 69393, "pose huge": 124158, "huge challenges": 70508, "convert text": 31995, "space specifically": 153621, "concepts related": 28684, "related entity": 139166, "text retrieved": 165432, "graph like": 67546, "obvious improvement": 115572, "study multilingual": 157494, "multilingual prompts": 110535, "plms especially": 123592, "prompts soft": 131475, "specifically unified": 154298, "languages extensive": 87005, "incontext learn": 74861, "learn perform": 90027, "predictions new": 125923, "new inputs": 113228, "focused directly": 60093, "gpt2 generation": 66540, "generation utilizes": 65247, "utilizes set": 175159, "combination methods": 25833, "control methods": 31563, "methods guide": 101558, "keeping high": 81423, "recursively hierarchically": 138368, "pretraining complex": 127279, "slow inference": 152257, "unified method": 171732, "enables parallel": 48237, "minimizing kl": 102393, "paradigm finetuning": 119455, "achieving great": 4179, "sizes prompts": 152108, "prompts solve": 131477, "thanks advanced": 165983, "effective variety": 45922, "humandesigned prompts": 71166, "empirically compare": 47781, "prompts fewshot": 131275, "grows large": 68075, "moe architecture": 110015, "sharing information": 149838, "parameter matrix": 119628, "mask strategy": 99289, "actionable information": 4353, "identify categorize": 71865, "information capable": 76305, "sufficient labeled": 158488, "propose multilingual": 131938, "models examples": 106184, "examples help": 52604, "scenarios framework": 146606, "baseline terms": 16269, "tensor programs": 164357, "recently discovered": 137865, "remain stable": 139936, "stable model": 154699, "tuning paradigm": 170073, "total tuning": 167424, "recognition knowledge": 138079, "methods leverage": 101635, "use representation": 172852, "representation produced": 140733, "produced bert": 129485, "auxiliary learning": 15035, "learning target": 91051, "gpt2 text": 66602, "instructionbased generative": 78158, "scenarios bridging": 146544, "templates designed": 164230, "propose auxiliary": 131727, "entity type": 49946, "respectively experimental": 142552, "baselines datasets": 16304, "input humans": 77256, "ground understanding": 67846, "natural solution": 111955, "representations human": 140815, "raises challenge": 135477, "fail account": 56942, "derived bert": 39353, "use challenge": 172541, "set researchers": 149296, "lexical semantics": 91995, "used convey": 173014, "largely considered": 89147, "highlight models": 69759, "data ignoring": 35168, "goal achieved": 66144, "efficiency knowledge": 46475, "domain prompts": 44257, "attentionbased models": 14016, "compared transformerbased": 26959, "gshard switch": 68093, "universal sentence": 171912, "promptbased contrastive": 130754, "learning contrastive": 90330, "effective enhancing": 45748, "enhancing pretrained": 49544, "limitations firstly": 92585, "function contrastive": 61829, "does fully": 43978, "settings end": 149565, "discriminative power": 42848, "scalable accurate": 146230, "key building": 81465, "accurate large": 3470, "extends existing": 55693, "highly compressed": 69900, "deployment edge": 39268, "contextualizing language": 31140, "primary subject": 127825, "used languages": 173127, "semantically encoded": 148266, "encoding process": 48516, "score 50": 147037, "gpt2 finally": 66532, "bias tests": 18211, "length propose": 91387, "propose principled": 132074, "inference framework": 76017, "time scale": 166496, "structure enables": 156550, "documents news": 43928, "higher memory": 69614, "model summarize": 104687, "quality evaluate": 134113, "measuring impact": 99949, "eye movement": 56467, "gaze patterns": 62840, "role predicting": 145524, "experiments aimed": 54140, "aimed determining": 7513, "features different": 57476, "designed automatically": 39823, "words automatically": 178713, "built directly": 19476, "data extremely": 35036, "consistently boosts": 29860, "affect large": 6304, "investigated different": 80531, "representation resulting": 140737, "evidence small": 52218, "types objectives": 170394, "linguistically informed": 93084, "thought reasoning": 166236, "combined pretrained": 25916, "problem typically": 128426, "popular arithmetic": 123983, "stochastic processes": 155826, "highquality short": 70074, "representations generative": 140814, "time control": 166370, "domain generates": 44177, "decoding representations": 37593, "text domains": 165036, "preserves text": 126679, "text structure": 165489, "seek knowledge": 147657, "prompt completion": 130392, "completion language": 27327, "combination retrieval": 25842, "adolphs et": 5565, "generating knowledge": 64264, "generating final": 64217, "addresses issue": 5417, "classification natural": 24039, "advanced version": 5818, "enriches input": 49620, "knowledge marks": 82220, "recent focus": 137504, "outperforms gopher": 117776, "gopher 280b": 66341, "large range": 89033, "stateoftheart average": 155084, "evaluating prompts": 51375, "achieved natural": 3844, "creating effective": 33296, "end collect": 48639, "use tasks": 172900, "datasets quantitative": 37063, "certain attributes": 21367, "attributes prompt": 14124, "pretraining provide": 127417, "aim build": 7438, "fewer data": 57863, "data computation": 34813, "knowledge safety": 82391, "stateoftheart chinese": 155100, "easily deployed": 45308, "emotional responses": 47585, "indispensable building": 75685, "encoderdecoder based": 48454, "encoderdecoder network": 48466, "codes derived": 25300, "decoder learn": 37517, "codes learning": 25304, "significantly stateoftheart": 151162, "finetuning subsets": 59569, "including need": 74639, "prevent bottlenecks": 127533, "software libraries": 152824, "building training": 19456, "evaluation pipelines": 51772, "opensource libraries": 116626, "approaches high": 11797, "scenarios solve": 146702, "manual engineering": 99039, "encoding technique": 48518, "fully trainable": 61787, "different classes": 41686, "makes decision": 98642, "assigning different": 13321, "easy hard": 45355, "cases experiments": 20964, "llms gpt2": 95415, "spider benchmark": 154548, "analyze failure": 9294, "provided prompt": 133084, "prompt enables": 130436, "better stateoftheart": 18031, "require carefully": 141075, "manually engineered": 99094, "enable sampleefficient": 48127, "using handcrafted": 174290, "model vocabulary": 104882, "data enable": 34966, "100x faster": 186, "scarcity work": 146501, "propose promptingbased": 132085, "promptingbased approach": 131129, "diverse intent": 43554, "gpt generates": 66423, "intent instead": 79015, "instead desired": 77870, "filtering generated": 58353, "universal dialogue": 171898, "new ones": 113304, "semantics work": 148328, "descriptions requiring": 39495, "requiring similar": 141509, "developers generating": 40946, "demonstrations especially": 38999, "lowdata scenarios": 97803, "automatically searching": 14856, "examples crucial": 52550, "pluggable extensible": 123668, "approaches ii": 11801, "results 16": 143146, "yield better": 179961, "significant tasks": 150901, "benchmarks require": 17352, "high data": 69437, "unified generative": 171721, "approaches usually": 11950, "employ independent": 47832, "information exchange": 76403, "promptbased generative": 130767, "novel modelagnostic": 114603, "translation context": 169451, "producing consistent": 129548, "evaluating text": 51398, "written texts": 179795, "stories dataset": 155883, "simple interpretable": 151478, "exploiting knowledge": 55030, "classification prompting": 24059, "benchmark human": 16994, "efficiency especially": 46451, "richresource setting": 144825, "deployment existing": 39269, "proportion shared": 131681, "tend similar": 164320, "cost propose": 32730, "layers models": 89677, "prediction consistency": 125776, "text numbers": 165326, "measured standard": 99895, "combining knowledge": 25978, "table interpretation": 160746, "generation finally": 64659, "linked knowledge": 93100, "languages enable": 86986, "subsequently investigate": 157982, "sota deep": 153343, "using majority": 174475, "interannotator agreement": 79360, "degrees languages": 38025, "study promptbased": 157557, "models yielded": 109729, "promptbased language": 130771, "increasing time": 75367, "studied literature": 156929, "mixed data": 102713, "corpus largest": 32326, "codemixed hindienglish": 25273, "using process": 174611, "code processing": 25060, "sql queries": 154637, "codex model": 25350, "processing steps": 129302, "instructions descriptions": 78236, "processing code": 129127, "heterogeneous graph": 69297, "graph transformer": 67582, "requiring retraining": 141507, "competitiveness proposed": 27215, "light results": 92148, "generation building": 64460, "hand difficult": 68484, "expensive scale": 53808, "scale current": 146274, "second data": 147465, "task complex": 161258, "constructed data": 30172, "samples original": 146047, "illustrate superiority": 72160, "strong base": 156347, "base dialogue": 15597, "systems face": 160380, "generation taskspecific": 65188, "text steer": 165484, "steer responses": 155561, "language quality": 86678, "representation dynamics": 140682, "learningbased control": 91156, "derive simple": 39350, "improved task": 73726, "introduce number": 80079, "models calm": 105558, "terms task": 164482, "knowledgeaugmented language": 82524, "forgetting general": 60420, "answering named": 9910, "pretraining code": 127278, "performed manually": 122377, "combines generative": 25931, "humanintheloop user": 71205, "including long": 74602, "evaluation gpt3": 51626, "handle training": 68572, "industrial setting": 75859, "setting experiments": 149455, "tasks public": 163052, "hierarchical text": 69380, "classification hierarchical": 24011, "method handle": 100899, "techniques adapt": 163823, "models features": 106314, "changes training": 22395, "following observations": 60301, "domain source": 44287, "corpus related": 32348, "related downstream": 139162, "better evaluating": 17859, "lack deep": 82920, "understanding relevance": 171454, "relevance generated": 139556, "question involves": 134896, "promptbased generation": 130766, "preferences human": 126045, "learn natural": 90013, "100 samples": 158, "samples humanwritten": 146023, "feedback learning": 57726, "data semantic": 35726, "alexa google": 7754, "google assistant": 66309, "sentences controlled": 148569, "controlled fragment": 31637, "language approach": 83159, "particularly fewshot": 120189, "parsing key": 119960, "focus paper": 60030, "based novel": 15979, "dataset particularly": 36450, "fewshot results": 58043, "solve new": 153131, "setting achieve": 149417, "prompts generating": 131291, "performance settings": 122057, "lags far": 83067, "space potential": 153605, "potential improvement": 124776, "explore methods": 55242, "advantage fact": 6106, "used specify": 173239, "predictions diverse": 125897, "possible finetune": 124423, "manner experiments": 98989, "gains attained": 62512, "corpus questions": 32346, "online forums": 116101, "including grammar": 74547, "meaning fluency": 99768, "vocabulary grammar": 177506, "explanations specific": 54900, "learning domain": 90384, "domain study": 44303, "learning direct": 90371, "studied recent": 156939, "defined according": 37945, "semantic graph": 148151, "graph captures": 67493, "arguments experimental": 12446, "datasets great": 36900, "scenarios making": 146646, "models interactive": 106799, "supporting complex": 159369, "informationseeking tasks": 76859, "interfaces lack": 79460, "san francisco": 146126, "requests issued": 141051, "require short": 141187, "queries presented": 134519, "designed deployed": 39846, "deployed platform": 39217, "hallucination providing": 68407, "users needs": 173721, "llm complex": 93547, "llms hallucination": 95464, "metrics capture": 102022, "hundreds thousands": 71542, "given computational": 65856, "cost models": 32715, "difficult replicate": 42176, "available apis": 15073, "interested researchers": 79387, "gpt3 requiring": 66749, "released models": 139524, "fewshot language": 57943, "present contrastive": 126271, "ones different": 115990, "standard masked": 154844, "methods diverse": 101452, "framework makes": 61300, "methods little": 101647, "models loop": 108102, "new strategy": 113437, "strategy applying": 156104, "treat model": 169631, "create classifier": 33178, "classifier prompt": 24166, "framework provide": 61364, "gains accuracy": 62507, "generalize rare": 63269, "parameters given": 119766, "tuning relation": 170109, "representations corresponding": 140786, "model infers": 103859, "querying examples": 134649, "moderate accuracy": 109759, "improvements standard": 73948, "input simple": 77341, "useful way": 173359, "posthoc analysis": 124499, "accurate predictions": 3479, "assess reliability": 13119, "reliability explanations": 139685, "datasets data": 36756, "learning transformers": 91098, "learning explicitly": 90444, "emergent behavior": 47470, "distributions training": 43432, "uniformly distributed": 171771, "time having": 166412, "naturalistic data": 111964, "typically used": 170526, "used standard": 173241, "achieve simultaneously": 3744, "language experiments": 83297, "properties training": 131663, "learning behaviour": 90253, "learning domains": 90386, "universally effective": 171917, "effective datasets": 45729, "diverse pretraining": 43601, "associated specific": 13511, "ablative experiments": 2453, "gpt3 zeroshot": 66782, "appealing choice": 10220, "choice research": 23706, "small medium": 152320, "used work": 173306, "style model": 157757, "gpus achieve": 67354, "achieve model": 3685, "task named": 161557, "improve plms": 73580, "outperforms stateofthearts": 117869, "survey advances": 159597, "advances challenges": 5991, "techniques especially": 163888, "guide potential": 68198, "exploiting pretrained": 55039, "tail classes": 160902, "achieve aim": 3579, "makes pretrained": 98682, "classification carry": 23969, "form key": 60466, "making good": 98744, "verify applicability": 176523, "attributes approaches": 14104, "resources study": 142489, "generation need": 64878, "need training": 112414, "information sampling": 76743, "sampling process": 146112, "process effectively": 128798, "effectively guiding": 46008, "demonstrate gamma": 38353, "approaches largely": 11824, "inevitably biased": 75920, "control data": 31532, "shown experiments": 150240, "access original": 2890, "systems growing": 160414, "ecommerce products": 45387, "tasks retrieval": 163185, "generation aiassisted": 64408, "developing unified": 41036, "task deriving": 161309, "potentially unlimited": 125141, "unlimited set": 172031, "build foundation": 19315, "behavior data": 16578, "propose improved": 131869, "version prompt": 176611, "generation personalized": 64924, "cloud servers": 24563, "contain knowledge": 30301, "knowledge trained": 82462, "match score": 99424, "method advantage": 100664, "alignment knowledge": 8177, "devices deep": 41304, "time critical": 166373, "datahungry models": 36060, "research implementations": 141841, "allowing framework": 8370, "optimizing training": 117129, "popular approaches": 123982, "text files": 165085, "differ performance": 41607, "hugging faces": 70537, "popular techniques": 124062, "like memory": 92350, "augmentation promptbased": 14304, "tasks mainly": 162773, "addition conventional": 4846, "synonym substitution": 159881, "bring marginal": 19128, "making susceptible": 98812, "susceptible learning": 159732, "superficial cues": 158973, "cues generalize": 33924, "generalize datasets": 63244, "reduced data": 138490, "outperform random": 117621, "random accuracy": 135513, "step inference": 155649, "entailment tasks": 49773, "steps solve": 155770, "exploits pretrained": 55047, "generate series": 63710, "series interpretable": 148934, "100 compared": 148, "scores model": 147160, "decoding search": 37597, "search automatic": 147320, "english writers": 49123, "coherence compared": 25507, "baselines release": 16362, "data intentionally": 35248, "perfect model": 120854, "model exposed": 103615, "reported substantial": 140569, "data unique": 35905, "repeated times": 140432, "instance performance": 77807, "100 times": 162, "data memorized": 35362, "consumes large": 30270, "finally connect": 58427, "work attempting": 178815, "internal structures": 79566, "induction heads": 75833, "generalization memorization": 63195, "prompts overcome": 131397, "generalization math": 63193, "capable generalizing": 20424, "seen prompts": 147700, "codedavinci002 model": 25252, "generalization benchmark": 63137, "particularly noteworthy": 120233, "models literature": 107015, "included prompts": 74353, "work recent": 179253, "approach second": 11523, "systematic reproducible": 160143, "reproducible evaluation": 141023, "evaluation conduct": 51494, "usually focus": 174903, "additionally adapt": 5020, "gpt networks": 66469, "networks different": 112732, "memorization overfitting": 100331, "underlying training": 170877, "memorize training": 100342, "tend forget": 164306, "individual training": 75748, "actually improves": 4490, "models bigger": 105518, "learning ssl": 91017, "structural data": 156512, "dominant approach": 44643, "progress generative": 129969, "reached potential": 136129, "impact development": 72635, "objective training": 115231, "mitigates issues": 102649, "issues generative": 81007, "pretraining instead": 127346, "consistently generate": 29873, "pretraining prior": 127411, "pretraining explored": 127322, "architectures learning": 12277, "difficult work": 42190, "gpt fully": 66419, "67b parameters": 1500, "existing finetuning": 53370, "generation depending": 64563, "bert bart": 17512, "datasets observe": 37008, "series ablation": 148899, "annotators rank": 9639, "captures human": 20705, "assumptions violated": 13574, "likert scales": 92473, "preference certain": 126003, "cases suggest": 21021, "like story": 92410, "using highly": 174295, "aims learn": 7635, "guide learning": 68187, "information specifically": 76771, "trained instructions": 167954, "tasks outside": 162901, "sets address": 149355, "argue model": 12414, "diverse new": 43590, "maintaining good": 98354, "evergrowing size": 52149, "nlp work": 113930, "need improve": 112314, "smaller plm": 152433, "surprising observation": 159551, "additional label": 4968, "robustness tasks": 145438, "demonstrate general": 38354, "general sparse": 63051, "using seq2seq": 174706, "learns mapping": 91186, "key properties": 81557, "combinatorial space": 25865, "improvement 20": 73742, "relationship information": 139320, "tagging model": 160892, "suitable extracting": 158699, "analyses different": 8760, "tasks cover": 162139, "perform logical": 120979, "trained prior": 168045, "overall using": 118259, "sets demonstrate": 149364, "designing better": 39989, "base publicly": 15630, "alleviate need": 8294, "prompt according": 130363, "according language": 3043, "trained thousands": 168101, "retrieval code": 144023, "promptbased zeroshot": 130802, "approach synthesized": 11588, "deployment previous": 39295, "remedy issue": 140333, "issue mainly": 80928, "using heuristic": 174292, "help human": 69124, "indicating data": 75648, "help construct": 69101, "baseline average": 16197, "metrics detect": 102046, "moving target": 110241, "error annotations": 50275, "model compare": 103311, "varies significantly": 175683, "factuality detection": 56906, "types different": 170346, "types provide": 170410, "nonparametric memory": 114115, "similar gains": 151239, "tokens define": 166796, "improvement base": 73760, "effective domain": 45742, "adaptation training": 4669, "models express": 106265, "express uncertainty": 55565, "answers natural": 10055, "model logits": 104043, "level confidence": 91456, "90 confidence": 1744, "extracted model": 56198, "pretrained latent": 127015, "learning discriminative": 90374, "successfully perform": 158391, "fullshot settings": 61734, "paradigm work": 119533, "naturally extend": 111973, "align better": 7992, "models streamline": 109237, "current natural": 34192, "tools largely": 167195, "largely depends": 89148, "generalizable scalable": 63121, "challenging wide": 22319, "topics data": 167349, "framework performs": 61344, "synthetic samples": 160073, "new tracking": 113471, "future application": 62221, "researchers collaborate": 142183, "learning case": 90286, "safety domain": 145853, "number documents": 114855, "documents like": 43923, "dl based": 43783, "community researchers": 26521, "queries constructed": 134460, "database queries": 36003, "qa pipeline": 133913, "decentralized training": 37347, "designed software": 39944, "data center": 34742, "technical contribution": 163694, "different computational": 41700, "optimal allocation": 116930, "allocation strategy": 8331, "strategy conduct": 156120, "extreme case": 56416, "faster prior": 57296, "major stages": 98451, "evaluation furthermore": 51612, "level personal": 91496, "personal computers": 122554, "used areas": 172964, "data growing": 35142, "accompanied growing": 2997, "requirements work": 141323, "present efficient": 126290, "quantization scheme": 134420, "novel affordable": 114350, "opensourced language": 116694, "problems improve": 128537, "proposed guide": 132314, "codedavinci002 achieves": 25248, "analyzing mitigating": 9377, "investigate underlying": 80506, "generating consecutive": 64172, "study relationship": 157590, "tokens previous": 166860, "models preference": 108594, "sentence sentencelevel": 148532, "motivated findings": 110177, "repetitive data": 140445, "approaches achieve": 11679, "improvement downstream": 73780, "like classification": 92248, "employ finetuning": 47825, "head model": 68907, "proven successful": 132649, "standard prompt": 154869, "refer approach": 138644, "generation reinforcement": 65032, "learning efficient": 90401, "method make": 100973, "combination prompting": 25841, "accessing models": 2979, "task apply": 161195, "learn generalize": 89984, "fewer steps": 57870, "building personalized": 19437, "character setting": 22438, "uses prompttuning": 173900, "sentiment control": 148649, "achieved new": 3846, "language critiques": 83226, "motivate introduce": 110166, "framework comparing": 61021, "generation discrimination": 64584, "results proof": 143694, "using aiassisted": 173968, "systems tasks": 160639, "qualitative approach": 133985, "quantitative experiment": 134347, "draw conclusion": 44912, "strategy best": 156109, "explanations prompted": 54891, "piece music": 122973, "aid understanding": 7371, "collaboration ai": 25580, "fast accurate": 57260, "parallel transformer": 119580, "propose fast": 131820, "tokens generate": 166817, "generates semantic": 64109, "strategy generate": 156151, "generate negative": 63628, "performance experiments": 121487, "complexity problem": 27694, "problem weak": 128436, "weak ability": 177923, "domain survey": 44304, "directions providing": 42496, "robustness neural": 145409, "scenarios previous": 146676, "focused designing": 60090, "designing dialog": 39993, "knowledge grounded": 82090, "propose transferable": 132176, "pretrained diverse": 126792, "knowledge employed": 81923, "employed enhance": 47880, "corpus additional": 32275, "generation russian": 65063, "interacting models": 79095, "rugpt3 model": 145690, "model autoencoding": 103158, "according output": 3046, "model tokens": 104749, "tokens experiments": 166809, "articles using": 12624, "method showed": 101091, "texts contain": 165692, "input knowledge": 77268, "graphical interpretation": 67600, "size leading": 152023, "requirements paper": 141314, "quantization techniques": 134421, "offering flexible": 115738, "provides significant": 133212, "number required": 114939, "applying machine": 10907, "ignoring important": 72078, "descriptions addition": 39432, "preprocessing data": 126185, "data tabular": 35847, "content language": 30536, "healthcare prediction": 69007, "icu admission": 71711, "enables generation": 48192, "learning baseline": 90248, "standard machine": 154841, "subject ongoing": 157839, "leaving open": 91205, "evidence scaling": 52212, "capabilities investigating": 19976, "causal representations": 21224, "optimizing framework": 117113, "ai capability": 6895, "data centers": 34743, "cloud edge": 24556, "end devices": 48656, "autonomous vehicles": 14953, "large growing": 87278, "power edge": 125171, "presents design": 126567, "including extreme": 74515, "transformers generate": 169306, "datasets varied": 37190, "provide low": 132879, "low medium": 97769, "gpt3 variants": 66774, "dialog contrast": 41412, "contrast earlier": 31300, "leverages new": 91758, "pretraining designed": 127303, "setups terms": 149686, "features intrinsic": 57520, "metrics code": 102027, "scripts publicly": 147259, "confidence score": 29361, "score based": 147045, "adaptation speech": 4662, "systems sensitivity": 160605, "speaker specific": 153833, "estimation module": 50758, "scores increased": 147154, "addressed using": 5401, "suggest proposed": 158583, "based test": 16133, "outperformed baseline": 117652, "10 10": 101, "number models": 114905, "showcase superior": 150087, "tasks unify": 163411, "general texttotext": 63060, "manner task": 99012, "capacity perform": 20532, "mvp model": 111353, "utilizes recent": 175158, "small plms": 152347, "13 17": 318, "contexts given": 31022, "modeling capability": 104979, "plms despite": 123586, "information current": 76343, "consisting modules": 29950, "module automatically": 109921, "automatically learns": 14839, "labels vocabulary": 82844, "leveraging fewshot": 91848, "generator produces": 65629, "margins code": 99205, "specific chinese": 153952, "language typically": 86804, "single character": 151784, "simplified chinese": 151594, "process combination": 128757, "character generation": 22429, "retrievalbased generative": 144200, "using cognitive": 174060, "study gpt3": 157382, "specifically assess": 154138, "decisionmaking information": 37415, "similarly better": 151389, "directed exploration": 42422, "results enrich": 143383, "learning integrating": 90587, "media analytics": 100072, "shift language": 149914, "structure vocabulary": 156618, "newly acquired": 113525, "data poses": 35504, "work implications": 179032, "harm performance": 68718, "general easily": 62944, "interpretable results": 79691, "neural approach": 112824, "method output": 101020, "output appropriate": 117897, "conducted automatic": 29208, "applying methods": 10911, "indicate methods": 75610, "study trends": 157677, "notable machine": 114236, "size increasing": 152007, "increasing orders": 75343, "just years": 81389, "2022 identify": 669, "previous language": 127602, "bigger models": 18403, "models nlms": 108299, "tremendous advances": 169686, "years achieving": 179881, "remain unanswered": 139937, "effect context": 45650, "statistical power": 155507, "good practices": 66287, "practices future": 125509, "grow dramatically": 67994, "increase computational": 75197, "generation reranking": 65045, "expansion entity": 53711, "entities target": 49875, "given seed": 66002, "progress rely": 130013, "information annotated": 76278, "entity sentence": 49941, "module utilizes": 109966, "codes experiments": 25302, "paradigm pretrain": 119497, "popular widely": 124076, "method experimental": 100847, "learning achieves": 90178, "overall compared": 118183, "compared pretrained": 26878, "foundational task": 60851, "raw unstructured": 136094, "pairs text": 118625, "uses knowledge": 173867, "supervision paradigm": 159211, "development modern": 41163, "works focusing": 179451, "present corpora": 126274, "study summarization": 157652, "language specific": 86735, "experiments performed": 54392, "corpus task": 32359, "generate abstractive": 63381, "performance far": 121505, "effective tool": 45905, "sufficient data": 158484, "task works": 161815, "potential prompttuning": 124925, "studies gap": 157008, "fully finetuning": 61765, "prompttuning framework": 131543, "methods introducing": 101612, "tasks realtime": 163084, "regular basis": 138975, "questions novel": 135205, "events information": 52115, "information challenges": 76311, "build strong": 19352, "report presents": 140551, "answer suggests": 9787, "llms transformative": 96847, "humans topics": 71482, "llms fact": 95241, "transform way": 169053, "llms coupled": 94750, "natural behaviors": 111519, "facilitate zeroshot": 56663, "constraints used": 30116, "11 f1": 225, "interactive human": 79313, "opensourced code": 116691, "showed incorporating": 150141, "geographic knowledge": 65702, "dimensions gender": 42337, "using continuous": 174085, "results employing": 143374, "german french": 65764, "problem nlp": 128339, "function classes": 61828, "condition prompt": 28946, "prompt sequence": 130666, "corresponding output": 32598, "gpt3 exhibit": 66681, "relationship tasks": 139332, "functions given": 61908, "learn unseen": 90069, "complex function": 27420, "twolayer neural": 170240, "taskspecific learning": 163532, "concepts meanings": 28673, "account human": 3076, "key results": 81565, "perform evaluations": 120939, "evaluations wide": 52039, "using 64": 173951, "conversational flow": 31867, "features pretrained": 57556, "lead times": 89783, "features prior": 57557, "optimizing deep": 117111, "multiple trials": 111076, "process inefficient": 128874, "avoids extra": 15364, "computing gradient": 28542, "gradient algorithms": 67379, "stationary point": 155476, "processing increasingly": 129170, "increasingly relevant": 75439, "identifying novel": 72019, "novel unseen": 114737, "inputs remains": 77441, "biggest challenges": 18406, "finetuned adapters": 58979, "later perform": 89528, "classification zeroshot": 24140, "languages evaluation": 86996, "known classes": 82589, "test zeroshot": 164655, "discovery generating": 42768, "settings known": 149597, "broad application": 19164, "automated dynamic": 14541, "scenarios unlike": 146714, "generation novel": 64896, "python package": 133840, "datasets compiled": 36721, "fail generate": 56955, "distinguishing synthetic": 43301, "labels achieve": 82778, "significant gpu": 150715, "properties highly": 131647, "perform inference": 120968, "models accessible": 105203, "prompting need": 131025, "strong accuracy": 156341, "prompt new": 130611, "experimentation different": 54109, "accuracy differences": 3204, "experiment prompt": 53901, "prompt performance": 130628, "prompts developed": 131227, "workflow allows": 179376, "easy deployment": 45352, "systems zeroshot": 160675, "generation rely": 65037, "research zeroshot": 142157, "effective multilingual": 45821, "generation dubbed": 64591, "knowledge english": 81938, "multilingual dialogue": 110481, "implicit semantic": 72990, "alignment different": 8140, "everincreasing number": 52151, "bigger better": 18402, "complex nonlinear": 27503, "continually pretrained": 31180, "second replace": 147505, "method encoding": 100825, "creates new": 33280, "settings model": 149614, "datasets resource": 37086, "resource timeintensive": 142399, "create barrier": 33172, "concrete recommendations": 28922, "guiding model": 68280, "semantics using": 148326, "effectively exploit": 45994, "arguments propose": 12448, "capture relational": 20674, "terms f1": 164416, "pronouns languages": 131576, "languages allow": 86945, "allow better": 8333, "present qualitative": 126429, "erroneous outputs": 50265, "method outperforming": 101006, "challenging cases": 22126, "types issues": 170372, "based static": 16110, "semantic aspects": 148104, "range possible": 135672, "future solutions": 62381, "methods abstractive": 101270, "shown potential": 150325, "improving natural": 74175, "abstractive summary": 2686, "model hyperparameters": 103812, "text mapping": 165295, "used variety": 173291, "space crucial": 153559, "need detect": 112266, "detect biases": 40347, "hidden model": 69329, "devise new": 41329, "semantics original": 148310, "including comparing": 74466, "semantics alternative": 148287, "layers llm": 89674, "automatically constitute": 14777, "ability supervised": 2387, "results capable": 143204, "slightly better": 152229, "gpt3 used": 66772, "expressing background": 55586, "using 05": 173937, "benchmarks human": 17265, "play different": 123448, "identify relationships": 71948, "statistical correlation": 155485, "based word": 16183, "specific roles": 154080, "clean samples": 24252, "samples preserving": 146054, "simple implement": 151475, "report series": 140557, "structure function": 156558, "lamda large": 83080, "provoked flurry": 133416, "history research": 70228, "hope provide": 70373, "remain valid": 139952, "answer existing": 9704, "models stimulate": 109232, "required specific": 141257, "demonstrating efficacy": 38932, "approach estimate": 11193, "estimate importance": 50722, "annotations experiments": 9589, "outperforms strongest": 117873, "advantage monolingual": 6117, "plms finetuning": 123603, "experimental investigation": 53952, "scores using": 147177, "finetuning relatively": 59508, "clinical terms": 24369, "ontology concepts": 116169, "metrics agree": 101999, "meteor rouge": 100611, "investigating human": 80600, "domain contrast": 44117, "lack structure": 83011, "prompts introduce": 131338, "explore approach": 55150, "approach case": 11041, "choose appropriate": 23725, "informed theories": 76897, "apply prompts": 10871, "gpt3 improve": 66706, "improving existing": 74137, "manual templates": 99065, "texts compared": 165687, "knowledge common": 81819, "generators method": 65644, "answer furthermore": 9715, "method selects": 101086, "distinct prompts": 43243, "resulting generated": 143099, "perspectives leading": 122710, "better recall": 18001, "recall acceptable": 137262, "taming language": 161025, "area aiming": 12314, "streamlining access": 156235, "language given": 83392, "applicability llms": 10262, "generation candidate": 64461, "lms efficient": 97129, "prompts typically": 131510, "accuracy address": 3139, "sentence transformer": 148540, "sentence transformers": 148541, "works finetuning": 179448, "number text": 114961, "text pairs": 165338, "pairs contrastive": 118557, "magnitude parameters": 98206, "results peft": 143660, "faster train": 57301, "remarkable prediction": 140264, "growing array": 68004, "highstakes domains": 70120, "gptj model": 67297, "replacing key": 140475, "word model": 178653, "llms frozen": 95306, "language changes": 83183, "time accuracy": 166343, "benchmark identifying": 16995, "summarization evaluation": 158825, "benchmark domain": 16935, "domain news": 44235, "summarization dominant": 158823, "generated summaries": 63993, "humans natural": 71435, "super large": 158963, "algorithm generates": 7811, "compositional semantic": 27820, "identify additional": 71852, "larger vocabulary": 89259, "sequentially generate": 148892, "allows set": 8473, "query propose": 134618, "propose conceptual": 131759, "consistency measure": 29777, "understanding relevant": 171455, "measures model": 99931, "concepts knowledge": 28664, "predict models": 125691, "llms commonsense": 94644, "base conceptual": 15593, "scale llm": 146308, "models necessarily": 108273, "learning zeroshot": 91150, "size generally": 152000, "generally incurs": 63312, "counterparts zeroshot": 32980, "specifically augment": 154140, "incorporate multiple": 75026, "potentially noisy": 125126, "module leveraging": 109946, "seven evaluation": 149696, "models opensourced": 108360, "plms present": 123626, "supports various": 159398, "perform multistep": 120986, "thoughts cot": 166243, "short sentences": 149990, "steps final": 155737, "central question": 21346, "propose complexitybased": 131752, "selection scheme": 147886, "prompts higher": 131309, "selecting outputs": 147822, "outputs sample": 118119, "based reasoning": 16061, "chainofthought large": 21509, "benchmarks measure": 17301, "evaluating accuracy": 51258, "enable systematic": 48130, "model represented": 104457, "proofs formal": 131589, "generally capable": 63304, "planning multiple": 123301, "steps available": 155718, "sets using": 149412, "evaluation provided": 51803, "think retrieval": 166138, "extracted prompt": 56205, "auxiliary model": 15038, "calls llm": 19684, "flexibly combined": 59837, "represents promising": 140992, "sampling produces": 146113, "produces final": 129529, "opt codex": 116903, "ability harness": 2215, "explore leverage": 55236, "leverage learned": 91625, "given pretrained": 65958, "data examples": 35001, "introduce interpretable": 79989, "yield meaningful": 179971, "meaningful insights": 99796, "groundtruth dataset": 67936, "prompts produced": 131420, "effective generalization": 45764, "generalization realworld": 63218, "realworld sentiment": 136510, "match improve": 99416, "dataset potential": 36457, "discovery code": 42761, "choices training": 23719, "english benchmarks": 49030, "loss making": 97682, "effective inference": 45783, "weights publicly": 178124, "abstractions large": 2672, "promising progress": 130298, "explicitly provide": 54987, "goal state": 66199, "requiring multistep": 141503, "distilling taskspecific": 43195, "effort writing": 46877, "previous researchers": 127643, "automatically learn": 14838, "knowledge expert": 81972, "initial seed": 77052, "predefined prompt": 125655, "approaches recently": 11882, "robustness propose": 145423, "functionalities programming": 61882, "questions adopts": 135031, "annotations specifically": 9612, "codex able": 25334, "original programming": 117372, "extraction given": 56303, "explicit output": 54945, "output programs": 117978, "programs benefit": 129893, "human debugging": 70686, "systems finetuned": 160389, "thousands taskspecific": 166258, "improving sample": 74214, "proposed transfer": 132449, "pretrained source": 127161, "domain target": 44305, "tuning problem": 170093, "problem setting": 128392, "fundamental challenge": 61938, "quality point": 134222, "generate contextually": 63437, "questions approach": 135044, "generate knowledge": 63589, "learning rewards": 90936, "tested different": 164669, "perform compositional": 120902, "corresponding improvement": 32587, "steps providing": 155765, "steps prompting": 155762, "demonstrations public": 39041, "performance cot": 121344, "paradigm requires": 119507, "demonstrations code": 38991, "systems neural": 160495, "nmt systems": 113955, "accuracy testing": 3406, "systems analyzing": 160242, "working mechanism": 179399, "manipulated adversarial": 98933, "key motivation": 81541, "inputs sufficiently": 77447, "searches minimal": 147442, "minimal unnoticeable": 102362, "characterlevel tokenlevel": 22498, "inputs generated": 77409, "realworld mobile": 136478, "policy iteration": 123851, "manual design": 99035, "training adapter": 168143, "adapter layers": 4708, "perform rl": 121028, "tasks expert": 162368, "iteratively updates": 81166, "demonstrate algorithm": 38227, "adaptation largescale": 4635, "adapting largescale": 4745, "explored model": 55357, "adaptation model": 4645, "compression propose": 28224, "separate set": 148695, "binary values": 18479, "simulation method": 151702, "demonstration prompts": 38981, "controllable way": 31630, "method human": 100909, "results simulated": 143802, "annotation accuracy": 9506, "advances neural": 6046, "times surpassing": 166609, "gap public": 62723, "benchmarks realworld": 17343, "propose improvements": 131870, "language analyzing": 83151, "settings benchmark": 149533, "tasks observe": 162870, "performance clean": 121248, "combines data": 25929, "loss term": 97700, "data sentencelevel": 35731, "set used": 149342, "pretrain teacher": 126744, "predictions downstream": 125898, "align finetuning": 7997, "finetuning study": 59568, "adding taskspecific": 4834, "using target": 174785, "comes price": 26020, "generation counterfactual": 64544, "augmentation cda": 14268, "limiting effectiveness": 92884, "counterfactual generation": 32947, "generation retrieval": 65053, "using learned": 174406, "model edits": 103509, "diverse perturbations": 43600, "manually authored": 99077, "improvements different": 73895, "assist large": 13348, "unclear investigate": 170695, "highquality information": 70036, "indomain zeroshot": 75806, "lack specificity": 83008, "specificity paper": 154327, "propose measure": 131910, "prompts instance": 131334, "test specific": 164636, "preference specific": 126027, "underlying factors": 170837, "methods additional": 101288, "models encourage": 106116, "important understudied": 73213, "work applying": 178804, "knowledge continual": 81840, "intelligent virtual": 78962, "instead human": 77878, "assistants capable": 13407, "knowledge reducing": 82350, "reducing complex": 138553, "complex interactions": 27442, "automatically infer": 14833, "model trigger": 104809, "framework demonstrated": 61064, "models clinical": 105629, "investigation using": 80652, "corpora implicitly": 32227, "achieves close": 3979, "generate source": 63720, "given highlevel": 65899, "specific events": 153990, "describes complex": 39391, "entirety using": 49828, "methods extract": 101511, "need predefined": 112364, "data generative": 35122, "research directed": 141709, "generation realistic": 65019, "generative llm": 65457, "llm sample": 93978, "synthetic highly": 160047, "approach series": 11526, "produced data": 129487, "answering retrievalaugmented": 9956, "samples drawn": 146006, "medical exam": 100168, "effectiveness learned": 46217, "context medical": 30848, "measured performance": 99893, "directly evaluate": 42535, "masked predictions": 99318, "available vocabulary": 15225, "training modification": 168593, "prediction space": 125865, "outperform complex": 117576, "complex stateoftheart": 27596, "work highlight": 179013, "baselines improve": 16331, "speech multimodal": 154434, "training stability": 168760, "fulfill goal": 61711, "designed various": 39972, "vision pretraining": 176973, "known explicit": 82592, "simple adversarial": 151401, "reasoning unseen": 137220, "main results": 98271, "suggest plms": 158576, "plms perform": 123624, "demonstrating importance": 38939, "humanlevel reasoning": 71238, "tasks jointly": 162654, "generative architecture": 65375, "systems online": 160501, "systems employ": 160352, "respectively based": 142535, "training generation": 168464, "sign language": 150516, "translation aims": 169438, "aims translate": 7681, "texts challenging": 165681, "scarcity labeled": 146494, "data translating": 35888, "highquality domain": 70020, "prompt based": 130375, "based domain": 15766, "sentences original": 148588, "original indomain": 117342, "texts similar": 165778, "style experimental": 157746, "bottleneck developing": 18885, "given complexity": 65855, "llms unsuitable": 96897, "set model": 149239, "evaluate datasets": 50941, "real examples": 136230, "methods language": 101622, "code fewshot": 24837, "goal generate": 66167, "code better": 24696, "generation lm": 64800, "codex outperforms": 25351, "information add": 76265, "work predominantly": 179169, "work orders": 179147, "paradigm transferring": 119522, "remains key": 140015, "translation service": 169515, "generalpurpose text": 63371, "llms translating": 96856, "extensive comparisons": 55737, "spanning 50": 153670, "50 languages": 1302, "method translating": 101153, "choices enable": 23715, "enable effective": 48076, "transformerbased plms": 169282, "plms shows": 123641, "research largescale": 141884, "dataset involving": 36373, "test understanding": 164651, "gpt3 gpt2": 66699, "accuracy just": 3284, "settings respectively": 149639, "gain performance": 62448, "values human": 175538, "diverse cultural": 43492, "conditions introduce": 29009, "classification performs": 24051, "approach distills": 11128, "methods suggest": 101851, "suggest using": 158596, "using classifiers": 174052, "human value": 71074, "important ai": 73079, "knowledge crucial": 81848, "crucial robust": 33846, "humancentric ai": 71149, "behaviors conditioned": 16688, "endtoend methodology": 48748, "methodology extracting": 101229, "demonstrates benefits": 38826, "robust preference": 145306, "automated story": 14612, "constraints natural": 30101, "control story": 31590, "require annotated": 141071, "model subsequently": 104673, "finetune generative": 58920, "simply finetuning": 151613, "model contrastive": 103373, "generation capable": 64478, "generation robustness": 65062, "technique human": 163777, "conducted comparing": 29218, "ablations baselines": 2451, "use contrastive": 172563, "preference modeling": 126016, "reason conventional": 136559, "modern civilization": 109788, "use word": 172940, "resolve ambiguity": 142340, "using timeaware": 174805, "important understanding": 73212, "acceptable behaviors": 2830, "potential violations": 125067, "questions representing": 135253, "risk language": 144948, "baselines 10": 16274, "quality allowing": 134035, "identification finally": 71793, "explanation matching": 54791, "quality generative": 134152, "gptbased architecture": 67277, "attention faces": 13879, "faces fundamental": 56571, "interact recently": 79074, "flexibly integrate": 59839, "integrate goal": 78488, "develop endtoend": 40779, "highly predictable": 69939, "prompts require": 131447, "expensive prior": 53799, "seen surge": 147712, "efficiently use": 46825, "gelu layernorm": 62857, "ultimately leading": 170587, "leading efficient": 89811, "training implement": 168482, "baseline evaluate": 16207, "roberta models": 145157, "does work": 44039, "performance convergence": 121339, "detection lack": 40535, "wide coverage": 178258, "language order": 86451, "use newly": 172780, "strategies require": 156067, "t5 text": 160724, "limited studies": 92856, "different public": 41951, "public text": 133607, "finetuned classification": 58997, "spider dataset": 154549, "coherence correctness": 25510, "algorithm combining": 7787, "obtain consistent": 115470, "improvement em": 73783, "contexts perform": 31040, "comparisons proposed": 27083, "contexts multiple": 31036, "prompt improves": 130540, "gap natural": 62685, "propose retrievalaugmented": 132102, "approaches experimental": 11759, "study application": 157162, "models unlike": 109550, "tabular datasets": 160790, "benchmarks mmlu": 17307, "mmlu bbh": 102884, "generation instance": 64745, "flanpalm 540b": 59748, "compared larger": 26849, "finetuning general": 59279, "usability pretrained": 172433, "meta ai": 100555, "step contrast": 155609, "local finetuning": 97240, "finetuning refer": 59500, "opt language": 116907, "enables finetuning": 48188, "original arabic": 117312, "languages arabic": 86947, "building earlier": 19392, "community particularly": 26501, "understanding representation": 171457, "present crucial": 126275, "modeling generative": 105009, "dependencies address": 39142, "includes datasets": 74364, "answering dialog": 9836, "crosslingual evaluation": 33650, "classification utilizing": 24136, "original generated": 117335, "idea prompt": 71740, "score prompts": 147090, "parameters extensive": 119756, "work builds": 178830, "new terms": 113462, "datadriven approach": 36037, "investigate errors": 80408, "speech community": 154390, "intelligence theory": 78909, "humans effectively": 71378, "effectively navigate": 46057, "ability grasp": 2210, "dynamics crucial": 45203, "sap et": 146139, "limitations stemming": 92667, "scale needed": 146318, "text large": 165268, "appear learn": 10225, "corpora trained": 32258, "difficult verify": 42189, "recently extended": 137886, "enabling knowledge": 48312, "languages knowledge": 87034, "costly curation": 32782, "enhance mllms": 49235, "experiments common": 54176, "relative baselines": 139359, "efficient learning": 46662, "attention provide": 13971, "way pretrained": 177864, "evaluations training": 52031, "set paper": 149262, "results indomain": 143526, "fewer samples": 57869, "finetuning especially": 59247, "shown surprising": 150392, "produce excellent": 129399, "setting assumption": 149428, "language annotated": 83152, "examples english": 52567, "exemplars given": 52985, "exemplars target": 52988, "facilitate translation": 56660, "models distilled": 106003, "explicit examples": 54929, "examples sampled": 52688, "iterative distillation": 81121, "previous iteration": 127599, "relatively modest": 139410, "final student": 58406, "quality resulting": 134253, "monolingual settings": 110074, "methods multilingual": 101670, "involves minimal": 80754, "scenarios analyze": 146535, "14 languages": 378, "prompt variants": 130739, "text autoregressive": 164852, "importance natural": 73047, "previous solutions": 127648, "consistency recently": 29787, "model follows": 103687, "exists specific": 53665, "humanlevel performances": 71237, "evaluations code": 51948, "code related": 25090, "resources publicly": 142475, "better intent": 17920, "handling open": 68604, "methods supervised": 101855, "just layer": 81379, "proposal accuracy": 131687, "supplement original": 159230, "model hypothesize": 103813, "optimal method": 116941, "modules finetuning": 109982, "mutually enhance": 111350, "generation optimization": 64904, "decoding objective": 37583, "incoherent text": 74801, "approach optimizes": 11417, "inspired fact": 77720, "zero additional": 180068, "produces higher": 129532, "works model": 179473, "simulates human": 151674, "world essential": 179547, "benchmarks dataset": 17202, "dataset focuses": 36312, "achieved satisfactory": 3884, "plms furthermore": 123604, "construct semantic": 30157, "settings proposed": 149633, "work relied": 179260, "interpretation work": 79717, "testing knowledge": 164721, "indicate pretrained": 75618, "sva evaluate": 159752, "pretrained english": 126801, "english second": 49104, "errors autoregressive": 50336, "information pertaining": 76623, "prompting making": 131004, "heavy human": 69053, "human engineering": 70716, "application new": 10357, "texts bayesian": 165678, "model initializing": 103864, "names despite": 111426, "text lengths": 165277, "work indicates": 179039, "empirically shown": 47802, "parameters dataset": 119733, "better identify": 17907, "necessary properties": 112151, "propose statistical": 132144, "model random": 104412, "ii way": 72114, "networks enable": 112737, "sets parameters": 149393, "parameters iv": 119780, "spectral power": 154353, "causes models": 21264, "learning decompose": 90351, "robust interpretable": 145277, "nlu systems": 113948, "despite datasets": 40091, "resources built": 142426, "annotations limited": 9601, "decomposition tasks": 37647, "tasks feasible": 162396, "20 30": 585, "build novel": 19338, "hotpotqa strategyqa": 70445, "prompts requires": 131448, "lot human": 97715, "margin 26": 99176, "better parameterefficient": 17958, "candidates selection": 19750, "tend rely": 164318, "models vulnerable": 109670, "responses negative": 142860, "responses leveraging": 142842, "suggest method": 158564, "responses dataset": 142761, "set apart": 149131, "computational storage": 28411, "massive size": 99378, "techniques limited": 163957, "quantization method": 134413, "accuracy degradation": 3195, "methods preserving": 101722, "preserving accuracy": 126682, "175 billionparameter": 496, "weights quantized": 178125, "highend gpus": 69575, "largest knowledge": 89439, "novel graph": 114533, "concepts material": 28672, "mapping present": 99154, "million unique": 102245, "querying visualization": 134664, "rapid dissemination": 135876, "used knowledge": 173121, "llms reported": 96403, "structures paper": 156711, "framework assess": 60962, "consistency robustness": 29791, "constructs llms": 30246, "llms probing": 96198, "syntactic representations": 159897, "representations neural": 140855, "generation questionanswering": 65000, "models overwhelming": 108400, "semiconductor industry": 148349, "different transformer": 42060, "model failure": 103635, "evaluation structured": 51876, "data compares": 34804, "refinement prompts": 138769, "validated using": 175348, "doing tasks": 44051, "end define": 48652, "models closed": 105633, "plm t5": 123563, "outputs language": 118074, "extensive studies": 55952, "strategies affect": 155957, "extend idea": 55626, "types units": 170432, "main classes": 98225, "approaches relying": 11890, "wild language": 178510, "gaps understanding": 62767, "large ml": 88911, "generalization multitask": 63200, "machinetranslated english": 98172, "performance humanwritten": 121638, "respective languages": 142527, "surprisingly models": 159569, "networks paper": 112781, "adapter learns": 4709, "position directly": 124257, "view multiple": 176816, "multiple attention": 110843, "experts propose": 54675, "complex relationships": 27572, "led adoption": 91213, "adoption various": 5660, "need knowledge": 112328, "types work": 170438, "differentiate distinctive": 42106, "work pretraining": 179190, "task benchmark": 161220, "domain making": 44225, "better leverages": 17931, "original sentence": 117384, "sentence entity": 148502, "selected final": 147796, "basic units": 16445, "need customize": 112255, "complex designs": 27400, "focus finetuning": 59983, "domain gap": 44173, "important appropriate": 73083, "range methods": 135646, "proposed achieve": 132224, "methods newly": 101680, "input augmentation": 77210, "suggest promising": 158580, "robust prompts": 145311, "combining prompt": 25994, "exhibit stateoftheart": 53105, "different fewshot": 41772, "effectiveness utilizing": 46313, "language particular": 86459, "sets traditional": 149409, "minimum description": 102399, "description length": 39416, "analysis investigate": 8986, "excel general": 52768, "highly unstable": 69967, "learning sequential": 90979, "generalizable policies": 63119, "learned policies": 90114, "prompts shown": 131470, "choice prompts": 23701, "prompts selecting": 131464, "given scarcity": 65998, "gradient update": 67397, "humans display": 71375, "experiments case": 54168, "gptneo gptj": 67308, "predictions language": 125913, "optimizing communication": 117109, "pattern emerges": 120502, "paradigms model": 119542, "50 respectively": 1306, "conversation designers": 31784, "significant obstacles": 150789, "ability create": 2117, "intent generation": 79014, "form lightweight": 60471, "representation using": 140749, "based hypothesis": 15861, "harry potter": 68844, "bilingual dataset": 18414, "agents specific": 6736, "specific characters": 153951, "challenge complexities": 21605, "serve universal": 149011, "llm aligning": 93456, "improvement generating": 73802, "modelgenerated explanations": 104957, "generate grammatical": 63520, "samples answer": 145986, "compare explanations": 26676, "samples incontext": 146026, "explanations significantly": 54899, "explanations terms": 54903, "supporting code": 159368, "knowledge internet": 82144, "contains wealth": 30397, "historical figures": 70202, "relationship knowledge": 139323, "memorized large": 100349, "datasets scraped": 37101, "knowledge estimate": 81955, "information presenting": 76637, "content unfaithful": 30638, "faithfulness generated": 57089, "news datasets": 113557, "dataset apply": 36116, "successfully improve": 158385, "metric performance": 101980, "task translation": 161788, "performance difference": 121385, "reasoning incontext": 136912, "far solved": 57235, "tools possible": 167226, "approach variety": 11662, "supervised systems": 159175, "conclude providing": 28882, "intelligence significantly": 78898, "creative endeavors": 33367, "creation recent": 33352, "advancements seen": 5965, "enabled use": 48150, "use modern": 172768, "methods evaluation": 101491, "paper compares": 118784, "compares different": 26971, "east west": 45345, "development prospects": 41202, "fewshot summarization": 58064, "demands various": 38169, "tasks motivate": 162820, "motivate development": 110163, "development fewshot": 41111, "summarization despite": 158820, "despite emergence": 40099, "heterogeneous datasets": 69295, "pretrained multiple": 127131, "fewshot summarizers": 58066, "samples task": 146070, "domains experimental": 44404, "identification nli": 71799, "useful variety": 173356, "task numerous": 161574, "results recently": 143733, "datasets investigate": 36934, "nli systems": 113669, "examples test": 52709, "understanding problem": 171420, "problem llms": 128314, "decomposition llms": 37640, "llm read": 93938, "problems generate": 128519, "benchmarks natural": 17311, "leads accurate": 89873, "codex achieves": 25335, "llms excellent": 95127, "maintain accuracy": 98319, "efficiency time": 46543, "memory reduction": 100450, "llm single": 94005, "deployed language": 39213, "want make": 177693, "targeted edits": 161131, "deployed model": 39214, "space creating": 153558, "inputs code": 77389, "exploring efficacy": 55465, "models modalities": 108219, "paper carry": 118776, "descriptions explore": 39455, "explore efficacy": 55195, "improvement using": 73865, "significant terms": 150904, "terms bleu": 164394, "understand potential": 171059, "learning proved": 90879, "valuable component": 175407, "detection texts": 40640, "examples outside": 52648, "inherited pretraining": 76998, "model sees": 104524, "parameter learning": 119625, "detection conduct": 40466, "multiple benchmark": 110849, "ag news": 6383, "model continual": 103369, "building domainspecific": 19391, "domainspecific pretrained": 44610, "adapter based": 4703, "based roberta": 16081, "baselines experimental": 16316, "alleviates catastrophic": 8309, "11 compared": 220, "nlp language": 113748, "regardless veracity": 138907, "task order": 161586, "make work": 98628, "testtime prompting": 164807, "design critical": 39591, "critical use": 33567, "growing automated": 68006, "methods design": 101429, "testtime prompt": 164806, "editing using": 45493, "prior prompt": 127920, "efficiently leverage": 46799, "leverage prior": 91649, "interpretable prompt": 79685, "achieve design": 3622, "allows flexible": 8435, "flexible editing": 59803, "prompts covering": 131211, "analysis topic": 9207, "claim sentence": 23826, "automatically correct": 14782, "minimal editing": 102324, "editing existing": 45456, "corrected claims": 32427, "correction fec": 32437, "minimal edits": 102325, "actions respect": 4389, "design target": 39776, "function predicted": 61855, "t5 experiments": 160703, "models backpropagation": 105442, "optimization propose": 117037, "parameters fixed": 119762, "number diverse": 114853, "datasets effectively": 36807, "applications program": 10646, "reasoning numerical": 137008, "chainofthoughts prompting": 21553, "programs derive": 129901, "answer evaluate": 9702, "datasets combining": 36711, "performance financial": 121521, "financial datasets": 58564, "robust methods": 145288, "facto standard": 56771, "standard tools": 154886, "models following": 106379, "following trend": 60319, "benchmark released": 17072, "evaluate progress": 51072, "experiments task": 54491, "dataset pairs": 36445, "papers main": 119399, "similar benchmarks": 151209, "generate fixed": 63506, "llms lens": 95756, "decoderonly llms": 37545, "variant zeroshot": 175625, "par worse": 119423, "models toxicity": 109412, "using realtoxicityprompts": 174648, "realtoxicityprompts dataset": 136387, "arguments key": 12447, "modern society": 109834, "summaries capturing": 158758, "capturing essential": 20725, "mapping task": 99157, "propose approaches": 131718, "ii approach": 72085, "considerably worse": 29651, "datasets typically": 37166, "multiple attributes": 110844, "using commonsense": 174066, "gpt3 llama2": 66720, "competitive accuracy": 27157, "accuracy tasks": 3403, "examples provides": 52674, "twostep method": 170281, "enumerate relevant": 49975, "novel class": 114437, "format second": 60549, "examples trained": 52713, "23 terms": 792, "gpt35 summarize": 66858, "recursive summarization": 138364, "salient content": 145927, "application traditional": 10390, "data rapidly": 35602, "generalize domains": 63249, "domains making": 44469, "prone errors": 131557, "assumption single": 13566, "tokens semantic": 166878, "broader context": 19209, "learning contrast": 90328, "contrast supervised": 31329, "capabilities teacher": 20209, "llm create": 93570, "code solutions": 25149, "solutions math": 153045, "gptneo 13b": 67307, "access datasets": 2853, "arbitrary ones": 12089, "overfitting introduce": 118341, "parameters unchanged": 119882, "method challenging": 100730, "distilling reasoning": 43192, "models stepbystep": 109231, "reasoning approaches": 136673, "cot approach": 32855, "reasoning scheme": 137114, "instructs llm": 78434, "words general": 178724, "unseen prompts": 172178, "potential facilitate": 124719, "facilitate advanced": 56592, "bridging communication": 19087, "communication gap": 26376, "events news": 52123, "multidocument summarization": 110385, "summarization benchmark": 158806, "public figures": 133569, "class algorithms": 23865, "error function": 50299, "correctly identifies": 32465, "case example": 20871, "corpora contain": 32213, "events test": 52129, "test pretrained": 164597, "particular assign": 120051, "llm errors": 93638, "results important": 143486, "task small": 161729, "sentiment labels": 148655, "labels instead": 82806, "argue commonlyused": 12403, "using random": 174644, "disentangle models": 43038, "memory introduce": 100411, "impact language": 72673, "multilingual texttotext": 110559, "tasks lowresource": 162763, "transfer highresource": 168916, "specifically mt5": 154252, "transfer linguistic": 168966, "knowledge languages": 82161, "presented model": 126521, "equally strong": 50165, "investigation analyze": 80624, "model statistical": 104654, "data demands": 34893, "pretraining despite": 127304, "containing number": 30340, "existing strategies": 53587, "confront challenge": 29437, "model broad": 103229, "detection key": 40534, "factual news": 56894, "given news": 65943, "main topic": 98276, "headline generation": 68914, "presented approach": 126510, "examples selection": 52691, "examples typically": 52718, "understand properties": 171068, "indomain outofdomain": 75798, "quality development": 134096, "model adding": 103075, "enabled remarkable": 48147, "variety popular": 175741, "largely driven": 89149, "mitigate effects": 102603, "linguistic nuances": 93048, "model completion": 103319, "completion propose": 27337, "activities approach": 4459, "approach exploits": 11210, "learning need": 90759, "implemented approach": 72867, "static dynamic": 155458, "thanks rapid": 165989, "entered era": 49782, "intersection large": 79762, "llms mimicking": 95888, "systems mitigate": 160481, "efficiency improving": 46469, "improving deep": 74126, "especially expensive": 50470, "framework focuses": 61165, "efficiency framework": 46463, "makes better": 98633, "data increases": 35212, "learning library": 90643, "95 model": 1797, "domainspecific plms": 44609, "proposed boost": 132263, "leads catastrophic": 89878, "explored build": 55339, "direction activation": 42427, "outputs method": 118087, "explicit ground": 54934, "models perplexity": 108503, "prompted perform": 130830, "model familiar": 103638, "prompts automatically": 131168, "small seed": 152355, "seed set": 147644, "written prompts": 179790, "prompts significant": 131471, "study case": 157201, "showing lower": 150176, "second study": 147511, "simplification using": 151591, "read understand": 136154, "maintaining original": 98370, "meaning helpful": 99769, "people disabilities": 120713, "focused tackling": 60124, "external linguistic": 56080, "control tokens": 31597, "sari score": 146147, "results code": 143232, "slow large": 152259, "intertwining ai": 79778, "emerging abilities": 47501, "probe llms": 128140, "decisionmaking humans": 37412, "humans study": 71475, "directly deploying": 42529, "potential hardware": 124755, "identify optimal": 71934, "building monolingual": 19430, "building natural": 19432, "absolutely crucial": 2624, "24 languages": 809, "consisting diverse": 29943, "points strong": 123765, "learning 1000": 90163, "capability achieving": 20269, "updating parameters": 172366, "usually restricted": 174918, "supervision large": 159203, "introduce structured": 80113, "prompting breaks": 130870, "length limit": 91376, "specifically demonstration": 154171, "number demonstration": 114849, "pragmatic language": 125551, "communication present": 26403, "challenge artificial": 21588, "human error": 70718, "humans sensitive": 71469, "behaviors emerge": 16695, "explicitly constructed": 54966, "suite metrics": 158733, "predictions work": 125940, "scores improve": 147153, "synthetic human": 160048, "evaluation summarization": 51887, "evaluation studies": 51877, "following axes": 60253, "semantic units": 148254, "high interannotator": 69471, "datasets conduct": 36727, "annotations evaluation": 9585, "leads statistically": 89916, "metrics benchmarked": 102014, "systems absence": 160223, "process evaluation": 128819, "critical downstream": 33486, "identify biases": 71863, "evaluating datasets": 51284, "datasets produced": 37045, "limitations various": 92687, "memorizing training": 100358, "finer granularity": 58907, "understand context": 170992, "compared pretraining": 26880, "tend overfit": 164312, "models causing": 105587, "data multistep": 35408, "search method": 147375, "multiple linguistic": 110966, "planning automated": 123249, "challenge generating": 21646, "generating sequence": 64332, "symbolic planners": 159819, "planners plan": 123234, "preconditions effects": 125638, "closed world": 24467, "length diversity": 91360, "maintaining coherence": 98342, "unifies causal": 171761, "fashion specifically": 57255, "performed automatic": 122360, "produces coherent": 129521, "models holistic": 106627, "holistic survey": 70301, "learn intricate": 89997, "data mining": 35368, "application prospects": 10374, "disruptive effect": 43098, "effect human": 45657, "relative weakness": 139390, "survey focuses": 159636, "latest applications": 89539, "trends challenges": 169715, "specifically commence": 154153, "mainstream applications": 98304, "66 billion": 1485, "behaviors associated": 16683, "opens questions": 116564, "generic models": 65664, "novel problems": 114646, "model textdavinci003": 104743, "surprisingly strong": 159578, "abstract pattern": 2653, "zeroshot solutions": 180347, "solutions broad": 152998, "design learning": 39676, "competitive level": 27179, "novel adaptation": 114347, "decoding enhance": 37568, "enhance generation": 49206, "selfimitation learning": 148003, "novel algorithms": 114355, "present twostage": 126488, "ability tackle": 2390, "stage propose": 154749, "discussions shed": 43018, "language support": 86752, "pretraining limited": 127377, "adaptation strategies": 4663, "following task": 60314, "method teach": 101139, "unlabeled speech": 171955, "text supervised": 165519, "crossmodal representation": 33687, "ability natural": 2292, "sensitive individual": 148427, "error accumulation": 50269, "avoid mistakes": 15344, "propose prove": 132087, "various arithmetic": 175813, "similarly supervised": 151396, "quality summary": 134276, "proposes questionanswering": 132485, "fewshot large": 57945, "llm stateoftheart": 94025, "question code": 134840, "trading accuracy": 167581, "depends number": 39181, "parameters original": 119822, "study tradeoff": 157672, "llms determine": 94911, "improvements use": 73959, "evaluation machine": 51683, "limited annotations": 92703, "outdated models": 117474, "progress evaluation": 129962, "using interactive": 174334, "interactive interface": 79315, "consistency accuracy": 29749, "humanlanguage model": 71219, "interaction realworld": 79172, "produces output": 129537, "interaction evaluation": 79118, "consider designing": 29565, "particular highlight": 120083, "cases results": 21014, "subset training": 158011, "reduction loss": 138615, "training computation": 168194, "copying model": 32123, "models challenge": 105597, "translations address": 169552, "asr transcripts": 13012, "quality compare": 134067, "leveraged improve": 91697, "summarization quality": 158865, "information supported": 76788, "summaries explanations": 158762, "feedback generating": 57695, "generating human": 64245, "feedback edited": 57665, "provide factually": 132786, "feedback demonstrate": 57663, "proposed tasks": 132441, "encourages llm": 48614, "providing series": 133366, "steps demonstrations": 155731, "performance obtained": 121862, "metrics generating": 102072, "reasoning inference": 136917, "reasoning overall": 137014, "findings deepen": 58650, "quality metrics": 134200, "falls categories": 57147, "references limited": 138699, "methodologies used": 101206, "effectively adapted": 45935, "outperforms original": 117811, "referencefree metrics": 138688, "metrics closely": 102025, "modelbased evaluation": 104932, "metrics text": 102159, "tests synthetic": 164793, "generation translation": 65219, "metrics example": 102060, "built gpt2": 19483, "errors beginning": 50337, "requiring highly": 141492, "highly advanced": 69890, "solved paper": 153175, "achieve 80": 3572, "80 success": 1658, "understanding limits": 171334, "paper carefully": 118775, "icl accuracy": 71656, "influences llm": 76236, "modeling present": 105068, "multitask settings": 111242, "spectrum social": 154367, "original humanwritten": 117338, "model topic": 104753, "solution leverage": 152953, "leverage language": 91613, "queries language": 134495, "specified topic": 154338, "generation probabilities": 64953, "unseen instructions": 172169, "correctly understand": 32475, "encouraging models": 48622, "signals training": 150541, "incidental supervision": 74318, "setting focusing": 149459, "focusing primarily": 60192, "unavailable llm": 170640, "using question": 174640, "multistep qa": 111174, "improve cot": 73437, "factually accurate": 56922, "enabling robust": 48346, "highquality counterfactual": 70010, "extend new": 55638, "new counterfactual": 113127, "large general": 87262, "apply pipeline": 10868, "pipeline task": 123094, "distributions compared": 43421, "learn causal": 89964, "specify desired": 154345, "make prompts": 98583, "prompts analysis": 131158, "reveals effective": 144421, "generating prompts": 64300, "quality annotation": 134038, "annotation projection": 9545, "available labeled": 15147, "given sequence": 66005, "labeling task": 82766, "alleviate lack": 8292, "perform gradient": 120954, "unseen input": 172168, "performance working": 122314, "dual form": 45070, "form gradient": 60457, "gpt produces": 66478, "icl model": 71686, "future model": 62290, "finetuned respond": 59102, "generalize zeroshot": 63276, "diversity creativity": 43717, "generality tuned": 63105, "samples language": 146031, "similar ones": 151282, "finetune original": 58954, "trained private": 168046, "private user": 128056, "evaluation curate": 51518, "tuning gpt3": 170021, "aligning pretrained": 8110, "models instructions": 106786, "size plms": 152043, "plms training": 123648, "model sequentially": 104547, "limited representation": 92833, "work researchers": 179268, "networks symbolic": 112806, "extremely costly": 56429, "costly terms": 32802, "needed create": 112440, "create work": 33246, "tasks properly": 163032, "little knowledge": 93239, "models societal": 109166, "cultural settings": 33966, "400 million": 1178, "powerful arabic": 125256, "release comprehensive": 139454, "biases harms": 18270, "researchers code": 142182, "inherent input": 76953, "studies revealed": 157075, "blackbox manner": 18647, "derive meaningful": 39347, "scenario language": 146510, "intelligence past": 78875, "rules specifically": 145726, "paradigm task": 119516, "dataset termed": 36578, "baselines automatic": 16289, "future perspectives": 62298, "efforts address": 46883, "training specialized": 168757, "architectures easily": 12259, "applied offtheshelf": 10794, "parameters substantial": 119869, "settings long": 149609, "multiple retrieved": 111027, "multiple targets": 111059, "effect sizes": 45676, "times compared": 166580, "building work": 19462, "change future": 22342, "presents detailed": 126568, "loglinear relationship": 97424, "errors reveals": 50399, "function words": 61868, "functions able": 61900, "standard metrics": 154850, "metrics data": 102038, "particularly addressing": 120145, "recent powerful": 137583, "process generated": 128846, "performance augmented": 121174, "arabic dataset": 12064, "vary size": 176274, "sentiment text": 148666, "datasets increase": 36928, "using frozen": 174224, "work combined": 178845, "evaluations new": 52007, "increasingly widespread": 75456, "highlighted need": 69799, "context allowing": 30686, "rely access": 139826, "demo method": 38175, "method available": 100704, "distributions tokens": 43431, "tokens conditioned": 166792, "diverse sizes": 43659, "nlp llms": 113757, "examples new": 52644, "aim survey": 7498, "progress challenges": 129949, "strategies related": 156064, "provide potential": 132925, "designed work": 39974, "largest available": 89429, "reach 60": 136103, "ongoing work": 116073, "deep technical": 37827, "potential alternative": 124571, "pipeline based": 123036, "results minor": 143608, "work discussing": 178915, "generators information": 65638, "retrieval recently": 144124, "generate datasets": 63452, "existing powerful": 53524, "humanlike writing": 71296, "generation identify": 64726, "pipeline generation": 123062, "test different": 164545, "utilizes techniques": 175162, "generation time": 65204, "retrieval collections": 144024, "deberta v3": 37300, "average gain": 15287, "100 candidate": 147, "steps finetuning": 155739, "based keywords": 15892, "generate scenes": 63697, "scenes scene": 146754, "according automatic": 3027, "automatic quantitative": 14724, "resourceconstrained scenarios": 142406, "performance empirically": 121450, "yields student": 180041, "generalization significantly": 63229, "range sentence": 135692, "correctly labeled": 32469, "using templatebased": 174793, "create set": 33230, "validate findings": 175319, "showing substantial": 150198, "perform similar": 121038, "power chatbots": 125161, "chatbots collecting": 22608, "way build": 177780, "selfreport data": 148045, "designs different": 40016, "different structures": 42015, "chatbots chatbots": 22604, "challenges building": 21793, "dataset multimodal": 36419, "videobased multimodal": 176755, "watching videos": 177742, "difficulty capturing": 42203, "capturing human": 20729, "human interests": 70868, "challenges multimodal": 21960, "furthermore existing": 62066, "instructionbased models": 78160, "best setting": 17750, "utilized language": 175107, "perform ml": 120981, "ml using": 102796, "market sentiment": 99235, "sentiment lexicons": 148658, "language opinions": 86449, "distinction human": 43265, "functional competence": 61871, "performance functional": 121544, "competence tasks": 27123, "external modules": 56084, "underexplored literature": 170769, "demonstration example": 38973, "improve translation": 73646, "settings finally": 149576, "outputs discuss": 118046, "discuss problems": 42933, "size prevents": 152059, "developed methods": 40891, "lms results": 97193, "development use": 41250, "resulting growing": 143101, "size equally": 151991, "languages translation": 87148, "biomedical abstracts": 18535, "exhibits good": 53197, "strategy named": 156186, "translate source": 169413, "source sentence": 153468, "language target": 86756, "improving translation": 74229, "chatgpt suggests": 23369, "github project": 65823, "supporting flexible": 159375, "growing model": 68034, "dnn model": 43796, "execution large": 52956, "better memory": 17943, "emerging models": 47523, "design generation": 39641, "generation sequential": 65079, "principled approach": 127845, "application promptbased": 10371, "utilizing automatic": 175171, "generation capacity": 64481, "albeit preliminary": 7746, "situations involving": 151944, "form plagiarism": 60479, "stability analysis": 154670, "indicate finetuning": 75584, "suffers instability": 158463, "methods solve": 101833, "finetuning head": 59291, "setting prove": 149498, "used realworld": 173204, "realworld benchmark": 136410, "datasets experiment": 36843, "gpt4 recently": 67134, "reasoning reasoning": 137088, "prone hallucinate": 131562, "underlying biases": 170832, "systems facilitating": 160382, "aims examine": 7606, "llms latent": 95736, "models premise": 108599, "optimal demonstrations": 116938, "set annotated": 149129, "demonstrate realworld": 38520, "hypothesis llms": 71626, "replay large": 140481, "benchmarks approach": 17174, "accuracy previous": 3342, "adept capturing": 5495, "generalization interpretability": 63182, "offers structured": 115852, "driving data": 45005, "identification using": 71812, "research frontier": 141806, "insights methodologies": 77603, "review essential": 144501, "evolving area": 52305, "popularity prediction": 124097, "video streaming": 176737, "services large": 149082, "datasets users": 37179, "graph network": 67552, "order efficiently": 117189, "learning module": 90743, "specific user": 154124, "extensive simulations": 55951, "treats language": 169647, "models special": 109193, "used supervise": 173252, "better predictions": 17981, "typical paradigm": 170456, "resources access": 142419, "generation terms": 65195, "20 points": 608, "agents incorporate": 6629, "patterns finetuning": 120529, "feeding llm": 57838, "characteristics work": 22473, "realtime adaptive": 136370, "experiments promising": 54403, "investigate combine": 80389, "lm performance": 97066, "tasks generated": 162456, "chain does": 21452, "necessarily reflect": 112134, "language query": 86680, "chain problem": 21458, "cot improves": 32869, "relative accuracy": 139357, "accuracy gain": 3248, "relational inference": 139275, "recognition module": 138095, "module harnessing": 109943, "provide avenue": 132681, "reports social": 140610, "early studies": 45267, "problem performance": 128347, "geographic information": 65701, "information emerging": 76381, "capture underlying": 20691, "characteristics text": 22472, "place names": 123177, "promising pathway": 130283, "encoder representation": 48436, "representation transformers": 140748, "tuning study": 170129, "flant5 outperform": 59759, "settings task": 149649, "critical effective": 33488, "particular training": 120132, "training mixed": 168581, "actually yields": 4491, "requires finetuning": 141378, "finetuning converge": 59210, "2022 collection": 667, "proficiency natural": 129672, "using medical": 174483, "conducting human": 29315, "highquality summaries": 70079, "despite major": 40158, "demonstrations given": 39009, "effective demonstrations": 45732, "example evaluate": 52474, "step learning": 155653, "fast model": 57274, "variance estimate": 175606, "speculative sampling": 154378, "transformer decoding": 169118, "algorithm relies": 7849, "relies observation": 139806, "combined novel": 25913, "model hardware": 103786, "modifications model": 109873, "model creating": 103394, "philosophical texts": 122854, "distinguish texts": 43289, "produced human": 129491, "gpt3 works": 66779, "participants distinguish": 120000, "51 time": 1333, "rate 20": 135964, "80 correct": 1654, "synthetic tabular": 160076, "model creates": 103393, "dataset conditioned": 36182, "outofthebox large": 117552, "standard testing": 154885, "40 diverse": 1173, "control scenarios": 31586, "75 tasks": 1578, "tasks matching": 162784, "observed past": 115428, "previously considered": 127717, "exclusive humans": 52891, "convergence guarantees": 31757, "approaches exploit": 11763, "training highly": 168472, "highly popular": 69937, "challenging vast": 22315, "providing endtoend": 133287, "advance natural": 5690, "preserve general": 126664, "social conversation": 152554, "synthetic dialogues": 160043, "conversation dataset": 31781, "conversations compared": 31939, "years widely": 179944, "employed evaluate": 47881, "lowerresource languages": 97855, "knowledge distilled": 81893, "distilled large": 43178, "language performance": 86464, "evaluating neural": 51358, "using constructionist": 174080, "present possible": 126411, "possible scenarios": 124460, "resources use": 142496, "reduce resource": 138470, "established methods": 50691, "view introduce": 176812, "techniques different": 163870, "clips text": 24427, "generates intermediate": 64078, "generates highfidelity": 64074, "text trained": 165535, "using audio": 173978, "fidelity generated": 58113, "elements text": 47022, "prompt genre": 130526, "semantics prompt": 148317, "extract embeddings": 56131, "resolving problem": 142358, "given inference": 65907, "environment specifically": 50032, "dataset inference": 36359, "generating entire": 64204, "meet desired": 100275, "models explanations": 106247, "obtain strong": 115507, "accuracy explanations": 3232, "explanations written": 54911, "mediocre performance": 100249, "filtering based": 58351, "classifier method": 24159, "prompts small": 131474, "prompts raises": 131437, "question regarding": 134929, "regarding robustness": 138889, "method remains": 101071, "relatively robust": 139414, "robust perturbations": 145304, "datasets hope": 36912, "models shot": 109093, "results furthermore": 143423, "conversational contexts": 31860, "achieve highly": 3664, "performance long": 121766, "techniques specialized": 164026, "convolution kernels": 32034, "algorithm improve": 7817, "flop utilization": 59861, "task sequence": 161718, "points training": 123772, "introduce extension": 79959, "provide powerful": 132926, "powerful solution": 125334, "hindered scarcity": 70142, "errors address": 50334, "quality reduced": 134243, "confidence scorebased": 29362, "proposed produce": 132419, "produce reliable": 129453, "datasets suggest": 37140, "adaptation schemes": 4660, "selection similar": 147888, "classification popular": 24052, "popular transformer": 124070, "paper includes": 118975, "learning bert": 90257, "abilities prompting": 1994, "prompting explicitly": 130931, "given incredible": 65906, "quantities data": 134398, "struggle translate": 156778, "rare words": 135950, "using prior": 174609, "provide control": 132729, "input words": 77369, "llm extensive": 93661, "analysis benefits": 8831, "approach including": 11299, "text low": 165286, "quality degradation": 134091, "furthermore framework": 62083, "effective promptbased": 45853, "tasks reformulating": 163108, "challenges specifically": 22069, "method mitigate": 100978, "enhance adaptability": 49145, "labelled datasets": 82771, "available comprehensive": 15085, "exploring limits": 55485, "limits chatgpt": 92911, "lengthy documents": 91407, "versions retaining": 176627, "including extractive": 74514, "recently created": 137845, "significant using": 150910, "comparable traditional": 26625, "highlight unique": 69793, "summaries human": 158772, "chatgpt diverse": 22861, "directions area": 42458, "examine characteristics": 52373, "reasoning machine": 136976, "focused particular": 60116, "particular recent": 120116, "turn results": 170178, "argue general": 12408, "consider possible": 29580, "llms mean": 95872, "applications foundation": 10534, "models intended": 106796, "basic natural": 16425, "information finetuned": 76454, "tasks solve": 163262, "video processing": 176727, "control learning": 31558, "blueprint solving": 18758, "called foundation": 19655, "brief introduction": 19104, "models discussed": 105994, "increasing length": 75328, "answering translation": 9977, "systems generating": 160404, "application area": 10298, "text best": 164861, "best text": 17759, "text explore": 165073, "task predictive": 161635, "results develop": 143353, "obtaining human": 115546, "strategy maximizing": 156182, "improves text": 74091, "10 compared": 111, "people paper": 120732, "examine quality": 52411, "generated story": 63992, "short descriptions": 149965, "descriptions produced": 39488, "using story": 174763, "asked write": 12878, "possibilities future": 124366, "approach analyzing": 10991, "methodology analysis": 101211, "useful prompts": 173345, "outputs collection": 118033, "comparison stateoftheart": 27068, "research commercial": 141642, "gpt35 textdavinci003": 66862, "results gpt": 143439, "systems enhance": 160358, "characteristics gpt": 22460, "tasks literature": 162743, "manually designing": 99093, "scale different": 146281, "methods automatically": 101330, "automatically design": 14788, "best average": 17660, "ssl method": 154661, "bag tricks": 15474, "leaderboard glue": 89793, "detection natural": 40568, "best combination": 17665, "training employ": 168414, "detection phase": 40589, "finetuning adversarial": 59158, "adversarial finetuning": 6202, "results according": 143153, "light developing": 92110, "chatgpt pretrained": 23210, "models pfms": 108509, "gpt method": 66449, "datasets recently": 37071, "promising success": 130323, "shot prompting": 150059, "significant breakthroughs": 150630, "updated survey": 172347, "advancements challenges": 5871, "components existing": 27756, "additionally explores": 5066, "fundamentals pfms": 61997, "key implications": 81514, "overall survey": 118249, "method measure": 100975, "measure uncertainty": 99882, "language challenging": 83182, "challenging semantic": 22270, "recognition dynamic": 138058, "pose problems": 124169, "problems modern": 128569, "propose generate": 131852, "overcome catastrophic": 118270, "just finetune": 81366, "benchmark reveal": 17079, "proposed loss": 132329, "improvement recall": 73843, "recall rate": 137277, "methods support": 101856, "build systems": 19353, "challenging involving": 22180, "chatgpt promising": 23218, "chatgpt extensively": 22924, "apis making": 10196, "settings limited": 149607, "dataset encourage": 36257, "performance known": 121705, "known highly": 82601, "sensitive input": 148429, "study apply": 157168, "framework quantify": 61366, "bias example": 18120, "utterances dialogue": 175255, "tasks discrete": 162239, "context dependent": 30726, "especially generating": 50479, "generating sql": 64343, "prompting novel": 131029, "framework guiding": 61190, "specific desired": 153971, "directly adjusting": 42514, "adjusting llms": 5543, "challenges direct": 21829, "data reinforcement": 35634, "assess method": 13098, "chatgpt codex": 22783, "instructgpt performance": 77951, "models impractical": 106685, "use parameterefficient": 172796, "embeddings frozen": 47235, "language additional": 83133, "learned prompt": 90120, "tasks interact": 162618, "incontext demonstration": 74842, "input yield": 77372, "exhibits high": 53199, "different target": 42029, "choosing suitable": 23736, "llms served": 96506, "served highquality": 149024, "simplification methods": 151583, "brings emergent": 19141, "answers particular": 10061, "questionandanswer tasks": 134960, "examplebased prompting": 52514, "current cot": 34097, "rely fixed": 139845, "necessarily effective": 112130, "effective examples": 45752, "example prompts": 52498, "ideas related": 71770, "related problem": 139194, "tasks analyses": 161941, "models formal": 106383, "cultural biases": 33951, "predictions models": 125921, "focus language": 60008, "prompt formality": 130505, "predictions overall": 125924, "addition models": 4882, "multilingual lms": 110503, "advances computational": 5992, "models raised": 108764, "task comprehension": 161262, "semantic anomalies": 148102, "words used": 178761, "face issues": 56536, "exact information": 52336, "event descriptions": 52073, "formats require": 60569, "require numeric": 141168, "extraction question": 56341, "accuracy analyze": 3143, "particular discuss": 120069, "ultimately make": 170588, "increase throughput": 75237, "plms trained": 123647, "mitigate limitation": 102620, "insufficient labeled": 78449, "adapt prompt": 4557, "model brings": 103228, "data texts": 35863, "analyses conducted": 8755, "augmentation selection": 14310, "cot studies": 32908, "rely carefully": 139831, "model poses": 104288, "challenges realworld": 22036, "automatically augmenting": 14772, "labels finally": 82801, "technique different": 163760, "humans recent": 71461, "potential usefulness": 125040, "human creative": 70677, "creative work": 33383, "helpful context": 69202, "80 cases": 1653, "changes problem": 22386, "utility risks": 174973, "fusion knowledge": 62194, "need deploying": 112263, "deploying dialogue": 39236, "users requirements": 173766, "attention increasingly": 13905, "fail explicitly": 56951, "constrain model": 30024, "gpt3 different": 66678, "comparing previous": 27005, "partly lack": 120284, "tools work": 167285, "decoderonly encoderdecoder": 37536, "potential adopting": 124554, "gender biases": 62887, "cuttingedge techniques": 34448, "llama open": 93328, "research effectiveness": 141738, "work performs": 179164, "performs extensive": 122444, "extensive comparison": 55736, "comparison multiple": 27059, "modeling translation": 105113, "orthographically similar": 117422, "source texts": 153479, "driving model": 45018, "gpt4 attracted": 66918, "different paradigms": 41891, "pipeline provide": 123085, "provide preliminary": 132930, "detailed information": 40301, "datasets gpt4": 36899, "manner challenge": 98976, "recommend future": 138187, "reveal different": 144328, "semantics syntax": 148321, "provided gpt2": 133058, "vary lot": 176272, "processing semantic": 129292, "enabling creation": 48284, "existing open": 53510, "code deploy": 24785, "evaluation platform": 51773, "dialogue evaluation": 41468, "github large": 65816, "works reference": 179487, "translation evaluation": 169462, "evaluation focus": 51593, "focus zeroshot": 60080, "metrics shared": 102144, "results valid": 143909, "german english": 65763, "templates used": 164241, "experiments described": 54246, "external validation": 56097, "nlp automated": 113694, "advanced endtoend": 5728, "architecture approach": 12120, "approach derive": 11111, "performance smallscale": 122083, "human linguistic": 70916, "primary task": 127826, "answers look": 10049, "resulting new": 143123, "utility realworld": 174971, "method begins": 100710, "begins generating": 16542, "expensive llm": 53789, "create large": 33206, "technique boosts": 163746, "achieves substantially": 4120, "substantially lower": 158131, "forgetting sequential": 60436, "yield satisfactory": 179977, "potential ability": 124541, "sparse memory": 153734, "actually generate": 4489, "introduce series": 80100, "languages focus": 87012, "performance suffers": 122131, "generating wrong": 64377, "results number": 143637, "pairs study": 118620, "challenges recent": 22038, "visiolinguistic vl": 176885, "vl learning": 177430, "development multiple": 41168, "limiting generalization": 92889, "hybrid architectures": 71561, "current survey": 34276, "approaches categorize": 11711, "discussion regarding": 43004, "multitask prompt": 111233, "enables parameterefficient": 48239, "cases despite": 20956, "products services": 129614, "learning designed": 90363, "designed pretraining": 39927, "key designs": 81487, "communications furthermore": 26431, "extreme model": 56421, "strong scalability": 156444, "framework incontext": 61217, "icl gained": 71675, "sophisticated diverse": 153300, "requirements different": 141283, "needs provides": 112488, "provides various": 133252, "process adapting": 128724, "cuttingedge research": 34446, "achieve diverse": 3625, "speech output": 154438, "output based": 117899, "based continuous": 15725, "speech features": 154413, "discrete token": 42819, "jointly optimize": 81282, "respectively strong": 142581, "exploring feasibility": 55467, "processing involves": 129172, "identifying extracting": 72000, "task lack": 161503, "complex set": 27585, "instructions defining": 78228, "testing experiments": 164713, "continuous refinement": 31252, "prompt does": 130429, "result poor": 143056, "prompt styles": 130684, "shown incontext": 150291, "annotation use": 9559, "explore abilities": 55132, "specifically automatic": 154141, "showing current": 150164, "chatgpt usage": 23410, "study recently": 157584, "tasks terms": 163352, "serve evaluation": 148975, "poor correlation": 123943, "chatgpt reliability": 23264, "metric regard": 101983, "human evaluator": 70772, "generation datatotext": 64557, "previous automatic": 127573, "metrics chatgpt": 102023, "addition effectiveness": 4853, "greatly depending": 67784, "case information": 20877, "generated tasks": 63998, "solved directly": 153174, "outputs possible": 118101, "generating plausible": 64294, "dataset exists": 36279, "synthetically generate": 160092, "comes high": 26016, "techniques require": 164011, "data matter": 35356, "reduced accuracy": 138485, "created benchmark": 33250, "capability release": 20366, "aims obtain": 7642, "bias compared": 18108, "framework aiming": 60944, "aiming achieve": 7532, "based loss": 15934, "consistently obtains": 29891, "results classification": 143228, "classification semantic": 24080, "learning involves": 90594, "task gap": 161418, "extraction additionally": 56251, "additionally framework": 5073, "setting code": 149432, "graphs building": 67620, "laborious process": 82868, "process ensure": 128812, "causal pathways": 21213, "researchers discuss": 142201, "relevant medical": 139617, "medical literature": 100197, "automatically scoring": 14854, "causal graph": 21189, "development dynamic": 41092, "ondevice learning": 115970, "observation llm": 115324, "thorough study": 166197, "users contextual": 173604, "real conversational": 136223, "search scenarios": 147411, "conversation understanding": 31812, "used conversational": 173013, "framework compared": 61020, "challenges integrating": 21918, "adequate support": 5509, "stateoftheart data": 155117, "simple textual": 151543, "framework efficiently": 61100, "learn patterns": 90026, "target using": 161120, "tasks table": 163332, "detection compared": 40463, "requirements large": 141304, "paper initiates": 118978, "generation engine": 64608, "loss techniques": 97699, "single 16gb": 151774, "16gb gpu": 477, "offloading systems": 115893, "recently widespread": 138011, "obstacles overcome": 115456, "management research": 98887, "lack standardized": 83010, "semantics natural": 148308, "demonstrated case": 38627, "used perform": 173169, "representations produces": 140869, "avoids common": 15363, "cases semantic": 21016, "management process": 98884, "level understanding": 91518, "query generated": 134587, "method benefits": 100713, "propose firstofitskind": 131826, "input use": 77366, "identifying task": 72037, "learning result": 90928, "framework presented": 61352, "important new": 73164, "derive informationtheoretic": 39344, "theoretical predictions": 166047, "emerges scaling": 47499, "modeling influence": 105017, "runs training": 145758, "interactions propose": 79262, "goal produce": 66187, "run time": 145744, "training curricula": 168218, "influence functions": 76198, "viewed special": 176824, "surprisingly observe": 159570, "study phenomenon": 157530, "answer wrong": 9804, "inherent bias": 76939, "studied datasets": 156922, "test queries": 164603, "llms finding": 95265, "analyses highlight": 8765, "highlight fundamental": 69741, "mitigating memory": 102670, "examination various": 52360, "using diverse": 174148, "distinct model": 43232, "evaluation comparison": 51490, "minimizing impact": 102392, "impact accuracy": 72617, "tasks tested": 163355, "text comparative": 164933, "quality extracted": 134125, "directly extract": 42538, "extracted high": 56187, "relation extractor": 139259, "meaningful conversations": 99792, "sets instructions": 149378, "chatgpt algorithms": 22695, "probabilistic nature": 128092, "results example": 143394, "visualizations natural": 177362, "specification make": 154311, "capabilities graph": 19933, "algorithms llms": 7948, "llms type": 96866, "enable research": 48124, "human generated": 70833, "answering largescale": 9893, "comparison performance": 27060, "additional neural": 4982, "furthermore test": 62171, "code benchmarks": 24695, "benchmarks promote": 17336, "presents method": 126600, "finetuned corpus": 59002, "designed task": 39959, "detection experiments": 40503, "levenshtein distance": 91562, "essential achieve": 50580, "analysis errors": 8910, "errors detected": 50349, "discusses challenges": 42971, "tasks reliance": 163121, "incorrect predictions": 75167, "assess enhance": 13077, "improved using": 73733, "demonstrations use": 39054, "technique requires": 163802, "contexts code": 31009, "understanding perception": 171401, "problemsolving decisionmaking": 128660, "success tasks": 158299, "gpt4 report": 67142, "assessment gpt4": 13235, "wellestablished datasets": 178155, "datasets required": 37082, "required study": 141258, "processes integrates": 129072, "processes enable": 129061, "responses gpt4": 142815, "revolutionize field": 144630, "surge development": 159427, "models openness": 108358, "minimal information": 102342, "users just": 173697, "central human": 21340, "cognition intelligence": 25430, "overview new": 118440, "advantages new": 6147, "methods challenges": 101363, "challenges new": 21967, "paradigm possible": 119496, "formal representation": 60514, "methods survey": 101859, "focus transformerbased": 60072, "reasoning english": 136828, "explosion data": 55524, "results just": 143543, "specifically used": 154302, "considered different": 29684, "output models": 117965, "emerging ai": 47503, "chatgpt graph": 23035, "computing platforms": 28549, "gpus tpus": 67357, "acceleration ai": 2806, "learning suffer": 91038, "variations training": 175665, "essential improving": 50612, "bias specifically": 18204, "introduce metric": 80012, "higher bias": 69583, "search strategy": 147419, "mainstream models": 98312, "indicate method": 75609, "model quantization": 104400, "use frequency": 172637, "abilities code": 1884, "sought evaluate": 153373, "texttosql performance": 165850, "settings scenarios": 149644, "use practical": 172805, "prompting multilingual": 131022, "data seven": 35745, "semantically meaningless": 148271, "specified prompt": 154335, "based investigation": 15890, "investigation existing": 80634, "chatgpt cuttingedge": 22820, "cuttingedge artificial": 34430, "openai attracted": 116322, "questions report": 135252, "task compare": 161251, "long sentences": 97470, "chatgpt goes": 22994, "correctness human": 32493, "prompts fully": 131285, "domain information": 44186, "optimal temperature": 116957, "domainspecific prompts": 44616, "improve chatgpts": 73422, "tasks introducing": 162629, "domain chatgpt": 44105, "tasks partially": 162931, "explore effects": 55194, "powerful chainofthought": 125267, "prompt leads": 130567, "users accomplish": 173574, "experiences building": 53860, "personalized dialog": 122594, "works rely": 179489, "data user": 35922, "range user": 135725, "works phases": 179476, "function novel": 61850, "quantify quality": 134321, "using personalized": 174579, "dialogue benchmark": 41450, "summarization recent": 158870, "level improve": 91477, "designs propose": 40025, "level experimental": 91465, "analysis confirms": 8865, "number errors": 114859, "evaluator prompting": 52049, "icl suffers": 71695, "requires delicate": 141358, "data distributed": 34926, "instead leverages": 77884, "scales ranging": 146378, "deployment code": 39264, "capabilities gpt35": 19928, "setting gpt4": 149461, "scored human": 147115, "interactive explainable": 79307, "potential applied": 124594, "addressing various": 5486, "traditional recommender": 167685, "systems continue": 160308, "face great": 56530, "deployment realworld": 39299, "chatgpt augmented": 22726, "profiles historical": 129699, "connections users": 29499, "recommendation process": 138223, "framework users": 61473, "aigc ai": 7390, "investigate leverage": 80441, "benefit researchers": 17446, "evaluation testing": 51897, "increase time": 75238, "significant decrease": 150677, "attracted numerous": 14050, "strategies key": 156020, "achieving remarkable": 4208, "speech patterns": 154439, "studies impact": 157017, "tuning different": 169994, "12 major": 272, "results merely": 143592, "continuous improvement": 31240, "improvement tasks": 73858, "analyze possible": 9323, "attention placed": 13963, "tool supports": 167041, "scale help": 146290, "research space": 142088, "provides framework": 133155, "forensic analysis": 60397, "output llms": 117962, "llms koala": 95710, "important fields": 73135, "addition methods": 4880, "hard generalize": 68642, "instruct large": 77929, "text llm": 165283, "approach enable": 11163, "perform comparable": 120889, "knowledge generalize": 82027, "changing content": 22399, "fields finance": 58274, "scenarios evaluation": 146590, "ones like": 116003, "comparing generated": 26987, "objective subjective": 115226, "subjective dimensions": 157853, "mechanism furthermore": 99992, "generate dynamic": 63472, "integrate multiple": 78500, "high consistency": 69426, "design robot": 39747, "translation tools": 169537, "address difficulties": 5219, "novel twostep": 114733, "strategy combines": 156116, "scenarios demonstrated": 146574, "demonstrated improve": 38713, "translation accuracy": 169436, "concern existing": 28740, "limited high": 92776, "modelsllms shown": 109752, "paper particularly": 119095, "ability evaluate": 2151, "chatgpt generally": 22974, "indicating great": 75650, "inspection chatgpts": 77680, "limitations including": 92600, "systematic overview": 160141, "overview comparison": 118422, "helps language": 69245, "planning process": 123309, "features significantly": 57576, "gpt35 significantly": 66855, "dataset conducted": 36184, "accomplish goals": 3007, "intuitive expressive": 80292, "requires labeled": 141398, "acquiring data": 4279, "twostep training": 170286, "goal step": 66200, "conversational patterns": 31895, "semantics domain": 148294, "systems key": 160446, "detailed ablation": 40261, "mechanism chatgpt": 99981, "leverage commonsense": 91575, "pain point": 118509, "point llms": 123709, "gpts effectively": 67316, "effectively answer": 45946, "commonsense problems": 26291, "problems conduct": 128471, "precisely identify": 125604, "question chatgpt": 134838, "does precisely": 44009, "findings raise": 58767, "conclusions studies": 28912, "role reversal": 145531, "extend existing": 55624, "pairs evaluate": 118570, "gpt4 powerful": 67117, "lack clarity": 82891, "potentially dangerous": 125093, "attention neural": 13949, "ai understand": 7305, "gpt4 better": 66934, "generated natural": 63927, "systems hard": 160416, "creativity diversity": 33390, "task outperforming": 161590, "behavior llmbased": 16612, "potential issue": 124797, "texts code": 165685, "chatgpt clean": 22780, "clean data": 24248, "assist data": 13342, "values address": 175517, "chatgpt infer": 23070, "developed custom": 40866, "examples effectively": 52565, "audience explore": 14157, "explore experiment": 55201, "distribute information": 43317, "responses humans": 142823, "follow uniform": 60228, "uniform information": 171765, "density uid": 39121, "uid principle": 170570, "information evenly": 76401, "personachat dataset": 122546, "modelgenerated responses": 104960, "generate higherquality": 63534, "problem quality": 128371, "containing multiple": 30339, "quality ratings": 134239, "scale quality": 146337, "build llms": 19329, "filtering dataset": 58352, "dataset humans": 36346, "scale finetuning": 146287, "thought patterns": 166229, "patterns inherent": 120542, "datasets limited": 36960, "scarcity issue": 146492, "detection dataset": 40479, "descriptions highly": 39462, "highquality captions": 69996, "proposed facilitate": 132292, "dataset codes": 36159, "documents models": 43926, "unverifiable information": 172315, "measures uncertainty": 99936, "informationseeking dialogue": 76857, "method extended": 100856, "extractive responses": 56389, "humanlike textgeneration": 71288, "anecdotal examples": 9415, "evaluated chatgpts": 51158, "build automatic": 19303, "summaries produced": 158776, "querying large": 134654, "extracting data": 56222, "captured traditional": 20701, "vision present": 176972, "prototype based": 132596, "llms challenges": 94560, "challenges necessitate": 21961, "concepts nlp": 28676, "community exploring": 26475, "evaluation empirical": 51560, "diversity text": 43757, "especially chatgpt": 50433, "optimize use": 117083, "use assessing": 172508, "results prove": 143704, "quality effectively": 134106, "utilizes chatgpt": 175124, "reliable method": 139736, "insights evaluating": 77556, "performance deployment": 121374, "challenges significant": 22063, "usage issue": 172457, "significant breakthrough": 150629, "time resulting": 166494, "pipeline automatically": 123035, "highquality multiturn": 70054, "chatgpt engage": 22888, "engage conversation": 48814, "demonstrates good": 38850, "performance multiturn": 121828, "feedback chatgpt": 57650, "definitely helpful": 37960, "generate different": 63462, "languages makes": 87055, "demonstrate highquality": 38370, "conversational tasks": 31929, "transfer language": 168924, "studied nlp": 156934, "cost obtaining": 32719, "learning alignment": 90206, "alignment prompts": 8219, "efficient modeling": 46679, "prompts particularly": 131404, "english crosslingual": 49041, "crosslingual capabilities": 33649, "capabilities languages": 19984, "creating custom": 33292, "data structured": 35808, "text important": 165237, "automated systems": 14614, "researchers draw": 142203, "preexisting datasets": 125993, "researchers rapidly": 142253, "actions text": 4394, "produced new": 129506, "produce smaller": 129464, "specific architecture": 153936, "power performance": 125208, "10x faster": 216, "helps large": 69246, "generate seemingly": 63702, "classical symbolic": 23947, "differentiate various": 42109, "identifying distinct": 71996, "propose certain": 131741, "common method": 26155, "method leads": 100953, "finetuning skills": 59545, "method mitigates": 100979, "evaluate general": 50973, "suboptimal learning": 157910, "advanced gpt35": 5742, "architecture shown": 12224, "cot fewshot": 32866, "learning chatgpt": 90295, "involves assessing": 80718, "errors make": 50378, "settings highlights": 149586, "errors using": 50404, "nontrivial reasoning": 114157, "context lead": 30813, "critic provides": 33450, "trained expensive": 167916, "humanintheloop data": 71200, "adapterbased parameterefficient": 4723, "performance enable": 121453, "easytouse framework": 45368, "llms execute": 95130, "llama bloom": 93294, "adapterbased methods": 4722, "smallerscale llms": 152455, "yields comparable": 180016, "comparable cases": 26564, "released chatgpt": 139506, "chatgpt designed": 22844, "language translations": 86803, "compared commercial": 26763, "provided domain": 133050, "answers various": 10094, "provides indepth": 133164, "modeling study": 105101, "contextaware prompts": 30983, "commercial mt": 26085, "systems advanced": 160233, "llms shed": 96515, "number benchmarks": 114829, "systems terms": 160640, "demonstrates stronger": 38904, "gpt35 work": 66869, "language processingnlp": 86658, "translation abilities": 169435, "field incorporating": 58178, "incorporating extra": 75099, "lead improvement": 89753, "humans demonstrate": 71371, "tools providing": 167241, "chatgpt evolution": 22905, "increased drastically": 75258, "bridges divide": 19080, "intuition knowledge": 80286, "translation machine": 169480, "categories using": 21126, "chatgpt presented": 23207, "largescale adoption": 89263, "perform humanlike": 120962, "discussed impact": 42961, "recommendation using": 138235, "demonstrating capabilities": 38920, "capabilities inference": 19960, "target users": 161119, "users past": 173727, "propose prompting": 132082, "directs llms": 42619, "generate candidate": 63406, "strategy incorporates": 156160, "context literary": 30834, "translation datasets": 169454, "datasets ability": 36628, "rigorous human": 144864, "llm translate": 94066, "asking provide": 12889, "grammar errors": 67443, "necessary ensure": 112144, "remains intact": 140014, "using machinegenerated": 174470, "machinegenerated instructionfollowing": 98147, "data enables": 34967, "present attempt": 126229, "attempt use": 13801, "generate instructionfollowing": 63577, "comparison data": 27033, "enable comprehensive": 48068, "evaluation reward": 51838, "training make": 168569, "codebase publicly": 25223, "performance design": 121375, "effectiveness evaluation": 46169, "metrics benchmark": 102013, "diverse experiments": 43522, "stateoftheart summarization": 155377, "capabilities discuss": 19859, "generative recommendation": 65586, "faces limitations": 56574, "corpus fail": 32306, "satisfy users": 146177, "needs users": 112495, "potential overcome": 124892, "ai produce": 7165, "meet users": 100287, "facilitates users": 56693, "instructions light": 78301, "objectives generating": 115245, "leverages user": 91793, "generation guidance": 64707, "generator ai": 65615, "needs ensure": 112471, "ensure trustworthiness": 49711, "lastly study": 89466, "feasibility implementing": 57354, "generation showing": 65084, "methods retrievalbased": 101794, "need extract": 112292, "contextual features": 31090, "calculate similarity": 19604, "vocabulary resulting": 177513, "utilizes generative": 175130, "model accomplish": 103020, "task efficiency": 161343, "making directly": 98729, "directly investigate": 42562, "useful language": 173336, "reasoning effective": 136820, "data consists": 34837, "training conditions": 168197, "reduces bias": 138507, "simple case": 151412, "data locally": 35329, "variables results": 175601, "user interests": 173441, "capabilities nlp": 20077, "flexible generative": 59809, "user item": 173448, "item embeddings": 81077, "embeddings language": 47246, "enormous number": 49607, "paradigm data": 119441, "transparently address": 169606, "analysis problems": 9084, "data flow": 35065, "realtime data": 136374, "dynamically optimize": 45194, "training conducted": 168199, "systems realworld": 160568, "extractive summarization": 56390, "summarization chatgpt": 158810, "summary generation": 158933, "introduction large": 80253, "systems achieving": 160227, "reasoning enhancing": 136830, "chatgpt yields": 23442, "enhancing chatgpts": 49464, "faithful summarization": 57082, "using twostage": 174828, "twostage approaches": 170253, "needs training": 112493, "benchmarks reveal": 17359, "reveal great": 144339, "multiturn interactive": 111278, "unexpected behaviors": 171615, "tasks hoping": 162510, "llm reference": 93948, "world scenarios": 179616, "step improved": 155646, "reference outputs": 138666, "advantages challenges": 6129, "challenges llms": 21947, "gpt4 empirical": 66980, "gap commercial": 62618, "analysis discover": 8894, "discover llms": 42733, "resourceefficient way": 142409, "semantic feature": 148145, "novel avenue": 114413, "accurate classification": 3438, "molecule optimization": 110034, "predict properties": 125700, "working natural": 179402, "procedure models": 128704, "zero training": 180093, "feature selection": 57428, "optimization code": 116985, "kolmogorov complexity": 82640, "learning state": 91021, "distribution learning": 43369, "uniformly sampled": 171774, "data argue": 34654, "formalized using": 60533, "variety seemingly": 175761, "seemingly unrelated": 147684, "pretrained randomly": 127146, "single learning": 151822, "zeroshot temporal": 180354, "break task": 18989, "relation classes": 139234, "combined domain": 25898, "experts able": 54638, "provide satisfactory": 132966, "discovering new": 42754, "greater impact": 67765, "critical tool": 33563, "building existing": 19403, "expressed human": 55570, "field chatgpt": 58133, "showcase impressive": 150076, "discovered chatgpt": 42745, "given broad": 65841, "problems areas": 128457, "necessary develop": 112142, "limited current": 92740, "similar llms": 151268, "effort include": 46850, "evaluates chatgpt": 51227, "extremely low": 56443, "better simulate": 18026, "users compared": 173597, "articulate answers": 12632, "responses does": 142771, "does provide": 44011, "prototype called": 132597, "entities perform": 49861, "ensembles large": 49651, "frontier language": 61647, "uses small": 173911, "dataset construct": 36190, "examples previous": 52664, "prompting use": 131115, "detailed empirical": 40284, "recently huge": 137906, "users conversation": 173608, "dialogue benchmarks": 41451, "llms underperform": 96877, "given correct": 65864, "furthermore ability": 62005, "state distribution": 154998, "engineering calibration": 48889, "practical perspective": 125437, "perspective investigate": 122669, "models joint": 106832, "sentences given": 148582, "text aim": 164823, "complexity given": 27671, "generate simplified": 63715, "embeddings word2vec": 47298, "analysis solution": 9173, "complex constraints": 27382, "margin work": 99193, "motivates development": 110197, "makes existing": 98648, "benefits propose": 17489, "understand text": 171089, "knowledge unstructured": 82489, "usually form": 174904, "methods simplify": 101828, "replacing words": 140478, "sentences paragraphs": 148590, "simplification process": 151587, "algorithm identify": 7815, "identify measure": 71922, "process experiment": 128822, "experiment dataset": 53886, "corpus resource": 32350, "semantics large": 148302, "asked models": 12875, "specifically prompted": 154267, "set 20": 149121, "multiple responses": 111025, "generated semantic": 63971, "analysis suggested": 9186, "different spatial": 42006, "following language": 60288, "significant public": 150850, "directed developing": 42421, "capabilities akin": 19777, "opensource conversational": 116593, "indepth evaluations": 75535, "analysis grounded": 8952, "evaluations quantitative": 52022, "proprietary language": 132514, "news platforms": 113573, "platforms use": 123417, "personalized news": 122611, "news recommendation": 113574, "users discover": 173625, "model techniques": 104727, "mechanism capture": 99980, "understand content": 170991, "development recent": 41203, "output generations": 117940, "recommendation proposed": 138224, "model promptbased": 104367, "prompts adapt": 131150, "easily adapt": 45299, "objective additionally": 115174, "requirements allowing": 141277, "model remain": 104450, "main paradigm": 98258, "given vast": 66050, "specifically pretrain": 154263, "datasets reveal": 37094, "counterparts significant": 32977, "language translated": 86798, "capturing linguistic": 20733, "potential facilitating": 124720, "human tasks": 71052, "generated vast": 64045, "tasks carry": 162028, "symbolic task": 159829, "improvements zeroshot": 73966, "tasks reveal": 163187, "serves catalyst": 149035, "multitask instruction": 111211, "capabilities reading": 20141, "example gpt35turbo": 52480, "achieved f1": 3807, "lower stateoftheart": 97841, "tasks capture": 162026, "validate proposed": 175331, "use auxiliary": 172514, "models underexplored": 109533, "introduction new": 80258, "investigated models": 80534, "processing research": 129289, "predominantly focus": 125983, "english corpora": 49039, "limiting usefulness": 92903, "instructions achieve": 78204, "tokens improving": 166826, "using chinese": 174048, "comprehend execute": 27845, "yield competitive": 179963, "github fostering": 65814, "texttovideo generation": 165874, "creating music": 33313, "complex timeconsuming": 27631, "process introduce": 128881, "ai helps": 7026, "helps generate": 69241, "models texttovideo": 109394, "generation helps": 64715, "finding prompts": 58618, "start end": 154956, "design patterns": 39714, "patterns improving": 120538, "coherent visual": 25550, "generated video": 64046, "quality measured": 134197, "data outputs": 35455, "memorized content": 100346, "knn classifiers": 81696, "lazy learning": 89720, "methodological level": 101184, "propose adopt": 131701, "distribution predicted": 43381, "predicted results": 125726, "diversity application": 43708, "paradigms zeroshot": 119544, "hope exploration": 70352, "encourage community": 48590, "models equivalent": 106142, "evaluates changes": 51226, "changes brought": 22365, "approach especially": 11190, "improvement code": 73768, "balance different": 15494, "systematically evaluated": 160182, "new sampling": 113397, "sampling method": 146103, "suite pretrained": 158738, "generating structured": 64344, "given sheer": 66008, "descriptions propose": 39490, "simple prototype": 151517, "fundamentally different": 61990, "llm directly": 93597, "llm synthesize": 94037, "synthesize code": 159985, "code performs": 25050, "far accurate": 57210, "document llm": 43837, "realworld evaluation": 136451, "discrepancy pretraining": 42797, "investigate generative": 80421, "knowledge aiming": 81740, "unknown knowledge": 171933, "results turn": 143880, "observed training": 115438, "present observations": 126396, "news topic": 113591, "covering nlp": 33083, "standardized benchmark": 154901, "provide evaluation": 132768, "chatgpt news": 23147, "performance 70": 121116, "setting little": 149472, "10 examples": 117, "achieved 90": 3782, "used past": 173168, "traditional recommendation": 167684, "efficient generalization": 46629, "ability recently": 2346, "design set": 39753, "performance recommendation": 122001, "recommendation tasks": 138234, "tasks capable": 162023, "level conduct": 91455, "generate clearer": 63415, "contribute advancement": 31391, "vision reinforcement": 176978, "design algorithms": 39541, "algorithms fail": 7925, "autoregressively generates": 15023, "capabilities autonomous": 19794, "design exploration": 39628, "output diverse": 117918, "model optical": 104156, "extraction crucial": 56276, "predicting relationships": 125748, "plms diverse": 123588, "research effective": 141736, "hard soft": 68658, "competitive multilingual": 27182, "conducted lowresource": 29269, "benchmark multiple": 17038, "adapted llms": 4687, "efficiently address": 46764, "llms ask": 94429, "limited learning": 92796, "completing complex": 27314, "plan task": 123221, "highquality task": 70082, "solutions solving": 153075, "involves phases": 80758, "feedback subsequent": 57802, "phase llm": 122800, "analysis experiment": 8920, "currently significant": 34338, "datasets spider": 37130, "decomposing task": 37632, "holdout test": 70263, "terms execution": 164412, "time writing": 166532, "writing using": 179768, "llm backbone": 93493, "llm standard": 94022, "pertinent data": 122741, "project aims": 130070, "semantic distance": 148138, "distance predicted": 43122, "currently difficulty": 34313, "tasks autonomously": 161992, "facts limited": 56839, "lack semantic": 83005, "reasoning rules": 137110, "userfriendly understandable": 173557, "summarizing reorganizing": 158928, "necessary reasoning": 112152, "attempt explore": 13789, "ability prompt": 2330, "data currently": 34882, "empower existing": 47989, "prompts augmented": 131166, "api tools": 10175, "including basic": 74430, "networks protein": 112788, "drawbacks terms": 44921, "understanding agents": 171119, "reasoning involving": 136935, "involving humans": 80790, "crucial enhance": 33793, "performance area": 121160, "area study": 12352, "learning improving": 90567, "prompts featuring": 131273, "human accuracy": 70554, "gpt4 reaching": 67131, "enhances llm": 49418, "contextdependent nature": 30989, "nature llm": 112015, "effective performance": 45838, "demonstrations generated": 39008, "complex affect": 27351, "affect overall": 6310, "generating reasoning": 64314, "approach selects": 11525, "moderate level": 109762, "difficulty experimental": 42211, "benchmarks lack": 17282, "evaluated comprehensive": 51162, "features extensive": 57491, "based chinese": 15699, "undergraduate exams": 170806, "make benchmark": 98489, "need given": 112301, "snippet generation": 152510, "model approaches": 103126, "require extra": 141107, "leveraging recently": 91944, "alternative current": 8553, "attribution model": 14145, "satisfy constraints": 146172, "constraints directly": 30074, "directly manipulating": 42565, "make independent": 98550, "approach zeroshot": 11674, "gpt assist": 66389, "adaptable efficient": 4590, "process tailored": 129002, "systems widely": 160671, "applied scenarios": 10805, "powerful ubiquitous": 125350, "ubiquitous large": 170545, "lack resources": 82998, "categories social": 21121, "annotations including": 9597, "including social": 74725, "chatgpt devise": 22853, "modeling social": 105095, "covers multiple": 33106, "multiple social": 111043, "constraints llms": 30099, "challenges processing": 22018, "approach tasks": 11601, "including academic": 74407, "following data": 60269, "data brings": 34729, "instructions paper": 78319, "paper avenue": 118766, "data varying": 35948, "llm instead": 93765, "analyzing human": 9371, "preferred outputs": 126081, "public httpsgithubcomnlpxucanwizardlm": 133575, "understanding predicting": 171412, "annotation disagreement": 9520, "ecologically valid": 45380, "coding rate": 25403, "inference problems": 76078, "highdimensional sentence": 69570, "evident performance": 52243, "space time": 153626, "limitations need": 92627, "distilled version": 43184, "version large": 176606, "clustering demonstrate": 24597, "intensive approach": 78998, "current manual": 34175, "augment dataset": 14236, "output token": 118011, "text compare": 164934, "document context": 43821, "research production": 141994, "paradigm increasingly": 119464, "compared parallel": 26871, "data contain": 34845, "output finally": 117932, "variants existing": 175628, "able discriminate": 2492, "acquiring highquality": 4280, "tabular prediction": 160792, "instructions leverage": 78299, "benchmark 20": 16813, "annotated instructions": 9481, "instructions vary": 78374, "prediction benchmark": 125764, "ignore instructions": 72071, "predict specific": 125704, "specific instances": 154016, "examples analysis": 52523, "filling critical": 58336, "using wide": 174867, "settings given": 149584, "information database": 76346, "sql commands": 154633, "propose llmbased": 131904, "crucial identify": 33806, "identify appropriate": 71856, "retrieve similar": 144227, "based structural": 16114, "structural similarity": 156530, "allows detailed": 8423, "detailed schema": 40316, "generated sql": 63988, "enable seamless": 48128, "propose extend": 131817, "significantly training": 151171, "unseen text": 172194, "text collection": 164928, "latent diffusion": 89496, "inspired successes": 77774, "encoder used": 48448, "noninstructiontuned model": 114080, "keeping text": 81429, "improvement attributed": 73755, "mixing training": 102747, "set augmentation": 149135, "agents group": 6619, "work collect": 178842, "conversations study": 31964, "case use": 20931, "multiple characters": 110858, "help bring": 69092, "finetuning provided": 59491, "scenarios method": 146648, "method language": 100945, "llm breaking": 93514, "propose augment": 131723, "candidates candidates": 19741, "correct wrong": 32425, "generate precise": 63652, "make llm": 98565, "effective retriever": 45876, "makes retrieval": 98685, "language names": 86434, "design cad": 39563, "cad software": 19597, "names use": 111433, "value text": 175500, "strong motivation": 156417, "constraints required": 30108, "texts combination": 165686, "tools simple": 167253, "instructions form": 78261, "incorporate various": 75039, "existing searchbased": 53569, "dialog ability": 41407, "consuming work": 30275, "versions question": 176625, "improve query": 73599, "scale experiments": 146285, "successfully generate": 158379, "augmenting data": 14384, "outperform popular": 117615, "explore distilling": 55188, "smaller ones": 152425, "design instructions": 39658, "diversity extensive": 43726, "models collectively": 105673, "15 different": 407, "assessment results": 13262, "representations form": 140809, "computed using": 28463, "learning vector": 91123, "kl divergence": 81676, "compute similarity": 28456, "algorithms perform": 7957, "perform retrieval": 121025, "suite experiments": 158723, "introducing information": 80236, "challenge previous": 21710, "interaction llm": 79140, "llm mark": 93824, "provide knowledge": 132869, "residual transformer": 142319, "optimal way": 116962, "way implement": 177827, "blocks output": 18730, "suffer severe": 158449, "limits model": 92922, "theoretical analyses": 166014, "theoretical empirical": 166026, "analysis strengths": 9178, "currently popular": 34336, "techniques recently": 164004, "choosing optimal": 23735, "optimal finetuning": 116939, "type data": 170302, "parameters maintaining": 119799, "llms matter": 95870, "implications use": 72958, "validity llmbased": 175395, "gpt35 outperform": 66840, "existing algorithms": 53253, "13 points": 332, "86 accuracy": 1717, "accuracy determining": 3202, "time llms": 166440, "perform causal": 120881, "bring capabilities": 19118, "generate causal": 63410, "alongside existing": 8497, "methods promising": 101731, "llms formalize": 95297, "highstakes scenarios": 70122, "capturing common": 20715, "causal mechanisms": 21206, "formal methods": 60509, "framework align": 60946, "prompting researchers": 131065, "remains suboptimal": 140076, "data end": 34973, "enhance recommendation": 49277, "recommendation capabilities": 138195, "fewer 100": 57859, "samples additionally": 145985, "framework highly": 61199, "furthermore finetuned": 62081, "crossdomain generalization": 33624, "guided beam": 68220, "mechanism guide": 99995, "integrating selfevaluation": 78626, "facilitating efficient": 56707, "space resulting": 153615, "prediction quality": 125853, "approach surpasses": 11584, "higher consistency": 69585, "struggle multistep": 156765, "steps future": 155740, "unlike recent": 172022, "recent chainofthought": 137456, "methods taking": 101862, "perform language": 120974, "data illustrate": 35173, "vast potential": 176347, "research program": 141995, "explicit prompting": 54952, "integrating human": 78598, "internetscale data": 79600, "paradigm lead": 119477, "fail identify": 56957, "feedback invaluable": 57715, "research leveraged": 141887, "feedback identify": 57704, "exploits large": 55042, "based set": 16093, "underlying logic": 170851, "relations current": 139289, "rely learning": 139867, "logical query": 97371, "operations suffer": 116796, "reasoning combination": 136754, "strengths graph": 156253, "methods standard": 101837, "observing sequence": 115448, "labelled examples": 82772, "examples study": 52702, "loss encourages": 97668, "explored fewshot": 55348, "taskrelated instructions": 161857, "par previous": 119418, "previous prompt": 127628, "realistic scenario": 136298, "misinformation causing": 102482, "approaches make": 11841, "improve lms": 73512, "provide findings": 132790, "highlevel humaninterpretable": 69694, "llms train": 96819, "linear classifiers": 92954, "features input": 57515, "number case": 114832, "features increasing": 57513, "increase average": 75191, "categories different": 21093, "spanning 70": 153671, "considered difficult": 29685, "challenge generalizing": 21645, "datasets handle": 36903, "trainingfree framework": 168833, "discrete nature": 42808, "quality positive": 134223, "sample pairs": 145953, "learning produce": 90862, "produce accurate": 129368, "lacks finegrained": 83047, "feedback provide": 57766, "performance semantic": 122050, "evaluation difficult": 51546, "difficult reproduce": 42177, "algorithms recently": 7966, "provided paper": 133083, "used alternative": 172960, "present llms": 126363, "instructions samples": 78349, "used conduct": 173007, "attacks result": 13741, "results llm": 143572, "considerations llm": 29667, "crucial realworld": 33839, "applications serving": 10685, "focus knowledge": 60007, "attaining high": 13759, "techniques various": 164056, "bias problem": 18183, "problem following": 128258, "methods substantially": 101845, "generated teacher": 63999, "practical model": 125434, "extraction major": 56320, "major shortcomings": 98449, "incorporating taskspecific": 75134, "logic evaluate": 97327, "widelyused datasets": 178419, "achieves improvements": 4030, "competitive performances": 27194, "datasets identifying": 36916, "search datasets": 147331, "pointwise methods": 123778, "method improved": 100918, "retrieval dataset": 144034, "potential generalize": 124741, "policies based": 123806, "unit cost": 171869, "identify chatgpt": 71870, "best tradeoff": 17762, "start problem": 154958, "area code": 12319, "code detailed": 24788, "results opensourced": 143650, "compare effectiveness": 26671, "smaller amounts": 152385, "public question": 133598, "responses answers": 142728, "humangenerated chatgptgenerated": 71181, "trained chatgpt": 167876, "statistically significantly": 155521, "significantly effective": 150981, "work model": 179126, "model exploring": 103614, "intelligence recently": 78887, "including widely": 74784, "widely reported": 178384, "sophisticated ai": 153293, "aspects world": 12983, "generates revised": 64105, "chatgpt serves": 23303, "process user": 129025, "leveraging feedback": 91847, "automatic machine": 14700, "tasks encompass": 162295, "fields numerous": 58295, "concept present": 28614, "trains models": 168847, "composes corresponding": 27799, "numerous intricate": 115044, "beneficial ai": 17404, "affective reasoning": 6326, "reasoning conversation": 136776, "relationships overcome": 139348, "propose incorporation": 131875, "process constructing": 128769, "model scm": 104511, "conditions facilitate": 29004, "facilitate implementation": 56622, "frameworks handle": 61515, "employ autoencoder": 47815, "effectiveness interpretability": 46207, "capabilities promise": 20125, "scientific medical": 146973, "exhibits best": 53181, "performance applying": 121154, "automated discovery": 14540, "opensourced chinese": 116690, "project focuses": 130075, "various training": 176236, "big bench": 18371, "largescale database": 89289, "codex chatgpt": 25336, "spider wikisql": 154550, "mitigate gap": 102605, "total size": 167421, "domains emphasis": 44392, "contents external": 30665, "texttosql models": 165848, "furthermore effective": 62049, "accuracy far": 3238, "provide efficiency": 132761, "using vicuna": 174852, "accessed online": 2929, "data leak": 35303, "based newly": 15976, "recognize entities": 138156, "entities texts": 49878, "texts second": 165774, "domains fewshot": 44409, "comprehensive investigations": 28068, "vicuna multiple": 176673, "heated debates": 69033, "rulebased templates": 145705, "problems english": 128495, "indicate language": 75596, "consistently yield": 29931, "contextaware automated": 30976, "incorporate domain": 75009, "introduce contextaware": 79938, "based description": 15750, "code creating": 24740, "performance 11": 121103, "roc auc": 145448, "regression datasets": 138953, "providing textual": 133388, "way extensive": 177810, "tasks emphasizes": 162283, "significance contextaware": 150550, "extend scope": 55641, "interpretable text": 79695, "limitations hinder": 92599, "process tackle": 129001, "chatgpt rich": 23289, "compared directly": 26787, "transparent decisionmaking": 169597, "prompts domains": 131235, "previously identified": 127727, "surface similarity": 159417, "similarity sentence": 151376, "embedding similarity": 47188, "test sentence": 164615, "downstream translation": 44848, "doing demonstrate": 44049, "efficacy incontext": 46384, "outputs introduce": 118071, "based commonsense": 15709, "datasets largescale": 36953, "versatile model": 176566, "knowledge useful": 82493, "useful detecting": 173321, "programming propose": 129872, "efficiently learns": 46798, "applies semantic": 10834, "loss improve": 97675, "conclusion results": 28904, "accuracy 20": 3105, "character ngram": 22434, "enhanced crosslingual": 49329, "need trained": 112413, "generation augment": 64439, "queries languages": 134496, "language augmented": 83165, "works incorporate": 179456, "structure focus": 156557, "classification argue": 23959, "performance solution": 122087, "eliminate manual": 47067, "calculation errors": 19612, "entire task": 49817, "prevalent technique": 127524, "utilizing twostage": 175244, "nature software": 112030, "challenge effectiveness": 21634, "robustness plms": 145417, "scenarios potentially": 146673, "differences distribution": 41623, "stress need": 156282, "need adapting": 112212, "code software": 25147, "software data": 152781, "software evolution": 152816, "unseen apis": 172146, "encoder downstream": 48417, "handle dynamic": 68543, "leading loss": 89842, "issues implement": 81012, "straightforward methods": 155924, "methods effectively": 101462, "translation strategy": 169520, "intelligence numerous": 78864, "typical machine": 170451, "focuses solely": 60161, "llmbased translation": 94179, "translation work": 169546, "maps framework": 99162, "specifically enable": 154194, "topics relevant": 167366, "process employ": 128805, "knowledge automatic": 81760, "automatic llms": 14699, "llms 11": 94242, "directions automatic": 42459, "evaluation preference": 51780, "preference study": 126028, "recognition decisionmaking": 138054, "capable exhibiting": 20420, "work raise": 179251, "towers hanoi": 167446, "method additionally": 100657, "mixedinitiative dialogue": 102731, "agents gain": 6615, "gain control": 62437, "generation conditioned": 64524, "formalize prompt": 60530, "language independent": 83421, "employ multimodal": 47849, "need ample": 112223, "ample data": 8712, "conducted investigate": 29264, "propose unique": 132189, "model simply": 104582, "information facilitate": 76443, "facilitate easy": 56608, "investigates feasibility": 80561, "engage natural": 48829, "dialogues generate": 41557, "propose fundamental": 131840, "chatgpt sophisticated": 23340, "sophisticated llm": 153311, "individual modules": 75727, "chatbot models": 22578, "semantic technologies": 148236, "paper analyzes": 118746, "current advances": 34055, "advances foundational": 6010, "specialized pretrained": 153906, "case created": 20869, "automatic creation": 14653, "texts findings": 165712, "furthermore explored": 62074, "models resulted": 108969, "accurate knowledge": 3468, "prior literature": 127913, "dramatic improvements": 44881, "improvements capabilities": 73885, "harvesting knowledge": 68850, "models exempt": 106197, "knowledge framework": 82014, "improvement demonstrate": 73777, "offer complementary": 115639, "complementary benefits": 27256, "currently dominant": 34314, "robust spurious": 145326, "correlations labels": 32562, "input finetune": 77247, "freetext explanation": 61574, "model artificially": 103138, "sets containing": 149362, "containing different": 30330, "models relation": 108895, "entity spans": 49943, "work instead": 179047, "target strings": 161106, "achieves near": 4033, "gpt3 yields": 66781, "benchmark long": 17020, "played significant": 123485, "methods word2vec": 101932, "measures based": 99916, "llms draw": 94987, "text levels": 165278, "measures evaluate": 99924, "generation interactive": 64759, "based new": 15975, "stateoftheart solution": 155353, "alignment incontext": 8167, "setting need": 149478, "crucial bridge": 33769, "limited case": 92726, "examines ability": 52427, "resources model": 142456, "identifies types": 71850, "control evaluations": 31536, "series datasets": 148914, "dataset leveraging": 36391, "queries evaluate": 134477, "chatgpt annotated": 22701, "annotated version": 9500, "dataset terms": 36579, "make annotated": 98482, "cleaned version": 24254, "embedding service": 47187, "finding suitable": 58626, "existing semantic": 53571, "contrast standard": 31327, "evaluating semantic": 51391, "applications sentence": 10680, "similarity text": 151382, "search paper": 147388, "similarity classification": 151339, "design able": 39538, "able run": 2555, "generalizing new": 63293, "preferences based": 126033, "unclear research": 170702, "rating data": 136040, "data contrast": 34851, "task user": 161799, "recommender models": 138272, "data indicating": 35217, "commercial apis": 26069, "analysis commercial": 8852, "spanning different": 153675, "belowpar performance": 16808, "languages represented": 87119, "users navigate": 173719, "news websites": 113593, "deep semantic": 37826, "semantic comprehension": 148119, "utilize deep": 175033, "deep layers": 37722, "enrich training": 49614, "recommendation foundation": 138199, "models recommendation": 108864, "ranking score": 135821, "discuss issues": 42907, "including sequential": 74722, "recommendation results": 138229, "solutions research": 153070, "llms translation": 96857, "problem end": 128242, "llms prior": 96190, "multilingual dictionaries": 110482, "fewshot demonstration": 57897, "active retrieval": 4442, "generate language": 63592, "generation essential": 64616, "provide generalized": 132806, "uses prediction": 173894, "anticipate future": 10112, "lexical matching": 91989, "llms qa": 96274, "matching gold": 99461, "various opendomain": 176086, "popular benchmark": 123986, "true performance": 169808, "par existing": 119415, "demonstrate automated": 38252, "automated models": 14577, "struggle detecting": 156742, "detecting hallucinations": 40409, "hallucinations llm": 68441, "model empowered": 103531, "recommendation approach": 138192, "systems attracted": 160254, "industry communities": 75871, "communities large": 26439, "number studies": 114949, "devoted developing": 41344, "instruction tune": 78064, "design general": 39640, "manually design": 99090, "approach instantiate": 11307, "recommendation search": 138231, "including powerful": 74673, "powerful gpt35": 125282, "systems users": 160659, "measuring improving": 99950, "improving human": 74152, "remarkable emergent": 140194, "generating seemingly": 64327, "question machine": 134909, "humans especially": 71383, "based machine": 15936, "lm generating": 97057, "similarity generated": 151348, "generated gold": 63871, "lastly release": 89465, "exploring zero": 55521, "providers need": 133100, "storage space": 155852, "represent events": 140640, "model world": 104911, "challenging automatically": 22120, "emerging ability": 47502, "unclear chatgpt": 170689, "hallucination additionally": 68349, "chatgpt sensitive": 23299, "openended prompts": 116500, "sentences lower": 148587, "contrastive input": 31350, "input decoding": 77222, "ensuring large": 49741, "introducing model": 80239, "text perturbed": 165354, "nexttoken predictions": 113610, "learning mitigate": 90690, "step investigate": 155651, "gap pretraining": 62709, "classical approach": 23931, "effectiveness work": 46322, "work extends": 178971, "10 precision": 133, "context present": 30874, "decisions order": 37475, "levels known": 91544, "model common": 103307, "integrated framework": 78529, "learning numerical": 90777, "numerical results": 115012, "validate advantages": 175298, "expected calibration": 53751, "error ece": 50297, "aware llms": 15371, "developing generalpurpose": 40995, "llms utilized": 96935, "clicks purchases": 24297, "smallsized language": 152468, "purpose model": 133751, "question humans": 134891, "learning capacities": 90284, "lms powerful": 97176, "parameters gptneo": 119771, "capabilities introduce": 19974, "human teacher": 71053, "teacher new": 163618, "development analysis": 41051, "capabilities lms": 20042, "concepts relations": 28685, "representations domain": 140794, "shown high": 150260, "representing certain": 140969, "actions evaluation": 4369, "level correctness": 91459, "reasoning actions": 136654, "problems faced": 128511, "systems conversational": 160312, "control users": 31599, "users enabling": 173636, "engage realtime": 48830, "exhibited unprecedented": 53162, "ability converse": 2113, "language user": 86872, "pairs natural": 118601, "language labels": 83472, "benefits various": 17498, "benchmark finally": 16979, "needed align": 112435, "comprehensive chinese": 27977, "middle school": 102190, "requires advanced": 141335, "suggesting significant": 158626, "llms anticipate": 94405, "analyze important": 9303, "development growth": 41128, "assessing potential": 13199, "potential aiassisted": 124564, "like speech": 92405, "direct mapping": 42393, "timeconsuming errorprone": 166541, "address study": 5372, "bing chatbot": 18487, "successfully deployed": 158375, "process efficient": 128800, "chatbot chatgpt": 22567, "answering generative": 9866, "generating list": 64266, "reasonable answers": 136589, "challenges producing": 22019, "diverse answers": 43458, "questions enables": 135113, "distinguish positive": 43284, "positive answers": 124285, "capturing relevant": 20739, "obtains substantial": 115564, "obtains best": 115554, "uncovering potential": 170745, "analysis dialogue": 8891, "investigates chatgpts": 80554, "performance difficult": 121399, "allows chatgpt": 8413, "complex structures": 27600, "difficulties understanding": 42200, "research refine": 142040, "argumentation tasks": 12436, "method constructing": 100762, "knowledge paths": 82269, "raise precision": 135455, "argument quality": 12432, "interpretation complex": 79703, "translate user": 169415, "plans help": 123361, "user process": 173473, "interpretation approach": 79702, "enables interpretation": 48198, "research seen": 142066, "seen notable": 147698, "notable surge": 114250, "surge recent": 159437, "primarily driven": 127775, "issue identified": 80910, "issue comprehensive": 80890, "stability issues": 154673, "light findings": 92113, "conclude proposing": 28880, "proposing potential": 132503, "vanilla pretrained": 175578, "works attempted": 179425, "empirically observe": 47798, "fail fully": 56953, "utilize related": 175084, "review related": 144543, "proposed knowledge": 132321, "glue benchmarks": 66126, "plms better": 123579, "identifying causal": 71988, "goal ai": 66146, "able robustly": 2554, "robustly generalize": 145343, "method grounded": 100896, "efficiently search": 46818, "alpaca model": 8513, "model interpretable": 103894, "furthermore alignment": 62008, "findings mark": 58730, "tasksolving abilities": 163504, "recommendation problem": 138222, "llms carefully": 94548, "using specially": 174740, "models valuable": 109607, "plugins large": 123678, "publicly unavailable": 133682, "common hardware": 26144, "finetuned smaller": 59110, "models addressing": 105284, "problem incontext": 128279, "generate appropriate": 63398, "comprises components": 28241, "engaging users": 48850, "surpasses fewshot": 159482, "experiments controlling": 54206, "vanilla language": 175574, "light designing": 92109, "designing evaluating": 39996, "llms following": 95294, "costs improve": 32827, "regarding task": 138891, "optimization performance": 117021, "types required": 170418, "05 original": 42, "using declarative": 174122, "prompting prior": 131045, "llms programmatic": 96215, "reasoning straightforward": 137149, "leverage offtheshelf": 91635, "automated theorem": 14621, "declarative specification": 37493, "steps llm": 155752, "llm parse": 93871, "accurately furthermore": 3534, "prover approach": 132653, "approach guarantee": 11265, "guarantee correctness": 68109, "exploit incontext": 55005, "wellunderstood works": 178195, "works suggest": 179508, "icl models": 71687, "context findings": 30769, "verification paper": 176492, "candidate token": 19736, "sequences represented": 148835, "llm parallel": 93868, "decoding mechanism": 37575, "preserving model": 126692, "distributed llm": 43324, "inference preserving": 76074, "taskspecific instruction": 163524, "tuning introduce": 170037, "instructions user": 78367, "attributes desired": 14106, "finetuned diverse": 59010, "benchmarks competitive": 17191, "competitive publicly": 27196, "60x smaller": 1439, "edit instructions": 45430, "instructions exhibits": 78254, "actions extensive": 4372, "edits suggested": 45507, "editing models": 45476, "product types": 129584, "types utilized": 170436, "task dynamic": 161339, "powerful learning": 125300, "language effectiveness": 83276, "effectiveness predicting": 46262, "predicting relations": 125747, "including palm": 74658, "datasets demonstrating": 36780, "tasks rapid": 163077, "text module": 165314, "takes text": 160997, "explanations second": 54898, "mapping code": 99143, "propose complementary": 131751, "approaches augment": 11700, "augment base": 14232, "collective efforts": 25766, "efforts research": 46930, "prompt inference": 130543, "sampling infer": 146099, "new recipes": 113377, "cot baselines": 32858, "facilitate transfer": 56659, "integrated gradients": 78531, "reasoning generalization": 136878, "planning robotics": 123320, "stateoftheart tasks": 155386, "process textual": 129010, "structures map": 156707, "problems covering": 128473, "shortest path": 150041, "problems maximum": 128564, "benefit advanced": 17419, "brittle face": 19156, "approaches enhance": 11747, "solve complicated": 153109, "languages chinese": 86959, "insightful findings": 77502, "learning bias": 90263, "bias languages": 18146, "nuances complexities": 114804, "emphasizing necessity": 47652, "tasks great": 162481, "benchmark developed": 16932, "developed measure": 40887, "tasks selection": 163210, "law education": 89596, "signals including": 150533, "models taking": 109353, "mixedmethod approach": 102735, "used new": 173159, "quality finally": 134131, "finally series": 58522, "styles using": 157785, "nontrivial large": 114152, "contextdependent tasks": 30990, "style generation": 157750, "require reference": 141181, "ideal conditions": 71748, "conditions controlled": 29002, "employ llm": 47842, "prompt designed": 130423, "rated appropriate": 136024, "using group": 174287, "gpt3 solves": 66759, "novel rare": 114666, "similar concepts": 151224, "performance perfect": 121903, "extent gpt3": 56008, "outputs gpt3": 118062, "forecasting benchmarks": 60373, "facts using": 56850, "experiments present": 54396, "generates ranked": 64098, "token probabilities": 166726, "models carefully": 105573, "discover using": 42742, "using numerical": 174544, "instead llms": 77886, "context achieve": 30675, "patterns historical": 120533, "classification training": 24131, "proposed large": 132322, "metric inspired": 101974, "metrics providing": 102133, "methods empirically": 101470, "metrics improves": 102086, "human behavioral": 70617, "numbers words": 114990, "ask different": 12839, "users typically": 173798, "similarities model": 151332, "despite absence": 40073, "utility understanding": 174980, "task leads": 161513, "concerns natural": 28796, "study seek": 157611, "best performer": 17725, "methods assume": 101321, "gpt3 train": 66767, "story using": 155903, "using stable": 174745, "way evaluate": 177804, "character fidelity": 22428, "typically based": 170469, "rely humanwritten": 139858, "existing synthetic": 53605, "trained stages": 168085, "learn generalpurpose": 89986, "scale instruction": 146297, "tasks user": 163423, "supervised loss": 159148, "curated prompts": 34025, "responses reinforcement": 142898, "learning follow": 90468, "including complex": 74467, "model tends": 104732, "appear training": 10230, "experimental techniques": 54097, "abilities ai": 1879, "experience control": 53828, "information exploration": 76410, "metric used": 101988, "action understanding": 4344, "input writing": 77371, "closed open": 24460, "create context": 33179, "prompt demonstrate": 130418, "answers improves": 10036, "furthermore methods": 62114, "methods result": 101790, "result increased": 143042, "positively correlated": 124313, "tree size": 169669, "quality robustness": 134256, "generated context": 63832, "robustness graph": 145389, "learning core": 90334, "information propagation": 76654, "edges graph": 45423, "new attention": 113074, "data basis": 34713, "data verify": 35949, "shown incorporating": 150293, "humanannotated rationales": 71128, "capabilities incorporating": 19955, "aforementioned challenges": 6367, "automating process": 14888, "end leverage": 48665, "attribution scores": 14147, "demonstrates framework": 38848, "prompting fall": 130932, "conduct additional": 29023, "additional empirical": 4953, "insights refining": 77637, "classes specific": 23916, "specific group": 154004, "pretrained visuallanguage": 127243, "features images": 57508, "attribute prompts": 14083, "effectively mitigate": 46051, "replay memory": 140482, "methods realistic": 101757, "implementation code": 72837, "challenges maintaining": 21953, "correct improve": 32390, "solutions detect": 153010, "typically comes": 170470, "substantial model": 158081, "size presents": 152051, "llm generalpurpose": 93698, "generalpurpose task": 63370, "llm challenge": 93527, "llm makes": 93822, "majority llms": 98465, "llms functionality": 95310, "data validate": 35940, "vicuna chatglm": 176667, "meaning using": 99784, "paradigm evaluating": 119450, "world understanding": 179623, "terms correctness": 164402, "correctness evaluating": 32487, "model showcase": 104561, "understanding simultaneously": 171474, "simultaneously addressing": 151744, "latest versions": 89573, "static evaluation": 155460, "corpora languages": 32232, "efforts exploring": 46913, "known language": 82608, "end conduct": 48640, "million billion": 102225, "furthermore compare": 62025, "positive results": 124307, "thinking regarding": 166159, "flawed code": 59776, "creating offensive": 33317, "content unlike": 30640, "unlike models": 172009, "manner similar": 99010, "interaction tools": 79185, "validation process": 175375, "toxicity reduction": 167480, "demonstrate critic": 38278, "crucial importance": 33807, "abilities pretraining": 1991, "instructions prompting": 78327, "instructions recently": 78340, "emerged popular": 47379, "method harnessing": 100903, "given inherent": 65908, "styles use": 157784, "tasks sourced": 163268, "language study": 86746, "increase absolute": 75185, "716 points": 1551, "rougel scores": 145628, "indicate code": 75578, "encoded pseudocode": 48402, "prompts helpful": 131307, "singledomain crossdomain": 151886, "crossdomain settings": 33628, "steps enhance": 155734, "strategies constructing": 155979, "prompt text": 130695, "persistent problem": 122534, "edit operations": 45432, "attention llms": 13920, "sequence transduction": 148794, "formality style": 60525, "output texts": 118010, "tasks representing": 163140, "representations transformerbased": 140900, "models opt": 108365, "results contexts": 143261, "models 15": 105155, "heldout test": 69072, "behavior observed": 16622, "showed performance": 150146, "braincomputer interface": 18949, "interface bci": 79419, "enables direct": 48174, "allows individuals": 8439, "holds immense": 70270, "eventrelated potential": 52103, "improve sampling": 73618, "sampling efficiency": 146091, "facilitate subsequent": 56654, "knowledge guided": 82095, "gpt4 gained": 67019, "impressive conversational": 73287, "questionanswering data": 134982, "issues concerning": 80991, "overcome obstacles": 118307, "demonstrated experiments": 38665, "contextualised word": 31121, "collection usage": 25758, "label demonstrate": 82680, "analysis possible": 9068, "promising type": 130330, "various target": 176194, "community taken": 26526, "learning high": 90516, "reflect recent": 138801, "published 2017": 133690, "scaling medical": 146422, "data prediction": 35516, "significance data": 150551, "datasets frequently": 36885, "data engine": 34974, "samples overcome": 146049, "overcome barrier": 118268, "outdomain data": 117476, "expanded training": 53694, "average ranking": 15307, "patient outcome": 120470, "prediction datasets": 125782, "respectively addition": 142532, "instruction set": 78053, "models 500": 105163, "focused scaling": 60120, "languages important": 87026, "observe large": 115377, "baseline analysis": 16193, "help related": 69171, "business rules": 19548, "undesired behavior": 171590, "certain inputs": 21393, "collaborative model": 25623, "alignment framework": 8152, "concepts address": 28637, "models relying": 108913, "model integrate": 103880, "steer large": 155553, "effective helping": 45769, "multiple users": 111080, "generic model": 65663, "adapted various": 4696, "model texts": 104744, "attributes network": 14121, "experiments downstream": 54260, "build general": 19317, "adapting model": 4748, "naive finetuning": 111388, "data fail": 35042, "fail preserve": 56969, "preserve pretrained": 126669, "pretrained features": 126806, "static fixed": 155461, "integrates llms": 78565, "inference formulated": 76016, "formulated problem": 60631, "error messages": 50307, "symbolic logic": 159809, "compelling alternative": 27104, "distribution consequently": 43348, "scenarios tested": 146709, "llama various": 93343, "complex hyperparameter": 27432, "verification improving": 176482, "gpt4 iteratively": 67051, "performance finegrained": 121528, "augmentation tool": 14319, "generated parallel": 63934, "compact efficient": 26536, "computation dynamic": 28299, "change model": 22345, "models incorporates": 106731, "generate simple": 63714, "acquire ability": 4249, "efficacy challenging": 46363, "challenging domainspecific": 22153, "samples evaluating": 146007, "subjective objective": 157862, "types evaluated": 170351, "conclusion research": 28902, "based abstract": 15640, "conforming given": 29427, "description large": 39415, "large document": 87245, "search embedding": 147335, "does allow": 43959, "task retrieving": 161703, "inadequacy current": 74276, "embeddings propose": 47273, "llm easy": 93608, "models original": 108377, "model enhancing": 103546, "strategies incontext": 156016, "icl emerged": 71669, "tasks utilize": 163443, "systems exploring": 160375, "methods optimal": 101692, "furthermore llms": 62110, "accuracy best": 3161, "contributing success": 31467, "enhancing logical": 49518, "enhance capacity": 49169, "challenges gathering": 21886, "building comprehensive": 19383, "datasets subsequently": 37137, "text abstract": 164814, "texts create": 165697, "tasks logical": 162756, "reasoning reading": 137086, "learning performed": 90819, "framework showcasing": 61406, "classification capture": 23968, "understand reason": 171070, "reason human": 136562, "years significant": 179936, "developing methods": 41011, "representations including": 140818, "literature highlighting": 93173, "beneath surface": 17402, "make reasonable": 98587, "grasp novel": 67670, "structures despite": 156697, "attention previous": 13969, "given word": 66053, "grounded cognitive": 67855, "structures form": 156699, "containing 400": 30325, "distinct fields": 43224, "reasoning structure": 137153, "faced llms": 56564, "enhance abilities": 49139, "domain adaptive": 44083, "learning emerging": 90409, "spreading misinformation": 154601, "task misinformation": 161544, "detection presents": 40592, "detection good": 40517, "annotations target": 9617, "target examples": 161066, "based similarity": 16097, "construction japanese": 30218, "models methodology": 108182, "study constructed": 157242, "llms constructing": 94713, "tuning existing": 170007, "models ways": 109677, "qualitatively results": 134028, "editing methods": 45474, "texts containing": 165693, "gradientbased approaches": 67404, "makes impossible": 98656, "parameter updating": 119650, "knowledge answer": 81745, "question comprehensive": 134844, "parameters like": 119792, "kernel regression": 81447, "order use": 117252, "updating existing": 172359, "llms intriguing": 95673, "insights multiple": 77608, "generating tabular": 64356, "queries complex": 134459, "relational database": 139270, "task answering": 161193, "training build": 168177, "assessing various": 13212, "distillation proprietary": 43163, "challenging instructions": 22177, "performance falls": 121504, "boost student": 18830, "novel adversarial": 114349, "framework efficient": 61099, "adversarial framework": 6203, "framework successfully": 61433, "successfully transfer": 158399, "number demonstrations": 114851, "regression problems": 138963, "problems observe": 128577, "observe competitive": 115362, "work improves": 179035, "models environment": 106135, "details process": 40339, "process developing": 128791, "cover parts": 33043, "considerations release": 29672, "strategies hope": 156009, "uses teacher": 173914, "finetuning best": 59182, "systematically studied": 160203, "risks using": 145027, "output prediction": 117973, "efficiently adapted": 46761, "experiments classification": 54173, "benchmark spoken": 17092, "conversation scenarios": 31805, "robustness issues": 145397, "detection new": 40574, "advanced dialogue": 5727, "correctly completes": 32461, "dialogues dataset": 41555, "understand structured": 171082, "llms attractive": 94445, "truly comprehend": 169818, "detection perform": 40584, "evaluations propose": 52018, "lead promising": 89770, "source benchmark": 153390, "methods serve": 101810, "studies automatic": 156957, "metrics tend": 102156, "summarization capabilities": 158807, "outperforms previously": 117829, "models prefixtuning": 108597, "gpt4 growing": 67040, "llms employed": 95049, "complex generative": 27421, "automatic evaluators": 14673, "develop powerful": 40821, "needs paper": 112483, "approach simulate": 11552, "interaction scenarios": 79177, "scenarios users": 146716, "furthermore emphasize": 62052, "generation recommendations": 65030, "recommendations study": 138262, "deeper comprehension": 37842, "flexible easytouse": 59802, "opportunities paper": 116870, "kg construction": 81630, "tasks encompassing": 162297, "construction inference": 30217, "represented gpt4": 140952, "virtual knowledge": 176864, "task development": 161320, "development corresponding": 41073, "invaluable insights": 80312, "models problems": 108654, "problems methods": 128567, "witnessed surge": 178581, "editing llms": 45470, "negatively impacting": 112543, "performance inputs": 121680, "deep exploration": 37717, "facilitate robust": 56649, "method specific": 101115, "available httpsgithubcomzjunlpeasyedit": 15134, "evaluate capability": 50919, "instancespecific rules": 77850, "tuning llama": 170049, "capabilities handling": 19935, "investigate practical": 80476, "tasks collect": 162072, "collect training": 25676, "subsequently refine": 157989, "effectively finetuning": 46000, "initiate discussion": 77090, "targeted task": 161140, "efforts required": 46929, "input implicitly": 77260, "testing new": 164738, "representations furthermore": 140811, "highlight value": 69794, "information heterogeneous": 76491, "results factual": 143408, "reduced hallucination": 138491, "rationales extensive": 136062, "data sharing": 35747, "individual languages": 75723, "languages benefit": 86955, "data impressive": 35185, "capable exploiting": 20421, "allows analyse": 8406, "stages finetuning": 154765, "icl important": 71678, "generalization behavior": 63135, "likely use": 92467, "biases gpt3": 18268, "feature combinations": 57390, "exhibit clear": 53031, "biases example": 18263, "example demonstrating": 52472, "strong bias": 156363, "second evaluate": 147470, "evaluate effect": 50950, "difficult overcome": 42167, "intended task": 78980, "generation arbitrarily": 64430, "transformer makes": 169167, "generating arbitrarily": 64140, "mechanism enables": 99988, "local editing": 97237, "addition producing": 4890, "demonstrate possibility": 38464, "directly interacts": 42561, "create personalized": 33222, "demonstrates utility": 38914, "challenges different": 21828, "different steps": 42011, "setup significantly": 149679, "argue evaluating": 12406, "believe essential": 16775, "guidelines future": 68249, "draw attention": 44910, "chainofthought method": 21513, "generates concise": 64062, "key ideas": 81513, "terms factual": 164419, "hallucination information": 68382, "annotate new": 9438, "focus finegrained": 59982, "utilizing new": 175222, "multiplication convolution": 111111, "dividing computation": 43775, "policy improve": 123848, "diverse finegrained": 43528, "temporal fusion": 164261, "fusion framework": 62193, "despite commendable": 40086, "structure inference": 156567, "tokens probability": 166861, "tasks brings": 162017, "solutions provided": 153065, "opt different": 116904, "sizes multiple": 152104, "error cases": 50278, "annotation scheme": 9550, "challenges application": 21774, "dialogue requires": 41508, "task progress": 161650, "consider training": 29596, "abundant annotated": 2699, "planning model": 123298, "encyclopedic knowledge": 48634, "knowledge foundation": 82012, "knowledge wide": 82508, "paired counterfactuals": 118530, "24 models": 810, "explicitly provided": 54988, "results select": 143774, "linguistic similarity": 93066, "yields accurate": 180009, "results additionally": 143162, "experiments lowlevel": 54345, "rely human": 139855, "timeconsuming address": 166536, "cover multiple": 33042, "stateoftheart evaluation": 155134, "versatile robust": 176572, "providing consistent": 133274, "knowledge exploring": 81979, "hallucinations specifically": 68457, "novel categorization": 114430, "subsequently assess": 157964, "ensemble training": 49647, "reduces human": 138519, "features generate": 57499, "framework suffers": 61435, "keywords different": 81619, "module uses": 109965, "uses zeroshot": 173923, "understanding static": 171485, "overall better": 118181, "existing strong": 53588, "explore parameterefficient": 55250, "model feature": 103644, "approach dubbed": 11139, "stateoftheart blackbox": 155092, "integration address": 78636, "uses gpt2": 173860, "embeddings predict": 47268, "fmri brain": 59929, "sensitive contextual": 148423, "context integration": 30799, "models distribution": 106007, "shifts large": 149938, "common llms": 26153, "customer reviews": 34380, "optimization llms": 117008, "requires prompt": 141429, "labeled source": 82735, "target group": 161070, "optimization extensive": 116994, "framework significant": 61408, "make choice": 98497, "learning question": 90891, "expect llm": 53735, "strong improvements": 156395, "conjunction llm": 29463, "incorrect hallucinated": 75152, "feedback shown": 57793, "shown effectively": 150226, "enhance factuality": 49196, "content addressing": 30428, "involving manual": 80796, "manual input": 99047, "inference limiting": 76046, "limiting practical": 92895, "interactive applications": 79287, "need expensive": 112282, "acquire relevant": 4263, "refinement addressing": 138752, "setting 25": 149416, "detecting factual": 40404, "vanilla prompting": 175581, "evaluating diverse": 51288, "accuracy inconsistency": 3275, "inconsistency detection": 74827, "accurately recall": 3556, "identifying information": 72006, "characterized complexity": 22483, "needs ground": 112474, "truth answers": 169877, "needs involve": 112477, "difficulty task": 42222, "quality depends": 134093, "selected examples": 147795, "combining different": 25971, "different features": 41770, "reported literature": 140567, "emerged strong": 47404, "paradigm using": 119528, "demonstrations results": 39045, "demonstrations furthermore": 39007, "demonstrations train": 39050, "taskspecific demonstration": 163514, "demands computational": 38154, "finetuning inherent": 59309, "llms ensuring": 95082, "ensuring seamless": 49759, "finetuning quantization": 59494, "llms finetune": 95271, "promising capability": 130240, "supervised ai": 159087, "tightly connected": 166329, "availability annotated": 15046, "cases address": 20940, "building customized": 19386, "using multitask": 174511, "conduct multiple": 29160, "evaluate systems": 51112, "effectiveness results": 46285, "diverse needs": 43588, "accelerate annotation": 2770, "provided instructions": 133066, "instructions annotated": 78206, "vary considerably": 176264, "instruction importantly": 78025, "dependency context": 39150, "similar incontext": 151252, "representation input": 140699, "contextualized representation": 31133, "finetuning particularly": 59431, "zeroshot benchmark": 180122, "understanding long": 171345, "test small": 164634, "adapt tasks": 4564, "evaluation opensource": 51751, "struggle pass": 156766, "learning key": 90600, "surface natural": 159414, "language features": 83317, "inputs fed": 77404, "candidate example": 19716, "features experimental": 57487, "chat language": 22538, "conversations finetuning": 31944, "validated effective": 175342, "effective practice": 45841, "interactions human": 79230, "million highquality": 102228, "various key": 175986, "leading opensource": 89850, "create powerful": 33225, "great capabilities": 67686, "monolingual tasks": 110075, "investigation potential": 80645, "potential context": 124658, "benchmarking performance": 17155, "analysis machine": 9009, "identification results": 71803, "indicate despite": 75582, "comparison finetuned": 27044, "does inherently": 43991, "inherently imply": 76984, "learning summarize": 91041, "models references": 108878, "favored human": 57333, "setting text": 149513, "setting investigate": 149467, "training adopt": 168148, "llmguided learning": 94213, "discrepancy human": 42795, "effectively grasp": 46005, "objective investigate": 115208, "compare various": 26740, "including random": 74691, "poorly context": 123966, "highquality examples": 70025, "similarity test": 151381, "propose types": 132185, "particularly important": 120208, "final outputs": 58389, "outputs intermediate": 118070, "steps demonstrate": 155730, "multiple variants": 111081, "evaluation finegrained": 51592, "metrics high": 102078, "text address": 164820, "limitation present": 92517, "explainable evaluation": 54746, "gpt4 finetune": 67014, "unsupervised metrics": 172258, "gpt4 surprisingly": 67187, "stateoftheart metrics": 155219, "finetuned human": 59034, "llmpowered data": 94229, "augment datasets": 14237, "effectiveness finetuning": 46179, "generated english": 63859, "incorporating data": 75088, "case furthermore": 20874, "gpt4 excel": 66994, "producing natural": 129561, "natural coherent": 111521, "certain languages": 21398, "observe chatgpt": 115361, "model chatbots": 103266, "corpus form": 32310, "quality significantly": 134268, "cost privacy": 32727, "deployment using": 39310, "conversations significantly": 31962, "recent knowledge": 137528, "engaging just": 48848, "users recent": 173760, "task contains": 161277, "improvements baselines": 73881, "approach reduces": 11500, "vicuna benchmark": 176666, "reduce average": 138402, "qlora finetune": 133953, "performance instruction": 121684, "showing gpt4": 150167, "reasonable alternative": 136588, "current chatbot": 34088, "chatgpt release": 23262, "code including": 24947, "variety evaluation": 175708, "benchmarks struggle": 17372, "utilize tools": 175089, "interact tools": 79076, "thought chain": 166218, "knowledge tools": 82459, "tools tasks": 167266, "reasoning experiment": 136845, "responses existing": 142782, "paradigm automatic": 119433, "construct instructiontuning": 30140, "data identifying": 35167, "data fields": 35048, "fields generating": 58275, "api cost": 10153, "cost generating": 32682, "helps mitigate": 69252, "utilizes lightweight": 175145, "sentences automatic": 148558, "automatic model": 14713, "combine best": 25873, "integrated enhance": 78525, "schema assess": 146767, "benchmark composed": 16867, "using proprietary": 174623, "uses lightweight": 173880, "update size": 172339, "consistently correct": 29861, "correct predictions": 32404, "essential aspect": 50586, "nlp studied": 113811, "difficulty collecting": 42204, "combines human": 25932, "generation widely": 65259, "performing competitively": 122394, "competitively standard": 27213, "aid data": 7357, "sacrificing accuracy": 145791, "finetuned transformerbased": 59133, "transformerbased nlp": 169280, "text does": 165034, "finetuned nlp": 59087, "rigorous study": 144873, "layers using": 89685, "different text": 42047, "exhibit good": 53050, "models kept": 106835, "measuring cultural": 99946, "cultural bias": 33950, "reach large": 136114, "cultural contexts": 33954, "camel novel": 19694, "extrinsic intrinsic": 56463, "ner sentiment": 112602, "concerning cases": 28754, "wikipedia best": 178496, "best suited": 17755, "culturally aware": 33975, "highly rated": 69943, "current human": 34132, "provide clear": 132699, "finegrained text": 58897, "evaluation develop": 51543, "edit types": 45434, "edits humans": 45503, "finegrained annotations": 58853, "toolkit available": 167082, "outline control": 117489, "generation typically": 65222, "generation assess": 64433, "generation requires": 65044, "stories based": 155882, "baselines based": 16291, "identify issue": 71906, "approaches effectively": 11739, "approach discover": 11125, "extract social": 56163, "corresponding freetext": 32585, "explainable social": 54752, "social norm": 152644, "3b parameters": 1122, "parameters significant": 119861, "alignment social": 8235, "process rationales": 128959, "process prompting": 128948, "progressively refine": 130047, "eliminate irrelevant": 47065, "structure organize": 156589, "improvement conduct": 73772, "80 gsm8k": 1656, "method showcases": 101090, "require dedicated": 141087, "focus prompting": 60040, "examples generally": 52592, "independently ignoring": 75507, "frame problem": 60898, "using proximal": 174626, "outperforms heuristic": 117784, "unprecedented capabilities": 172080, "capabilities producing": 20124, "dialogues taskoriented": 41568, "classification specific": 24098, "effectiveness modern": 46246, "work extensively": 178973, "classification identifying": 24014, "implications open": 72947, "scenarios diverse": 146580, "models included": 106700, "documents ii": 43912, "models iii": 106665, "causal models": 21211, "models word": 109699, "theory theory": 166105, "generated response": 63961, "response llms": 142675, "different semantics": 41986, "construct adversarial": 30120, "quality dialogue": 134097, "investigating performance": 80608, "decrease general": 37662, "2023 shows": 714, "decreased performance": 37667, "trained despite": 167892, "testing performance": 164742, "propose specific": 132143, "propose causal": 131740, "techniques mitigate": 163965, "whitebox blackbox": 178232, "blackbox settings": 18664, "whitebox setting": 178238, "intervention effectively": 79788, "gpt35 achieving": 66791, "factors human": 56795, "outputs various": 118136, "despite significance": 40206, "pairwise human": 118641, "preferences embedded": 126036, "consistent outputs": 29823, "implications construction": 72910, "balanced datasets": 15512, "preference evaluations": 126008, "evaluations crucial": 51955, "demonstrations improve": 39012, "demonstrations method": 39028, "example language": 52484, "dataset combines": 36166, "representing text": 140974, "selection improve": 147854, "diagnostic dataset": 41381, "interactions based": 79205, "cot framework": 32868, "debate ais": 37285, "assess machine": 13097, "conclusions regarding": 28910, "examine factors": 52386, "factors impacting": 56797, "model beam": 103195, "field llm": 58196, "llms iteratively": 95691, "expanding scope": 53705, "knowledge directly": 81875, "indicating effectiveness": 75649, "effectiveness tackling": 46297, "challenges code": 21797, "need highquality": 112305, "data particularly": 35474, "scoring rubric": 147196, "scores reflect": 147167, "nearhuman performance": 112102, "judgments grounded": 81331, "segments used": 147761, "contexts improve": 31024, "costs finally": 32825, "task overall": 161592, "influence ability": 76186, "align commonsense": 7995, "reveals pivotal": 144442, "comprehensive insight": 28063, "editing language": 45463, "llm confidence": 93552, "benchmark covers": 16881, "settings achieves": 149523, "task time": 161777, "existing approach": 53259, "mitigating temporal": 102682, "present despite": 126281, "effects temporal": 46350, "duration prediction": 45103, "predictions require": 125929, "incontext semantic": 74996, "different humans": 41793, "semantics consistent": 148290, "systems significant": 160610, "process drafting": 128797, "events use": 52134, "refined human": 138748, "key events": 81495, "events produce": 52126, "style large": 157753, "taken different": 160966, "events evaluating": 52111, "advancements fewshot": 5884, "developed evaluated": 40873, "set fewshot": 149196, "designed establish": 39867, "different transfer": 42059, "chatgpt incontext": 23065, "techniques layer": 163948, "role accelerating": 145454, "types propose": 170409, "higher efficiency": 69600, "counterparts cost": 32972, "token budget": 166693, "llms establish": 95095, "models generality": 106429, "interpret evaluate": 79626, "effectiveness best": 46136, "prompt furthermore": 130514, "novel calibration": 114427, "methods helps": 101568, "work released": 179259, "errors enhance": 50351, "work formalize": 178998, "formalize task": 60531, "general quality": 63036, "produce hallucinated": 129416, "caution use": 21273, "extracts comprehensive": 56395, "texts different": 165701, "annotations diverse": 9581, "llm openworld": 93856, "llm baselines": 93504, "solution tackle": 152983, "answers robust": 10077, "framework trains": 61464, "time leveraging": 166436, "leveraging human": 91863, "technical challenge": 163690, "examples requires": 52682, "patterns test": 120566, "better coverage": 17839, "spanning tasks": 153684, "tasks set": 163228, "set selection": 149304, "surpasses methods": 159489, "issue recent": 80959, "research introduced": 141864, "promptbased editing": 130759, "text subsequently": 165498, "finetune compact": 58916, "entirely unsupervised": 49826, "research revision": 142056, "achieves faster": 4013, "icl prompting": 71692, "design methods": 39692, "methods general": 101546, "unavailable study": 170641, "design approach": 39545, "small unlabeled": 152378, "achieve universal": 3777, "possible task": 124468, "queries zeroshot": 134560, "icl zeroshot": 71702, "automated way": 14628, "editing model": 45475, "opensource transformerbased": 116684, "multiple correct": 110878, "commonsense domain": 26260, "edited using": 45443, "dataset probe": 36466, "feedback common": 57652, "efficient incontext": 46638, "revolutionised various": 144628, "costs approach": 32815, "approach potentially": 11451, "evaluated diverse": 51170, "significant detriment": 150681, "calibrated confidence": 19624, "shown unsupervised": 150395, "studies suggested": 157094, "weakness conduct": 177955, "conduct broad": 29027, "tokens typically": 166898, "error relative": 50323, "particularly demonstrated": 120168, "contexts remains": 31048, "bridge knowledge": 19066, "largescale automated": 89271, "44 distinct": 1230, "extensive performance": 55930, "english chatgpt": 49032, "models undergone": 109536, "undergone finetuning": 170796, "finetuning arabic": 59173, "meticulous comparison": 101939, "employing gpt4": 47927, "work adds": 178781, "speech research": 154469, "tailored particular": 160929, "gpt4 bloomz": 66936, "techniques tackle": 164035, "focused measuring": 60114, "prevalent various": 127529, "understand manipulate": 171040, "scenarios include": 146620, "insight generation": 77486, "generation respectively": 65047, "current highperforming": 34131, "highperforming llm": 69983, "effectively serve": 46080, "feedback generator": 57697, "gpt gpt": 66428, "capability resolve": 20369, "humanwritten data": 71513, "studies used": 157107, "given reference": 65982, "dataset 100k": 36075, "range coding": 135595, "problems generating": 128521, "sequential generation": 148875, "adopt recursive": 5581, "style algorithm": 157735, "information tackle": 76796, "methods cot": 101410, "comprehensive multilingual": 28079, "adapters using": 4730, "models adapters": 105270, "making easily": 98732, "vanilla models": 175577, "problems symbolic": 128637, "tasks notice": 162862, "does boost": 43962, "framework handling": 61191, "proposed select": 132430, "aligned realworld": 8073, "intrinsic capabilities": 79887, "evaluation 23": 51413, "analyses validate": 8787, "setting allows": 149421, "extract customized": 56127, "events training": 52132, "database allowing": 35985, "current zeroshot": 34305, "efficiency straightforward": 46535, "new finegrained": 113192, "approach exploit": 11208, "randomness generative": 135575, "approach strong": 11569, "performance widelyused": 122308, "automatic content": 14651, "content extraction": 30495, "arguments demonstrate": 12444, "international relations": 79578, "language modelsllm": 86419, "ubiquitous essential": 170544, "models includes": 106701, "algorithmic components": 7880, "research performance": 141966, "extensive investigation": 55914, "llms comprehending": 94672, "encompasses 10": 48532, "study uncover": 157678, "tasks emphasize": 162282, "novel approaches": 114402, "enhance graph": 49208, "insights bridging": 77515, "benchmarks limited": 17293, "sample result": 145959, "capacity comprehend": 20499, "essential numerous": 50619, "applications development": 10480, "answer evaluation": 9703, "process tested": 129008, "gpt4 evaluation": 66990, "analyses llms": 8771, "addition paper": 4887, "data largescale": 35297, "required data": 141227, "learning including": 90568, "annotations given": 9594, "corresponding annotations": 32570, "results sentence": 143778, "tasks indicate": 162594, "greatly outperform": 67796, "tennis ball": 164341, "finegrained language": 58876, "flant5 gpt4": 59754, "evaluation semantic": 51849, "understanding make": 171346, "performance hypothesize": 121640, "single models": 151835, "strategies provide": 156060, "generation absence": 64385, "consisting 10000": 29937, "generation hallucinations": 64710, "information dataset": 76347, "preservation semantic": 126662, "identify crucial": 71878, "limitations evaluation": 92577, "maximum context": 99693, "embedding techniques": 47200, "techniques simple": 164023, "classification challenging": 23972, "information forms": 76461, "studies begun": 156958, "effectively tackle": 46086, "encompassing understanding": 48558, "finegrained aspects": 58854, "aspects comprehensively": 12928, "classification order": 24044, "propose refactoring": 132093, "powerful text": 125338, "achieved method": 3841, "better output": 17955, "output iteration": 117948, "flexibility generation": 59790, "generation structural": 65107, "flexibly leverage": 59840, "constraint violations": 30057, "api specifications": 10174, "scenarios especially": 146587, "uncertain llms": 170658, "perform taskoriented": 121062, "ones second": 116016, "second leverage": 147489, "leverage metrics": 91630, "llms motivates": 95902, "sentence document": 148489, "recover sentence": 138324, "generated leveraging": 63910, "relations introduces": 139295, "qa long": 133895, "qa summarization": 133930, "surprising turn": 159557, "powerful offtheshelf": 125317, "promising early": 130251, "results llmbased": 143573, "methods remain": 101774, "stateoftheart algorithm": 155071, "type definitions": 170303, "conll dataset": 29466, "cross domain": 33600, "generation potential": 64933, "reason user": 136584, "descriptions introduce": 39468, "framework perform": 61342, "perform personalized": 121005, "believe llm": 16781, "conversation line": 31796, "query reformulation": 134621, "potential answer": 124575, "better search": 18021, "continuous development": 31232, "exhibited large": 53138, "scenarios various": 146719, "resource understanding": 142400, "attempts apply": 13810, "explores feasibility": 55396, "improvement directions": 73779, "llms scenarios": 96487, "highquality largescale": 70051, "pairs benchmark": 118549, "simplification models": 151584, "settings observe": 149618, "transfer lowresource": 168968, "findings human": 58689, "email generation": 47124, "perform text": 121065, "including generating": 74526, "public corpus": 133555, "data reward": 35681, "new ranking": 113374, "generation longitudinal": 64804, "uniquely interact": 171865, "appropriate purpose": 11992, "generation including": 64735, "participants evaluate": 120003, "retrieval local": 144083, "interpretability llms": 79645, "nonlinear nature": 114093, "strategies ultimately": 156084, "handle longer": 68554, "select token": 147789, "enabling retrieval": 48345, "instead relying": 77896, "specialized data": 153878, "lengths gpt4": 91401, "release implementation": 139473, "attention code": 13852, "reproduce experiments": 141003, "playing crucial": 123493, "tracing historical": 167514, "examining fundamental": 52446, "fundamental operations": 61962, "analyze popular": 9322, "traditional systems": 167705, "short discussion": 149966, "prospects field": 132543, "trained predominantly": 168042, "predominantly english": 125982, "english multiple": 49083, "users researchers": 173767, "researchers come": 142184, "interpretation llms": 79707, "llms insufficient": 95655, "employ novel": 47852, "gpt exhibits": 66415, "contexts similar": 31053, "similar meanings": 151270, "challenges nlp": 21968, "mixed success": 102725, "humanlike knowledge": 71267, "common words": 26214, "semantic categories": 148108, "contextual factors": 31089, "performance despite": 121376, "far short": 57234, "sociocultural context": 152713, "dialogue features": 41471, "features captured": 57456, "score outperforming": 147085, "commonly perceived": 26230, "feedback perform": 57756, "offtheshelf lm": 115919, "dataset lowquality": 36397, "supervision using": 159222, "outperforms 175b": 117703, "sentence summaries": 148539, "corpus diverse": 32299, "samples closer": 145995, "learning distribution": 90377, "capability enables": 20285, "limitations incontext": 92601, "task linear": 161523, "adept natural": 5497, "compare transformers": 26738, "domains evaluation": 44401, "ambiguous statements": 8643, "systems classifying": 160287, "practical ethical": 125412, "issues particularly": 81043, "lack effectiveness": 82935, "llm called": 93516, "measure mitigate": 99859, "settings comparison": 149539, "reduce biases": 138404, "new neural": 113297, "different aspect": 41660, "linear projection": 92975, "matching loss": 99471, "challenging obtain": 22227, "studies identify": 157014, "potential mllms": 124864, "translations large": 169555, "emerged generalpurpose": 47355, "capable addressing": 20397, "multiple works": 111090, "works investigated": 179459, "investigate differences": 80397, "better scores": 18020, "metrics demonstrate": 102041, "suffers poor": 158470, "paradigm promptbased": 119499, "graph encoders": 67525, "maximizing benefits": 99686, "performance indicating": 121670, "process apply": 128739, "interpretation large": 79706, "study probes": 157550, "asking llms": 12883, "llms display": 94952, "biases using": 18322, "meaningful patterns": 99798, "patterns results": 120562, "llms discourse": 94945, "syntactic patterns": 159895, "context semantic": 30907, "approach inefficient": 11304, "play large": 123461, "manipulation task": 98960, "operations based": 116775, "robust noisy": 145296, "given handful": 65895, "optimization goal": 116997, "achieve following": 3646, "infer data": 75937, "recognized important": 138163, "important metric": 73159, "work design": 178901, "entailment approach": 49768, "achieve stable": 3748, "adversarial evaluation": 6198, "leads robust": 89907, "efficient trustworthy": 46739, "learners analyze": 90145, "potential incontext": 124780, "surprising finding": 159548, "inference findings": 76011, "pose new": 124161, "challenges detecting": 21825, "cooking domain": 32058, "domain analyzing": 44092, "analyzing generated": 9370, "correct order": 32402, "hypothesize models": 71639, "incorporating user": 75137, "information helps": 76490, "issue furthermore": 80906, "chatgpt completely": 22793, "task analyze": 161190, "analyze outputs": 9317, "evaluation increasingly": 51645, "interested setting": 79388, "behavior gpt": 16593, "gpt palm": 66471, "key differentiator": 81489, "approach compile": 11065, "compile suite": 27228, "track progress": 167527, "current results": 34231, "development reinforcement": 41204, "rlhf great": 145090, "gpt35turbo results": 66882, "community focus": 26479, "focus building": 59952, "models generic": 106491, "generic retrieval": 65669, "just forward": 81367, "example single": 52504, "single a100": 151776, "a100 80gb": 1849, "masked autoregressive": 99295, "nondifferentiable objectives": 114037, "prompts enable": 131245, "llm translator": 94067, "access largescale": 2876, "improved specificity": 73724, "editing techniques": 45490, "use improved": 172677, "techniques suffer": 164031, "benchmarks identify": 17267, "adequately addressed": 5512, "compatible various": 27100, "evidence lower": 52198, "datasets incorporating": 36927, "incorporating implicit": 75105, "simulated realworld": 151666, "generate candidates": 63407, "plan generate": 123212, "model bart": 103177, "bart lm": 15582, "used single": 173229, "single document": 151791, "code generate": 24852, "plans available": 123349, "levels propose": 91550, "preserves original": 126677, "original output": 117362, "model independent": 103848, "sizes 7b": 152086, "trainingfree methods": 168836, "methods especially": 101486, "models fair": 106303, "systematic bias": 160107, "ranking candidate": 135798, "queries chatgpt": 134456, "framework simple": 61416, "strategies multiple": 156043, "final score": 58401, "successfully mitigates": 158389, "evaluation bias": 51458, "bias resulting": 18194, "models produced": 108666, "performance available": 121180, "ner approaches": 112586, "heavily dependent": 69040, "uses contrastive": 173837, "approach learn": 11342, "ner methods": 112593, "settings outperforms": 149621, "know large": 81706, "assessing ability": 13165, "methodology detect": 101219, "introduce unique": 80139, "gap capabilities": 62616, "limits knowledge": 92917, "methods largescale": 101630, "methods gpt3": 101556, "particularly educational": 120176, "ability tailor": 2391, "gpt3 achieve": 66636, "shows adding": 150402, "important components": 73111, "nlp challenging": 113701, "models leverages": 106957, "methods easy": 101457, "easy data": 45350, "provide confidence": 132723, "reliability models": 139698, "lower accuracy": 97811, "using insights": 174328, "skin tone": 152199, "improve uncertainty": 73651, "retrieval action": 143989, "action execution": 4318, "llm reasons": 93943, "challenges time": 22085, "process external": 128832, "token consumption": 166695, "evaluations public": 52020, "benchmarks curated": 17199, "benchmark furthermore": 16985, "7b llama": 1631, "systems explanations": 160372, "efficiency transparency": 46546, "environment multiple": 50016, "explanations need": 54883, "better measure": 17941, "perspectives based": 122701, "assess existing": 13078, "observe necessity": 115383, "explanation quality": 54800, "approaches extend": 11765, "explanations compare": 54826, "compare baseline": 26664, "llama glm": 93309, "vast model": 176342, "offers way": 115863, "utilization unstructured": 175019, "impose significant": 73233, "model efficient": 103516, "importance estimation": 73028, "widely developed": 178373, "quantification language": 134307, "trustworthy reliable": 169872, "causality language": 21233, "algorithms aim": 7899, "observational data": 115332, "aid clinicians": 7355, "algorithms investigate": 7935, "patients diagnosed": 120486, "patients findings": 120489, "reveal important": 144341, "patients using": 120497, "reliability results": 139703, "results validated": 143913, "trained medical": 168001, "finance healthcare": 58550, "treebased models": 169676, "inspired prompt": 77748, "modifying model": 109894, "data parts": 35475, "evaluated benchmark": 51149, "suitable choice": 158690, "prompts control": 131208, "amenable analysis": 8653, "llms input": 95643, "process designed": 128788, "designed counteract": 39841, "counteract adverse": 32933, "regions state": 138937, "temporal consistency": 164251, "limited natural": 92806, "spatial structures": 153808, "method builds": 100723, "includes techniques": 74392, "firstly use": 59658, "parse text": 119943, "event order": 52087, "better temporal": 18045, "aid learning": 7363, "denoising process": 39078, "transformerbased diffusion": 169236, "data extensive": 35026, "contextual embedding": 31085, "study semantic": 157617, "automatically derive": 14787, "nouns subject": 114340, "object position": 115155, "away specific": 15385, "providing highly": 133308, "problems specific": 128631, "heterogeneity domain": 69290, "sophistication domain": 153330, "domain objectives": 44238, "various social": 176171, "norms cultural": 114202, "applications domain": 10491, "techniques key": 163939, "increase research": 75229, "conducted recent": 29282, "based accessibility": 15642, "llms summarizes": 96732, "relations differences": 139290, "second present": 147500, "critical application": 33454, "llms discussing": 94951, "challenges offer": 21971, "research status": 142093, "future trends": 62395, "heterogeneity data": 69288, "solutions adopted": 152995, "sequential finetuning": 148874, "problems achieving": 128448, "adapters capture": 4725, "learning generalized": 90496, "task studies": 161751, "icl text": 71697, "models label": 106853, "gptj gpt3": 67294, "gain substantial": 62451, "generalize models": 63260, "models unrealistic": 109560, "llms differentiate": 94929, "propose compare": 131750, "purposes results": 133775, "reveal simple": 144373, "metric semantic": 101986, "insights practitioners": 77628, "uncertainty management": 170672, "code replicate": 25099, "code express": 24832, "domainspecific languages": 44594, "learning grammar": 90511, "generating particular": 64289, "particular output": 120105, "llm predicts": 93899, "grammar given": 67444, "generates output": 64091, "molecule generation": 110033, "generation preserving": 64942, "preserving pretrained": 126695, "features helps": 57503, "predictive confidence": 125946, "fail retain": 56980, "property catastrophic": 131670, "method encourages": 100826, "llms considerable": 94701, "property llms": 131674, "performance closely": 121253, "nlp based": 113695, "embeddings recently": 47275, "model averaging": 103173, "models proper": 108702, "architecture enable": 12156, "problem predicting": 128352, "algorithm proven": 7845, "learning perspective": 90822, "regret bound": 138972, "answer addition": 9673, "essential aspects": 50587, "recent benchmarks": 137450, "handle natural": 68558, "paradigms allow": 119536, "allow infer": 8340, "using stepbystep": 174761, "completion test": 27344, "reveals model": 144438, "bagofwords features": 15479, "intricate designs": 79841, "gpt llama2": 66447, "focus leveraging": 60015, "information features": 76445, "method extends": 100858, "driven demand": 44981, "high energy": 69453, "processing speed": 129301, "tasks primary": 163000, "hurdle lies": 71547, "engines supporting": 49022, "design dedicated": 39598, "energy cost": 48789, "magnitude lower": 98205, "environment based": 49985, "generates sequence": 64111, "program sketch": 129750, "attributes relations": 14125, "executes program": 52926, "leveraging outofdomain": 91916, "semisynthetic data": 148370, "useful step": 173352, "competitive methods": 27181, "approach collects": 11055, "set descriptive": 149174, "model starting": 104652, "resulting noisy": 143124, "recover latent": 138320, "task intent": 161484, "systems rs": 160599, "universal representations": 171910, "tuning crucial": 169983, "knowledge establish": 81954, "items users": 81095, "systems survey": 160634, "time furthermore": 166408, "techniques performance": 163986, "relevant papers": 139626, "complex decisions": 27398, "assistants users": 13434, "access process": 2903, "reward based": 144681, "final decision": 58377, "playing role": 123507, "optimization release": 117038, "future modeling": 62293, "use effectively": 172598, "plms increasingly": 123612, "task inspired": 161476, "language scale": 86716, "limitations suggest": 92671, "representations believe": 140768, "authors discuss": 14439, "generating symbolic": 64347, "text generating": 165121, "elements generated": 47015, "challenging users": 22313, "editing making": 45471, "accessible users": 2971, "users manipulate": 173710, "descriptions offering": 39484, "offering significant": 115768, "main advantages": 98218, "refined chatgpt": 138745, "achieve precise": 3709, "multiple control": 110873, "accuracy addition": 3137, "model 12": 102990, "tool augmenting": 166944, "labels generated": 82803, "implement workflow": 72829, "deployment deep": 39267, "developed algorithms": 40857, "model reversible": 104486, "model distinct": 103480, "success existing": 158234, "essential preserve": 50622, "additional pretraining": 4990, "pretraining evaluate": 127317, "observed image": 115416, "random input": 135527, "models marginal": 108138, "empirically confirm": 47782, "prompts challenging": 131184, "challenging laborintensive": 22184, "laborintensive task": 82860, "pilot studies": 122991, "studies gpt4": 157009, "question identify": 134892, "tasks identifying": 162516, "errors construct": 50347, "science papers": 146900, "check correctness": 23525, "paper pairs": 119093, "llm struggled": 94026, "use reviewing": 172859, "tasks complete": 162090, "significant task": 150900, "response user": 142712, "internal reasoning": 79559, "research commonly": 141644, "costly manual": 32792, "llms paramount": 96046, "importance incontext": 73039, "pushes stateoftheart": 133805, "search data": 147330, "context data": 30724, "table columns": 160742, "vocabulary using": 177516, "using instructions": 174332, "twostep pipeline": 170282, "deployed widely": 39229, "mechanisms order": 100048, "quickly new": 135351, "knowledge considering": 81832, "enable learning": 48103, "difficult defend": 42139, "missing key": 102530, "living organisms": 93270, "intricately linked": 79869, "symbolic representation": 159825, "work reveals": 179272, "patterns existing": 120528, "explanations model": 54880, "explanation method": 54792, "playing field": 123499, "distilroberta gpt2": 43198, "ability different": 2130, "generalization achieves": 63134, "implement efficient": 72819, "llms edge": 95001, "model mobile": 104094, "reasoning generative": 136885, "provided observe": 133080, "observe notable": 115384, "differences performance": 41637, "performance generally": 121579, "reach conclusion": 136106, "117 million": 251, "extensively researched": 55990, "granularity ranging": 67482, "particularly dynamic": 120175, "networks learning": 112771, "involves constructing": 80723, "using modified": 174500, "temporal contexts": 164254, "embeddings evaluate": 47232, "models semiparametric": 109071, "models initial": 106768, "effectiveness task": 46298, "performance following": 121537, "ablation analysis": 2430, "informed human": 76894, "important model": 73162, "describing task": 39400, "automatic algorithm": 14637, "tokens removed": 166872, "instructions providing": 78334, "providing key": 133325, "stage help": 154740, "chatgpt practical": 23204, "task challenges": 161239, "automatically summarizing": 14863, "results summarizing": 143846, "text lack": 165264, "lack opensource": 82985, "develop test": 40844, "leverage expertise": 91586, "expertise experience": 54613, "current automated": 34076, "metrics closer": 102026, "critical issues": 33514, "serve inspiration": 148989, "anticipate work": 10115, "work inform": 179040, "needs work": 112497, "proposed hybrid": 132315, "involving gpt4": 80786, "gpt4 propose": 67127, "tailored task": 160943, "multidimensional evaluation": 110375, "summarization incontext": 158837, "fluency coherence": 59887, "systems available": 160260, "challenging adapt": 22105, "correction based": 32434, "adopted does": 5593, "dimensions evaluated": 42331, "having different": 68874, "different architecture": 41657, "based architectures": 15662, "amounts diverse": 8682, "findings argue": 58638, "purpose models": 133752, "models limit": 107002, "replace specialized": 140457, "user behaviour": 173382, "generic user": 65674, "different emotional": 41755, "deployed real": 39218, "world present": 179605, "simulate user": 151648, "effect users": 45679, "users emotional": 173634, "emotional state": 47587, "generating helpful": 64237, "reliably perform": 139770, "plans action": 123346, "simple sequences": 151526, "unseen actions": 172144, "unable fully": 170601, "accomplish new": 3010, "provide noisy": 132905, "extract similar": 56162, "share similarities": 149803, "graph generative": 67535, "data offer": 35434, "combine approach": 25870, "reward network": 144705, "descriptive words": 39528, "types research": 170419, "provide hints": 132823, "use automatic": 172512, "examined correlation": 52421, "context example": 30752, "rise natural": 144903, "search recommendation": 147403, "platforms commonly": 123398, "interaction datasets": 79113, "bootstrap training": 18861, "largescale korean": 89329, "korean language": 82645, "mbert devlin": 99712, "developers resort": 40959, "models respective": 108960, "capabilities addressing": 19765, "data meticulously": 35367, "gap multilingual": 62682, "physical commonsense": 122896, "make incorrect": 98549, "incorrect judgments": 75157, "prior physical": 127918, "applying highly": 10897, "llm adaptation": 93440, "flexibility efficiency": 59789, "consistent better": 29806, "relies labeled": 139804, "domain similar": 44284, "applications explored": 10522, "corpus incorporates": 32319, "networks variety": 112818, "variety finetuning": 175712, "aims make": 7637, "generic evaluation": 65654, "furthermore evaluate": 62059, "compression recent": 28229, "led highquality": 91226, "personalized use": 122632, "use quantization": 172835, "efficient algorithms": 46567, "inference algorithm": 75960, "difficult impossible": 42156, "semantic constraints": 148125, "class discrete": 23869, "syntactic constraints": 159887, "transformers automatic": 169297, "precise assessment": 125575, "required especially": 141233, "implications developing": 72913, "assessment systems": 13266, "crucial comprehend": 33778, "patterns exist": 120527, "defined sharp": 37951, "directly remove": 42597, "models vicuna7b": 109629, "present intriguing": 126344, "data tends": 35857, "lastly investigate": 89461, "performing natural": 122410, "extensive test": 55957, "test scenarios": 164613, "studies underscore": 157103, "reasonable initial": 136594, "process series": 128985, "program natural": 129741, "format approach": 60540, "prior steps": 127934, "reasoning selfverification": 137118, "stepbystep manner": 155701, "steps process": 155761, "systems excel": 160368, "decisionmaking domains": 37409, "domains addition": 44351, "level individual": 91478, "subjects finally": 157874, "task taken": 161766, "explicit procedural": 54950, "deployment limited": 39285, "quantities taskspecific": 134399, "dataefficient solution": 36054, "instructions derived": 78234, "pretraining scheme": 127430, "preserving high": 126688, "published datasets": 133692, "inputs report": 77442, "experiments propose": 54407, "random walks": 135548, "reasoning questionanswering": 137084, "improve limitation": 73505, "lead answer": 89727, "tools language": 167190, "constrain generation": 30023, "turbo llama": 170157, "using reasoning": 174654, "given window": 66052, "languages nls": 87074, "models separately": 109075, "comprehensive unified": 28155, "domains use": 44546, "design experiment": 39625, "experiment settings": 53911, "learning significant": 90992, "models mitigated": 108193, "prompting zeroshot": 131127, "performing zeroshot": 122424, "knowledge insufficient": 82136, "lead llms": 89759, "update knowledge": 172327, "facts input": 56834, "semantic similarities": 148223, "outperforms relevant": 117840, "development chinese": 41066, "annotators perform": 9638, "potent tool": 124538, "tasks largescale": 162692, "learning current": 90339, "current llmbased": 34164, "size limitation": 152027, "average f1score": 15284, "drug sensitivity": 45052, "sensitivity prediction": 148460, "opinion diversity": 116802, "diversity opinion": 43747, "study bias": 157190, "text methods": 165301, "used characterize": 172990, "short comparison": 149960, "evaluate individual": 50988, "analyze text": 9338, "performance classifying": 121247, "modular language": 109909, "types modules": 170388, "experts different": 54651, "enables important": 48197, "subset modules": 158005, "new modules": 113286, "systems reach": 160566, "accuracies 85": 3096, "contains simple": 30392, "experts domain": 54652, "databases containing": 36013, "explore recent": 55287, "stateoftheart proprietary": 155317, "evaluation making": 51689, "models board": 105534, "utility various": 174983, "resources provide": 142473, "datasets ranging": 37065, "ranging manually": 135756, "openended instruction": 116492, "metrics introduce": 102094, "finetuned combination": 59000, "resources experiments": 142437, "specific skills": 154087, "skills single": 152188, "performance evaluations": 121473, "evaluations interestingly": 51988, "fail reflect": 56976, "reflect differences": 138792, "law despite": 89595, "regarding potential": 138882, "works evaluation": 179442, "rigorous assessment": 144852, "affecting model": 6320, "quality instruction": 134171, "aim foster": 7457, "foster deeper": 60681, "models advancements": 105295, "advancements capabilities": 5870, "learning bayesian": 90251, "unseen functions": 172164, "problems linear": 128557, "algorithms learning": 7943, "results multilingual": 143617, "using nonenglish": 174539, "nonenglish prompts": 114044, "affect fairness": 6302, "fairness probing": 57066, "facts representing": 56844, "south american": 153542, "correct label": 32397, "benchmark llm": 17017, "models determine": 105950, "accuracy privacy": 3344, "judge large": 81306, "trained distinguish": 167901, "collect diverse": 25659, "humanannotated test": 71130, "evaluation ability": 51417, "terms f1score": 164418, "evidenced significant": 52239, "references addition": 138692, "parameters support": 119870, "researchers users": 142270, "generation fact": 64653, "impressive text": 73382, "focus summarization": 60061, "systems produce": 160550, "offers possibility": 115834, "possibility generating": 124382, "data presented": 35525, "growth information": 68080, "comments various": 26066, "various activities": 175788, "activities products": 4465, "resources challenging": 142427, "offline applications": 115870, "model product": 104355, "summaries given": 158771, "specific aspects": 153939, "particular aspects": 120050, "make wellinformed": 98626, "wellinformed decisions": 178164, "natural langauge": 111541, "ranging 13": 135740, "different subjects": 42020, "cuttingedge llms": 34441, "exceed average": 52737, "literature history": 93174, "benefit large": 17438, "development online": 41175, "online services": 116136, "increasingly indispensable": 75408, "information overload": 76613, "difficulties comprehending": 42194, "emergence llm": 47435, "pointing promising": 123735, "knowledge capabilities": 81804, "orthogonal aspects": 117416, "interaction pipeline": 79162, "inference highlight": 76028, "adapting llm": 4746, "papers related": 119406, "years existing": 179896, "takes set": 160994, "curate largescale": 34000, "dataset 200k": 36080, "200k samples": 630, "somewhat mitigated": 153269, "repurpose llms": 141035, "outofdistribution settings": 117536, "rules time": 145728, "time hypothesis": 166414, "certain individual": 21392, "restricts use": 143014, "based prediction": 16011, "worst case": 179673, "problem estimating": 128244, "test methods": 164583, "accuracy values": 3418, "versatile use": 176575, "accuracy consistency": 3186, "analysis responses": 9129, "certain sensitive": 21414, "code analysis": 24658, "boosting language": 18839, "method estimate": 100837, "commonsense factual": 26262, "designed understand": 39969, "complex human": 27430, "understanding animal": 171125, "bridge communication": 19038, "approach draws": 11137, "underlying intentions": 170839, "language employ": 83282, "enables identification": 48196, "ability multilingual": 2289, "language applied": 83158, "englishcentric models": 49127, "ability focus": 2166, "experiments types": 54503, "language choice": 83186, "language important": 83413, "chatgpt reflect": 23259, "linguistic fluency": 93033, "extent current": 56004, "common people": 26172, "help gain": 69119, "linguistic training": 93078, "diegetic information": 41601, "use concepts": 172560, "divideandconquer approach": 43767, "problem complexity": 128203, "multiple contexts": 110872, "operations extensive": 116782, "improves lms": 74024, "problems solution": 128627, "solution issue": 152950, "hardware architectures": 68676, "optimally utilize": 116966, "issue utilizing": 80968, "advancement paves": 5857, "rapid efficient": 135877, "structure learning": 156581, "learning llm": 90652, "prominent technique": 130161, "llm presents": 93902, "emerging topic": 47544, "learning tackle": 91050, "attempt propose": 13795, "errors need": 50383, "errors types": 50403, "intriguingly discover": 79882, "leveraging insight": 91869, "highlight substantial": 69786, "errors maintaining": 50377, "llms afford": 94370, "long history": 97453, "benefit various": 17453, "models nonlinguistic": 108309, "design features": 39631, "shown exist": 150239, "designs aimed": 40014, "llms linguistic": 95797, "studies investigating": 157029, "systems analyze": 160241, "moderation systems": 109779, "gap available": 62614, "models attempt": 105407, "attempt bridge": 13781, "general multilingual": 63000, "work result": 179269, "testing methodology": 164733, "present alternate": 126221, "methods measure": 101658, "particularly good": 120197, "contrary human": 31288, "evaluating translation": 51401, "prompting outperforms": 131031, "explainability paper": 54733, "previous deep": 127584, "emerged language": 47365, "decisionmaking study": 37443, "reduced precision": 138499, "searches optimal": 147444, "surge large": 159429, "paper datasets": 118830, "different flavors": 41777, "models humanintheloop": 106643, "reasoning example": 136841, "moving step": 110240, "based classical": 15700, "theory analyze": 166071, "model slm": 104624, "relevant entities": 139597, "prompt module": 130609, "optimize pretrained": 117075, "structure search": 156601, "adapter layer": 4707, "mathematical formulation": 99568, "llama1 llama2": 93346, "enhancements compared": 49391, "design ensures": 39622, "incurs extra": 75485, "unfortunately process": 171674, "error paper": 50311, "accuracy numerical": 3321, "papers arxiv": 119390, "identify source": 71963, "target source": 161104, "row column": 145656, "flexible capabilities": 59799, "task stateoftheart": 161748, "information principle": 76645, "shown limited": 150307, "utility natural": 174965, "gpt3 babbage": 66646, "applications software": 10692, "variants shown": 175638, "focus work": 60079, "learning considered": 90319, "engineering task": 48994, "llms experienced": 95182, "experienced rapid": 53855, "tight integration": 166326, "approaches llms": 11835, "survey existing": 159633, "potential disrupt": 124682, "foster exploration": 60684, "quantized large": 134426, "56 times": 1381, "framework leads": 61269, "quantized llm": 134428, "able reach": 2546, "reach performance": 136115, "times increase": 166590, "hold promising": 70255, "marking pivotal": 99246, "majority current": 98460, "certain users": 21426, "visual impairments": 177185, "natural intuitive": 111540, "establish foundation": 50663, "research emerging": 141745, "social good": 152578, "technologys potential": 164180, "create fair": 33199, "roadmap large": 145129, "new waves": 113504, "kgs difficult": 81645, "evolving nature": 52321, "simultaneously leverage": 151753, "forwardlooking roadmap": 60673, "enhancing understanding": 49579, "tasks embedding": 162276, "completion construction": 27324, "roles work": 145566, "objective standard": 115223, "effective optimization": 45835, "new environments": 113163, "environments new": 50099, "use prompts": 172827, "schema alignment": 146766, "alignment paper": 8207, "plms llms": 123620, "alignment uses": 8255, "database instances": 35993, "accuracy benchmarking": 3158, "importance facts": 73032, "tend biased": 164301, "reasoning levels": 136962, "improve temporal": 73638, "based temporal": 16132, "span extraction": 153652, "chinese benchmark": 23605, "sciences engineering": 146927, "chineseoriented llms": 23675, "accuracy 50": 3108, "50 provided": 1304, "identify factors": 71889, "approach reconciles": 11497, "errors especially": 50354, "information leveraging": 76560, "lms experiments": 97135, "language key": 83468, "challenge problem": 21714, "descriptions largescale": 39473, "model bloom176b": 103222, "descriptions train": 39505, "introduce text": 80129, "matching visual": 99496, "visual style": 177316, "testing dataset": 164704, "improving retrieval": 74211, "text guidance": 165219, "harnessing potential": 68832, "processing benchmarks": 129119, "various opportunities": 176095, "models overview": 108399, "language considered": 83213, "novel architectures": 114405, "sensitivity model": 148456, "identification causal": 71786, "coverage diverse": 33053, "data discovery": 34921, "tasks foundation": 162428, "highly applicable": 69892, "discovery data": 42763, "exploration domain": 55065, "characteristics approach": 22451, "management tasks": 98890, "following factors": 60274, "nature chatgpt": 111989, "pitfalls llms": 123129, "overly focus": 118392, "modules address": 109970, "proposed modules": 132400, "modules include": 109986, "employing reasoning": 47944, "10 representative": 136, "representative nlp": 140935, "investigating utility": 80620, "corpus english": 32303, "nearly linear": 112116, "minimal improvement": 102341, "results suggesting": 143845, "llms taskoriented": 96770, "compared smaller": 26919, "approaches leveraging": 11829, "feedback generates": 57694, "responses meet": 142851, "engineering artificial": 48885, "emerged noteworthy": 47374, "innovation natural": 77145, "remains unanswered": 140079, "select typical": 147790, "accuracy propose": 3348, "range large": 135637, "high communication": 69406, "communication memory": 26392, "memory novel": 100437, "model constructing": 103362, "limiting research": 92898, "intelligence help": 78836, "specifically distill": 154188, "distilled chatgpt": 43173, "filtering strategy": 58363, "million chinese": 102226, "usability effectiveness": 172430, "evaluation machinegenerated": 51685, "growing large": 68029, "text compared": 164935, "captured existing": 20699, "metrics work": 102165, "errors entity": 50353, "judgments propose": 81338, "neural framework": 112847, "machine texts": 98104, "addition textual": 4912, "reveal key": 144347, "predicted words": 125732, "algorithm ea": 7798, "fewshot experiments": 57908, "tasks vanilla": 163447, "finetuning easily": 59235, "easily overfits": 45331, "data degrades": 34890, "pretrained data": 126781, "finetuning retrieve": 59520, "implement method": 72824, "models recommender": 108866, "separately specific": 148706, "recommendation framework": 138201, "preferences generated": 126042, "model ensure": 103551, "recommendation algorithms": 138191, "test respectively": 164607, "peerreviewed scientific": 120673, "score test": 147105, "alternative given": 8560, "train various": 167842, "achieving 90": 4134, "standard large": 154838, "complex interdependent": 27446, "serve strong": 149009, "strong starting": 156447, "resources reduce": 142481, "technique approximates": 163743, "sum lowrank": 158750, "capabilities deep": 19848, "theory practice": 166100, "range neural": 135662, "summarization pretrained": 158862, "crafted dataset": 33143, "dataset english": 36259, "english summaries": 49112, "subjective judgments": 157859, "approaches finetuned": 11775, "producing good": 129552, "zeroshot robustness": 180330, "robustness instructiontuned": 145395, "finetuning recently": 59497, "sized llms": 152082, "llms inducing": 95617, "instructions make": 78305, "make robust": 98592, "robust natural": 145293, "collect set": 25675, "unique tasks": 171859, "robust instruction": 145275, "introducing soft": 80248, "optimizing maximize": 117122, "attention powerful": 13967, "like knowledge": 92326, "bases llms": 16402, "explicit factual": 54931, "applications inspired": 10567, "proposes enhance": 132463, "provides solution": 133216, "solution enhance": 152927, "network weights": 112708, "requires retraining": 141435, "recent method": 137559, "contains critical": 30366, "critical timeconsuming": 33562, "users varying": 173812, "levels technical": 91558, "skilled programmers": 152144, "potential avoid": 124619, "large base": 87196, "closedform solution": 24476, "practice using": 125502, "regularization paper": 138988, "empirically achieve": 47777, "practice propose": 125491, "novel alternative": 114358, "evaluate improved": 50987, "effectiveness algorithm": 46117, "algorithm multiple": 7831, "increasingly explored": 75401, "enhancing communication": 49468, "efficiency productivity": 46507, "limited predefined": 92819, "employing advanced": 47911, "learning architecture": 90223, "architecture generate": 12168, "generate contextaware": 63435, "improve work": 73660, "work efficiency": 178924, "efficiency collaborative": 46428, "style based": 157737, "agree disagree": 6823, "participants completed": 119998, "work tasks": 179338, "work performance": 179162, "feedback participants": 57755, "provide future": 132803, "design technologies": 39783, "focus important": 59994, "challenging lexical": 22193, "score release": 147093, "visual interactive": 177205, "suggestions additionally": 158634, "additionally users": 5144, "receive feedback": 137292, "feedback trained": 57810, "investigation discover": 80631, "semantic relevance": 148207, "identify various": 71979, "data assessing": 34660, "creating adversarial": 33285, "test suites": 164642, "datasets step": 37132, "ai pretrained": 7161, "hierarchical data": 69352, "data protein": 35579, "achieve outstanding": 3699, "results similar": 143800, "performance outperform": 121882, "dataset average": 36127, "datasets suggests": 37141, "suggests pretraining": 158670, "bringing step": 19136, "using parameters": 174575, "input layer": 77273, "desired results": 40057, "corresponding english": 32579, "performance dataset": 121357, "scientific paper": 146977, "papers based": 119392, "update manuscript": 172329, "comments corresponding": 26062, "corresponding paper": 32599, "especially cases": 50430, "tasked generating": 161837, "feedback underlying": 57813, "form foundation": 60456, "network approach": 112625, "approach transforming": 11617, "transforming text": 169384, "designed predict": 39925, "embedding given": 47167, "mpnet embedding": 110248, "embeddings predicted": 47269, "embeddings able": 47210, "able retrieve": 2552, "include training": 74343, "dataset paired": 36444, "paired embeddings": 118533, "achieve greater": 3656, "ability convert": 2114, "align embedding": 7996, "models protecting": 108718, "unexplored area": 171623, "leveraging historical": 91862, "texts wikipedia": 165802, "evaluations humans": 51982, "lower scores": 97840, "scores chatgpt": 147128, "entity swap": 49945, "models indicating": 106752, "architecture process": 12208, "based short": 16094, "removing outliers": 140371, "networks studies": 112803, "acceptable performance": 2832, "additional effort": 4951, "effort demonstrate": 46841, "concept paper": 28613, "translation metrics": 169484, "comprehensive synthesis": 28139, "synthesis recent": 159967, "explainable metrics": 54750, "gpt4 finally": 67011, "finally contribute": 58430, "research explainable": 141773, "llms express": 95209, "essential ensuring": 50605, "reliable trustworthy": 139759, "need explore": 112286, "cases particularly": 21000, "emerging promising": 47529, "approach despite": 11114, "aims providing": 7658, "sentence paper": 148520, "experiments employing": 54268, "encoder training": 48446, "datasets finetuned": 36871, "include various": 74347, "help types": 69190, "representative benchmarks": 140920, "proven capable": 132637, "like race": 92383, "squad 20": 154640, "competitive general": 27177, "beginning era": 16536, "shows advantage": 150403, "present position": 126410, "model position": 104289, "goal position": 66184, "input position": 77308, "terms scale": 164469, "scale task": 146349, "models annotators": 105357, "enhancing generalization": 49487, "minimal cost": 102321, "llm annotations": 93462, "annotations present": 9609, "utilizing fact": 175187, "strategy leads": 156176, "brazilian portuguese": 18977, "effectiveness gpt35": 46191, "grammar spelling": 67447, "encourages exploration": 48611, "training lms": 168556, "incorporating llm": 75116, "based asr": 15668, "especially deep": 50453, "outofvocabulary words": 117558, "lower training": 97846, "pairs labeled": 118590, "labeled indicate": 82731, "findings expose": 58669, "proficiency gpt": 129658, "detection remains": 40608, "effectiveness explore": 46174, "controlled vocabularies": 31657, "effective ranking": 45863, "effectively encode": 45984, "random words": 135550, "exceptional abilities": 52807, "threestage framework": 166294, "discovering natural": 42753, "novel practical": 114641, "practical baseline": 125396, "designed extract": 39879, "extract causal": 56121, "identifying critical": 71994, "challenges issues": 21925, "issues potential": 81045, "potential approaches": 124597, "frontier llms": 61651, "adoption llm": 5644, "based historical": 15855, "historical behaviors": 70196, "behaviors generating": 16699, "problem initially": 128283, "framework formalize": 61166, "prompt pretraining": 130638, "development training": 41243, "inference data": 75986, "problem believe": 128190, "implementations available": 72863, "remain unresolved": 139949, "lack contextual": 82911, "enhancement framework": 49381, "modelfree modelbased": 104951, "approaches modelfree": 11846, "queries leverage": 134501, "leverage effective": 91583, "chatgpt additionally": 22683, "enhancement method": 49384, "based adversarial": 15647, "adversarial data": 6196, "framework train": 61461, "like arithmetic": 92197, "technique code": 163750, "evaluation instruction": 51650, "reveal using": 144380, "instructions simple": 78353, "lack generalizability": 82947, "approaches enabling": 11744, "llm emerged": 93616, "tools diverse": 167144, "recommendation paradigm": 138218, "power llm": 125197, "traditional discriminative": 167613, "interpret context": 79623, "preferences generate": 126041, "leverages vast": 91794, "specialized prompts": 153908, "prompts finetune": 131278, "data capture": 34736, "offers foundational": 115808, "foundational framework": 60834, "explorations field": 55114, "backbone modern": 15418, "learning convolutional": 90333, "global dependencies": 66090, "showcases robust": 150105, "provide meaningful": 132883, "feedback expert": 57678, "guidance enable": 68143, "tradeoffs cost": 167572, "accuracy produce": 3347, "code llm": 24988, "challenges domainspecific": 21835, "domainspecific abstractive": 44556, "identifies limitations": 71845, "length model": 91381, "techniques relevant": 164008, "relevant domainspecific": 139595, "representing knowledge": 140971, "structure generation": 156562, "scalability flexibility": 146214, "building approach": 19368, "stages generation": 154766, "process unique": 129022, "iteratively prompting": 81157, "covered specific": 33066, "different novel": 41880, "capabilities emerge": 19868, "simplifies task": 151600, "uses combination": 173834, "pattern completion": 120501, "tokens appropriate": 166779, "evidence hypothesis": 52186, "helps learning": 69248, "path novel": 120431, "important capability": 73104, "estimation large": 50752, "persistent challenge": 122532, "solution accurate": 152888, "reflect underlying": 138805, "phenomenon linguistic": 122834, "methodologies treat": 101205, "semantic significance": 148222, "propose jointly": 131887, "accurate uncertainty": 3503, "including instructiontuned": 74573, "freeform questionanswering": 61566, "encompassing domains": 48553, "qa medical": 133897, "medical qa": 100204, "infant care": 75928, "care recent": 20767, "statements lead": 155048, "lead harmful": 89746, "harmful consequences": 68726, "consequences especially": 29525, "focused evaluating": 60098, "innovative paradigm": 77186, "paradigm building": 119436, "misinformation generated": 102490, "benchmark conduct": 16873, "experiments current": 54210, "current chinese": 34089, "effort minimize": 46859, "offtheshelf judgment": 115908, "judgment models": 81323, "benchmark questions": 17066, "better automated": 17811, "huge progress": 70527, "algorithms openended": 7953, "bias lms": 18156, "furthermore lms": 62111, "systems construct": 160306, "large complex": 87213, "addition compared": 4844, "5point scale": 1415, "terms readability": 164455, "systems recsys": 160578, "life providing": 92082, "advancements enhancing": 5882, "incorporating textual": 75135, "limitations difficulties": 92569, "generalizing various": 63297, "result recent": 143060, "studies attempted": 156955, "relevant fields": 139607, "finally comprehensively": 58421, "efficient optimization": 46690, "traditional adaptive": 167588, "faster convergence": 57286, "recently release": 137972, "llms flant5": 95283, "discrepancy attributed": 42794, "dataset technical": 36575, "various coderelated": 175858, "skills experimental": 152156, "enhanced problemsolving": 49360, "alternatives complex": 8592, "audience paper": 14159, "approach recent": 11495, "participating systems": 120036, "model rapid": 104413, "offer explainable": 115646, "retrieving ranking": 144285, "initially employ": 77080, "strategy instruct": 156164, "llmbased generator": 94149, "use proximal": 172830, "optimization ppobased": 117027, "rl method": 145062, "better meet": 17942, "content extensive": 30493, "substantial effectiveness": 158052, "accurate decisionmaking": 3448, "query expert": 134584, "based consistency": 15720, "used imperfect": 173101, "largescale code": 89277, "aspect remains": 12918, "code domain": 24794, "techniques nlp": 163971, "domains effective": 44390, "issue proposed": 80957, "enforcing constraints": 48809, "benchmark establish": 16946, "planning natural": 123302, "typically operate": 170504, "operate phases": 116738, "using heuristics": 174293, "planning generate": 123273, "efficient planning": 46696, "proof generation": 131582, "methods frequently": 101539, "effective heuristics": 45770, "model certain": 103259, "certain categories": 21371, "length critical": 91357, "struggle computational": 156741, "distributed trainer": 43335, "issue approaches": 80886, "reduced computation": 138487, "readily applied": 136172, "application techniques": 10389, "prior constraints": 127885, "works approach": 179423, "approach bypasses": 11036, "architecture optimizes": 12198, "costs leveraging": 32828, "joint space": 81267, "challenges proposing": 22029, "predominantly use": 125988, "answers provides": 10070, "problems bringing": 128464, "llmbased evaluations": 94142, "llms pairwise": 96024, "pairwise preferences": 118646, "final ranking": 58396, "space explore": 153572, "learning crossdomain": 90336, "robustness previous": 145421, "evaluation biases": 51459, "elo ratings": 47099, "uncertain study": 170660, "evaluating machinegenerated": 51342, "text multiple": 165317, "accuracy significant": 3389, "llms gaining": 95332, "gaining increasing": 62498, "role research": 145530, "reasoning medical": 136983, "lie ahead": 92062, "evaluation aiding": 51427, "technique employs": 163764, "structure key": 156573, "allows finetuning": 8434, "demonstrated finetuning": 38670, "adeptly manage": 5501, "attention wide": 14008, "wide realworld": 178329, "powerful semantic": 125330, "handle text": 68570, "directly employ": 42531, "make original": 98575, "market dynamics": 99234, "automation techniques": 14912, "techniques increasingly": 163932, "support effort": 159284, "existing skills": 53572, "useful reference": 173346, "individual skills": 75738, "difficult accurately": 42124, "supervision approaches": 159190, "approaches adding": 11686, "points previous": 123762, "programming prompting": 129871, "weaker llms": 177942, "extremely promising": 56447, "instruct tuning": 77934, "tuning paper": 170072, "partial sentences": 119979, "used early": 173040, "underlying base": 170831, "factors starts": 56822, "opens possibilities": 116562, "llms lower": 95829, "users run": 173771, "billionparameter llms": 18445, "personal devices": 122557, "survey impact": 159641, "different numerical": 41883, "compare recently": 26723, "architecture performance": 12203, "accuracy constraints": 3187, "constraints results": 30109, "comparing favorably": 26985, "opensource solution": 116679, "solution preliminary": 152963, "using standardized": 174749, "llms articulate": 94426, "based value": 16169, "objects real": 115298, "better humancomputer": 17904, "llms explored": 95204, "classification simple": 24094, "space llm": 153591, "capability various": 20387, "recently studies": 138001, "fail achieve": 56943, "correction tasks": 32448, "notable variations": 114252, "post processing": 124481, "trained supervised": 168089, "tuned specific": 169953, "output propose": 117983, "approaches additionally": 11688, "1shot settings": 581, "evaluated experiments": 51175, "different stateoftheart": 42010, "wide web": 178352, "online information": 116107, "sam various": 145940, "scale dataset": 146276, "size prior": 152060, "pioneering endeavor": 123016, "pretraining enhance": 127315, "models translate": 109502, "solution generating": 152941, "inspire design": 77698, "automatically based": 14773, "form video": 60494, "corresponding video": 32614, "questions employ": 135111, "employ explainable": 47824, "limited benefits": 92718, "critical understanding": 33566, "understanding functionality": 171241, "functionality llms": 61887, "light growing": 92120, "texttosql framework": 165841, "query databases": 134574, "understand input": 171026, "question generate": 134878, "requirements existing": 141292, "method llmbased": 100967, "strategies assisting": 155965, "firstly leverage": 59654, "llms simplify": 96613, "design dynamic": 39611, "popular parameterefficient": 124041, "continuous prompting": 31249, "assume fixed": 13548, "method superior": 101126, "reviews generated": 144581, "reviewers gpt": 144566, "paper model": 119080, "findings open": 58739, "groundwork research": 67948, "generation augmentation": 64440, "alternative manual": 8567, "data leverage": 35312, "create data": 33184, "corpora experiments": 32222, "despite lack": 40148, "output hallucinated": 117942, "strategies developed": 155987, "allows analyze": 8407, "analyze tradeoff": 9340, "estimate potential": 50728, "match rate": 99422, "potential accelerate": 124545, "framework prompt": 61359, "synthetic feedback": 160046, "competitive gpt4": 27178, "pipeline generate": 123058, "data comprising": 34812, "novel consistency": 114447, "answers higher": 10034, "learning proximal": 90884, "domain questions": 44263, "generate following": 63512, "final stage": 58404, "diverse multilingual": 43579, "answering generation": 9862, "surpasses opensource": 159491, "initially pretrained": 77083, "capabilities finetuned": 19904, "humans despite": 71373, "measure data": 99837, "negotiation dialogues": 112570, "favorable outcomes": 57328, "systems accurately": 160224, "requires continuous": 141353, "dataset make": 36399, "exploring integration": 55476, "accuracy increasing": 3280, "capabilities instructionfollowing": 19970, "nlp primary": 113792, "capabilities enhance": 19873, "designed study": 39951, "capabilities unfortunately": 20230, "resulted higher": 143077, "correct potential": 32403, "errors speech": 50400, "large unsupervised": 89096, "need labelled": 112332, "stage model": 154745, "finding answers": 58597, "propose modelagnostic": 131932, "fewshot generation": 57917, "response large": 142667, "train dense": 167759, "llm feedback": 93671, "ability framework": 2173, "method dubbed": 100803, "accuracy holdout": 3261, "systematic treatment": 160161, "underlying knowledge": 170840, "understood humans": 171549, "task relatively": 161685, "framework automatic": 60970, "llm llms": 93817, "data concretely": 34821, "deduce new": 37684, "used circumvent": 172993, "number texts": 114962, "tool benchmark": 166950, "logic programming": 97341, "specific natural": 154042, "problems study": 128633, "convert natural": 31992, "set programs": 149280, "task needs": 161568, "robot planning": 145183, "llm fails": 93668, "fails solve": 57001, "logic challenging": 97325, "proposes neurosymbolic": 132471, "surprisingly just": 159565, "domain incorporating": 44184, "issues language": 81020, "hallucination scale": 68412, "models raises": 108766, "prompts consisting": 131201, "essential components": 50591, "finetuning surpasses": 59574, "analyze variation": 9343, "reveal effectiveness": 144330, "finetuning overall": 59421, "comparative assessment": 26643, "comparisons using": 27086, "systems automated": 160255, "challenging area": 22114, "practical benefit": 125397, "uses relative": 173904, "humans intuitive": 71416, "prompt scoring": 130659, "transformers memory": 169331, "techniques optimize": 163976, "networks survey": 112805, "outline future": 117491, "seasoned researchers": 147450, "efforts field": 46914, "deployment use": 39309, "quantization models": 134415, "analysis studies": 9181, "important findings": 73136, "findings understand": 58831, "llms adapting": 94339, "speech fully": 154414, "textbased llms": 165596, "prevalent realworld": 127520, "requiring significant": 141508, "reality paper": 136319, "seamlessly interact": 147307, "accessibility users": 2937, "lies novel": 92069, "gain comprehensive": 62435, "understanding entire": 171215, "understanding tabular": 171496, "frameworks adaptability": 61506, "systematic construction": 160113, "generation constraints": 64531, "constraints seen": 30110, "focus fixed": 59984, "reasoning counting": 136784, "semantic planning": 148193, "designed extensible": 39878, "major problem": 98446, "highresolution image": 70095, "generation attention": 64436, "shared memory": 149814, "endtoend train": 48771, "ift datasets": 72063, "data surprisingly": 35833, "irrelevant responses": 80855, "misleading detrimental": 102507, "90 performance": 1746, "development progress": 41197, "researchers study": 142262, "additionally finetune": 5070, "empirically llms": 47795, "amazing performance": 8615, "performance unsatisfactory": 122212, "creative exploration": 33368, "social support": 152670, "collaborative dialogue": 25610, "paper proceeds": 119199, "set recent": 149291, "prevailing trends": 127500, "provide foundational": 132799, "trustworthiness models": 169857, "generating hallucinated": 64233, "learn neural": 90016, "models comes": 105679, "approximately correct": 12030, "achieves precise": 4055, "release llama": 139479, "collection pretrained": 25746, "called llama": 19662, "helpfulness safety": 69224, "contribute responsible": 31418, "understanding internal": 171309, "model aiming": 103098, "analysis particular": 9051, "capability identify": 20315, "set output": 149260, "study correct": 157257, "aiming understand": 7566, "loss performance": 97687, "labels multiplechoice": 82814, "use explanation": 172610, "randomized answer": 135554, "efficient guided": 46632, "problem neural": 128336, "finitestate machine": 59637, "leads efficient": 89885, "approach guiding": 11269, "guiding text": 68286, "constraints enables": 30076, "little overhead": 93245, "process significantly": 128987, "implementation provided": 72857, "provided open": 133081, "source python": 153465, "learning chatbots": 90294, "correction integration": 32438, "technologies educational": 164084, "quality conversation": 134083, "quality despite": 134094, "correction methods": 32443, "llms striking": 96691, "maintaining model": 98366, "solution comprehensive": 152912, "equivalent performance": 50206, "activations propose": 4421, "llms paving": 96060, "measurement large": 99901, "llms raised": 96282, "paper initiate": 118977, "revealing llms": 144405, "tasks extensively": 162383, "llms facilitating": 95240, "research enhancing": 141756, "utility variety": 174982, "systems deliver": 160327, "results struggle": 143819, "various parts": 176099, "dataset measure": 36402, "diverse demographic": 43506, "demographic traits": 38209, "gender native": 62891, "need inclusive": 112319, "rich external": 144779, "reasoning promising": 137070, "directly leveraging": 42563, "degrade quality": 37996, "accurate valuable": 3507, "infer users": 75950, "problems arise": 128458, "records leading": 138315, "better recommendation": 18002, "large realworld": 89035, "skill requirements": 152139, "labor market": 82851, "market analysis": 99231, "technologies required": 164111, "task detecting": 161316, "challenging case": 22125, "compared previously": 26897, "results relied": 143742, "based alignment": 15653, "coarsegrained evaluation": 24629, "evaluation crucial": 51517, "including media": 74614, "generalpurpose applications": 63336, "increasingly apparent": 75376, "especially chinese": 50434, "chinese paper": 23655, "requirements domain": 141284, "domain based": 44099, "llm chinese": 93535, "domain training": 44314, "evaluation validation": 51930, "annotation expensive": 9529, "significant labeled": 150765, "similar feature": 151236, "like law": 92332, "addressing intricacies": 5453, "necessitates extraction": 112175, "commences llm": 26049, "llmbased generation": 94147, "qa notably": 133902, "contextually apt": 31145, "apt answers": 12052, "findings available": 58640, "graph alignment": 67487, "task entity": 161354, "pair entities": 118517, "entities different": 49843, "entity embeddings": 49888, "independently using": 75509, "space computing": 153557, "computing similarity": 28559, "based attributes": 15672, "alignment significantly": 8234, "networks training": 112811, "exhibit unique": 53118, "performance groups": 121614, "new network": 113296, "requirement llms": 141269, "iteration time": 81102, "learning predictions": 90840, "generalpurpose learning": 63355, "information revealing": 76741, "limitations ensure": 92572, "comprehensive picture": 28096, "behavior study": 16651, "data icl": 35165, "consider incontext": 29571, "aid tackling": 7370, "annotators different": 9629, "tasks age": 161927, "llms rival": 96472, "simple supervised": 151530, "similar terms": 151316, "experimental datasets": 53932, "employed finetune": 47884, "framework devised": 61084, "hard benchmark": 68635, "employing significantly": 47945, "users share": 173778, "facilitates seamless": 56690, "algorithms yields": 7986, "holistic exploration": 70298, "ways data": 177897, "explored improve": 55350, "native chinese": 111504, "automatically recently": 14848, "core recipe": 32181, "hybrid dataset": 71563, "data utilized": 35938, "utilized data": 175098, "finetune opensource": 58951, "effectiveness code": 46142, "models underestimate": 109532, "tool used": 167049, "leverage users": 91682, "users like": 173703, "interfaces allow": 79454, "input inspired": 77264, "prompting paradigms": 131035, "paradigms large": 119539, "effectiveness systems": 46295, "systems delve": 160328, "delve capabilities": 38085, "text enabling": 165050, "discuss integration": 42906, "highlighting ability": 69803, "ability analyze": 2064, "behavior enhancing": 16588, "persuasive techniques": 122732, "technologies present": 164109, "present pilot": 126407, "impact integrating": 72669, "engagement satisfaction": 48839, "relationship llms": 139326, "audio captions": 14165, "various audio": 175822, "line program": 92944, "interpretable solution": 79692, "semantic spatial": 148228, "subjective evaluations": 157855, "code synthesized": 25171, "large parallel": 88979, "utterance recent": 175250, "nlg using": 113662, "include novel": 74337, "textual style": 165954, "time test": 166517, "approach domains": 11136, "using da": 174108, "determining best": 40721, "select examples": 147776, "robust examples": 145263, "icl propose": 71693, "baselines stateoftheart": 16373, "effectiveness text": 46301, "inputs deep": 77393, "efficiently processing": 46805, "inputs sensor": 77445, "example ai": 52463, "conventional architectures": 31694, "input changes": 77212, "use vector": 172933, "intermediate values": 79537, "values apply": 175521, "approach transformers": 11616, "faster better": 57284, "issues allowing": 80979, "cuttingedge technique": 34447, "resulting impressive": 143106, "algorithm ensures": 7802, "seamless deployment": 147284, "expansion extensive": 53712, "corpus benchmark": 32281, "potential integrated": 124792, "benchmarks mainly": 17297, "focus measuring": 60021, "applications gap": 10541, "chinese llm": 23642, "actual users": 4486, "users queries": 173751, "accuracy closedended": 3172, "complex word": 27649, "meaning paper": 99773, "novel multilingual": 114607, "feeding input": 57837, "assistance using": 13381, "chatgpt comparing": 22787, "performance investigating": 121697, "learning comparison": 90310, "just training": 81388, "learns knowledge": 91183, "respectively investigate": 142562, "label imbalance": 82689, "second comparing": 147462, "format consistency": 60543, "diversity number": 43746, "number instructions": 114884, "performance facilitates": 121501, "integrate existing": 78485, "users unique": 173801, "unique ways": 171860, "variations different": 175652, "instruction styles": 78057, "demonstrate necessity": 38449, "tuning improve": 170026, "novel perplexitybased": 114630, "framework practical": 61349, "based gptj": 15850, "costs practice": 32841, "takes long": 160987, "software models": 152827, "existing design": 53343, "tools frameworks": 167167, "limited range": 92830, "increased need": 75265, "opensourced publication": 116706, "distinct prompting": 43241, "incorporating augmented": 75084, "improved recommendation": 73714, "coordination work": 32095, "remote work": 140352, "online computer": 116083, "support recent": 159327, "blocks finally": 18728, "lacks understanding": 83051, "important details": 73119, "group dynamics": 67954, "implications designing": 72912, "working collaborative": 179393, "dialogue introduce": 41485, "assistant designed": 13388, "steps covering": 155727, "ensures efficient": 49719, "efficient task": 46721, "framework serves": 61403, "llms creativity": 94762, "phase llms": 122801, "using rouge": 174685, "embeddings llms": 47254, "scenarios demonstrating": 146576, "maintaining balance": 98341, "descriptions given": 39460, "importance researchers": 73056, "artificially generate": 12802, "generate description": 63453, "various quantitative": 176132, "addition trained": 4913, "api services": 10172, "effort democratize": 46840, "tuned follow": 169948, "users prompts": 173747, "prompts translated": 131507, "following url": 60320, "remains area": 139973, "learningbased method": 91159, "representation method": 140722, "finetuning helps": 59292, "opt model": 116911, "ai people": 7146, "detect using": 40379, "response collect": 142630, "evaluations finetuned": 51973, "gpt3 llms": 66721, "automatically translating": 14868, "description logic": 39418, "llms best": 94492, "concise examples": 28843, "examples finetune": 52586, "relations object": 139303, "object properties": 115157, "manner developed": 98982, "actions events": 4370, "requiring knowledge": 141494, "knowledge trait": 82466, "models suggests": 109294, "generating syntactically": 64348, "syntactically correct": 159911, "evaluation growing": 51631, "careful interpretation": 20784, "text effectiveness": 165040, "examined study": 52425, "level quality": 91501, "semantically enriched": 148267, "years current": 179887, "semantics underlying": 148324, "completion based": 27321, "discussing various": 42985, "type prediction": 170312, "prediction algorithms": 125759, "state work": 155027, "worth thousand": 179683, "applications great": 10548, "major advance": 98406, "advance understanding": 5695, "informative representations": 76881, "tools identify": 167178, "key abilities": 81454, "missing current": 102526, "heterogeneous compute": 69292, "framework heterogeneous": 61196, "solution enables": 152926, "setup code": 149671, "ai assessing": 6872, "finetuning openai": 59414, "openai llms": 116363, "translation automatically": 169443, "significant efficiency": 150697, "chinese experimental": 23626, "gpt35 demonstrate": 66799, "sizes llms": 152100, "task comparing": 161253, "davinci gpt35": 37230, "13b 175b": 357, "sense large": 148390, "behavior pretrained": 16630, "undesirable ones": 171585, "scientific engineering": 146958, "emergent behaviors": 47471, "despite increasing": 40143, "lack explanations": 82939, "research institutions": 141859, "ability fully": 2174, "designed chinese": 39833, "discusses approaches": 42970, "modelling using": 105134, "analysis evaluated": 8914, "model exploration": 103612, "repairs large": 140424, "llms remarkably": 96397, "knowledge automate": 81758, "automate common": 14495, "science detecting": 146862, "detecting anomalies": 40394, "knowledge describing": 81867, "investigation chatgpts": 80627, "quality translations": 134292, "industry practices": 75881, "standards research": 154918, "research scrutinizes": 142062, "specific conditions": 153961, "enhancing translation": 49576, "industry standards": 75888, "demonstrates practical": 38876, "model displays": 103477, "sparked debate": 153699, "highlevel human": 69693, "forms artificial": 60588, "despite exceptional": 40103, "creative human": 33372, "example ability": 52459, "metaphors given": 100596, "given enormous": 65878, "provided group": 133059, "college students": 25780, "interpret complex": 79622, "experiments experiment": 54282, "employing fewshot": 47923, "experiments aim": 54139, "aim shed": 7490, "models implications": 106679, "intelligence ability": 78713, "domain make": 44224, "delve performance": 38097, "llms dealing": 94784, "complex require": 27573, "increasingly extensive": 75402, "extensive diverse": 55750, "mapping process": 99155, "preserving ability": 126681, "pedagogical applications": 120649, "predict subsequent": 125706, "prompt label": 130558, "gaussian distribution": 62829, "tokens random": 166868, "gaussian distributions": 62830, "evaluated widely": 51218, "gpt significantly": 66494, "patterns relation": 120560, "parts texts": 120306, "annotation tool": 9555, "tool software": 167032, "framework determine": 61077, "data patterns": 35477, "help detect": 69103, "increase reliability": 75228, "reliability security": 139706, "directions developing": 42468, "taking image": 161007, "generation example": 64626, "user access": 173371, "possible generate": 124430, "ranking approach": 135795, "approach new": 11403, "prompts findings": 131277, "advance generative": 5682, "different complexity": 41698, "complexity levels": 27680, "datasets labeled": 36939, "trained weak": 168126, "capabilities shown": 20174, "used kg": 173119, "kgs used": 81652, "making llm": 98776, "explainable factchecking": 54747, "sentences task": 148597, "fact extraction": 56736, "domain adapted": 44081, "inferencetime retrieval": 76151, "contrast devise": 31299, "length allows": 91348, "generic prompt": 65666, "task showcase": 161723, "gp llms": 66366, "resource management": 142391, "gptbased model": 67283, "clouds challenges": 24575, "surge demand": 159426, "identifying unique": 72039, "building understanding": 19458, "facilitate effective": 56609, "areas exploration": 12365, "promote sustainable": 130347, "demands creativity": 38155, "time pressure": 166470, "addresses tasks": 5424, "generates scene": 64107, "elements scene": 47020, "media platform": 100105, "benchmark automatic": 16841, "movie plot": 110227, "widely utilized": 178412, "caused limited": 21256, "consistency metrics": 29779, "remarkably exceeds": 140316, "leakage issue": 89934, "2023 present": 708, "language focusing": 83327, "performance utility": 122225, "data fact": 35041, "second artificial": 147458, "llms constitute": 94709, "language reasons": 86695, "theories provide": 166066, "interpretable explanations": 79665, "original llms": 117352, "ner evaluation": 112588, "benchmark date": 16920, "accuracy 79": 3120, "supervised ner": 159161, "thorough ablation": 166174, "recipe data": 138023, "modest parameter": 109863, "api provided": 10165, "provided openai": 133082, "code retrievers": 25115, "effectively harnessing": 46013, "offering powerful": 115759, "mitigate associated": 102589, "potentially valuable": 125145, "source evidence": 153441, "behavior influence": 16598, "llms difficulty": 94932, "accuracy traditional": 3409, "computing gradients": 28543, "math programming": 99532, "programming abilities": 129783, "forms generalization": 60597, "key phrases": 81553, "tool studying": 167037, "largely reduce": 89167, "using activation": 173958, "recommendation llm": 138212, "mining user": 102417, "issues address": 80974, "behavior significantly": 16646, "build dataset": 19311, "science machine": 146891, "generate 295k": 63378, "llava mplugowl": 93416, "cider score": 23756, "including segmentation": 74715, "data opensourced": 35443, "generate sequence": 63708, "model fast": 103641, "query data": 134572, "planning new": 123304, "modalities paper": 102942, "discuss ideas": 42895, "algorithms crucial": 7914, "heads neurons": 68923, "based inherent": 15875, "preserve knowledge": 126667, "score existing": 147063, "benchmark generative": 16990, "methods creating": 101412, "methods robust": 101798, "properties using": 131666, "benchmark containing": 16877, "benchmark challenging": 16853, "challenging methods": 22210, "achieves mean": 4032, "average precision": 15306, "benchmarks examine": 17238, "efficiently combines": 46767, "memory integration": 100409, "integration enables": 78650, "client model": 24304, "benefiting llms": 17457, "fail address": 56944, "address highly": 5247, "problems requires": 128620, "manner emulate": 98984, "effective logical": 45804, "context game": 30777, "accuracy 98": 3132, "substantial enhancement": 158059, "method finally": 100871, "hardest level": 68669, "reasoning incorporate": 136914, "environment experiments": 49997, "experiments setting": 54456, "yielded impressive": 179991, "computational challenge": 28337, "challenge presented": 21708, "evaluation capability": 51464, "capability scale": 20371, "transfer evaluation": 168911, "chatgpt employ": 22881, "better generated": 17888, "effectiveness gpt4": 46192, "approximately points": 12031, "higher established": 69601, "generating useful": 64369, "training despite": 168388, "results instruction": 143531, "compared fully": 26811, "method exploiting": 100849, "critic language": 33444, "outputs work": 118139, "errors provide": 50394, "dataset curate": 36212, "community feedback": 26477, "variety datasets": 175700, "design progressive": 39731, "queries generating": 134484, "opendomain knowledge": 116456, "evaluation chinese": 51477, "platform employs": 123384, "requires just": 141396, "mouse clicks": 110216, "minimal coding": 102317, "llms validated": 96939, "active inference": 4431, "inference understand": 76133, "eye movements": 56468, "characterized greater": 22484, "model represents": 104458, "effective interventions": 45790, "frameworks developed": 61511, "capabilities specific": 20192, "initially developed": 77079, "developed evaluate": 40872, "models seamlessly": 109052, "new custom": 113128, "custom dataset": 34368, "dataset added": 36095, "developed framework": 40877, "framework tested": 61455, "plan opensource": 123217, "framework community": 61018, "framework available": 60975, "imbalance training": 72559, "building semantic": 19450, "data crosslingual": 34875, "data obtain": 35431, "using scalable": 174690, "build multilingual": 19334, "demonstrates ability": 38822, "coherent sentences": 25542, "good reason": 66291, "challenge recently": 21723, "fixed point": 59714, "worse llms": 179661, "llms weight": 97000, "known exhibit": 82591, "adopted way": 5609, "limitation deep": 92499, "challenging novel": 22226, "techniques learn": 163950, "order preserve": 117231, "paradigm learning": 119479, "yielded remarkable": 179993, "success aligning": 158216, "preferences extensive": 126038, "incorporating instructions": 75109, "instructions ranging": 78337, "following insights": 60282, "resulted substantial": 143085, "increase win": 75246, "rate token": 136017, "tuning yield": 170147, "models type": 109521, "specific objectives": 154049, "effect generation": 45656, "framework introduces": 61240, "general representation": 63043, "selfsupervised pretrained": 148070, "learning latent": 90634, "framework naturally": 61322, "experiments major": 54346, "synthetic conversational": 160018, "datasets fail": 36859, "nuanced interactions": 114798, "participants address": 119993, "field introduce": 58183, "interaction pairs": 79152, "crowdsourcing effort": 33731, "effort involving": 46853, "rich resource": 144797, "presenting new": 126541, "subtask subtask": 158177, "llm expert": 93652, "achieve enhanced": 3631, "interface better": 79420, "schemabased instruction": 146774, "recommendations propose": 138258, "llm reinforcement": 93951, "present scalable": 126438, "scalable method": 146248, "automatically labelling": 14834, "used construct": 173009, "iterations approach": 81105, "yields model": 180028, "representation world": 140752, "discuss common": 42878, "community llms": 26493, "systems submitted": 160628, "dynamic fewshot": 45129, "chatgpt analyze": 22698, "approaches report": 11891, "systems just": 160445, "models closing": 105637, "way chatgpt": 177783, "quality experimental": 134119, "studies promote": 157056, "multistage tuning": 111157, "languagespecific representation": 87164, "languagespecific knowledge": 87162, "stage training": 154753, "leverage twostage": 91677, "twostage prompting": 170268, "modelbased databased": 104931, "noticeable loss": 114319, "superior learning": 159013, "comparison analysis": 27024, "researchers increasingly": 142222, "applications adversarial": 10418, "differences existing": 41624, "method development": 100789, "research build": 141622, "process information": 128875, "enable data": 48071, "distance method": 43120, "allows direct": 8426, "application gpt": 10326, "sft datasets": 149737, "comprehensive user": 28157, "queries analyze": 134449, "data selector": 35724, "datasets finetune": 36870, "data evaluated": 34995, "videos texts": 176790, "rich structural": 144806, "describing complex": 39396, "llms essential": 95094, "geometric structure": 65728, "instruction finetune": 77995, "datasets underscoring": 37168, "underscoring effectiveness": 170962, "editing framework": 45458, "editing approaches": 45447, "emerged aiming": 47338, "variations task": 175663, "editing applications": 45445, "llms supports": 96738, "various cuttingedge": 175885, "llms t5": 96754, "editing results": 45483, "iterative development": 81120, "systems considerable": 160304, "metrics lack": 102096, "prediction prompting": 125850, "scores particularly": 147162, "providing interpretability": 133323, "interpretability error": 79640, "family finetuned": 57192, "strongest performance": 156487, "release public": 139493, "data inform": 35222, "research specifically": 142090, "performance quantitative": 121974, "using 25k": 173946, "improvements field": 73902, "field project": 58229, "reasoning synthetic": 137160, "theory derive": 166079, "half problems": 68320, "problems suggesting": 128636, "identify aspects": 71860, "corpora enhance": 32221, "value decomposition": 175476, "provide direct": 132754, "including current": 74480, "current baseline": 34079, "challenging status": 22276, "set work": 149351, "particular process": 120109, "process certain": 128750, "number best": 114830, "utilize expert": 175039, "methods competitive": 101387, "development study": 41227, "efficacy leveraging": 46392, "capabilities closely": 19815, "closely resemble": 24527, "ai use": 7309, "use chat": 172543, "responding human": 142606, "shown proficiency": 150332, "proficiency answering": 129645, "medical consultations": 100144, "ai chat": 6907, "completion previous": 27336, "inherently possess": 76990, "effectively employ": 45983, "maintaining consistent": 98347, "design tailored": 39775, "collection public": 25752, "evaluate consistency": 50936, "testing scenarios": 164753, "providing recommendations": 133360, "recommendations existing": 138244, "using restricted": 174673, "paper objective": 119083, "grounding framework": 67894, "paradigm recommendation": 119504, "finetuning generate": 59281, "items subsequently": 81088, "identifies appropriate": 71841, "substantiate superior": 158150, "increasing quantity": 75351, "statistical information": 155490, "findings underline": 58819, "potential avenue": 124614, "sr methods": 154652, "improve issue": 73494, "templates transform": 164240, "significant noise": 150785, "llms core": 94742, "identifying potential": 72024, "asking llm": 12882, "score reference": 147092, "instruction compared": 77969, "instruction does": 77988, "classifier based": 24149, "accuracy 92": 3128, "aspect developing": 12902, "dataset curated": 36213, "process related": 128968, "data constrained": 34838, "resources article": 142422, "advancements largescale": 5921, "gpt4 showcased": 67156, "facing complex": 56729, "capacities models": 20492, "paper unveils": 119377, "outperformed gpt4": 117657, "thought tot": 166237, "accuracy boost": 3163, "datasets ablation": 36629, "substantiate effectiveness": 158148, "performance interesting": 121690, "knowledge perspectives": 82273, "bias gender": 18124, "finetuning alpaca": 59165, "process exploring": 128828, "pairs given": 118584, "fit examples": 59681, "alternative simple": 8578, "combines output": 25949, "prediction study": 125867, "capture range": 20673, "biases introduced": 18276, "overall text": 118252, "llms highlighted": 95491, "shift evaluation": 149905, "current study": 34274, "using recently": 174657, "language comprising": 83208, "undesirable biases": 171583, "able reveal": 2553, "change required": 22351, "required reach": 141250, "provide dataset": 132736, "meaning preservation": 99775, "variations input": 175654, "deploy llms": 39200, "llms safe": 96480, "stronger correlation": 156467, "evaluations output": 52012, "alignment chatgpt": 8131, "spelling correction": 154533, "struggle solving": 156774, "solving text": 153253, "extended language": 55660, "focuses exploring": 60140, "procedure investigate": 128703, "corruption techniques": 32628, "texts conducted": 165690, "models architectures": 105384, "stages evaluated": 154764, "sets practical": 149394, "outcome work": 117443, "chatbots built": 22602, "improved prompt": 73710, "covering 32": 33071, "humanwritten texts": 71529, "developed llms": 40886, "integrated abilities": 78512, "discuss set": 42945, "llms possibly": 96139, "requirements furthermore": 141297, "heuristic approach": 69306, "problems furthermore": 128516, "approach largescale": 11339, "models showcasing": 109096, "loss achieving": 97661, "times higher": 166588, "engage llms": 48821, "prompting pipeline": 131040, "llms grounded": 95454, "gauging llm": 62827, "framework make": 61299, "tradeoffs propose": 167578, "imagetext tasks": 72534, "effectiveness transferability": 46304, "furthermore validate": 62178, "enabling achieve": 48264, "improvements code": 73886, "possess wealth": 124355, "time result": 166493, "using factual": 174192, "provides convenient": 133126, "perspectives addition": 122698, "addition assessing": 4842, "release corresponding": 139456, "help needed": 69153, "range prompt": 135676, "fewshot translation": 58082, "metrics conclude": 102032, "recommendation dataset": 138197, "models behaviors": 105475, "providing holistic": 133310, "limitations suggesting": 92672, "discussions regarding": 43017, "responses increase": 142827, "closely approximate": 24510, "llms demand": 94803, "training tailored": 168775, "continues increase": 31221, "frameworks lack": 61517, "lack modular": 82981, "highly usable": 69968, "comprises main": 28247, "main modules": 98253, "finetuning methodologies": 59378, "methodologies like": 101200, "lora qlora": 97650, "approach resorts": 11513, "number query": 114935, "addressing propose": 5472, "new mode": 113282, "examples exploit": 52578, "inherent ability": 76934, "methods efficacy": 101466, "traditionally require": 167725, "expensive create": 53780, "examine proficiency": 52409, "truth compare": 169878, "gptbased evaluation": 67279, "ones certain": 115989, "content occasionally": 30557, "errors compared": 50345, "gpt evaluation": 66414, "expensive computation": 53776, "train limited": 167789, "limited hardware": 92773, "llm computer": 93550, "aiming reduce": 7562, "subsets used": 158016, "training best": 168173, "successfully distill": 158376, "20 data": 591, "negligible performance": 112564, "sequence understanding": 148796, "highly related": 69947, "opendomain natural": 116458, "tasks atomic": 161982, "ability capable": 2086, "scaling data": 146389, "employ contrastive": 47820, "ensuring robust": 49755, "crossdomain scenarios": 33627, "framework decrease": 61062, "performance leading": 121731, "surveys research": 159719, "quickly advancing": 135339, "technique enhance": 163767, "controllability large": 31610, "having llms": 68885, "modalities domains": 102922, "domains applications": 44358, "applications analysis": 10421, "review potential": 144533, "strategies suggest": 156079, "user behaviors": 173381, "behavioral sequences": 16675, "serves additional": 149031, "additional input": 4964, "systems shifted": 160608, "effectively integrating": 46035, "knowledge integrating": 82138, "inference allows": 75961, "fully exploiting": 61759, "expanding context": 53697, "encodings used": 48522, "design particular": 39711, "tasks publicly": 163054, "method extending": 100857, "using longer": 174455, "scales evaluation": 146365, "retrievalenhanced large": 144208, "context limitation": 30829, "extract essential": 56133, "model queries": 104402, "independent underlying": 75503, "perform suite": 121054, "demonstrate measures": 38416, "applied fewshot": 10759, "detection evaluating": 40497, "performance insights": 121681, "analytical problems": 9256, "coherent results": 25541, "challenges structural": 22071, "tasks raising": 163072, "confidence outputs": 29358, "iterations code": 81110, "faces major": 56575, "scarcity largescale": 146496, "audio representations": 14186, "suitable dataset": 158693, "existing publicly": 53543, "methodology generating": 101233, "models fields": 106333, "visualization techniques": 177356, "techniques introduced": 163936, "representation visual": 140750, "effort understand": 46872, "different pieces": 41906, "novel generation": 114529, "designed based": 39826, "finally generated": 58470, "videos results": 176788, "unparalleled performance": 172071, "user chatgpt": 173383, "behaviors based": 16684, "resulting limited": 143112, "questions extracted": 135127, "goal train": 66205, "subsequently dataset": 157969, "eeg data": 45644, "finetune larger": 58936, "larger pretrained": 89242, "finetuning popular": 59447, "model realm": 104415, "researchers aim": 142170, "models discerning": 105986, "structural intricacies": 156519, "provide informed": 132840, "queries end": 134472, "module dedicated": 109925, "surpasses sota": 159498, "sota 12": 153337, "conditional diffusion": 28951, "controllability existing": 31608, "additional conditions": 4939, "content timestamp": 30632, "generation employ": 64601, "control condition": 31528, "series evaluation": 148917, "framework accurately": 60914, "difficult grasp": 42152, "texts resulting": 165772, "active users": 4443, "users rich": 173769, "behaviors effectively": 16694, "methods order": 101694, "generate news": 63632, "addition method": 4879, "distribution experimental": 43358, "various traditional": 176235, "successful integration": 158342, "feasible path": 57377, "vast opensource": 176345, "emerges pivotal": 47495, "empirical validations": 47774, "renowned datasets": 140390, "findings mere": 58731, "showcases improved": 150099, "attracted substantial": 14053, "substantial manual": 158077, "unable perform": 170606, "focus hard": 59991, "examples boosting": 52532, "enhance stability": 49293, "effect evaluation": 45655, "critical challenging": 33469, "number entities": 114858, "posed users": 124193, "highquality annotated": 69989, "insufficient mitigate": 78451, "burden associated": 19514, "llms program": 96214, "program translators": 129760, "algorithms sample": 7968, "diverse programs": 43606, "facilitates training": 56692, "additionally reduce": 5128, "method iterative": 100941, "encompassing data": 48550, "domain agnostic": 44089, "models posit": 108566, "exploring better": 55455, "better integration": 17919, "high algorithmic": 69392, "requirements llms": 141307, "demands dynamic": 38157, "retrieval recommend": 144125, "automated medical": 14569, "daily activities": 34504, "practices lead": 125513, "implementing ml": 72885, "distilling relevant": 43194, "practices information": 125510, "retrieval tools": 144154, "benchmark popular": 17053, "tasks sequential": 163225, "demonstrated comparable": 38634, "researchers delve": 142192, "performance codes": 121261, "language provide": 86674, "takes natural": 160989, "multistep process": 111172, "retrieval existing": 144049, "used obtain": 173163, "estimates model": 50739, "model reliability": 104448, "lack exploration": 82941, "optimal approach": 116932, "analyses experiments": 8763, "strong general": 156384, "high risk": 69527, "instruction embedding": 77989, "following input": 60281, "correct translation": 32423, "translation apply": 169439, "particularly zeroshot": 120274, "different backbones": 41668, "exploring instruction": 55475, "using closedsource": 174055, "instrumental enabling": 78440, "depends availability": 39177, "exorbitant cost": 53675, "effectiveness generated": 46187, "achieved generating": 3811, "survey outlook": 159660, "challenges applying": 21775, "audio signal": 14192, "signal processing": 150521, "representations wide": 140912, "human voices": 71090, "distinct traditional": 43259, "sphere leveraging": 154544, "demonstrated prowess": 38752, "analysis stateoftheart": 9176, "scenarios highlight": 146614, "limitations provide": 92648, "directions realm": 42497, "models intent": 106797, "development area": 41054, "relevant repository": 139643, "recent articles": 137442, "opensource implementations": 116614, "llm cloud": 93536, "cloud providers": 24560, "recent innovation": 137521, "power given": 125179, "increasingly power": 75426, "llms claim": 94607, "mechanism propose": 100021, "needed achieve": 112431, "achieve ai": 3578, "define exemplify": 37932, "embedded data": 47137, "datasets bayesian": 36675, "bayesian methods": 16482, "enhance calibration": 49160, "bayesian approach": 16478, "approach lora": 11371, "improving computational": 74119, "performance fails": 121503, "optimizing various": 117130, "process efficiently": 128801, "growing using": 68061, "proposed evaluate": 132285, "benchmarks based": 17178, "dimensions systematically": 42351, "scientific principles": 146980, "characteristics make": 22469, "effective benchmark": 45703, "experiments advanced": 54133, "available models": 15164, "models class": 105625, "systems class": 160286, "addressing primary": 5469, "meta model": 100558, "dynamical systems": 45178, "trained potentially": 168039, "power transformers": 125225, "structure initial": 156571, "llms harmful": 95472, "certain user": 21425, "inputs present": 77434, "present modern": 126372, "novel insight": 114549, "dataset specific": 36553, "experimentally demonstrate": 54101, "worsen performance": 179668, "text despite": 165012, "field challenges": 58131, "language components": 83201, "begin discussing": 16526, "evaluating problem": 51374, "problem highlighting": 128272, "datasets addressing": 36641, "chatbot combines": 22568, "combines power": 25950, "responses illustrating": 142825, "process hope": 128857, "hope motivate": 70361, "domain facilitated": 44162, "broadening application": 19200, "tool capable": 166955, "continuously improve": 31269, "continue explore": 31195, "reference material": 138662, "advancements integration": 5903, "advance multimodal": 5689, "mllms instruction": 102833, "evaluation makes": 51688, "makes current": 98640, "benchmarking results": 17157, "handcrafted prompt": 68507, "mllms building": 102810, "graphs play": 67646, "tasks frequently": 162432, "frequently face": 61620, "completion consider": 27323, "sequences introduce": 148823, "attains stateoftheart": 13773, "prediction finetuning": 125797, "gpt4 translate": 67201, "humanaligned evaluation": 71119, "evaluations validate": 52035, "alignment propose": 8220, "languages outperform": 87078, "data final": 35051, "alignment improved": 8166, "llms reflection": 96363, "stochastic nature": 155822, "impact knowledge": 72672, "assistant paper": 13397, "supporting general": 159376, "emerging integration": 47512, "integration kgs": 78661, "ideas innovations": 71764, "opendomain chitchat": 116447, "chitchat dialogues": 23681, "focus generating": 59986, "conversations recent": 31961, "published data": 133691, "llms proper": 96242, "proper prompting": 131615, "dataset detailed": 36235, "detailed annotations": 40271, "problems creative": 128474, "remains notable": 140045, "notable gap": 114227, "gap studying": 62736, "llms responding": 96429, "queries recommendation": 134527, "individual data": 75710, "planning ability": 123237, "intermediate planning": 79517, "previously explored": 127725, "plan step": 123220, "planning information": 123280, "information recommendation": 76683, "exploration models": 55089, "including alpaca": 74413, "realworld relation": 136486, "datasets case": 36691, "studies carried": 156960, "evaluation instructionfollowing": 51651, "performance dealing": 121359, "model instructions": 103878, "revolution machine": 144620, "owing exceptional": 118461, "enhance privacy": 49261, "considerations introduce": 29666, "moe llms": 110017, "strategically partitioning": 155950, "innovative techniques": 77193, "reduces size": 138534, "various edge": 175922, "results comprehensive": 143250, "construct evaluation": 30131, "current mainstream": 34173, "tasks handle": 162493, "handle texts": 68571, "tokens long": 166841, "commercial model": 26082, "embedding finetuning": 47165, "lead substantial": 89782, "capability code": 20273, "particularly machine": 120224, "success fields": 158242, "developing large": 41004, "desired characteristics": 40042, "characteristics large": 22466, "valuable applications": 175402, "closer artificial": 24535, "comprehensively study": 28180, "openai embeddings": 116335, "provide reproducible": 132953, "challenge prevailing": 21709, "advantage recent": 6118, "analysis does": 8897, "reason introduce": 136566, "received substantial": 137317, "modules experts": 109980, "scaling performance": 146436, "performance sparse": 122092, "models edge": 106038, "typical solutions": 170460, "allocate resources": 8321, "use virtual": 172934, "accurate inference": 3465, "provide largescale": 132872, "families language": 57186, "social robot": 152656, "annotated corpus": 9450, "peoples goals": 120746, "settings finetuned": 149579, "given corpus": 65863, "performing method": 122407, "leveraging chainofthought": 91815, "rapid precise": 135896, "research notable": 141935, "involving continuous": 80783, "based corresponding": 15730, "minimal research": 102353, "conducted explore": 29245, "interactions address": 79199, "propose federated": 131821, "federated llms": 57629, "probability modeling": 128119, "rule selection": 145694, "solves problem": 153189, "scenarios enhance": 146584, "finetuning additionally": 59156, "pipeline execution": 123052, "conducted distinct": 29230, "dense feedback": 39087, "response work": 142717, "problem preferences": 128353, "analysis identifies": 8960, "explain phenomena": 54707, "model preferred": 104310, "evaluating realworld": 51380, "realworld utility": 136539, "used alignment": 172957, "alignment code": 8133, "design highlevel": 39646, "emerged mainstream": 47371, "necessity finetuning": 112197, "models fostering": 106385, "interface complex": 79421, "facilitate natural": 56635, "interface querying": 79441, "openstreetmap osm": 116711, "multiple usecases": 111079, "novice users": 114774, "experienced users": 53856, "toolaugmented large": 167069, "behaviour paper": 16741, "response provide": 142691, "original paper": 117363, "field develop": 58155, "develop approaches": 40757, "including source": 74729, "code various": 25202, "various programming": 176118, "sizable margin": 151955, "model foundation": 103691, "jais model": 81195, "detecting bad": 40396, "estimating numeric": 50744, "score output": 147087, "users llm": 173706, "accurately identifies": 3537, "incorrect llm": 75158, "sampling multiple": 146105, "llm extra": 93665, "topics study": 167370, "critical stage": 33551, "12 datasets": 263, "gpt4 emerged": 66979, "achieving 100": 4129, "score datasets": 147057, "llms immense": 95539, "underscores promise": 170955, "distinct phases": 43240, "gpu compute": 67337, "phase results": 122805, "time request": 166485, "using pipeline": 174580, "used pipeline": 173172, "extensive user": 55968, "capabilities instruction": 19968, "instruction comprehension": 77970, "general world": 63068, "create versatile": 33245, "llms brain": 94509, "planning reflection": 123316, "matrix factorization": 99638, "simple llm": 151489, "prompting stateoftheart": 131079, "development automatic": 41059, "similar responses": 151300, "topic order": 167331, "scores benchmarks": 147125, "capabilities prompted": 20127, "language coverage": 83222, "nlu benchmarks": 113937, "proves difficult": 132658, "data understand": 35901, "steps previous": 155760, "context finetuning": 30771, "information consequently": 76324, "kmeans clustering": 81687, "affirming robustness": 6343, "believe method": 16783, "framework aimed": 60941, "aimed evaluating": 7517, "employed test": 47903, "involve using": 80697, "model versions": 104874, "ensuring robustness": 49757, "accuracy adaptability": 3136, "adaptability diverse": 4573, "measurement framework": 99900, "broader source": 19224, "conscious experiences": 29511, "systems artificial": 160249, "highquality performance": 70061, "llms mobile": 95893, "significant llm": 150771, "makes nearly": 98676, "nearly impossible": 112114, "orders magnitudes": 117269, "pretrained llama": 127017, "dataset reducing": 36498, "broader llm": 19216, "risks downstream": 144983, "behaviors limitations": 16712, "explanations discuss": 54834, "challenges emerging": 21842, "llms comparison": 94657, "comparison conventional": 27027, "services using": 149091, "architecture study": 12229, "implementing generative": 72880, "investigation delves": 80629, "offering tailored": 115770, "key phases": 81552, "retrieval methodology": 144089, "addressing scarcity": 5476, "showcasing applicability": 150108, "retrieval research": 144130, "facilitates practical": 56689, "practical usability": 125459, "holds substantial": 70287, "llmbased services": 94166, "work treat": 179344, "leverage generative": 91597, "generating recommendations": 64315, "methods future": 101543, "modalities finetuning": 102926, "driving development": 45007, "techniques tools": 164040, "scientists domain": 147005, "unified manner": 171730, "resources schedule": 142487, "architecture tackle": 12231, "enabling wider": 48362, "models devise": 105957, "combine automated": 25872, "noise robustness": 113984, "information integration": 76523, "end establish": 48658, "evaluate representative": 51091, "journey ahead": 81300, "rag llms": 135432, "space lack": 153585, "lack scalability": 83004, "scalability largescale": 146217, "largescale kgs": 89323, "crucial uncovering": 33883, "performance field": 121515, "processing various": 129352, "specifically framework": 154210, "leveraging semantic": 91950, "rules rule": 145725, "rule quality": 145693, "quality incorporating": 134165, "wrt different": 179810, "allows infer": 8440, "prefrontal cortex": 126108, "perspective artificial": 122652, "closely correlated": 24512, "embeddings modified": 47258, "quality problems": 134228, "data datasets": 34887, "clear errors": 24265, "practical recommendations": 125442, "represent hierarchical": 140641, "software modeling": 152826, "studies large": 157032, "gpt3 diverse": 66679, "involve finetuning": 80688, "approaches performed": 11860, "dataset result": 36506, "explicit training": 54961, "dataset prompting": 36471, "finetuningbased approaches": 59617, "produced prompting": 129509, "approach challenging": 11045, "evaluation findings": 51588, "diffusion large": 42234, "investigate source": 80497, "large bias": 87199, "output causing": 117900, "propose offline": 132050, "method stable": 101117, "models rising": 109005, "rising popularity": 144920, "optimization prompting": 117036, "coordinate descent": 32085, "highquality solutions": 70075, "solutions complex": 153004, "problems notably": 128576, "building energy": 19400, "approaches automatic": 11702, "requirements realworld": 141318, "scenarios building": 146546, "experts provide": 54677, "provide domain": 132758, "llms coding": 94624, "framework termed": 61453, "generator integrates": 65622, "historical patterns": 70208, "improves prompt": 74063, "work include": 179036, "llmbased solution": 94167, "solution data": 152914, "96 accuracy": 1809, "domainspecific challenges": 44563, "potential potential": 124908, "solutions making": 153044, "using evidence": 174172, "intelligence agent": 78717, "reveal finetuning": 144332, "problem frequently": 128262, "paradigm involves": 119470, "alignment loss": 8191, "highquality cots": 70009, "model degradation": 103416, "seamlessly adapted": 147295, "ranking feedback": 135800, "accessible furthermore": 2952, "rankingbased alignment": 135833, "nlp landscape": 113747, "community address": 26448, "pretrained single": 127159, "framework hope": 61203, "parameterefficient approach": 119658, "behavioral testing": 16676, "allows finegrained": 8433, "work behavioral": 178821, "range situations": 135695, "sets generated": 149375, "make behavioral": 98488, "testing mt": 164736, "differences potential": 41638, "potential bugs": 124632, "adapt models": 4542, "curated challenge": 34008, "contextual depth": 31081, "contrary traditional": 31293, "knowledge cultural": 81849, "analysis prior": 9083, "accuracy crucial": 3191, "progress achieving": 129938, "achieving acceptable": 4135, "degradation paper": 37987, "makes practical": 98680, "information contexts": 76331, "networks build": 112718, "hot topic": 70438, "generate generic": 63518, "lack information": 82964, "users experience": 173648, "studies try": 157100, "manual metrics": 99054, "node feature": 113964, "main issue": 98247, "simultaneously paper": 151756, "adapter taskspecific": 4715, "prompts extract": 131271, "plms finetuned": 123602, "classification importantly": 24016, "function large": 61842, "contextual learning": 31105, "having high": 68879, "steps propose": 155763, "parameters utilize": 119887, "utilize mcts": 175069, "experiments mathematical": 54347, "capabilities method": 20050, "improves pass1": 74042, "pass1 metric": 120329, "enhancing precision": 49543, "generalization research": 63224, "use user": 172928, "performance comprehensive": 121313, "normalized discounted": 114189, "discounted cumulative": 42694, "cumulative gain": 33988, "gain ndcg": 62446, "coverage long": 33059, "systems study": 160627, "investigates large": 80566, "predetermined set": 125668, "interactions chat": 79207, "chat interface": 22536, "interface evaluate": 79432, "fairness recommendations": 57067, "substantial scale": 158103, "exhibits versatility": 53234, "solving mathematics": 153228, "capabilities aim": 19776, "accuracy consequently": 3185, "llama7b models": 93399, "code respectively": 25109, "gpt4 prompts": 67126, "designed direct": 39849, "sentences present": 148591, "baseline lacks": 16224, "function description": 61830, "evaluating interpretability": 51320, "descriptions surface": 39501, "descriptions trained": 39506, "trained networks": 168022, "use learned": 172731, "gain traction": 62452, "suite evaluating": 158721, "components trained": 27781, "trained neural": 168023, "realworld complexities": 136423, "behavior natural": 16619, "new interactive": 113238, "method automated": 100698, "function structure": 61860, "representation transfer": 140747, "single representation": 151853, "contexts models": 31035, "explore wide": 55331, "transfer multiple": 168975, "model languages": 103924, "achieved astonishing": 3786, "using principle": 174608, "learning role": 90957, "model predictive": 104306, "provides starting": 133218, "question format": 134877, "filled tokens": 58332, "embeddings reduce": 47276, "require tuning": 141213, "trainable embeddings": 167846, "local properties": 97255, "prompt specifically": 130678, "study 100": 157119, "llmbased autonomous": 94127, "applications challenge": 10441, "tasks graph": 162479, "encounter limitations": 48571, "managing diverse": 98903, "design huge": 39647, "simplify learning": 151602, "varying data": 176282, "levels complex": 91529, "step generating": 155640, "solution given": 152944, "node graph": 113966, "tasks humanlike": 162513, "humanlike decisions": 71260, "gpt4 palm": 67103, "llama shown": 93337, "following users": 60323, "producing humanlike": 129558, "implementing llms": 72884, "availability pretrained": 15062, "specific medical": 154038, "domain best": 44100, "dataset vietnamese": 36615, "utilize parameterefficient": 175072, "tuning lowrank": 170054, "accuracy level": 3290, "scoring mechanism": 147190, "original models": 117358, "tend fall": 164303, "icl finetuning": 71672, "based connections": 15719, "similar methods": 151271, "tuning evaluate": 170004, "examples hope": 52607, "way harnessing": 177823, "usually rely": 174913, "rely complex": 139833, "model frameworks": 103695, "number questions": 114936, "logic form": 97328, "sources multiple": 153526, "paper considers": 118813, "demonstrations improving": 39013, "covering natural": 33082, "inference machine": 76049, "opt family": 116905, "parameters rely": 119850, "collection diverse": 25732, "adding information": 4827, "accuracy designing": 3198, "complex specialized": 27595, "shared multiple": 149817, "unrelated tasks": 172119, "method exploit": 100848, "zeroshot promptbased": 180300, "settings showing": 149646, "partly attributed": 120283, "advantages promptbased": 6149, "classifiers paper": 24192, "correlates strongly": 32529, "error bounds": 50277, "iterative learning": 81128, "updates paper": 172354, "generalization characteristics": 63155, "characteristics iterative": 22464, "information employ": 76382, "demonstrate improved": 38382, "improved bounds": 73673, "step developing": 155614, "lm shown": 97072, "peft approaches": 120679, "maintains competitive": 98389, "parameters does": 119741, "trainable parameter": 167848, "additionally empirically": 5050, "adaptability various": 4585, "claude bard": 24238, "operation costly": 116756, "temperature variations": 164207, "llama2 series": 93370, "models lower": 108104, "range 05": 135577, "significantly slower": 151156, "models contextual": 105772, "capturing contextual": 20720, "approach showing": 11532, "technique able": 163733, "findings point": 58744, "evaluating readability": 51379, "framework reference": 61378, "properly assess": 131622, "classroom use": 24232, "study select": 157616, "writing story": 179757, "text readability": 165403, "globally recognized": 66116, "considered effective": 29686, "results optimize": 143651, "value significance": 175498, "approach optimizing": 11418, "llms opinion": 95998, "inferences linguistic": 76146, "contexts believe": 31005, "llms emergence": 95033, "emergence novel": 47440, "focus performance": 60034, "including syntax": 74745, "preliminary effort": 126117, "languages initial": 87029, "repository paper": 140630, "versatile tools": 176574, "citation generation": 23797, "concerns study": 28831, "study makes": 157480, "mechanism leverages": 100010, "model offer": 104143, "learning loop": 90656, "llm responsible": 93970, "fluency metrics": 59892, "narrowing gap": 111469, "properties alignment": 131632, "measure results": 99873, "called relative": 19669, "data simulates": 35763, "simulates complex": 151673, "patterns utilizing": 120574, "automated dialogue": 14539, "analysis developing": 8889, "responses detecting": 142765, "behaviors remains": 16722, "building specialized": 19452, "classifiers detecting": 24185, "interactions paper": 79252, "ability stateoftheart": 2382, "outperforms specialized": 117850, "offering guidance": 115743, "related robustness": 139207, "demand models": 38133, "latency reduction": 89485, "metrics analysis": 102000, "llm advantages": 93448, "significant obstacle": 150788, "code weights": 25213, "openai novel": 116367, "selection technique": 147894, "analyses provided": 8781, "investigates applicability": 80543, "existing ontology": 53509, "careful framework": 20783, "design long": 39683, "summary evaluation": 158932, "length sentence": 91390, "utilized address": 175095, "issue draw": 80899, "multifaceted capabilities": 110400, "modalities using": 102960, "inhouse dataset": 77005, "accuracy rare": 3357, "output different": 117914, "capabilities exist": 19883, "recent llm": 137549, "exceed traditional": 52741, "chatgpt especially": 22898, "portion dataset": 124129, "setting crosslingual": 149436, "lowest performance": 97860, "addressing constraints": 5438, "reranking using": 141539, "multimodal video": 110786, "content performance": 30570, "demonstrate reranking": 38532, "overlooked inherent": 118382, "significant concern": 150661, "process addressing": 128730, "scores associated": 147123, "diverse local": 43569, "global search": 66109, "models precision": 108586, "substantiate approach": 158146, "llms sensitive": 96503, "inputs using": 77451, "demonstrations bias": 38990, "resolve inherent": 142345, "label ambiguity": 82675, "demonstrations llm": 39026, "information effective": 76372, "deemed salient": 37706, "salient entity": 145930, "require heavy": 141114, "mediumsized pretrained": 100266, "additionally zeroshot": 5148, "model acceleration": 103015, "lower quality": 97837, "verification stage": 176497, "process ensures": 128813, "training extra": 168445, "abilities understanding": 2030, "environments largescale": 50091, "applications semantic": 10679, "distribution training": 43399, "techniques advanced": 163828, "robustness current": 145367, "limited practicality": 92818, "practicality data": 125467, "supporting factual": 159374, "retrieval integration": 144071, "dataset fully": 36320, "evidence propose": 52207, "veracity labels": 176429, "labels unlabeled": 82836, "data utilizing": 35939, "utilizing evidence": 175183, "evidence retrieved": 52211, "model concentrate": 103336, "entity mapping": 49898, "mapping method": 99148, "investigation results": 80647, "llms collaborative": 94628, "collaborative knowledge": 25621, "address explainability": 5227, "augment improve": 14242, "transfer dataset": 168906, "chatgpt act": 22679, "outputs use": 118134, "settings chatgpt": 149535, "improvements shown": 73945, "shown automatic": 150213, "data align": 34613, "preferences finally": 126040, "authorship verification": 14448, "policy improvement": 123849, "amounts humangenerated": 8687, "asks models": 12896, "reasoning training": 137212, "problems original": 128580, "called incontext": 19657, "adapt output": 4551, "domain compare": 44110, "techniques icl": 163920, "shown single": 150379, "diverse cultures": 43493, "conversational context": 31859, "answer instead": 9726, "gap mllms": 62679, "mllms reasoning": 102846, "translated languages": 169419, "dataset maps": 36401, "context different": 30732, "merge conflicts": 100524, "acquire extensive": 4252, "pretraining known": 127352, "blackbox opensource": 18654, "changes information": 22376, "risk hallucination": 144942, "context automatic": 30692, "encounter performance": 48572, "propose direct": 131784, "errors enhancing": 50352, "methods remarkably": 101775, "remarkably improved": 140319, "work demonstrating": 178899, "achieves perfect": 4050, "key modules": 81540, "far studied": 57237, "studied especially": 156926, "mobile app": 102895, "prediction leveraging": 125819, "app usage": 10211, "management existing": 98877, "relationships effectively": 139338, "address cold": 5197, "making significant": 98807, "resolving issues": 142356, "tests realworld": 164787, "scenarios outcomes": 146661, "query response": 134624, "query responses": 134625, "music representations": 111314, "pretrained frozen": 126816, "model adaption": 103071, "dataset captions": 36142, "pairs labels": 118592, "labels associated": 82784, "different themes": 42049, "helps capture": 69239, "eventually used": 52140, "recommendations users": 138266, "texts work": 165803, "potential modern": 124868, "components text": 27780, "explanations users": 54908, "reviews significantly": 144590, "review texts": 144558, "quality overall": 134218, "applications advent": 10415, "interactions extended": 79226, "setting appropriate": 149427, "datasets datasets": 36758, "datasets settings": 37107, "demonstrating potency": 38945, "robustness generation": 145388, "applications prohibitive": 10647, "finetuning direct": 59226, "finetuning efficiency": 59240, "coming era": 26031, "original contributions": 117324, "llms second": 96494, "benchmark learning": 17015, "users mental": 173712, "bridge fundamental": 19040, "fundamental gap": 61952, "release benchmark": 139438, "consisting 900": 29941, "qa code": 133875, "model traditional": 104756, "learn similarity": 90053, "extract global": 56138, "domain invariant": 44191, "invariant features": 80323, "features obtain": 57549, "scenarios trained": 146712, "query recommendation": 134620, "unlike general": 172002, "direct reward": 42406, "metrics empirical": 102050, "scenarios llms": 146644, "evaluated language": 51184, "effect source": 45677, "language editing": 83273, "editing different": 45455, "specifically collect": 154152, "editing various": 45494, "evaluation includes": 51643, "portability furthermore": 124122, "perform opendomain": 120999, "dataset machine": 36398, "llms lowrank": 95830, "benchmarks open": 17318, "document set": 43857, "good generating": 66270, "despite power": 40176, "html latex": 70483, "identify specific": 71965, "areas potential": 12384, "improvement address": 73753, "instructions target": 78358, "weaknesses llms": 177967, "rlhf stage": 145100, "stage rlhf": 154750, "human intents": 70864, "ppo training": 125374, "requires largescale": 141405, "kl regularization": 81679, "does harm": 43982, "performance ppo": 121922, "negatively impacts": 112544, "mitigates effect": 102646, "li et": 92018, "originally shown": 117405, "palm 2l": 118653, "instructions complex": 78219, "descriptions generate": 39457, "instructions systematically": 78357, "dataset realworld": 36495, "instructions extensive": 78257, "inception large": 74312, "algorithmic approaches": 7877, "llms nowadays": 95947, "llm improves": 93747, "crucial efficiently": 33789, "lack specialized": 83006, "findings work": 58835, "articles previous": 12618, "challenges summarization": 22076, "information encountered": 76388, "collection schema": 25753, "coverage faithfulness": 33056, "summarization proposed": 158864, "gpt4 able": 66899, "cover 40": 33035, "accessible public": 2964, "comes training": 26022, "hallucination bias": 68360, "consequently lack": 29545, "dataset effectively": 36249, "dataset undergoes": 36598, "rigorous pipeline": 144868, "best quality": 17742, "speech interaction": 154422, "integrating approaches": 78579, "containing tens": 30347, "parameters demonstrated": 119736, "problems complex": 128470, "complex optimization": 27511, "novel pruning": 114660, "nonneural model": 114111, "improves entity": 73997, "internal test": 79567, "medium large": 100257, "indicate clear": 75577, "clear preference": 24280, "llms summarization": 96730, "benchmark reference": 17071, "works field": 179447, "creation novel": 33345, "quality reliable": 134247, "generation capacities": 64479, "result work": 143072, "datasets instrumental": 36931, "overall investigation": 118205, "investigation highlights": 80636, "robust adaptable": 145233, "adaptable framework": 4591, "research industrial": 141852, "work content": 178873, "research detecting": 141693, "context significantly": 30916, "detection leveraging": 40545, "nsfw content": 114786, "content detectors": 30472, "assessed study": 13150, "freedom expression": 61556, "aligns evolving": 8267, "captions similar": 20625, "retrieved datastore": 144235, "generate caption": 63408, "crossattention layers": 33606, "work taking": 179336, "research hand": 141819, "efforts build": 46892, "outperforms simple": 117846, "llms erupted": 95090, "learning holds": 90519, "generalization extensive": 63174, "environment risk": 50029, "researchers domain": 142202, "understanding effects": 171207, "comes expense": 26015, "pretraining capabilities": 127274, "using observation": 174546, "typically heavily": 170493, "simply translating": 151627, "examine major": 52400, "contextual examples": 31088, "cost error": 32670, "information evaluating": 76400, "modes evaluation": 109851, "input strings": 77353, "apply framework": 10850, "gpt2 xl": 66613, "explanations high": 54859, "good choice": 66263, "extension llms": 55703, "predefined context": 125648, "llms longer": 95824, "using fixed": 174211, "llms position": 96130, "length limited": 91378, "types approaches": 170325, "challenging apply": 22113, "additional constraints": 4940, "adjustment applied": 5546, "novel integration": 114553, "integration instructiontuned": 78658, "contribute improving": 31406, "llm correct": 93565, "llm llama2": 93814, "integration yields": 78696, "corpora including": 32228, "including lack": 74577, "diversity cultural": 43718, "cultural relevance": 33965, "gap conduct": 62626, "analysis requires": 9126, "measure extent": 99845, "recent foundation": 137507, "contribute llm": 31408, "efficient techniques": 46723, "solution achieve": 152889, "observations inspire": 115342, "use released": 172849, "targetdomain data": 161124, "effectiveness llm": 46222, "improvement 28": 73743, "nextgeneration ai": 113604, "design automation": 39555, "automation large": 14902, "exploration automation": 55055, "automation tools": 14913, "democratize ai": 38193, "design leveraging": 39678, "investigation llms": 80641, "pipeline utilizing": 123104, "utilizing incontext": 175196, "learning guide": 90514, "llms creating": 94759, "symbolic melody": 159811, "generation struggle": 65109, "datasets limits": 36963, "structure design": 156547, "strategies create": 155981, "end constructed": 48647, "previous pretraining": 127626, "learn leverage": 90001, "additional textual": 5007, "demonstrate adding": 38223, "recognition capability": 138050, "methodologies applications": 101189, "based encoder": 15773, "scope nlp": 147018, "fit sufficient": 59684, "testing recent": 164747, "recent opensource": 137574, "llms opt": 96001, "finegrained sentiment": 58893, "labels demonstrate": 82793, "benchmark explainable": 16973, "modifying text": 109896, "intended changes": 78974, "gold reference": 66241, "designed finegrained": 39882, "leverage highquality": 91603, "sources human": 153508, "finegrained instructions": 58873, "evaluating existing": 51295, "various editing": 175924, "furthermore extensive": 62076, "experimentation reveals": 54113, "synthesis text": 159971, "results notable": 143635, "limiting exposure": 92886, "potential chatgpt4": 124644, "editing processes": 45481, "search automated": 147319, "features capabilities": 57454, "enrichment texts": 49627, "results chatgpt4": 143224, "context sensitivity": 30909, "interaction visual": 79192, "promising strategy": 130322, "editing process": 45480, "constructed integrating": 30179, "develop natural": 40807, "variations resulting": 175662, "queries apply": 134451, "different platforms": 41907, "languages benchmark": 86954, "approach aim": 10980, "aim stimulate": 7493, "ensure users": 49713, "corrections methods": 32451, "explanations consistently": 54829, "explicit control": 54925, "difficult prompts": 42172, "correct input": 32395, "generating correction": 64180, "3b parameter": 1120, "users prefer": 173738, "impact important": 72662, "models helping": 106595, "limitations conventional": 92557, "sentences containing": 148568, "containing highly": 30335, "finetuning carefully": 59186, "experiments methods": 54360, "translation release": 169510, "datasets pair": 37022, "versa models": 176555, "generating datasets": 64186, "datasets lead": 36954, "text proxy": 165392, "evaluation manually": 51690, "followed subsequent": 60244, "set highquality": 149210, "introduce llm": 80006, "improvement 12": 73739, "better prior": 17990, "generation paradigm": 64918, "costly study": 32801, "personalize llms": 122584, "approach encourage": 11173, "medical corpus": 100150, "benchmark challenges": 16852, "demonstrate overall": 38459, "semantic lexical": 148173, "hierarchical features": 69357, "essential categorizing": 50589, "models distant": 105999, "names model": 111431, "recommendations using": 138267, "job market": 81230, "recommend suitable": 138188, "good fit": 66266, "conversion structured": 31980, "inspired superior": 77775, "information previously": 76644, "conversion unstructured": 31983, "recommendations content": 138241, "dialogues paper": 41564, "responses prompting": 142884, "realworld conversations": 136429, "demonstrate versatility": 38610, "versatility use": 176596, "safety benchmark": 145843, "believe dataset": 16771, "understanding advancing": 171118, "addressed current": 5394, "concerns emerge": 28776, "comprehensive solution": 28121, "native arabic": 111503, "instructions gpt4": 78270, "feedback rlaif": 57781, "culture values": 33981, "accommodating diverse": 2990, "cultural value": 33972, "benchmark evaluated": 16951, "exploration efficient": 55066, "gradually gaining": 67422, "popularity little": 124095, "exploration various": 55111, "scarce limited": 146475, "serve reference": 148999, "improvements using": 73960, "representation approach": 140672, "construction contract": 30210, "contract knowledge": 31277, "knowledge modeling": 82233, "human errors": 70719, "nested structure": 112611, "contract review": 31278, "pipeline achieves": 123031, "contract risk": 31279, "reliable interpretable": 139726, "challenges generating": 21888, "requires generated": 141380, "approach approach": 10998, "evaluate alignment": 50903, "model conducting": 103343, "comprehensive metrics": 28076, "training hours": 168474, "length 8192": 91346, "implemented lines": 72871, "finetuning regime": 59501, "7b13b 70b": 1642, "dataset constraints": 36189, "constraints paper": 30102, "generation typical": 65221, "problem utilize": 128434, "decision diagrams": 37367, "sentences usually": 148600, "screening test": 147241, "brings major": 19144, "generation especially": 64615, "neural systems": 112982, "exhibiting outstanding": 53171, "abilities reason": 2002, "cognitive states": 25484, "assessments models": 13297, "presence inherent": 126210, "correlation positions": 32552, "structural heuristics": 156516, "readability level": 136156, "zeroshot large": 180222, "directly modify": 42572, "absolute target": 2622, "model insights": 103868, "insights dataset": 77538, "dataset automated": 36122, "lms longer": 97166, "imperative understanding": 72801, "intended usage": 78981, "model automate": 103159, "resources employ": 142433, "extract answers": 56120, "llama galactica": 93307, "models automate": 105420, "automate generation": 14499, "paper text": 119369, "effort model": 46860, "process complete": 128760, "huge impact": 70516, "capabilities vast": 20253, "world various": 179629, "tools created": 167130, "models blackbox": 105529, "current interaction": 34137, "significant applications": 150595, "studied paper": 156935, "benchmark based": 16844, "poses huge": 124210, "argumentation theory": 12437, "llm easily": 93607, "overcome barriers": 118269, "encouraging llm": 48621, "built previous": 19501, "metrics achieving": 101995, "financial texts": 58584, "demonstrated poor": 38734, "continuous progress": 31247, "languages domain": 86981, "attention literature": 13917, "literature current": 93162, "effectiveness domainspecific": 46165, "domain financial": 44166, "financial news": 58575, "chatgpt financial": 22945, "common challenge": 26127, "function optimization": 61852, "set comprehensive": 149159, "github issues": 65815, "issues furthermore": 81005, "furthermore examine": 62063, "users executing": 173644, "executing various": 52937, "comprehend intricate": 27853, "intricate contexts": 79837, "llms multiturn": 95919, "datasets confirm": 36730, "comprehension complex": 27895, "framework reasoning": 61374, "tasks iteratively": 162651, "feedback observe": 57746, "introduce errors": 79955, "errors enable": 50350, "exploration space": 55104, "reveals novel": 144440, "tasks uncover": 163402, "models adaptive": 105272, "nonexpert individuals": 114058, "result significantly": 143064, "evaluates different": 51231, "flops reduction": 59864, "flexibly adapt": 59833, "accuracy onpar": 3325, "practical survey": 125455, "design manual": 39686, "algorithms evaluation": 7923, "optimize llm": 117069, "simulation large": 151700, "order increase": 117209, "related previous": 139193, "performance goal": 121595, "finally collect": 58418, "humans interacting": 71414, "set criteria": 149168, "illustrate significant": 72159, "aggregating information": 6778, "generalizability various": 63115, "especially confronted": 50445, "behavior particularly": 16626, "fails effectively": 56996, "reasoning procedures": 137052, "propose logical": 131907, "problems demonstrate": 128479, "efficacy enhanced": 46374, "explainability interpretability": 54725, "highly desirable": 69910, "model alternative": 103109, "variety reasons": 175756, "llms experts": 95192, "text identify": 165224, "features finally": 57495, "generate counterfactual": 63447, "present interesting": 126342, "recently multiple": 137944, "context ability": 30673, "answering hallucination": 9867, "text written": 165579, "llm text": 94054, "scenarios combining": 146555, "design text": 39785, "gpt35turbo gpt40": 66879, "inherent noise": 76968, "methods capture": 101358, "llms contribution": 94733, "contribution lies": 31476, "generating foundational": 64224, "datasets sourced": 37123, "showcasing enhanced": 150110, "trained solve": 168079, "makes important": 98655, "important recognize": 73182, "order develop": 117187, "need consider": 112249, "llms influenced": 95626, "gpt4s accuracy": 67233, "results ai": 143167, "humans instead": 71412, "using iterative": 174337, "summarizing medical": 158926, "medical documents": 100162, "distinct failure": 43221, "auditing large": 14218, "leverages incontext": 91730, "refine performance": 138738, "utilization extensive": 174993, "performance textbased": 122178, "community remains": 26519, "available speech": 15206, "background noise": 15445, "information missing": 76578, "preprocessed data": 126183, "capability versatility": 20388, "versatility large": 176585, "series llms": 148937, "vicuna model": 176671, "series different": 148915, "using indomain": 174321, "llms recognise": 96351, "monolingual code": 110062, "generation low": 64806, "humaneval pass1": 71173, "change code": 22338, "efficient fine": 46612, "dynamics text": 45217, "chatgpt need": 23144, "quantized variational": 134429, "contrastive alignment": 31343, "alleviates interference": 8311, "markers model": 99229, "eye fixations": 56466, "vast world": 176362, "questions training": 135308, "learning extract": 90450, "strong connection": 156370, "score textual": 147106, "contexts including": 31025, "content significant": 30618, "empirically assess": 47780, "human content": 70665, "content assess": 30441, "framework encompasses": 61126, "methods interestingly": 101606, "gptgenerated text": 67289, "accuracy goal": 3254, "range operations": 135669, "llms standard": 96675, "standard paradigm": 154864, "paper raise": 119299, "possess sufficient": 124352, "tasks heavy": 162498, "heavy computational": 69050, "abilities finetuning": 1910, "weights naturally": 178121, "downstream scenarios": 44749, "minimizing catastrophic": 102386, "old ones": 115942, "fullparameter tuning": 61729, "tuning high": 170023, "forgetting issue": 60422, "training complexity": 168193, "strategy largely": 156175, "modules different": 109976, "available knowledge": 15145, "textbased methods": 165597, "augmentation data": 14272, "offers additional": 115781, "completion mechanisms": 27331, "diversity available": 43709, "shaky foundations": 149760, "shortcoming present": 150019, "model effectiveness": 103514, "code necessary": 25028, "necessary reproduce": 112153, "major contributions": 98419, "protocol systematic": 132584, "abilities second": 2014, "construct validity": 30166, "evaluating planning": 51370, "llms apparent": 94407, "reveals striking": 144450, "invalid trajectories": 80310, "application future": 10323, "generation assessment": 64434, "assessment framework": 13234, "provide llms": 132878, "knowledge reference": 82351, "act natural": 4296, "user textual": 173530, "truth human": 169883, "fast adoption": 57262, "neural prompting": 112963, "modeling joint": 105020, "training customized": 168222, "owing large": 118464, "novel plugandplay": 114637, "pooling module": 123937, "biomedical reasoning": 18571, "method creates": 100769, "framework adapt": 60922, "benchmarks base": 17177, "conversational feedback": 31865, "difference particularly": 41611, "particularly marked": 120226, "feedback grounding": 57699, "participants provide": 120016, "presents quantitative": 126629, "outputs obtained": 118093, "contain higher": 30296, "higher proportion": 69625, "feedback furthermore": 57688, "model sensitive": 104543, "humans address": 71340, "issue relying": 80960, "meaning ambiguous": 99763, "provide informative": 132839, "contains novel": 30386, "dataset examine": 36270, "methods surprisingly": 101858, "significant shift": 150875, "jointly analyzing": 81271, "electroencephalographic eeg": 46986, "engineering approach": 48883, "guidance developing": 68141, "number opensource": 114916, "collection models": 25744, "new formulation": 113197, "sequences dataset": 148812, "dataset long": 36396, "benchmarks research": 17355, "require humanannotated": 141121, "components method": 27765, "pretraining scratch": 127432, "finetuning algorithm": 59159, "quantization module": 134416, "rouge score": 145622, "important provide": 73177, "subsequent natural": 157951, "generated nl": 63929, "queries varying": 134558, "enables novel": 48231, "properties generated": 131644, "like factuality": 92266, "annotations fully": 9592, "assertiveness model": 13034, "neuro symbolic": 112998, "apart natural": 10140, "responses effective": 142773, "generating formal": 64223, "specifications natural": 154319, "phenomenon referred": 122838, "limitation makes": 92511, "bugs code": 19289, "satisfiability modulo": 146165, "analyze generated": 9296, "llms interaction": 95664, "steer llm": 155557, "planning domain": 123264, "evaluating approach": 51263, "smt solver": 152503, "allows user": 8478, "user communicate": 173386, "solvers automatically": 153185, "enable nonexpert": 48117, "language combination": 83193, "knowledge survey": 82442, "survey hallucination": 159640, "hallucination prevention": 68401, "access manipulate": 2882, "resulting performance": 143128, "knowledge persist": 82272, "delves realm": 38119, "missing tokens": 102533, "exploration current": 55059, "current advancements": 34054, "address prevalent": 5334, "prevalent issues": 127515, "perform impressive": 120963, "internetscale training": 79601, "help measure": 69144, "solve help": 153122, "technology underserved": 164173, "qualitatively different": 134024, "kinds data": 81662, "translation llms": 169479, "literature aim": 93155, "tasks textual": 163368, "questions probe": 135230, "probe potential": 128143, "ii substantial": 72110, "substantial evidence": 158060, "evidence indicating": 52187, "indicating performance": 75659, "llms target": 96766, "target node": 161089, "argument mining": 12430, "mining argument": 102405, "arbitrary label": 12082, "sets semantic": 149402, "optimal result": 116949, "allows better": 8411, "problems hope": 128533, "datasets specialized": 37126, "challenges process": 22017, "enhance computational": 49175, "researchers alike": 142172, "analysis optimization": 9044, "optimization exploration": 116993, "exploration study": 55107, "study bridges": 157196, "offers roadmap": 115844, "15 llms": 411, "responses preference": 142876, "ranking llms": 135809, "measure different": 99839, "llms biased": 94497, "biased text": 18241, "exhibiting strong": 53175, "comparisons models": 27080, "evaluators furthermore": 52053, "score 496": 147036, "according findings": 3035, "tell story": 164195, "models todays": 109407, "models amplifies": 105351, "explain decision": 54695, "translation engines": 169458, "engines paper": 49019, "finetuning comprehensive": 59202, "scale significantly": 146343, "gpt4 specialized": 67171, "score tuning": 147108, "exploit existing": 55002, "outperforming fewshot": 117675, "databases era": 36014, "answering user": 9978, "interact systems": 79075, "built models": 19495, "llms spatial": 96649, "spatial data": 153783, "role modern": 145513, "specificity limited": 154326, "called reinforcement": 19667, "propose reward": 132103, "typical applications": 170444, "performance raised": 121978, "raised potential": 135470, "static nature": 155466, "advancing capabilities": 6079, "dynamically generate": 45189, "including mathematics": 74612, "problems evaluate": 128497, "llms comparative": 94651, "dungeons dragons": 45095, "domain nlp": 44236, "dragons dd": 44876, "annotated named": 9485, "identifying named": 72017, "presents methodology": 126601, "train validate": 167841, "engineering prompting": 48973, "problem results": 128385, "understanding image": 171287, "quickly attracted": 135340, "research stateoftheart": 142092, "work strive": 179312, "extract finegrained": 56136, "linguistic reasoning": 93058, "hessian matrix": 69286, "based derived": 15749, "lora ensembles": 97639, "poor uncertainty": 123959, "outofdistribution samples": 117533, "alleviating issue": 8314, "accuracy uncertainty": 3414, "prompt writing": 130747, "challenges unique": 22090, "makes hard": 98653, "unify different": 171776, "introduces concept": 80177, "task representation": 161691, "address varied": 5383, "including citation": 74451, "molecular graphs": 110028, "graphs knowledge": 67630, "quantitatively investigate": 134393, "relationship tokens": 139334, "reasons failures": 137249, "change following": 22341, "measuring ratio": 99961, "alignment llm": 8189, "correlation improvements": 32547, "weights llm": 178119, "regularly engage": 138999, "materials study": 99516, "tailored individual": 160921, "simplified versions": 151596, "reading english": 136195, "accurately estimating": 3529, "additionally gpt35": 5075, "studies regarding": 157066, "commonly believed": 26223, "essential ensure": 50604, "establish trust": 50679, "explaining model": 54768, "approximation approach": 12040, "method guided": 100898, "guided llm": 68232, "explanations benchmark": 54819, "explain models": 54704, "explanation subsequently": 54802, "work illuminates": 179028, "engineering using": 49004, "expressed formal": 55569, "potential role": 124961, "additionally formulate": 5072, "key open": 81546, "robust sentiment": 145321, "analysis plays": 9061, "research extensively": 141783, "languages exists": 87000, "datasets sentiment": 37104, "techniques sentiment": 164016, "enhance sentiment": 49289, "indomain crossdomain": 75788, "text label": 165262, "enabling models": 48329, "models role": 109023, "characterlevel benchmark": 22495, "abilities achieving": 1875, "explainable metric": 54749, "analysis collected": 8851, "quantitatively assess": 134385, "heldin datasets": 69068, "gpt4 evaluator": 66992, "surpass best": 159452, "existing referencebased": 53549, "explanations explanations": 54845, "demonstrates possibility": 38873, "modern llm": 109815, "common types": 26209, "hours human": 70455, "preferred human": 126079, "time essential": 166396, "understanding nuances": 171383, "facilitate comprehensive": 56601, "evaluation temporal": 51896, "brief survey": 19108, "survey benchmark": 159610, "humans presents": 71450, "challenge domain": 21631, "domain artificial": 44095, "various limitations": 176009, "formal knowledge": 60501, "brief review": 19107, "standardized datasets": 154904, "straightforward training": 155928, "research utilizing": 142143, "study single": 157639, "process aim": 128731, "potential pathways": 124898, "critical field": 33497, "demonstrated significantly": 38796, "capability unseen": 20384, "apparent margin": 10215, "context task": 30934, "instead merely": 77889, "verification results": 176495, "respectively despite": 142550, "despite presence": 40177, "notably enhance": 114266, "following capabilities": 60256, "labor construct": 82849, "conflicts large": 29417, "conflict arises": 29407, "identify knowledge": 71913, "simulating contextual": 151678, "includes diverse": 74368, "entities domains": 49844, "existence knowledge": 53243, "determine specific": 40714, "abilities tackle": 2025, "lead development": 89737, "interpretable large": 79674, "performance trustworthiness": 122206, "offer reliable": 115696, "reliable source": 139751, "information reasoning": 76678, "kgs improve": 81647, "processes significant": 129100, "prediction future": 125802, "clear explanation": 24267, "propose opensource": 132054, "llama2 ability": 93353, "prediction explanation": 125793, "significantly influences": 151063, "simultaneously using": 151765, "ability assimilate": 2072, "knowledge facilitate": 81996, "understand paper": 171052, "par surpassing": 119422, "way interactive": 177836, "llms communicate": 94647, "model seamlessly": 104516, "geometric reasoning": 65727, "constraints remains": 30107, "underexplored problem": 170775, "knowledge connected": 81830, "connected graph": 29475, "verify facts": 176530, "benchmark additionally": 16821, "ones proposed": 116012, "hard problems": 68654, "problems analysis": 128454, "structural patterns": 156522, "era artificial": 50215, "questions ask": 135047, "understanding weather": 171538, "weather patterns": 177987, "goes far": 66229, "split merge": 154560, "promise automated": 130169, "evaluate candidate": 50914, "human comparison": 70658, "enhances consistency": 49403, "rates models": 136036, "cost furthermore": 32681, "llm consistency": 93555, "valuable step": 175455, "step reliable": 155676, "applications graph": 10547, "results automatically": 143184, "requires intensive": 141394, "dynamic strategy": 45166, "llms showcasing": 96527, "showcasing impressive": 150115, "initial solution": 77055, "solution framework": 152939, "evaluation module": 51739, "improvements needed": 73923, "strategies employed": 155991, "employed model": 47894, "llm weaker": 94095, "efficiency elevates": 46445, "precision required": 125624, "questions experimental": 135122, "adaptation decomposition": 4606, "api costs": 10154, "50 maintaining": 1303, "maintaining superior": 98383, "template evaluation": 164212, "llms genuinely": 95402, "concern potential": 28746, "perform evaluation": 120938, "new samples": 113396, "called semantic": 19671, "generates evaluation": 64066, "hope initial": 70359, "initial work": 77064, "efforts dedicated": 46897, "methods considering": 101398, "considering existing": 29713, "methods numerous": 101687, "novel sequential": 114687, "features key": 57522, "llms fixing": 95282, "llms allow": 94387, "bestperforming baseline": 17775, "mechanisms respect": 100053, "sparsification attention": 153756, "matrices present": 99632, "style models": 157758, "degradation quality": 37990, "theoretical explanation": 166029, "common type": 26208, "findings develop": 58660, "type algorithm": 170293, "works make": 179472, "prompting designed": 130897, "relevant past": 139632, "problems approach": 128456, "problem method": 128323, "method presents": 101031, "problem offering": 128340, "feedback research": 57778, "largescale empirical": 89301, "research rapid": 142029, "research manuscripts": 141902, "llmgenerated feedback": 94200, "feedback systematically": 57805, "gap created": 62633, "findings llmgenerated": 58727, "feedback help": 57701, "researchers identify": 142220, "september 2023": 148715, "generation validation": 65249, "generator validator": 65633, "addition improving": 4871, "interpretable transparent": 79697, "tools current": 167134, "methods difficult": 101444, "tools analyze": 167099, "api interface": 10157, "llms readily": 96297, "behavior example": 16589, "access stateoftheart": 2910, "transparent trustworthy": 169603, "researchers engineers": 142206, "transparency efficiency": 169577, "driving demand": 45006, "identification experiments": 71791, "researchers information": 142225, "identify issues": 71907, "incorporates user": 75077, "pose potential": 124165, "pitfalls associated": 123124, "innovative evaluation": 77168, "results underline": 143881, "consequences llms": 29528, "central limit": 21343, "models statistical": 109228, "preference pairs": 126021, "pairs multiple": 118600, "varying strengths": 176306, "slic dpo": 152214, "baselines dpo": 16311, "explore data": 55178, "improves alignment": 73973, "finally scale": 58521, "experiments train": 54501, "gpt4 outputs": 67102, "weights large": 178116, "training allowed": 168157, "effect does": 45653, "quantifiable metrics": 134304, "complexity contemporary": 27663, "environments knowledge": 50086, "model emerges": 103521, "solution dilemma": 152919, "dilemma paper": 42310, "critical determinants": 33479, "delicate balance": 38055, "technique optimizing": 163789, "paper exploit": 118901, "writing skills": 179754, "llm crafts": 93569, "answers corresponding": 10006, "learns follow": 91178, "evaluation specifically": 51867, "winning rate": 178536, "popularity impressive": 124090, "gpt3 current": 66670, "adaptation results": 4659, "framework automated": 60968, "cuttingedge technologies": 34449, "variables variables": 175602, "focus summarizing": 60062, "tool summarize": 167039, "aims determine": 7596, "research restricted": 142050, "english lowresource": 49077, "baseline evaluation": 16209, "results considering": 143257, "architecture models": 12191, "mbert mt5": 99716, "domain potential": 44245, "capture contextual": 20641, "language effectively": 83275, "effectively evaluation": 45991, "provided baseline": 133039, "robust controllable": 145252, "emerged crucial": 47345, "process harnessing": 128854, "approach instruction": 11309, "structured nature": 156656, "enhances generalization": 49410, "robustness minimizing": 145405, "benchmarks experimental": 17240, "adaptability robustness": 4583, "new generative": 113209, "medicine models": 100244, "receive attention": 137291, "computational energy": 28362, "developed meta": 40888, "works adopted": 179420, "experimental framework": 53949, "gradientbased learning": 67405, "functions limitations": 61915, "implementing learning": 72883, "algorithms ability": 7896, "furthermore remains": 62154, "insights derived": 77539, "questions demonstrating": 135097, "performance deteriorates": 121380, "additionally certain": 5029, "uniquely identifies": 171864, "interestingly results": 79413, "implement distinct": 72818, "llms getting": 95403, "popular recently": 124053, "context tasks": 30935, "importantly demonstrate": 73220, "model retrievalaugmented": 104480, "general insights": 62959, "insights choice": 77525, "llm practitioners": 93896, "models agents": 105313, "ability called": 2085, "existing question": 53545, "questions make": 135188, "use inferences": 172681, "actions propose": 4387, "identifying implicit": 72002, "reason potential": 136579, "potential actions": 124549, "choose action": 23723, "outperforming methods": 117683, "gpt4 exhibited": 66997, "services paper": 149086, "save cost": 146190, "questions addressed": 135029, "llm challenging": 93528, "question difficulty": 134859, "consistency checking": 29753, "including leveraging": 74591, "datasets gpt35turbo": 36898, "prediction fundamental": 125800, "methods predominantly": 101718, "inspired generative": 77723, "enabling comprehend": 48280, "target variables": 161121, "baseline best": 16198, "best neural": 17709, "advantage compared": 6103, "applications systematic": 10700, "risk propose": 144961, "llms risks": 96471, "learning personalized": 90821, "results objective": 143639, "performance openended": 121876, "repurposing existing": 141040, "develop personalized": 40819, "pairwise preference": 118645, "content hallucinations": 30516, "data encompasses": 34972, "process initial": 128876, "llm target": 94042, "generate draft": 63471, "task query": 161670, "proposal combines": 131689, "hallucinatory content": 68466, "chinese legal": 23640, "llms presenting": 96170, "includes multiple": 74377, "input models": 77290, "relies quality": 139807, "significantly degrade": 150973, "degrade performance": 37995, "effective results": 45874, "prove convergence": 132617, "convergence algorithm": 31747, "comparison benchmarks": 27025, "promptbased incontext": 130768, "refining text": 138787, "summarization work": 158898, "controllable approach": 31613, "scheme designed": 146784, "solutions enhance": 153013, "llms analogous": 94392, "related input": 139173, "reusable solutions": 144306, "historical user": 70212, "techniques online": 163975, "paradigm bridges": 119435, "framework benefit": 60988, "recommendation platform": 138221, "produce estimated": 129398, "novel online": 114620, "tree algorithm": 169656, "empowered pretrained": 48005, "extends capabilities": 55687, "ai challenges": 6905, "assumptions nature": 13569, "knowledge exhibited": 81963, "discuss ways": 42956, "llms recover": 96354, "retrieval plays": 144111, "processing pipelines": 129276, "contrastive losses": 31376, "requires intricate": 141395, "directly optimize": 42577, "decision quality": 37382, "pipeline address": 123032, "principled method": 127848, "decision systems": 37386, "reliance complex": 139775, "downstream decisionmaking": 44714, "datasets employed": 36813, "broadly used": 19234, "trained nearly": 168021, "biasvariance tradeoff": 18329, "tool llm": 167006, "way code": 177784, "models embeddings": 106070, "entities concepts": 49836, "interpretation downstream": 79704, "transforming abstract": 169379, "exploration complex": 55058, "platform evaluating": 123386, "education law": 45556, "prompts subsequently": 131490, "assessment criteria": 13222, "value content": 175473, "hidden patterns": 69330, "progress automated": 129945, "performance graph": 121610, "encoding method": 48512, "graph task": 67578, "performance size": 122076, "performance coupled": 121346, "capabilities work": 20263, "gap model": 62680, "applications comprehensive": 10455, "methods critical": 101413, "help accelerate": 69076, "hardware systems": 68699, "recently available": 137839, "accelerators gpus": 2815, "characteristics models": 22470, "token token": 166744, "multiple prior": 111004, "comprehensive description": 27992, "components results": 27777, "task interactive": 161485, "significant correlation": 150671, "speech contextual": 154394, "highquality labels": 70050, "gnns llms": 66141, "annotate small": 9440, "selection comprehensive": 147840, "cost dollar": 32665, "evaluations limited": 51995, "content semantics": 30617, "use combination": 172555, "offers stepbystep": 115851, "effective problems": 45847, "multistep problems": 111170, "problems later": 128551, "suggest reasoning": 158585, "represented graph": 140953, "prompting struggles": 131092, "present reasoning": 126431, "opensourced llama": 116699, "significant average": 150620, "cot based": 32857, "remarkable average": 140145, "effectively build": 45954, "challenge hallucination": 21650, "correctness challenging": 32482, "challenging introduce": 22178, "introduce uncertainty": 80136, "involves finetuning": 80733, "dataset aim": 36105, "answers high": 10033, "logit output": 97418, "improved responses": 73717, "approach equip": 11188, "knowledge behaviors": 81792, "distinct facets": 43220, "adaptability approach": 4571, "solution aligning": 152894, "consequently achieving": 29534, "llm maintains": 93820, "performance ensuring": 121460, "topological structures": 167392, "applying graph": 10896, "learning joint": 90596, "relation detection": 139238, "learning step": 91024, "particularly resourceconstrained": 120253, "methods costeffective": 101409, "learns optimal": 91189, "decisions training": 37482, "collaborative prompt": 25626, "original performance": 117366, "continues challenge": 31218, "approach instead": 11308, "llm interactive": 93775, "related query": 139202, "community performance": 26504, "exploring reasoning": 55502, "model final": 103653, "answer additionally": 9674, "path selection": 120433, "reducing task": 138597, "layer attribute": 89626, "efficiently reduce": 46810, "additional treatments": 5016, "share insights": 149796, "tasks regarding": 163110, "time understanding": 166523, "research temporal": 142114, "sensitive factors": 148425, "preliminary investigation": 126133, "prompts leveraging": 131360, "tools approaches": 167103, "oriented tasks": 117304, "question rises": 134936, "test text": 164647, "fewshot example": 57903, "text conduct": 164950, "llms renowned": 96398, "present challenge": 126241, "challenge comes": 21601, "stands contrast": 154928, "benchmarks demonstrates": 17215, "currently topic": 34341, "work observe": 179138, "performance base": 121184, "emerged dominant": 47348, "understanding prediction": 171413, "exhibit prediction": 53085, "focus comprehension": 59961, "scale machine": 146311, "time frame": 166407, "requires use": 141465, "continue increase": 31199, "cost functions": 32680, "resources research": 142484, "encoderdecoder llms": 48460, "embeddings custom": 47223, "used classical": 172994, "applications termed": 10701, "targeted tasks": 161141, "contain different": 30293, "code need": 25029, "stateoftheart generalpurpose": 155147, "challenging generate": 22164, "detailed prompts": 40309, "llms meet": 95878, "argue leveraging": 12410, "helps build": 69238, "integrate generated": 78487, "gpt3 assess": 66644, "order model": 117224, "role model": 145512, "capability natural": 20350, "linguistic intelligence": 93038, "corresponding evaluation": 32583, "shift general": 149913, "need trustworthy": 112416, "reliable systems": 139755, "systems argue": 160248, "goal review": 66197, "evaluating alignment": 51262, "email writing": 47125, "task distribution": 161332, "margin provide": 99187, "variety resources": 175758, "resources public": 142474, "methods prospects": 101741, "queries code": 134457, "direction field": 42435, "details evaluation": 40331, "analyze llm": 9311, "correlation chatgpt": 32534, "learning programs": 90865, "information exploiting": 76409, "accuracy bert": 3160, "roberta large": 145154, "demonstrating practical": 38948, "instead individual": 77880, "individual documents": 75713, "combination semantic": 25843, "visualization topic": 177359, "finding promising": 58617, "issues scale": 81059, "tokens large": 166832, "structural aspects": 156509, "aspects models": 12955, "solve introduce": 153123, "model add": 103074, "embeddings model": 47257, "notable accuracy": 114211, "framework encompassing": 61127, "encompassing multiple": 48554, "levels information": 91542, "information underlying": 76821, "demonstrate llmgenerated": 38409, "llmgenerated explanations": 94199, "explanations perform": 54887, "average datasets": 15277, "downstream application": 44698, "task adopt": 161174, "effectively large": 46037, "pushed boundaries": 133801, "critical gap": 33499, "llms proficiently": 96212, "performance fundamental": 121546, "approach synergistically": 11585, "integrates graph": 78556, "llms synergy": 96747, "promise learning": 130185, "feedback train": 57809, "training reduce": 168682, "consumption communication": 30279, "algorithm improves": 7818, "class descriptions": 23868, "carefully crafting": 20801, "prompted descriptions": 130812, "form classification": 60444, "classification prompt": 24058, "trained significantly": 168070, "higher stateoftheart": 69638, "concepts principles": 28681, "specific details": 153972, "details using": 40342, "path solution": 120434, "observe substantial": 115396, "reasoningintensive tasks": 137245, "including stem": 74736, "llms deeper": 94795, "showing large": 150172, "gpt4 useful": 67210, "cost demonstrate": 32663, "challenges managing": 21955, "called selective": 19670, "redundancy input": 138629, "make input": 98556, "used specifically": 173238, "specifically achieve": 154131, "indicating method": 75656, "balance efficiency": 15496, "generation responses": 65048, "typically represented": 170511, "realistic human": 136292, "events agent": 52105, "using explicit": 174185, "generation retrieves": 65057, "simple facts": 151454, "methods main": 101652, "papers selected": 119407, "questions clearly": 135062, "key functionalities": 81509, "task shown": 161725, "shown accurately": 150206, "accurately model": 3549, "specific attention": 153940, "humans hope": 71401, "crossmodal generative": 33684, "methodology leverages": 101244, "algorithms boost": 7905, "bridge large": 19068, "essential steps": 50636, "assigns unique": 13334, "generated token": 64027, "works suffer": 179507, "semantic richness": 148212, "introduce specialized": 80109, "relations recent": 139307, "completion large": 27329, "services research": 149089, "research llmbased": 141892, "ignores important": 72076, "llms acquiring": 94330, "relations kg": 139296, "embeddings textual": 47290, "textual space": 165953, "prefix input": 126096, "analysis comparing": 8858, "answer current": 9696, "methods simply": 101829, "general prompts": 63022, "rely predefined": 139876, "corresponding data": 32574, "specified target": 154336, "scratch work": 147231, "provides compelling": 133116, "far costeffective": 57214, "learning aspect": 90231, "ability instructionfollowing": 2230, "capabilities example": 19880, "llama2chat 13b": 93387, "tasks inherently": 162603, "motivated introduce": 110181, "fail recover": 56975, "accuracy especially": 3222, "approaches models": 11847, "llm asked": 93476, "decoding steps": 37602, "strategies introduce": 156019, "inference calls": 75970, "propose costeffective": 131769, "alternative diverse": 8554, "generation budget": 64458, "advances stateoftheart": 6067, "planning benchmarks": 123252, "previously reported": 127742, "paradigm understanding": 119523, "numerical vectors": 115018, "model temporal": 104730, "layers predictive": 89679, "embeddings different": 47227, "use linear": 172734, "linear encoding": 92958, "semantic areas": 148103, "efforts focus": 46915, "powerful potential": 125322, "adopt efficient": 5574, "capability gap": 20300, "continually update": 31182, "using abundant": 173954, "given llm": 65932, "query distribution": 134576, "distribution real": 43384, "distillation evaluate": 43145, "reduction adaptive": 138606, "adopts fixed": 5662, "gating network": 62817, "extraordinary ability": 56401, "capability machines": 20343, "cues target": 33931, "limitation study": 92525, "enhance feasibility": 49198, "using input": 174327, "llms guide": 95460, "problem research": 128384, "series analyses": 148902, "data community": 34798, "topic shifts": 167337, "solution designed": 152917, "highquality instructiontuning": 70044, "conversations specifically": 31963, "start training": 154961, "instructions utilize": 78372, "engage multiturn": 48826, "resulting collection": 143094, "subsequently employed": 157972, "critical metrics": 33522, "number turns": 114975, "performance 13b": 121106, "13b opensource": 367, "multiturn capabilities": 111264, "based llama213b": 15928, "crossdomain data": 33623, "general web": 63067, "successes generative": 158325, "comprising texts": 28264, "domains dataset": 44380, "containing highquality": 30336, "trained crossdomain": 167887, "considerable efforts": 29615, "direct instruction": 42387, "harness potential": 68794, "extensive range": 55940, "capabilities essential": 19875, "augment large": 14246, "stemming inherent": 155587, "alignment action": 8117, "lack required": 82996, "hindering performance": 70151, "supports diverse": 159394, "aim capture": 7439, "distinct semantic": 43252, "mutual interference": 111344, "sampling optimization": 146108, "optimization strategies": 117044, "remarkable enhancements": 140195, "llms surpassing": 96741, "systems closer": 160288, "especially llms": 50502, "models selecting": 109064, "llms ignited": 95533, "domain conventional": 44118, "rulebased models": 145702, "question remains": 134932, "enormous data": 49606, "temporal logical": 164268, "look llms": 97612, "abilities capture": 1882, "sentences convey": 148570, "vary llms": 176271, "does synthetic": 44035, "efficient natural": 46682, "drive models": 44975, "limitations risk": 92662, "conclude emphasizing": 28867, "future trajectories": 62393, "harnessing synthetic": 68842, "works study": 179506, "considering worstcase": 29739, "predicts best": 125967, "best choice": 17664, "method gives": 100892, "solution extensive": 152933, "propose transform": 132177, "learns small": 91194, "freezing pretrained": 61589, "training lowrank": 168562, "finetuning gpt": 59283, "languages scarcity": 87125, "involves substantial": 80764, "pairs zeroshot": 118635, "following approach": 60251, "approach studies": 11571, "simply prompting": 151619, "models planning": 108514, "generate detailed": 63458, "corpus finally": 32307, "leverage hierarchical": 91602, "efficacy models": 46400, "models hinges": 106617, "llms assimilate": 94436, "integrate knowledge": 78491, "provide advantages": 132671, "hypothesis finetuning": 71618, "generation hallucination": 64709, "words multiple": 178742, "guarantee better": 68108, "task findings": 161397, "datasets accessible": 36631, "allowing quickly": 8389, "nonetheless current": 114050, "optimal weights": 116963, "discretize continuous": 42827, "demonstrations different": 38997, "study finetuning": 157369, "furthermore evaluations": 62062, "systems prone": 160558, "responses factually": 142793, "work identified": 179026, "methods efficiently": 101467, "evaluations including": 51985, "metrics experimental": 102062, "efficiently enhance": 46774, "efficacy improving": 46383, "seen rise": 147703, "methods conducted": 101394, "variety metrics": 175727, "rated human": 136027, "annotators using": 9648, "baselines perform": 16358, "according target": 3057, "onpolicy data": 116156, "using greedy": 174282, "achieve finegrained": 3645, "scenarios models": 146652, "successfully integrated": 158387, "issues text": 81064, "hallucination lack": 68385, "dedicated dataset": 37674, "currently benchmark": 34311, "generation perform": 64921, "costs work": 32851, "responses language": 142835, "provided user": 133093, "measuring correlation": 99945, "correlation gpt4": 32539, "shows similar": 150478, "preference datasets": 126006, "datasets highlighting": 36909, "leverage transformerbased": 91676, "model investigate": 103902, "directly work": 42616, "serve step": 149008, "design conduct": 39582, "comparing performances": 27003, "hold practice": 70251, "considerably different": 29643, "different practical": 41915, "weights used": 178133, "setting conduct": 149433, "modify output": 109886, "distribution language": 43366, "framework simultaneously": 61419, "regimes code": 138919, "modifies original": 109883, "including available": 74427, "consistent significant": 29839, "thousands words": 166262, "problem automatic": 128188, "generate single": 63716, "seconds average": 147530, "finally obtain": 58498, "aspects story": 12976, "knowledge result": 82374, "planning understanding": 123334, "understanding incorporating": 171296, "generation allows": 64415, "extension various": 55704, "sources study": 153534, "t5 chatgpt": 160699, "differentiate subtle": 42107, "responses resulting": 142907, "suboptimal quality": 157915, "generation supervision": 65119, "incorporates various": 75078, "systems adapt": 160228, "generates proxy": 64096, "translates user": 169423, "efficient interaction": 46647, "terms helpfulness": 164430, "supported comprehensive": 159358, "code implementations": 24944, "propose humanintheloop": 131862, "translation results": 169511, "effectiveness pipeline": 46258, "results following": 143421, "observed domains": 115404, "opening potential": 116529, "potential path": 124894, "approaches reducing": 11884, "llms costly": 94747, "volumes model": 177544, "data close": 34760, "information gain": 76465, "leveraging demonstrations": 91832, "new downstream": 113158, "task conditions": 161267, "paradigm suffers": 119515, "factors input": 56807, "demonstrate factors": 38336, "ability data": 2119, "identify presence": 71942, "presence template": 126215, "lead unfair": 89786, "strategy experimental": 156144, "progress pretrained": 130009, "studies predominantly": 157049, "predominantly concentrate": 125979, "levels respectively": 91553, "form finetuned": 60455, "replacing entities": 140474, "effective content": 45716, "content preserving": 30578, "preserving generation": 126687, "text highlights": 165221, "short practical": 149983, "quality gpt4": 134154, "distilled dataset": 43175, "downstream use": 44849, "encourage investigation": 48597, "investigation area": 80625, "capabilities open": 20084, "surpassing chatgpt": 159510, "evaluation programs": 51789, "research learning": 141886, "gained enormous": 62460, "generation extremely": 64649, "inherent issues": 76956, "reasoning different": 136812, "enable generate": 48088, "scenarios based": 146540, "llms logic": 95818, "active exploration": 4429, "enhanced diversity": 49332, "address deficiency": 5216, "deficiency propose": 37926, "domain use": 44320, "analysis validates": 9231, "validates effectiveness": 175351, "utilizing domainspecific": 175181, "data enhancement": 34979, "coverage especially": 33054, "domainspecific contexts": 44566, "believable human": 16766, "human proxies": 70991, "dialogue human": 41482, "users deeply": 173615, "deeply explored": 37857, "systems agentbased": 160235, "agents decisions": 6576, "decisions realworld": 37477, "realworld interaction": 136467, "agents prompted": 6698, "subsequent interactions": 157949, "exhibit diverse": 53039, "agents demonstrate": 6577, "clickthrough rate": 24299, "suffers problem": 158471, "potential pretrained": 124914, "converting input": 32000, "generally fail": 63308, "collaborative information": 25619, "brought huge": 19244, "inference inefficiency": 76034, "inefficiency issue": 75900, "modelagnostic framework": 104919, "recover masked": 138321, "model collaborative": 103300, "efficient local": 46667, "lead practical": 89769, "execution provide": 52963, "range basic": 135588, "models suboptimal": 109270, "tasks likely": 162735, "objects work": 115310, "data programming": 35562, "aims classify": 7588, "classify relationships": 24213, "extraction recent": 56344, "expanded scope": 53693, "humanannotated training": 71132, "extraction limited": 56314, "directly probing": 42587, "models document": 106013, "novel weaklysupervised": 114752, "promptingbased techniques": 131132, "programming furthermore": 129821, "prompting data": 130892, "achieves improved": 4027, "problem experimental": 128249, "processing sequential": 129294, "applicationspecific integrated": 10737, "data locality": 35328, "models 14": 105154, "gpt4 greatly": 67039, "performance artificial": 121167, "reasoning remain": 137097, "combined prompting": 25921, "prompting enhance": 130919, "impressive effectiveness": 73289, "ranking study": 135825, "study begins": 157183, "begins thoroughly": 16544, "like model": 92357, "procedure significantly": 128709, "considerably reduces": 29649, "high zeroshot": 69560, "performances wide": 122351, "key issue": 81528, "method exhibit": 100844, "method compatible": 100747, "llms importance": 95548, "importance instruction": 73042, "specifically generation": 154212, "taxonomy classic": 163576, "learning second": 90969, "utilizing information": 175198, "consistently observed": 29890, "sampling probabilities": 146110, "involve retraining": 80693, "minimal computational": 102319, "tailored target": 160942, "llms control": 94734, "control input": 31551, "input provide": 77322, "output ensure": 117922, "evaluation exhibits": 51571, "model comprehend": 103325, "preliminary test": 126151, "unexplored bridge": 171626, "range skills": 135696, "assessed models": 13145, "experts previous": 54673, "representation problem": 140732, "original intention": 117346, "detection agent": 40438, "customer services": 34386, "utterances existing": 175257, "detection approaches": 40448, "replies based": 140507, "intent paper": 79018, "selfsupervised framework": 148054, "retrieval selecting": 144133, "graphs recently": 67649, "capabilities information": 19961, "information labels": 76543, "harnesses llms": 68809, "scenarios instance": 146625, "achieves 76": 3943, "resourceintensive training": 142413, "approaches tailored": 11923, "images embeddings": 72416, "dataset extensive": 36291, "substantiate efficacy": 158149, "remains ongoing": 140048, "fact optimal": 56740, "accompanied corresponding": 2994, "helps substantially": 69261, "todays ai": 166670, "lefttoright generation": 91274, "adhering specific": 5529, "beta distribution": 17785, "scratch finetuned": 147219, "approaches strong": 11914, "powerful capability": 125266, "exploring llm": 55487, "focus chatgpt": 59954, "intermediate thinking": 79535, "provides model": 133179, "scenarios addition": 146522, "optimization directions": 116988, "profound impact": 129710, "software failures": 152818, "challenging result": 22263, "design key": 39666, "offline metrics": 115878, "llmempowered generative": 94187, "agents equipped": 6599, "modules specifically": 110003, "memory modules": 100433, "variety behaviors": 175694, "actions agent": 4363, "agent interacts": 6457, "aiming explore": 7550, "systems extensive": 160376, "perform named": 120988, "great accuracy": 67680, "retrieval baselines": 144017, "task predict": 161632, "tagging tasks": 160898, "achieves zeroshot": 4126, "intents paper": 79042, "chatgpt overall": 23168, "consistent advantages": 29803, "analytical experiments": 9253, "directions address": 42455, "vs llama": 177602, "vs chatgpt": 177597, "emerged claiming": 47343, "gpt4 various": 67212, "valuable contributions": 175409, "covering zeroshot": 33096, "gpt35 highlighting": 66828, "extensive parameter": 55929, "insight introduce": 77487, "efficiency employ": 46449, "sampling incontext": 146098, "tasks 12": 161865, "method greatly": 100895, "prompt configurations": 130402, "pretraining enhanced": 127316, "enhanced chatgpt": 49323, "involves wide": 80774, "range scenarios": 135689, "domainaware pretraining": 44333, "hallucinate unintended": 68336, "unintended text": 171804, "reason recall": 136581, "benchmark dubbed": 16936, "current editing": 34109, "proposed set": 132433, "designed experiments": 39875, "differences using": 41642, "inspired realworld": 77752, "data adversarial": 34605, "retrieval content": 144026, "generation leveraging": 64791, "remarkable promise": 140280, "experiment performed": 53900, "performed different": 122364, "evaluated generated": 51178, "bilingual evaluation": 18415, "evaluation understudy": 51909, "understudy bleu": 171561, "evaluation rouge": 51840, "applications aimed": 10420, "demonstrated incredible": 38716, "humanmodel interactions": 71312, "instructions output": 78318, "working efficiency": 179395, "realworld demands": 136440, "interaction generation": 79126, "generation complicated": 64518, "fulfill diverse": 61710, "editing data": 45453, "parameters code": 119724, "detection widely": 40658, "span detection": 153650, "capabilities exhibiting": 19882, "errors hallucinations": 50362, "quality samples": 134260, "models intricate": 106811, "strategies zeroshot": 156094, "challenge acquiring": 21577, "translating original": 169432, "modules ensure": 109978, "ensure effectiveness": 49682, "advancements extended": 5883, "capabilities handle": 19934, "utilization input": 174999, "initial final": 77028, "input bias": 77211, "summarization analysis": 158799, "linear function": 92959, "exhibit desired": 53036, "setting observed": 149484, "claims impressive": 23840, "benchmarks llms": 17296, "notoriously challenging": 114334, "specifically consider": 154157, "trends llm": 169721, "webscale data": 178040, "tasks reduced": 163106, "signal predicting": 150520, "present incontext": 126335, "explicitly encouraging": 54970, "similarity document": 151342, "documents efficient": 43904, "including incontext": 74567, "remains need": 140043, "impressive f1": 73292, "prevalent growing": 127514, "does add": 43957, "methods typical": 101889, "learning proven": 90880, "representations train": 140896, "unfortunately acquiring": 171660, "highquality labeled": 70048, "leading researchers": 89857, "researchers focus": 142218, "incorporate generated": 75017, "framework learning": 61271, "representation llms": 140721, "llms contextaware": 94721, "finetuning visual": 59608, "new objects": 113302, "ability instead": 2227, "instead perform": 77891, "leverages frozen": 91724, "pretrained feature": 126805, "labels test": 82831, "particularly domain": 120173, "tasks conventional": 162131, "training enable": 168415, "textonly corpora": 165661, "achieves relatively": 4061, "investigate automatic": 80375, "analysis causes": 8840, "single user": 151874, "seen large": 147695, "costly computational": 32781, "context emerging": 30738, "emerging need": 47525, "unexplored previous": 171634, "sparsity information": 153767, "violation rate": 176847, "average normalized": 15299, "relying large": 139901, "llms favors": 95252, "seek represent": 147660, "adoption scientific": 5655, "discuss llms": 42911, "conclude current": 28860, "llms hardly": 95470, "advancements understanding": 5970, "largely untouched": 89191, "work marks": 179121, "text specific": 165478, "techniques ensembling": 163885, "study multiple": 157496, "samples instruction": 146029, "strong impact": 156394, "designed large": 39904, "layer order": 89643, "matrix adaptation": 99634, "single pair": 151845, "selfreflection despite": 148038, "responses containing": 142755, "containing factual": 30334, "sole reliance": 152863, "knowledge encapsulate": 81927, "adaptively retrieves": 4793, "generations using": 65289, "relative models": 139374, "motivated propose": 110187, "confident results": 29368, "results stage": 143810, "content specific": 30622, "users personal": 173732, "traditional automated": 167594, "primarily measure": 127785, "costly obtain": 32795, "method distills": 100795, "design carefully": 39565, "carefully controlled": 20798, "compare accuracy": 26659, "judgments llms": 81335, "metric compared": 101961, "generation superior": 65118, "summarization foundation": 158834, "issue previous": 80945, "work evaluates": 178940, "tasks indomain": 162598, "proposes zeroshot": 132493, "based intuition": 15889, "text consistent": 164954, "probability predicting": 128121, "chatgpt inconsistency": 23064, "llms expanded": 95175, "output control": 117908, "llms refined": 96361, "misleading llm": 102509, "oracle llm": 117152, "instructions responses": 78346, "variety artificial": 175690, "approaches capabilities": 11709, "clear definitions": 24262, "definitions systematic": 37968, "end article": 48637, "offers exhaustive": 115800, "huge differences": 70515, "platforms various": 123419, "integrate tasks": 78505, "automatically analyze": 14764, "tools solutions": 167255, "requirements specifically": 141320, "empowered llms": 48004, "tools automatically": 167109, "tools enabling": 167150, "enabling concentrate": 48282, "edit models": 45431, "question recently": 134928, "inference linguistic": 76047, "capabilities embodied": 19867, "concept erasure": 28594, "systemic bias": 160214, "bias generated": 18125, "text attribution": 164844, "deployment process": 39296, "limiting use": 92902, "editing critical": 45452, "performance areas": 121161, "hinders applicability": 70155, "learned interaction": 90100, "efficient decoding": 46593, "associated models": 13500, "inference tokens": 76128, "tokens challenging": 166789, "multiple future": 110927, "using predicted": 174589, "predicted values": 125731, "terms latency": 164434, "accuracy demonstrate": 3196, "existing architectures": 53280, "subquadratically sequence": 157930, "scales subquadratically": 146380, "gptstyle language": 67322, "matrices based": 99630, "polynomial evaluation": 123922, "possible match": 124440, "approach targeted": 11597, "dynamic interaction": 45135, "efficient requires": 46705, "specific incontext": 154011, "systems utilizing": 160667, "achieved combining": 3796, "suggest strong": 158588, "reasoning inferring": 136919, "llms highlevel": 95489, "emulating humanlike": 48053, "features inherent": 57514, "human logic": 70921, "drive advancements": 44973, "systems fall": 160385, "generate iteratively": 63587, "interface uses": 79448, "requirements ensure": 141290, "comes natural": 26018, "generating incorrect": 64256, "feedback existing": 57675, "single generic": 151805, "category experimental": 21151, "document parsing": 43842, "developed automatically": 40859, "automatically convert": 14781, "layout analysis": 89701, "capabilities build": 19804, "applications related": 10664, "chatgpt construct": 22809, "accomplish complicated": 3005, "gpt3 natural": 66730, "input lm": 77281, "parameters enables": 119746, "enables lm": 48215, "manner despite": 98981, "processing study": 129305, "verify feasibility": 176531, "approaches designed": 11729, "particular computer": 120060, "reliable efficient": 139720, "response gap": 142646, "enhanced reliability": 49364, "saving time": 146197, "use tabular": 172897, "advantage avoiding": 6102, "tasks prevent": 162988, "inherent limitation": 76962, "nlp context": 113717, "context tabular": 30931, "comparing current": 26979, "simplest widely": 151568, "manual labels": 99052, "guarantee optimality": 68113, "use manual": 172761, "induce model": 75823, "words compared": 178719, "using syntactic": 174774, "reveal high": 144340, "facilitates zeroshot": 56694, "generalization concept": 63158, "safetycritical domains": 145905, "simulate interventions": 151642, "appropriate prediction": 11983, "using auxiliary": 173993, "methodology use": 101256, "conditional probability": 28963, "text extensive": 165075, "invariant learning": 80324, "algorithms model": 7951, "firstofitskind largescale": 59661, "pairs diverse": 118565, "chatgpt example": 22906, "85 accuracy": 1708, "advances automatic": 5989, "problem specifically": 128411, "nodes improve": 113970, "robustness selfsupervised": 145434, "scenarios inspired": 146623, "framework evaluated": 61142, "evaluated supervised": 51211, "supervised zeroshot": 159187, "model expected": 103594, "greater capacity": 67754, "propose promptguided": 132081, "including domain": 74500, "answering study": 9962, "intelligent questionanswering": 78955, "answering instruction": 9878, "llm hallucination": 93730, "hallucination outdated": 68398, "readily accessible": 136169, "persistent issues": 122533, "variety practical": 175744, "benchmarks particular": 17323, "5064 improvement": 1326, "models issues": 106826, "issues increasingly": 81014, "models proportional": 108703, "accordingly introduce": 3067, "dense language": 39088, "compared stateofart": 26930, "datasets sst2": 37131, "sectors including": 147541, "including database": 74486, "names used": 111434, "humanannotated evaluation": 71126, "names yielding": 111435, "identify promising": 71944, "setting analyze": 149423, "experiments support": 54486, "offer way": 115718, "languages supported": 87139, "models start": 109225, "generation named": 64869, "observe experiments": 115369, "communities speak": 26445, "framework capture": 60998, "manner validate": 99015, "understanding subtasks": 171493, "comparing strong": 27017, "improves performances": 74056, "challenges provide": 22031, "opensource work": 116686, "rank documents": 135773, "focuses investigating": 60147, "solely pretrained": 152869, "supervised instruction": 159131, "ranking ability": 135794, "hinder effectiveness": 70132, "process understand": 129021, "understand general": 171009, "model type": 104815, "abilities interactive": 1933, "diverse temporal": 43682, "chatbots emerged": 22614, "opendomain chatbot": 116445, "singular focus": 151912, "potential need": 124880, "conversation settings": 31806, "new 1m": 113048, "high human": 69466, "tasks expectations": 162354, "experiments openai": 54385, "sequence completion": 148730, "higher predicted": 69620, "robustness checks": 145355, "capability specifically": 20376, "specifically training": 154296, "despite models": 40159, "nontrivial probability": 114154, "using test": 174794, "distribution probability": 43382, "multiple possible": 111001, "pairs proposed": 118609, "added benefits": 4810, "model clean": 103286, "input poses": 77307, "implementation generating": 72843, "input crucial": 77219, "dataset widely": 36617, "limited presence": 92820, "additionally llm": 5089, "datasets called": 36689, "integrity original": 78704, "evaluations lead": 51994, "llm performs": 93885, "lastly experiments": 89460, "potential advanced": 124557, "finding best": 58600, "inconsistencies llm": 74824, "distributions labels": 43425, "known issue": 82605, "possible combinations": 124407, "analyse results": 8746, "care settings": 20768, "interactions text": 79272, "tokens different": 166797, "input essential": 77235, "lack annotations": 82884, "necessary interactions": 112146, "informed decisionmaking": 76890, "multiple finetuned": 110918, "terms employed": 164411, "input compare": 77213, "based unsupervised": 16160, "introduce opendomain": 80081, "llms greater": 95450, "approaches suffer": 11920, "introduces automated": 80175, "concise intermediate": 28845, "intensive manual": 79002, "adopt stateoftheart": 5585, "impressive quality": 73364, "limited general": 92769, "hope serve": 70381, "texttosql generation": 165842, "generation ambiguity": 64417, "involve significant": 80694, "examples text": 52710, "including employing": 74505, "primary reason": 127818, "generation constrained": 64529, "little labeled": 93243, "synthesis leverage": 159953, "synthesize pseudo": 159995, "achieve data": 3620, "challenge data": 21614, "dataset suffers": 36564, "distribution gap": 43362, "validation dataset": 175359, "dataset real": 36494, "compared small": 26918, "finitestate decoding": 59636, "constraints large": 30094, "tendency hallucination": 164328, "constraints decoding": 30072, "invalid outputs": 80307, "stateoftheart automatic": 155083, "29 points": 909, "segmentation evaluation": 147736, "keeping pace": 81427, "summarisation text": 158789, "released gpt4": 139518, "outperforms popular": 117816, "using classic": 174050, "finally gpt4": 58472, "event information": 52081, "techniques particularly": 163984, "largely manual": 89159, "comprehensive intelligence": 28065, "intelligence reports": 78890, "generation prone": 64977, "information writing": 76851, "information gaps": 76469, "represents critical": 140978, "generation intelligence": 64752, "reports introduce": 140596, "approach augment": 11007, "targeted information": 161134, "analysis workflows": 9240, "data redundancy": 35631, "direct evidence": 42381, "label different": 82681, "produces valid": 129542, "directions improvement": 42481, "research claims": 141635, "information theoretic": 76807, "random ones": 135536, "train strong": 167835, "small human": 152297, "limitation approaches": 92495, "permissive licenses": 122489, "sizes propose": 152109, "main ideas": 98245, "make prompt": 98582, "ensembling multiple": 49661, "help select": 69179, "input instructions": 77267, "querying gpt4": 134650, "prompts avoiding": 131171, "avoiding need": 15359, "advise caution": 6272, "learning individualized": 90575, "sufficient task": 158498, "reduced leveraging": 138494, "enabling zeroshot": 48365, "prompting existing": 130927, "labels like": 82811, "better differentiate": 17848, "variants prompt": 175637, "levels experiments": 91537, "tasks encountered": 162298, "data storage": 35800, "method excels": 100843, "llms unseen": 96896, "contrast paper": 31318, "directly understand": 42605, "technique address": 163737, "work tackles": 179331, "available ones": 15169, "generate challenging": 63411, "challenging text": 22301, "text augmentations": 164850, "increases risk": 75289, "augmentations using": 14330, "gpt35turbo smaller": 66883, "classifiers like": 24189, "capabilities allowing": 19780, "challenges making": 21954, "overcoming challenges": 118317, "recognition retrieval": 138125, "informationseeking scenarios": 76858, "solved problem": 153176, "problem argue": 128186, "tackling increasingly": 160872, "types based": 170329, "setup novel": 149676, "zeroshot entity": 180161, "covering 500": 33072, "efforts devoted": 46905, "carry transferable": 20848, "challenging learn": 22191, "model users": 104845, "technical advances": 163684, "generate contextual": 63436, "tend hallucinate": 164308, "content conflicts": 30456, "likely correct": 92452, "benchmarks analysis": 17171, "reveals proposed": 144446, "generation hope": 64720, "similar reasoning": 151299, "evaluates gpt4": 51238, "models capturing": 105570, "process poses": 128939, "driving work": 45024, "minimizing number": 102395, "integration machine": 78677, "technical terms": 163728, "ultimately enhancing": 170584, "utilise large": 174931, "llms purposes": 96272, "purposes generating": 133769, "model mix": 104090, "iv finally": 81173, "reasoning mechanism": 136982, "mechanism paper": 100018, "reasoning architecture": 136674, "evaluation questions": 51814, "sentence generate": 148505, "dataset finegrained": 36307, "present spectrum": 126455, "norm adherence": 114174, "violation social": 176848, "task social": 161732, "generated chinese": 63817, "pipeline prompting": 123084, "assign semantic": 13318, "challenge known": 21665, "noise correction": 113976, "ensuring model": 49746, "maintains robustness": 98396, "types training": 170430, "annotated using": 9499, "information required": 76698, "domain conversational": 44119, "new valuable": 113491, "baselines serve": 16368, "reasoning physical": 137029, "constantly evolving": 30004, "based relative": 16069, "modeling time": 105109, "sentences experimental": 148576, "modeling longrange": 105039, "offers detailed": 115791, "english arabic": 49028, "various openended": 176088, "reveal variations": 144381, "sentence documentlevel": 148491, "recent parameterefficient": 137578, "building llms": 19428, "llms exceptional": 95129, "notably achieve": 114257, "ability resolve": 2355, "scenario involving": 146509, "available demonstrate": 15100, "human corrections": 70669, "number edits": 114857, "core linguistic": 32176, "difficult process": 42171, "deeply understand": 37860, "understand inherent": 171025, "intelligence emergence": 78810, "specific dimensions": 153974, "loss linguistic": 97680, "competence furthermore": 27121, "elevation models": 47031, "intelligence future": 78822, "ensuring accurate": 49724, "accurate tracking": 3501, "actions taskoriented": 4393, "providing useful": 133396, "directions designing": 42467, "including closedsource": 74456, "capabilities address": 19764, "concerns present": 28810, "opensource foundation": 116606, "utilizing novel": 175224, "object given": 115127, "unique advantages": 171820, "effectively eliminating": 45982, "data 900": 34562, "designed synthetic": 39954, "authoritative sources": 14431, "implicit gradient": 72978, "alignment bias": 8126, "processing requires": 129288, "unified platform": 171744, "popular methods": 124025, "operations comprehensive": 116776, "refers task": 138725, "design automated": 39553, "novel technical": 114711, "demonstrating extensive": 38935, "using llmguided": 174423, "discovery core": 42762, "challenge determining": 21622, "propagate downstream": 131595, "work initially": 179043, "complete graph": 27277, "causal effect": 21183, "topological order": 167389, "graph edges": 67517, "order llms": 117212, "techniques integrate": 163933, "llms established": 95096, "algorithms highlighting": 7929, "researchers consumers": 142187, "applying nlp": 10917, "mainly conducted": 98285, "external factors": 56050, "economic social": 45397, "including related": 74698, "onesizefitsall approach": 116039, "identifying possible": 72023, "possible pathways": 124447, "sampling generates": 146096, "tasks way": 163470, "way speed": 177877, "decoding use": 37607, "provide principled": 132933, "set candidates": 149148, "selection algorithm": 147830, "domain single": 44285, "methods textual": 101875, "metrics key": 102095, "robustness related": 145428, "pretrained heterogeneous": 126838, "natural choice": 111520, "classification social": 24096, "paradigm widely": 119532, "tasks gap": 162443, "gained pretraining": 62475, "potential adapting": 124550, "improve predictive": 73586, "class prompt": 23889, "tasks mirror": 162800, "aggregation mechanism": 6780, "tuning specific": 170125, "tasks subject": 163303, "subject extensive": 157830, "llms generalist": 95346, "tuning consistently": 169978, "task coverage": 161288, "limited investigation": 92787, "negatively affect": 112537, "curriculum language": 34350, "curriculum design": 34349, "training point": 168638, "obstacles propose": 115457, "sample loss": 145949, "main models": 98252, "strategy method": 156183, "importance recent": 73055, "rely heuristics": 139853, "approach twostage": 11619, "weights using": 178135, "model gets": 103746, "generalize outofdomain": 63268, "inherently lack": 76986, "empirical considerations": 47676, "questions demand": 135095, "false sense": 57173, "challenging stateoftheart": 22275, "finetuning learning": 59349, "freetext human": 61576, "feedback essential": 57670, "types known": 170374, "ai instead": 7046, "collecting annotating": 25708, "scratch recent": 147229, "impact including": 72663, "data response": 35665, "generation sota": 65095, "composition datasets": 27805, "types user": 170434, "size architecture": 151963, "accessibility test": 2935, "suite automatic": 158717, "better gauge": 17882, "gauge quality": 62823, "comparably stateoftheart": 26630, "range diversity": 135609, "available resource": 15198, "joint optimization": 81257, "map standard": 99132, "transformer produce": 169203, "claim comprehensive": 23821, "known challenging": 82588, "time introduce": 166424, "state features": 155001, "techniques effect": 163873, "optimize information": 117067, "information distribution": 76362, "llms apparently": 94408, "used dataset": 173019, "systems seen": 160602, "information associated": 76289, "challenges effectiveness": 21840, "effectiveness user": 46311, "attention challenges": 13851, "issues limitations": 81027, "input constraints": 77215, "effective implementation": 45777, "intricate semantic": 79864, "aspects user": 12981, "textual signals": 165949, "llms representation": 96408, "like training": 92421, "different sequences": 41989, "sequences inference": 148822, "work leveraging": 179104, "text distribution": 165028, "provides important": 133162, "important learning": 73152, "ondemand information": 115962, "systems align": 160239, "demands realworld": 38166, "desired content": 40043, "content associated": 30442, "generated training": 64031, "set building": 149144, "excellent generalization": 52792, "tasks direct": 162235, "domaininvariant representation": 44339, "distribution source": 43393, "domaininvariant features": 44337, "environments empirical": 50074, "create unified": 33241, "specialized attention": 153873, "theories models": 166064, "effects observed": 46341, "generating concise": 64170, "news events": 113561, "events challenging": 52107, "summary relevant": 158942, "merging existing": 100530, "utility score": 174976, "based vast": 16172, "indepth overview": 75542, "innovative taxonomy": 77192, "analyzing key": 9374, "datasets applications": 36653, "introduced accordingly": 80149, "accordingly finally": 3066, "regarding practicality": 138883, "directions advancement": 42457, "advancement field": 5838, "solver large": 153181, "intricate information": 79845, "evaluated mpc": 51192, "performance incorporation": 121663, "provides exhaustive": 133144, "applying generative": 10893, "increasingly effective": 75397, "work underscores": 179347, "underscores challenges": 170937, "responses generative": 142809, "flow matching": 59875, "generalpurpose generative": 63344, "speech directly": 154402, "adapted different": 4681, "synthesis work": 159978, "built generative": 19482, "nlg large": 113653, "intricate constraints": 79836, "challenging study": 22279, "constraints applied": 30062, "applied llms": 10783, "lexical structural": 91997, "types present": 170400, "questions including": 135162, "results illuminate": 143479, "generation codes": 64502, "attributed large": 14093, "introduce challenges": 79930, "challenges machine": 21952, "tools require": 167246, "lightweight userfriendly": 92188, "development design": 41083, "llm integrating": 93770, "diverse ml": 43575, "ml pipelines": 102791, "related processing": 139196, "ml algorithms": 102773, "code lines": 24982, "product title": 129583, "product attributes": 129567, "able summarize": 2563, "realworld ecommerce": 136447, "investigate novel": 80457, "experimentation language": 54111, "settings multiple": 149616, "significant roles": 150867, "applications usually": 10718, "abilities achieved": 1874, "consider single": 29591, "scenario mainstream": 146514, "key aim": 81458, "llm particular": 93872, "inject domain": 77100, "strategies llm": 156034, "designed demonstrate": 39845, "effectively complete": 45965, "rlhf techniques": 145103, "insights highlight": 77579, "role development": 145481, "findings future": 58673, "minimize data": 102373, "framework context": 61051, "lms compare": 97119, "offer general": 115655, "faster accurate": 57282, "parameters requiring": 119854, "present solution": 126453, "summarization study": 158879, "explores capabilities": 55385, "experiments employed": 54267, "instructions dialogue": 78240, "method time": 101145, "improving developer": 74129, "developer productivity": 40932, "languages received": 87107, "reports extensive": 140589, "second given": 147476, "language best": 83169, "crucial issue": 33814, "expensive infeasible": 53787, "framework steers": 61428, "knowledge extend": 81981, "particularly graph": 120201, "data dynamic": 34942, "unexplored literature": 171630, "llms spatialtemporal": 96651, "temporal spatial": 164286, "observations llms": 115343, "llms preliminary": 96161, "time span": 166506, "generation mechanism": 64819, "codes opensourced": 25311, "symbolic planning": 159820, "generation grounded": 64704, "excel processing": 52772, "modular interpretable": 109908, "addresses shortcomings": 5423, "symbolic planner": 159818, "state symbolic": 155021, "including improving": 74566, "enable endtoend": 48078, "models direct": 105980, "control method": 31562, "fewer 300": 57860, "enables effective": 48177, "controls text": 31675, "variation generation": 175640, "demos available": 39059, "convex learning": 32013, "used estimate": 173046, "outputs having": 118063, "functions loss": 61916, "outputs high": 118064, "improvement bleu": 73766, "target similarity": 161100, "similarity tuning": 151383, "tuning tst": 170137, "model similarity": 104580, "associated code": 13467, "language distribution": 83261, "generation examples": 64627, "code similarity": 25140, "efficiently select": 46819, "require endtoend": 141091, "expensive perform": 53797, "provide method": 132887, "process doesnt": 128796, "existing incontext": 53384, "simulation scenarios": 151717, "user making": 173452, "captures users": 20710, "interaction domainspecific": 79115, "code explore": 24831, "developments generative": 41280, "article critically": 12570, "aim highlight": 7462, "understanding stateoftheart": 171484, "meanings linguistic": 99810, "lightweight deep": 92172, "personalized generative": 122601, "modeling existing": 104999, "tackles issue": 160860, "stems observation": 155591, "recommendation address": 138190, "process generative": 128849, "efficiency code": 46427, "technique finetuning": 163772, "huge success": 70529, "remained unexplored": 139959, "lower threshold": 97844, "adapted target": 4694, "role statistical": 145536, "language serving": 86723, "using list": 174414, "gpt4 open": 67090, "ecosystem open": 45409, "analysis usually": 9227, "completeness paper": 27309, "opensource pipeline": 116663, "pipeline enables": 123050, "community perform": 26503, "increasing rapidly": 75352, "models indicates": 106751, "able gain": 2508, "accessible possible": 2961, "possible provide": 124452, "provide provable": 132936, "weights approach": 178097, "leverages fact": 91720, "demonstrate procedure": 38481, "small test": 152373, "audit popular": 14215, "little evidence": 93233, "evolutionary multiobjective": 52290, "studies recent": 157064, "considering crucial": 29706, "instruction quality": 78052, "generation evolutionary": 64624, "multiobjective optimization": 110821, "problem contrast": 128210, "llm simulate": 94002, "mutation crossover": 111330, "allowing llm": 8378, "highquality instructions": 70043, "random binary": 135516, "trained huge": 167939, "huge corpora": 70510, "precise nature": 125591, "patterns provides": 120558, "perception use": 120829, "random numbers": 135535, "offers flexibility": 115803, "accuracy expert": 3231, "structure settings": 156604, "identify primary": 71943, "outputs prone": 118108, "need measure": 112348, "using annotated": 173970, "associated task": 13512, "scientific conclusions": 146942, "correct ones": 32401, "levels data": 91533, "community effort": 26466, "exposed model": 55542, "social processes": 152650, "llms replacing": 96399, "concept knowledge": 28601, "used retrieval": 173218, "exist outside": 53239, "focus aspects": 59946, "certain automated": 21368, "like rouge": 92392, "unreliable measures": 172124, "summaries paper": 158775, "comprising human": 28260, "dimensions findings": 42335, "built powerful": 19499, "prompts hand": 131303, "generalize human": 63253, "intervention required": 79795, "lowlevel controllers": 97868, "step fully": 155638, "ask relevant": 12858, "reasoning guide": 136896, "cot process": 32878, "empirical data": 47677, "outperforms leading": 117795, "methods agent": 101294, "web research": 178015, "networks social": 112801, "allowing flexibility": 8368, "addition removal": 4904, "humanintheloop process": 71203, "minor errors": 102424, "various contextual": 175875, "enhance agents": 49148, "agents negotiation": 6672, "distributed parallel": 43333, "distributed learning": 43323, "seamlessly applied": 147296, "feedback offering": 57747, "improve complex": 73431, "llm simultaneously": 94004, "computationally prohibitive": 28427, "solution generation": 152943, "llm introduce": 93779, "gradient optimization": 67394, "blackbox guide": 18631, "lms diverse": 97128, "prompts lack": 131346, "approaches struggle": 11915, "complex personalized": 27514, "generating controllable": 64176, "attribute space": 14084, "offer flexible": 115650, "attribute composition": 14076, "control extensive": 31539, "terms personality": 164450, "fundamental research": 61975, "advancement research": 5860, "new technologies": 113459, "anaphora resolution": 9396, "highlevel natural": 69700, "trends future": 169718, "employs retrievalaugmented": 47979, "framework composed": 61024, "generator generator": 65620, "answer based": 9679, "budget constraints": 19270, "pluggable manner": 123669, "maximizing rewards": 99690, "demonstrating considerable": 38924, "dependency graphs": 39151, "better preserve": 17983, "narrow performance": 111460, "10 performance": 130, "computer games": 28475, "intelligence thanks": 78908, "advances foundation": 6008, "opportunities automatic": 116830, "increasingly realistic": 75437, "groups second": 67981, "generalize domain": 63248, "create efficient": 33193, "llmgenerated stories": 94206, "experiments instruction": 54320, "maintaining generation": 98352, "comparing number": 27000, "summary work": 158950, "contributes improving": 31443, "step en": 155622, "route enabling": 145639, "enabling widespread": 48363, "research seeking": 142064, "data forms": 35076, "intervention strategies": 79796, "evaluations performed": 52015, "performed downstream": 122365, "play influential": 123456, "influential role": 76244, "focus modeling": 60025, "framework formulates": 61168, "ones process": 116011, "llms customize": 94775, "visited states": 177098, "data ambiguity": 34618, "knowledge realworld": 82335, "detection correction": 40471, "coverage data": 33052, "applications traffic": 10708, "dataset observed": 36431, "significant drop": 150694, "subsequently develop": 157970, "information enhance": 76391, "execution feedback": 52954, "database content": 35990, "dataset prove": 36476, "dataset sota": 36550, "abilities understand": 2029, "success training": 158300, "assess effect": 13071, "does instruction": 43992, "generation intelligent": 64754, "poses considerable": 124201, "popular paradigm": 124039, "computing capacity": 28530, "12 domains": 265, "assessment propose": 13259, "based explicit": 15793, "explicit semantic": 54956, "scenario includes": 146507, "abilities explicit": 1907, "inputs results": 77444, "text position": 165359, "finetuning make": 59372, "times questions": 166604, "additional temporal": 5005, "approaches establishes": 11750, "published llms": 133695, "respectively model": 142569, "modeling diverse": 104993, "leakage detection": 89933, "pressing issue": 126712, "community spur": 26523, "valuable opensource": 175446, "opensource resource": 116674, "potential recent": 124935, "experiments encompass": 54271, "settings evaluate": 149568, "attention introduced": 13908, "neglecting valuable": 112556, "llm providing": 93932, "information modeling": 76580, "llms resulting": 96436, "input labels": 77269, "attention training": 13994, "data practice": 35514, "synthesized llms": 160001, "optimize annotation": 117061, "generated considerable": 63826, "models pose": 108559, "benchmarks current": 17200, "landscape machine": 83100, "psychological studies": 133508, "llms agent": 94372, "situated environments": 151929, "research integrate": 141860, "models growth": 106572, "method elicit": 100814, "llms creation": 94760, "influence development": 76193, "different sensitivities": 41987, "strongly outperforms": 156503, "classification framework": 24003, "generation measurement": 64818, "rival performance": 145032, "performance established": 121465, "need nuance": 112355, "generate grammatically": 63521, "llms appearing": 94411, "ii llms": 72102, "llms inform": 95627, "abstract away": 2634, "complex underlying": 27636, "underlying mechanics": 170857, "states llms": 155430, "technology society": 164169, "evaluation exploring": 51580, "creativity automatic": 33389, "exhibit weak": 53121, "weak correlations": 177926, "inherent subjectivity": 76978, "tailored diverse": 160913, "humans llmbased": 71426, "propose collaborative": 131747, "involving design": 80784, "texts llm": 165746, "investigate mutual": 80455, "effects llms": 46340, "time reducing": 166484, "20 llm": 601, "capabilities solve": 20186, "employed evaluation": 47882, "asks participants": 12897, "participants explore": 120004, "spanning language": 153680, "surpassing recent": 159528, "metrics developed": 102047, "produce engaging": 129395, "number factors": 114865, "solutions provide": 153064, "iterative algorithm": 81113, "algorithms measured": 7949, "8192 tokens": 1684, "adeptly process": 5502, "openais proprietary": 116431, "summarization retrieval": 158875, "question leverage": 134905, "approach extending": 11216, "performance personalization": 121907, "practical constraints": 125403, "nlp significantly": 113807, "concerns privacy": 28812, "creation pipeline": 33350, "unlearning llms": 171970, "range textual": 135721, "privacy issues": 128005, "protection regulations": 132568, "unlearning framework": 171969, "llms having": 95474, "sets data": 149363, "sparse human": 153729, "scale deployment": 146279, "novel interactive": 114554, "costeffective development": 32760, "approach formulates": 11242, "retrieval selects": 144134, "compared single": 26917, "annotations tasks": 9618, "tasks promising": 163020, "cheaper faster": 23518, "graphs methods": 67640, "11 stateoftheart": 233, "capabilities relevant": 20154, "ii using": 72113, "rewritten versions": 144747, "gauge llms": 62821, "closed questions": 24464, "prompting suggest": 131095, "llms performed": 96095, "following benchmark": 60254, "instructions crucial": 78224, "assessing response": 13206, "enable precise": 48120, "introduce multilevel": 80019, "mechanism incrementally": 99999, "increased level": 75261, "constraint propose": 30052, "prompt strong": 130681, "work data": 178883, "progress building": 129948, "pairs terms": 118623, "transcription annotation": 168883, "data involves": 35259, "location based": 97299, "addition lack": 4878, "history previous": 70227, "sequential recommenders": 148884, "preferences inspired": 126047, "audio 3d": 14163, "3d points": 1143, "representations interaction": 140824, "step propose": 155673, "llm identifying": 93743, "representations integrating": 140823, "responses faced": 142790, "contrastive manner": 31377, "words like": 178734, "tasks necessitating": 162851, "consistently produces": 29916, "analysis understanding": 9218, "risks including": 144990, "regarding truthfulness": 138895, "truthfulness bias": 169894, "associated icl": 13485, "conclude highlighting": 28869, "repository containing": 140627, "training environments": 168419, "scaling challenges": 146387, "partitioning strategies": 120280, "advances prompt": 6056, "engineering enable": 48910, "approach test": 11604, "levels abstractions": 91523, "perturbations replacing": 122761, "practical challenging": 125401, "key improving": 81515, "planning llms": 123293, "enhance capability": 49168, "transferred new": 169029, "different cases": 41682, "semantics enhancement": 148295, "knowledge relevant": 82355, "furthermore considering": 62036, "objective based": 115178, "issue incorporating": 80911, "employing simple": 47946, "effective llmbased": 45802, "reliability furthermore": 139686, "analysis support": 9189, "facilitating model": 56712, "llmbased augmentation": 94125, "requirements downstream": 141285, "focus approach": 59945, "process incorporating": 128872, "available widely": 15228, "baselines developed": 16308, "tremendous potential": 169690, "design special": 39765, "task focuses": 161404, "handle task": 68568, "evaluation procedures": 51785, "limited biased": 92720, "biased reasoning": 18237, "input scenario": 77333, "determine best": 40699, "generation mechanisms": 64820, "framework applying": 60960, "applying realworld": 10924, "task poses": 161630, "space current": 153560, "times additionally": 166577, "demonstrate generalization": 38358, "datasets unseen": 37172, "chatgpt datasets": 22827, "comprised multiple": 28239, "inside outside": 77479, "controlled setting": 31645, "trained sequences": 168068, "capabilities ability": 19757, "tasks functions": 162435, "benchmarking neural": 17154, "study encompasses": 157309, "generation reveal": 65058, "insights practical": 77627, "guidance researchers": 68158, "present publicly": 126427, "dataset unlike": 36602, "local cultural": 97232, "used daily": 173016, "best opensource": 17712, "opensource multilingual": 116659, "shows language": 150445, "acquiring suitable": 4284, "tailored finetuning": 160918, "models crafting": 105815, "demonstrated good": 38671, "practical solutions": 125453, "solutions guidance": 153028, "data play": 35488, "released corpus": 139509, "text missing": 165307, "propose paper": 132059, "work manually": 179120, "crafted rules": 33152, "release largest": 139478, "text associated": 164841, "llm researchers": 93965, "quality thresholds": 134288, "aid software": 7368, "base api": 15591, "ai modules": 7118, "chain design": 21451, "faster large": 57293, "llm increasingly": 93753, "domains following": 44416, "following challenges": 60258, "operation requires": 116759, "update operation": 172336, "varied input": 175672, "configurations single": 29385, "llms hardware": 95471, "average speedup": 15314, "exhibit excellent": 53045, "way alleviate": 177767, "balance model": 15500, "efficiency introduce": 46472, "maximizing performance": 99689, "bias error": 18116, "models recommendations": 108865, "review text": 144557, "comparison llmgenerated": 27053, "intensive impractical": 79001, "computing pairwise": 28545, "pairwise distances": 118640, "approaches provide": 11876, "growing developing": 68022, "addressed leading": 5396, "tightly integrates": 166331, "integrates llm": 78564, "challenges simultaneously": 22064, "text consisting": 164955, "strategy introduced": 156166, "added pretrained": 4814, "judgment tasks": 81325, "associated language": 13491, "language materials": 83505, "study modeling": 157492, "categories language": 21104, "lms investigate": 97156, "compared performing": 26874, "perform comparison": 120895, "openai baseline": 116325, "effectively combines": 45963, "metrics measuring": 102111, "effective deployment": 45733, "focus token": 60069, "making comparisons": 98716, "rely intricate": 139859, "ranking specifically": 135824, "llm rank": 93937, "selfsupervised approach": 148051, "effectively learns": 46041, "tokens focusing": 166815, "reconstruct masked": 138294, "robust informative": 145274, "tasks audiocaps": 161986, "longstanding goal": 97584, "benchmark currently": 16885, "basic prompt": 16430, "existing biases": 53304, "test 28": 164505, "shows instruction": 150442, "improve human": 73480, "llms certain": 94557, "tasks thanks": 163369, "acquired training": 4274, "space case": 153553, "input dynamic": 77230, "approaches complementary": 11717, "nlp lack": 113746, "possibility creating": 124377, "language rapid": 86685, "development internet": 41141, "people different": 120712, "content increasing": 30528, "synthesize large": 159992, "face deployment": 56525, "small group": 152294, "functions including": 61909, "ability form": 2169, "reason concepts": 136558, "level tokens": 91515, "stages pipeline": 154770, "method pretraining": 101035, "concepts explore": 28652, "simpler approach": 151553, "better match": 17940, "discussions online": 43013, "provide opportunity": 132911, "classification evaluate": 23991, "study new": 157507, "visual interface": 177206, "summaries serve": 158782, "2023 leveraging": 704, "models frequently": 106399, "applied task": 10813, "llms neglect": 95932, "demonstrations leading": 39025, "answering important": 9872, "informative examples": 76872, "score 727": 147039, "appropriate use": 12000, "lead inappropriate": 89755, "improve use": 73655, "prompted achieve": 130808, "prompts considerable": 131198, "properties prompts": 131658, "reflect language": 138797, "customized llms": 34407, "retrieve candidates": 144213, "examples providing": 52675, "methods contribute": 101405, "crucial planning": 33832, "tasks relevant": 163120, "data prone": 35568, "inaccurate hallucinated": 74262, "introduce sophisticated": 80107, "produce detailed": 129391, "detailed accurate": 40264, "generated reports": 63959, "gpt4 scores": 67153, "study test": 157662, "tool aim": 166932, "models preliminary": 108598, "built encoderdecoder": 19478, "encoderdecoder framework": 48456, "reached high": 136125, "development emergence": 41097, "potential achieving": 124548, "potential robust": 124960, "problem extremely": 128253, "instead utilizing": 77908, "context distributions": 30733, "train ner": 167807, "abilities underlying": 2028, "data texttosql": 35864, "aims automate": 7582, "queries database": 134463, "approaches incontext": 11806, "opensource stateoftheart": 116680, "monolingual model": 110068, "token types": 166748, "graph inference": 67536, "propose chatgptbased": 131744, "input sample": 77331, "achieved second": 3888, "second place": 147499, "achieving f1score": 4173, "continued increase": 31209, "presents major": 126598, "accurate summaries": 3499, "literature using": 93212, "using commercial": 174064, "llm chain": 93525, "assessment finally": 13230, "conclude automated": 28858, "progress domain": 129959, "new shared": 113407, "web novel": 178010, "guide human": 68180, "submitted systems": 157900, "capitalize opportunities": 20553, "adapters used": 4729, "weights different": 178107, "lengths additionally": 91399, "features enable": 57482, "gpu multiple": 67347, "libraries huggingface": 92030, "enables scalable": 48247, "customized finetuning": 34403, "finetuning services": 59529, "requires highquality": 141388, "annotated demonstrations": 9468, "networks based": 112717, "lms automatically": 97105, "framework clinical": 61008, "mechanism generate": 99993, "inaccurate reasoning": 74269, "extracted structured": 56210, "evaluations framework": 51975, "provide grounded": 132811, "compared generated": 26815, "better exploring": 17866, "leveraging opensource": 91915, "explainability research": 54734, "impact incontext": 72664, "examples llmbased": 52634, "aggregation strategies": 6783, "regarding evaluation": 138870, "sets propose": 149396, "general llm": 62986, "struggle handle": 156755, "methods attempt": 101322, "prompts employing": 131244, "employing supervised": 47948, "issue information": 80912, "language limits": 83491, "stateoftheart domainspecific": 155131, "susceptible data": 159729, "limited common": 92730, "propose information": 131877, "models doing": 106016, "information mined": 76577, "technologies current": 164083, "instructions demonstrations": 78233, "demonstrations dataset": 38996, "contributes research": 31448, "aspect research": 12919, "language case": 83181, "assist generating": 13345, "matching large": 99467, "provide existing": 132776, "explores questions": 55427, "models explosion": 106261, "major reason": 98448, "revealing shared": 144407, "available commercial": 15083, "successes large": 158326, "commonly deployed": 26224, "discourse surrounding": 42720, "intelligence consequently": 78800, "consequently important": 29543, "foundations large": 60856, "models covering": 105813, "domains short": 44527, "general create": 62931, "facts events": 56831, "shared vocabulary": 149831, "similar text": 151318, "text applying": 164838, "divergence loss": 43444, "preferences model": 126056, "approach different": 11122, "incorrect outdated": 75162, "shift existing": 149906, "editing operation": 45478, "architecture outperforms": 12199, "produced humans": 129492, "benchmark achieve": 16817, "revealing significant": 144408, "humaneval benchmark": 71170, "community actively": 26447, "advantages position": 6148, "evaluation context": 51511, "code avaliable": 24681, "success predicting": 158277, "investigate degree": 80395, "degree pretrained": 38019, "case llms": 20880, "llms bias": 94496, "method pretrained": 101034, "expansion operating": 53718, "competitive counterparts": 27169, "llms parameter": 96044, "update significant": 172338, "controlling generated": 31663, "text exhibits": 165064, "control multiple": 31567, "decouple llms": 37655, "adjust probability": 5538, "based likelihood": 15922, "enable dynamic": 48074, "steering text": 155573, "multiple target": 111058, "research represents": 142044, "method comparable": 100745, "various controllable": 175876, "aiming delineate": 7543, "augment scientific": 14255, "review summarizing": 144553, "enhancing code": 49467, "code development": 24791, "impacts llms": 72765, "model complex": 103320, "perspective llms": 122679, "spurred significant": 154627, "prior datasets": 127888, "length compared": 91353, "problems emphasis": 128492, "new documents": 113152, "models outperformed": 108389, "tasks struggled": 163295, "retrievalbased techniques": 144206, "techniques demonstrated": 163864, "proficient generating": 129689, "text minimal": 165302, "rationales based": 136061, "alternate options": 8540, "eliminate potential": 47070, "challenges lacking": 21928, "capabilities heavy": 19939, "overall interaction": 118204, "evaluate emotional": 50962, "restricted extensive": 143003, "format combining": 60542, "confirm methods": 29395, "representation improve": 140696, "better conversations": 17836, "training agents": 168149, "contain explicit": 30294, "baselines built": 16294, "models profile": 108672, "models instructionbased": 106783, "additionally human": 5077, "probability model": 128118, "embeddings address": 47214, "quantitative evidence": 134346, "evidence demonstrating": 52177, "embeddings specifically": 47285, "turning point": 170185, "dependencies extensive": 39143, "humanaligned llms": 71120, "preferences remains": 126068, "instructions diverse": 78242, "construct hierarchical": 30136, "task tree": 161790, "evaluation standards": 51870, "processes facilitate": 129063, "provides standardized": 133217, "automating parts": 14887, "methodology demonstrated": 101217, "general solutions": 63050, "reach desired": 136110, "desired outcome": 40053, "understand students": 171083, "understand preferences": 171060, "llms rl": 96474, "insight llms": 77492, "llms sample": 96481, "humanhuman interactions": 71194, "algorithm utilizes": 7874, "dataset offline": 36435, "effect llm": 45663, "llm produces": 93909, "possible interactions": 124437, "environment key": 50008, "scene context": 146728, "strategies complex": 155975, "final training": 58409, "work tackling": 179333, "tackling problem": 160874, "efficiency results": 46524, "sizes notably": 152105, "model fingpt": 103678, "study challenges": 157203, "news social": 113580, "mix original": 102711, "competency questions": 27134, "requirements expressed": 141294, "ontology reuse": 116173, "requirement specification": 141270, "engineering methodologies": 48953, "practice publishing": 125492, "widely observed": 178380, "exhibit suboptimal": 53109, "lack high": 82953, "reduces need": 138526, "witnessed remarkable": 178571, "feasibility model": 57357, "robustness introduce": 145396, "dataset subset": 36563, "llms indian": 95614, "recommendation news": 138216, "role current": 145475, "digital age": 42273, "individuals access": 75762, "popularity prominent": 124098, "study breaks": 157192, "ground investigating": 67826, "capability particularly": 20353, "performance news": 121844, "illustrates potential": 72163, "study illuminates": 157401, "potential finetuning": 124724, "effective news": 45832, "time sequence": 166497, "50 furthermore": 1299, "explicit evidence": 54928, "samples variety": 146078, "neural graph": 112848, "techniques typically": 164046, "learning demonstrating": 90359, "notable results": 114245, "studies utilized": 157111, "parse natural": 119942, "logical questions": 97372, "solvers symbolic": 153186, "novel language": 114558, "learning strict": 91027, "tool detect": 166964, "approach detect": 11115, "llms estimate": 95098, "questions devise": 135102, "dataset instance": 36361, "correct given": 32388, "relative original": 139375, "identifying original": 72021, "data internal": 35251, "levels compared": 91527, "safety filters": 145860, "generating copyrighted": 64177, "present exploratory": 126309, "study degree": 157265, "dictionaries generated": 41585, "definitions different": 37966, "low frequency": 97758, "frequency words": 61603, "glove fasttext": 66122, "resumes job": 143947, "benefit advancements": 17420, "advancements nlp": 5942, "propose distill": 131786, "multiple smaller": 111042, "necessitates development": 112173, "efficiently propose": 46807, "extracting meaningful": 56236, "constructing structured": 30203, "36 compared": 1073, "outperforms naive": 117807, "based example": 15783, "seen limited": 147696, "limited effectiveness": 92755, "embedding llm": 47174, "demonstrations prompt": 39037, "approach benefits": 11026, "including safety": 74709, "teach llm": 163605, "types instructions": 170371, "llms rigorous": 96470, "remains pivotal": 140058, "pivotal component": 123140, "llms marked": 95860, "domain adoption": 44088, "reasoning involves": 136934, "continues present": 31223, "advanced cot": 5721, "cot strategies": 32907, "success method": 158266, "method augmenting": 100695, "range llm": 135641, "closed opendomain": 24461, "llm terms": 94050, "response prompt": 142687, "steps complex": 155724, "represents initial": 140980, "responses utilizing": 142939, "area aims": 12315, "student lms": 156818, "paper reveal": 119307, "environmental sustainability": 50055, "high scalability": 69530, "challenges programming": 22020, "expensive programming": 53802, "electron microscopy": 46990, "improvements image": 73910, "learning non": 90773, "medical ai": 100134, "enhance healthcare": 49209, "aid medical": 7366, "potential identifying": 124764, "patients electronic": 120487, "role advancing": 145456, "users form": 173660, "comprehension general": 27904, "propose perform": 132064, "evaluation help": 51635, "shows average": 150406, "evaluated errors": 51174, "stimulate enhance": 155796, "semiautomatic data": 148343, "minimum human": 102403, "finegrained relation": 58889, "method integrating": 100935, "longtail relation": 97590, "way myriad": 177853, "responsible effective": 142966, "llms focused": 95286, "focused primarily": 60118, "gpt4 designed": 66968, "proficiency language": 129663, "variety realworld": 175752, "llms fundamentally": 95312, "successfully completing": 158373, "struggle integrate": 156759, "noisy asr": 113993, "quantify performance": 134320, "rates use": 136038, "skills makes": 152174, "llms anthropomorphic": 94404, "process topic": 129017, "engineering incontext": 48935, "evaluating various": 51404, "various communication": 175861, "strategy improves": 156156, "modalities models": 102939, "recently rapid": 137967, "aims expand": 7607, "benchmark benchmark": 16845, "22 datasets": 771, "additionally include": 5080, "behavior building": 16569, "llms equivalent": 95088, "humanpreferred responses": 71324, "prompting methodologies": 131013, "offer better": 115638, "better estimates": 17856, "susceptible hallucinations": 159731, "wrong large": 179801, "prompting help": 130954, "medical diagnoses": 100154, "reason incorrect": 136563, "gpt35 llama2": 66835, "flow using": 59876, "modeling single": 105093, "single method": 151830, "method article": 100686, "positions design": 124281, "analyses illustrate": 8767, "match user": 99430, "seminal work": 148352, "rational agents": 136049, "maximise expected": 99665, "works llms": 179469, "maximize reward": 99679, "posterior probability": 124491, "requires accurate": 141330, "supervision methods": 159207, "tuning effective": 169997, "finetuning analysis": 59167, "exact answer": 52334, "numerical extraction": 115001, "context conduct": 30713, "setting use": 149514, "indicating models": 75657, "task limits": 161522, "demanding precise": 38148, "extraction documents": 56285, "necessary accurate": 112136, "offers framework": 115810, "social demographic": 152560, "express diverse": 55560, "topics product": 167362, "summary provide": 158939, "metrics large": 102097, "people propose": 120735, "collected social": 25700, "core capability": 32154, "constructed 500": 30168, "market code": 99233, "associated different": 13475, "task focus": 161402, "scenarios good": 146610, "api performance": 10163, "llama gpt4": 93314, "compared highresource": 26830, "crosslingual qa": 33664, "distinct domains": 43215, "given results": 65991, "serve challenging": 148967, "prompting empowers": 130911, "processes different": 129059, "number interactions": 114885, "llm critical": 93573, "federated averaging": 57625, "resources unavailable": 142495, "tuning enhancing": 170003, "model selects": 104538, "distinct existing": 43219, "importance diversity": 73024, "data iterative": 35263, "sampling code": 146087, "observe discrepancy": 115367, "metrics believe": 102012, "evaluate generative": 50979, "wordlevel semantic": 178707, "tool source": 167033, "model confidence": 103344, "respect comprehensive": 142502, "outline challenges": 117488, "confidence large": 29350, "model ensembling": 103550, "task effective": 161340, "handling bias": 68584, "role construction": 145472, "enhance equity": 49192, "foundation research": 60828, "verification retrieval": 176496, "required generate": 141236, "given partially": 65949, "problems generated": 128520, "time experiment": 166400, "approaches extractive": 11766, "rl technique": 145082, "demonstrate inconsistencies": 38385, "texts introduce": 165736, "structured intermediate": 156644, "texts significantly": 165777, "model guidance": 103777, "captioning aims": 20573, "generating descriptive": 64189, "descriptive textual": 39527, "inspired zeroshot": 77777, "additionally use": 5142, "broadly relevant": 19232, "llms temporally": 96780, "llms perceive": 96062, "directly instead": 42556, "mutually exclusive": 111351, "events evaluate": 52110, "limited degree": 92747, "size does": 151988, "performance explain": 121490, "explain results": 54715, "llms gather": 95343, "weakly correlated": 177949, "temporal tasks": 164287, "everyday situations": 52164, "explanation makes": 54790, "context end": 30742, "curate release": 34002, "specificity diversity": 154324, "diversity finally": 43727, "train open": 167812, "sources models": 153525, "limitations introducing": 92607, "traditional ner": 167669, "offering greater": 115741, "size cost": 151979, "cost particularly": 32724, "trained identify": 167948, "building domain": 19390, "improvements financial": 73904, "financial tasks": 58582, "solution building": 152904, "approaches face": 11767, "face growing": 56533, "dynamic composition": 45118, "tasks resource": 163170, "compute pose": 28449, "challenges furthermore": 21877, "share data": 149793, "model owners": 104199, "method entails": 100834, "quality propose": 134232, "preserving meaning": 126691, "effectively finetune": 45999, "trained disjoint": 167900, "used stage": 173240, "prompted llm": 130825, "success numerous": 158274, "face robustness": 56549, "correlations arising": 32558, "primarily concentrated": 127774, "word phrase": 178656, "concept label": 28603, "training prompts": 168665, "mitigating spurious": 102681, "extensive testing": 55958, "instructions despite": 78238, "responses target": 142927, "proficiency code": 129647, "task decomposing": 161298, "complexity ambiguity": 27657, "resulting lack": 143110, "expensive llms": 53790, "bypasses need": 19569, "individuals cognitive": 75768, "artificial intelligenceai": 12782, "vital importance": 177408, "recent emerging": 137493, "inevitably introduce": 75922, "skills work": 152195, "evidencebased decisionmaking": 52232, "realworld evaluations": 136452, "improvement various": 73866, "augmented instruction": 14353, "involves evaluating": 80730, "aspects consistency": 12929, "challenging require": 22258, "summarization datatotext": 158819, "exact approximate": 52335, "decoding natural": 37581, "modes models": 109858, "models weaknesses": 109680, "models degenerate": 105877, "models fluent": 106370, "finding algorithms": 58596, "finding approach": 58599, "surrogate models": 159583, "maintain user": 98333, "approach estimating": 11194, "softmax probabilities": 152757, "performs reasonably": 122453, "leaves room": 91202, "confidence model": 29356, "confidence given": 29349, "question surprisingly": 134942, "gives stateoftheart": 66061, "confidence estimates": 29346, "generation highlighting": 64718, "evidence large": 52191, "modifying prompts": 109895, "llms feasible": 95253, "feasible study": 57379, "identifies relevant": 71849, "strategy construct": 156121, "additionally observed": 5096, "observed highlighting": 115412, "shown extraordinary": 150241, "limitations understanding": 92682, "crucial paper": 33830, "tasks complicated": 162096, "explore reasons": 55286, "primary reasons": 127819, "renders llms": 140383, "incapable handling": 74298, "analyses paper": 8777, "methods enabling": 101476, "sophisticated human": 153301, "samples covering": 145999, "covering 10": 33068, "experiments unlike": 54506, "llms vocabulary": 96990, "essence llms": 50577, "integrate language": 78492, "semantic mapping": 148175, "alignment tuning": 8254, "enhance integration": 49214, "llms deeply": 94796, "showing approach": 150161, "llmbased recommenders": 94165, "llms receiving": 96321, "editing paper": 45479, "suite innovative": 158724, "innovative metrics": 77180, "metrics evaluation": 102056, "editing baselines": 45448, "exhibit potential": 53083, "potential difficulty": 124676, "ability edit": 2142, "llms responsible": 96432, "evaluate localization": 51014, "exhibit promising": 53087, "localization ability": 97270, "effectiveness certain": 46138, "focusing distinct": 60179, "employing chainofthought": 47914, "strategies present": 156051, "insights optimizing": 77616, "event understanding": 52097, "event occurrences": 52085, "challenges brought": 21792, "absent paper": 2599, "annotations making": 9603, "laborious human": 82865, "challenging finetuned": 22163, "inference reinforcement": 76091, "rlhf recent": 145095, "llms reward": 96467, "readily used": 136178, "pipeline includes": 123066, "using reward": 174679, "techniques assess": 163839, "assess effects": 13075, "tasks underscore": 163404, "based estimated": 15779, "rl training": 145083, "showcasing substantial": 150126, "result generation": 143037, "capacity process": 20539, "llm learning": 93801, "framework divides": 61090, "instances hallucinations": 77832, "hallucinations improve": 68434, "underscoring efficacy": 170963, "clean evaluation": 24249, "challenging critical": 22134, "models save": 109033, "novel useful": 114742, "mitigates issue": 102648, "employs llm": 47971, "set generating": 149204, "used filter": 173074, "filter generated": 58345, "narrow candidate": 111457, "expressed differently": 55568, "reciprocal rank": 138032, "ranking results": 135820, "used adapt": 172952, "empirically using": 47806, "using example": 174175, "motivated investigate": 110183, "tokens expert": 166810, "overfitting issue": 118342, "language requirement": 86708, "evaluation llmbased": 51671, "benchmark llmbased": 17018, "llmbased automatic": 94126, "methods total": 101879, "evaluated make": 51187, "summaries different": 158761, "make collected": 98509, "humans abstract": 71337, "language evidence": 83293, "experiments covering": 54207, "problem challenges": 128196, "information experimental": 76405, "benchmarks superior": 17377, "restricted specific": 143006, "makes step": 98690, "tuning evaluating": 170005, "develop opensource": 40817, "opensource generalist": 116611, "taskspecific design": 163516, "notably reducing": 114291, "hallucination leveraging": 68391, "potentially causing": 125087, "possesses adequate": 124358, "struggle assess": 156730, "facing noisy": 56732, "noisy irrelevant": 114002, "enabling thorough": 48352, "employed chatgpt": 47877, "subsequently trained": 157991, "notably achieves": 114258, "english indian": 49063, "involving llms": 80795, "llama results": 93335, "llms heavily": 95477, "shape models": 149778, "outputs address": 118019, "receiving users": 137329, "examples including": 52612, "instructions reasoning": 78338, "pathways model": 120458, "methods contrastive": 101404, "logically sound": 97403, "sound reasoning": 153379, "mistakes avoid": 102544, "avoid potentially": 15351, "potentially leads": 125120, "reason stepbystep": 136582, "generalization introduce": 63183, "demonstrations experiments": 39002, "require time": 141208, "comprehension using": 27939, "probability scores": 128124, "probability calibration": 128105, "setting temperature": 149512, "approximately 25": 12023, "provided insights": 133065, "removing redundant": 140372, "effect pruning": 45673, "highquality outputs": 70058, "important assess": 73089, "new area": 113070, "particularly scientific": 120258, "explores relationship": 55429, "scores accuracy": 147120, "outputs observe": 118092, "finetuned scientific": 59105, "predictions compared": 125893, "automated knowledge": 14562, "alignment open": 8204, "new field": 113190, "reference set": 138673, "dataset outputs": 36442, "structure analysis": 156537, "high utility": 69554, "produce natural": 129444, "additional conditioning": 4938, "produce significantly": 129463, "tools effective": 167147, "explanations errors": 54837, "analyze capability": 9271, "leverages finetuned": 91723, "correction data": 32435, "sampled language": 145972, "levels human": 91541, "code leveraging": 24978, "leveraging code": 91820, "generalpurpose programming": 63365, "description includes": 39413, "datasets combined": 36710, "generalpurpose code": 63339, "code important": 24945, "deployment approaches": 39259, "hardwarecentric approach": 68704, "method hardware": 100901, "hardware acceleration": 68674, "programs written": 129935, "accuracy essential": 3223, "prompting styles": 131094, "results experiment": 143397, "models beneficial": 105483, "beneficial improving": 17406, "value understand": 175507, "approach followed": 11240, "present users": 126495, "formats significantly": 60570, "models subsequently": 109272, "feedback addition": 57635, "data scenario": 35701, "strategy using": 156217, "method needs": 100991, "wideranging applications": 178449, "reflect true": 138803, "evaluation challenges": 51469, "data assumptions": 34663, "frameworks introduce": 61516, "bias low": 18157, "preprocessing scripts": 126189, "seven diverse": 149695, "standardized comprehensive": 154903, "tool significantly": 167030, "guidelines order": 68252, "problem multistep": 128331, "accurate prediction": 3478, "modeling approaches": 104970, "historical action": 70193, "increase automation": 75190, "trained input": 167953, "test cat": 164531, "change prediction": 22350, "detection visual": 40656, "tasks conditioned": 162106, "examples experiment": 52574, "methods orders": 101695, "understood different": 171547, "presents analysis": 126546, "functions focusing": 61906, "taskspecific reward": 163545, "classification segmentation": 24079, "probability values": 128128, "chatgpts language": 23496, "nlp tool": 113923, "gpt4 ability": 66898, "names language": 111428, "language codes": 83191, "comprehensive analytical": 27956, "key discovery": 81492, "multiagent evaluation": 110321, "allows nuanced": 8459, "examining llms": 52451, "questions containing": 135078, "outside llms": 118152, "vast training": 176360, "provide marginal": 132881, "systems faithful": 160384, "authors opinions": 14441, "approaches alter": 11693, "experiments news": 54378, "terms success": 164479, "setting rely": 149503, "systematically investigated": 160195, "performance contrasting": 121335, "level robustness": 91503, "series recommendations": 148949, "including llm": 74598, "education applications": 45516, "model t5large": 104714, "larger counterparts": 89200, "performance exemplar": 121475, "types contexts": 170341, "content presents": 30576, "employ models": 47848, "platforms led": 123406, "facilitated creation": 56665, "forming basis": 60585, "novel category": 114431, "models telecommunications": 109365, "solution featuring": 152935, "scope ai": 147011, "review explores": 144507, "explores recent": 55428, "needed overcome": 112451, "showcase recent": 150084, "technologies face": 164087, "face obstacles": 56544, "certain opensource": 21405, "introduce retrievalbased": 80096, "example asking": 52465, "sets specifically": 149403, "rate 52": 135966, "57 respectively": 1383, "benchmarks field": 17247, "queries responses": 134533, "responses supported": 142925, "source mitigate": 153460, "applied zeroshot": 10826, "manner addition": 98968, "real production": 136244, "tuning knowledge": 170039, "knowledge real": 82333, "frequently update": 61628, "benchmarks significant": 17366, "expert annotations": 54552, "experiment datasets": 53887, "comparing sota": 27013, "multidimensional benchmark": 110372, "model adhere": 103086, "evaluate instructionfollowing": 50990, "examples crafted": 52549, "crafted human": 33145, "critical dimensions": 33481, "reasoning spatial": 137134, "constraints enhance": 30077, "models emphasize": 106085, "findings significant": 58797, "highlighting risk": 69831, "accuracy 70": 3118, "improvement expect": 73791, "field psychology": 58234, "understanding graphs": 171277, "revolutionizing various": 144676, "fields leveraging": 58281, "intelligence context": 78801, "fundamentally limited": 61991, "explores better": 55384, "llms effectiveness": 95009, "influence different": 76194, "highlights current": 69853, "classification setup": 24091, "language generated": 83340, "stimulus response": 155808, "feasibility employing": 57352, "inference agents": 75959, "drawing theory": 44939, "differences traditional": 41640, "acting world": 4303, "including enhanced": 74507, "challenge advanced": 21582, "science theory": 146918, "training minimal": 168580, "exploring relationship": 55503, "applications significantly": 10688, "demonstrations used": 39055, "time growing": 166411, "paradigms work": 119543, "demonstrations overall": 39035, "perspective explore": 122663, "light understanding": 92157, "behaviors llm": 16713, "models advancing": 105300, "understanding best": 171136, "collection highquality": 25736, "70b code": 1541, "code llama": 24984, "instructiontuned variant": 78404, "variant code": 175619, "strategy gpt4": 156152, "learning selecting": 90974, "accurate machine": 3471, "sentences dataset": 148571, "enriches understanding": 49622, "understanding nuanced": 171382, "leveraging inherent": 91868, "sophisticated method": 153313, "experts proposed": 54676, "augmented model": 14364, "complex memory": 27474, "utilized train": 175117, "released datasets": 139510, "model adapters": 103070, "community make": 26496, "networks proven": 112789, "workings models": 179407, "connections models": 29496, "functional structure": 61880, "prompt sequences": 130667, "token layer": 166715, "effective time": 45903, "fit data": 59680, "data identify": 35166, "results distinct": 143359, "distinct overlapping": 43236, "observed medical": 115423, "models interestingly": 106800, "human concept": 70661, "relevant representations": 139644, "embeddingbased models": 47206, "interpretability making": 79646, "transparent users": 169604, "alignment behavior": 8125, "behavior intention": 16599, "using user": 174839, "combines language": 25938, "training demonstrate": 168383, "perspectives alignment": 122699, "flexible configuration": 59801, "library allows": 92034, "capabilities achieve": 19758, "efficiency practical": 46504, "comprehend various": 27861, "nascent stage": 111484, "video use": 176748, "generation explore": 64640, "understanding music": 171362, "generation facilitating": 64652, "changes proposed": 22389, "theory early": 166080, "explanations unlike": 54904, "statistical approaches": 155484, "approach direct": 11123, "direct representation": 42404, "directly llm": 42564, "use stateoftheart": 172888, "efficiency comparable": 46429, "multitask adaptation": 111200, "parameter dependency": 119602, "outperforms single": 117847, "exhibits reduced": 53214, "adaptation incontext": 4625, "capability fewshot": 20293, "demonstrations readily": 39042, "knowledge unseen": 82488, "limitations demonstrate": 92565, "adaptation uda": 4672, "uda problem": 170556, "idea retrieve": 71742, "incontext manner": 74988, "discriminative task": 42851, "experiments sentiment": 54453, "analysis sa": 9147, "2023 workshop": 720, "promptbased strategy": 130795, "experiments performance": 54391, "prompts achieved": 131146, "biases introduce": 18275, "strategies utilizing": 156091, "models reveals": 108989, "learning supervised": 91042, "pivotal deciphering": 123143, "deciphering complex": 37361, "data faces": 35037, "spaces data": 153634, "efficiently generates": 46785, "robust highquality": 145272, "previous methodologies": 127608, "recognizing need": 138174, "gradient method": 67391, "blocks corresponding": 18727, "number nonzero": 114914, "decomposition efficient": 37637, "7b 70b": 1624, "baselines enables": 16313, "average including": 15294, "mainly consists": 98286, "marks initial": 99266, "ability general": 2176, "ability chinese": 2097, "area including": 12324, "paper reading": 119301, "abstract generation": 2638, "recommendations recent": 138260, "llama meta": 93322, "processing vast": 129353, "experiences provide": 53869, "methodologies furthermore": 101196, "studies automated": 156956, "difficulties accurately": 42192, "accurately capturing": 3517, "audio sequences": 14191, "achieves exceptional": 4011, "analysis prompts": 9089, "attempt leverage": 13793, "model progress": 104360, "progress future": 129967, "biological data": 18509, "surpass traditional": 159465, "review analysis": 144478, "based role": 16082, "survey representative": 159683, "papers summarized": 119409, "summarized consistently": 158915, "consistently updated": 29929, "hierarchical variational": 69381, "inference zeroshot": 76140, "limitations previous": 92641, "synthesis frameworks": 159945, "representation based": 140673, "outperforms llmbased": 117799, "diffusionbased models": 42267, "regard understanding": 138853, "using expanded": 174179, "allows create": 8417, "use formal": 172632, "various hyperparameter": 175970, "hyperparameter configurations": 71591, "alternating optimization": 8544, "fully interpretable": 61773, "realworld image": 136461, "highly engineered": 69917, "believe proposed": 16787, "demonstrates great": 38851, "perspective data": 122656, "paper paper": 119094, "requirements associated": 141278, "practicality scalability": 125471, "powerful abilities": 125249, "research foster": 141804, "tuning evaluation": 170006, "study ask": 157171, "small diverse": 152287, "crucial enabling": 33791, "llms manual": 95857, "manual creation": 99031, "pairs llms": 118596, "dataset integrity": 36365, "twice number": 170216, "deployed data": 39211, "use users": 172929, "query knowledge": 134599, "failing address": 56988, "enables autonomous": 48163, "verifying refining": 176549, "reasoning underscoring": 137218, "automate analysis": 14493, "methodology encompasses": 101223, "including detailed": 74492, "reasoning interpretation": 136928, "arguments diverse": 12445, "reveals challenges": 144416, "significantly elevates": 150983, "fields artificial": 58262, "novel methodologies": 114595, "provides deep": 133131, "stage future": 154737, "ai complex": 6922, "highlight areas": 69724, "development prompt": 41200, "risk control": 144933, "framework responsible": 61388, "responsible deployment": 142963, "based rigorous": 16080, "informative risk": 76883, "risk measures": 144951, "methods producing": 101730, "shifts deployment": 149936, "medical question": 100205, "question summarization": 134941, "generation highlight": 64717, "focuses utilizing": 60168, "effectiveness llmbased": 46223, "develop multilingual": 40806, "model advanced": 103089, "advanced translation": 5815, "corpus observe": 32336, "observe gpt35": 115372, "complex relational": 27569, "lightweight efficient": 92174, "approach automated": 11010, "keywords using": 81627, "employ hybrid": 47829, "newcomers field": 113517, "data augmenting": 34698, "tool aimed": 166933, "aware models": 15372, "pretrained vit": 127244, "features latent": 57531, "component enhances": 27733, "uncertaintyaware language": 170683, "using uncertainty": 174831, "questions leads": 135182, "prediction aims": 125758, "key task": 81582, "online advertising": 116077, "rendering inadequate": 140381, "intricate architectures": 79832, "architectures enhance": 12261, "approaches encounter": 11745, "effectively transferred": 46095, "text feature": 165081, "llm enforce": 93630, "foundation develop": 60713, "adaptive feature": 4776, "effectively bridge": 45950, "learn common": 89966, "conducted datasets": 29226, "instances high": 77833, "balancing tradeoff": 15520, "monetary costs": 110046, "slm llm": 152243, "supervision code": 159193, "llm open": 93854, "considering aspects": 29703, "subset original": 158006, "seed instruction": 147641, "seed dataset": 147640, "dataset applied": 36115, "llm finally": 93674, "data performed": 35484, "llm consider": 93554, "languagespecific llms": 87163, "llms enhanced": 95077, "generator llm": 65625, "llm ensure": 93635, "modelling mlm": 105129, "corpora utilizing": 32266, "resultant model": 143074, "processing despite": 129143, "excellent capability": 52788, "knowledge poses": 82277, "risks malicious": 145004, "malicious application": 98836, "assistants crucial": 13409, "widespread applicability": 178458, "machine unlearning": 98139, "end provide": 48687, "unlearning methods": 171974, "parameter merging": 119629, "increasing coverage": 75316, "names descriptions": 111425, "descriptions available": 39437, "information english": 76390, "ii demonstrate": 72087, "brings opportunities": 19147, "chip design": 23677, "model personalized": 104276, "space different": 153563, "greater alignment": 67753, "description corresponding": 39407, "based interaction": 15885, "distributions output": 43427, "reducing llm": 138578, "propose following": 131828, "runtime cost": 145761, "conventional techniques": 31735, "category classification": 21150, "reasoning recognition": 137094, "endtoend method": 48747, "speech automatic": 154384, "explore appropriate": 55152, "appropriate text": 11997, "speech selfsupervised": 154471, "accuracy diversity": 3208, "task various": 161806, "explored previous": 55362, "decoderonly llm": 37544, "suggest continual": 158523, "significant transformations": 150909, "trajectory dialogue": 168864, "intricate relationship": 79860, "models categorizing": 105583, "distinct stages": 43253, "marked pivotal": 99221, "chinese conversational": 23617, "inherent social": 76975, "especially terms": 50551, "speech including": 154420, "words test": 178755, "features including": 57512, "text suggesting": 165500, "delving impact": 38122, "current use": 34294, "reliability llm": 139695, "methods suggesting": 101852, "comparative approaches": 26642, "deploying deep": 39233, "numerous new": 115054, "efficiently produce": 46806, "estimates important": 50738, "demonstrate flexibility": 38347, "compositional instructions": 27816, "role success": 145537, "availability largescale": 15058, "format allows": 60539, "instructions manual": 78307, "tasks compositional": 162097, "constraints adapting": 30060, "delve realm": 38099, "humanannotated benchmark": 71122, "argumentative text": 12440, "evaluate generation": 50978, "models nuanced": 108319, "language focus": 83326, "cultural context": 33953, "llm represents": 93960, "broader framework": 19213, "hierarchical temporal": 69379, "spectrum temporal": 154370, "fostering research": 60703, "resource available": 142374, "layer maps": 89635, "objectives research": 115261, "exhibit powerful": 53084, "summarization abilities": 158795, "approx 10": 12011, "showcase performance": 150078, "llms vary": 96964, "different instructions": 41806, "instructions resulting": 78347, "icl conduct": 71664, "inspired realistic": 77751, "end evaluate": 48659, "evolving capabilities": 52306, "domainspecific evaluation": 44578, "benchmarks accurately": 17162, "robust foundation": 145266, "suggesting substantial": 158629, "refinement llm": 138763, "explores effectiveness": 55391, "performance highlights": 121625, "targeted improvements": 161133, "challenge based": 21593, "computation memoryintensive": 28312, "capability latest": 20331, "transfer machine": 168969, "generating tokens": 64363, "using fast": 174194, "effective explainable": 45754, "texts train": 165792, "datasets argue": 36659, "scalable feedback": 146244, "directly improve": 42553, "benchmarking chinese": 17130, "comprehensive multidimensional": 28078, "llms alignment": 94386, "alignment chinese": 8132, "ensuring high": 49738, "dedicated chinese": 37673, "evaluation codes": 51481, "terms recovering": 164458, "indicate powerful": 75617, "understand meaning": 171041, "surprisingly gpt4": 159563, "gpt4 nearly": 67085, "condition task": 28947, "despite severe": 40204, "space captures": 153552, "relationships data": 139336, "information original": 76610, "function specifically": 61859, "effectively erases": 45988, "analysis properties": 9090, "binary gender": 18474, "questions formulated": 135135, "graph relations": 67571, "types hallucinations": 170363, "hallucination experimental": 68372, "infer input": 75942, "way large": 177840, "possible adapt": 124396, "library facilitates": 92039, "using 3d": 173948, "design comprehensive": 39581, "superior training": 159061, "output closely": 117903, "similarity llm": 151355, "llm internal": 93778, "domains notably": 44484, "achievements large": 3925, "address imbalance": 5249, "extended vocabulary": 55668, "instruction alignment": 77963, "stylistic preferences": 157789, "lightweight costeffective": 92171, "applications emergence": 10500, "finetuning validation": 59605, "explore space": 55294, "eliminating redundant": 47088, "remain significantly": 139935, "providing practitioners": 133351, "applications given": 10546, "given nature": 65941, "containing thousands": 30350, "significant increases": 150758, "existing document": 53350, "final responses": 58398, "quality life": 134187, "motor actions": 110210, "traditional predictive": 167677, "mobile device": 102899, "field testing": 58253, "word predictions": 178658, "direction applying": 42429, "textbased user": 165603, "brought substantial": 19249, "extends application": 55685, "aims refine": 7664, "llms relevant": 96378, "examples furthermore": 52591, "furthermore employ": 62054, "results multimodal": 143618, "setting best": 149429, "need ensure": 112277, "controlled environment": 31632, "methods sensitive": 101808, "performance inferring": 121676, "triplet extraction": 169782, "provides llm": 133177, "memory bilstm": 100369, "architecture conducted": 12135, "conducted detailed": 29229, "analysis quality": 9107, "quality gathered": 134135, "detecting language": 40411, "model grounding": 103776, "information contradicts": 76334, "mechanisms provide": 100050, "provide coherent": 132703, "stateoftheart adaptive": 155065, "investigate recent": 80489, "perform global": 120953, "iterations results": 81111, "sophisticated variants": 153328, "datasets architectures": 36658, "sophisticated data": 153297, "designed employ": 39855, "framework emphasizes": 61103, "summaries propose": 158777, "visualize data": 177367, "comprehensive explanations": 28052, "drawn extensive": 44947, "analysis pipeline": 9059, "automated optimization": 14584, "task transforming": 161784, "optimize resource": 117079, "baseline gpt4": 16220, "gpt4 codellama": 66945, "enhancing accessibility": 49452, "problem amplified": 128183, "reduces complexity": 138509, "complexity data": 27664, "limitations develop": 92567, "algorithm online": 7835, "bandit algorithms": 15526, "remarkably method": 140322, "promising framework": 130256, "retrieval problems": 144112, "reach stateoftheart": 136120, "convex combination": 32012, "applications document": 10490, "55 respectively": 1373, "efficient extensible": 46609, "approaches predominantly": 11863, "information generates": 76477, "systems effectiveness": 160347, "seeking leverage": 147666, "recommendations paper": 138255, "process demands": 128783, "preference based": 126002, "encode user": 48385, "item features": 81078, "behavior user": 16660, "textonly prompting": 165668, "computational burdens": 28335, "currently supports": 34340, "boosts training": 18859, "training various": 168820, "training latency": 168540, "reason lies": 136569, "limiting potential": 92894, "language instructiontuning": 83455, "adaptation explore": 4620, "explore variants": 55324, "model perspectives": 104278, "initially investigate": 77082, "cot knowledge": 32870, "editing semantic": 45485, "llm knowledgeable": 93787, "agents subsequently": 6740, "subsequently examine": 157975, "llms amplify": 94391, "large commonsense": 87212, "reliance proprietary": 139785, "gap gpt4": 62656, "evaluations datasets": 51957, "training period": 168633, "mainly designed": 98288, "designed process": 39928, "scenarios text": 146710, "techniques related": 164007, "potential scenarios": 124969, "compare advantages": 26660, "discuss realworld": 42935, "methods summarize": 101854, "ones built": 115988, "complex landscape": 27449, "fostering collaboration": 60693, "collaboration information": 25589, "information interaction": 76525, "diverse agents": 43455, "yields superior": 180046, "rounds interactions": 145635, "llms unprecedented": 96895, "broader adoption": 19203, "designs large": 40021, "run llm": 145741, "bottleneck work": 18897, "choices compared": 23712, "compared realworld": 26906, "distributed large": 43321, "corresponding increase": 32588, "tools facilitate": 167161, "language querying": 86681, "enabling nonexperts": 48334, "framework addresses": 60930, "employing compact": 47916, "questions fed": 135128, "databases automatically": 36012, "providing significant": 133368, "handling largescale": 68596, "introduce allows": 79912, "quickly generating": 135346, "works prompting": 179483, "chatgpt reply": 23269, "descriptive language": 39522, "gpt3 opt": 66733, "remarkable accuracy": 140128, "accuracy wide": 3421, "network interface": 112661, "training frameworks": 168460, "crafted data": 33142, "involved various": 80710, "cases framework": 20965, "data resource": 35662, "interactions virtual": 79279, "assistants typically": 13432, "interactions natural": 79247, "based signals": 16095, "signals obtained": 150536, "task combining": 161248, "particular interested": 120085, "llm available": 93492, "baselines multimodal": 16352, "multimodal approach": 110588, "tasks constructing": 162122, "evaluating complex": 51280, "created sets": 33271, "sets findings": 149371, "findings showed": 58796, "distinct characteristics": 43210, "attempts use": 13821, "llm utilization": 94085, "adaptation experimental": 4618, "chatgpt application": 22707, "evolution deep": 52258, "captured attention": 20698, "35 exhibits": 1051, "exhibits capacity": 53185, "conducted qualitative": 29279, "research endeavor": 141752, "summaries articles": 158756, "summaries compared": 158760, "opposed original": 116896, "scientific discourse": 146948, "layers adapter": 89656, "generally limited": 63316, "inference computing": 75980, "computing cost": 28533, "procedures using": 128715, "data github": 35128, "estimation using": 50762, "using crowdsourced": 174098, "geological survey": 65724, "reports global": 140593, "complex semantics": 27582, "challenge interpreting": 21660, "platforms work": 123420, "forecasting using": 60382, "claims social": 23849, "noisy potentially": 114004, "potentially conflicting": 125090, "projection model": 130099, "review applications": 144482, "chatgpt science": 23291, "connections identifying": 29495, "present time": 126484, "unable assess": 170597, "evaluated distinct": 51169, "clarity completeness": 23863, "showed varying": 150157, "specially developed": 153927, "code llama34b": 24986, "llama34b model": 93393, "model quantized": 104401, "considered core": 29681, "intelligence work": 78925, "focuses evaluating": 60138, "task causal": 161237, "10k samples": 207, "task highly": 161448, "focused solely": 60121, "content realistic": 30592, "allocation large": 8328, "demanding high": 38145, "potentially overlooked": 125128, "overlooking crucial": 118388, "exhibited notable": 53143, "flexible integration": 59812, "work largely": 179089, "largely explored": 89151, "prompting prompt": 131049, "directly design": 42530, "prompts important": 131316, "space representation": 153613, "skill given": 152135, "skills approach": 152147, "framework exploring": 61152, "data capable": 34734, "explore adapting": 55138, "applications rapid": 10654, "used graph": 173095, "exploit text": 55015, "effectively limited": 46045, "efficiency demonstrated": 46440, "demonstrated comprehensive": 38636, "test based": 164515, "provided finegrained": 133057, "finegrained level": 58877, "adequately investigated": 5516, "predicted value": 125730, "manually predefined": 99104, "reasoning pose": 137034, "methods parameters": 101703, "using constrained": 174079, "exploration methods": 55088, "generalizes longer": 63287, "similar complexities": 151221, "different finetuned": 41774, "llms concurrently": 94690, "environments challenging": 50066, "model prohibitively": 104361, "values input": 175539, "using rulebased": 174688, "concepts input": 28661, "question results": 134935, "results cases": 143208, "student teamwork": 156832, "intelligence resulted": 78894, "work automatic": 178817, "classifiers based": 24180, "use varying": 172932, "evaluate current": 50940, "edited model": 45441, "models edits": 106039, "maintains effectiveness": 98392, "effectiveness learning": 46218, "recently experienced": 137883, "previously processed": 127735, "kernel support": 81448, "memory evaluation": 100394, "pairs textual": 118626, "scores existing": 147138, "datasets tackle": 37147, "provide substantial": 132985, "data filling": 35049, "intricate language": 79849, "pose obstacles": 124164, "introduced boost": 80154, "boost llms": 18817, "llms ondevice": 95969, "strategy balance": 156107, "adverse impact": 6254, "examples need": 52643, "relevant tools": 139660, "tools given": 167174, "propose context": 131762, "fetch relevant": 57853, "improves tool": 74094, "numerical categorical": 114998, "enhances semantic": 49443, "accuracy additionally": 3138, "generation tool": 65205, "compression paradigm": 28223, "resources propose": 142472, "propose trainingfree": 132174, "method addresses": 100660, "knowledge general": 82026, "create open": 33221, "opensource pretrained": 116665, "data serve": 35735, "outputs resulting": 118117, "resulting generation": 143100, "metamorphic testing": 100590, "studies tested": 157097, "fairness llms": 57060, "difficult extend": 42148, "testing analyzing": 164695, "metamorphic relations": 100588, "relations mrs": 139302, "templates cover": 164227, "llms newly": 95939, "generation achieving": 64394, "optimal results": 116950, "hallucinations manifest": 68444, "llms guides": 95462, "gehman et": 62853, "injection large": 77113, "inaccurate incorrect": 74264, "injection framework": 77111, "llms question": 96276, "leverages deep": 91717, "datasets showcase": 37109, "generation focuses": 64666, "uses transformers": 173918, "does follow": 43977, "visual supervision": 177317, "objective metrics": 115216, "understanding use": 171521, "comes inherent": 26017, "stereotypical biases": 155791, "challenge building": 21595, "systems firstly": 160390, "datasets evaluations": 36835, "evaluations interdisciplinary": 51987, "insights users": 77665, "customer feedback": 34377, "feedback received": 57769, "received feedback": 137301, "signals main": 150535, "work advantage": 178784, "generate prior": 63655, "previously known": 127728, "new bugs": 113099, "directly contributes": 42526, "training energy": 168417, "framework mitigates": 61307, "frontier large": 61648, "computations time": 28435, "learn similar": 90052, "limitations policy": 92635, "dynamically generates": 45191, "balance training": 15506, "need gpu": 112302, "significantly decrease": 150970, "block global": 18716, "research crucial": 141676, "llm testing": 94053, "standards use": 154920, "methods comparing": 101386, "comparing various": 27021, "annotators gpt4": 9631, "methods ranking": 101756, "results perform": 143661, "perform comparisons": 120896, "overwhelming number": 118454, "news legal": 113566, "legal domains": 91288, "induced llms": 75828, "bias does": 18114, "reduce bias": 138403, "outofdistribution scenarios": 117535, "summary study": 158946, "discerning user": 42670, "precise predictions": 125593, "number type": 114976, "utilizing advanced": 175167, "generating initial": 64258, "semantic level": 148172, "problem vision": 128435, "communities recent": 26442, "methods classification": 101366, "ability plms": 2318, "methods requires": 101787, "leads severe": 89908, "dependency using": 39155, "dependencies multiple": 39144, "terms extracted": 164415, "models summarizing": 109299, "sections separately": 147536, "internet large": 79586, "multiple research": 111024, "llama 70b": 93280, "english remains": 49099, "benchmarks best": 17182, "strategy diverse": 156129, "generation abstractive": 64387, "sophisticated integration": 153302, "performs robustly": 122455, "various algorithms": 175797, "demonstrating superiority": 38964, "superiority accuracy": 159066, "counterpart code": 32965, "summarization achieved": 158797, "better accommodate": 17789, "accommodate various": 2987, "localglobal attention": 97262, "llms processing": 96202, "sequences critical": 148810, "applications requiring": 10669, "information recognizing": 76682, "recognizing inherent": 138173, "inherent challenges": 76944, "architecture propose": 12209, "models equipping": 106140, "models demonstration": 105922, "mapping relationship": 99156, "learning motivation": 90744, "positive feedback": 124291, "feedback experimental": 57676, "algorithms suffer": 7976, "improve search": 73623, "gpt4 enhanced": 66984, "asking gpt4": 12881, "uses feedback": 173853, "based reinforcement": 16067, "models llama2": 107019, "performance major": 121781, "way making": 177850, "field aims": 58119, "little currently": 93228, "currently understood": 34343, "vector arithmetic": 176376, "selective generation": 147903, "performance selective": 122048, "open vocabulary": 116309, "refinement module": 138766, "based bertscore": 15688, "bleu1 score": 18692, "language abstract": 83124, "human human": 70846, "internal world": 79569, "studied different": 156923, "fields applications": 58261, "applications knowledge": 10576, "levels rapid": 91551, "understanding grounding": 171278, "grounding necessary": 67916, "existing long": 53428, "longer sufficient": 97533, "paper developed": 118852, "form multiple": 60474, "recent effective": 137480, "data numbers": 35427, "benefit compared": 17425, "compared simpler": 26915, "useful fine": 173327, "dataset financial": 36303, "language field": 83321, "create text": 33238, "evaluate feasibility": 50971, "manuscript present": 99120, "systems dataset": 160321, "exceptional capacity": 52818, "model meta": 104082, "represents novel": 140986, "thanks large": 165988, "chatgpt advantage": 22688, "code research": 25108, "explicitly focusing": 54971, "approaches ensure": 11749, "challenging using": 22314, "diverse comprehensive": 43485, "expand initial": 53684, "initial dataset": 77018, "quality conversations": 134084, "consists mixture": 29978, "generated conversations": 63836, "best generated": 17675, "discovery existing": 42766, "llm activations": 93438, "predict different": 125680, "methods discovering": 101449, "identification issues": 71797, "llm specialized": 94013, "ability denoise": 2123, "framework datasets": 61060, "domains datasets": 44381, "range existing": 135619, "canonical supervised": 19753, "paradigms like": 119540, "lowers barriers": 97857, "problem practical": 128350, "considerable difficulties": 29611, "queries compare": 134458, "data engineers": 34976, "better metric": 17944, "quality continuous": 134081, "tasks resume": 163183, "resume screening": 143945, "inference accuracy": 75956, "largely ignores": 89155, "aspects research": 12969, "multiaspect knowledge": 110349, "useful evaluation": 173324, "evaluation target": 51891, "quality aspects": 134045, "studies validate": 157112, "effectiveness stages": 46290, "framework conducted": 61036, "scripts available": 147255, "data meets": 35359, "hinders ability": 70154, "data integrating": 35243, "image encoding": 72245, "encoding multimodal": 48515, "particularly chinese": 120157, "framework news": 61325, "prompt optimizer": 130620, "enhancing llmbased": 49510, "news content": 113553, "content user": 30642, "insights effective": 77548, "llms news": 95940, "recommendation automatic": 138193, "challenges comprehensive": 21803, "fixed predefined": 59715, "features inspired": 57516, "adopt framework": 5575, "framework combine": 61011, "chatgpt 10": 22657, "prediction crucial": 125779, "food delivery": 60336, "systems platforms": 160530, "required make": 141243, "domains just": 44443, "single domain": 151792, "characteristics domain": 22456, "loss strategy": 97696, "understanding distinct": 171195, "relationships understanding": 139355, "understanding crucial": 171181, "investigating key": 80602, "employ statistical": 47864, "analysis mda": 9014, "features supervised": 57583, "clustering techniques": 24601, "major finding": 98429, "language structured": 86744, "programs paper": 129923, "focuses harnessing": 60143, "effectively utilized": 46106, "utilized semantic": 175115, "tasks procedure": 163006, "primary types": 127827, "certain instruction": 21394, "impact areas": 72621, "novel categories": 114429, "utilizing labeled": 175200, "poorly novel": 123967, "category names": 21155, "propose scalable": 132111, "names extensive": 111427, "construction maintenance": 30227, "efforts domain": 46908, "logicbased reasoning": 97406, "generation comparable": 64511, "potential substantially": 125007, "importance having": 73035, "effective extraction": 45756, "tasks devised": 162222, "direct optimization": 42395, "allows continuous": 8415, "advanced rag": 5796, "rag frameworks": 135429, "highlights stateoftheart": 69879, "providing profound": 133354, "understanding advancements": 171117, "language built": 83174, "ai landscape": 7052, "landscape offering": 83104, "processing existing": 129152, "separate retrieval": 148694, "single generative": 151804, "opensource generative": 116612, "text paraphrasing": 165346, "refined dataset": 138747, "dataset obtains": 36433, "capabilities achieves": 19760, "retrieval qa": 144114, "recent llmbased": 137550, "texttosql methods": 165847, "collaboration address": 25578, "comprises core": 28242, "agents utilize": 6759, "conversational reasoning": 31911, "constrained lack": 30032, "llm grounded": 93727, "textual environment": 165911, "decisionmaking task": 37445, "gradient reinforcement": 67395, "rich reward": 144798, "provide supportive": 132991, "inherent complexities": 76947, "sequential patterns": 148879, "examples following": 52590, "highlevel user": 69718, "preferences multiple": 126057, "aspects providing": 12966, "emulates human": 48049, "analysis effectively": 8900, "manner evaluate": 98986, "tokens irrespective": 166829, "incorporates types": 75076, "enhance large": 49219, "improvement methods": 73821, "risks data": 144982, "potentially compromising": 125089, "instruction fusion": 78021, "quantity highquality": 134404, "results highlighting": 143466, "efficiency learning": 46482, "output various": 118017, "basic python": 16433, "python problems": 133841, "problems mbpp": 128565, "mbpp dataset": 99721, "creation set": 33355, "improvement 34": 73746, "central modern": 21344, "delivering exceptional": 38073, "requirements present": 141316, "efficiently running": 46815, "data transferred": 35885, "reusing previously": 144312, "data chunks": 34752, "running models": 145752, "compared naive": 26862, "aims discover": 7598, "patterns learn": 120545, "preference personality": 126022, "detection online": 40576, "applications recommendation": 10661, "data approaches": 34651, "llms soon": 96643, "text graphbased": 165217, "assess llm": 13094, "know measuring": 81709, "measuring alignment": 99942, "efficient evaluation": 46607, "question generator": 134887, "entities analysis": 49831, "equivalent human": 50202, "fix errors": 59700, "database method": 35998, "hallucination correction": 68363, "chatgpt instructgpt": 23073, "llm significant": 94000, "world works": 179634, "offers flexible": 115804, "interface allows": 79418, "achieve notable": 3693, "effectiveness adaptability": 46114, "paradigm efficiently": 119445, "pretrained initialization": 126847, "propose gradientbased": 131856, "effectiveness range": 46281, "important llms": 73155, "requires specific": 141447, "specific hardware": 154007, "feature map": 57415, "determine global": 40707, "additional bias": 4929, "using baseline": 173998, "pruning code": 133453, "users questions": 173754, "uses probabilistic": 173896, "web shopping": 178021, "algorithm outperforms": 7839, "llm synergy": 94036, "settings remains": 149637, "size datasets": 151983, "key unlocking": 81596, "unfortunately limited": 171669, "downstream utility": 44853, "utility generative": 174953, "mechanism leveraging": 100011, "metrics obtain": 102119, "dataset empirically": 36251, "insights llm": 77599, "output highquality": 117943, "review assessment": 144484, "solution reducing": 152969, "discuss applications": 42868, "efficiency memory": 46488, "advancements practical": 5948, "applications survey": 10699, "practitioners seeking": 125543, "training plans": 168637, "millions dollars": 102252, "studies effectively": 156984, "effectively evaluating": 45990, "inherent llm": 76965, "vary based": 176263, "insight design": 77485, "fast access": 57259, "attains average": 13765, "18 lower": 516, "accuracy better": 3162, "study integration": 157415, "utilize complex": 175028, "feature combination": 57389, "utilizing domain": 175180, "problem critical": 128213, "like india": 92320, "ai llmbased": 7072, "llmbased technologies": 94174, "suitable llm": 158700, "extend understanding": 55645, "class data": 23867, "performance deteriorated": 121379, "heads task": 68924, "research transformers": 142124, "building foundational": 19409, "law medical": 89604, "block future": 18715, "development hardware": 41129, "expectations models": 53744, "important achieving": 73077, "crosslingual generalisation": 33652, "models benefiting": 105487, "challenges requires": 22049, "gptstyle model": 67323, "model 20": 102999, "120 million": 278, "leveraging vast": 91966, "considered important": 29691, "generating search": 64326, "scarcity domain": 146490, "benchmarks effectiveness": 17227, "acceleration framework": 2807, "information crucial": 76342, "accurate uptodate": 3505, "realworld product": 136482, "users inference": 173679, "presents generic": 126583, "speed cost": 154503, "number generated": 114871, "generating single": 64335, "process enables": 128807, "tokens subsequently": 166889, "process performed": 128937, "process conduct": 128763, "llm adaptive": 93442, "prompts medical": 131372, "showcase efficacy": 150074, "finetuned mistral": 59071, "gpt35turbo zeroshot": 66885, "demonstrate relatively": 38525, "dataset 20000": 36079, "distilling complex": 43186, "performed various": 122384, "distill llms": 43140, "positive ones": 124302, "types large": 170377, "small step": 152364, "subsequently refined": 157990, "language address": 83135, "update new": 172335, "method work": 101173, "editing dataset": 45454, "12 languages": 270, "impact diverse": 72640, "models undergo": 109534, "undergo training": 170784, "exhibit proficiency": 53086, "proficiency tasks": 129678, "absence explicit": 2591, "shown substantial": 150386, "especially machine": 50510, "study code": 157212, "constrained training": 30045, "trained finetuned": 167923, "methods appear": 101307, "set general": 149203, "second provide": 147504, "importance proper": 73052, "approach empowering": 11161, "advancements widespread": 5978, "applications past": 10633, "years generating": 179898, "offering novel": 115750, "systems bridge": 160276, "llms devise": 94917, "devise prompting": 41331, "study analysis": 157158, "highlighting llms": 69818, "generalization potential": 63213, "systems contribute": 160309, "constructed pretrained": 30184, "inputs furthermore": 77406, "benchmark field": 16978, "advanced analysis": 5703, "chart generation": 22510, "incorporating advanced": 75082, "challenges finally": 21869, "tables evaluate": 160767, "benchmark presents": 17055, "analysis paving": 9053, "advanced research": 5805, "llms facilitates": 95239, "facilitates creation": 56678, "flexible natural": 59818, "dialogues task": 41567, "systems method": 160480, "flow control": 59871, "strategy verified": 156218, "following standard": 60311, "llms yielding": 97031, "achieve problem": 3712, "exists learning": 53661, "challenging tradeoff": 22307, "llm requiring": 93963, "database particular": 36000, "database searches": 36006, "developed specifically": 40919, "preparation pretraining": 126163, "training transfer": 168797, "existing world": 53656, "refined data": 138746, "address wide": 5389, "generation produce": 64965, "code introduce": 24954, "finetuned code": 58999, "tasks level": 162702, "contribution field": 31475, "performance coderelated": 121259, "tasks contextaware": 162127, "prior belief": 127884, "hallucination work": 68416, "analysis computational": 8862, "hyperparameter sensitivity": 71598, "huggingface library": 70542, "vs machinegenerated": 177605, "methods vanilla": 101922, "cost effective": 32666, "way finetune": 177813, "chinese chat": 23611, "approach design": 11112, "improvement additional": 73752, "perform preliminary": 121010, "benchmark biomedical": 16848, "experts results": 54681, "especially medical": 50512, "business processes": 19547, "emerging challenge": 47507, "software practitioners": 152832, "methodologies input": 101198, "queries oracle": 134514, "domain semantic": 44278, "databases large": 36018, "alternative query": 8572, "assess validity": 13133, "plans produced": 123368, "restricted form": 143004, "programs enables": 129902, "existing texttosql": 53616, "humanlevel language": 71228, "performances proprietary": 122341, "designed english": 39860, "english scenarios": 49103, "report propose": 140553, "models 30": 105160, "feedback extensive": 57680, "outperforms similar": 117845, "llms interpretable": 95670, "unprecedented breakthroughs": 172079, "approaches attention": 11699, "attention visualization": 14006, "facilitates dynamic": 56680, "evaluations realworld": 52023, "feasibility potential": 57359, "specific operators": 154052, "analysis determine": 8888, "highlevel synthesis": 69711, "synthesis hls": 159947, "device experimental": 41299, "zerothorder optimization": 180381, "gradient estimate": 67388, "resolve problems": 142350, "convergence stability": 31768, "generalization llms": 63192, "standard llms": 154840, "natural humanlike": 111532, "attributes input": 14116, "generation autoregressive": 64447, "response sentiment": 142700, "classification furthermore": 24004, "accuracy response": 3377, "chatgpt marked": 23117, "complex powerful": 27519, "resources energy": 142434, "paper showcase": 119329, "search multiple": 147380, "multiple software": 111044, "values large": 175541, "simply providing": 151623, "demonstrate task": 38586, "helping identify": 69227, "method prompts": 101039, "contributions prompt": 31503, "prompt comprehensive": 130399, "particularly instructiontuned": 120209, "evaluation limited": 51668, "set 12": 149117, "additionally probe": 5110, "handling various": 68612, "various adversarial": 175793, "impact evaluation": 72649, "return incorrect": 144294, "challenging modify": 22215, "highlevel declarative": 69688, "constraints approach": 30063, "scalable methods": 146249, "methods delivering": 101422, "delivering consistent": 38071, "models deliver": 105878, "semantic relationship": 148205, "llms properly": 96243, "sentence respectively": 148528, "applied adapt": 10739, "solutions context": 153006, "framework suggesting": 61436, "includes description": 74365, "environments simulated": 50112, "llm second": 93984, "llm informing": 93762, "experiment approach": 53878, "average treatment": 15318, "treatment effect": 169637, "design provides": 39737, "systems adapting": 160229, "attention demonstrated": 13865, "results challenges": 143214, "critical concern": 33473, "used incremental": 173110, "capture longterm": 20665, "longterm shortterm": 97606, "performance validating": 122228, "generation technology": 65194, "facilitate informed": 56623, "decisionmaking using": 37449, "key characteristic": 81474, "key finetuning": 81507, "personalized prompt": 122615, "uncover previously": 170733, "alignment comprehensive": 8135, "appropriately selected": 12007, "automatically effectively": 14795, "work delve": 178890, "strategies alignment": 155962, "examine existing": 52384, "techniques enhanced": 163883, "subsequently propose": 157987, "mistral models": 102557, "samples automatically": 145989, "sft training": 149748, "samples achieve": 145984, "provide tools": 133010, "dataefficient alignment": 36051, "alignment release": 8228, "knowledge inadequate": 82111, "particular domains": 120071, "corpora furthermore": 32224, "llms efficacy": 95010, "persian large": 122522, "data robust": 35684, "data unavailability": 35899, "evaluated natural": 51195, "based automated": 15673, "like chatbots": 92215, "significant successes": 150895, "novel recommender": 114668, "scenarios propose": 146679, "transition matrix": 169397, "capitalize existing": 20552, "clearly validate": 24288, "smaller efficient": 152390, "prediction probabilities": 125845, "model closely": 103289, "closely mimics": 24522, "approach utilized": 11652, "responses graded": 142816, "approach higher": 11277, "higher scoring": 69634, "furthermore student": 62163, "smaller parameters": 152432, "lies potential": 92070, "settings particularly": 149624, "domainspecific instructions": 44587, "understanding limited": 171333, "core characteristics": 32157, "surface syntactic": 159418, "information probing": 76646, "intricate interplay": 79847, "probing task": 128168, "opportunities explore": 116847, "t5 sequencetosequence": 160722, "models approaches": 105380, "use crossattention": 172572, "eliminating reliance": 47089, "optimization language": 117001, "biobjective optimization": 18498, "tradeoff introduce": 167561, "budget constraint": 19269, "providing immersive": 133312, "bilingual benchmark": 18412, "series games": 148928, "questions cover": 135084, "quality check": 134060, "verification ensuring": 176473, "various opensource": 176090, "settings reveal": 149643, "assessing role": 13207, "despite successful": 40233, "successful implementations": 158341, "english african": 49027, "queries english": 134473, "analyze compare": 9277, "leveraging generated": 91852, "english results": 49100, "llm explainable": 93654, "used fields": 173073, "science medicine": 146895, "network edge": 112644, "time produce": 166472, "gather data": 62807, "inference human": 76030, "capabilities mimicking": 20052, "improved capabilities": 73674, "codes prompts": 25312, "prompts sample": 131458, "dynamic incontext": 45132, "mutual improvement": 111340, "supervision based": 159191, "intents prove": 79043, "prove beneficial": 132614, "tasks crafting": 162141, "studies improve": 157018, "preferences various": 126074, "directly user": 42609, "behavior patterns": 16627, "provide clearer": 132700, "behaviors finegrained": 16697, "graph convolutions": 67510, "multiple semantic": 111037, "representations effectiveness": 140799, "evaluated publicly": 51207, "furthermore interpretability": 62098, "interpretability analysis": 79635, "conducted demonstrate": 29227, "biases manifest": 18288, "samples skewed": 146066, "logistical constraints": 97413, "constraints inherent": 30090, "shifts occur": 149940, "tasks certain": 162032, "highly robust": 69951, "bias additionally": 18091, "ensure transparency": 49710, "vast computational": 176328, "method simple": 101109, "analyses empirically": 8761, "possibility finetuning": 124381, "finetuning opensourced": 59418, "task execute": 161367, "execute corresponding": 52907, "process controllable": 128772, "extraction causal": 56268, "endtoend solutions": 48764, "strategies running": 156071, "strategy use": 156214, "makes stateoftheart": 98689, "effort achieve": 46828, "difficult deploy": 42140, "deploy models": 39201, "unstructured semistructured": 172220, "method prune": 101047, "sample variance": 145968, "toxicity classifier": 167470, "lowresource promptbased": 97932, "plms improve": 123610, "optimization learning": 117007, "collapse problem": 25646, "important language": 73150, "function introduced": 61841, "llm named": 93840, "application results": 10377, "ineffective context": 75894, "context empirically": 30740, "pivotal task": 123159, "precise natural": 125589, "language answers": 83156, "models creation": 105819, "datasets specific": 37127, "attention address": 13837, "utilizes existing": 175127, "paramount paper": 119899, "queries high": 134486, "accuracy making": 3303, "novice expert": 114771, "core innovation": 32172, "technology finetuned": 164140, "privacy ensure": 127996, "mechanism continuously": 99982, "agents extensive": 6606, "represents paradigm": 140987, "efficient secure": 46713, "repositories paper": 140624, "concludes discussion": 28890, "outlines potential": 117506, "efficient universal": 46744, "generation users": 65231, "automate classification": 14494, "significantly efficient": 150982, "jupyter notebooks": 81355, "parts code": 120296, "zeroshot classifiers": 180147, "increased prevalence": 75269, "prevalence online": 127507, "summary given": 158934, "algorithms generate": 7927, "time efficiency": 166383, "efficiency algorithm": 46423, "corpus approximately": 32277, "finetuned bart": 58983, "crucial practical": 33833, "dynamic conversational": 45121, "landmarks using": 83088, "using responses": 174672, "quantify influence": 134319, "llms preexisting": 96160, "supports argument": 159393, "speech vision": 154487, "approach augmenting": 11008, "synthesis capabilities": 159934, "boost speech": 18829, "synthesis capability": 159935, "steps unlike": 155776, "constrained task": 30041, "tasks nearly": 162845, "interaction framework": 79125, "fuse different": 62183, "chatgptbased data": 23462, "references evaluation": 138694, "quality result": 134252, "quality inference": 134167, "inference demand": 75988, "transforms graph": 169389, "intuitive effective": 80290, "graph edge": 67516, "dataset open": 36436, "domains analysis": 44354, "analysis embedding": 8902, "siamese neural": 150503, "variety use": 175776, "cases language": 20983, "llms words": 97013, "text transformed": 165540, "using unique": 174834, "performance algorithm": 121145, "model measured": 104076, "footprint associated": 60347, "associated large": 13492, "cases overall": 20998, "research compared": 141653, "inference services": 76097, "chat conversations": 22527, "notion fairness": 114327, "fairness results": 57069, "rich literature": 144790, "achieve fairness": 3643, "significantly propelled": 151123, "propelled field": 131605, "application designed": 10310, "alignment especially": 8144, "stateoftheart texttoimage": 155395, "t2i diffusion": 160683, "t2i model": 160685, "resource furthermore": 142384, "alignment like": 8188, "lacking prior": 83041, "crossattention map": 33607, "visualizations provide": 177364, "match textual": 99429, "language capability": 83177, "chatgpt showcasing": 23309, "proficiency range": 129676, "generation following": 64667, "impact key": 72670, "models level": 106954, "quality conducted": 134077, "alignment response": 8230, "aid community": 7356, "sampling schemes": 146115, "schemes enable": 146803, "model synthesize": 104706, "effectively modeling": 46055, "revolutionized generative": 144651, "agents roleplaying": 6724, "beginning initial": 16539, "employs multifaceted": 47973, "metrics dimensions": 102049, "dimensions comprehensive": 42326, "frequent updates": 61607, "continued relevance": 31215, "end recent": 48688, "various inputs": 175980, "problem provide": 128369, "review cuttingedge": 144496, "computed based": 28462, "mechanism inference": 100000, "code modification": 25020, "effortlessly extend": 46881, "length code": 91352, "interactive knowledge": 79317, "naturalistic manner": 111966, "research conversational": 141674, "adapt responses": 4559, "users prior": 173741, "prior interactions": 127899, "lies enabling": 92066, "enabling conversational": 48283, "revolutionized information": 144652, "ushering new": 173934, "accessibility models": 2934, "factors paper": 56816, "models multicultural": 108239, "involves integration": 80744, "tailored unique": 160948, "generation structured": 65108, "experiments extensive": 54285, "extensive benchmark": 55725, "issue types": 80966, "navigating uncertainty": 112053, "ability search": 2364, "approach ground": 11263, "ground knowledge": 67827, "knowledge retrieve": 82384, "optimal behavior": 116934, "introducing hallucination": 80235, "removing undesirable": 140373, "similar semantics": 151304, "concepts results": 28689, "demonstrates resilience": 38886, "tuning furthermore": 170018, "general observe": 63010, "fewer examples": 57865, "just 24": 81362, "bias phenomenon": 18177, "tendency model": 164330, "text leading": 165274, "numerous experiments": 115041, "findings lead": 58721, "performance position": 121919, "generate list": 63597, "candidate codes": 19713, "automatic test": 14749, "understudied field": 171557, "query database": 134573, "results validation": 143914, "36 improvement": 1075, "evaluations comparisons": 51951, "features secure": 57571, "evaluation local": 51680, "utterance level": 175249, "accuracy coherence": 3177, "instructions generating": 78268, "toolkit serve": 167088, "aiming develop": 7544, "perplexity extrinsic": 122511, "effectively improving": 46027, "corpus code": 32284, "model initialized": 103863, "tasks programming": 163015, "superiority existing": 159068, "tasks intelligent": 162616, "integrating natural": 78616, "various environments": 175928, "need support": 112401, "systems evidenced": 160366, "evidenced extensive": 52237, "18 datasets": 515, "dense mixtureofexperts": 39090, "considerable proficiency": 29629, "successful paradigm": 158352, "enhances ability": 49395, "instructions exhibit": 78253, "limitations multiple": 92626, "inspired llms": 77738, "semantics achieve": 148285, "joint encoder": 81252, "generation seen": 65074, "indistinguishable real": 75695, "advancements speech": 5966, "models revolutionize": 108992, "require natural": 141164, "tools operate": 167217, "hierarchical neural": 69368, "neural components": 112838, "order mitigate": 117223, "limitations stateoftheart": 92666, "highperforming models": 69985, "cutting data": 34426, "transcribed speech": 168879, "text realworld": 165405, "output instead": 117946, "works resorted": 179491, "methods develop": 101439, "understand influence": 171024, "influence language": 76203, "modules attention": 109971, "information method": 76576, "method tested": 101142, "shows improved": 150439, "potential manipulating": 124855, "generation integrating": 64750, "inputs context": 77392, "module retrieves": 109958, "similar sentences": 151305, "structure different": 156548, "expansive models": 53727, "chat responses": 22551, "demand significant": 38136, "collaboratively achieve": 25638, "match capabilities": 99407, "models moderate": 108229, "moderate size": 109764, "rival surpass": 145033, "substantially larger": 158130, "rigorously tested": 144879, "tested using": 164685, "using ab": 173952, "large user": 89098, "stronger smaller": 156480, "greatly benefit": 67781, "llms database": 94779, "understanding query": 171431, "obtained gpt4": 115519, "practice involves": 125485, "forgetting occurs": 60426, "challenge addressing": 21581, "reasoning implies": 136907, "works ignore": 179455, "pairs accompanied": 118544, "embedding association": 47153, "nature external": 111999, "utilization model": 175008, "methods update": 101901, "providing set": 133367, "transferring learned": 169034, "learned skills": 90130, "stability effectiveness": 154671, "learn prompt": 90035, "goals achieved": 66215, "improving readability": 74200, "textual format": 165918, "results desired": 143350, "step framework": 155637, "finetuned palm": 59088, "overwhelming volume": 118455, "content algorithms": 30432, "direct user": 42412, "input resulting": 77330, "user directly": 173397, "popularity ease": 124084, "use ability": 172484, "chatgpt simulate": 23335, "model recommendations": 104429, "bias chatgpts": 18106, "bias mitigated": 18162, "specific subnetworks": 154093, "circuits complex": 23777, "aspect approach": 12901, "networks demonstrate": 112729, "creating trustworthy": 33328, "trustworthy transparent": 169874, "transparent ai": 169595, "report technical": 140562, "includes pretrained": 74380, "texts english": 165706, "finetuning align": 59160, "public community": 133553, "inference complete": 75976, "efficiently process": 46804, "unresolved challenges": 172127, "overheads paper": 118364, "innovative solution": 77188, "compilation overhead": 27221, "using latest": 174405, "traditionally associated": 167720, "serves primer": 149051, "science artificial": 146849, "argue success": 12417, "networks highlight": 112758, "empirical methods": 47712, "methods probing": 101727, "effectively deploying": 45972, "llms commodity": 94640, "paper observe": 119084, "process current": 128779, "combine outputs": 25883, "gpt35 evaluated": 66803, "benchmarks provide": 17340, "lora efficient": 97637, "methods paramount": 101704, "incurring additional": 75479, "modules provide": 110001, "papers study": 119408, "feedback user": 57816, "half time": 68321, "comments paper": 26065, "baseline substantially": 16265, "helpful feedback": 69204, "22x improvement": 788, "needs better": 112468, "models suitable": 109296, "model aware": 103175, "applications experimental": 10521, "verifying effectiveness": 176547, "challenging difficulty": 22146, "aimed generating": 7519, "directly video": 42615, "video approach": 176683, "events video": 52135, "using vlm": 174860, "shift approach": 149900, "methods converting": 101408, "improved alignment": 73672, "fostering dynamic": 60698, "notable trend": 114251, "language classification": 83187, "pioneers innovative": 123025, "emphasizing pivotal": 47655, "role comprehensive": 145471, "comprehensive datasets": 27991, "showcases exceptional": 150097, "cutting edge": 34427, "addressing unique": 5484, "lengths large": 91402, "algorithms demonstrate": 7917, "attention kernel": 13910, "consistent training": 29844, "finetuning robust": 59522, "component analysis": 27731, "jointly trains": 81290, "challenging generative": 22165, "finetuning alternative": 59166, "algorithm specifically": 7861, "joint representation": 81264, "evaluation gap": 51614, "correctly different": 32463, "barack obama": 15547, "granularity level": 67480, "answers present": 10064, "aligning response": 8112, "nearly 20": 112107, "schemes significantly": 146809, "hallucinations output": 68448, "llms false": 95249, "llms updated": 96899, "overlook potential": 118377, "concerns model": 28793, "reveals current": 144418, "maintain general": 98323, "specific method": 154039, "advocate research": 6280, "processing comprehension": 129131, "including 20": 74401, "provided new": 133079, "chatbot development": 22574, "development existing": 41110, "users making": 173709, "development chatbot": 41063, "chatbot framework": 22576, "including appropriate": 74416, "evidenced case": 52235, "results user": 143898, "guidance model": 68154, "strategies new": 156044, "effectiveness cot": 46151, "cot length": 32873, "rationale reasoning": 136056, "findings results": 58772, "prompts adding": 131151, "information prompt": 76651, "significantly diminishes": 150980, "problemsolving scenarios": 128672, "scenarios second": 146697, "second investigated": 147484, "analysis recently": 9119, "chatgpt showcased": 23307, "used recommendation": 173207, "public availability": 133545, "based classification": 15701, "line existing": 92941, "shed lights": 149860, "llmbased taskoriented": 94171, "function challenging": 61827, "number data": 114847, "utilized supervised": 175116, "showcase quality": 150083, "highquality texts": 70086, "important challenges": 73106, "diversity evaluate": 43725, "using encoderdecoder": 174162, "detection difficult": 40487, "words generation": 178725, "includes cases": 74360, "measured automated": 99887, "findings automated": 58639, "evaluation produces": 51787, "assessment findings": 13231, "influence prompt": 76216, "divide conquer": 43765, "excessive focus": 52853, "subsets based": 158014, "involving arithmetic": 80778, "options verify": 117149, "prevent models": 127538, "models referring": 108880, "removing irrelevant": 140368, "assessment argument": 13215, "classifier data": 24152, "laborious annotations": 82863, "tests language": 164784, "prevalent domains": 127513, "dataset addressing": 36102, "verification generation": 176481, "verification models": 176491, "dataset probing": 36467, "experts validated": 54689, "annotators test": 9646, "data steady": 35798, "illusion large": 72141, "human robot": 71029, "robot interaction": 145176, "robot behaviors": 145172, "robots behavior": 145217, "subject study": 157843, "expectations llms": 53743, "topic real": 167332, "implement llm": 72823, "modular ai": 109898, "agents employ": 6588, "set forth": 149201, "teaching method": 163655, "way teach": 177881, "teach ai": 163596, "costs environmental": 32823, "depending complexity": 39162, "methods unsupervised": 101900, "pivotbased translation": 123161, "training use": 168811, "paths experiments": 120445, "identify strong": 71968, "trained llama": 167987, "gpt4 having": 67043, "incurs performance": 75489, "leads average": 89874, "results practical": 143675, "systems engineers": 160356, "promptengineering techniques": 130841, "researchers studying": 142263, "llms zero": 97033, "project source": 130087, "train sequence": 167825, "tagging conclusion": 160891, "machine translated": 98106, "concerns training": 28833, "models monolingual": 108233, "languages article": 86948, "effectively translate": 46099, "generation software": 65092, "adding semantic": 4833, "capabilities applications": 19784, "known retrieval": 82625, "passing documents": 120359, "chatgpt extract": 22926, "reduce problem": 138463, "remove need": 140360, "present experience": 126305, "arising work": 12468, "operation robustness": 116761, "focus boosting": 59951, "directions demonstrate": 42466, "adopted finetuning": 5596, "finetuning crucial": 59214, "xu et": 179862, "unseen language": 172172, "nonsensical responses": 114133, "responses comparable": 142745, "equal access": 50155, "solve limitation": 153128, "hyperparameter search": 71596, "pretrained webscale": 127248, "increasing concern": 75313, "included pretraining": 74351, "input desired": 77225, "outputs evaluation": 118051, "aiming capturing": 7540, "number total": 114966, "16b parameters": 475, "substantial advantages": 158026, "learning forecasting": 90470, "leveraging established": 91838, "advantages large": 6140, "pivotal nodes": 123148, "factors llms": 56811, "revealing framework": 144399, "metrics additionally": 101997, "area receiver": 12343, "receiver operating": 137319, "operating characteristic": 116750, "challenges notion": 21970, "literature conducted": 93161, "analyze 15": 9266, "investigation focused": 80635, "results expose": 143405, "dual contribution": 45069, "used answer": 172962, "existing transformers": 53624, "policies introduce": 123813, "novel policy": 114638, "policies experiments": 123810, "models additive": 105277, "enabling execution": 48292, "resulting algorithm": 143090, "129 improvement": 310, "22 improvement": 773, "adapting various": 4765, "require frequent": 141112, "ones likely": 116004, "current understanding": 34290, "encompassing 13": 48544, "domains perform": 44494, "english ability": 49026, "contrast opensource": 31316, "bilingual large": 18419, "demonstrates comparable": 38829, "tokens approach": 166778, "learning excel": 90432, "performance conduct": 121321, "surpass gpt4": 159456, "offtarget translation": 115901, "additional evaluation": 4955, "sets zeroshot": 149414, "light strengths": 92153, "nshot learning": 114788, "query generate": 134586, "batch processing": 16460, "novel variant": 114744, "featuring multiple": 57608, "relying manual": 139906, "leverages unlabelled": 91791, "substantial dataset": 158049, "instructionoutput pairs": 78198, "innovative data": 77165, "annotations methodology": 9605, "methodology presents": 101252, "presents scalable": 126633, "remains gap": 140011, "leverage source": 91664, "prompts discern": 131230, "enhances evaluation": 49407, "methodology dataset": 101216, "llm offer": 93852, "information product": 76650, "reviews providing": 144588, "probabilities target": 128103, "sampled model": 145975, "model combining": 103305, "different candidates": 41679, "search recent": 147402, "bleurt scores": 18695, "outputs demonstrate": 118042, "cases consistently": 20952, "played crucial": 123481, "datasets continues": 36739, "cost remains": 32735, "applicability context": 10253, "design experimental": 39626, "samples label": 146030, "notion uncertainty": 114329, "diversity work": 43761, "work implement": 179031, "achieve generalization": 3649, "cost required": 32736, "model acceptance": 103016, "data contains": 34847, "scenarios compared": 146558, "learning improvements": 90565, "strongest models": 156486, "works step": 179504, "step mitigating": 155663, "set templates": 149326, "create initial": 33203, "existing taxonomy": 53610, "terms use": 164490, "rate exceeding": 135985, "chatbots advent": 22596, "answers users": 10092, "terms retrieval": 164463, "llm optimize": 93859, "rl specifically": 145080, "policy actions": 123827, "policy optimize": 123869, "perform actions": 120864, "model experimented": 103600, "proposed rl": 132428, "rl approach": 145044, "approach generic": 11259, "ai existing": 6986, "speech summarization": 154474, "labels large": 82808, "distribution potential": 43380, "llms proxy": 96267, "summaries training": 158784, "strategies generate": 156004, "content despite": 30470, "present effective": 126289, "common modalities": 26158, "compared text": 26949, "studies introduced": 157025, "introduced various": 80171, "intricate contextual": 79838, "contextual details": 31082, "benchmarks guide": 17260, "promptbased paradigm": 130793, "structure predictors": 156593, "transformative technologies": 169080, "technologies natural": 164101, "platforms paper": 123412, "multiple stateoftheart": 111051, "electronic hardware": 46996, "retrieval despite": 144040, "increased effectiveness": 75259, "outofdomain scenarios": 117542, "data closely": 34761, "usually need": 174908, "removes need": 140364, "methods scale": 101801, "work treats": 179345, "llm independent": 93755, "retrievers context": 144264, "known limited": 82611, "sought extend": 153374, "llama palm": 93334, "llms attention": 94443, "entropy information": 49963, "maintain stability": 98332, "scaling attention": 146385, "lengthy conversations": 91406, "closedsource language": 24486, "models closedsource": 105634, "states output": 155435, "constrains effectiveness": 30049, "estimation framework": 50751, "update prior": 172337, "decentralized autonomous": 37345, "autonomous organizations": 14945, "demonstrates effective": 38836, "llms automating": 94459, "specify categories": 154342, "proposals demonstrate": 131692, "evaluation survey": 51888, "coherence creativity": 25511, "methods detailed": 101435, "detailed exploration": 40295, "limitations evaluating": 92576, "including bias": 74434, "survey seeks": 159690, "graphs typically": 67650, "ii use": 72112, "use graph": 172663, "promoting effective": 130353, "interleaved inputs": 79495, "llms empirically": 95047, "llm focus": 93681, "finetuning typically": 59600, "mitigate memory": 102624, "memoryefficient fast": 100486, "separated llm": 148698, "competent performance": 27136, "reasoning allows": 136667, "application existing": 10318, "samples expensive": 146009, "used label": 173122, "results reduce": 143734, "samples work": 146079, "incorrectly labeled": 75182, "potentials llms": 125151, "scale leads": 146306, "edits model": 45504, "art methods": 12551, "methods rome": 101799, "phases initial": 122814, "limit usefulness": 92492, "highlights key": 69860, "serving various": 149108, "candidate recommendation": 19729, "dataset significant": 36540, "llms subject": 96710, "limited binary": 92721, "labels available": 82786, "practice paper": 125488, "allows editing": 8429, "datasets binary": 36685, "performs close": 122434, "labels introduce": 82807, "generally applicable": 63300, "scope existing": 147017, "method editing": 100805, "distribution sample": 43385, "text thanks": 165530, "ai able": 6843, "texts fluent": 165714, "addition shown": 4906, "types results": 170421, "prompting just": 130970, "strongly suggests": 156505, "decoding mitigate": 37580, "emerged novel": 47375, "begin providing": 16529, "providing formal": 133298, "key facets": 81497, "selection verification": 147898, "verification strategies": 176498, "testing environments": 164709, "contributing efficient": 31458, "breakthrough natural": 19011, "aspects exploring": 12937, "consensus research": 29519, "community regarding": 26517, "nuances context": 114805, "fostering discussions": 60697, "mitigate hallucinations": 102607, "integration retrieval": 78688, "given challenges": 65848, "optimize evaluate": 117064, "leakage large": 89935, "diverse software": 43663, "coding knowledge": 25387, "encountered pretraining": 48578, "impact evaluating": 72648, "various se": 176157, "demonstrate threat": 38592, "typically finetuned": 170487, "level applied": 91449, "tokens challenge": 166788, "instructions significantly": 78352, "cause llms": 21249, "performance absence": 121120, "maintain consistent": 98320, "users increases": 173677, "answers similar": 10080, "techniques rely": 164009, "high chance": 69405, "user confidence": 173387, "techniques usually": 164052, "testing effectiveness": 164708, "evaluated approach": 51145, "queries result": 134534, "query pairs": 134612, "efficient transparent": 46738, "revolutionized artificial": 144639, "important bottlenecks": 73098, "average 92": 15267, "seamless execution": 147285, "systems vital": 160670, "novel explainable": 114494, "framework pioneers": 61346, "offering pathway": 115754, "apply advanced": 10837, "complexity human": 27672, "configuration files": 29380, "code compared": 24720, "module acquire": 109919, "potential aligning": 124570, "module extensive": 109936, "screening automation": 147237, "recruitment process": 138336, "encompass range": 48526, "tasks advent": 161923, "notably enhanced": 114267, "enhanced efficacy": 49333, "showcasing robust": 150123, "abilities diverse": 1896, "various agents": 175794, "application practical": 10362, "time management": 166446, "distinct ability": 43200, "efficiently summarize": 46820, "simulation experiment": 151694, "model surpassed": 104696, "analysis decisionmaking": 8879, "agents final": 6610, "models evolution": 106175, "challenges offering": 21972, "insights ongoing": 77613, "approximately 80": 12028, "80 words": 1661, "shows capability": 150412, "512 words": 1337, "overhead exploiting": 118357, "implicitly exhibit": 72998, "capture features": 20652, "contrastive preference": 31381, "boundaries llm": 18909, "present reference": 126433, "reference data": 138653, "humangenerated contrast": 71183, "perfect translations": 120856, "datasets machine": 36970, "persian english": 122521, "methods combination": 101377, "humanlike machine": 71270, "style guidelines": 157751, "considerations models": 29668, "processing applying": 129113, "linguistic metrics": 93045, "report aims": 140512, "cognitive dynamics": 25453, "particularly ability": 120142, "ability facilitate": 2164, "prime candidates": 127829, "struggle hallucinations": 156754, "investigate calibration": 80380, "distributional shift": 43412, "opensource algorithm": 116567, "explore integration": 55222, "users technical": 173793, "pipeline specifically": 123093, "aid future": 7359, "novel adaptive": 114348, "framework generalize": 61179, "validation performance": 175371, "textual numerical": 165932, "shallow simple": 149768, "efforts demonstrated": 46898, "demonstrated llms": 38721, "llms poor": 96119, "commonsense planning": 26290, "planning evaluating": 123267, "measurement evaluating": 99899, "logic program": 97340, "evaluations illustrate": 51983, "neural program": 112962, "training hybrid": 168478, "space systematically": 153624, "tuning positive": 170083, "enables multimodal": 48224, "major obstacles": 98445, "decomposition svd": 37645, "transfer address": 168896, "prompt gradient": 130531, "interference tasks": 79480, "samples research": 146060, "encourages future": 48613, "soon publicly": 153287, "information implicit": 76503, "feedback utterances": 57820, "annotated demographic": 9466, "flant5 gpt2": 59751, "consistency generated": 29761, "issue lacking": 80921, "modeling interactions": 105018, "validated various": 175349, "studies highlighting": 157012, "excels generating": 52802, "dialogues accurately": 41547, "boosting user": 18847, "personalized ai": 122587, "enabling nuanced": 48335, "leads strong": 89917, "time token": 166521, "approach capitalizes": 11039, "primary features": 127810, "adaptability efficacy": 4574, "remarkably approach": 140315, "sophisticated llms": 153312, "examining diverse": 52444, "explore landscape": 55229, "meet unique": 100284, "aiming optimize": 7559, "models logit": 108093, "poses limitation": 124211, "access logits": 2881, "enhances utility": 49447, "generating specific": 64342, "emerges key": 47494, "factors style": 56823, "standard methodology": 154848, "information explicit": 76408, "explicit statement": 54957, "facilitating construction": 56703, "construction prompts": 30233, "tailored various": 160951, "method chinese": 100731, "codebased large": 25226, "simply replacing": 151624, "tasks centered": 162031, "focused detection": 60091, "identifying resolving": 72027, "communication goals": 26378, "goals work": 66226, "preferences improve": 126046, "improve controllability": 73434, "comparable strong": 26622, "highly abstractive": 69887, "content control": 30460, "monolingual ones": 110072, "furthermore training": 62172, "efficient learners": 46661, "recognition recent": 138118, "dataset learn": 36389, "hypotheses groundtruth": 71613, "represent noise": 140646, "embedding experiments": 47162, "various latest": 176005, "numerous model": 115047, "underexplored research": 170776, "mbert xlmroberta": 99719, "using writing": 174872, "french spanish": 61597, "reveal notable": 144358, "research associated": 141606, "understanding biases": 171138, "provider fairness": 133096, "behaviors generative": 16700, "fairness diversity": 57056, "enhance fairness": 49197, "allows capture": 8412, "accuracy findings": 3243, "imply potential": 73007, "experience study": 53846, "contributes significantly": 31449, "harms biases": 68771, "biases systems": 18316, "source large": 153451, "provides high": 133159, "relations research": 139308, "concern introduce": 28741, "solution requires": 152970, "limited prompt": 92824, "solution present": 152964, "execution complex": 52941, "languages framework": 87013, "associated acquiring": 13460, "different use": 42075, "special training": 153856, "rate maintaining": 136006, "compromising generation": 28279, "refer persons": 138645, "annotations evaluate": 9583, "domain size": 44286, "number classes": 114839, "classes provide": 23915, "algorithms considered": 7910, "experiments shed": 54458, "affect behavior": 6298, "cloud services": 24564, "lora inference": 97643, "efficiently coordinate": 46770, "solution fewshot": 152936, "mechanisms limited": 100044, "problem identifying": 128274, "tokens representations": 166874, "light large": 92124, "roles different": 145558, "higher proficiency": 69624, "looking improve": 97618, "data outperforms": 35454, "architecture incorporates": 12173, "novel finegrained": 114502, "baseline additionally": 16190, "obtained stateoftheart": 115535, "sota f1": 153345, "rs provide": 145669, "need diverse": 112272, "offer meaningful": 115669, "literature reports": 93197, "reranking selecting": 141538, "candidate recommendations": 19730, "diverse ranking": 43624, "testing stateoftheart": 164757, "metrics use": 102160, "use does": 172593, "insight prompt": 77497, "design task": 39777, "diversity balance": 43710, "diversity relevance": 43752, "learning retrieved": 90934, "existing databases": 53331, "biases inherent": 18273, "review studies": 144551, "attention unparalleled": 14001, "confined specific": 29390, "deployed tasks": 39228, "testing multiple": 164737, "limitations offers": 92629, "better cater": 17822, "positively correlates": 124314, "extensive exploration": 55905, "examples understand": 52719, "factors quality": 56819, "models 40": 105162, "diverse corpus": 43491, "tokens sourced": 166887, "japanese korean": 81204, "cases evaluation": 20960, "aiming inspire": 7557, "outcomes insights": 117456, "initial approach": 77010, "local opensource": 97253, "generate select": 63703, "zeroshot error": 180162, "seven different": 149693, "insightful understanding": 77505, "llm program": 93910, "output new": 117968, "unreliable predictions": 172125, "additional samples": 4995, "datasets average": 36671, "models superpositions": 109302, "proprietary counterparts": 132510, "character knowledge": 22431, "meticulously constructed": 101944, "various parameter": 176096, "maintains consistent": 98391, "comparable advanced": 26559, "advanced proprietary": 5793, "alignment experiment": 8149, "llms commonly": 94642, "commonly employ": 26225, "concept prompt": 28615, "generation employing": 64602, "greedy sampling": 67810, "efficiency existing": 46453, "benchmark extensive": 16974, "techniques context": 163856, "openended answer": 116486, "essential researchers": 50624, "llms fewer": 95254, "provide suitable": 132988, "improvements paper": 73930, "graphs based": 67617, "accuracy answers": 3145, "systems demonstrating": 160332, "systems rich": 160598, "analysis fundamental": 8941, "apis based": 10185, "module enables": 109931, "finetuning module": 59390, "generating api": 64137, "significant bottleneck": 150628, "key parameters": 81547, "length vocabulary": 91395, "various institutions": 175981, "thoroughly assessing": 166202, "llms bridge": 94511, "examination involves": 52356, "increase uncertainty": 75240, "llm change": 93529, "significance incorporating": 150553, "regarding transparency": 138893, "transparency ethical": 169578, "use survey": 172892, "underscores imperative": 170944, "llms delving": 94802, "interpretability challenges": 79639, "complexity terms": 27703, "methods classify": 101367, "considering utilization": 29736, "examine representative": 52413, "datasets elucidating": 36809, "techniques applications": 163836, "time llm": 166439, "network conditions": 112635, "measurement study": 99908, "study current": 157259, "caused missing": 21257, "wait time": 177664, "llm enable": 93623, "languages text": 87143, "translation paraphrasing": 169497, "text expansion": 165067, "focus indian": 59999, "according knowledge": 3042, "work exists": 178946, "multiclass text": 110364, "results basic": 143191, "understanding communication": 171165, "communication patterns": 26402, "doesnt require": 44043, "bias issue": 18140, "metric time": 101987, "people search": 120736, "time points": 166467, "increased use": 75276, "temporal dimensions": 164258, "unable handle": 170603, "passages related": 120350, "74 improvement": 1567, "task introduces": 161494, "prediction largescale": 125817, "graphs design": 67624, "twostage sampling": 170269, "strategy control": 156122, "limits addressing": 92906, "information finetune": 76453, "advanced baselines": 5709, "issue remains": 80961, "better plan": 17976, "novel unified": 114736, "subtasks different": 158182, "selfrefinement mechanism": 148033, "consistency scores": 29794, "perspectives personalized": 122715, "cover extensive": 33041, "leading inaccuracies": 89826, "approaches treat": 11936, "poorer performance": 123961, "exploration framework": 55073, "merges knowledge": 100528, "use manually": 172762, "methods highly": 101572, "organizations individuals": 117287, "facing constraints": 56730, "generation benefiting": 64456, "models sllms": 109153, "information largescale": 76552, "building develop": 19387, "efficient semantic": 46714, "instruction based": 77967, "techniques significant": 164021, "scenarios achieve": 146521, "like named": 92359, "labeling text": 82768, "llms extraction": 95228, "content novel": 30556, "frequently observed": 61624, "legal entity": 91289, "quadratic relationship": 133964, "produce exhaustive": 129401, "suboptimal training": 157917, "smaller semantic": 152439, "syntactic diversity": 159890, "document existing": 43825, "approach obtaining": 11410, "generates labeled": 64080, "llms trusted": 96863, "humans need": 71437, "focused quality": 60119, "external human": 56052, "responses internal": 142831, "importance transparent": 73064, "sequential information": 148877, "longtail problem": 97589, "leveraging combined": 91821, "combined potential": 25915, "synergistically combines": 159862, "tailored enhance": 160914, "kinds models": 81665, "results empirical": 143373, "expand models": 53686, "large expert": 87249, "result existing": 143032, "generate convincing": 63442, "related question": 139203, "simulate llms": 151644, "adapts llms": 4799, "consistency improvement": 29767, "improvement finetuning": 73798, "based reference": 16066, "despite advancement": 40075, "problems hard": 128528, "hard acquire": 68633, "relational constraints": 139268, "end proposed": 48686, "chinese multimodal": 23648, "progress demonstrated": 129954, "intelligence mllms": 78860, "imposes limitations": 73236, "greater challenges": 67756, "challenges mllms": 21956, "propose rigorous": 132104, "reduce position": 138461, "analysis position": 9067, "bias evaluate": 18117, "quality consistently": 134078, "high runtime": 69528, "better tradeoffs": 18050, "interface llms": 79440, "pretraining additionally": 127257, "enhancing task": 49572, "storage memory": 155849, "based unified": 16159, "specifically curated": 154166, "outperforms multilingual": 117806, "turkish models": 170168, "scarcity common": 146486, "settings lack": 149599, "context limitations": 30830, "capabilities opened": 20087, "main relevant": 98266, "improve process": 73590, "public corpora": 133554, "domains previous": 44502, "focused manually": 60113, "application method": 10350, "tests facilitate": 164780, "nlp aims": 113681, "aims detecting": 7595, "domainspecific terms": 44632, "terms financial": 164422, "90 billion": 1743, "bpe tokenizer": 18936, "comprehensive language": 28070, "way enhanced": 177802, "tasks conversational": 162132, "leading additional": 89804, "garner significant": 62772, "leading increasing": 89830, "limited assessing": 92708, "subjective evaluation": 157854, "normalization methods": 114185, "systems represent": 160588, "data retrieved": 35674, "generative aspect": 65389, "study fills": 157362, "analyzing influence": 9372, "models laying": 106930, "diverse instructiontuning": 43553, "substantial costs": 158044, "solution alleviate": 152895, "code optimization": 25040, "40gb a100": 1199, "networks enables": 112738, "enable future": 48087, "future avenues": 62230, "llms timeconsuming": 96806, "level secondly": 91505, "llama2chat 70b": 93388, "accuracy number": 3320, "trends identify": 169719, "fundamental concepts": 61948, "excessive number": 52855, "overall trend": 118255, "mitigating llm": 102668, "answers associated": 9997, "procedure building": 128696, "retrieving evidence": 144280, "examine capabilities": 52369, "perform unsatisfactorily": 121077, "greater adoption": 67752, "ensures data": 49717, "window prompt": 178527, "challenges llmbased": 21946, "execution various": 52973, "tailored complex": 160910, "queries findings": 134479, "achieves pass1": 4049, "approach deployable": 11109, "manner prior": 99006, "highly adaptable": 69889, "llama baichuan": 93290, "following path": 60303, "method textual": 101144, "graphs llm": 67638, "insight combine": 77484, "used academic": 172948, "publication process": 133615, "evaluating using": 51403, "illustrating effectiveness": 72165, "review mechanism": 144524, "training representation": 168692, "attentionbased transformer": 14017, "5fold crossvalidation": 1410, "study pioneers": 157532, "attains accuracy": 13764, "accuracy 927": 3129, "exhibit hallucinations": 53054, "llms relies": 96384, "model behaves": 103197, "wrong end": 179799, "propose corrective": 131767, "focus key": 60006, "approaches experiments": 11762, "llms beginning": 94477, "models scoring": 109050, "did achieve": 41591, "knowledge additionally": 81735, "additionally experimental": 5058, "effective challenging": 45707, "challenging science": 22269, "education llms": 45559, "advances demonstrate": 5997, "addresses common": 5407, "keeping remaining": 81428, "variety visual": 175781, "understanding datasets": 171186, "hallucination benchmark": 68358, "imagetext instruction": 72528, "apply efficient": 10844, "function allowing": 61822, "experiments proved": 54413, "mixing multiple": 102745, "template filling": 164213, "language languages": 83476, "able attain": 2469, "communication bandwidth": 26349, "convergence training": 31769, "mathematical proof": 99583, "findings extensive": 58670, "experiments encompassing": 54272, "hugely improve": 70533, "prediction knowledge": 125809, "seeks expand": 147675, "retrieved using": 144254, "fact retrieval": 56744, "sets recent": 149398, "pairs aimed": 118545, "study benchmarking": 157187, "assess incremental": 13089, "considerable improvement": 29622, "improvement finally": 73797, "focus source": 60054, "focusing semantic": 60195, "suitable candidates": 158689, "model featuring": 103645, "sheer number": 149887, "like lora": 92342, "effective multiturn": 45824, "knowledge rapidly": 82331, "previous user": 127682, "reward preference": 144707, "better assistants": 17810, "datasets creating": 36750, "solution selectively": 152974, "instructions especially": 78248, "given relative": 65983, "input embedding": 77231, "diversity prompting": 43749, "better crossdataset": 17840, "set trained": 149336, "tokenlevel sequence": 166770, "token experiments": 166708, "trained brazilian": 167874, "licensing regimes": 92056, "document development": 43822, "generation release": 65034, "release permissive": 139491, "permissive apache": 122486, "assess coherence": 13062, "drawing parallels": 44935, "execution approach": 52940, "shared computation": 149807, "changes hardware": 22372, "computation important": 28302, "persist models": 122527, "tasks utilising": 163442, "nuanced handling": 114795, "techniques software": 164025, "edge ai": 45415, "edge artificial": 45416, "enables various": 48259, "autonomous mobile": 14944, "mobile computing": 102898, "significant delays": 150679, "end develop": 48654, "applications demonstrate": 10474, "novel feasible": 114497, "techniques pretraining": 163989, "tokens compared": 166791, "heads better": 68919, "creating comprehensive": 33290, "contemporary methods": 30419, "encapsulate various": 48368, "language modelenhanced": 83975, "surpasses leading": 159488, "generation compelling": 64514, "gpt widely": 66510, "stage process": 154748, "iteration requires": 81101, "architecture endtoend": 12160, "architectural features": 12111, "data mapping": 35352, "nonlinear functions": 114092, "architecture built": 12125, "enhances capabilities": 49400, "benchmarks predominantly": 17329, "predominantly assess": 125977, "pipeline experiments": 123055, "constructs largescale": 30245, "benchmark evaluates": 16952, "rag applications": 135420, "representing unique": 140975, "intricate questions": 79858, "extensive texts": 55961, "developed comprehensive": 40865, "rag technology": 135439, "timeconsuming does": 166540, "scale evaluation": 146283, "straightforward remarkably": 155927, "12 prominent": 275, "using widelyused": 174870, "complex evaluation": 27414, "indicate utility": 75629, "vital define": 177407, "settings language": 149600, "assessing alignment": 13168, "writing work": 179770, "writing capabilities": 179715, "professional writers": 129632, "produce humanlike": 129426, "generalist llm": 63095, "llms writing": 97028, "including integration": 74574, "personalized writing": 122634, "study python": 157574, "python numpy": 133839, "learning technologies": 91069, "potential substantial": 125006, "reproducibility crucial": 141012, "employed machine": 47892, "algorithms additionally": 7898, "quality comparable": 134066, "certain style": 21419, "involves providing": 80761, "data written": 35975, "examples teach": 52708, "agent engage": 6438, "approach generation": 11257, "generation sample": 65064, "dialogues used": 41570, "develop train": 40847, "agents talk": 6745, "including evaluation": 74510, "dialogues research": 41565, "annotations subset": 9615, "learn domaininvariant": 89972, "domaininvariant representations": 44340, "methods showcase": 101813, "fed language": 57615, "specifically task": 154291, "classification spectrum": 24100, "summarization multiturn": 158853, "regular text": 138980, "method long": 100969, "exhibit diversity": 53040, "rarely explore": 135952, "factual question": 56896, "question leads": 134903, "forgetting original": 60428, "maintaining integrity": 98362, "intelligence sparked": 78901, "performance predicting": 121925, "hierarchical feature": 69355, "brains using": 18954, "compare feature": 26677, "align closely": 7994, "cognitive processing": 25473, "analysis proves": 9095, "editing target": 45488, "ml approaches": 102775, "temporal scales": 164284, "spatial scales": 153805, "classification capabilities": 23967, "blackbox approaches": 18627, "limiting interpretability": 92890, "trustworthiness clinical": 169847, "clinical contexts": 24320, "leverages advances": 91709, "transparent interpretable": 169600, "promoting trustworthiness": 130358, "generative foundation": 65418, "10 indian": 120, "powerful developed": 125270, "performed human": 122371, "gpt35turbo chatgpt": 66874, "bloom 7b": 18742, "despite smaller": 40215, "66 20": 1484, "languages pretrained": 87093, "finetuning input": 59310, "various long": 176024, "data varied": 35942, "length distributions": 91359, "weighting method": 178094, "evaluating instructionfollowing": 51318, "changes world": 22397, "world state": 179620, "methods retrieve": 101795, "corpus limiting": 32327, "improve best": 73417, "analysis summarization": 9188, "solutions fail": 153019, "problem incorporating": 128281, "long story": 97487, "story short": 155900, "diverse users": 43692, "gpt3 base": 66647, "multiple dialogue": 110889, "thorough exploration": 166191, "trained 1m": 167861, "view crucial": 176810, "intelligence understanding": 78916, "correct english": 32382, "variation human": 175641, "framework implement": 61207, "common pretrained": 26178, "using corresponding": 174093, "integrated model": 78540, "design innovative": 39655, "demonstrate unified": 38596, "benchmarks datasets": 17203, "data schema": 35703, "does affect": 43958, "combines rulebased": 25952, "models recognizing": 108863, "dataset public": 36481, "generation crucial": 64546, "forms foundation": 60596, "framework enhanced": 61131, "sequences based": 148807, "intent context": 79008, "significantly achieves": 150925, "serve large": 148993, "commercial vendors": 26097, "training providing": 168670, "local llms": 97250, "users furthermore": 173662, "furthermore designed": 62043, "accuracy chinese": 3167, "llms scoring": 96491, "differs significantly": 42121, "global llms": 66098, "guidance understanding": 68165, "frameworks method": 61521, "begins instructing": 16543, "analysis makes": 9013, "effort open": 46863, "series fully": 148927, "contribution study": 31483, "token ids": 166713, "sequence likely": 148766, "llm designs": 93587, "interpretable machine": 79678, "opportunities interpretable": 116860, "learning notably": 90774, "explain natural": 54705, "expand scale": 53688, "patterns given": 120532, "immense computational": 72594, "start reviewing": 154959, "scope applications": 147014, "highlight emerging": 69739, "analyze new": 9316, "communication knowledge": 26380, "swiftly advancing": 159773, "transmission communication": 169566, "communication content": 26360, "effectively furthermore": 46002, "versatility different": 176581, "explanations notable": 54885, "refining llms": 138784, "llms explainable": 95194, "constraints computing": 30065, "inputs prompts": 77436, "effective exploration": 45755, "terms explainability": 164414, "textual quality": 165938, "quality public": 134233, "research attempt": 141608, "recognition developed": 138056, "recognition development": 138057, "used development": 173029, "preserves data": 126675, "reduce global": 138429, "problem sizes": 128394, "systems age": 160234, "ai providing": 7176, "algorithms output": 7955, "enable make": 48109, "informed decision": 76889, "webbased tool": 178030, "approaches tool": 11928, "intent requires": 79021, "identifying adapting": 71983, "intents generating": 79038, "required actions": 141220, "application service": 10384, "network functions": 112654, "functions using": 61924, "crisis management": 33423, "management building": 98872, "building advanced": 19363, "llm platforms": 93890, "effective response": 45872, "response research": 142697, "identify classify": 71871, "emergency situations": 47453, "messages using": 100550, "model llama2": 103969, "ability assist": 2073, "stateoftheart taskspecific models": 155388, "tasks requiring finegrained": 163161, "yields better performance": 180013, "model pretraining data": 104329, "integrate large language": 78494, "multiple data generation": 110880, "tasks using pretrained": 163436, "knowledge distillation model": 81888, "outperform baseline methods": 117566, "advances deep learning": 5994, "human performance tasks": 70959, "challenging task perform": 22293, "task publicly available": 161669, "related tasks like": 139214, "performance test sets": 122173, "stateoftheart baseline methods": 155086, "error analysis shows": 50274, "possible achieve good": 124394, "advancements language modeling": 5905, "indistinguishable humangenerated text": 75693, "insights strengths weaknesses": 77652, "methods typically rely": 101893, "syntactic semantic features": 159899, "feature extraction models": 57404, "new stateoftheart result": 113428, "speedup wallclock time": 154529, "seen training time": 147714, "achieves significantly better": 4077, "achieves stateoftheart auc": 4091, "making language generation": 98764, "learning shows promise": 90990, "wolf et al": 178598, "data scarcity problem": 35699, "neural dialogue models": 112844, "models gpt2 demonstrated": 106525, "maximum likelihood objective": 99698, "metrics including bleu": 102089, "including bleu rouge": 74437, "demonstrated stateoftheart performance": 38798, "used finetune model": 173076, "entity recognition tasks": 49928, "contextualized word representations": 31137, "representations produced models": 140868, "features language model": 57525, "generate training samples": 63764, "methods considerable margin": 101397, "state art natural": 154989, "art natural language": 12555, "processing applications large": 129112, "applications large models": 10586, "language models advance": 84084, "advance state art": 5694, "performance model size": 121807, "using gpt2 model": 174259, "improve natural language": 73531, "additional commonsense knowledge": 4933, "commonsense knowledge language": 26271, "language modelbased approaches": 83969, "explore different strategies": 55186, "anecdotal evidence suggests": 9413, "evidence suggests models": 52221, "language modeling perform": 84011, "results obtained using": 143643, "models large deep": 106877, "large deep learning": 87238, "models offer significant": 108332, "significant accuracy gains": 150564, "zero redundancy optimizer": 180085, "redundancy optimizer zero": 138631, "models 13b parameters": 105153, "require extensive human": 141102, "extensive human annotations": 55908, "effectiveness incorporating language": 46202, "language model requires": 83880, "stateoftheart methods popular": 155214, "capable generating humanlike": 20427, "generating humanlike responses": 64248, "achieved state art": 3902, "word embeddings large": 178632, "bert gpt shown": 17547, "transformer models using": 169186, "using large models": 174395, "transfer learning natural": 168951, "bert gpt elmo": 17543, "performance target task": 122153, "understanding recent advances": 171446, "web question answering": 178014, "models bert openai": 105496, "suffer information loss": 158432, "question answering develop": 134701, "exhibited superior performance": 53161, "paper aim conduct": 118718, "generative pretraining approach": 65568, "representation learning methods": 140711, "conversational response generation": 31917, "terms automatic human": 164390, "automatic question generation": 14727, "rely heuristic rules": 139852, "model trained produce": 104770, "recently largescale pretrained": 137935, "commonsense reasoning given": 26310, "human performance furthermore": 70956, "performance furthermore demonstrate": 121548, "gpt2 empirically demonstrate": 66529, "data tasks require": 35855, "model improve performance": 103829, "et al 2016": 50769, "model setting new": 104558, "tasks work pretrained": 163486, "corpus provide baseline": 32344, "believe results improved": 16790, "paraphrasing large language": 119919, "achieve highquality results": 3666, "question answering reading": 134788, "answering reading comprehension": 9944, "little work investigating": 93256, "poorly tasks require": 123970, "test set named": 164628, "speech recognition paper": 154459, "speech recognition systems": 154462, "short natural language": 149979, "story generation generating": 155897, "evaluation shows model": 51862, "present experimental results": 126307, "language models slm": 86177, "language model rerank": 83881, "ii proposed novel": 72109, "using small amounts": 174725, "results language model": 143550, "publicly available training": 133669, "training question answering": 168674, "factors model size": 56815, "compared prior work": 26901, "domain adaptation domain": 44064, "adaptation domain adaptation": 4612, "domain adaptation recently": 44074, "research deep learning": 141683, "deep learning framework": 37742, "using pretrained transformer": 174603, "models language model": 106864, "tasks paper study": 162926, "models autoregressive models": 105432, "autoencoder models bert": 14468, "provides simple effective": 133215, "contextual representations learned": 31111, "gpt trained using": 66503, "tokens text generation": 166892, "model gpt2 generate": 103759, "experimental results english": 54012, "pretraining experimental results": 127320, "experimental results chinese": 53973, "current stateoftheart text": 34269, "stateoftheart text generators": 155394, "use recently introduced": 172845, "multiple baseline models": 110847, "baseline models based": 16243, "errors hard spot": 50364, "language modeling training": 84025, "language modeling techniques": 84024, "reduce performance gap": 138459, "language model speech": 83914, "wide variety data": 178343, "language model autoregressive": 83546, "generation text generation": 65200, "tasks summarization dialogue": 163316, "process work investigate": 129038, "energybased models ebms": 48800, "language model second": 83895, "according human evaluation": 3040, "generate text containing": 63752, "leads suboptimal performance": 89919, "tasks specifically propose": 163277, "specifically propose pretraining": 154273, "learning downstream tasks": 90389, "glue benchmark method": 66125, "generation tasks pretrained": 65178, "usage paper propose": 172467, "model fewer parameters": 103648, "different pretraining methods": 41923, "generation tasks performance": 65176, "recently achieved humanlevel": 137818, "achieved humanlevel performance": 3827, "train language models": 167779, "use train models": 172918, "story generation given": 155898, "different writing styles": 42094, "simple language model": 151481, "language model taskoriented": 83924, "leads stateoftheart performance": 89915, "approach taskoriented dialogue": 11600, "sequence prediction problem": 148781, "leverage transfer learning": 91675, "generation task model": 65141, "performance increase model": 121665, "leveraging transfer learning": 91961, "produce high quality": 129422, "human evaluators rated": 70775, "nlp tasks little": 113869, "different types models": 42071, "data collection procedure": 34787, "traditional statistical machine": 167700, "methods paper propose": 101702, "language models measure": 85729, "tasks experiments indicate": 162367, "model based pretraining": 103188, "recent work focused": 137729, "models substantially outperform": 109276, "performance experimental results": 121486, "significantly better baseline": 150947, "using large amounts": 174361, "generation using pretrained": 65244, "models large scale": 106910, "capability generate fluent": 20304, "training large gpt": 168524, "networks graph neural": 112756, "networks gnns demonstrated": 112754, "graph generation task": 67533, "structural semantic properties": 156528, "text pretrained language": 165370, "text various domains": 165564, "effective method generating": 45810, "conduct comprehensive empirical": 29044, "minimal changes existing": 102316, "compared prior art": 26900, "overcome data scarcity": 118286, "data achieved best": 34584, "images using language": 72506, "language model set": 83900, "set unlabeled data": 149340, "small labeled data": 152302, "used feature extractor": 173068, "bert gpt2 xlnet": 17554, "time machine learning": 166442, "bert pretrained model": 17585, "learning models text": 90734, "survey recent years": 159680, "fields natural language": 58292, "gated recurrent units": 62803, "quantization knowledge distillation": 134410, "work deep learning": 178887, "deep learning nlp": 37770, "dialogue systems use": 41529, "gpt2 radford et": 66587, "highlight current limitations": 69733, "coherence generated text": 25515, "require manual effort": 141153, "aim bring attention": 7436, "bring attention important": 19116, "stateoftheart generative pretrained": 155151, "adoption deep learning": 5631, "learning machine translation": 90660, "investigate use pretrained": 80516, "models competitive performance": 105699, "preserving semantic meaning": 126699, "sources paper propose": 153530, "responses evaluate model": 142779, "human machinegenerated text": 70925, "challenging task significantly": 22295, "gpt2 model way": 66567, "generation synthetic text": 65130, "synthetic text generation": 160082, "text generation challenging": 165137, "performance tasks text": 122160, "gpt2 pretrained model": 66583, "layer pretrained model": 89646, "natural language generate": 111608, "used training large": 173282, "controllable generation methods": 31616, "human feedback data": 70799, "responses human replies": 142821, "report experimental results": 140526, "language model ensemble": 83624, "framework takes advantage": 61448, "pretrained gpt2 model": 126835, "gpt2 model generate": 66561, "generation multihop reasoning": 64861, "generation existing approaches": 64631, "knowledge generative pretrained": 82037, "sophisticated language model": 153305, "simple language models": 151482, "text generation important": 165146, "product description generation": 129570, "lms demonstrated impressive": 97124, "demonstrated impressive abilities": 38687, "set linguistic features": 149235, "order achieve stateoftheart": 117170, "clinical named entity": 24345, "paper conduct empirical": 118797, "conduct empirical investigation": 29073, "generation external knowledge": 64647, "existing pretrained large": 53526, "systems paper present": 160512, "text paper introduces": 165344, "tasks end introduce": 162300, "comprehensive empirical studies": 28000, "outperform stateoftheart methods": 117634, "paper propose evaluate": 119218, "results synthetic realworld": 143858, "knowledge graphs recent": 82087, "new evaluation framework": 113172, "fewshot performance gpt3": 58015, "task model generates": 161548, "established automatic metrics": 50684, "metrics correlate human": 102035, "generation challenging task": 64487, "language model achieved": 83515, "outperforms baseline approaches": 117709, "natural language describes": 111579, "language model predicting": 83841, "model trained evaluated": 104762, "automatically acquire knowledge": 14762, "knowledge largescale corpora": 82172, "answering questions writing": 9942, "publicly available evaluation": 133639, "established new stateoftheart": 50695, "framework conduct extensive": 61035, "base language model": 15606, "gain deeper insight": 62440, "long short term": 97478, "short term memory": 150002, "learning ml natural": 90698, "ml natural language": 102787, "conducting qualitative studies": 29321, "despite encouraging results": 40101, "approach outperforms competitive": 11426, "preserving semantic information": 126698, "works shown language": 179496, "models significantly improved": 109130, "training objectives including": 168611, "quantitative evaluation human": 134341, "evaluation human evaluation": 51638, "data scientists practitioners": 35709, "training fewshot learning": 168451, "questionanswering information extraction": 134988, "model gpt2 sequence": 103762, "responses experimental results": 142784, "achieves stateoftheart performances": 4102, "stateoftheart performances multiple": 155302, "case study illustrate": 20907, "training dataset evaluate": 168371, "opening new avenues": 116524, "recognition systems large": 138134, "neural networkbased systems": 112913, "achieves better results": 3974, "results method achieves": 143595, "method achieves higher": 100637, "existing models task": 53486, "model search space": 104518, "learning rl approaches": 90940, "models generated text": 106466, "method applied language": 100682, "comparable results stateoftheart": 26614, "models paper develop": 108405, "language model available": 83547, "synthetic news generation": 160060, "zeroshot question answering": 180311, "best model achieves": 17703, "generating news articles": 64283, "detecting modelgenerated text": 40421, "new research directions": 113386, "incorporates local knowledge": 75067, "knowledge learned pretraining": 82186, "models fewshot settings": 106328, "using public datasets": 174630, "data target language": 35852, "resulting model generate": 143117, "model generate large": 103722, "efficient active learning": 46560, "classification work propose": 24139, "work propose use": 179223, "machine learning service": 98073, "requires substantial engineering": 141452, "efficient distributed training": 46598, "shared task 9th": 149823, "endtoend task completion": 48769, "generative pretraining gpt2": 65571, "dialog state tracking": 41429, "address issues introduce": 5284, "substantially outperforms baseline": 158135, "ami meeting corpus": 8668, "lens natural language": 91418, "tasks finally discuss": 162401, "benchmarks practical applications": 17328, "knowledge target domain": 82448, "given test example": 66029, "classification sequence tagging": 24089, "abstractive summarization task": 2684, "methods based deep": 101335, "based deep neural": 15745, "require large training": 141142, "remains largely unknown": 140027, "magnetic resonance imaging": 98196, "like bert achieve": 92199, "performances various nlp": 122348, "paper address problem": 118703, "problem proposing novel": 128367, "datasets natural language": 36997, "pretrained models including": 127082, "including bert roberta": 74432, "bert roberta t5": 17601, "outperforming state art": 117696, "including autoencoding models": 74424, "encoderdecoder models t5": 48465, "prompts improves performance": 131321, "large performance gains": 88982, "size language model": 152014, "leading high costs": 89821, "training data need": 168313, "specialized expert modules": 153889, "existing approaches typically": 53276, "code publicly released": 25082, "user intents requiring": 173433, "ability perform zeroshot": 2317, "learning objective finetuning": 90780, "zeroshot learning based": 180230, "language models outofthebox": 85833, "models able predict": 105195, "bias masked language": 18160, "existing methods learning": 53455, "language processing based": 86491, "domainspecific tasks like": 44629, "processing nlp proposed": 129242, "adapt pretrained lm": 4556, "demonstrate approach provides": 38241, "dataset contains million": 36197, "accurate responses questions": 3488, "true fewshot setting": 169805, "additional annotated data": 4922, "language models construct": 84297, "eliminates need finetuning": 47076, "data augmentation technique": 34687, "knowledge largescale language": 82173, "language models creating": 84319, "analysis provide insights": 9097, "changed natural language": 22361, "outperforming previous stateoftheart": 117690, "examine current stateoftheart": 52378, "contextualized language model": 31130, "language model directly": 83606, "effectiveness stateoftheart approaches": 46292, "requires expert knowledge": 141367, "openais chatgpt googles": 116396, "chatgpt googles bard": 22999, "perform better given": 120877, "paper shows llms": 119331, "results proposed approach": 143697, "approach effective detecting": 11143, "new approach named": 113066, "standard nlp tasks": 154862, "competitive fewshot performance": 27174, "multitask learning problem": 111225, "scale 10b parameters": 146263, "evaluation metrics quantify": 51729, "attributes generated text": 14114, "generated text propose": 64017, "high probability considered": 69508, "generation transformer model": 65217, "paper analyze capabilities": 118745, "offtheshelf language models": 115911, "best results obtained": 17747, "outperform word embedding": 117648, "machine learning workloads": 98090, "large machine learning": 88898, "contains machine learning": 30381, "social iqa dataset": 152595, "pretrained roberta gpt2": 127151, "available deep learning": 15099, "number training data": 114970, "pretrained transformer gpt2": 127190, "transformer gpt2 model": 169143, "gpt2 model pretrained": 66564, "set training data": 149338, "adopt curriculum learning": 5572, "model finetuned following": 103667, "neural networks recent": 112945, "investigate impact finetuning": 80425, "sentiment classification task": 148647, "task discuss potential": 161330, "question answering instead": 134739, "proposed method benchmark": 132342, "datasets method achieves": 36980, "language models derive": 84361, "models represent reason": 108931, "generation results indicate": 65052, "limited labelled data": 92793, "models achieve proposing": 105229, "generate large number": 63595, "previous stateoftheart results": 127660, "algorithm study performance": 7863, "works large language": 179461, "massive pretrained language": 99375, "remains largely underexplored": 140021, "largely underexplored paper": 89178, "temporal reasoning capabilities": 164275, "introducing new task": 80242, "furthermore analysis reveals": 62011, "analysis reveals models": 9142, "popular pretrained language": 124044, "achieve strong alignment": 3763, "pretrained model downstream": 127049, "model downstream task": 103494, "leverages generative pretrained": 91727, "achieve f1 score": 3641, "f1 score improvement": 56487, "language models important": 84673, "general domain data": 62939, "freezes pretrained model": 61584, "pretrained model weights": 127057, "gpu memory requirement": 67345, "gpt3 despite having": 66677, "generative dialogue models": 65413, "neural models trained": 112886, "commonly used training": 26247, "pretrained multilingual language": 127121, "review existing literature": 144504, "commonly used automatic": 26238, "hidden markov model": 69327, "specific language models": 154025, "students academic performance": 156841, "increasing attention paid": 75302, "inspired recent advancement": 77754, "method natural language": 100988, "conduct extensive experimental": 29112, "neural network nn": 112907, "learning ml applications": 90693, "largescale neural networks": 89370, "challenging paper proposes": 22234, "models gpt2 model": 106526, "outperform simple baselines": 117625, "design novel approach": 39701, "nlp tasks addition": 113821, "model fewshot learning": 103650, "access internet search": 2866, "compared existing approaches": 26795, "pyx promptbased learning": 133864, "model pretrained massive": 104324, "learning adapting new": 90182, "data paper introduce": 35461, "make field accessible": 98538, "systematic review existing": 160146, "review existing works": 144505, "pretrained dialogue models": 126787, "problem masked language": 128320, "using external knowledge": 174189, "challenges deep learning": 21819, "training inference times": 168497, "recently shown impressive": 137993, "new framework named": 113202, "summarization automatic summarization": 158804, "surpass stateoftheart models": 159463, "transformerbased pretrained models": 169288, "finally highlight future": 58475, "highlight future research": 69744, "research directions improve": 141722, "directions improve models": 42480, "serve good reference": 148982, "area research work": 12349, "offensive toxic responses": 115627, "tune pretrained language": 169945, "recently attracted attention": 137836, "achieve promising results": 3715, "supervised fewshot zeroshot": 159105, "dialogue models trained": 41495, "strengths weaknesses approach": 156272, "ability quickly learn": 2336, "learning new classes": 90766, "improve sample efficiency": 73617, "mitigates catastrophic forgetting": 102645, "trained language modeling": 167962, "terms model size": 164439, "leads better performance": 89876, "dialogue natural language": 41497, "pretrained model finetuning": 127052, "experimental results conducted": 53976, "dataset demonstrate proposed": 36227, "proposed approach significantly": 132244, "models remarkable performance": 108923, "wide array downstream": 178250, "array downstream tasks": 12515, "text generation ability": 165124, "detection experimental results": 40502, "experimental results performance": 54050, "models humans better": 106649, "interactions real world": 79265, "models datasets tasks": 105851, "source code pretrained": 153413, "models available github": 105434, "available github repository": 15127, "general text classification": 63057, "successes pretrained language": 158331, "strong performance zeroshot": 156428, "question answer question": 134679, "classification tasks capability": 24111, "codes models available": 25309, "models perform various": 108478, "downstream tasks known": 44798, "pretrain finetune paradigm": 126732, "labels significantly enhance": 82828, "pretrained transformerbased models": 127217, "evaluate performance language": 51054, "discover new insights": 42735, "psycholinguistic experiments experiments": 133497, "accelerating scientific discovery": 2802, "paper present largescale": 119121, "existing text generation": 53615, "experiments conducted benchmark": 54186, "datasets different languages": 36793, "instruction fewshot learning": 77994, "paper proposes comprehensive": 119261, "data empirical results": 34962, "approach consistently improves": 11077, "models promptbased learning": 108689, "learning shown great": 90987, "experimental results benchmark": 53969, "advantages proposed approach": 6151, "method achieves average": 100632, "experiments user studies": 54509, "user studies involving": 173512, "model limited training": 103964, "experiments various downstream": 54531, "generalization performance large": 63211, "performance large margins": 121722, "paper makes contributions": 119078, "shared embedding space": 149811, "simple prompting method": 151514, "tasks empirically demonstrate": 162288, "method conduct extensive": 100750, "prompted language models": 130821, "employ pretrained language": 47855, "planning approach based": 123248, "demonstrate strong performance": 38566, "performance human evaluation": 121634, "reasoning remains underexplored": 137101, "context pretrained language": 30877, "seen significant progress": 147707, "stateoftheart sota models": 155369, "models achieving high": 105257, "task aims generate": 161186, "generate relevant context": 63682, "facilitate research task": 56647, "research task present": 142110, "publicly traded companies": 133681, "dataset evaluate models": 36263, "encourage research direction": 48605, "language models financial": 84532, "aim reduce costs": 7487, "reduced training cost": 138501, "information speech text": 76773, "data used training": 35920, "human annotations method": 70583, "solely synthetic data": 152872, "baseline models trained": 16245, "data approach serves": 34650, "achieving new stateoftheart": 4198, "shown ability produce": 150202, "ability produce fluent": 2328, "generation work present": 65265, "controlled language generation": 31641, "method outperforms competing": 101010, "generated text impact": 64010, "chain natural language": 21457, "language models extracted": 84515, "leverages large pretrained": 91747, "language model time": 83933, "proposed method requires": 132371, "finetune gpt3 using": 58925, "provides theoretical guarantees": 133232, "tune language model": 169937, "tasks languages demonstrate": 162681, "probing language models": 128154, "units large language": 171885, "outperform stateoftheart supervised": 117636, "various settings including": 176166, "question answering factchecking": 134721, "construct new benchmark": 30150, "strong baselines extensive": 156356, "helps better understand": 69237, "hardware design large": 68684, "model training requires": 104797, "model challenging dataset": 103263, "using single model": 174723, "models method consists": 108179, "ability large pretrained": 2249, "natural language dialogue": 111585, "potential transfer learning": 125026, "pretrained model adapted": 127046, "publicly available sources": 133666, "surveys human evaluation": 159715, "human evaluation used": 70755, "evaluation used assess": 51914, "present new method": 126380, "gpt3 incontext learning": 66708, "fewshot nlu tasks": 58010, "models encode rich": 106109, "outperforming previous methods": 117687, "token embedding parameters": 166704, "hundreds millions parameters": 71540, "correlate human evaluations": 32517, "human evaluations furthermore": 70764, "knowledge distillation kd": 81882, "task use pretrained": 161798, "symbolic knowledge distillation": 159807, "separately trained critic": 148708, "trained critic model": 167886, "despite 100x smaller": 40069, "100x smaller size": 188, "models propose novel": 108710, "superior performance gpt": 159031, "downstream tasks using": 44842, "model language modeling": 103922, "understanding evaluation benchmark": 171221, "evaluation benchmark tasks": 51451, "paper aims gap": 118734, "downstream tasks demonstrate": 44770, "tasks demonstrate impact": 162176, "dataset paper present": 36447, "evaluate endtoend performance": 50964, "million 27 billion": 102222, "27 billion parameters": 873, "multilingual bert mbert": 110467, "answering qa systems": 9931, "work introduce multiple": 179054, "training data collected": 168236, "generative models latent": 65497, "pretrained generative model": 126828, "potential large pretrained": 124812, "handle long sequences": 68553, "produce long coherent": 129438, "sets new stateoftheart": 149388, "stateoftheart transformer models": 155404, "social media datasets": 152607, "source code released": 153417, "approach extensive experiments": 11219, "impressive performance nlp": 73336, "processing nlp field": 129219, "field present survey": 58227, "recent work uses": 137748, "work uses large": 179354, "text generation approaches": 165129, "approaches use pretrained": 11943, "adapts pretrained language": 4802, "implicit bayesian inference": 72969, "learning paper study": 90803, "datasets used train": 37176, "incontext learning generate": 74903, "utilizing prior knowledge": 175233, "knowledge large pretrained": 82169, "challenge paper present": 21698, "qa dialogue systems": 133883, "efficient neural network": 46687, "network dnn models": 112643, "datasets given rise": 36896, "time order magnitude": 166457, "training deep learning": 168379, "easily applied new": 45303, "demonstrate competitive performance": 38274, "entity recognition entity": 49907, "recognition entity linking": 138061, "challenge paper proposes": 21701, "dataset results method": 36509, "method improves performance": 100920, "study realistic setting": 157582, "using training examples": 174816, "class imbalance issues": 23874, "domains paper leverage": 44489, "generating artificial training": 64144, "improve classification performance": 73425, "investigate model performance": 80452, "factors training data": 56826, "training data size": 168345, "generation model adapted": 64836, "information encoded pretrained": 76385, "performance response generation": 122022, "improvement automatic metrics": 73758, "task specifically design": 161739, "stateoftheart results benchmark": 155328, "recent years research": 137800, "presents comparative study": 126554, "knearest neighbor knn": 81691, "achieve superior results": 3776, "results current stateoftheart": 143272, "language models catastrophic": 84215, "models catastrophic forgetting": 105580, "generative models trained": 65516, "code generation pretrained": 24910, "translation indian languages": 169467, "improve performance task": 73571, "machine translation language": 98112, "learning continual learning": 90326, "example natural language": 52494, "make best use": 98492, "novel model called": 114602, "problems experimental results": 128501, "systems paper proposes": 160516, "error correction model": 50286, "answers stateoftheart sota": 10086, "stateoftheart sota approaches": 155357, "text images relatively": 165233, "text representation models": 165421, "perform consistently various": 120910, "strong baselines significant": 156360, "learning models especially": 90715, "software engineering community": 152798, "paired textual descriptions": 118539, "outperform supervised baselines": 117640, "natural language corpus": 111571, "processing nlp leading": 129227, "vastly improve performance": 176366, "demonstrate remarkable abilities": 38527, "syntax programming languages": 159923, "neural models perform": 112885, "language model compression": 83585, "consistently yields significant": 29933, "yields significant improvements": 180033, "experiments demonstrate model": 54232, "achieve better generalization": 3593, "test set compared": 164624, "reduce training cost": 138480, "deploy large language": 39198, "downstream tasks limited": 44803, "language models utilize": 86363, "conduct human evaluations": 29143, "hidden states model": 69337, "extra parameters training": 56116, "training data prompted": 168325, "like openai codex": 92369, "language code models": 83190, "fully finetuned models": 61764, "domain adaptation pretrained": 44072, "adaptation pretrained language": 4653, "paper introduce method": 118994, "model approach enables": 103125, "learning capabilities wide": 90276, "finally evaluate models": 58448, "novel powerful tool": 114640, "stateoftheart models benchmark": 155226, "models benchmark results": 105480, "considerable room improvement": 29637, "introduce task generating": 80124, "automatic manual evaluations": 14702, "manual evaluations demonstrate": 99043, "manual analysis shows": 99021, "great room improvement": 67724, "automatic code summarization": 14648, "shift foundation models": 149912, "data finetuned downstream": 35058, "code summarization based": 25164, "achieve excellent results": 3638, "results paper focus": 143655, "elicited pretrained language": 47054, "fewshot settings models": 58059, "models contrastive learning": 105785, "present prompting method": 126423, "receiving increasing attention": 137326, "language tasks finetuning": 86763, "tasks finetuning pretrained": 162418, "substantial performance improvements": 158090, "learning large corpora": 90619, "common sense tasks": 26190, "recent language model": 137530, "models design novel": 105929, "fast experimental results": 57267, "model significantly surpasses": 104578, "significantly surpasses previous": 151167, "series intermediate reasoning": 148932, "achieves state art": 4088, "gsm8k benchmark math": 68098, "benchmark math word": 17024, "centered kernel alignment": 21324, "knowledge pretrained lms": 82293, "conduct experiments verify": 29100, "models used predict": 109572, "word embeddings trained": 178635, "recognition ner tasks": 138110, "zero oneshot learning": 180082, "settings zero shot": 149663, "zero shot shot": 180091, "given sentence contains": 66004, "training testing sets": 168785, "train multiple large": 167804, "zero shot setting": 180090, "data language models": 35285, "present simple approach": 126450, "tasks requiring taskspecific": 163165, "used training data": 173281, "32 training samples": 1006, "models plms prompt": 108542, "language inference models": 83423, "results nlp benchmarks": 143633, "comparable existing methods": 26573, "existing methods perform": 53459, "model editing code": 103507, "costs associated finetuning": 32817, "task generate dataset": 161424, "provide useful insights": 133018, "finetuning large foundation": 59330, "relative importance different": 139371, "approach makes use": 11379, "effective pretrained language": 45844, "existing work focuses": 53642, "prompts multiple languages": 131379, "languages propose novel": 87101, "prompts soft prompts": 131476, "languages extensive experiments": 87008, "learn perform new": 90028, "making predictions new": 98792, "provides new way": 133185, "work focused directly": 178992, "directly finetuning language": 42542, "combination methods achieve": 25834, "models great potential": 106563, "new paradigm finetuning": 113316, "shown effective variety": 150224, "extensive experiments based": 55804, "online social media": 116140, "sufficient labeled data": 158489, "weighted f1 score": 178090, "methods leverage pretrained": 101636, "scenarios bridging gap": 146545, "natural language propose": 111848, "respectively experimental results": 142553, "results method consistently": 143598, "outperforms baselines datasets": 117717, "gshard switch transformer": 68094, "promptbased contrastive learning": 130755, "learning contrastive learning": 90331, "supervised learning settings": 159143, "effectiveness method compared": 46237, "models transformerbased language": 109496, "language models key": 84742, "extends existing work": 55694, "contextualizing language models": 31141, "better previous best": 17988, "model results indicate": 104475, "transformer encoder model": 169121, "evaluate method different": 51016, "knowledge human efforts": 82102, "significantly outperforms current": 151095, "training data extremely": 168261, "affect large language": 6305, "knowledge previous work": 82300, "despite various methods": 40249, "chain thought reasoning": 21469, "models chainofthought prompting": 105596, "combined pretrained large": 25917, "empirical evaluation shows": 47684, "generate highquality short": 63544, "generative tasks like": 65597, "text generation propose": 165171, "generation propose approach": 64979, "better language models": 17925, "completion language models": 27328, "adolphs et al": 5566, "dialogue model outperforms": 41492, "model code models": 103295, "processing nlp algorithms": 129207, "paper addresses issue": 118709, "classification natural language": 24040, "size number tokens": 152037, "size number training": 152038, "outperforms gopher 280b": 117777, "achieved natural language": 3845, "based large pretrained": 15912, "number parameters models": 114924, "results work present": 143940, "simplifies process building": 151599, "used train models": 173279, "training data lowresource": 168302, "offtheshelf large language": 115913, "problem data scarcity": 128216, "data scarcity work": 35700, "data significantly boosts": 35755, "universal dialogue systems": 171899, "scenarios recent works": 146683, "experimental results 16": 53962, "results 16 datasets": 143147, "yield better performance": 179962, "performance code available": 121255, "dataset available huggingface": 36126, "available data task": 15094, "generative models results": 65512, "learned pretrained language": 90117, "models plms gpt2": 108534, "training efficiency especially": 168409, "learning approach based": 90218, "using free text": 174223, "stateoftheart sota deep": 155358, "results training models": 143874, "required training models": 141263, "methods fewshot learning": 101525, "extensively studied literature": 55992, "using gpt3 codex": 174263, "generate correct code": 63444, "heterogeneous graph transformer": 69299, "processing tasks models": 129324, "train dialogue generation": 167762, "samples original ones": 146048, "supervised learning large": 159135, "markov decision process": 99258, "language models calm": 84206, "outperforms stateoftheart method": 117860, "knowledgeaugmented language model": 82525, "forgetting general knowledge": 60421, "question answering named": 134765, "answering named entity": 9911, "tasks multiple datasets": 162827, "generative models finetuned": 65486, "tasks public datasets": 163053, "gap paper propose": 62697, "dialogue summarization techniques": 41524, "language models reported": 86083, "performance heavily depends": 121620, "incontext learning incontext": 74929, "lack deep understanding": 82921, "learn natural language": 90014, "model outputs using": 104194, "alexa google assistant": 7755, "architectures based large": 12250, "natural language approach": 111554, "semantic parsing key": 148188, "solve new tasks": 153132, "approaches rely large": 11889, "labeled data training": 82723, "wellknown benchmark datasets": 178169, "datasets great advantages": 36901, "outperform stateoftheart models": 117635, "language models interactive": 84728, "information user preferences": 76830, "user requests issued": 173485, "open pretrained transformer": 116261, "present contrastive learning": 126272, "standard masked language": 154845, "language models loop": 85703, "propose new strategy": 131975, "training data experimental": 168255, "experimental evaluation shows": 53939, "remarkable fewshot learning": 140197, "prompt tuning relation": 130726, "model llm like": 104010, "tasks involve reasoning": 162640, "using automatically extracted": 173990, "transformerbased models able": 169264, "standard supervised learning": 154881, "properties training data": 131664, "achieve sota performance": 3746, "nlp tasks present": 113883, "tasks present unified": 162971, "learning multiple tasks": 90751, "settings experiments variety": 149572, "consistently outperforms stateofthearts": 29910, "language models explored": 84502, "existing deep learning": 53339, "datasets evaluation metrics": 36833, "makes pretrained language": 98683, "significant computational resources": 150660, "controllable language generation": 31619, "language generation need": 83364, "generation need training": 64879, "results demonstrate gamma": 143303, "overall quality generated": 118223, "language models openended": 85827, "potentially unlimited set": 125142, "downstream domains tasks": 44719, "user behavior data": 173379, "time model size": 166452, "triples knowledge graphs": 169780, "exact match score": 52340, "curating training data": 34033, "devices deep learning": 41305, "data augmentation promptbased": 34685, "tasks existing works": 162350, "important research question": 73188, "research question arises": 142020, "design effective data": 39614, "tasks demonstrate superior": 162179, "language understanding code": 86811, "training data making": 168307, "logical reasoning large": 97382, "reasoning steps solve": 137148, "models given input": 106504, "models trained vast": 109478, "trained vast datasets": 168124, "small fraction data": 152291, "perform poorly tasks": 121009, "generalization math reasoning": 63194, "work recent years": 179254, "evaluation conduct comprehensive": 51495, "systematically evaluate performance": 160181, "source code reproduce": 153418, "despite wide adoption": 40253, "model sizes training": 104623, "rate model size": 136009, "models memorize training": 108170, "memorize training data": 100343, "individual training examples": 75749, "selfsupervised learning ssl": 148063, "generative selfsupervised pretraining": 65589, "models results suggest": 108976, "tasks especially fewshot": 162315, "finetuning strategies different": 59562, "choice pretrained language": 23698, "datasets observe significant": 37009, "finetuning strategies including": 59563, "series ablation studies": 148900, "captures human preferences": 20706, "openended tasks like": 116509, "like story generation": 92411, "proposed method learn": 132361, "tasks described natural": 162202, "continual learning language": 31170, "maintaining good performance": 98355, "finetuning smaller plm": 59551, "comprehensive set experiments": 28120, "generalize new tasks": 63265, "tasks domains large": 162254, "high computational overhead": 69420, "benchmark datasets various": 16919, "unclear models perform": 170698, "models especially hard": 106150, "code base publicly": 24683, "base publicly available": 15631, "according language model": 3044, "zeroshot learning methods": 180242, "model making unreliable": 104061, "synthetic data using": 160035, "abstractive summarization models": 2683, "annotations existing datasets": 9587, "summarization models perform": 158852, "significant performance boosts": 150796, "effective domain adaptation": 45743, "models express uncertainty": 106266, "knowledge time model": 82458, "perform fewshot learning": 120949, "language models streamline": 86219, "natural language interaction": 111656, "current natural language": 34193, "learning case study": 90287, "large number documents": 88965, "learning dl based": 90380, "key technical contribution": 81586, "optimal allocation strategy": 116931, "learning machine learning": 90659, "high computing power": 69424, "widely used areas": 178389, "model generative pretrained": 103742, "problems improve reasoning": 128538, "codedavinci002 achieves new": 25249, "reasoning benchmarks gsm8k": 136686, "language models preference": 85936, "motivated findings propose": 110178, "findings propose simple": 58755, "simple effective training": 151442, "improvement downstream tasks": 73781, "tasks like classification": 162709, "requires manual effort": 141411, "achieve average improvement": 3584, "generation reinforcement learning": 65033, "prompts language models": 131348, "propose approach uses": 131717, "approach uses prompttuning": 11641, "great success natural": 67737, "generation tasks sentiment": 65181, "tasks sentiment control": 163220, "achieved new stateoftheart": 3847, "natural language critiques": 111573, "models help humans": 106593, "efficiency paper present": 46499, "reach better performance": 136105, "improve performance experiments": 73550, "models llms suffer": 107958, "neural models based": 112882, "research directions enhancing": 141719, "enhancing robustness llms": 49564, "dialog generation models": 41417, "world paper propose": 179603, "prompt models generate": 130606, "text generation russian": 165182, "using proposed method": 174622, "memory requirements paper": 100454, "requirements paper introduce": 141315, "applying machine learning": 10908, "utilize information available": 175053, "model development work": 103460, "utilizing pretrained large": 175229, "models llms evaluate": 107370, "healthcare prediction tasks": 69008, "standard machine learning": 154842, "designed bridge gap": 39829, "model perform semantic": 104227, "key challenge automatic": 81468, "extensive experiments demonstrated": 55836, "experiments demonstrated effectiveness": 54245, "generation study problem": 65112, "language modeling capability": 83984, "capability pretrained language": 20359, "despite success current": 40223, "pretraining work propose": 127480, "benchmark datasets model": 16915, "test language models": 164573, "models struggle solve": 109249, "results enrich understanding": 143384, "enrich understanding current": 49616, "way future investigations": 177818, "biomedical information extraction": 18546, "information extraction pipelines": 76433, "social media analytics": 152602, "used improve performance": 173105, "interpretability model predictions": 79648, "notable machine learning": 114237, "using curated dataset": 174101, "previous language models": 127603, "language models nlms": 85799, "questions remain unanswered": 135251, "training corpus model": 168211, "language using neural": 86880, "using neural language": 174523, "tasks require large": 163144, "increase computational cost": 75198, "code available open": 24678, "achieved great progress": 3814, "learning new paradigm": 90767, "accuracy training data": 3412, "model performs better": 104269, "performs better zeroshot": 122433, "learning source code": 91011, "distant supervision paradigm": 43128, "recent works focusing": 137755, "processing tasks including": 129318, "work present study": 179183, "additional parameters significantly": 4988, "models llms transformative": 107985, "traditional nlp models": 167673, "languages english german": 86992, "training data make": 168305, "incontext learning consider": 74884, "model incontext learn": 103840, "ii incontext examples": 72094, "twolayer neural networks": 170241, "learning algorithms code": 90198, "evaluations wide range": 52040, "model despite having": 103443, "crucial task natural": 33871, "language processing increasingly": 86519, "text generation abilities": 165123, "visual prompt engineering": 177253, "models used solve": 109573, "gained popularity recent": 62473, "popularity recent years": 124101, "different prompt templates": 41938, "workflow allows users": 179377, "tool allows easy": 166937, "pretrained language generation": 126853, "transfer knowledge english": 168919, "alignment different languages": 8141, "abstractive text summarization": 2688, "models performance lowresource": 108489, "tasks model pretrained": 162811, "model pretrained using": 104327, "detection task experiments": 40633, "performance terms f1": 122169, "features language models": 57526, "improving natural language": 74176, "dialogue summarization model": 41522, "extensive ablation study": 55710, "processing tasks recently": 129329, "evaluation method using": 51696, "slightly better random": 152230, "helps improve performance": 69244, "finetune smaller language": 58969, "used text classification": 173267, "especially lowresource scenarios": 50509, "play different roles": 123449, "lamda large language": 83081, "answer complex question": 9686, "learn soft prompts": 90057, "documents paper present": 43931, "significantly outperforming stateoftheart": 151087, "model performance improved": 104247, "generation code generated": 64498, "natural language given": 111629, "llms achieve high": 94292, "high predictive accuracy": 69504, "accuracy benchmark datasets": 3157, "improves performance benchmark": 74046, "benchmark datasets using": 16917, "compared sota methods": 26922, "fewshot learning prompts": 57978, "manually crafted prompts": 99082, "text pairs contrastive": 165341, "model used generate": 104841, "text embeddings used": 165048, "orders magnitude parameters": 117266, "obtains comparable results": 115556, "order magnitude faster": 117216, "framework leveraging knowledge": 61288, "interact humans natural": 79058, "humans natural language": 71436, "dialogue systems chatgpt": 41526, "semantic parsing large": 148189, "llms commonsense reasoning": 94646, "knowledge base conceptual": 81765, "impressive zeroshot ability": 73388, "model size generally": 104595, "language model external": 83636, "demonstrate strong zeroshot": 38567, "pretrained language modelbased": 126869, "models bert bart": 105490, "reasoning existing work": 136844, "chain thoughts cot": 21472, "reasoning steps final": 137145, "multistep reasoning accuracy": 111179, "chainofthought large language": 21510, "downstream tasks mathematical": 44809, "llms present new": 96165, "models llms substantial": 107954, "make final prediction": 98540, "experiments verify effectiveness": 54536, "work explore leverage": 178955, "given pretrained llm": 65959, "wide range datasets": 178276, "sentiment classification datasets": 148646, "design choices training": 39576, "wide range popular": 178298, "model weights publicly": 104895, "abstractions large language": 2673, "tasks requiring multistep": 163162, "human effort writing": 70710, "iterative approach automatically": 81115, "approach automatically learn": 11015, "develop novel framework": 40814, "pretrained models specifically": 127111, "lack interpretability robustness": 82971, "explicit output programs": 54946, "output programs benefit": 117979, "programs benefit human": 129894, "benefit human debugging": 17433, "tens thousands taskspecific": 164348, "improving sample efficiency": 74215, "impressive performance wide": 73352, "tasks prompt tuning": 163025, "source domain target": 153438, "domain target domain": 44306, "generate contextually relevant": 63438, "gap language models": 62672, "perform compositional reasoning": 120903, "consistently matches exceeds": 29888, "translation nmt systems": 169495, "little attention paper": 93224, "searches minimal unnoticeable": 147443, "conduct systematic evaluation": 29186, "language models implement": 84668, "using parameterefficient finetuning": 174572, "model compression propose": 103330, "systems requires large": 160591, "expensive timeconsuming paper": 53813, "timeconsuming paper propose": 166555, "method based large": 100707, "accuracy code data": 3175, "achieved stateoftheart sota": 3911, "limited english language": 92758, "corpora used pretrain": 32262, "significant improvements tasks": 150754, "data augmentation cda": 34670, "text corpus using": 164974, "language model fewshot": 83640, "sentiment analysis benchmarks": 148607, "assist large language": 13349, "using highquality information": 174298, "research community explore": 141650, "models fewshot learning": 106326, "achieves impressive performance": 4026, "experimental results verify": 54086, "results verify effectiveness": 143927, "intelligent virtual assistants": 78963, "extracting relevant information": 56243, "language models utilized": 86364, "manual data collection": 99034, "tabular data generative": 160785, "data generative models": 35123, "generative models computer": 65481, "stateoftheart performance numerous": 155286, "question answering retrievalaugmented": 134801, "medical exam questions": 100169, "commonsense knowledge pretrained": 26278, "tasks designed require": 162206, "outperform complex stateoftheart": 117577, "strong baseline future": 156349, "language vision speech": 86891, "text data specifically": 164994, "style experimental results": 157747, "humanlabeled training data": 71216, "augment training set": 14260, "data available english": 34705, "strong baseline methods": 156350, "models code fewshot": 105647, "reasoning given natural": 136887, "tasks pretrained lms": 162982, "approach code generation": 11052, "models llms translating": 107989, "data using llms": 35929, "design choices enable": 39573, "nlp models understanding": 113772, "language models abilities": 84041, "fewshot settings respectively": 58060, "toxicity detection based": 167473, "code data accessed": 24742, "robust preference learning": 145307, "building general purpose": 19413, "model subsequently used": 104674, "finetune generative language": 58921, "language model reinforcement": 83877, "language model contrastive": 83590, "reward model using": 144701, "use contrastive learning": 172564, "benchmark assess capability": 16834, "language models helps": 84639, "implicit knowledge pretrained": 72982, "faces fundamental challenges": 56572, "leverage pretrained language": 91644, "prior works shown": 127959, "increasing batch size": 75306, "remedy issue propose": 140335, "use newly created": 172781, "newly created dataset": 113532, "recently substantial progress": 138003, "showing significant potential": 150193, "relation extraction benchmark": 139241, "language models comprehensively": 84274, "performance lowresource settings": 121774, "datasets covering different": 36746, "gap natural language": 62686, "approaches experimental results": 11760, "study application large": 157163, "language models unlike": 86340, "usability pretrained language": 172434, "multiple sources including": 111048, "modeling widely used": 105124, "used pretraining large": 173184, "significant improvements performance": 150749, "benchmark includes datasets": 16998, "question answering dialog": 134702, "evaluation pretrained models": 51783, "language model semantic": 83896, "promptbased finetuning method": 130763, "parameters extensive experiments": 119757, "extensive experiments shown": 55886, "shared task proposed": 149827, "model open source": 104148, "sap et al": 146140, "text large language": 165269, "learned language models": 90104, "performance language understanding": 121713, "understanding tasks require": 171504, "recently gained significant": 137891, "way pretrained language": 177865, "learning using large": 91114, "produce excellent results": 129400, "results comparable stateoftheart": 143237, "bridge gap work": 19061, "gap work focuses": 62752, "models systematically evaluate": 109342, "tasks especially low": 162316, "prompts paper present": 131401, "efficient effective method": 46603, "text autoregressive language": 164853, "importance natural language": 73048, "contrastive learning scheme": 31371, "resources publicly available": 142477, "efficient effective solution": 46604, "models plms furthermore": 108533, "pretrained english language": 126802, "english second language": 49105, "models perform par": 108471, "work demonstrated pretrained": 178894, "existing zeroshot methods": 53658, "gaussian mixture model": 62832, "number parameters trained": 114925, "neural networks enable": 112921, "breaking complex tasks": 18996, "update model parameters": 172333, "experiments diverse datasets": 54255, "response generation dialogue": 142651, "makes models vulnerable": 98675, "models vulnerable adversarial": 109671, "limitations paper proposes": 92633, "efficient method generating": 46671, "computational storage costs": 28412, "models paper address": 108404, "representation learning paper": 140715, "learning paper introduces": 90800, "used downstream tasks": 173039, "models llms reported": 107824, "used extract meaningful": 173065, "models long short": 108096, "judgment existing metrics": 81322, "perform answering questions": 120867, "generate longform answers": 63603, "conduct extensive studies": 29136, "focused english data": 60096, "language models english": 84448, "stateoftheart zeroshot results": 155415, "language model downstream": 83611, "neural networks paper": 112938, "structure knowledge graph": 156575, "prediction task benchmark": 125870, "making difficult learn": 98728, "models survey recent": 109329, "work focus finetuning": 178990, "plms downstream tasks": 123591, "exhibit stateoftheart performance": 53106, "minimum description length": 102400, "models excel general": 106188, "excel general language": 52769, "perform various tasks": 121085, "incontext learning examples": 74891, "reinforcement learning algorithm": 139043, "labels address issue": 82780, "gpt2 gptneo gptj": 66548, "predictions language models": 125914, "promising alternative traditional": 130217, "alternative traditional methods": 8585, "generalize new unseen": 63266, "complex questions requiring": 27546, "specifically develop new": 154184, "language models certain": 84220, "recently achieved great": 137816, "reasoning incontext learning": 136913, "algorithmic reasoning tasks": 7888, "generative models paper": 65503, "paper provides survey": 119296, "paper compares different": 118785, "domains experimental results": 44405, "experimental results analysis": 53966, "strong baselines large": 156359, "native language identification": 111506, "language identification nli": 83406, "achieved best results": 3791, "novel approach uses": 114398, "approach uses llm": 11638, "natural language problems": 111697, "benchmarks natural language": 17312, "tasks generating code": 162458, "models llms excellent": 107381, "pretrained models latent": 127089, "natural language improve": 111631, "explore efficacy using": 55196, "approaches train language": 11932, "detection conduct extensive": 40468, "multiple benchmark datasets": 110850, "proposed method yields": 132376, "answers generated chatgpt": 10029, "generated chatgpt human": 63813, "biomedical language model": 18552, "models performance downstream": 108483, "issue paper propose": 80937, "baselines experimental results": 16317, "alleviates catastrophic forgetting": 8310, "prompt design critical": 130420, "methods design optimal": 101430, "prompt generation methods": 130521, "leverage prior knowledge": 91650, "sentiment analysis topic": 148642, "sample efficiency compared": 145946, "efficiency compared traditional": 46433, "editing existing methods": 45457, "error correction fec": 50282, "language models backpropagation": 84160, "models different tasks": 105974, "large number diverse": 88964, "reasoning numerical reasoning": 137009, "average performance gain": 15302, "language models following": 84551, "new comprehensive benchmark": 113119, "previous methods typically": 127616, "paper aim address": 118715, "enables efficient training": 48179, "models llms lens": 107614, "information efficient manner": 76375, "models paper examines": 108406, "domains using dataset": 44549, "using dataset test": 174118, "highlighting challenges posed": 69806, "supervised finetuning downstream": 159116, "using commonsense reasoning": 174067, "achieves competitive accuracy": 3993, "better understand model": 18058, "model performance finally": 104242, "examples prompting large": 52669, "training examples trained": 168434, "introduce new metrics": 80035, "models llms acquire": 107085, "learning contrast supervised": 90329, "task generating code": 161427, "generating code solutions": 64159, "solutions math word": 153046, "work paper propose": 179152, "llm natural language": 93842, "gap humans llms": 62660, "end create new": 48650, "based neural network": 15973, "world knowledge important": 179567, "demonstrations language models": 39020, "fewshot learning method": 57969, "enabling natural language": 48331, "target language data": 161077, "generative model broad": 65469, "new dataset task": 113138, "generation task using": 65146, "model machine translation": 104053, "dataset similar distribution": 36544, "models using fewshot": 109588, "intersection large language": 79763, "improving deep learning": 74127, "makes better use": 98634, "performance specific domains": 122095, "leads catastrophic forgetting": 89879, "catastrophic forgetting phenomenon": 21074, "direction activation space": 42428, "model outputs method": 104193, "models prompted generate": 108691, "results provide initial": 143708, "explicit ground truth": 54935, "models prompted perform": 108692, "small seed set": 152356, "case study case": 20901, "study case study": 157202, "study investigates extent": 157443, "forefront intertwining ai": 60387, "intertwining ai systems": 79779, "present novel solution": 126394, "building natural language": 19433, "points strong baseline": 123766, "tasks approach improves": 161964, "number demonstration examples": 114850, "pragmatic language understanding": 125552, "language understanding humans": 86826, "language models improved": 84679, "predictions work present": 125941, "human evaluation scores": 70751, "set tasks require": 149323, "analysis human evaluation": 8959, "high interannotator agreement": 69472, "human annotations evaluation": 70582, "recent methods based": 137561, "evaluating llms llms": 51337, "biases paper present": 18298, "reasoning fewshot learning": 136860, "models enabled significant": 106105, "significant recent progress": 150854, "approach text generation": 11608, "data multistep reasoning": 35409, "generation tasks like": 65171, "prompting chainofthought prompting": 130878, "compared direct prompting": 26786, "traditional symbolic planners": 167704, "paper present approach": 119107, "indicate proposed method": 75621, "language models holistic": 84649, "effect human life": 45658, "models shown perform": 109108, "emergent ability zeroshot": 47468, "ability zeroshot solutions": 2424, "algorithm achieve competitive": 7774, "achieve competitive level": 3606, "discussions shed light": 43019, "crossmodal representation alignment": 33688, "tasks model improves": 162810, "ability natural language": 2293, "logical reasoning llms": 97385, "zeroshot performance downstream": 180281, "models approach improves": 105378, "paper proposes questionanswering": 119276, "using fewshot large": 174199, "fewshot large language": 57946, "question code available": 134841, "depends number parameters": 39182, "evaluation machine translation": 51684, "approach address issues": 10971, "interaction realworld applications": 79173, "applications language models": 10579, "available paper introduce": 15175, "outperforms previous zeroshot": 117828, "previous zeroshot methods": 127707, "using dataset study": 174117, "human feedback edited": 70800, "language models leverage": 84788, "encourages llm generate": 48615, "performance obtained using": 121863, "findings deepen understanding": 58651, "tests synthetic data": 164794, "wide range potential": 178299, "generation translation summarization": 65220, "evaluation text generation": 51899, "80 success rate": 1659, "need research area": 112377, "examples training set": 52717, "subset training data": 158012, "strong zeroshot ability": 156455, "language modeling present": 84013, "social commonsense knowledge": 152540, "social interactions large": 152591, "language model human": 83681, "model human evaluation": 103810, "data model code": 35382, "task text generation": 161774, "leverage language models": 91614, "generation method called": 64825, "extensive empirical evaluations": 55757, "planning generation large": 123276, "language reasoning steps": 86693, "new method automatically": 113270, "large general language": 87263, "learn causal representations": 89965, "tasks zeroshot fashion": 163496, "prompts natural language": 131382, "findings propose method": 58752, "propose method generating": 131921, "available labeled data": 15148, "sequence labeling task": 148756, "lack highquality training": 82956, "learning icl ability": 90535, "dual form gradient": 45071, "form gradient descent": 60458, "incontext learning explicit": 74893, "future model design": 62291, "ability generalize zeroshot": 2182, "quantity diversity creativity": 134403, "private user data": 128057, "language models instructions": 84720, "facilitate future studies": 56619, "address problem using": 5346, "neural networks symbolic": 112953, "use symbolic methods": 172894, "models ranging size": 108777, "automated human evaluation": 14558, "novel benchmark evaluate": 114422, "additional model finetuning": 4980, "offtheshelf llm training": 115916, "bert large language": 17563, "language models having": 84634, "large computational resources": 87216, "computational resources paper": 28403, "language models grown": 84626, "significantly outperform standard": 151079, "generates new data": 64088, "model performance accuracy": 104230, "sentiment text classification": 148667, "tasks using frozen": 163428, "incontext learning results": 74968, "blackbox language model": 18635, "rely access model": 139827, "language models offer": 85817, "processing nlp llms": 129230, "llms make predictions": 95847, "finally discuss challenges": 58437, "largescale generative pretrained": 89313, "gpt family models": 66417, "approaches code available": 11713, "typically requires large": 170516, "models transfer knowledge": 109489, "transfer knowledge language": 168920, "pretrained massive text": 127043, "implications future work": 72927, "code experiments available": 24824, "fewshot examples llm": 57906, "data finetuned models": 35060, "model consistently outperformed": 103354, "key steps finetuning": 81576, "automatic quantitative evaluation": 14725, "wide range sentence": 178306, "prompts systematically evaluate": 131495, "large small language": 89060, "discuss opportunities challenges": 42918, "context introduce new": 30802, "multimodal dialogue models": 110623, "models llm generate": 107035, "performs best overall": 122429, "utilized language models": 175108, "language model machine": 83789, "demonstration example selection": 38974, "performance chatgpt good": 121236, "chatgpt performs competitively": 23185, "growing model size": 68035, "large search space": 89055, "enhance quality generated": 49269, "application promptbased learning": 10372, "paper conducts comprehensive": 118808, "conducts comprehensive investigation": 29330, "theoretical analysis framework": 166017, "propose novel strategies": 132032, "gpt4 recently demonstrated": 67135, "demonstrated impressive results": 38710, "impressive results wide": 73375, "years pretrained large": 179923, "study aims examine": 157150, "set annotated data": 149130, "generative models survey": 65515, "generative models particularly": 65504, "open challenges suggest": 116212, "challenges suggest future": 22074, "suggest future directions": 158537, "large neural network": 88958, "models demonstrate effectiveness": 105884, "language modeling framework": 83995, "treats language model": 169648, "language models special": 86202, "dialog systems existing": 41431, "shown large pretrained": 150302, "extremely large language": 56435, "work explore idea": 178951, "incontext learning improve": 74928, "experiments promising results": 54404, "improve translation quality": 73647, "natural language query": 111851, "reports social media": 140611, "practical applications paper": 125392, "bidirectional encoder representation": 18344, "encoder representation transformers": 48437, "performance chatgpt context": 121235, "demonstrated exceptional proficiency": 38662, "exceptional proficiency natural": 52839, "proficiency natural language": 129673, "conducting human evaluation": 29316, "instruction tuning model": 78118, "perform human evaluation": 120958, "reasoning tasks using": 137199, "prompt model generate": 130604, "llms paper demonstrate": 96029, "70 billion parameter": 1525, "creating large language": 33307, "gpt2 model generates": 66562, "diverse tasks including": 43678, "advance natural language": 5691, "empirical evaluation demonstrates": 47680, "evaluation demonstrates effectiveness": 51538, "use small set": 172877, "quality human evaluation": 134157, "dataset additionally demonstrate": 36099, "potential create new": 124663, "recent years widely": 137809, "data expensive difficult": 35013, "distilled large language": 43179, "presents novel framework": 126606, "provide framework measuring": 132801, "generation diffusion models": 64582, "model generates highfidelity": 103735, "prompt pretrained large": 130635, "embeddings text prompts": 47288, "diffusion models generated": 42248, "language models explanations": 84494, "yields high performance": 180022, "method effectively improve": 100810, "prompting large pretrained": 130987, "novel approach based": 114370, "expressive power large": 55605, "training data empirical": 168248, "data achieve stateoftheart": 34581, "perform par stateoftheart": 121002, "findings inspire future": 58712, "inspire future work": 77703, "language models shot": 86147, "perform various prompts": 121084, "design novel training": 39703, "highly competitive results": 69897, "performance range tasks": 121986, "consistently outperformed baseline": 29896, "popular transformer models": 124071, "bert gpt3 trained": 17556, "gpt3 trained using": 66769, "llm extensive experiments": 93662, "autoregressive generative tasks": 14981, "natural language words": 111929, "promptbased learning method": 130780, "exploring limits chatgpt": 55486, "widely used benchmark": 178390, "experiments reveal chatgpts": 54444, "performance comparable traditional": 121276, "research systematically examine": 142107, "language models fail": 84521, "foundation models natural": 60785, "language models integrating": 84724, "applications foundation models": 10535, "basic natural language": 16426, "concepts recent years": 28683, "information finetuned specific": 76455, "finetuned specific tasks": 59114, "called foundation models": 19656, "question answering translation": 134817, "strengths weaknesses current": 156274, "ai generated text": 7014, "improves text generation": 74092, "user study using": 173526, "generative models present": 65506, "create diverse set": 33189, "model case study": 103257, "language generation performance": 83374, "results gpt models": 143440, "researchers practitioners field": 142242, "limitations gpt models": 92593, "domain knowledge human": 44200, "detection natural language": 40569, "contrastive learning phase": 31370, "model sets new": 104556, "performance challenging tasks": 121228, "new light developing": 113258, "foundation models pfms": 60790, "trained largescale data": 167980, "trained large datasets": 167971, "significant breakthroughs various": 150631, "study provides comprehensive": 157568, "implications future research": 72926, "overall survey aims": 118250, "natural language outputs": 111686, "require long training": 141149, "overcome catastrophic forgetting": 118271, "achieve significant improvement": 3733, "significant improvement recall": 150736, "zeroshot information extraction": 180215, "modern largescale language": 109811, "models llms new": 107671, "llms new domain": 95937, "language model retrieval": 83886, "tasks discrete prompts": 162240, "guide llms generating": 68192, "using labeled data": 174348, "data reinforcement learning": 35635, "experiments demonstrate framework": 54225, "llms chatgpt codex": 94573, "prompts code data": 131189, "adaptation methods prompt": 4643, "natural language additional": 111546, "language additional training": 83134, "instruction prompt tuning": 78046, "paper empirically study": 118878, "tasks known llms": 162664, "known llms served": 82613, "llms served highquality": 96507, "learning ability llms": 90172, "par human annotators": 119417, "models llms brings": 107149, "various complex tasks": 175863, "ability produce highquality": 2329, "prompting chainofthought cot": 130876, "current cot methods": 34098, "llms different tasks": 94927, "language models formal": 84552, "language models raised": 86016, "language knowledge large": 83471, "language models end": 84447, "form large language": 60469, "extraction question answering": 56342, "models realworld use": 108806, "models widespread adoption": 109694, "models chatgpt bard": 105607, "insufficient labeled data": 78450, "data propose novel": 35571, "previous stateoftheart approaches": 127656, "challenges realworld applications": 22037, "systematically explore llms": 160187, "biased toxic content": 18244, "utility risks llms": 174974, "proposed approach improving": 132238, "sequence generation models": 148741, "models past work": 108447, "tools work introduce": 167286, "chatgpt gpt4 attracted": 23010, "guide llms perform": 68193, "provide preliminary evaluation": 132931, "gpt4 achieves stateoftheart": 66906, "performs competitively compared": 122437, "available github large": 15124, "github large language": 65817, "english russian chinese": 49102, "pretrained generative large": 126825, "advanced endtoend models": 5729, "require large labeled": 141140, "utility realworld applications": 174972, "method using large": 101164, "introduce series novel": 80101, "series novel methods": 148943, "language model case": 83574, "multitask prompt tuning": 111234, "models multiple downstream": 108256, "methods typically learn": 101892, "task extensive experiments": 161385, "methods including finetuning": 101590, "outperforms existing systems": 117768, "framework incontext learning": 61218, "learning icl gained": 90545, "model llm evaluation": 103991, "models unseen tasks": 109563, "language model predict": 83840, "extraction fundamental task": 56301, "language processing involves": 86520, "processing involves identifying": 129173, "involves identifying extracting": 80739, "challenging task lack": 22286, "llms chatgpt provides": 94595, "chatgpt provides opportunity": 23233, "language tasks simple": 86774, "language models ignore": 84664, "examine chatgpt used": 52375, "current limitations chatgpt": 34157, "laborious manual annotation": 82867, "preliminary study recently": 126147, "chatgpt achieves remarkable": 22678, "terms automatic evaluation": 164388, "quality natural language": 134210, "poor correlation human": 123944, "experimental results compared": 53974, "automatic metrics chatgpt": 14709, "metrics chatgpt achieves": 102024, "possible prompt llm": 124450, "complex tasks demonstrate": 27610, "quality compared existing": 134069, "domains news articles": 44483, "classification semantic segmentation": 24081, "assess ability llms": 13040, "end propose simple": 48683, "incontext learning framework": 74900, "medical knowledge large": 100188, "llms useful tool": 96912, "efficient transformer training": 46735, "nlp tasks unfortunately": 113911, "propose novel dynamic": 131994, "capabilities text generation": 20212, "widely used conversational": 178392, "existing methods using": 53473, "findings provide important": 58760, "realworld synthetic datasets": 136521, "using finetuned model": 174209, "better large language": 17927, "requirements large language": 141305, "single 16gb gpu": 151775, "management research paper": 98888, "explores use chatgpt": 55435, "chatgpt aipowered chatbot": 22694, "semantics natural language": 148309, "demonstrated case study": 38628, "case study chatgpt": 20903, "study chatgpt used": 157208, "sparse dense retrieval": 153726, "proposed method generates": 132357, "incontext learning phase": 74955, "unlike previous approaches": 172013, "training runs training": 168709, "training data attribution": 168227, "promising technique mitigating": 130325, "model size reduction": 104611, "relation extraction given": 139247, "generative model based": 65468, "visualizations natural language": 177363, "empirical study pretrained": 47758, "question answering largescale": 134751, "models lack comprehensive": 106856, "model paper presents": 104209, "paper presents method": 119171, "achieve optimal performance": 3698, "paper presents detailed": 119156, "tasks paper seek": 162925, "requires additional training": 141332, "nlp tasks machine": 113871, "ability generate responses": 2201, "exhibits high level": 53200, "high level accuracy": 69476, "prior stateoftheart models": 127933, "significant potential revolutionize": 150825, "potential revolutionize field": 124948, "bridge gap human": 19044, "gap human machine": 62658, "driven recent advancements": 44997, "reasoning central human": 136732, "resources training inference": 142494, "shown incontext learning": 150292, "learning suffer high": 91039, "observation propose novel": 115328, "search strategy based": 147420, "incontext learning perform": 74952, "comprehensive experiments stateoftheart": 28049, "results indicate method": 143513, "diverse set skills": 43655, "comprehensive evaluation chatgpts": 28007, "presents comprehensive analysis": 126557, "comprehensive analysis chatgpts": 27951, "abilities code generation": 1885, "performance conducted experiments": 121323, "scenarios results demonstrate": 146693, "stateoftheart sota model": 155367, "sota model performance": 153356, "zeroshot chatgpt outperforms": 180141, "recent proliferation large": 137602, "llms exhibit wide": 95154, "using llms context": 174428, "cuttingedge artificial intelligence": 34431, "improve chatgpts performance": 73423, "better user experiences": 18066, "existing works rely": 53653, "supervised learning approaches": 159134, "model works phases": 104909, "works phases phase": 179477, "examples conduct extensive": 52542, "extensive experimental analysis": 55782, "metrics compared strong": 102030, "prompting method called": 131008, "level experimental results": 91466, "face great challenges": 56531, "offers novel approach": 115830, "novel approach improving": 114386, "paper investigate leverage": 119031, "release finetuned models": 139469, "significantly reduce time": 151133, "method achieve high": 100627, "training inference efficiency": 168495, "achieving remarkable results": 4209, "instruction data model": 77977, "instruction tuning different": 78085, "instruction data evaluation": 77975, "selecting highquality training": 147816, "analysis current future": 8874, "making hard generalize": 98746, "model llm extract": 103993, "approach help researchers": 11276, "help researchers build": 69176, "evaluation quality generated": 51810, "based llms provides": 15931, "objective subjective dimensions": 115227, "models design robot": 105930, "propose novel twostep": 132044, "language modelsllms shown": 86422, "indicating great potential": 75651, "sequence generation task": 148742, "generation task finetune": 65139, "requires labeled training": 141399, "introduce novel zeroshot": 80078, "twostep training process": 170287, "extensive experimental evaluation": 55783, "outperforms stateoftheart systems": 117866, "leverage commonsense knowledge": 91576, "series experiments evaluate": 148920, "commonsense knowledge using": 26281, "commonsense knowledge llms": 26277, "use realworld scenarios": 172841, "graph attention neural": 67491, "better human alignment": 17900, "quality texts generated": 134285, "generated natural language": 63928, "framework using large": 61479, "summarization dialogue generation": 158822, "uniform information density": 171766, "information density uid": 76351, "human judgments quality": 70890, "models llms require": 107832, "trained large quantities": 167976, "generative model human": 65472, "datasets limited size": 36961, "data scarcity issue": 35697, "previous stateoftheart sota": 127661, "models significant margin": 109123, "potential utilizing chatgpt": 125055, "utilizing chatgpt enhance": 175176, "dataset codes available": 36160, "using different variants": 174139, "attention impressive performance": 13902, "impressive performance variety": 73341, "variety tasks chatgpt": 175767, "tasks chatgpt developed": 162041, "humanlike textgeneration capabilities": 71289, "distinguish real generated": 43286, "querying large language": 134655, "extracting data natural": 56223, "novel research avenues": 114671, "empirical study evaluating": 47752, "investigate effectiveness llms": 80403, "llms especially chatgpt": 95092, "existing automatic metrics": 53289, "utilizes chatgpt generate": 175125, "effectively mitigates impact": 46053, "chatgpt shown impressive": 23316, "furthermore propose new": 62136, "data released research": 35641, "released research purposes": 139540, "pretraining significantly improves": 127441, "highresource language pairs": 70099, "data used pretrain": 35915, "approaches used training": 11947, "transfer language models": 168925, "high cost obtaining": 69435, "classification results demonstrate": 24074, "particularly fewshot settings": 120190, "machine learning classifiers": 98022, "helps large language": 69247, "chatgpt gpt4 recently": 23024, "method address issue": 100659, "results case study": 143207, "factual knowledge work": 56892, "work propose approach": 179196, "shown remarkable potential": 150365, "chainofthought cot fewshot": 21486, "assessing chatgpts performance": 13172, "language reasoning problems": 86692, "using chatgpt gpt4": 174038, "critic model trained": 33447, "model trained expensive": 104764, "empirical studies impact": 47747, "empirical study recently": 47762, "recently released chatgpt": 137974, "surprising abilities natural": 159541, "understanding generation paper": 171262, "prompts achieve comparable": 131145, "results chatgpt able": 143217, "impact different prompts": 72638, "commercial mt systems": 26086, "llms shed light": 96516, "potential new paradigm": 124884, "capabilities gpt35 gpt4": 19929, "gpt35 gpt4 outperform": 66820, "work highlights challenges": 179016, "release data annotations": 139460, "exhibited remarkable abilities": 53148, "natural language processingnlp": 111840, "opensource llms llama": 116640, "language generation knowledge": 83352, "chatgpts ability perform": 23482, "human evaluation methods": 70741, "zeroshot performance various": 180290, "propose prompting strategy": 132083, "promising results highlight": 130308, "rigorous human evaluation": 144865, "publicly release dataset": 133677, "llms using machinegenerated": 96926, "using machinegenerated instructionfollowing": 174471, "machinegenerated instructionfollowing data": 98148, "zeroshot capabilities new": 180128, "capabilities new tasks": 20076, "paper present attempt": 119108, "present attempt use": 126230, "generate instructionfollowing data": 63578, "enable comprehensive evaluation": 48069, "evaluation reward model": 51839, "data generated using": 35103, "codebase publicly available": 25224, "scientific literature review": 146972, "generation process effectively": 64960, "challenging task named": 22287, "stateoftheart summarization models": 155378, "discuss potential directions": 42928, "motivate future research": 110165, "future research generative": 62344, "information needs users": 76596, "success various domains": 158307, "generative ai integrating": 65328, "needs ensure trustworthiness": 112472, "framework utilizes generative": 61486, "utilizes generative pretrained": 175131, "language model accomplish": 83513, "similarly large language": 151393, "effective training data": 45909, "language model samples": 83891, "capabilities nlp models": 20078, "using largescale pretrained": 174403, "nlp models bert": 113767, "recent introduction large": 137525, "introduction large language": 80254, "analysis reveals chatgpt": 9137, "learning chainofthought reasoning": 90291, "results popular benchmarks": 143670, "real world scenarios": 136276, "gpt4 empirical results": 66981, "llms offer novel": 95956, "efficiently generate highquality": 46784, "incontext learning prompting": 74963, "working natural language": 179403, "domain computer vision": 44114, "pretrained randomly initialized": 127147, "investigate chatgpts ability": 80388, "discuss possible future": 42924, "answer different types": 9698, "work aims gap": 178794, "chatgpt similar llms": 23332, "research develop better": 141695, "develop better models": 40763, "recent trend using": 137712, "response time high": 142709, "ensembles large language": 49652, "detailed empirical study": 40286, "aim evaluate ability": 7451, "prompt engineering calibration": 130447, "make large language": 98561, "models outperform models": 108383, "main contributions paper": 98234, "performance challenging benchmarks": 121227, "large margin work": 88907, "semantics large language": 148303, "instruction following language": 78013, "efforts directed developing": 46907, "models performance study": 108494, "influence training data": 76225, "highquality instruction datasets": 70040, "set 1000 samples": 149116, "proprietary language models": 132515, "online news platforms": 116117, "personalized news recommendation": 122612, "news recommendation methods": 113575, "methods help users": 101567, "used language model": 173124, "language model techniques": 83926, "reducing training time": 138601, "tasks prompt learning": 163024, "textual information news": 165921, "recommendations based users": 138239, "users specific requirements": 173785, "gptj llama models": 67296, "demonstrated potential facilitating": 38736, "tasks present unique": 162972, "extensive case study": 55731, "results various benchmarks": 143916, "multitask instruction tuning": 111212, "existing large models": 53405, "achieved f1 score": 3808, "validate proposed method": 175332, "information extraction datasets": 76422, "gpt2 models finetuned": 66569, "models efficient effective": 106056, "language processing research": 86615, "present substantial obstacles": 126467, "academic research large": 2753, "capabilities understanding generating": 20229, "comprehend execute instructions": 27846, "proficiency understanding generating": 129680, "yield competitive performance": 179964, "size pretrained models": 152056, "language models texttovideo": 86288, "examples training process": 52716, "language models equivalent": 84457, "various tasks demonstrate": 176199, "establish new stateoftheart": 50668, "propose new sampling": 131974, "demonstrated remarkable zeroshot": 38789, "tasks including search": 162574, "including search engines": 74713, "covering nlp tasks": 33084, "benchmark datasets covering": 16902, "witnessed significant advancements": 178574, "world knowledge acquired": 179564, "design set prompts": 39754, "generated different models": 63853, "researchers explore potential": 142209, "potential language models": 124802, "tackle various downstream": 160853, "computer vision reinforcement": 28509, "vision reinforcement learning": 176979, "reinforcement learning foundation": 139060, "trained large dataset": 167970, "model demonstrates remarkable": 103427, "relation extraction crucial": 139242, "extraction crucial task": 56277, "task information extraction": 161471, "experiments conducted lowresource": 54193, "models achieving stateoftheart": 105259, "conduct experiments widely": 29101, "fully supervised baselines": 61784, "better supervised models": 18037, "generate task plans": 63747, "reasoning process study": 137062, "approach significantly improving": 11542, "significantly improving performance": 151056, "holdout test set": 70264, "llms currently difficulty": 94770, "seen significant success": 147710, "semantic understanding logical": 148247, "understanding logical reasoning": 171344, "llm reasoning ability": 93942, "natural language learning": 111669, "tasks ranging simple": 163075, "terms training efficiency": 164487, "performance gpt4 gpt35": 121608, "incontext learning gpt4": 74905, "gpt4 performed best": 67111, "accuracy test set": 3405, "llms prone errors": 96237, "reasoning inference furthermore": 136918, "difficulty experimental results": 42212, "domain knowledge evaluation": 44198, "make benchmark evaluation": 98490, "information need given": 76593, "demonstrate efficacy approach": 38314, "current dialogue systems": 34107, "data generation framework": 35110, "framework able generate": 60909, "comprehensive empirical results": 27999, "data sources including": 35780, "follow complex instructions": 60210, "instructions training large": 78363, "instruction following data": 78010, "varying levels complexity": 176291, "findings suggest finetuning": 58809, "llms code data": 94620, "data public httpsgithubcomnlpxucanwizardlm": 35590, "version large language": 176607, "acquiring highquality data": 4281, "like medicine finance": 92349, "predict specific instances": 125705, "llm performance learning": 93880, "using wide range": 174868, "best model outperforms": 17705, "understand syntax semantics": 171087, "paper propose llmbased": 119229, "demonstration examples prompt": 38978, "models demonstrates strong": 105920, "outperform stateoftheart approaches": 117632, "significantly training data": 151172, "latent diffusion model": 89497, "training set augmentation": 168731, "evaluate ability language": 50891, "language models act": 84073, "new dataset existing": 113137, "prompts make llm": 131371, "semantic knowledge language": 148165, "useful variety tasks": 173357, "natural language names": 111678, "language model outperform": 83817, "applications work present": 10732, "language model incorporate": 83688, "incorporate various types": 75040, "successfully generate data": 158380, "perform thorough analysis": 121069, "paper investigate use": 119040, "approaches data augmentation": 11724, "models llms instruction": 107578, "broad set topics": 19188, "performance models using": 121815, "using automatic metrics": 173988, "nlp benchmarks human": 113698, "significant improvements compared": 150744, "challenge previous work": 21712, "suffer severe limitations": 158450, "machine translation benchmarks": 98111, "ai models large": 7102, "analysis strengths weaknesses": 9179, "peft techniques recently": 120687, "evaluate model performance": 51021, "performance different data": 121389, "significantly fewer parameters": 151009, "implications use llms": 72959, "capturing common sense": 20716, "language model recommendation": 83876, "performance diverse domains": 121410, "explore potential use": 55269, "guided beam search": 68221, "outperforming baseline methods": 117667, "robustness code publicly": 145359, "models perform language": 108465, "data form text": 35071, "integrating human feedback": 78600, "human feedback natural": 70812, "models generate toxic": 106463, "finally provide overview": 58515, "nascent field ai": 111483, "exploits large language": 55043, "need human intervention": 112311, "task requires deep": 161696, "standard benchmark datasets": 154805, "limited number training": 92810, "incontext learning data": 74885, "achieve performance par": 3706, "performance par previous": 121895, "prompt learning approaches": 130570, "obtain new stateoftheart": 115489, "research capabilities large": 141626, "work seek understand": 179279, "number case studies": 114833, "nature natural language": 112019, "natural language makes": 111673, "human feedback ai": 70794, "feedback ai feedback": 57639, "transfer learning tasks": 168961, "unseen tasks task": 172190, "task instructions provided": 161483, "explore ability llms": 55135, "alternative human evaluation": 8563, "human evaluation present": 70744, "ask llms generate": 12851, "generate responses questions": 63689, "crucial realworld applications": 33840, "relation extraction using": 139256, "bridge gap llms": 19050, "achieves sota performances": 4085, "potential generalize different": 124742, "existing studies demonstrated": 53591, "achieves best tradeoff": 3970, "cold start problem": 25565, "findings suggest generative": 58810, "artificial intelligence recently": 12762, "remains challenge despite": 139976, "generation quality paper": 64995, "effectiveness approach generating": 46128, "tasks encompass wide": 162296, "numerous ai models": 115023, "designed specific tasks": 39947, "capabilities various aspects": 20241, "various tasks datasets": 176198, "structural causal model": 156511, "approach code available": 11049, "reasoning capabilities promise": 136714, "instructiontuned models trained": 78403, "english chinese languages": 49035, "codex chatgpt shown": 25337, "contents external knowledge": 30666, "accuracy far human": 3239, "llms chatgpt shown": 94600, "recognition ner models": 138103, "problems paper propose": 128584, "additionally conduct comprehensive": 5033, "methods primarily focus": 101725, "code datasets publicly": 24773, "incorporate domain knowledge": 75010, "llms specifically introduce": 96668, "utilizes llm iteratively": 175147, "interpretable text classification": 79696, "raw data using": 136086, "method conduct experiments": 100749, "machine translation using": 98135, "translation using large": 169542, "similarity sentence embedding": 151377, "based commonsense knowledge": 15710, "substantially outperforms existing": 158136, "generalization capabilities unseen": 63145, "language models resulting": 86095, "increase accuracy 20": 75188, "data training propose": 35880, "training propose use": 168667, "information retrieval dataset": 76716, "improve effectiveness existing": 73452, "features prior knowledge": 57558, "eliminate manual effort": 47068, "code pretrained language": 25053, "pretraining test data": 127461, "overlooked previous works": 118385, "wide range cognitive": 178271, "range cognitive tasks": 135597, "family models capable": 57201, "standard approach finetuning": 154799, "human evaluation automatic": 70725, "emotional support conversations": 47590, "transformers largescale pretrained": 169326, "study investigates feasibility": 157444, "fewshot prompting chainofthought": 58027, "graph construction using": 67501, "llm like chatgpt": 93806, "texts findings indicate": 165713, "findings indicate using": 58706, "models robust spurious": 109017, "cues large language": 33927, "answer given input": 9720, "method finetune model": 100877, "containing different types": 30331, "language models relation": 86077, "models relation extraction": 108896, "tasks varying levels": 163457, "gpt3 achieves near": 66639, "achieves near sota": 4034, "word embedding methods": 178626, "embedding methods word2vec": 47181, "alignment incontext learning": 8168, "propose novel prompt": 132025, "llms experiments reveal": 95191, "address gap proposing": 5241, "paper present methodology": 119124, "generation capabilities chatgpt": 64463, "access large language": 2874, "work lays groundwork": 179092, "sentence similarity text": 148535, "sentence similarity classification": 148534, "quality learned embeddings": 134183, "conduct thorough examination": 29197, "different sizes ranging": 41999, "fewshot finetuning scenarios": 57913, "traditional recommender models": 167686, "data finetuning llms": 35062, "llms achieve comparable": 94288, "languages recent advancements": 87109, "models models shown": 108227, "present preliminary analysis": 126414, "closedsource large language": 24489, "study explore potential": 157340, "recommendation foundation models": 138200, "foundation models recommendation": 60803, "foundation models study": 60810, "study highlights significant": 157395, "end present novel": 48674, "llms prior knowledge": 96191, "llms extensive experiments": 95215, "despite remarkable ability": 40194, "competitive performance tasks": 27191, "language model empowered": 83618, "large number studies": 88969, "inspired recent progress": 77758, "approach outperform competitive": 11420, "emergent capabilities large": 47473, "capable generating seemingly": 20428, "prompting llms using": 131000, "unclear chatgpt performs": 170690, "contrastive input decoding": 31351, "ensuring large language": 49742, "fewshot crosslingual transfer": 57895, "bridging gap pretraining": 19092, "gap pretraining finetuning": 62710, "prompts experimental results": 131261, "learning models including": 90719, "systems like large": 160464, "order improve quality": 117207, "model parameter space": 104215, "expected calibration error": 53752, "calibration error ece": 19633, "significant attention exceptional": 150602, "despite extensive efforts": 40109, "developing generalpurpose llms": 40996, "nlp tasks research": 113894, "research exploring potential": 141781, "recommender systems paper": 138276, "models lms powerful": 108072, "powerful tools natural": 125345, "requires models output": 141421, "controlled natural language": 31644, "multistep reasoning understanding": 111193, "chatgpt leveraging large": 23101, "knowledge commonsense reasoning": 81822, "commonsense reasoning language": 26312, "technical challenges including": 163692, "particular propose new": 120113, "natural language user": 111920, "pairs natural language": 118602, "natural language labels": 111664, "requires advanced reasoning": 141336, "reasoning abilities solve": 136632, "suggesting significant room": 158627, "room improvement current": 145588, "improvement current llms": 73776, "process timeconsuming errorprone": 129015, "question answering generative": 134728, "task automatically generating": 161212, "improvements compared strong": 73889, "reasoning remains explored": 137099, "study investigates chatgpts": 157440, "finally demonstrate effectiveness": 58433, "fewshot prompting approaches": 58026, "models critical issue": 105822, "analyze performance current": 9320, "conclude proposing potential": 28881, "vanilla pretrained language": 175579, "help pretrained language": 69162, "language model utilize": 83949, "widely deployed language": 178372, "llms gpt4 demonstrated": 95433, "gpt4 demonstrated impressive": 66963, "line research work": 92946, "using specially designed": 174741, "plugins large language": 123679, "problem incontext learning": 128280, "research recently large": 142037, "generate appropriate responses": 63399, "stateoftheart sota zeroshot": 155373, "conduct thorough experiments": 29198, "vanilla language models": 175575, "shed light designing": 149853, "algorithms language models": 7938, "tuning instruction tuning": 170032, "automated theorem prover": 14622, "reasoning steps llm": 137146, "theorem prover approach": 166006, "exploit incontext learning": 55006, "wellunderstood works suggest": 178196, "quality evaluation shows": 134116, "outperforms existing llm": 117755, "distributed llm inference": 43325, "instruction tuning introduce": 78105, "attributes desired text": 14107, "model finetuned diverse": 103662, "finetuned diverse collection": 59011, "competitive publicly available": 27197, "llms trained instructions": 96827, "data models publicly": 35397, "llms knowledge graphs": 95705, "crucial role enhancing": 33851, "llms shown surprising": 96580, "tasks paper conduct": 162909, "data evaluate various": 34994, "evaluate various llms": 51130, "llms including palm": 95581, "benchmark datasets demonstrating": 16906, "datasets demonstrating ability": 36781, "performance compared humans": 121292, "models llms static": 107944, "augment base llm": 14233, "bigbench hard tasks": 18394, "previous stateoftheart method": 127657, "benchmark evaluation code": 16964, "evaluation metrics different": 51720, "knowledge evaluation benchmark": 81959, "benchmark chinese large": 16857, "language models proposed": 85995, "language models taking": 86268, "zeroshot prompts used": 180308, "tasks given natural": 162466, "methods require reference": 101783, "methods typically require": 101894, "using contextual information": 174083, "information provided prompt": 76662, "ability generalize knowledge": 2180, "models llms benchmarks": 107143, "extent llms used": 56017, "models carefully designed": 105574, "does significantly affect": 44033, "significantly affect performance": 150939, "create training data": 33240, "70 time compared": 1529, "time compared baselines": 166357, "models boost performance": 105536, "language prompts paper": 86671, "prompts paper introduce": 131399, "paper introduce prompt": 119001, "new metric quantify": 113277, "providing comprehensive understanding": 133272, "concerns natural language": 28797, "types seen training": 170425, "using stable diffusion": 174746, "models exhibit limited": 106206, "training data data": 168246, "demonstrate superiority robustness": 38582, "prompts responses reinforcement": 131452, "responses reinforcement learning": 142899, "learning human preference": 90530, "examples training data": 52715, "training data including": 168283, "appear training data": 10231, "general llms particular": 62989, "models llms questionanswering": 107781, "finally discuss promising": 58441, "areas future work": 12369, "future work including": 62410, "performing complex tasks": 122396, "research shown incorporating": 142078, "enhance performance models": 49254, "work present novel": 179178, "llms extensive experimentation": 95214, "prior approaches rely": 127879, "enhancing effectiveness llms": 49479, "additional empirical analyses": 4954, "continual learning methods": 31171, "results method performs": 143603, "achieved promising performance": 3860, "face challenges maintaining": 56519, "novel method improve": 114591, "training dataset method": 168372, "novel paradigm evaluating": 114625, "latest versions chatgpt": 89574, "known language models": 82609, "end conduct extensive": 48642, "recommendation using chatgpt": 138236, "codes datasets released": 25299, "offensive toxic content": 115626, "utilize external tools": 175043, "enhances performance llms": 49436, "simple effective strategy": 151440, "harnessing capabilities large": 68820, "generative language tasks": 65445, "natural language study": 111875, "detailed ablation studies": 40262, "llms works employ": 97025, "formality style transfer": 60526, "computational cost inference": 28346, "apply instruction tuning": 10854, "finetuning proposed method": 59489, "method achieved stateoftheart": 100630, "language models tested": 86279, "braincomputer interface bci": 18950, "holds immense potential": 70271, "improve sampling efficiency": 73619, "leveraging pretrained large": 91927, "models llms utilize": 108016, "prior knowledge learned": 127907, "substantial human effort": 158066, "introduce innovative framework": 79984, "deep learning particularly": 37771, "learning high performance": 90517, "recent advances present": 137423, "papers published 2017": 119403, "resulting significant improvements": 143134, "outcome prediction datasets": 117442, "respectively code available": 142541, "chainofthought reasoning ability": 21539, "reasoning ability recent": 136648, "handle complex reasoning": 68531, "gap paper presents": 62696, "steer large language": 155554, "adapted various tasks": 4697, "experiments downstream tasks": 54261, "models symbolic solvers": 109333, "complex logical problems": 27461, "problems paper introduces": 128582, "introduces novel framework": 80207, "llms translate natural": 96854, "offers promising avenue": 115840, "approach achieves stateoftheart": 10954, "complex hyperparameter tuning": 27433, "generative capability llms": 65399, "capability llms large": 20337, "led wide adoption": 91258, "language models incorporates": 84692, "provides promising approach": 133200, "processing tasks efficacy": 129314, "tasks efficacy challenging": 162270, "efficacy challenging domainspecific": 46364, "challenging domainspecific tasks": 22154, "domainspecific tasks remains": 44630, "remains explored paper": 140006, "findings reveal chatgpt": 58774, "conclusion research contributes": 28903, "robust evaluation benchmark": 145261, "language models offers": 85819, "positive negative pairs": 124299, "models study prompt": 109264, "study prompt design": 157555, "learning icl emerged": 90541, "structured knowledge sources": 156653, "exploring various prompt": 55519, "conduct systematic investigation": 29187, "approach involves leveraging": 11322, "highlight effectiveness approach": 69737, "effectiveness approach adapting": 46122, "factors contributing success": 56792, "enhancing logical reasoning": 49519, "structured semantic representation": 156674, "reasoning reading comprehension": 137087, "empirical evidence effectiveness": 47692, "strong incontext learning": 156397, "recent years significant": 137804, "years significant progress": 179937, "learning models provide": 90728, "research suggesting potential": 142100, "suggesting potential avenues": 158623, "response paper introduces": 142680, "challenges faced llms": 21866, "domain source domain": 44288, "task misinformation detection": 161545, "scarcity issue propose": 146493, "learning based approach": 90240, "stateoftheart baselines large": 155089, "baselines large language": 16344, "language models methodology": 85740, "incontext learning previous": 74961, "success rate compared": 158290, "learning icl capability": 90538, "language models constrained": 84296, "table qa models": 160749, "framework successfully transfer": 61434, "uses teacher model": 173915, "offer fresh perspective": 115654, "paper propose effective": 119214, "code leaderboard available": 24974, "models llms attractive": 107125, "open source benchmark": 116291, "exceptional performance zeroshot": 52837, "fewshot summarization capabilities": 58065, "chatgpt gpt4 growing": 23020, "complex generative tasks": 27422, "used automatic metrics": 172973, "untapped potential llms": 172289, "llms knowledge graph": 95704, "quantitative qualitative evaluation": 134371, "good performance tasks": 66285, "finetuned models certain": 59080, "based empirical findings": 15772, "language models problems": 85964, "years witnessed surge": 179949, "paper evaluate capability": 118886, "models llms evaluation": 107373, "llms evaluation results": 95110, "propose novel endtoend": 131996, "models effectively handle": 106048, "chatgpt garnered significant": 22969, "capabilities handling diverse": 19936, "handling diverse range": 68593, "collect training data": 25677, "data significantly improves": 35758, "writing tasks conduct": 179765, "tasks conduct experiments": 162109, "offer insights future": 115664, "insights future work": 77569, "linguistic knowledge large": 93043, "results highlight value": 143465, "information heterogeneous sources": 76492, "prior studies primarily": 127936, "rationales extensive experiments": 136063, "remains unclear extent": 140085, "previous work studied": 127697, "learning icl important": 90547, "generating arbitrarily long": 64141, "create personalized interactive": 33223, "paper survey recent": 119352, "outperforms stateoftheart finetuned": 117858, "dataset code publicly": 36157, "matrix multiplication convolution": 99640, "generate diverse finegrained": 63465, "understanding recently large": 171449, "models demonstrated strong": 105915, "results smaller models": 143806, "abundant annotated data": 2700, "language model act": 83516, "knowledge foundation models": 82013, "foundation models work": 60825, "knowledge wide range": 82509, "models llms existing": 107395, "rely human annotations": 139856, "extensively evaluate performance": 55983, "methods analysis highlights": 101303, "llms decoding strategies": 94790, "investigates capabilities large": 80549, "llms context understanding": 94719, "propose novel categorization": 131987, "evaluate quality answers": 51086, "uses zeroshot prompting": 173924, "existing strong baselines": 53589, "text data data": 164984, "data data augmentation": 34884, "language model smaller": 83906, "address questions introduce": 5361, "questions introduce new": 135171, "fmri brain activity": 59930, "models distribution shifts": 106008, "shifts large language": 149939, "ability various natural": 2412, "processing tasks effectiveness": 129313, "learning question answering": 90892, "generalization ability methods": 63131, "recently llms shown": 137938, "llms shown strong": 96576, "situations paper present": 151948, "datasets demonstrate competitive": 36763, "nlp tasks generate": 113846, "incorrect hallucinated information": 75153, "realworld scenarios human": 136501, "human feedback shown": 70825, "effectively enhance factuality": 45986, "applications paper introduce": 10627, "detecting factual errors": 40405, "emergent ability large": 47465, "different llms gpt": 41838, "able outperform previous": 2533, "binary classification accuracy": 18466, "ground truth answers": 67838, "leaving open questions": 91206, "work predominantly focused": 179170, "paradigm using llms": 119529, "reasoning language comprehension": 136947, "perform diverse tasks": 120930, "based insights introduce": 15880, "way future studies": 177820, "use cases address": 172525, "user studies evaluate": 173511, "similar incontext learning": 151253, "smaller models training": 152421, "datasets including novel": 36926, "outperforms chatgpt gpt4": 117732, "achieves highest average": 4024, "surface natural language": 159415, "natural language features": 111601, "require training finetuning": 141212, "features experimental results": 57488, "existing methods enhancing": 53445, "paper aims improve": 118736, "15 million highquality": 414, "opensource models including": 116654, "shown great capabilities": 150249, "sentiment analysis machine": 148615, "analysis machine translation": 9010, "identification results indicate": 71804, "zero fewshot prompting": 180075, "comparison finetuned models": 27045, "summaries generated large": 158767, "favored human annotators": 57334, "methods model training": 101667, "adopt contrastive learning": 5570, "similar performance llms": 151289, "remarkable advancements large": 140135, "llms significantly enhanced": 96601, "significantly enhanced performance": 150992, "using small number": 174726, "performs poorly context": 122452, "score generated text": 147068, "tasks including translation": 162583, "7b model surpasses": 1634, "explores potential leveraging": 55420, "potential leveraging large": 124821, "models llms data": 107237, "llms data augmentation": 94778, "commonsense reasoning datasets": 26308, "evaluate effectiveness finetuning": 50954, "data compare performance": 34801, "data generated llms": 35102, "furthermore conduct human": 62033, "struggle generate meaningful": 156752, "language model chatbots": 83576, "generation systems provide": 65133, "task presents significant": 161638, "future research propose": 62366, "research propose new": 142003, "data generate natural": 35095, "reduces memory usage": 138524, "performance level chatgpt": 121735, "models providing detailed": 108734, "reasoning abilities propose": 136631, "highquality data instruction": 70012, "effective prompting strategies": 45857, "model selection large": 104531, "combine best worlds": 25874, "proposed method demonstrates": 132349, "paper explore question": 118920, "generation widely used": 65260, "sets address issue": 149356, "issue introduce simple": 80916, "transformerbased nlp models": 169281, "bert gpt2 t5": 17553, "ner sentiment analysis": 112603, "capable producing highly": 20463, "methods fail provide": 101518, "strong baselines based": 156352, "models chatgpt vicuna": 105618, "models address issue": 105280, "finetuning zeroshot settings": 59615, "computational models social": 28385, "methods chainofthought cot": 101361, "reinforcement learning recent": 139092, "perform specific tasks": 121045, "vary greatly depending": 176270, "task existing methods": 161372, "model work propose": 104907, "using proximal policy": 174627, "text classification using": 164915, "using graph neural": 174278, "specific domains limited": 153981, "test llms using": 164580, "contribute growing body": 31404, "al 2023 shows": 7734, "language models causing": 84218, "whitebox blackbox settings": 178233, "llms produce outputs": 96208, "align human values": 8005, "pairwise human judgments": 118642, "llms use incontext": 96904, "incontext demonstrations improve": 74845, "improve performance zeroshot": 73578, "example language model": 52485, "social interactions based": 152590, "based multimodal information": 15954, "chatgpt gpt4 exhibit": 23018, "language model beam": 83556, "model beam search": 103196, "critical need highquality": 33525, "evaluation common practice": 51484, "propose adapt pretrained": 131695, "study aims investigate": 157154, "factors influence ability": 56801, "struggle complex tasks": 156739, "reveals pivotal role": 144443, "llms generate reasonable": 95374, "generation abilities llms": 64382, "editing language models": 45464, "paper propose task": 119254, "fewshot reasoning capabilities": 58041, "reasoning llms perform": 136968, "existing blackbox llms": 53306, "reasoning abilities code": 136618, "automatically evaluate performance": 14797, "style large language": 157754, "chatgpt incontext learning": 23066, "incontext learning performs": 74954, "llms demonstrated great": 94844, "demonstrated great capabilities": 38674, "capabilities solving wide": 20190, "prompting does require": 130901, "common nlp tasks": 26166, "code datasets used": 24776, "llm able perform": 93427, "finetuning llms using": 59364, "emerges promising solution": 47498, "promising solution tackle": 130318, "datasets spanning tasks": 37125, "language model hallucinations": 83676, "recent research introduced": 137627, "methods based finetuning": 101336, "approach specifically tailored": 11563, "fully automated way": 61744, "single correct answer": 151788, "efficient incontext learning": 46639, "ablation study conducted": 2448, "method diverse tasks": 100797, "models finetuned human": 106351, "chatgpt gpt4 claude": 23013, "bridge knowledge gap": 19067, "focus assessing chatgpts": 59948, "findings indicate despite": 58698, "models undergone finetuning": 109537, "potential alternative human": 124572, "work adds growing": 178782, "models gpt35turbo gpt4": 106540, "findings provide valuable": 58764, "questions evaluating performance": 135119, "evaluating performance llms": 51369, "llm specifically gpt4": 94021, "scenarios significant performance": 146699, "models data code": 105843, "wide range coding": 178270, "cognitive process propose": 25470, "language models raise": 86015, "great promise improving": 67721, "limited scarcity highquality": 92847, "bridge gap present": 19056, "using lowrank adaptation": 174463, "language models adapters": 84076, "base model making": 15621, "execution large language": 52957, "performance llms complex": 121753, "novel framework combines": 114510, "analysis demonstrate effectiveness": 8882, "perform poorly task": 121008, "address challenges new": 5183, "large language modelsllm": 88877, "tasks real world": 163081, "social network analysis": 152639, "language models includes": 84682, "study conduct extensive": 157231, "conduct extensive investigation": 29131, "evaluate llms capabilities": 51008, "insights bridging gap": 77516, "novel method named": 114593, "experimental results representative": 54067, "mind tom capacity": 102290, "remains challenge llms": 139978, "better assess llms": 17808, "language models synthesize": 86256, "comparable performance supervised": 26607, "data used pretraining": 35916, "translation task language": 169528, "novel task called": 114706, "enables finegrained language": 48187, "models literature review": 107016, "information dataset code": 76348, "approach adapting pretrained": 10965, "method surpasses existing": 101129, "furthermore proposed model": 62142, "enabling language models": 48314, "recent studies begun": 137653, "models introduce novel": 106815, "novel benchmark called": 114418, "performance multiple datasets": 121827, "language models iterative": 84738, "performance achieved method": 121125, "retrieving relevant knowledge": 144288, "generate better output": 63404, "conduct detailed error": 29067, "improving quality generated": 74199, "require careful consideration": 141074, "language models resulted": 86094, "short text generation": 150009, "text generation qa": 165174, "text generation summarization": 165186, "fewshot examples given": 57905, "understanding generation potential": 171264, "using techniques like": 174791, "demonstrate great potential": 38366, "limit models ability": 92487, "answer question paper": 9759, "exhibited large language": 53139, "model llm technology": 104028, "framework based chatgpt": 60977, "text simplification models": 165465, "crosslingual transfer lowresource": 33676, "work develop new": 178905, "expressed natural languages": 55575, "model training new": 104792, "range language model": 135634, "language model sizes": 83904, "variety tasks involving": 175773, "ability handle longer": 2214, "obtain comparable performance": 115467, "context lengths gpt4": 30828, "code reproduce experiments": 25104, "challenges future prospects": 21882, "fact llms trained": 56739, "trained predominantly english": 168043, "performance varies different": 122235, "modern pretrained language": 109832, "bert roberta gpt3": 17598, "model performance despite": 104234, "testing language models": 164723, "supervision paper propose": 159210, "outperforms 175b parameter": 117704, "limitations incontext learning": 92602, "measure mitigate biases": 99860, "significantly reduce biases": 151127, "change models behavior": 22347, "finally present simple": 58508, "shown strong ability": 150383, "translations large language": 169556, "prompts pretrained language": 131412, "tasks limited work": 162738, "paradigm promptbased learning": 119500, "problem training data": 128422, "bridge gap large": 19049, "classification tasks code": 24112, "experiments method significantly": 54357, "stateoftheart performance large": 155279, "language models partially": 85858, "large body literature": 87202, "language models adapt": 84074, "models recent studies": 108837, "downstream tasks achieve": 44759, "models robust adversarial": 109016, "potential incontext learning": 124781, "downstream tasks additionally": 44761, "pose new challenges": 124162, "understanding user intent": 171523, "facilitate research area": 56643, "complex tasks involve": 27612, "development reinforcement learning": 41205, "optimizing large models": 117119, "ability llms understand": 2267, "results pretrained llm": 143681, "models improved specificity": 106692, "reasoning crucial aspect": 136788, "language model bart": 83548, "model bart lm": 103178, "widely used single": 178404, "applied large language": 10776, "generations produced pretrained": 65287, "models sizes 7b": 109150, "sizes 7b 13b": 152087, "framework simple effective": 61417, "model generate multiple": 103723, "uses contrastive learning": 173838, "know large language": 81707, "task instructions examples": 161482, "address issue researchers": 5278, "researchers proposed various": 142250, "learning data augmentation": 90346, "language models leverages": 84789, "using generative language": 174238, "models especially large": 106151, "text classification benchmarks": 164882, "methods easy data": 101458, "easy data augmentation": 45351, "performance results demonstrate": 122026, "reasoning process external": 137057, "comprehensive evaluations public": 28028, "metrics observe necessity": 102118, "performance gpt3 incontext": 121600, "scenarios work explore": 146721, "practical applications work": 125393, "models trained biomedical": 109418, "inspired prompt learning": 77749, "stateoftheart deep neural": 155122, "language models tackle": 86266, "llms input prompt": 95644, "designed counteract adverse": 39842, "regions state space": 138938, "data extensive experiments": 35027, "directly applying llms": 42518, "llms emerging field": 95040, "substantial potential impact": 158093, "current research status": 34229, "nlp techniques based": 113918, "icl text classification": 71698, "fall short addressing": 57121, "generated llms remains": 63918, "access language models": 2870, "language models unrealistic": 86348, "quality llm responses": 134189, "valuable insights practitioners": 175439, "adopting llms code": 5619, "code replicate experiments": 25100, "complex causal reasoning": 27369, "approach enable llms": 11164, "llms use external": 96903, "llms perform competitively": 96069, "demonstrated strong performance": 38803, "property catastrophic forgetting": 131671, "methods proposed method": 101739, "language models proper": 85988, "transformer architecture enable": 169092, "handle natural language": 68559, "models prompt strategies": 108686, "using stepbystep reasoning": 174762, "sentence completion test": 148481, "recent efforts focused": 137485, "llms gpt llama2": 95413, "perform zeroshot classification": 121096, "leveraging outofdomain data": 91917, "learning procedure generate": 90859, "resulting noisy labels": 143125, "nlp recently gained": 113799, "remarkable success learning": 140291, "potential enhance various": 124697, "process large amounts": 128894, "large amounts information": 87183, "number nlp applications": 114912, "increasingly important problem": 75406, "achieve precise control": 3710, "llms powerful tool": 96149, "powerful tool augmenting": 125342, "empirically validate efficacy": 47808, "comprehensive experiments image": 28043, "experiments image classification": 54312, "setting demonstrate time": 149439, "negligible impact performance": 112561, "increasing size plms": 75365, "study recently large": 157585, "chainofthought prompting using": 21536, "gpt4 outperforms llms": 67101, "generation task specifically": 65144, "model surpasses baseline": 104699, "llms generation code": 95394, "importance incontext learning": 73040, "evaluate different prompt": 50948, "shows chatgpt able": 150414, "dialog systems paper": 41432, "novel application large": 114360, "incontext learning approach": 74871, "approach generates diverse": 11252, "need better understand": 112235, "different domains modalities": 41747, "limited research conducted": 92835, "language models semiparametric": 86140, "conduct ablation analysis": 29022, "model performance based": 104231, "help model better": 69148, "processing nlp task": 129249, "language models considerable": 84291, "contextual information text": 31100, "model performance work": 104262, "multidimensional evaluation text": 110376, "synthetically generated datasets": 160095, "efficacy incontext learning": 46385, "transfer new domains": 168979, "model based architectures": 103181, "large amounts diverse": 87181, "amounts diverse data": 8683, "hold promise solving": 70254, "general purpose models": 63032, "model user behaviour": 104844, "deployed real world": 39219, "training address limitations": 168147, "learning methods specifically": 90687, "language model augmented": 83542, "search recommendation systems": 147404, "training data models": 168311, "data experiments demonstrate": 35018, "korean language models": 82646, "mbert devlin et": 99713, "multilingual models nonenglish": 110514, "offer improved performance": 115659, "models generative models": 106484, "examples paper propose": 52650, "outperforms stateoftheart fewshot": 117857, "learning icl method": 90551, "pretraining large text": 127367, "neural networks variety": 112960, "large public datasets": 89028, "new generation tasks": 113208, "holds great potential": 70268, "automatic assessment systems": 14642, "language tasks paper": 86769, "llms significantly benefit": 96600, "benefit chainofthought cot": 17422, "tasks code released": 162063, "dialogue systems leveraging": 41527, "improves accuracy predicting": 73971, "language models advanced": 84085, "training llms finetuning": 168552, "llms finetuning pretrained": 95277, "answering questions require": 9941, "correct final answer": 32387, "gpt35 turbo llama": 66864, "outperforms stateoftheart text": 117868, "natural languages nls": 111934, "based internal knowledge": 15887, "multiple llms various": 110974, "human annotators perform": 70588, "perform data analysis": 120916, "automatic evaluation human": 14662, "representation learning model": 140712, "drug sensitivity prediction": 45053, "cover diverse set": 33040, "capture diverse opinions": 20648, "generated using gpt3": 64036, "training data augmented": 168229, "training test data": 168783, "stateoftheart proprietary models": 155318, "provides best performance": 133111, "language models instructiontuned": 84721, "models instructiontuned large": 106788, "lack comprehensive understanding": 82906, "comprehensive understanding regarding": 28154, "models unlike previous": 109551, "data training methods": 35879, "language models works": 86408, "using language modeling": 174355, "using nonenglish prompts": 174540, "accuracy privacy protection": 3345, "potential data leakage": 124667, "demonstrated extraordinary capabilities": 38668, "retrievalaugmented llm systems": 144192, "help researchers users": 69178, "impressive text generation": 73383, "rapid growth information": 135890, "text summarization natural": 165510, "llms text generation": 96796, "furthermore existing text": 62067, "experiments conducted using": 54197, "conducted using realworld": 29297, "make wellinformed decisions": 98627, "benefit large language": 17439, "models survey rapid": 109328, "recommender systems rs": 138278, "llm shown impressive": 93999, "highlight key challenges": 69753, "discuss future prospects": 42892, "recent years existing": 137777, "models achieve close": 105217, "research improving llms": 141845, "maximum sequence length": 99701, "factual accuracy consistency": 56855, "analysis responses models": 9130, "boosting language models": 18840, "bridge communication gap": 19039, "approach draws inspiration": 11138, "word embedding techniques": 178630, "valuable insights enhancing": 175428, "linguistic training data": 93079, "multistep reasoning capability": 111184, "maximum context size": 99694, "operations extensive experiments": 116783, "advancement paves way": 5858, "augmenting language models": 14389, "input length limit": 77276, "framework language models": 61254, "proposed method effective": 132351, "language models nonlinguistic": 85803, "language models nonenglish": 85802, "building ai systems": 19366, "content moderation systems": 30552, "extend capabilities large": 55618, "models languages english": 106872, "developing deploying large": 40987, "increasing size large": 75362, "models work demonstrate": 109703, "framework incorporates novel": 61221, "code opensourced available": 25039, "surge large language": 159430, "language models humanintheloop": 84655, "transfer learning fewshot": 168939, "prone human error": 131568, "novel task automatic": 114705, "llms like openais": 95789, "utility natural language": 174966, "applications software engineering": 10693, "performance numerous tasks": 121859, "learning algorithms like": 90201, "software engineering task": 152809, "detailed empirical analysis": 40285, "labeled examples achieve": 82729, "current challenges future": 34086, "nlp especially large": 113730, "models llms experienced": 107399, "quantized large language": 134427, "models llms studied": 107952, "evaluate different llms": 50947, "different llms including": 41839, "revolutionize way users": 144636, "way users interact": 177887, "explore potential solutions": 55268, "research emerging field": 141746, "roadmap large language": 145130, "language processing artificial": 86489, "providing external knowledge": 133296, "way enhance llms": 177801, "generate precise responses": 63653, "new environments new": 113164, "alignment paper propose": 8208, "paper introduce comprehensive": 118987, "propose novel learning": 132008, "demonstrated effectiveness approach": 38642, "models llms continue": 107222, "llms continue advance": 94724, "increasingly crucial challenging": 75389, "social sciences engineering": 152664, "settings results reveal": 149642, "room improvement llms": 145593, "additionally conduct extensive": 5034, "language key challenge": 83469, "language model bloom176b": 83563, "dataset natural language": 36423, "language processing benchmarks": 86492, "generation models applied": 64843, "code generate code": 24853, "generate code natural": 63418, "tasks foundation models": 162429, "data discovery data": 34922, "nlp tasks supervised": 113905, "comparable better supervised": 26563, "large corpus english": 87227, "significant potential llms": 150821, "feedback generated llms": 57693, "demonstrate approach outperforms": 38238, "llms emerged noteworthy": 95026, "innovation natural language": 77146, "question llms effectively": 134908, "propose new dataset": 131958, "range large language": 135638, "attracted wide research": 14056, "wide research attention": 178332, "growing large language": 68030, "human judgments propose": 70889, "experiments reveal key": 54447, "reveal key insights": 144348, "classification recent advances": 24067, "evolutionary algorithm ea": 52287, "language models causal": 84217, "finetuning easily overfits": 59236, "language models recommender": 86069, "models recommender systems": 108867, "directly use llms": 42607, "achieved satisfactory results": 3885, "used enhance performance": 173044, "approach used models": 11630, "recent progress generative": 137592, "progress generative language": 129970, "based gpt2 architecture": 15844, "starting point future": 154967, "sum lowrank matrix": 158751, "approach human performance": 11282, "shedding light challenges": 149868, "larger model variants": 89225, "robust natural language": 145294, "instructions manually written": 78309, "model performance substantially": 104259, "powerful emergent abilities": 125273, "knowledge bases llms": 81788, "responses user queries": 142936, "thorough evaluation method": 166187, "large base model": 87197, "base model achieve": 15620, "multiple control signals": 110874, "enhancing communication efficiency": 49469, "tasks ai tools": 161930, "deep learning architecture": 37729, "advantages existing work": 6136, "evaluation benchmark assessing": 51445, "enables users generate": 48257, "investigate ability pretrained": 80364, "achieve outstanding results": 3700, "bringing step closer": 19137, "feedback challenging task": 57649, "choose best possible": 23727, "language models release": 86079, "foundation future work": 60722, "future work area": 62403, "pretrained models better": 127069, "neural network approach": 112890, "simple neural network": 151504, "widely adopted various": 178360, "neural networks studies": 112952, "modern transformer models": 109841, "observations propose simple": 115349, "identify key properties": 71912, "machine translation metrics": 98116, "generative models chatgpt": 65480, "models llms accurately": 107060, "previous methods primarily": 127612, "methods primarily rely": 101726, "key insights llms": 81527, "llms exhibit high": 95138, "exhibit high degree": 53057, "challenging tasks requiring": 22297, "given text current": 66031, "language models bart": 84161, "information learned representations": 76557, "beginning era large": 16537, "pretrained llms llama": 127024, "various tasks require": 176224, "generative models gpt": 65490, "generate high fidelity": 63530, "language models annotators": 84120, "models minimal cost": 108188, "active learning strategies": 4437, "work instead propose": 179048, "finetuned base model": 58985, "classification semantic similarity": 24084, "gains accuracy training": 62508, "encourages exploration llms": 48612, "domain adaptation speech": 44075, "methods effectively reduce": 101464, "nlp tasks sentiment": 113897, "findings reveal gpt4": 58778, "reveal gpt4 outperforms": 144337, "sentiment analysis task": 148640, "gpt models specifically": 66464, "pairs labeled indicate": 118591, "gpt models handling": 66457, "highly effective approach": 69913, "set prompts designed": 149284, "data demonstrate significant": 34896, "prompt template prompt": 130692, "lack contextual information": 82912, "modelfree modelbased approaches": 104952, "effective prompting methods": 45856, "methods automatically generate": 101331, "labels using large": 82841, "knowledge enhancement method": 81947, "llms existing methods": 95173, "existing methods mainly": 53456, "real world propose": 136274, "tasks like arithmetic": 162708, "model llm using": 104033, "small set annotated": 152358, "models llm emerged": 107029, "relatively unexplored paper": 139427, "paper presents innovative": 119168, "text data paper": 164989, "learn user preferences": 90073, "user preferences generate": 173470, "proposed approach leverages": 132240, "language models accomplish": 84052, "offers foundational framework": 115809, "future explorations field": 62263, "better results large": 18016, "domainspecific abstractive summarization": 44557, "research questions paper": 142027, "existing stateoftheart techniques": 53584, "generation challenging requires": 64486, "generation approach leverages": 64428, "assess effectiveness proposed": 13074, "llms different capabilities": 94923, "estimation large language": 50753, "presents promising solution": 126628, "extensive experiments involving": 55851, "offtheshelf llms including": 115918, "lead harmful consequences": 89747, "current chinese llms": 34090, "provide insights building": 132847, "despite huge progress": 40125, "decoding algorithms openended": 37559, "information extraction systems": 76436, "compared directly using": 26788, "directly using llms": 42612, "recommender systems recsys": 138277, "daily life providing": 34509, "incorporating textual information": 75136, "conduct comprehensive review": 29056, "experiments demonstrate training": 54243, "valuable insights performance": 175434, "llms llama vicuna": 95804, "dataset technical report": 36576, "information easily accessible": 76370, "inspired recent advancements": 77755, "advancements field large": 5887, "use proximal policy": 172831, "policy optimization ppobased": 123868, "content extensive experiments": 30494, "realworld dataset demonstrate": 136432, "knowledge used improve": 82492, "models largescale code": 106917, "largescale code generation": 89278, "generation models codex": 64845, "tasks including code": 162548, "including code generation": 74459, "code generation translation": 24928, "coding tasks address": 25410, "planning natural language": 123303, "generation address issue": 64401, "practical application techniques": 125384, "prior works approach": 127957, "recent surge large": 137692, "align better human": 7993, "better human judgments": 17903, "robustness paper propose": 145414, "prompt learning framework": 130571, "remains uncertain study": 140081, "machinegenerated text multiple": 98152, "significantly enhances quality": 150998, "terms factual accuracy": 164420, "models llms gaining": 107452, "llms gaining increasing": 95333, "past years significant": 120405, "perspectives paper presents": 122713, "evaluation methods llms": 51703, "assessing performance llms": 13198, "failure cases llms": 57007, "offer invaluable insights": 115667, "learning novel approach": 90776, "exploring potential large": 55495, "wide realworld applications": 178330, "aim explore potential": 7455, "machine learning especially": 98030, "open new possibilities": 116257, "provides useful reference": 133241, "extremely promising results": 56448, "models vision transformers": 109635, "compare recently proposed": 26724, "automatic code generation": 14647, "code generation approach": 24869, "llms llama opt": 95803, "comprehensively review existing": 28179, "tasks generate new": 162455, "objects real world": 115299, "research directions field": 141720, "models method leverages": 108180, "error correction tasks": 50289, "different llms different": 41837, "processing speech recognition": 129300, "llms applied wide": 94417, "using chatgpt generative": 174037, "generative llm approach": 65458, "world wide web": 179632, "research domains natural": 141731, "novel pretraining objective": 114643, "language models translate": 86324, "instruction tuning models": 78119, "findings offer new": 58737, "solution generating highquality": 152942, "allows users create": 8480, "applications code available": 10451, "llms specifically explore": 96664, "growing use llms": 68060, "prompt learning large": 130574, "requirements existing work": 141293, "study investigate use": 157433, "findings open new": 58740, "machine learning tools": 98087, "data generation augmentation": 35108, "pipeline generate synthetic": 123059, "reward model score": 144693, "reinforcement learning proximal": 139089, "learning proximal policy": 90885, "llms primarily focused": 96187, "question answering generation": 134725, "remains elusive paper": 140004, "finetuning llms specifically": 59363, "existing approaches focus": 53263, "models llms automatic": 107130, "significant attention field": 150605, "datasets chatgpt gpt4": 36694, "promising results indicating": 130310, "errors speech recognition": 50401, "challenging task current": 22282, "unsupervised text data": 172277, "learning work propose": 91140, "perform text classification": 121066, "response large language": 142668, "demonstrated ability learn": 38616, "reward model based": 144691, "analysis reveals model": 9141, "accuracy holdout test": 3262, "provides systematic treatment": 133227, "proposed method using": 132375, "models make use": 108130, "text data perform": 164990, "training data specific": 168347, "models llm llms": 107041, "learning zeroshot learning": 91151, "proposed method evaluated": 132353, "specific natural language": 154043, "observe large language": 115378, "convert natural language": 31993, "stateoftheart performance nlp": 155285, "robot planning tasks": 145184, "gpt4 demonstrated exceptional": 66961, "reasoning capabilities limited": 136707, "paper proposes neurosymbolic": 119267, "carefully design prompts": 20807, "llm convert natural": 93563, "examples llms generate": 52636, "hallucination scale language": 68413, "downstream tasks making": 44808, "performance improvements zeroshot": 121655, "languages recent studies": 87113, "promptbased finetuning surpasses": 130764, "tasks remains limited": 163129, "results reveal effectiveness": 143756, "impressive zeroshot capabilities": 73389, "systems automated assessment": 160256, "performance competitive stateoftheart": 121306, "transformer neural networks": 169195, "transformer networks including": 169192, "bert generative pretrained": 17537, "researchers proposed techniques": 142249, "techniques knowledge distillation": 163941, "rapidly evolving field": 135921, "methods widely applied": 101930, "aims investigate impact": 7632, "model finetuning work": 103677, "important findings understand": 73137, "paper explore alternative": 118905, "adapting pretrained llms": 4759, "language models encoderdecoder": 84446, "llms gain comprehensive": 95318, "gain comprehensive understanding": 62436, "ensuring data privacy": 49733, "models existing benchmarks": 106223, "improve performance language": 73552, "performance language modeling": 121710, "simple effective data": 151427, "capabilities llms extensive": 20032, "set recent works": 149292, "language models uncertainty": 86333, "llama open foundation": 93329, "pretrained finetuned large": 126808, "models llms ranging": 107785, "based human evaluations": 15857, "models provide detailed": 108725, "detailed description approach": 40280, "contribute responsible development": 31419, "problem neural text": 128337, "guiding text generation": 68287, "open source python": 116303, "language learning chatbots": 83484, "models llms striking": 107948, "llms striking balance": 96692, "maintaining model quality": 98367, "llms paving way": 96061, "measurement large language": 99902, "conduct experiments llms": 29093, "programs generated llms": 129908, "llms deep dive": 94793, "rich external knowledge": 144780, "powerful capabilities text": 125264, "reasoning promising way": 137071, "completion paper propose": 27334, "models generating highquality": 106470, "results extensive experiments": 143407, "extensive experiments large": 55852, "training using large": 168813, "serve valuable source": 149017, "playing crucial role": 123494, "labor market analysis": 82852, "focus task detecting": 60064, "contrastive learning strategy": 31372, "compared previously published": 26898, "evaluation data code": 51523, "capabilities generating highquality": 19916, "require significant labeled": 141193, "model order generate": 104162, "specialized domains like": 153885, "domains like law": 44462, "contextually apt answers": 31146, "enabled large language": 48141, "alignment knowledge graphs": 8178, "learningbased methods proposed": 91161, "vector space computing": 176391, "llms exhibit unique": 95152, "provide novel insights": 132907, "studies shown impressive": 157082, "using stateoftheart llms": 174756, "languages english french": 86991, "different ways data": 42087, "ways data augmentation": 177898, "using chatgpt data": 174035, "chatgpt data augmentation": 22825, "method enhance ability": 100828, "finetune opensource llms": 58953, "evaluating models existing": 51348, "inspired recent successes": 77764, "new dataset consisting": 113135, "effectiveness systems paper": 46296, "understand generate humanlike": 171013, "personalized recommendations based": 122618, "challenging address using": 22109, "textual descriptions specifically": 165902, "given text instruction": 66032, "subjective evaluations demonstrate": 157856, "offer new possibilities": 115675, "textual style transfer": 165955, "time test approach": 166518, "compare results finetuned": 26728, "strong baselines stateoftheart": 156361, "inputs deep learning": 77394, "inputs sensor data": 77446, "techniques like knowledge": 163956, "models terms accuracy": 109377, "tokens additionally propose": 166775, "training inference stages": 168496, "llms shown potential": 96556, "realworld scenarios existing": 136500, "benchmarks mainly focus": 17298, "focus measuring models": 60022, "accuracy closedended questions": 3173, "demonstrate approach surpasses": 38245, "research investigates effectiveness": 141871, "chatgpt ai language": 22690, "showcasing superior accuracy": 150128, "different instruction tuning": 41805, "instruction tuning improve": 78097, "generalization performance unseen": 63212, "reduce costs practice": 138415, "takes long time": 160988, "models llms input": 107577, "distinct prompting strategies": 43242, "prompting empirical experiments": 130910, "text generated llm": 165117, "improved recommendation performance": 73715, "diverse prompts input": 43610, "strategies using llms": 156090, "remains key challenge": 140016, "key challenge paper": 81470, "using rouge scores": 174687, "experiments various scenarios": 54533, "various scenarios demonstrating": 176154, "significant potential enhancing": 150819, "propose use large": 132195, "settings results demonstrate": 149641, "chatgpt results indicate": 23282, "sentence embeddings large": 148497, "achieve impressive results": 3673, "language tasks application": 86760, "research work propose": 142154, "human evaluations finetuned": 70763, "automatically translating natural": 14869, "technique enhances performance": 163769, "using different prompts": 174138, "synthetic data approach": 160025, "data approach requires": 34649, "generating syntactically correct": 64349, "generated llms using": 63920, "current generation large": 34125, "identify key abilities": 71909, "especially deep learning": 50454, "chinese experimental results": 23627, "experimental results finetuned": 54013, "make sense large": 98595, "sense large language": 148391, "specifically designed chinese": 154175, "designed chinese language": 39834, "corpus train model": 32363, "repairs large language": 140425, "models llms remarkably": 107822, "prior knowledge describing": 127901, "prompts used generate": 131514, "demonstrates practical application": 38877, "llms sparked debate": 96648, "forms artificial intelligence": 60589, "range tasks involving": 135711, "used train llms": 173278, "continue advance capabilities": 31189, "models conducting experiments": 105743, "aim shed light": 7491, "language models implications": 84669, "evaluated widely used": 51219, "language models outperforms": 85835, "bert gpt significantly": 17548, "image generation example": 72261, "study propose twostage": 157561, "systems code dataset": 160293, "models llm foundation": 107033, "llm foundation models": 93687, "models emergent capabilities": 106081, "nlp tasks llms": 113870, "used kg construction": 173120, "evaluation metrics measure": 51725, "automatic prompt generation": 14719, "generation test cases": 65197, "llm generative pretrained": 93717, "paper aims highlight": 118735, "algorithms specifically designed": 7973, "recent studies revealed": 137671, "llms large margins": 95725, "information extraction using": 76439, "conduct thorough ablation": 29191, "thorough ablation studies": 166175, "achieve substantial performance": 3771, "modest parameter count": 109864, "broad applicability various": 19163, "learning model order": 90702, "overhead work present": 118362, "science machine learning": 146892, "sequence tokens paper": 148792, "data modalities images": 35376, "modalities images text": 102932, "models translate natural": 109503, "modalities paper present": 102943, "datasets finally discuss": 36866, "knowledge pretrained models": 82294, "pretrained models paper": 127097, "attention heads neurons": 13893, "propose use generative": 132194, "using generative models": 174244, "new benchmark containing": 113087, "benchmark challenging methods": 16854, "mean average precision": 99748, "detailed analysis methods": 40268, "novel approach efficiently": 114376, "address highly complex": 5248, "training paper propose": 168624, "surpassing previous best": 159523, "yielded impressive results": 179992, "dataset significantly outperforming": 36542, "computational challenge presented": 28338, "lightweight language models": 92179, "commonly used metrics": 26245, "models llms finetuned": 107428, "significant capabilities various": 150633, "data model training": 35390, "instruction finetuned models": 77997, "sets new sota": 149385, "critic language model": 33445, "outputs work introduce": 118140, "chatgpt using gpt4": 23419, "primarily focus enhancing": 127778, "enhancing models effectiveness": 49531, "wide variety datasets": 178344, "variety datasets including": 175701, "framework consisting stages": 61043, "evaluation chinese llms": 51478, "potential implications understanding": 124774, "evaluate task hand": 51114, "imbalance training data": 72560, "models llms order": 107703, "new paradigm learning": 113318, "enhancing quality diversity": 49555, "instruction data based": 77974, "preliminary experiments reveal": 126126, "increase win rate": 75247, "instruction tuning yield": 78141, "diffusion model conditioned": 42238, "proposed framework naturally": 132303, "latent diffusion models": 89498, "diffusion models experiments": 42247, "previous approaches code": 127566, "synthetic conversational dataset": 160019, "crowdsourcing effort involving": 33732, "reasoning ability llm": 136645, "llm reinforcement learning": 93952, "following language model": 60289, "language model automatically": 83545, "iterations approach yields": 81106, "approach yields model": 11672, "yields model outperforms": 180029, "position paper discuss": 124266, "showing potential llms": 150185, "great progress recent": 67715, "models llm specifically": 107048, "quality experimental results": 134120, "aims extract structured": 7613, "models generative language": 106479, "survey deep neural": 159621, "popular research direction": 124055, "comprehensive review existing": 28115, "direct application gpt": 42370, "application gpt models": 10327, "language models foundation": 84553, "language models obtain": 85815, "outperform opensource models": 117612, "generative language modeling": 65433, "language instructions use": 83454, "new foundation model": 113199, "llms usually suffer": 96932, "source code github": 153405, "stateoftheart finetuned llms": 155139, "field project page": 58230, "singular value decomposition": 151916, "challenging status quo": 22277, "reveal chatgpts strengths": 144320, "significant application ai": 150594, "task completion previous": 161256, "codes data models": 25293, "models llms field": 107423, "conducting extensive experiments": 29314, "substantiate superior performance": 158151, "existing methods lack": 53454, "results approach outperforms": 143178, "training data large": 168294, "human experts findings": 70786, "language model development": 83604, "language model dataset": 83595, "purpose language model": 133744, "recent advancements largescale": 137367, "remarkable capabilities addressing": 140148, "based findings introduce": 15810, "exhibits stateoftheart performance": 53223, "experiments substantiate effectiveness": 54482, "llms finetuning process": 95279, "produce final prediction": 129409, "models llms highlighted": 107523, "perform comprehensive evaluation": 120906, "evaluation metrics human": 51722, "performance various llms": 122261, "significantly higher consistency": 151011, "stronger correlation human": 156468, "human evaluations output": 70770, "texts conducted experiments": 165691, "conducted experiments employing": 29241, "experiments employing various": 54269, "human evaluations approach": 70758, "wide range abilities": 178263, "high inference costs": 69469, "process address issues": 128729, "evaluate approach largescale": 50906, "issues paper propose": 81042, "release corresponding dataset": 139457, "underrepresented training data": 170907, "range prompt types": 135677, "stateoftheart llms best": 155187, "paper present empirical": 119116, "questionanswer qa pairs": 134969, "automated evaluation method": 14547, "models llms demand": 107244, "llms reasoning capacities": 96316, "tree search algorithm": 169666, "examine proficiency llms": 52410, "gpt35 palm2 llama2": 66844, "ground truth compare": 67839, "limited hardware resources": 92774, "subsets used training": 158017, "training best knowledge": 168174, "negligible performance drop": 112565, "semantic segmentation object": 148219, "segmentation object detection": 147746, "outofthebox large language": 117553, "opendomain natural language": 116459, "input output format": 77297, "scaling data model": 146390, "model parameters research": 104220, "employ contrastive learning": 47821, "maintaining competitive performance": 98345, "paper surveys research": 119356, "instruction tuning crucial": 78076, "different modalities domains": 41852, "serves additional input": 149032, "models llm effectively": 107028, "llms commonsense knowledge": 94645, "retrievalenhanced large language": 144209, "performance llms propose": 121760, "experiments multiple datasets": 54372, "comparative analysis large": 26638, "underexplored study evaluate": 170778, "study evaluate capabilities": 157319, "gpt models generate": 66454, "questions experiments demonstrate": 135125, "issue paper introduce": 80933, "stable diffusion model": 154692, "larger scale models": 89247, "transformer models pretrained": 169184, "fully unleash potential": 61794, "human activity recognition": 70559, "use code available": 172553, "language model realm": 83870, "language processing understanding": 86652, "language models discerning": 84389, "provide informed responses": 132841, "conditional diffusion model": 28952, "model successfully achieves": 104680, "systems traditional methods": 160646, "users address issues": 173579, "framework combines large": 61013, "distribution experimental results": 43359, "results demonstrate compared": 143287, "field code available": 58137, "instruction data quality": 77978, "substantial manual effort": 158078, "questions posed users": 135221, "high performance using": 69499, "information retrieval recommend": 76733, "provides different approaches": 133135, "publicly available github": 133644, "demonstrated comparable performance": 38635, "models results llms": 108974, "potential llms enhancing": 124839, "natural language provide": 111849, "takes natural language": 160990, "generation using llms": 65243, "llms supervised finetuning": 96735, "language models integration": 84725, "incorporate feedback loops": 75015, "generation capability llms": 64477, "llms present strong": 96167, "strong general capabilities": 156385, "attention mechanism llms": 13930, "various opendomain tasks": 176087, "generate instruction data": 63576, "generate highquality instruction": 63541, "achieved generating highquality": 3812, "instruction data using": 77979, "models survey outlook": 109327, "overview recent advancements": 118443, "challenges applying large": 21776, "representations wide range": 140913, "current limitations provide": 34161, "provide insights potential": 132855, "research directions realm": 141724, "llms increasingly power": 95606, "memory computation requirements": 100377, "model evaluation benchmark": 103570, "growing using large": 68062, "llms scientific research": 96490, "benchmarks proposed evaluate": 17339, "experiments advanced llms": 54134, "performance compared llms": 121293, "publicly available models": 133655, "conventional methods directly": 31713, "methods directly estimate": 101447, "harmful content generation": 68729, "supervised finetuning dataset": 159115, "significantly worsen performance": 151182, "field challenges persist": 58132, "exploring use chatgpt": 55512, "use chatgpt data": 172546, "limitations existing benchmarks": 92580, "existing benchmarks evaluating": 53297, "effectively improve model": 46022, "outperforms existing techniques": 117769, "llm specific knowledge": 94015, "impact quality generated": 72722, "potential research opportunities": 124946, "different types data": 42066, "handcrafted prompt propose": 68508, "knowledge graphs play": 82086, "innovative framework called": 77171, "recent chatgpt gpt4": 137458, "translation language models": 169473, "translation mt systems": 169489, "need deep understanding": 112260, "performance human evaluations": 121635, "results instruction tuning": 143532, "opendomain chitchat dialogues": 116448, "systems primarily focus": 160549, "models llms proper": 107768, "research commercial applications": 141643, "language model powered": 83838, "recommendation recent advancements": 138227, "significantly enhanced ability": 150991, "remains notable gap": 140046, "competitive performance recent": 27188, "models including alpaca": 106703, "realworld relation extraction": 136487, "owing exceptional capabilities": 118462, "incorporates innovative techniques": 75056, "various edge devices": 175923, "requires comprehensive accurate": 141348, "knowledge ability llms": 81722, "current mainstream llms": 34174, "impressive performance language": 73329, "proposed methods improve": 132381, "lacking paper introduce": 83040, "automatic evaluation llms": 14664, "llms comprehensive evaluation": 94675, "models large models": 106902, "particularly machine learning": 120225, "large models achieved": 88918, "paper discuss challenges": 118857, "discuss challenges opportunities": 42877, "challenges opportunities associated": 21977, "overview recent advances": 118444, "advantage recent advances": 6119, "llms large vision": 95730, "vision models lvms": 176957, "conduct experiments multiple": 29094, "results demonstrate remarkable": 143331, "families language models": 57187, "fewshot settings finetuned": 58057, "best performing method": 17727, "leveraging chainofthought cot": 91816, "hope work provides": 70401, "language models era": 84458, "language models substantial": 86231, "facilitate natural language": 56636, "language interface querying": 83460, "toolaugmented large language": 167070, "corresponding natural language": 32595, "natural language inputs": 111646, "establish strong baselines": 50676, "human behaviour paper": 70620, "including source code": 74730, "code various programming": 25203, "various programming languages": 176119, "training data remains": 168332, "sampling multiple responses": 146106, "multiple responses llm": 111026, "marked significant advancement": 99223, "text data llms": 164988, "llms capable understanding": 94539, "humanlike text diverse": 71282, "text diverse range": 165031, "diverse range topics": 43622, "llms exploring potential": 95206, "stateoftheart llms gpt35": 155191, "accuracy f1 score": 3234, "llms immense potential": 95540, "limitations study underscores": 92670, "study underscores promise": 157686, "llms represent significant": 96406, "represent significant step": 140654, "showcasing remarkable capabilities": 150121, "general world knowledge": 63069, "dialogue evaluation metrics": 41469, "framework achieves state": 60918, "languages use dataset": 87153, "models finetuned using": 106356, "tokens extensive experiments": 166812, "speech recognition machine": 154456, "recognition machine learning": 138089, "human cognitive development": 70647, "makes nearly impossible": 98677, "llama 7b model": 93283, "comparison conventional machine": 27028, "learning models study": 90730, "implementation generative ai": 72845, "implementing generative ai": 72881, "generative ai technology": 65362, "model carefully designed": 103254, "content generation research": 30510, "research contributes deeper": 141667, "leverage generative power": 91598, "methods future directions": 101544, "models retrievalaugmented generation": 108981, "existing research lacks": 53555, "different llms paper": 41840, "evaluate representative llms": 51092, "challenges current llms": 21812, "performance field natural": 121516, "semantic structural information": 148230, "language generation settings": 83382, "llms paper present": 96036, "finetuning comparative study": 59200, "studies large language": 157033, "effectively guide llms": 46007, "evaluation findings provide": 51590, "findings provide guidance": 58759, "models stable diffusion": 109222, "diffusion large language": 42235, "parameters demonstrate effectiveness": 119735, "method stable diffusion": 101118, "opt language model": 116908, "rising popularity large": 144921, "highquality solutions complex": 70076, "various llms datasets": 176019, "model experimental study": 103599, "data existing approaches": 35006, "domain experts provide": 44156, "models llms coding": 107204, "target datasets demonstrate": 161053, "contributions work include": 31511, "utilizing llms complex": 175213, "cognitive process using": 25471, "finetuning llms data": 59359, "process significantly enhance": 128988, "address problem introduce": 5339, "negative responses given": 112530, "rankingbased alignment methods": 135834, "revolutionized nlp landscape": 144662, "research community address": 141648, "unfortunately existing work": 171666, "existing work behavioral": 53636, "work behavioral testing": 178822, "requiring minimal human": 141500, "proposed evaluation framework": 132288, "llms trained massive": 96830, "remains limited current": 140033, "llms continues grow": 94727, "demonstrates significant improvements": 38891, "makes practical realworld": 98681, "generic responses lack": 65668, "improves quality generated": 74065, "automatic manual metrics": 14704, "performance limited training": 121742, "existing methods effectively": 53444, "downstream tasks simultaneously": 44835, "adapter taskspecific prompts": 4716, "task experiment results": 161374, "demonstrate impressive language": 38378, "contextual learning abilities": 31106, "extensive experiments mathematical": 55855, "experiments mathematical reasoning": 54348, "capabilities method significantly": 20051, "improves pass1 metric": 74043, "human feedback alignment": 70797, "study aims gap": 157152, "evaluation metrics like": 51724, "recall precision f1": 137276, "normalized discounted cumulative": 114190, "discounted cumulative gain": 42695, "cumulative gain ndcg": 33989, "potential applications large": 124586, "paper investigates large": 119054, "investigates large language": 80567, "released research community": 139539, "faithfulness generated text": 57090, "large amounts human": 87182, "trained neural networks": 168025, "models lms produce": 108075, "incorporate linguistic knowledge": 75023, "improving training data": 74227, "provides starting point": 133219, "pretrained models additional": 127059, "llmbased autonomous agents": 94128, "applied realworld applications": 10801, "realworld applications challenge": 136396, "handling diverse data": 68592, "tasks various levels": 163454, "models llms autonomous": 107135, "proposed method dubbed": 132350, "llms gpt4 palm": 95438, "gpt4 palm llama": 67104, "producing humanlike responses": 129559, "domain best knowledge": 44101, "tuning lowrank adaptation": 170055, "learning icl finetuning": 90543, "available data model": 15092, "learning paradigm called": 90805, "harnessing potential llms": 68833, "limitations practical applications": 92639, "learning icl capabilities": 90536, "icl capabilities large": 71660, "code generation process": 24915, "models multiple sources": 108258, "incontext learning extensive": 74894, "language models lightweight": 84792, "data smaller models": 35770, "downstream tasks approach": 44764, "language models word": 86400, "prompt tuning parameterefficient": 130718, "models lm shown": 108048, "models parameterefficient finetuning": 108428, "maintains competitive performance": 98390, "performance fewer trainable": 121508, "time memory usage": 166449, "various model architectures": 176039, "commercial models chatgpt": 26084, "neural networks general": 112925, "llama2 series models": 93371, "language models contextual": 84304, "processing tasks propose": 129326, "using llms improve": 174437, "previous studies demonstrated": 127665, "models llms emergence": 107347, "maintaining high levels": 98359, "conduct empirical experiments": 29072, "performance gap introduce": 121563, "behaviors remains challenging": 16723, "ability stateoftheart large": 2383, "shows promising potential": 150466, "future research enhance": 62337, "systems face challenges": 160381, "methods newly proposed": 101681, "code weights data": 25214, "tasks achieved considerable": 161893, "work investigates applicability": 179076, "results reveal proposed": 143761, "reveal proposed method": 144369, "provide practical recommendations": 132928, "llmbased text generation": 94177, "address issue draw": 5257, "issue draw inspiration": 80900, "text processing tasks": 165379, "models diverse set": 106011, "methods using large": 101912, "language models investigated": 84737, "results demonstrate reranking": 143332, "need taskspecific training": 112405, "chainofthought prompting methods": 21529, "documents news articles": 43929, "finetuned models demonstrated": 59081, "remarkable abilities understanding": 140119, "understanding generating natural": 171250, "comprehensive experiments reveal": 28048, "small large language": 152310, "responses prior work": 142881, "framework harnesses power": 61194, "harnesses power large": 68812, "labels unlabeled data": 82837, "identify relevant evidence": 71950, "using llms knowledge": 174440, "learning expert feedback": 90441, "style transfer task": 157772, "refine generated explanations": 138732, "human feedback using": 70828, "significant improvements shown": 150751, "chatgpt finetuned data": 22949, "discuss potential applications": 42926, "capabilities currently lack": 19845, "results improved model": 143489, "llms acquire extensive": 94328, "blackbox opensource models": 18655, "llms tend produce": 96783, "address cold start": 5198, "setting new benchmark": 149480, "potential multimodal applications": 124870, "propose new way": 131978, "effectiveness approach furthermore": 46127, "applications advent large": 10416, "model llmbased chat": 104035, "novel grounding mechanism": 114535, "deep learning achieving": 37724, "users mental model": 173713, "bridge fundamental gap": 19041, "additionally present novel": 5109, "empirical experiments conducted": 47699, "llms llama chatgpt": 95800, "llama chatgpt gpt4": 93296, "based results present": 16074, "rlhf large language": 145092, "aligned human intents": 8053, "release code pretrained": 139450, "code pretrained checkpoints": 25052, "text generation method": 165156, "li et al": 92019, "evaluating llms ability": 51334, "complex instructions construct": 27440, "evaluation dataset realworld": 51527, "instructions extensive experiments": 78258, "increasing attention research": 75303, "llms different ways": 94928, "simple approach leverages": 151405, "approach leverages llm": 11353, "existing models significant": 53484, "work provide insights": 179232, "data collection schema": 34790, "correlation human assessments": 32541, "language processing llms": 86530, "recently gained popularity": 137890, "additionally explore feasibility": 5063, "experiments demonstrate significant": 54236, "challenges training inference": 22088, "data paper presents": 35465, "address problem use": 5345, "model finetuning propose": 103675, "finetuning propose use": 59487, "new datasets conduct": 113140, "creation novel datasets": 33346, "understanding generation capacities": 171256, "generation capacities llms": 64480, "validation test sets": 175383, "bert model finetuned": 17569, "models llms erupted": 107366, "method automatically constructing": 100700, "language model apply": 83531, "language models implicit": 84670, "lack systematic understanding": 83019, "finetuning data distribution": 59217, "high error rates": 69457, "types approaches require": 170326, "address paper introduces": 5330, "language models requires": 86088, "integration instructiontuned large": 78659, "guide text generation": 68215, "text generation process": 165169, "experimental results analyses": 53964, "results analyses demonstrate": 143170, "processing nlp technology": 129265, "languages previous research": 87096, "research focused developing": 141799, "superior quality terms": 159054, "massive training corpora": 99386, "recent foundation models": 137508, "foundation models popular": 60791, "model pretrained scratch": 104325, "scratch large language": 147221, "adaptation using large": 4675, "used realworld applications": 173205, "model generate corresponding": 103718, "dataset proposed method": 36475, "target domains performance": 161062, "automation large language": 14903, "extensive human involvement": 55910, "human language instructions": 70901, "utilizing incontext learning": 175197, "incontext learning guide": 74906, "design automation tools": 39557, "generation tasks existing": 65158, "previous pretraining methods": 127627, "significant improvement performance": 150735, "method performs competitively": 101028, "attention paper presents": 13958, "models readily available": 108797, "scope nlp research": 147019, "learning icl using": 90553, "icl using large": 71700, "reveals significant role": 144448, "significant role explanations": 150866, "llm yields significant": 94104, "comprehensive benchmark dataset": 27963, "develop natural language": 40808, "aim stimulate research": 7494, "stimulate research development": 155800, "accelerating discovery novel": 2791, "prompts study introduces": 131489, "3b parameter model": 1121, "language model mobile": 83803, "mobile edge devices": 102902, "central challenge field": 21338, "emerged promising alternative": 47392, "comparable performance traditional": 26608, "paper study capabilities": 119340, "research provides valuable": 142013, "valuable insights effectively": 175427, "vice versa models": 176659, "models trained dataset": 109424, "finetuning small set": 59547, "proficiency comprehending generating": 129652, "language models distant": 84394, "models distant supervision": 106000, "model large margin": 103932, "advancements field ai": 5886, "superior performance llms": 159035, "unstructured data structured": 172213, "investigate use large": 80512, "people interact large": 120722, "largescale dataset containing": 89291, "stateoftheart llms dataset": 155189, "believe dataset serve": 16772, "dataset serve valuable": 36529, "valuable resource understanding": 175451, "model llm specifically": 104026, "ai feedback rlaif": 6994, "models era large": 106144, "models llms traditional": 107974, "context pretrained models": 30879, "construction contract knowledge": 30211, "metrics human judgements": 102083, "approach improving quality": 11295, "context length 8192": 30819, "implemented lines code": 72872, "introduces new approach": 80197, "new approach generating": 113061, "combinatorial optimization problem": 25862, "apply language model": 10857, "text generation especially": 165141, "using zeroshot large": 174881, "zeroshot large language": 180223, "input text introduce": 77356, "twostep process generating": 170285, "paper explore capabilities": 118909, "human effort model": 70709, "allow users interact": 8354, "studied paper present": 156936, "present study shows": 126464, "language tasks question": 86771, "models based automatic": 105450, "based automatic human": 15675, "model llm applications": 103975, "approach effectively mitigates": 11145, "prompting strategy enhance": 131091, "benchmark datasets confirm": 16901, "llms improve accuracy": 95555, "stateoftheart llms chatgpt": 155188, "language models adaptive": 84077, "llms downstream applications": 94982, "high energy consumption": 69454, "llm finetuning technique": 93679, "incontext learning techniques": 74978, "llms provides insights": 96262, "simulation large language": 151701, "using recently developed": 174658, "recently developed large": 137857, "language generation quality": 83378, "requiring multistep reasoning": 141504, "possess extensive knowledge": 124336, "tasks diverse domains": 162246, "demonstrate efficacy enhanced": 38315, "understanding capabilities recent": 171147, "input features associated": 77246, "capabilities llms comprehensively": 20028, "question answering hallucination": 134729, "introduce innovative strategy": 79985, "models llms makes": 107649, "llms achieve higher": 94293, "llms exhibit distinct": 95136, "distinct failure modes": 43222, "evaluation capabilities introduce": 51462, "auditing large language": 14219, "leverages incontext learning": 91731, "reducing reliance human": 138592, "diverse applications llms": 43462, "publicly available speech": 133667, "versatility large language": 176586, "humaneval pass1 score": 71174, "parameter efficient fine": 119605, "efficient fine tuning": 46613, "promising new paradigm": 130276, "current methods require": 34180, "language models discrete": 84391, "vast world knowledge": 176363, "sources like wikipedia": 153521, "transformer pretrained language": 169201, "learning methods llms": 90681, "image classification generation": 72205, "multiple aspects including": 110842, "furthermore findings suggest": 62080, "vision tasks code": 176988, "code generation benchmarks": 24873, "llms possess sufficient": 96136, "years witnessed rapid": 179946, "witnessed rapid development": 178567, "easily implemented lines": 45319, "minimizing catastrophic forgetting": 102387, "based information available": 15874, "offers additional insights": 115782, "observed significant improvements": 115435, "necessary reproduce results": 112154, "planning ability llms": 123238, "pretrained llms using": 127027, "generation remains open": 65040, "interaction paper presents": 79154, "paper presents quantitative": 119182, "presents quantitative analysis": 126630, "responses generated large": 142802, "speech recognition large": 154453, "language models advancements": 84089, "new evaluation paradigm": 113176, "reading comprehension recent": 136191, "electroencephalographic eeg data": 46987, "benchmark datasets compare": 16900, "achieves best accuracy": 3965, "work address challenge": 178770, "tasks propose new": 163034, "foundation models present": 60793, "subsequent natural language": 157952, "using human feedback": 174306, "neuro symbolic reasoning": 112999, "synthesis using large": 159973, "apart natural language": 10141, "specifications natural language": 154320, "language prompts despite": 86669, "gpt4 gpt35 turbo": 67036, "method allows user": 100677, "enable nonexpert users": 48118, "hallucination prevention large": 68402, "models knowledge work": 106848, "data lowresource languages": 35333, "different kinds data": 41808, "data traditional machine": 35871, "models llms augmented": 107127, "performance llms significantly": 121761, "argument mining argument": 12431, "tasks evaluate ability": 162323, "addressing key challenges": 5458, "enhance computational efficiency": 49176, "practitioners researchers alike": 125542, "language models todays": 86294, "finetuning comprehensive experiments": 59203, "significantly outperforms fewshot": 151104, "foundation future studies": 60721, "databases era large": 36015, "vision paper large": 176968, "demonstrated strong capabilities": 38801, "llms spatial data": 96650, "cases address issues": 20941, "called reinforcement learning": 19668, "advancing capabilities llms": 6080, "capabilities llms paper": 20037, "problems evaluate various": 128498, "chatgpt gpt4 experiments": 23019, "domain nlp tasks": 44237, "specific domains like": 153980, "dungeons dragons dd": 45096, "annotated named entities": 9486, "identifying named entities": 72018, "paper presents methodology": 119172, "prompt engineering prompting": 130480, "systematic analysis existing": 160101, "learning research work": 90924, "outofdistribution samples approach": 117534, "using lowrank adapters": 174465, "raises concerns regarding": 135481, "evaluation empirical results": 51561, "empirical results human": 47726, "model classification tasks": 103284, "graphs knowledge graphs": 67631, "zeroshot learning scenarios": 180249, "novel perspective examining": 114633, "incontext learning potential": 74956, "representational similarity analysis": 140757, "models tailored individual": 109351, "model performance paper": 104253, "necessarily lead improved": 112133, "building insight propose": 19423, "parameters empirical results": 119744, "showcase potential llms": 150081, "potential role llms": 124962, "robust sentiment analysis": 145322, "sentiment analysis plays": 148626, "analysis plays crucial": 9062, "crucial role understanding": 33854, "sentiment expressed text": 148653, "significant gap research": 150714, "resources including datasets": 142444, "study data augmentation": 157262, "datasets sentiment analysis": 37105, "address challenge research": 5173, "research paper proposes": 141957, "techniques sentiment analysis": 164017, "augmenting existing datasets": 14386, "enhance sentiment analysis": 49290, "indomain crossdomain scenarios": 75789, "strategies data augmentation": 155984, "llms paved way": 96059, "generation tasks different": 65155, "text generation datasets": 165140, "existing referencebased metrics": 53550, "human evaluation generated": 70737, "datasets encompassing various": 36819, "facilitate comprehensive evaluation": 56602, "conduct extensive evaluation": 29110, "llms gpt4 llama2": 95437, "reasoning capabilities language": 136702, "domain artificial intelligence": 44096, "formal knowledge representation": 60502, "natural language work": 111930, "future research utilizing": 62373, "generalization capability unseen": 63152, "enhance performance zeroshot": 49256, "instruction following capabilities": 78008, "provided prompt context": 133085, "extent llms achieve": 56016, "approaches augment llms": 11701, "interpretable large language": 79675, "impressive reasoning abilities": 73367, "reasoning abilities complex": 136619, "complex tasks lack": 27614, "allows seamless integration": 8472, "providing nuanced understanding": 133342, "significant gap remains": 150713, "limitation existing methods": 92501, "paper introduce task": 119004, "opensource llm series": 116630, "llms method achieves": 95884, "llms possible generate": 96138, "space large language": 153589, "generation tasks notably": 65173, "machine learning knowledge": 98034, "remains underexplored problem": 140095, "augment llms ability": 14250, "problems analysis reveals": 128455, "analysis reveals llms": 9139, "era artificial intelligence": 50216, "shown promise automated": 150335, "generated ai systems": 63792, "use llms automated": 172744, "domain knowledge design": 44194, "models llms showcasing": 107862, "different prompting techniques": 41947, "questions experimental results": 135123, "approach significantly reduces": 11547, "semantic understanding ability": 148246, "significantly reduce performance": 151132, "future research llms": 62354, "efficient effective adaptation": 46602, "models model achieves": 108221, "provide theoretical explanation": 133003, "language models demonstrates": 84357, "demonstrates impressive performance": 38858, "cognitive process humans": 25469, "relevant past experiences": 139633, "findings llmgenerated feedback": 58728, "model behavior example": 103199, "largescale ai models": 89265, "pose potential risks": 124166, "potential pitfalls associated": 124905, "unintended consequences llms": 171800, "model performance improves": 104248, "potential implications large": 124771, "language models statistical": 86215, "serves important step": 149043, "models llms believed": 107141, "continual training allowed": 31175, "categories extensive experiments": 21099, "extensive experiments substantiate": 55890, "range model sizes": 135649, "methods codes available": 101374, "instruction tuning human": 78096, "performs better models": 122432, "extract essential information": 56134, "english lowresource languages": 49078, "lowresource languages propose": 97914, "models mbert mt5": 108157, "benchmarks experimental results": 17241, "llms capable handling": 94534, "recent stateoftheart llm": 137646, "developed meta ai": 40889, "knowledge work study": 82515, "recent works adopted": 137750, "llms llama2 gpt4": 95806, "language models agents": 84097, "existing question answering": 53546, "methods including fewshot": 101589, "gpt4 exhibited remarkable": 66998, "api services paper": 10173, "demonstrate proposed llm": 38505, "machine learning task": 98081, "applications existing methods": 10518, "based generative modeling": 15835, "best neural network": 17710, "method achieves strong": 100646, "adapting new tasks": 4753, "llms chatgpt achieved": 94570, "zeroshot capabilities general": 180124, "general domain tasks": 62940, "domain adaptation framework": 44066, "generate final answer": 63500, "heavily relies quality": 69046, "significantly degrade performance": 150974, "requires minimal training": 141415, "performance experiments conducted": 121488, "promptbased incontext learning": 130769, "using rouge metrics": 174686, "task completion rate": 161257, "systems conversational agents": 160313, "learning framework propose": 90483, "decision tree algorithm": 37391, "empowered pretrained large": 48006, "language processing pipelines": 86604, "llms achieve competitive": 94290, "quality conduct extensive": 134075, "results demonstrate training": 143341, "language models embeddings": 84423, "interpretation downstream tasks": 79705, "models llms autonomously": 107136, "framework ai systems": 60938, "content paper presents": 30567, "remarkable progress automated": 140270, "work perform comprehensive": 179161, "complex contextual relationships": 27385, "models raised concerns": 108765, "raised concerns regarding": 135464, "paper investigates application": 119046, "models exhibit enhanced": 106203, "deep learning applications": 37726, "promising approach address": 130222, "superior generalization capabilities": 159008, "language models previously": 85955, "systematically study llms": 160205, "llms multiple ai": 95914, "component language model": 27738, "speech contextual information": 154395, "results validate effectiveness": 143911, "processing tasks limited": 129323, "existing stateoftheart sota": 53583, "speech emotion recognition": 154405, "multitask learning approach": 111217, "existing sota models": 53576, "cot prompting struggles": 32897, "effectively capturing complex": 45960, "years largescale language": 179912, "logit output values": 97419, "paper focuses exploring": 118955, "developing large language": 41005, "studies primarily focused": 157054, "consistently outperforms prior": 29907, "various llm architectures": 176014, "insights strengths limitations": 77651, "applications existing research": 10519, "existing research primarily": 53557, "gap introduce new": 62664, "datasets method outperforms": 36981, "massive size poses": 99379, "commonsense reasoning reading": 26316, "models llms advanced": 107098, "llms advanced large": 94363, "humans paper propose": 71440, "learning method enhance": 90675, "optimization ppo algorithm": 117024, "tasks empirical results": 162286, "empirical results method": 47730, "nlp tasks result": 113895, "parameter sizes ranging": 119643, "preliminary investigation potential": 126134, "models llms renowned": 107823, "llms emerged dominant": 95022, "llms exhibit prediction": 95147, "scale machine learning": 146312, "given search query": 66001, "verify effectiveness method": 176528, "language models mbert": 85727, "data plays crucial": 35490, "hope study contributes": 70386, "capability natural language": 20351, "designed address challenges": 39812, "large margin provide": 88904, "analysis case studies": 8837, "boost performance llms": 18824, "pushes stateoftheart sota": 133806, "suffer poor scalability": 158447, "bert roberta large": 17599, "learning language vision": 90616, "using gpt paper": 174257, "tokens large language": 166833, "llms recently attracted": 96330, "work present framework": 179176, "models specifically propose": 109216, "multiple prompting strategies": 111008, "application machine translation": 10349, "effectively large language": 46038, "data recent studies": 35619, "work shown promise": 179304, "human feedback train": 70826, "human feedback human": 70803, "transformer architecture trained": 169094, "model training recently": 104796, "model training proposed": 104795, "existing approaches require": 53273, "specific details using": 153973, "llms significantly improve": 96603, "models llms understanding": 107997, "paper aim understand": 118723, "showing large language": 150173, "test approach using": 164512, "balance efficiency performance": 15497, "use generative pretrained": 172654, "build largescale dataset": 19327, "encourage future research": 48595, "training fewshot training": 168452, "results generated large": 143430, "completion large language": 27330, "entities relations kg": 49870, "intermediate reasoning chains": 79524, "models approach employs": 105377, "models outperform stateoftheart": 108386, "provides compelling evidence": 133117, "language models aligned": 84107, "models aligned large": 105334, "llms demonstrate exceptional": 94814, "instruction tuning paper": 78123, "capabilities code generation": 19817, "code generation mathematical": 24898, "tackle problem present": 160844, "models deep language": 105868, "model temporal dynamics": 104731, "fullparameter tuning llms": 61730, "pretrained models downstream": 127073, "models llms employing": 107351, "significant capability gap": 150635, "knowledge distillation evaluate": 81880, "data popular llms": 35499, "popular llms results": 124019, "experiments diverse nlp": 54256, "results demonstrate competitive": 143288, "models based large": 105456, "address challenges introducing": 5181, "designed automatically generate": 39824, "highquality instructiontuning data": 70045, "engage multiturn conversations": 48827, "multiturn conversations chatgpt": 111269, "performance 13b opensource": 121107, "german language models": 65766, "models trained general": 109439, "trained general web": 167931, "data diversity quality": 34934, "dataset comprising texts": 36181, "findings demonstrate models": 58658, "models trained crossdomain": 109422, "models tabular data": 109347, "model finetuning using": 103676, "closedsource llms like": 24493, "augment large language": 14247, "scenarios work present": 146722, "systems closer look": 160289, "models llms ignited": 107543, "pretrained llms understand": 127026, "does synthetic data": 44036, "synthetic data make": 160032, "efficient natural language": 46683, "highquality annotated datasets": 69990, "performance diverse applications": 121409, "prior works study": 127960, "determine optimal number": 40712, "efficient tuning method": 46741, "systems training finetuning": 160649, "finetuning gpt models": 59284, "conduct experiments compare": 29088, "model trained proposed": 104771, "simply prompting large": 151620, "language models planning": 85886, "models textbased knowledge": 109389, "data study explores": 35817, "conversational capabilities llms": 31855, "llms provide advantages": 96255, "potential large models": 124811, "adapt downstream tasks": 4522, "results text classification": 143868, "models existing studies": 106227, "findings demonstrate effectiveness": 58655, "smaller models additionally": 152412, "systems prone generate": 160559, "generate responses factually": 63688, "metrics experimental results": 102063, "human annotators using": 70591, "video audio modalities": 176686, "data unstructured text": 35908, "domain knowledge evaluate": 44197, "specifically designed multimodal": 154180, "model llm gpt4": 104007, "trained human preference": 167942, "human preference datasets": 70968, "language important challenging": 83414, "work aims serve": 178796, "llms consistently outperform": 94705, "zeroshot learning pretrained": 180248, "pretrained models highlight": 127081, "setting conduct comprehensive": 149434, "downstream tasks evaluate": 44777, "method highly effective": 100908, "regimes code available": 138920, "llms significant potential": 96587, "llm capabilities paper": 93519, "tens thousands words": 164349, "surprise large language": 159537, "knowledge generate informative": 82031, "models llms planning": 107720, "tasks widely used": 163476, "differentiate subtle differences": 42108, "comparable performance fully": 26600, "performance fully finetuned": 121542, "llm garnered significant": 93694, "conducted pilot studies": 29276, "tasks evaluate performance": 162326, "previous research primarily": 127639, "research primarily focused": 141986, "prompting llm produce": 130997, "evaluate proposed pipeline": 51084, "cases code data": 20949, "llms costly finetuning": 94748, "various benchmarks demonstrate": 175835, "able outperform stateoftheart": 2534, "strategy experimental results": 156145, "classification tasks using": 24127, "tasks using llms": 163432, "highquality human annotations": 70030, "challenges remain including": 22045, "opensource llms llama2": 116641, "work provides new": 179240, "encourage investigation area": 48598, "logical reasoning evaluation": 97381, "future research learning": 62353, "study demonstrates llms": 157275, "different scenarios based": 41982, "broader spectrum tasks": 19226, "address deficiency propose": 5217, "models llms built": 107155, "models code model": 105651, "gap language modeling": 62671, "user behavior simulation": 173380, "research explores potential": 141779, "explores potential pretrained": 55424, "potential pretrained language": 124915, "novel modelagnostic framework": 114604, "diverse human instructions": 43542, "models demonstrate better": 105883, "classify relationships entities": 24214, "previous research mainly": 127638, "humanannotated training data": 71133, "relation extraction limited": 139248, "problem experimental results": 128250, "systematic evaluation large": 160120, "carry experiments datasets": 20839, "number llm inferences": 114900, "benchmark empirical results": 16938, "performances wide range": 122352, "propose method based": 131918, "advantages proposed method": 6152, "novel approach instruction": 114387, "blooms taxonomy classic": 18753, "computational overhead experiments": 28388, "minimal computational overhead": 102320, "remarkable performance following": 140225, "data leveraging llms": 35314, "different tasks specifically": 42038, "outperforms stateoftheart llms": 117859, "largely unexplored bridge": 89183, "unexplored bridge gap": 171627, "remarkable performance achieving": 140223, "experts previous studies": 54674, "significant attention wide": 150617, "attention wide range": 14009, "recently advent large": 137830, "capabilities information retrieval": 19962, "datasets costly timeconsuming": 36744, "emerged crucial problem": 47347, "order tackle challenge": 117245, "experiments demonstrate outstanding": 54233, "models llms empower": 107352, "provide personalized services": 132920, "large datasets address": 87234, "remains ongoing challenge": 140049, "trained scratch finetuned": 168067, "processing tasks work": 129333, "proposed methods achieve": 132379, "chinese english datasets": 23624, "scenarios addition present": 146523, "fewshot setting llms": 58052, "llm training work": 94064, "llmempowered generative agents": 94188, "modules specifically tailored": 110004, "support wide variety": 159354, "tasks codes available": 162068, "using synthetic dataset": 174777, "models perform named": 108466, "perform named entity": 120989, "retrieve relevant context": 144223, "using dataset train": 174119, "based bert model": 15687, "research primarily focuses": 141987, "systems previous methods": 160547, "paper comprehensively evaluate": 118787, "discuss challenges faced": 42876, "future directions address": 62249, "directions address challenges": 42456, "llms match surpass": 95866, "covering zeroshot fewshot": 33097, "building insight introduce": 19422, "wide range scenarios": 178305, "existing methods generally": 53449, "pretrained model specifically": 127055, "llms prone hallucinate": 96239, "prone hallucinate unintended": 131563, "hallucinate unintended text": 68337, "current editing methods": 34110, "llms ability process": 94260, "information retrieval content": 76713, "retrieval content generation": 144027, "generation leveraging large": 64792, "bilingual evaluation understudy": 18416, "evaluation understudy bleu": 51910, "understudy bleu score": 171562, "advanced generative ai": 5737, "generative ai applications": 65306, "novel unsupervised text": 114739, "errors work introduce": 50410, "auxiliary tasks generate": 15043, "models zeroshot scenarios": 109744, "language models intricate": 84730, "methods code released": 101372, "summaries recent advancements": 158779, "evaluation framework work": 51610, "including incontext learning": 74568, "lowresource languages study": 97916, "gpt35 model achieves": 66837, "impressive f1 score": 73293, "contrastive learning model": 31367, "highquality labeled data": 70049, "models llms employed": 107350, "results domain adaptation": 143365, "evaluation methods based": 51702, "investigate automatic evaluation": 80376, "intelligence ai recent": 78763, "ai recent advancements": 7188, "relying large language": 139902, "remains largely untouched": 140030, "framework leveraging llms": 61293, "generated text specific": 64019, "number samples instruction": 114944, "designed large language": 39905, "selfreflection despite remarkable": 148039, "despite remarkable capabilities": 40199, "diverse task requirements": 43675, "motivated propose novel": 110188, "specifically proposed method": 154275, "uses language model": 173869, "second stage uses": 147508, "traditional automated metrics": 167595, "challenges explore use": 21862, "metric compared existing": 101962, "using llms evaluators": 174430, "using models trained": 174498, "prompting large model": 130984, "paper proposes zeroshot": 119279, "introduce new metric": 80034, "models llms expanded": 107396, "data training set": 35882, "foundation models survey": 60811, "variety artificial intelligence": 175691, "foundation models generalize": 60767, "lack clear definitions": 82893, "clear definitions systematic": 24263, "existing work related": 53644, "thorough review current": 166195, "future research rapidly": 62368, "research rapidly evolving": 142031, "rapidly evolving domain": 135920, "understanding generation large": 171258, "llms task automation": 96769, "diverse sources including": 43665, "factual errors llm": 56871, "bias generated text": 18126, "use cases llms": 172533, "models long sequences": 108095, "recently emerged dominant": 137867, "subquadratically sequence length": 157931, "model evaluation large": 103572, "demonstrate framework used": 38351, "model evaluation analyze": 103569, "findings indicate incontext": 58701, "provides new insights": 133184, "training data sentencelevel": 168342, "language models findings": 84534, "models findings suggest": 106345, "potential utilizing large": 125057, "models llms highlevel": 107521, "performance certain tasks": 121223, "systems fall short": 160386, "generate iteratively refine": 63588, "category experimental results": 21152, "capabilities including text": 19952, "particular computer vision": 120061, "models llms efficient": 107335, "efficiency empirical results": 46447, "language models tabular": 86264, "use tabular data": 172898, "data privacy security": 35547, "models designed natural": 105932, "tasks approach achieves": 161963, "approach achieves competitive": 10951, "outofdistribution ood accuracy": 117524, "learning algorithms model": 90202, "analogy generation llms": 8740, "potential solution data": 124989, "solution data scarcity": 152915, "robustness selfsupervised learning": 145435, "existing methods generating": 53451, "scenarios inspired success": 146624, "diverse downstream datasets": 43516, "data work present": 35971, "instruction tuning paradigm": 78124, "learning tasks demonstrating": 91055, "tasks demonstrating superior": 162189, "demonstrating superior generalization": 38963, "outperforming stateoftheart baselines": 117698, "question answering instruction": 134740, "methods enhance llms": 101482, "demonstrated effectiveness method": 38646, "large scale machine": 89047, "machine learning despite": 98028, "close gap introduce": 24445, "robustness adversarial attacks": 145347, "issues increasingly prominent": 81015, "language models proportional": 85989, "marking significant stride": 99252, "tabular data recent": 160787, "evaluation benchmark includes": 51446, "identify promising future": 71945, "multiple languages model": 110959, "learning improve performance": 90564, "lowresource settings work": 97938, "generation named entity": 64870, "potential ways improve": 125073, "demonstrate method improves": 38426, "paper focuses investigating": 118956, "speech audio events": 154383, "achieve competitive performances": 3609, "tuning approach proposed": 169965, "training code model": 168187, "model checkpoints released": 103277, "major limitation existing": 98438, "llms promising avenue": 96225, "performance traditional finetuning": 122189, "obtain best worlds": 115462, "best worlds propose": 17768, "propose simple approach": 132119, "language model clean": 83579, "dataset widely used": 36618, "benchmark evaluating robustness": 16962, "leveraging capabilities large": 91808, "primarily focus identifying": 127779, "multiple finetuned large": 110919, "human reasoning processes": 71009, "approaches suffer limited": 11921, "beam search algorithm": 16501, "little labeled data": 93244, "task data distribution": 161294, "approach improves performance": 11292, "model reducing gap": 104434, "development generative models": 41127, "generative models aim": 65478, "understanding current models": 171183, "using automatic human": 173985, "recently released gpt4": 137977, "report generation using": 140533, "comprehensive intelligence reports": 28066, "automatic generation intelligence": 14679, "generation intelligence reports": 64753, "models generate explanations": 106448, "large body research": 87203, "small human supervision": 152298, "prompts avoiding need": 131172, "preliminary results indicate": 126143, "advise caution using": 6273, "zeroshot learning large": 180239, "training experimental results": 168437, "trained using indomain": 168110, "llms achieve remarkable": 94297, "improves performance llm": 74051, "model continual learning": 103370, "benchmarks method outperforms": 17304, "stateoftheart methods furthermore": 155210, "method enables llms": 100823, "llms directly understand": 94943, "work tackles problem": 179332, "problem using large": 128431, "propose method generate": 131920, "generated data evaluate": 63840, "like gpt35turbo smaller": 92296, "learning framework large": 90479, "issues paper presents": 81041, "benchmarks analysis reveals": 17172, "generation hope work": 64721, "approach artificial general": 11002, "study evaluates gpt4": 157326, "work provides insights": 179239, "ensuring robust performance": 49756, "end conduct experiments": 48641, "utilise large language": 174932, "generation task given": 65140, "work introduces framework": 179061, "challenging modern llms": 22214, "present extensive analysis": 126312, "smaller models conclude": 152414, "violation social norms": 176849, "poses major challenge": 124213, "current methods rely": 34179, "types training samples": 170431, "increasingly important role": 75407, "complex language understanding": 27454, "recent llms code": 137552, "finally provide new": 58514, "new valuable insights": 113492, "valuable insights development": 175426, "models understand reason": 109543, "sentences experimental results": 148577, "various openended tasks": 176089, "investigate using llms": 80520, "ability process generate": 2326, "reasoning abilities models": 136629, "results highlight unique": 143464, "execute complex tasks": 52906, "ensuring accurate tracking": 49725, "exceptional performance chatgpt": 52825, "performance chatgpt task": 121239, "impressive performance chatgpt": 73322, "address concerns present": 5208, "source code provided": 153414, "methods require significant": 101784, "need extensive training": 112290, "significantly reducing training": 151149, "models llms establish": 107368, "important task natural": 73201, "language processing requires": 86614, "answer questions paper": 9767, "questions paper introduces": 135215, "enhance performance extensive": 49247, "demonstrate approach significantly": 38242, "algorithms highlighting potential": 7930, "highlighting potential llms": 69829, "potential llms enhance": 124838, "led stateoftheart results": 91251, "features address gap": 57444, "pretrained heterogeneous graph": 126839, "heterogeneous graph neural": 69298, "knowledge gained pretraining": 82023, "improve predictive performance": 73587, "design novel prompting": 39702, "instruction tuning specific": 78138, "nlp tasks potential": 113882, "consistently enhances model": 29866, "curriculum learning algorithm": 34352, "approach twostage process": 11620, "tasks compared baseline": 162086, "generation models including": 64847, "llms despite trained": 94907, "perform comparably stateoftheart": 120892, "methods evaluation metrics": 101492, "generalization capabilities llms": 63142, "improve model generalization": 73517, "makes difficult train": 98644, "machine learning framework": 98032, "boosting large language": 18842, "training process large": 168654, "systems seen significant": 160603, "posing challenges effectiveness": 124244, "generated training data": 64032, "humanannotated test set": 71131, "test set building": 164622, "abilities pretrained large": 1990, "environments empirical results": 50075, "generating concise summaries": 64171, "llms traditional methods": 96817, "survey aim provide": 159600, "aim provide comprehensive": 7479, "indepth overview recent": 75543, "recent advances field": 137394, "introduced accordingly finally": 80150, "solver large language": 153182, "empirical analysis conducted": 47669, "provides exhaustive evaluation": 133145, "generative models gained": 65487, "remarkable success tasks": 140297, "generative model finetuned": 65471, "generation nlg large": 64885, "nlg large language": 113654, "remains challenging study": 139990, "attributed large language": 14094, "llm development particularly": 93594, "key aspects firstly": 81463, "nlp tasks use": 113912, "available low resource": 15162, "fewshot training examples": 58079, "emergent abilities achieved": 47456, "inject domain knowledge": 77101, "effectiveness approach extensive": 46125, "seen significant growth": 147706, "study explores impact": 157345, "highlight potential benefits": 69770, "data efficient finetuning": 34952, "qualitative results demonstrate": 134017, "paper present solution": 119139, "study explores capabilities": 157344, "various prompts including": 176129, "models tackle propose": 109349, "significantly outperforming previous": 151086, "improving developer productivity": 74130, "programming languages models": 129845, "programming languages paper": 129847, "reports extensive experiments": 140590, "explore following questions": 55209, "capability generate coherent": 20303, "generate coherent contextually": 63424, "benchmarks human evaluation": 17266, "various tasks growing": 176211, "data evaluating llms": 34997, "best knowledge time": 17692, "llms model performance": 95896, "llms excel processing": 95122, "text code llms": 164926, "witnessed rapid growth": 178570, "finetuning peft method": 59433, "used generate new": 173087, "generate new text": 63631, "model generate appropriate": 103716, "model better capture": 103212, "models effectiveness approach": 106051, "models bridge gap": 105542, "target similarity tuning": 161101, "similarity tuning tst": 151384, "outputs paper propose": 118098, "paper propose different": 119212, "does require endtoend": 44020, "abilities various domains": 2035, "existing incontext learning": 53385, "incontext learning approaches": 74872, "domain specific languages": 44294, "languages natural language": 87069, "recent developments generative": 137471, "llms artificial intelligence": 94428, "language understanding stateoftheart": 86860, "hallucination problem generating": 68404, "competitive baselines terms": 27163, "technique finetuning pretrained": 163773, "models despite huge": 105939, "despite huge success": 40126, "important role human": 73193, "model evaluation increasingly": 103571, "language models popular": 85919, "data model weights": 35391, "model weights approach": 104891, "billion parameters small": 18438, "publicly accessible language": 133624, "accessible language models": 2958, "evolutionary multiobjective optimization": 52291, "multiobjective optimization problem": 110822, "llms trained huge": 96826, "trained huge corpora": 167940, "learning dynamics model": 90393, "linguistic knowledge language": 93042, "chatgpt gpt4 models": 23023, "llms replacing traditional": 96400, "human intervention required": 70875, "ask relevant questions": 12859, "action policy learning": 4332, "range tasks existing": 135708, "problem paper present": 128343, "enhancing model interpretability": 49528, "conduct experiments evaluate": 29092, "experiments evaluate effectiveness": 54275, "policy gradient optimization": 123843, "control extensive experiments": 31540, "language models advancement": 84086, "highlevel natural language": 69701, "demonstrating considerable potential": 38925, "transformed landscape artificial": 169084, "novel efficient approach": 114482, "narrow performance gap": 111461, "numerical results demonstrate": 115013, "make significant impact": 98598, "recent advances foundation": 137395, "advances foundation models": 6009, "explore ability stateoftheart": 55136, "maintaining generation quality": 98353, "summary work contributes": 158951, "work contributes improving": 178877, "llm inference maintaining": 93759, "crucial step en": 33861, "step en route": 155623, "en route enabling": 48059, "route enabling widespread": 145640, "enabling widespread adoption": 48364, "design selfsupervised learning": 39751, "performed downstream tasks": 122366, "play influential role": 123457, "prior works focus": 127958, "error detection correction": 50293, "significant drop performance": 150695, "performance prompting methods": 121952, "achieved notable performance": 3849, "notable performance improvement": 114242, "vs human attention": 177599, "current llms consistently": 34166, "models llms applications": 107115, "llm service providers": 93993, "emerged popular paradigm": 47380, "evaluation benchmark large": 51448, "llms open question": 95972, "sequences paper propose": 148834, "comparable performance using": 26610, "democratize access highquality": 38192, "parsing using llms": 119971, "experiments using diverse": 54512, "datasets findings reveal": 36869, "embedding space llm": 47193, "generation training data": 65212, "labeled data achieve": 82709, "llms make use": 95849, "models llms generated": 107471, "present pilot study": 126408, "future research integrate": 62349, "language models growth": 84627, "models llms creation": 107230, "creative writing code": 33385, "writing code generation": 179720, "meticulously curated dataset": 101949, "models overall performance": 108394, "evaluations furthermore demonstrate": 51977, "ability generate grammatically": 2190, "mental states llms": 100509, "llms increasingly prominent": 95608, "weak correlations human": 177927, "parameters pretraining data": 119839, "employed evaluation metrics": 47883, "participants explore prompting": 120005, "evaluation specifically propose": 51868, "achieve results par": 3727, "recent generative models": 137511, "generative models produce": 65507, "common approach mitigate": 26121, "prompt downstream tasks": 130431, "retrievalbased methods limited": 144203, "generating data using": 64184, "data creation pipeline": 34872, "unlearning llms large": 171971, "wide range textual": 178323, "data protection regulations": 35578, "address issues work": 5294, "classification generation tasks": 24007, "high data annotation": 69438, "costs propose novel": 32843, "human annotations tasks": 70585, "tasks promising results": 163021, "emerged potential solution": 47383, "llms ability reason": 94262, "open closed questions": 116216, "applications existing benchmarks": 10517, "research gap paper": 141810, "point potential avenues": 123715, "llms understand reason": 96882, "propose simple framework": 132129, "uses lightweight adapter": 173881, "llm generate textual": 93704, "generate textual descriptions": 63757, "generate accurate responses": 63387, "potential risks including": 124954, "regarding truthfulness bias": 138896, "future research believe": 62316, "advances prompt engineering": 6057, "prompt engineering enable": 130453, "llms fewshot prompting": 95258, "systematic approach test": 160105, "data pretrained language": 35530, "conduct experiments english": 29091, "crucial challenging task": 33775, "availability annotated data": 15047, "novel selfsupervised learning": 114684, "llms possess extensive": 96134, "theoretical analysis support": 166018, "requirements work focuses": 141324, "finetuning pretrained large": 59457, "experiments using publicly": 54516, "publicly available widely": 133671, "results suggest proposed": 143843, "demonstrate general applicability": 38355, "llms including llama2": 95579, "llms evaluation metrics": 95109, "language models revolutionizing": 86111, "poor generalization performance": 123948, "terms f1 score": 164417, "remarkable ability perform": 140126, "training work study": 168825, "models trained sequences": 109471, "various failure modes": 175939, "valuable guidance researchers": 175417, "present publicly available": 126428, "dataset unlike previous": 36603, "stateoftheart multilingual language": 155242, "shows language models": 150446, "good performance generating": 66284, "news articles prompts": 113550, "model development large": 103457, "crucial role shaping": 33852, "previous work manually": 127693, "knowledge base api": 81764, "ai chain design": 6901, "faster large language": 57294, "llm increasingly important": 93754, "achieves average speedup": 3963, "comprehensive experiments datasets": 28040, "best performance comparison": 17720, "computing pairwise distances": 28546, "categories language models": 21105, "rank documents using": 135774, "performance existing supervised": 121483, "stateoftheart zeroshot methods": 155413, "zeroshot methods code": 180262, "approach efficiently effectively": 11150, "urgent need evaluate": 172418, "need evaluate llms": 112280, "shows instruction finetuning": 150443, "broader research community": 19220, "knowledge acquired training": 81727, "processing nlp lack": 129223, "nlp tasks results": 113896, "rapid development internet": 135867, "limited data resources": 92745, "experiments public benchmarks": 54419, "llms great performance": 95446, "face deployment challenges": 56526, "results underscore promise": 143889, "limitation propose new": 92520, "question answering important": 134734, "average performance gains": 15303, "llms different aspects": 94922, "fair comparison different": 57030, "used model training": 173150, "work draw attention": 178920, "considerable effort devoted": 29614, "robust comprehensive evaluation": 145251, "progress language understanding": 129974, "majority existing methods": 98462, "models trained primarily": 109466, "gap comparing performance": 62622, "paper investigate factors": 119030, "generating inaccurate hallucinated": 64255, "produce detailed accurate": 129392, "additionally conduct ablation": 5032, "language models preliminary": 85937, "development emergence large": 41098, "llms outperform traditional": 96014, "strengths limitations various": 156263, "demonstrate effectiveness efficiency": 38297, "approaches incontext learning": 11807, "labeled data large": 82713, "code based natural": 24686, "generation framework generate": 64672, "achieved second place": 3889, "language models literature": 84810, "presents major challenge": 126599, "current generation llms": 34128, "new shared task": 113408, "human evaluation process": 70745, "single gpu multiple": 151807, "gpu multiple gpus": 67348, "models offers potential": 108335, "results various nlp": 143922, "use paper propose": 172795, "automatically correct errors": 14783, "significantly outperforming baseline": 151083, "prompts prompting techniques": 131424, "extensive experiments provide": 55868, "model foundation model": 103692, "model pretrained largescale": 104323, "largescale data set": 89288, "model significantly improve": 104573, "employing supervised finetuning": 47949, "stateoftheart domainspecific models": 155132, "llms domainspecific models": 94973, "experimental results realworld": 54065, "models primarily trained": 108644, "work contributes research": 178878, "closely related language": 24525, "generating coherent text": 64165, "matching large language": 99468, "language models possible": 85924, "language models explosion": 84506, "large models possessing": 88929, "recent successes large": 137686, "successes large language": 158327, "foundations large language": 60857, "language models covering": 84317, "novel approach denoted": 114375, "kl divergence loss": 81677, "mitigate problem propose": 102629, "synthetic dataset generated": 160038, "various controllable text": 175877, "significant research efforts": 150858, "precise assessment llms": 125576, "sheds light future": 149876, "light future development": 92117, "generating fluent text": 64222, "generation making valuable": 64813, "making valuable tools": 98822, "conversational interactions llms": 31877, "capabilities heavy reliance": 19940, "demonstrate techniques significantly": 38588, "indomain crossdomain settings": 75790, "leads significant performance": 89911, "human preferences remains": 70974, "capabilities question answering": 20138, "generation evaluate llms": 64619, "llms trained supervised": 96835, "trained supervised finetuning": 168090, "key insight llms": 81525, "language models distill": 84396, "model sizes notably": 104618, "news social media": 113581, "requirements expressed natural": 141295, "llms discuss application": 94948, "languages recent large": 87110, "exhibit suboptimal performance": 53110, "lowresource languages training": 97917, "data models usually": 35400, "lack high quality": 82954, "performance open source": 121871, "efficient model training": 46677, "instruction finetuning results": 78002, "finetuning results showcase": 59517, "models datasets code": 105849, "chatgpt news recommendation": 23148, "news recommendation news": 113576, "popularity prominent choice": 124099, "study breaks new": 157193, "new ground investigating": 113211, "chatgpts performance news": 23501, "number annotated samples": 114822, "incontext learning demonstrating": 74887, "novel language model": 114559, "levels compared existing": 91528, "like chatgpt present": 92239, "nlp particularly large": 113784, "like glue superglue": 92278, "learning seen limited": 90972, "limitations propose alternative": 92644, "enables llm effectively": 48210, "different types instructions": 42068, "models llms marked": 107651, "llms marked significant": 95861, "reasoning tasks nonetheless": 137191, "study evaluate efficacy": 157321, "efficacy llms advanced": 46395, "using carefully curated": 174021, "involves main components": 80751, "rapid advancement artificial": 135846, "language models exhibiting": 84482, "patients electronic health": 120488, "work propose perform": 179216, "finegrained relation types": 58890, "holds potential broader": 70274, "recent advancements capabilities": 137347, "significant challenge arises": 150637, "chatgpt gpt4 designed": 23016, "shown remarkable proficiency": 150366, "training data research": 168335, "research introduce novel": 141863, "highlight need research": 69762, "ability various language": 2411, "potential application llms": 124579, "responses llms lack": 142845, "enable llms better": 48106, "models llms resulting": 107837, "assessment llm performance": 13244, "behavior llms showing": 16615, "wrong large language": 179802, "suggestions future work": 158638, "models llms given": 107481, "robust language understanding": 145280, "models gpt palm": 106520, "question conduct experiments": 134846, "prompt tuning effective": 130704, "work focus evaluating": 178987, "information extraction documents": 76423, "metrics large language": 102098, "groups people propose": 67978, "evaluate llms including": 51011, "datasets collected social": 36707, "collected social media": 25701, "study introduce novel": 157418, "llms follow natural": 95290, "requiring taskspecific finetuning": 141513, "machine translation question": 98124, "suggest llms produce": 158559, "compared highresource languages": 26831, "distinct domains using": 43216, "serve challenging benchmark": 148968, "reasoning remains limited": 137100, "multistep reasoning approach": 111180, "humans advanced llms": 71342, "new data points": 113130, "performance compared finetuning": 121287, "task paper proposes": 161599, "proposes new evaluation": 132473, "language model confidence": 83588, "various domains despite": 175898, "important research area": 73186, "lms various tasks": 97217, "confidence large language": 29351, "context work introduces": 30973, "llms exhibit limited": 95145, "learning rl technique": 90951, "llms demonstrate inconsistencies": 94821, "requiring taskspecific training": 141514, "model llm generating": 104004, "stateoftheart results zeroshot": 155345, "model size does": 104591, "commonsense reasoning existing": 26309, "methods rely solely": 101772, "models generate similar": 106459, "overcome limitations introducing": 118301, "method significantly surpasses": 101108, "model named entity": 104116, "offering greater flexibility": 115742, "like chatgpt make": 92234, "finetuned llms zeroshot": 59060, "conduct extensive study": 29137, "different data availability": 41718, "best performance compared": 17719, "overcome limitations introduce": 118300, "classification language models": 24021, "achieved notable success": 3850, "notable success numerous": 114248, "spurious correlations arising": 154615, "training data icl": 168274, "llms different languages": 94924, "language guided generation": 83399, "language evaluate approach": 83291, "approach demonstrates significant": 11101, "target language experiments": 161078, "improving reliability trustworthiness": 74209, "prohibitively expensive llms": 130064, "train new models": 167811, "various tasks code": 176197, "demonstrating significant improvement": 38956, "decoding natural language": 37582, "language models fluent": 84546, "maintain user trust": 98334, "demonstrated significant progress": 38795, "progress various domains": 130028, "approach achieved stateoftheart": 10947, "llms shown extraordinary": 96537, "effective approach enhance": 45694, "tasks performance icl": 162941, "existing alignment methods": 53256, "tasks complex reasoning": 162094, "complex reasoning code": 27554, "commonly used llms": 26244, "vector quantization method": 176386, "systems extensive experiments": 160377, "number competitive baselines": 114844, "suite innovative metrics": 158725, "innovative metrics evaluation": 77181, "metrics evaluation conduct": 102057, "comprehensive experiments involving": 28044, "experiments involving various": 54329, "data exhibit limitations": 35003, "remains significant gap": 140072, "absent paper introduce": 2600, "furthermore demonstrate benefits": 62041, "potential application future": 124578, "inference reinforcement learning": 76092, "feedback rlhf recent": 57787, "trained using human": 168108, "using reward model": 174680, "effective data filtering": 45728, "hallucinations improve llms": 68435, "time effort researchers": 166389, "downstream tasks previous": 44819, "propose novel simple": 132030, "controllable text summarization": 31628, "natural language requirement": 111864, "information experimental results": 76406, "methods require pretraining": 101782, "dataset trained model": 36589, "enabling thorough evaluation": 48353, "english indian languages": 49064, "indian languages english": 75565, "incontext learning human": 74907, "address challenge study": 5174, "factually incorrect information": 56931, "new area research": 113071, "offer potential benefits": 115683, "conducting comprehensive evaluation": 29308, "called prompt engineering": 19664, "entity linking task": 49897, "human evaluation reveals": 70750, "generalpurpose programming languages": 63366, "cot prompting techniques": 32898, "models support answers": 109310, "trust model outputs": 169836, "accurately reflect true": 3559, "reflect true performance": 138804, "data preprocessing scripts": 35523, "focus complex tasks": 59960, "complex tasks propose": 27617, "improve accuracy downstream": 73403, "consequently models trained": 29549, "visual language reasoning": 177219, "llms finetuned models": 95274, "datasets prompt templates": 37047, "model matches outperforms": 104065, "methods orders magnitude": 101696, "paper presents analysis": 119145, "chatgpt emerged powerful": 22876, "finetuned language identification": 59039, "study introduces new": 157421, "allows nuanced understanding": 8460, "systematically investigate llms": 160194, "vast training data": 176361, "evaluate llms performance": 51012, "terms success rate": 164480, "paper present extensive": 119118, "task work presents": 161814, "framework designed improve": 61072, "automatic evaluation generated": 14661, "presents ongoing challenge": 126613, "language models telecommunications": 86274, "machine learning artificial": 98014, "comparative analysis highlights": 26635, "certain opensource models": 21406, "llms introduce retrievalbased": 95677, "zeroshot manner addition": 180257, "knowledge real world": 82334, "questionanswering qa dataset": 134995, "reasoning propose novel": 137075, "llms conducted experiments": 94696, "work conduct empirical": 178859, "small models outperform": 152331, "crafted human experts": 33146, "designed assess llms": 39817, "reasoning spatial reasoning": 137135, "various llms using": 176023, "models strengths weaknesses": 109239, "significant differences performance": 150686, "fields leveraging large": 58282, "novel approach using": 114399, "modalities text image": 102956, "using different prompting": 174137, "visionlanguage models like": 177048, "generating human language": 64246, "proposed model generate": 132392, "model generate coherent": 103717, "active inference agents": 4432, "capabilities findings suggest": 19903, "promising direction future": 130244, "stateoftheart performance open": 155287, "performance open models": 121870, "used measure performance": 173143, "neural networks proven": 112944, "effective time series": 45904, "models lack interpretability": 106857, "lack interpretability making": 82970, "reasoning instruction following": 136922, "models generate highly": 106450, "gap introduce multimodal": 62663, "framework integrates llms": 61233, "generation explore use": 64641, "use unlabeled data": 172926, "efficiency comparable performance": 46430, "adaptation incontext learning": 4626, "demonstrations readily available": 39043, "domain adaptation uda": 44079, "experiments sentiment analysis": 54454, "sentiment analysis sa": 148636, "promising potential llms": 130296, "processing nlp particularly": 129240, "code results publicly": 25113, "data faces challenges": 35038, "compared previous methodologies": 26887, "finetuning propose simple": 59486, "finetuned language modeling": 59041, "general knowledge ability": 62971, "processing vast amounts": 129354, "textual data enhance": 165890, "enhance user experiences": 49309, "experiences provide comprehensive": 53870, "difficulties accurately capturing": 42193, "leverage llms generate": 91628, "existing methods field": 53447, "language model progress": 83859, "data recently large": 35623, "review analysis existing": 144479, "relevant papers summarized": 139627, "papers summarized consistently": 119410, "summarized consistently updated": 158916, "slow inference speed": 152258, "robustness paper proposes": 145415, "significantly improve robustness": 151030, "experimental results demonstrated": 54007, "hierarchical variational autoencoder": 69382, "icl propose new": 71694, "validate findings set": 175320, "various hyperparameter configurations": 175971, "image text datasets": 72336, "better parameterefficient finetuning": 17959, "instruction tuning evaluation": 78087, "datasets recent studies": 37070, "improve performance traditional": 73574, "responding human instructions": 142607, "ensure high quality": 49688, "series tasks including": 148955, "quality generated explanations": 134144, "makes significant contributions": 98687, "fields artificial intelligence": 58263, "evaluation framework provides": 51607, "areas future research": 12368, "distribution shifts deployment": 43388, "medical question summarization": 100207, "tasks existing work": 162348, "employing llms enhance": 47937, "propose using llms": 132203, "insights potential limitations": 77626, "llms knowledge bases": 95702, "enhancing capabilities llms": 49461, "capabilities llms generating": 20033, "approaches large margin": 11823, "rely external models": 139841, "textual data learn": 165893, "different modalities propose": 41853, "experiments conducted datasets": 54189, "compared best existing": 26756, "reduce annotation cost": 138400, "model instruction data": 103876, "language modelling mlm": 84030, "challenges recent years": 22039, "language processing despite": 86509, "presents promising avenue": 126625, "knowledge efficient manner": 81910, "using textual information": 174804, "available knowledge graphs": 15146, "llms struggle effectively": 96700, "models plms especially": 108530, "explored previous studies": 55363, "suggest continual pretraining": 158524, "results multiple benchmarks": 143620, "superior performance method": 159036, "llms used conduct": 96907, "discuss open challenges": 42915, "llms remains relatively": 96390, "relatively unexplored study": 139428, "deploying deep learning": 39234, "llms llama family": 95802, "role success large": 145538, "llms demonstrate notable": 94823, "abilities human performance": 1924, "language models nuanced": 85809, "largely overlooked paper": 89165, "superior performance understanding": 159043, "performance understanding generating": 122211, "outperforming existing models": 117674, "ongoing research development": 116072, "broad spectrum temporal": 19192, "provides thorough evaluation": 133234, "models conduct extensive": 105735, "experiments popular llms": 54394, "models llms imperative": 107544, "accurately assess capabilities": 3514, "offer robust foundation": 115699, "generated texts train": 64024, "generation model called": 64837, "models llms helpful": 107519, "multidimensional benchmark evaluating": 110373, "results indicate powerful": 143518, "llms demonstrate capability": 94811, "significant challenges llms": 150650, "challenges llms humans": 21948, "learned representation space": 90124, "research questions formulated": 142026, "knowledge graph relations": 82070, "hallucination experimental results": 68373, "way large language": 177841, "solutions paper introduces": 153053, "models using 3d": 109582, "superior training efficiency": 159062, "generate output closely": 63638, "internal representations neural": 79563, "llms various model": 96954, "performance tasks requiring": 122159, "various domains notably": 175907, "remarkable achievements large": 140130, "achievements large language": 3926, "various tasks remains": 176223, "performance human alignment": 121632, "help make informed": 69142, "recent advances neural": 137421, "users paper present": 173725, "llms findings provide": 95269, "llms tasks requiring": 96773, "tasks requiring complex": 163159, "extends application llms": 55686, "llms multimodal tasks": 95912, "multimodal reasoning tasks": 110753, "shortterm memory bilstm": 150052, "detecting language model": 40412, "language model grounding": 83674, "learning work investigate": 91138, "provide comprehensive explanations": 132712, "data analysis pipeline": 34625, "natural language significant": 111868, "transforming natural language": 169383, "language sql queries": 86741, "achieving highest accuracy": 4186, "effectiveness finetuning llms": 46180, "llms domainspecific tasks": 94976, "language tasks existing": 86761, "seeking leverage llms": 147667, "exploring potential llms": 55498, "nvidia a100 80gb": 115083, "large knowledge model": 87289, "intricate nature human": 79853, "llms gpt4 llama": 95436, "paper provide systematic": 119287, "discuss realworld applications": 42936, "benchmark datasets finally": 16912, "built gpt4 results": 19486, "importantly findings reveal": 73223, "multiple rounds interactions": 111031, "evaluation framework large": 51602, "models llms unprecedented": 108002, "distributed large language": 43322, "natural language querying": 111852, "models llms improved": 107549, "existing methods face": 53446, "framework addresses challenges": 60931, "accuracy wide range": 3422, "model llm particular": 104014, "constructing knowledge graphs": 30197, "biomedical knowledge graphs": 18550, "knowledge graphs llms": 82084, "tasks including automatic": 162545, "training data resources": 168336, "adaptation experimental results": 4619, "evolution deep learning": 52259, "chatgpt 35 exhibits": 22659, "publicly available chatgpt": 133630, "inference computing cost": 75981, "discuss implications work": 42902, "code data github": 24745, "information social media": 76763, "methods struggle complex": 101841, "claims social media": 23850, "code llama34b model": 24987, "propose new nlp": 131970, "natural language inspired": 111647, "natural language evaluate": 111591, "task highly challenging": 161449, "realworld scenarios particularly": 136505, "allocation large language": 8329, "model achieve stateoftheart": 103026, "text generation recent": 165179, "reasoning recent advances": 137090, "context available model": 30694, "process textual data": 129011, "introduce novel efficient": 80055, "endtoend finetuning large": 48735, "wide range llms": 178287, "models llms adapted": 107088, "tasks promptbased methods": 163027, "models drawing inspiration": 106030, "beam search large": 16504, "model prohibitively expensive": 104362, "artificial intelligence resulted": 12766, "transformers bert model": 169300, "learning algorithms used": 90204, "used previous work": 173187, "models new knowledge": 108286, "work introduce task": 179058, "model editing methods": 103508, "llms recently experienced": 96339, "widespread popularity chatgpt": 178470, "effectively paper propose": 46061, "models llms implement": 107545, "computational resources propose": 28404, "models compared previous": 105695, "address issues applying": 5282, "metamorphic testing mt": 100591, "metamorphic relations mrs": 100589, "text generation constrained": 165138, "ability text generation": 2394, "achieving optimal results": 4200, "larger models chatgpt": 89228, "generation process extensive": 64961, "gehman et al": 62854, "knowledge injection large": 82129, "injection large language": 77114, "knowledge injection framework": 82128, "extract relevant knowledge": 56154, "proposed model produces": 132396, "issues better understand": 80988, "model training training": 104799, "evaluation large models": 51665, "energy consumption large": 48788, "methods implementation publicly": 101579, "models emerged popular": 106073, "dataset results publicly": 36510, "exhibit good performance": 53051, "approaches face limitations": 11768, "prompt selection module": 130663, "marking significant advancement": 99250, "years pretrained language": 179920, "downstream tasks utilizing": 44844, "trainable parameters training": 167855, "findings introduce new": 58714, "internet large language": 79587, "models llms useful": 108006, "best opensource models": 17713, "work investigate methods": 179069, "inference finetuning llms": 76014, "tasks prior works": 163004, "tasks demonstrating superiority": 162191, "demonstrating superiority accuracy": 38965, "transformer architecture propose": 169093, "reducing computational requirements": 138558, "language models equipping": 84456, "learning propose novel": 90877, "specifically present new": 154262, "based reinforcement learning": 16068, "little currently understood": 93229, "llms different architectures": 94921, "llms additionally study": 94347, "language models safe": 86120, "recent research demonstrated": 137619, "performance selective generation": 122049, "representation learning module": 140714, "future research evaluate": 62338, "natural language abstract": 111543, "studied different fields": 156924, "rapid progress large": 135898, "form multiple choice": 60475, "language models quickly": 86014, "language models 14": 84039, "effective text generation": 45901, "ability comprehend natural": 2108, "language model meta": 83798, "model meta ai": 104083, "advancement field natural": 5839, "dataset generation large": 36326, "developing ai models": 40976, "paper leverage power": 119069, "models llms create": 107228, "quality generated conversations": 134141, "extensive experiments observe": 55864, "present series experiments": 126445, "transfer knowledge large": 168921, "generate accurate predictions": 63386, "standard supervised finetuning": 154880, "unified language model": 171728, "supervised training finetuning": 159182, "problem practical applications": 128351, "paper study llms": 119341, "tasks resume screening": 163184, "train model predict": 167798, "ablation studies validate": 2445, "studies validate effectiveness": 157113, "validate effectiveness stages": 175314, "new paradigm understanding": 113323, "advanced capabilities study": 5714, "like gpt4 shown": 92302, "insights effective use": 77549, "demonstrate superior ability": 38571, "superior ability comprehend": 158989, "features inspired recent": 57517, "demonstrate high accuracy": 38368, "yield satisfactory results": 179978, "interpret user commands": 79632, "natural language structured": 111874, "llms effectively utilized": 95008, "effective prompt llm": 45852, "need additional data": 112214, "enhances performance large": 49433, "labeled data known": 82712, "feedback llms perform": 57731, "allow llms generate": 8343, "results underscore importance": 143884, "recent large models": 137541, "strategies based language": 155968, "challenges hallucination outdated": 21893, "augmentation techniques paper": 14317, "furthermore paper introduces": 62124, "stateoftheart sota large": 155361, "limited address issue": 92698, "utilizing external tools": 175186, "code llama 7b": 24985, "evaluating enhancing large": 51292, "capabilities current stateoftheart": 19843, "llms constrained lack": 94711, "policy gradient reinforcement": 123844, "gradient reinforcement learning": 67396, "using pretrained llms": 174600, "fully harness capabilities": 61770, "enhance large language": 49220, "task complexity model": 161260, "basic python problems": 16434, "python problems mbpp": 133842, "problems mbpp dataset": 128566, "models llms central": 107165, "delivering exceptional performance": 38074, "superior performance generating": 159030, "heavy computational resources": 69051, "document classification question": 43815, "models llm significant": 107047, "methods typically adopt": 101891, "propose adaptive model": 131697, "achieve notable improvements": 3694, "efficiently adapt pretrained": 46760, "issue parameterefficient finetuning": 80940, "methods demonstrated effectiveness": 101425, "uses probabilistic model": 173897, "downstream utility generative": 44854, "generative model consequently": 65470, "provide insights llm": 132852, "models pose significant": 108560, "downstream tasks especially": 44776, "present comprehensive systematic": 126264, "furthermore conduct experiments": 62031, "advancements practical applications": 5949, "researchers practitioners seeking": 142245, "model training large": 104787, "work help researchers": 179011, "lays groundwork research": 89716, "need able respond": 112206, "models crosslingual transfer": 105825, "frontier large language": 61649, "baselines code available": 16298, "accurate uptodate information": 3506, "paper presents generic": 119164, "generation accuracy traditional": 64390, "process conduct extensive": 128764, "models llms performed": 107718, "distilling reasoning ability": 43193, "models llms quite": 107782, "models undergo training": 109535, "tailored specific tasks": 160938, "especially machine translation": 50511, "yield superior results": 179987, "language models datasets": 84328, "new benchmark field": 113092, "advanced data analysis": 5723, "language models promise": 85973, "analysis paving way": 9054, "models llms facilitates": 107420, "issue paper introduces": 80934, "task performance model": 161613, "incontext learning following": 74899, "models llms yielding": 108045, "difficult achieve problem": 42126, "llms including data": 95570, "including data preparation": 74484, "data preparation pretraining": 35521, "model pretraining stage": 104335, "highquality instruction dataset": 70039, "address wide range": 5390, "diverse highquality instruction": 43539, "data open source": 35439, "source code introduce": 153406, "significant contribution field": 150669, "providing new insights": 133337, "performance coderelated tasks": 121260, "work conduct largescale": 178860, "proposed decoding method": 132274, "finetuned bert model": 58990, "human vs machinegenerated": 71093, "model instruction finetuning": 103877, "challenging scenarios including": 22268, "competitive performance benchmark": 27184, "task translating natural": 161786, "databases large language": 36019, "variety prompting strategies": 175749, "potential path artificial": 124895, "technical report propose": 163722, "30 billion parameters": 956, "propose novel methodology": 132017, "empirical evaluations realworld": 47688, "understanding llm behaviors": 171337, "paper investigates feasibility": 119053, "highlevel synthesis hls": 69712, "device experimental results": 41300, "spoken dialogue large": 154568, "llms ignore crucial": 95535, "emotion speaking style": 47574, "text generation autoregressive": 165131, "significantly improves response": 151050, "chatgpt marked significant": 23118, "values large language": 175542, "harness knowledge llms": 68791, "recent studies suggested": 137677, "better align human": 17796, "chatgpt shown promising": 23319, "study application llms": 157166, "models provide correct": 108724, "answers language models": 10044, "llms simulate human": 96616, "average treatment effect": 15319, "attention demonstrated promising": 13866, "capture longterm shortterm": 20666, "unlocking potential large": 172042, "models remains uncertain": 108920, "engineering instruction tuning": 48938, "superior performance lack": 159032, "understanding makes good": 171348, "introduce novel techniques": 80076, "propose simple strategy": 132134, "llama mistral models": 93324, "sft training data": 149749, "anticipate work provide": 10116, "tasks applying models": 161961, "exorbitant cost training": 53676, "persian large language": 122523, "model despite widespread": 103444, "models effective tools": 106046, "evaluated natural language": 51196, "used various natural": 173295, "especially text generation": 50553, "significant successes large": 150896, "enhance recommendation performance": 49278, "clearly validate effectiveness": 24289, "validate effectiveness framework": 175311, "models llms smaller": 107925, "llms smaller efficient": 96624, "higher scoring accuracy": 69635, "educational settings particularly": 45627, "models llms domainspecific": 107317, "interactions paper introduces": 79253, "variety domains including": 175704, "various opensource proprietary": 176092, "fewshot settings reveal": 58061, "effectiveness llms leveraging": 46229, "model complex relationships": 103321, "novel approach generate": 114384, "contribute development llms": 31399, "datasets verify effectiveness": 37196, "intents prove beneficial": 79044, "aspects propose simple": 12965, "evaluated publicly available": 51208, "datasets extensive experiments": 36854, "experiments conducted demonstrate": 54190, "classification tasks prior": 24122, "addition propose method": 4892, "generation process controllable": 64959, "models llms deep": 107242, "models increasingly large": 106742, "provide general framework": 132805, "model used evaluation": 104840, "language models toxicity": 86298, "experiments public benchmark": 54417, "language model architectures": 83535, "recent trend large": 137711, "important language models": 73151, "precise natural language": 125590, "natural language answers": 111552, "datasets specific task": 37128, "framework utilizes existing": 61485, "models trained proposed": 109468, "data code datasets": 34767, "models recent breakthroughs": 108827, "paramount paper present": 119900, "provide contextaware responses": 132727, "mechanism continuously improve": 99983, "agents extensive experiments": 6607, "represents paradigm shift": 140988, "paper concludes discussion": 118792, "outlines potential avenues": 117507, "novel algorithms generate": 114356, "bidirectional autoregressive transformers": 18340, "response generation using": 142656, "crucial practical applications": 33834, "propose novel causal": 131988, "text embeddings large": 165045, "data work introduce": 35969, "comprehensive experiments llms": 28046, "variety use cases": 175777, "use cases language": 172529, "continuous vector space": 31261, "carbon footprint associated": 20750, "footprint associated large": 60348, "associated large language": 13493, "llms significant concern": 96586, "presents new challenges": 126603, "diffusion models large": 42250, "texttoimage t2i diffusion": 165829, "t2i diffusion models": 160684, "objective subjective evaluations": 115228, "data computational resource": 34815, "chatgpt showcasing remarkable": 23310, "answer question conduct": 9757, "question conduct extensive": 134847, "extensive empirical investigation": 55760, "impact key factors": 72671, "comprehensive evaluation models": 28018, "results demonstrate comparable": 143285, "lowresource languages exhibit": 97908, "compared autoregressive models": 26744, "model synthesize highquality": 104707, "generating text closely": 64360, "overall performance various": 118217, "llms inherent capabilities": 95637, "revolutionized information retrieval": 144653, "ushering new era": 173935, "paper addresses critical": 118706, "models llms gain": 107440, "superior performance multiple": 159037, "models small set": 109159, "code generation automatically": 24870, "generation automatically generate": 64446, "automatically generate test": 14814, "automatic test case": 14750, "test case generation": 164520, "generation publicly available": 64988, "demonstrating superiority existing": 38966, "superiority existing open": 159069, "response challenges work": 142627, "challenges work introduces": 22101, "enhances ability llms": 49396, "ability llms follow": 2261, "exhibit robust generalization": 53096, "encounter performance limitations": 48573, "significantly reduces computational": 151137, "information extraction question": 76434, "semantics achieve propose": 148286, "language models revolutionize": 86107, "yields high inference": 180021, "models available online": 105435, "evaluate performance model": 51058, "text realworld scenarios": 165406, "instead relying solely": 77897, "llms previous works": 96184, "solve challenges propose": 153097, "model like chatgpt": 103959, "using ab testing": 173953, "query propose new": 134619, "llms numerous fields": 95949, "existing works ignore": 53650, "method achieves improved": 100638, "factors model architecture": 56814, "language models summarizing": 86239, "process long context": 128909, "like chatgpt gained": 92223, "chatgpt gained popularity": 22964, "compare performance baseline": 26705, "technical report technical": 163723, "report technical report": 140563, "includes pretrained language": 74381, "align human preferences": 8004, "computation memory overhead": 28311, "science artificial intelligence": 146850, "outperforms llama 70b": 117797, "code generation multilingual": 24906, "lora efficient finetuning": 97638, "efficient finetuning language": 46617, "additional computational costs": 4937, "validate effectiveness algorithm": 175308, "ability llms generate": 2262, "llms generate feedback": 95362, "llms paper explore": 96030, "paper explore new": 118914, "ability llms effectively": 2259, "limitations previous methods": 92642, "framework aimed generating": 60943, "utilizing bert language": 175173, "emphasizing pivotal role": 47656, "datasets training large": 37163, "model showcases exceptional": 104563, "addressing unique challenges": 5485, "lengths large language": 91403, "training algorithm specifically": 168153, "evaluated terms accuracy": 51214, "llms paper raise": 96043, "paper raise concerns": 119300, "advocate research efforts": 6281, "task pretrained models": 161642, "framework using llms": 61482, "using llms facilitate": 174431, "consists main modules": 29975, "evidenced case studies": 52236, "results user studies": 143899, "concerns paper introduces": 28800, "llms potential complex": 96141, "complex problemsolving scenarios": 27526, "chatgpt showcased remarkable": 23308, "tasks demonstrating potential": 162188, "demonstrating potential applications": 38947, "propose effective method": 131793, "generated conversational data": 63835, "high quality diversity": 69512, "using encoderdecoder models": 174163, "achieves better tradeoff": 3975, "beam search sampling": 16505, "search sampling algorithms": 147410, "measured automated metrics": 99888, "tackle task existing": 160850, "opensource llms 7b": 116632, "llms 7b 70b": 94248, "7b 70b parameters": 1625, "abilities various natural": 2036, "making challenging task": 98712, "ai agents based": 6853, "llms led creation": 95744, "costs environmental impact": 32824, "conversational ai agents": 31840, "supervised finetuning methods": 159118, "trained llama 7b": 167988, "results practical implications": 143676, "known retrieval augmented": 82626, "instruction finetuning llms": 78001, "xu et al": 179863, "impressive capabilities diverse": 73262, "offer new insights": 115674, "area receiver operating": 12344, "receiver operating characteristic": 137320, "natural language introduce": 111661, "techniques terms accuracy": 164038, "best prior work": 17737, "evaluation diverse datasets": 51552, "contrast opensource models": 31317, "training dataset comprising": 168370, "llms significant strides": 96593, "significant strides various": 150891, "llms outperform larger": 96013, "light strengths limitations": 92154, "innovative data generation": 77166, "timeconsuming manual annotations": 166552, "findings suggest potential": 58813, "models llm offer": 107042, "use cases results": 172536, "human preferences work": 70977, "correlates human judgments": 32528, "outputs demonstrate approach": 118043, "played crucial role": 123482, "computational cost remains": 28349, "experimental design experimental": 53934, "novel experimental design": 114493, "impressive capabilities variety": 73276, "llms generate text": 95381, "learning solve new": 91008, "language models apply": 84129, "work present approach": 179173, "rate exceeding 90": 135986, "models llm conversational": 107026, "learning rl specifically": 90950, "challenges research directions": 22051, "research directions chatgpt": 141716, "based generative ai": 15830, "existing research work": 53559, "explore chatgpts capabilities": 55169, "labels large language": 82809, "tackle challenge proposing": 160802, "models llms proxy": 107780, "using multiple metrics": 174510, "multiple metrics including": 110977, "including human evaluation": 74557, "tasks current models": 162146, "studies introduced various": 157026, "presents significant challenge": 126637, "intricate contextual details": 79839, "outputs paper present": 118097, "technologies natural language": 164102, "information retrieval despite": 76717, "need additional training": 112216, "address aforementioned issues": 5156, "training data llm": 168300, "demonstrate effectiveness llm": 38299, "effective way enhance": 45927, "closedsource language models": 24487, "performance recent studies": 121997, "recent studies focus": 137662, "hidden states output": 69338, "demonstrate method surpasses": 38435, "decentralized autonomous organizations": 37346, "models study demonstrates": 109259, "demonstrate potential llms": 38470, "llms opened new": 95986, "tasks existing approaches": 162343, "tackle challenges introduce": 160805, "training samples expensive": 168713, "compared human annotations": 26834, "great potentials llms": 67712, "techniques shown promise": 164020, "state art methods": 154986, "downstream applications like": 44701, "method allows editing": 100676, "generative ai able": 65305, "previous studies examined": 127666, "arabic language models": 12067, "breakthrough natural language": 19012, "consensus research community": 29520, "brazilian portuguese language": 18978, "leakage large language": 89936, "engineering se tasks": 48984, "evaluating llms diverse": 51336, "various se tasks": 176158, "models llms machine": 107645, "models face significant": 106290, "face significant challenge": 56551, "propose approach combines": 131713, "approach using llms": 11648, "test dataset evaluated": 164543, "llms revolutionized artificial": 96454, "revolutionized artificial intelligence": 144640, "intelligence ai field": 78744, "increasingly popular training": 75424, "popular training finetuning": 124069, "requires substantial computational": 141450, "substantial computational power": 158040, "training lowrank adaptation": 168563, "code compared existing": 24721, "module extensive experiments": 109937, "tasks advent large": 161924, "llms notably enhanced": 95945, "agents based llms": 6548, "application practical scenarios": 10363, "introduces novel llmbased": 80208, "novel llmbased agent": 114572, "llmbased agent framework": 94114, "analysis results demonstrate": 9132, "performance gpt35 model": 121605, "language models evolution": 84470, "indicate llms effectively": 75604, "approximately 80 words": 12029, "models like generative": 106981, "like generative pretrained": 92273, "significant challenges primarily": 150652, "communication overhead exploiting": 26398, "previous methods require": 127613, "quality issues present": 134176, "present reference data": 126434, "improvements resulting model": 73941, "framework yields better": 61501, "future research application": 62312, "language tasks train": 86777, "numerical reasoning benchmarks": 115006, "conclude llms possess": 28873, "efforts demonstrated llms": 46899, "planning evaluating performance": 123268, "existing methods model": 53458, "instruction tuning positive": 78126, "enables multimodal large": 48225, "value decomposition svd": 175477, "future studies explore": 62385, "soon publicly available": 153288, "implicit user feedback": 72994, "annotated demographic information": 9467, "models study presents": 109263, "framework aimed enhancing": 60942, "shown significant promise": 150377, "promise various applications": 130205, "domain text classification": 44311, "classification datasets different": 23982, "llms paper introduces": 96033, "translation evaluation chatgpt": 169463, "model based largescale": 103186, "illustrate effectiveness method": 72148, "effectiveness method chinese": 46233, "codebased large language": 25227, "work study methods": 179319, "llms outperform humans": 96012, "human preferences improve": 70971, "indicate llms consistently": 75602, "produce highly abstractive": 129424, "transfer downstream tasks": 168910, "recognition recent advances": 138119, "end propose extract": 48678, "language embedding experiments": 83280, "llms demonstrate approach": 94809, "demonstrate approach achieves": 38232, "remains underexplored research": 140096, "english french spanish": 49057, "reveal notable performance": 144359, "capabilities inherent biases": 19964, "source large language": 153452, "using current generation": 174103, "researchers limited resources": 142234, "text generation address": 165125, "address study introduces": 5373, "challenges associated acquiring": 21785, "different use cases": 42076, "compromising generation quality": 28280, "experiments shed light": 54459, "light large language": 92125, "learn perform task": 90029, "task best model": 161223, "synthetic data outperforms": 160033, "comparable results gpt4": 26613, "alternative approach use": 8548, "received attention literature": 137297, "attention literature work": 13918, "using llm significantly": 174419, "stateoftheart sota f1": 155359, "incontext learning retrieved": 74969, "survey language models": 159644, "instead using fixed": 77907, "tasks models benefiting": 162815, "finetuning pretrained lms": 59463, "trillion tokens sourced": 169766, "zeroshot error correction": 180163, "llm program synthesis": 93911, "gpt models various": 66466, "especially low resource": 50506, "language models superpositions": 86240, "various parameter scales": 176097, "intrinsic capabilities llms": 79888, "benchmark extensive experiments": 16975, "llms fewer parameters": 95255, "experiments various llms": 54532, "traditional approaches rely": 167592, "era large models": 50235, "thoroughly assessing llms": 166203, "significant concerns regarding": 150663, "including chatgpt claude": 74445, "multiclass text classification": 110365, "capabilities open source": 20085, "people search information": 120737, "different time points": 42051, "shown exceptional capabilities": 150233, "response generation propose": 142654, "propose novel unified": 132045, "iteratively refine generated": 81160, "potentially leading inaccuracies": 125119, "existing approaches treat": 53275, "language models sllms": 86176, "autoregressive model based": 15002, "downstream tasks despite": 44771, "tasks despite advancements": 162210, "tasks like named": 162719, "like named entity": 92360, "designed text generation": 39965, "legal entity types": 91290, "instruction finetuning does": 77999, "performance models finetuned": 121810, "comprehensive evaluations method": 28027, "achieve excellent performance": 3637, "document existing methods": 43826, "prompt guide chatgpt": 130533, "model experiments involving": 103602, "human users ability": 71071, "potential enhancing user": 124703, "utility various domains": 174984, "methods significant improvements": 101821, "problems propose novel": 128605, "llms generate convincing": 95357, "engineering techniques various": 48999, "opensource mllms gpt4v": 116648, "applications existing systems": 10520, "shows promise enhancing": 150464, "performance findings suggest": 121527, "future work aimed": 62401, "introduce language model": 79994, "pretrained encoderdecoder architecture": 126796, "generation tasks understanding": 65184, "data scarcity common": 35696, "capabilities opened new": 20088, "previous works primarily": 127700, "language model retrieves": 83888, "processing nlp aims": 129206, "trained general corpus": 167928, "encoding bpe tokenizer": 48504, "dataset demonstrate approach": 36225, "garner significant attention": 62773, "context findings reveal": 30770, "retrieval language generation": 144076, "models laying groundwork": 106931, "substantial costs terms": 158045, "performance based insights": 121187, "efficient architecture design": 46574, "develop novel dataset": 40813, "queries second experiment": 134539, "stateoftheart llms including": 155194, "ensures data privacy": 49718, "models remarkable ability": 108922, "results experiments demonstrate": 143401, "models llms apparent": 107112, "key insight combine": 81524, "widely used academic": 178388, "using single llm": 174722, "peer review mechanism": 120663, "raising concerns model": 135500, "longform generation tasks": 97543, "range subjects including": 135705, "conducted comprehensive evaluation": 29220, "middle school level": 102191, "model does necessarily": 103487, "additionally experimental results": 5059, "recent advances demonstrate": 137386, "variety visual understanding": 175782, "use textual entailment": 172910, "finally provide set": 58516, "different prior work": 41928, "prior work use": 127954, "problem using data": 128430, "nlp tasks propose": 113886, "instructions human feedback": 78275, "like llama 7b": 92336, "llama 7b 13b": 93282, "popular parameterefficient finetuning": 124042, "methods like lora": 101641, "training data create": 168242, "knowledge retrieval augmentation": 82380, "texts various sources": 165801, "input embedding space": 77232, "matches outperforms stateoftheart": 99445, "stateoftheart methods instruction": 155212, "10 performance improvement": 131, "performs better current": 122431, "models trained brazilian": 109419, "trained brazilian portuguese": 167875, "english multilingual models": 49082, "permissive apache 20": 122487, "llms trained nextword": 96831, "understanding generating human": 171246, "transformerbased neural network": 169279, "processing sequential data": 129295, "edge artificial intelligence": 45417, "models llms edge": 107332, "models model trained": 108223, "large language modelenhanced": 87514, "experiments conducted public": 54194, "used text generation": 173268, "complex nonlinear functions": 27504, "generation based gpt2": 64450, "models llms incorporating": 107560, "inaccurate hallucinated content": 74263, "benchmarks predominantly assess": 17330, "largescale comprehensive benchmark": 89282, "comprehensive benchmark evaluates": 27966, "conduct comparative evaluation": 29032, "evaluation findings indicate": 51589, "evaluation llms paper": 51678, "settings language models": 149601, "models findings reveal": 106344, "language models finetune": 84537, "produce humanlike texts": 129428, "holds potential substantial": 70276, "employed machine learning": 47893, "generation using llm": 65242, "using llm agents": 174418, "human automatic evaluations": 70609, "research needed improve": 141927, "source target domains": 153475, "learn domaininvariant representations": 89973, "fed language model": 57616, "model lm generate": 104041, "classification conduct extensive": 23976, "surpassing baseline models": 159508, "highlighting effectiveness approach": 69810, "effectiveness approach findings": 46126, "catastrophic forgetting original": 21073, "llms similar parameter": 96609, "similar parameter sizes": 151285, "hierarchical feature extraction": 69356, "closely human cognitive": 24515, "previous methods fail": 127611, "gained widespread attention": 62491, "learning ml approaches": 90694, "current stateoftheart deep": 34255, "inference pretrained models": 76076, "existing methods retrieve": 53464, "tasks questionanswering tasks": 163068, "involve complex multistep": 80686, "long story short": 97488, "conversation models using": 31799, "models using gpt3": 109590, "using gpt3 base": 174261, "gpt3 base model": 66648, "sheds light complex": 149875, "language models align": 84105, "llm performance using": 93881, "llms field natural": 95260, "evaluate proposed framework": 51081, "results demonstrate unified": 143342, "stateoftheart models terms": 155236, "evaluated different llms": 51168, "provide valuable guidance": 133024, "efficacy adaptability approach": 46359, "interpretable machine learning": 79679, "machine learning notably": 98065, "paper start reviewing": 119336, "llms using llms": 96925, "yields superior performance": 180047, "superior performance sota": 159040, "highlevel user requests": 69719, "language model llama2": 83719, "research focuses developing": 141802, "language model pretraining data": 83852, "integrate large language models": 78495, "paper conduct systematic study": 118803, "pretrained language models largescale": 126918, "recent advances deep learning": 137383, "metrics including bleu rouge": 102090, "named entity recognition tasks": 111413, "natural language understanding propose": 111910, "state art natural language": 154990, "language processing applications large": 86487, "trained massive amounts text": 167997, "anecdotal evidence suggests models": 9414, "models large deep learning": 106878, "large deep learning models": 87239, "zero redundancy optimizer zero": 180086, "success large pretrained language": 158261, "pretrained language models help": 126912, "advantage large pretrained language": 6114, "pretrained language model requires": 126865, "word embeddings large language": 178633, "transformer based language models": 169101, "models bert gpt shown": 105493, "pretrained language models demonstrated": 126891, "pretrained language models gpt": 126907, "language models gpt bert": 84605, "results natural language understanding": 143629, "paraphrasing large language models": 119920, "large language models gpt2": 87848, "question answering reading comprehension": 134789, "domain adaptation domain adaptation": 44065, "nlp tasks paper study": 113878, "language model gpt2 generate": 83667, "natural language processing community": 111712, "recently achieved humanlevel performance": 137819, "challenging natural language processing": 22221, "method significantly outperforms baselines": 101103, "generation using pretrained language": 65245, "language models large scale": 84771, "networks graph neural networks": 112757, "neural networks gnns demonstrated": 112929, "propose simple effective method": 132124, "simple effective method generating": 151431, "conduct comprehensive empirical study": 29045, "deep learning models text": 37765, "fields natural language processing": 58293, "deep learning models like": 37762, "gpt2 radford et al": 66588, "aim bring attention important": 7437, "stateoftheart generative pretrained transformer": 155152, "text generation paper propose": 165165, "simple language models learn": 151483, "models lms demonstrated impressive": 108062, "demonstrated impressive abilities generating": 38688, "clinical named entity recognition": 24346, "existing pretrained large language": 53527, "large language models lm": 88485, "large language model demonstrate": 87332, "pretrained language models finetuning": 126902, "contextualized language models bert": 31132, "language processing tasks question": 86641, "long short term memory": 97479, "short term memory lstm": 150003, "machine learning ml natural": 98047, "learning ml natural language": 90699, "ml natural language processing": 102788, "approach outperforms competitive baselines": 11427, "works shown language models": 179497, "language models significantly improved": 86167, "quantitative evaluation human evaluation": 134342, "language model gpt2 sequence": 83668, "achieves stateoftheart performances multiple": 4103, "recognition systems large language": 138135, "reinforcement learning rl approaches": 139098, "model outperforms previous stateoftheart": 104183, "language models capable generating": 84210, "stateoftheart language models large": 155167, "generation large language model": 64773, "large language model lm": 87442, "text classification sequence tagging": 164902, "based deep neural networks": 15746, "models like bert achieve": 106968, "performances various nlp tasks": 122349, "models including bert roberta": 106705, "language models able predict": 84048, "natural language processing based": 111706, "language processing nlp proposed": 86574, "pretrained language models demonstrate": 126890, "leveraging largescale language models": 91894, "largescale language models generate": 89338, "knowledge largescale language models": 82174, "changed natural language processing": 22362, "llms openais chatgpt googles": 95980, "openais chatgpt googles bard": 116397, "experimental results proposed approach": 54057, "propose new approach named": 131953, "large machine learning models": 88899, "generative pretrained transformer gpt2": 65552, "pretrained transformer gpt2 model": 127191, "massive pretrained language models": 99376, "largely underexplored paper present": 89179, "popular pretrained language models": 124045, "pretrained language models trained": 126983, "large language models important": 87880, "pretrained multilingual language models": 127122, "language models paper propose": 85851, "method natural language processing": 100989, "machine learning ml applications": 98042, "performance compared existing approaches": 121285, "automatic speech recognition systems": 14746, "systematic review existing works": 160147, "problem masked language modeling": 128321, "fewshot text classification tasks": 58076, "propose new framework named": 131962, "finally highlight future research": 58476, "highlight future research directions": 69745, "future research directions improve": 62332, "tune pretrained language models": 169946, "supervised fewshot zeroshot settings": 159106, "demonstrate proposed approach significantly": 38501, "significantly outperforms baseline models": 151092, "performance automatic human evaluations": 121179, "wide array downstream tasks": 178251, "autoregressive language model gpt2": 14986, "conduct extensive experiments datasets": 29118, "transformerbased models bert gpt2": 169269, "evaluate performance language models": 51055, "pretrained language models achieve": 126872, "language models promptbased learning": 85980, "learning shown great potential": 90988, "language models machine translation": 85708, "downstream tasks paper propose": 44817, "method conduct extensive experiments": 100751, "employ pretrained language models": 47856, "context pretrained language models": 30878, "seen significant progress recent": 147708, "facilitate research task present": 56648, "powerful pretrained language models": 125326, "text generation large pretrained": 165152, "shown ability produce fluent": 150203, "large language models extracted": 87799, "units large language models": 171886, "tasks question answering factchecking": 163060, "pretrained language models method": 126929, "human evaluation used assess": 70756, "large scale language models": 89046, "language models encode rich": 84445, "metrics correlate human evaluations": 102036, "separately trained critic model": 148709, "model empirical results demonstrate": 103525, "despite 100x smaller size": 40070, "million 27 billion parameters": 102223, "question answering qa systems": 134783, "trained large amounts data": 167966, "shown impressive performance nlp": 150279, "language processing nlp field": 86552, "work uses large language": 179355, "approaches use pretrained language": 11944, "knowledge large pretrained models": 82170, "remains challenge paper present": 139980, "challenge paper present novel": 21699, "dialogue large language models": 41488, "neural network dnn models": 112898, "training deep learning models": 168380, "entity recognition entity linking": 49908, "address challenge paper proposes": 5168, "new stateoftheart results benchmark": 113430, "stateoftheart results benchmark datasets": 155329, "paper presents comparative study": 119149, "language models catastrophic forgetting": 84216, "code generation pretrained models": 24911, "deep learning models especially": 37760, "language processing nlp leading": 86559, "language models trained data": 86302, "code natural language specifications": 25026, "consistently yields significant improvements": 29934, "deploy large language models": 39199, "adaptation pretrained language models": 4654, "language model approach enables": 83533, "learning capabilities wide range": 90277, "automatic manual evaluations demonstrate": 14703, "data finetuned downstream tasks": 35059, "taskoriented dialogue systems recent": 161846, "results substantial performance improvements": 143828, "natural language generation understanding": 111628, "series intermediate reasoning steps": 148933, "experiments large language models": 54338, "gsm8k benchmark math word": 68099, "benchmark math word problems": 17025, "entity recognition ner tasks": 49924, "settings zero shot shot": 149664, "train multiple large language": 167805, "training data language models": 168292, "paper present simple approach": 119136, "language models plms prompt": 85908, "models plms prompt learning": 108543, "natural language inference models": 111633, "answering natural language inference": 9915, "finetuning large foundation models": 59331, "effective pretrained language models": 45845, "experimental results method consistently": 54039, "results method consistently outperforms": 143599, "method consistently outperforms baselines": 100756, "consistently outperforms baselines datasets": 29901, "pretrained language models effective": 126895, "language models chainofthought prompting": 84224, "combined pretrained large language": 25918, "text generation propose approach": 165172, "language processing nlp algorithms": 86541, "large language models investigate": 87920, "model size number training": 104608, "based large pretrained language": 15913, "large language models scale": 88720, "offtheshelf large language models": 115914, "data significantly boosts performance": 35756, "experimental results 16 datasets": 53963, "propose new benchmark named": 131957, "llms shown promising results": 96563, "language models plms gpt2": 85901, "using masked language modelling": 174480, "supervised learning large language": 159136, "achieved remarkable success various": 3880, "question answering named entity": 134766, "answering named entity recognition": 9912, "incontext learning incontext learning": 74930, "learn natural language feedback": 90015, "architectures based large language": 12251, "large language models interactive": 87913, "using natural language prompts": 174520, "pretrained language models novel": 126936, "language model llm like": 83758, "large language models explored": 87792, "potential future research directions": 124735, "makes pretrained language models": 98684, "propose novel method called": 132014, "language generation need training": 83365, "experimental results demonstrate gamma": 53989, "tasks demonstrate superior performance": 162180, "demonstrate superior performance proposed": 38576, "natural language understanding code": 111899, "logical reasoning large language": 97383, "language models trained vast": 86310, "models trained vast datasets": 109480, "various natural language reasoning": 176056, "source code reproduce results": 153419, "language models memorize training": 85735, "tasks described natural language": 162203, "tasks domains large language": 162255, "large language models core": 87679, "code base publicly available": 24684, "costs paper propose novel": 32839, "deep learning dl based": 37736, "codedavinci002 achieves new stateoftheart": 25250, "findings propose simple effective": 58756, "make use large pretrained": 98623, "achieved great success natural": 3817, "great success natural language": 67738, "success natural language generation": 158270, "controllable language generation tasks": 31620, "generation tasks sentiment control": 65182, "language models llms suffer": 85581, "future research directions enhancing": 62330, "real world paper propose": 136272, "memory requirements paper introduce": 100455, "utilizing pretrained large language": 175230, "language models llms evaluate": 85093, "achieved remarkable success natural": 3877, "extensive experiments demonstrated effectiveness": 55837, "capability pretrained language models": 20360, "model outperforms existing methods": 104175, "pretrained language model t5": 126867, "neural language models nlms": 112865, "using neural language models": 174524, "code available open source": 24679, "autoregressive language models gpt2": 14991, "masked language models pretrained": 99314, "language processing tasks including": 86633, "pretrained model downstream tasks": 127050, "language models llms transformative": 85606, "evaluations wide range tasks": 52041, "crucial task natural language": 33872, "natural language processing increasingly": 111730, "large language models widely": 88862, "pretrained language generation models": 126854, "paper propose simple effective": 119251, "modern machine learning models": 109819, "neural language models large": 112862, "train large language model": 167782, "model paper present novel": 104208, "lamda large language models": 83082, "retrieved documents paper present": 144239, "interact humans natural language": 79059, "language models bert bart": 84175, "chainofthought large language models": 21511, "language models llms substantial": 85577, "language models propose new": 85993, "models propose new paradigm": 108709, "models llms generate accurate": 107463, "abstractions large language models": 2674, "paper develop novel framework": 118851, "benchmarks demonstrate effectiveness proposed": 17207, "explicit output programs benefit": 54947, "output programs benefit human": 117980, "programs benefit human debugging": 129895, "impressive performance wide range": 73353, "source domain target domain": 153439, "machine translation nmt systems": 98123, "large language models implement": 87878, "using parameterefficient finetuning methods": 174573, "expensive timeconsuming paper propose": 53814, "method based large language": 100708, "accuracy code data available": 3176, "counterfactual data augmentation cda": 32943, "assist large language model": 13350, "large language models utilized": 88848, "tabular data generative models": 160786, "generative models computer vision": 65482, "pretrained language models reason": 126971, "language models code fewshot": 84247, "reasoning given natural language": 136888, "language models llms translating": 85610, "finetune generative language model": 58922, "language model reinforcement learning": 83878, "leverage pretrained language models": 91645, "experiment results demonstrate method": 53905, "use newly created dataset": 172782, "approaches experimental results demonstrate": 11761, "study application large language": 157164, "large language models unlike": 88834, "usability pretrained language models": 172435, "used pretraining large language": 173185, "sap et al 2019": 146141, "text large language models": 165270, "recently gained significant attention": 137892, "way pretrained language models": 177866, "language models systematically evaluate": 86262, "various nlp tasks especially": 176072, "language models plms furthermore": 85900, "pretrained english language models": 126803, "recent work demonstrated pretrained": 137721, "language models llms reported": 85481, "models long short term": 108097, "human judgment existing metrics": 70885, "pretrained language model downstream": 126860, "sets new stateoftheart performance": 149389, "language models survey recent": 86251, "promising future research directions": 130261, "models excel general language": 106189, "largescale language models strong": 89346, "answer complex questions requiring": 9688, "pretrained models recently achieved": 127106, "models recently achieved great": 108847, "recently achieved great success": 137817, "native language identification nli": 111507, "llms recently demonstrated impressive": 96333, "recently demonstrated impressive ability": 137851, "language models llms excellent": 85103, "finetune pretrained language model": 58962, "detection conduct extensive experiments": 40469, "models performance downstream tasks": 108484, "factual error correction fec": 56868, "language models different tasks": 84382, "large language models following": 87822, "language models llms lens": 85305, "examples prompting large language": 52670, "impressive performance wide variety": 73355, "performance wide variety tasks": 122305, "wide variety tasks including": 178350, "language models llms acquire": 84859, "task generating code solutions": 161428, "solutions math word problems": 153047, "work propose novel task": 179214, "processing nlp tasks using": 129262, "pretrained language models models": 126931, "language models using fewshot": 86360, "intersection large language models": 79764, "language models prompted perform": 85982, "case study case study": 20902, "currently forefront intertwining ai": 34319, "forefront intertwining ai systems": 60388, "intertwining ai systems human": 79780, "significantly outperforms current stateoftheart": 151096, "capabilities pretrained language models": 20117, "large language models improved": 87884, "set tasks require reasoning": 149324, "results indicate proposed method": 143520, "billion parameter language model": 18431, "emergent ability zeroshot solutions": 47469, "achieve stateoftheart performance benchmarks": 3754, "using fewshot large language": 174200, "learning incontext learning icl": 90571, "social interactions large language": 152592, "large language model human": 87369, "text generation language models": 165148, "planning generation large language": 123277, "natural language reasoning steps": 111859, "lack highquality training data": 82957, "incontext learning icl ability": 74909, "dual form gradient descent": 45072, "language models ranging size": 86022, "bert large language models": 17564, "large language models having": 87859, "pretrained language models study": 126979, "causal language models based": 21199, "pretrained language models offer": 126937, "llms incontext learning icl": 95587, "language processing nlp llms": 86562, "significantly outperforms existing baselines": 151099, "method achieves stateoftheart results": 100645, "large small language models": 89061, "similar large language models": 151262, "large language models power": 88612, "experimental results indicate models": 54024, "incorporating large language models": 75114, "language models llm generate": 84825, "large language model machine": 87443, "language model machine translation": 83790, "paper conducts comprehensive investigation": 118809, "recent years pretrained large": 137792, "years pretrained large language": 179924, "significantly outperforms prior methods": 151112, "open challenges suggest future": 116213, "large neural network models": 88959, "existing studies shown large": 53598, "studies shown large pretrained": 157086, "shown large pretrained language": 150303, "extremely large language models": 56436, "bidirectional encoder representation transformers": 18345, "demonstrated exceptional proficiency natural": 38663, "exceptional proficiency natural language": 52840, "creating large language model": 33308, "distilled large language models": 43180, "paper presents novel framework": 119176, "prompt pretrained large language": 130636, "large language models explanations": 87790, "introduce novel approach based": 80047, "expressive power large language": 55606, "training data empirical results": 168249, "empirical results demonstrate method": 47721, "data achieve stateoftheart performance": 34582, "performance range tasks including": 121987, "bert gpt3 trained using": 17557, "large language models machine": 88496, "language models based transformer": 84165, "models based transformer architecture": 105464, "experiments benchmark datasets demonstrate": 54162, "llms like gpt3 chatgpt": 95780, "large language models fail": 87803, "foundation models natural language": 60786, "information finetuned specific tasks": 76456, "shown remarkable capabilities natural": 150355, "capabilities natural language generation": 20070, "natural language generation performance": 111621, "paper present comprehensive evaluation": 119113, "learning language models promptbased": 90614, "shed new light developing": 149863, "pretrained foundation models pfms": 126814, "achieve significant improvement recall": 3734, "modern largescale language models": 109812, "language models llms new": 85349, "adaptation methods prompt tuning": 4644, "natural language additional training": 111547, "tasks known llms served": 162665, "known llms served highquality": 82614, "large language models increasing": 87894, "language models llms brings": 84920, "large language models raised": 88657, "form large language models": 60470, "language models widespread adoption": 86398, "models widespread adoption large": 109695, "language models chatgpt bard": 84231, "compared previous stateoftheart approaches": 26892, "results demonstrate effectiveness method": 143293, "pretrained language model specifically": 126866, "experimental results proposed model": 54061, "effectiveness proposed approach improving": 46271, "source code available github": 153395, "available github large language": 15125, "github large language models": 65818, "pretrained generative large language": 126826, "large language models quality": 88655, "method using large language": 101165, "introduce series novel methods": 80102, "large multilingual language model": 88935, "models multiple downstream tasks": 108257, "incontext learning icl gained": 74919, "language model llm evaluation": 83740, "large language model predict": 87459, "natural language processing involves": 111731, "language processing involves identifying": 86521, "processing involves identifying extracting": 129174, "models llms chatgpt provides": 107190, "llms chatgpt provides opportunity": 94596, "terms automatic evaluation metrics": 164389, "poor correlation human judgments": 123945, "automatic metrics chatgpt achieves": 14710, "tasks demonstrate effectiveness approach": 162173, "end propose simple effective": 48684, "medical knowledge large language": 100189, "performance proposed framework using": 121959, "better large language models": 17928, "empirical study pretrained language": 47759, "paper presents comprehensive analysis": 119151, "stateoftheart sota model performance": 155368, "recent proliferation large language": 137603, "llms exhibit wide range": 95155, "model works phases phase": 104910, "conduct extensive experimental analysis": 29113, "nlp tasks machine translation": 113872, "address limitations paper proposes": 5315, "selecting highquality training data": 147817, "language model llm extract": 83742, "cost large language models": 32700, "framework based llms provides": 60984, "language models design robot": 84363, "large language modelsllms shown": 88880, "experimental results indicate chatgpt": 54021, "requires labeled training data": 141400, "framework using large language": 61480, "uniform information density uid": 171767, "language models llms require": 85488, "massive amounts text data": 99345, "potential utilizing chatgpt enhance": 125056, "significant attention impressive performance": 150609, "attention impressive performance variety": 13903, "impressive performance variety tasks": 73342, "performance variety tasks chatgpt": 122248, "variety tasks chatgpt developed": 175768, "tasks chatgpt developed openai": 162042, "querying large language models": 134657, "extracting data natural language": 56224, "garnered significant attention impressive": 62788, "data released research purposes": 35642, "nlp tasks including machine": 113852, "standard machine learning classifiers": 154843, "surprising abilities natural language": 159542, "abilities language understanding generation": 1939, "investigate impact different prompts": 80424, "llms demonstrated superior performance": 94891, "zeroshot performance various natural": 180291, "propose prompting strategy called": 132084, "large language models effectively": 87739, "models llms using machinegenerated": 108012, "llms using machinegenerated instructionfollowing": 96927, "using machinegenerated instructionfollowing data": 174472, "zeroshot capabilities new tasks": 180129, "paper present attempt use": 119109, "significant success various domains": 150894, "similarly large language models": 151394, "recent introduction large language": 137526, "introduction large language models": 80255, "yields significant performance improvements": 180036, "experimental results popular benchmarks": 54052, "language models empirical results": 84433, "require extensive human labor": 141103, "code available github repository": 24675, "ensembles large language models": 49653, "make large language models": 98563, "controlling large language models": 31666, "semantics large language models": 148304, "work highlights potential llms": 179023, "personalized news recommendation methods": 122613, "downstream tasks prompt learning": 44823, "leverages pretrained language models": 91767, "adapt pretrained language model": 4555, "natural language processing research": 111804, "academic research large language": 2754, "large language models texttovideo": 88806, "large language model outputs": 87452, "results various tasks demonstrate": 143924, "investigating large language models": 80606, "llms demonstrated remarkable zeroshot": 94884, "demonstrated remarkable zeroshot generalization": 38790, "classical machine learning models": 23938, "processing computer vision reinforcement": 129134, "computer vision reinforcement learning": 28510, "relation extraction crucial task": 139243, "downstream tasks limited research": 44804, "extensive experiments conducted lowresource": 55814, "models achieving stateoftheart performance": 105260, "llms shown remarkable performance": 96568, "basic natural language tasks": 16427, "semantic understanding logical reasoning": 148248, "llms achieved impressive performance": 94308, "trained reinforcement learning human": 168060, "pretrained models bert roberta": 127068, "instructions training large language": 78364, "version large language model": 176608, "domains like medicine finance": 44464, "large language models test": 88798, "evaluate ability language models": 50892, "work propose simple method": 179220, "applies large language model": 10833, "solve wide range tasks": 153172, "language models llms instruction": 85272, "tasks require multistep reasoning": 163148, "ai models large language": 7103, "model performance different data": 104236, "large language model recommendation": 87474, "robustness code publicly available": 145360, "human feedback natural language": 70813, "survey aims provide overview": 159603, "improve natural language generation": 73532, "exploits large language models": 55044, "paves way future research": 120596, "research capabilities large language": 141627, "human feedback ai feedback": 70795, "experimental results method achieves": 54037, "results method achieves stateoftheart": 143596, "paper explore ability llms": 118904, "llms generate responses questions": 95377, "work conduct systematic study": 178862, "relation extraction using large": 139257, "training data work propose": 168366, "demonstrate effectiveness approach generating": 38293, "named entity recognition using": 111414, "models llms chatgpt shown": 107195, "llms chatgpt shown impressive": 94601, "entity recognition ner models": 49918, "code datasets publicly available": 24774, "method significantly improve performance": 101098, "machine translation using large": 98136, "translation using large language": 169543, "generalization capabilities unseen tasks": 63146, "data training propose use": 35881, "require additional training data": 141067, "pretrained language models prompt": 126966, "pretrained language models code": 126887, "code pretrained language models": 25054, "wide range cognitive tasks": 178272, "cues large language models": 33928, "large language models relation": 88690, "language models relation extraction": 86078, "gpt3 achieves near sota": 66640, "word embedding methods word2vec": 178627, "experimental results compared stateoftheart": 53975, "access large language models": 2875, "llms different sizes ranging": 94926, "zeroshot fewshot finetuning scenarios": 180174, "machine translation text classification": 98132, "closedsource large language models": 24490, "llms extensive experiments indicate": 95216, "despite remarkable ability large": 40195, "large language model empowered": 87341, "inspired recent progress large": 77759, "approach outperform competitive baselines": 11421, "emergent capabilities large language": 47474, "ensuring large language models": 49743, "bridging gap pretraining finetuning": 19093, "learning deep learning models": 90354, "systems like large language": 160465, "expected calibration error ece": 53753, "systems paper propose novel": 160515, "language models lms powerful": 85683, "powerful tools natural language": 125346, "chatgpt leveraging large language": 23102, "suggesting significant room improvement": 158628, "significant room improvement current": 150870, "room improvement current llms": 145589, "substantial improvements compared strong": 158072, "improvements compared strong baselines": 73890, "language models critical issue": 84322, "language models follow instructions": 84550, "models llms gpt4 demonstrated": 107495, "plugins large language models": 123680, "models llms gpt3 gpt4": 107489, "research recently large language": 142038, "llms demonstrated exceptional proficiency": 94841, "various downstream tasks work": 175921, "instruction tuning instruction tuning": 78102, "tuning instruction tuning large": 170033, "automated theorem prover approach": 14623, "language model finetuned diverse": 83645, "model finetuned diverse collection": 103663, "code data models publicly": 24752, "data models publicly available": 35398, "play crucial role enhancing": 123444, "models llms shown surprising": 107905, "tasks paper conduct empirical": 162910, "paper conduct empirical study": 118798, "achieve competitive performance compared": 3608, "different prompt engineering techniques": 41936, "language models llms static": 85567, "results demonstrate superior performance": 143338, "remains open research question": 140056, "benchmark chinese large language": 16858, "large language models proposed": 88646, "tasks given natural language": 162467, "given natural language query": 65940, "language models llms benchmarks": 84914, "investigate extent llms used": 80412, "various nlp tasks different": 176070, "large language models boost": 87611, "recently shown promising results": 137996, "prompts responses reinforcement learning": 131453, "language models llms questionanswering": 85448, "results method outperforms stateoftheart": 143602, "recent research shown incorporating": 137633, "work present novel framework": 179180, "improves large language models": 74018, "propose simple effective strategy": 132126, "harnessing capabilities large language": 68821, "leveraging pretrained large language": 91928, "language models llms utilize": 85636, "handle complex reasoning tasks": 68532, "large language models symbolic": 88787, "language models symbolic solvers": 86254, "paper introduces novel framework": 119017, "llms translate natural language": 96855, "approach achieves stateoftheart results": 10956, "capability llms large language": 20338, "small language model trained": 152305, "consistently significantly improves results": 29922, "language processing tasks efficacy": 86630, "processing tasks efficacy challenging": 129315, "tasks efficacy challenging domainspecific": 162271, "efficacy challenging domainspecific tasks": 46365, "challenging domainspecific tasks remains": 22155, "models study prompt design": 109265, "incontext learning icl emerged": 74915, "models llms make predictions": 107648, "enhancing logical reasoning large": 49520, "recent years significant progress": 137805, "deep learning models provide": 37764, "research suggesting potential avenues": 142101, "data scarcity issue propose": 35698, "baselines large language models": 16345, "large language models methodology": 88513, "incontext learning icl capability": 74912, "large language models constrained": 87668, "proprietary large language model": 132518, "models significant progress recent": 109125, "language models llms attractive": 84899, "llms like chatgpt gpt4": 95771, "commonly used automatic metrics": 26239, "language models llms evaluation": 85096, "chatgpt garnered significant attention": 22970, "garnered significant attention exceptional": 62787, "incontext learning icl important": 74921, "dataset code publicly available": 36158, "language models demonstrated strong": 84354, "large language model act": 87300, "language models llms existing": 85113, "various benchmark datasets demonstrating": 175833, "paper investigates capabilities large": 119048, "investigates capabilities large language": 80550, "address questions introduce new": 5362, "ability various natural language": 2413, "language processing tasks effectiveness": 86629, "various nlp tasks generate": 176073, "large language models detecting": 87714, "emergent ability large language": 47466, "teaching large language model": 163647, "remains underexplored paper investigate": 140094, "large language models finding": 87811, "learning incontext learning paradigm": 90572, "surface natural language features": 159416, "does require training finetuning": 44029, "covers wide range topics": 33111, "sentiment analysis machine translation": 148616, "summaries generated large language": 158768, "remarkable advancements large language": 140136, "models llms significantly enhanced": 107919, "small number labeled examples": 152339, "paper explores potential leveraging": 118940, "explores potential leveraging large": 55421, "potential leveraging large language": 124822, "language models llms data": 84994, "models llms data augmentation": 107238, "furthermore conduct human evaluation": 62034, "large language model chatbots": 87324, "future research propose new": 62367, "guide large language models": 68186, "address issue introduce simple": 5262, "issue introduce simple effective": 80917, "overall study provides valuable": 118244, "large language models problem": 88628, "large language models t5": 88793, "language model work propose": 83962, "using graph neural networks": 174279, "gpt3 large language models": 66717, "et al 2023 shows": 50781, "like chatgpt gpt4 exhibit": 92230, "language model beam search": 83557, "large language models counterfactual": 87681, "language models past work": 85865, "style large language models": 157755, "large language models challenging": 87629, "models llms demonstrated great": 107268, "llms demonstrated great capabilities": 94845, "capabilities solving wide range": 20191, "impressive generalization capabilities unseen": 73299, "remarkable capabilities large language": 140159, "leveraging incontext learning capability": 91866, "findings provide valuable insights": 58765, "experimental results indicate current": 54022, "models data code publicly": 105844, "human cognitive process propose": 70649, "complex reasoning tasks including": 27564, "shown great promise improving": 150256, "using lowrank adaptation lora": 174464, "execution large language models": 52958, "application large language model": 10338, "large language models includes": 87887, "issue paper presents novel": 80936, "theory mind tom capacity": 166099, "large language models synthesize": 88788, "achieves comparable performance supervised": 3987, "data source code available": 35776, "lack comprehensive evaluation framework": 82904, "conduct detailed error analysis": 29068, "downstream tasks work propose": 44846, "shown impressive capabilities natural": 150269, "language understanding generation potential": 86822, "empowered large language model": 48001, "language model llm technology": 83776, "modern pretrained language models": 109833, "models bert roberta gpt3": 105498, "generic large language model": 65659, "translations large language models": 169557, "prompts pretrained language models": 131413, "experiments method significantly outperforms": 54359, "large language models partially": 88586, "exhibited large language models": 53140, "large language models adapt": 87544, "experiments demonstrate proposed method": 54235, "applied large language models": 10777, "models sizes 7b 13b": 109151, "know large language models": 81708, "using generative language models": 174240, "models especially large language": 106152, "methods easy data augmentation": 101459, "performance gpt3 incontext learning": 121601, "stateoftheart deep neural networks": 155123, "large language models tackle": 88794, "large language model applications": 87308, "providing valuable insights practitioners": 133403, "large language models proper": 88642, "models llms gpt llama2": 107484, "complex natural language queries": 27492, "processing nlp recently gained": 129245, "study recently large language": 157586, "graph generation task specifically": 67534, "models llms generation code": 107474, "dialog systems paper presents": 41433, "novel application large language": 114361, "interactions large language models": 79239, "language processing nlp task": 86581, "texts generated chatgpt human": 165720, "language model based architectures": 83551, "models trained large amounts": 109447, "pretrained language models finetuned": 126901, "machine learning methods specifically": 98039, "large language model augmented": 87313, "mbert devlin et al": 99714, "using parameterefficient finetuning peft": 174574, "incontext learning icl method": 74924, "pretraining large text corpora": 127368, "natural language tasks paper": 111886, "benefit chainofthought cot prompting": 17423, "combines large language model": 25941, "large language models advanced": 87548, "automatic evaluation human evaluation": 14663, "large language models instructiontuned": 87910, "language models instructiontuned large": 84722, "models instructiontuned large language": 106789, "lack comprehensive understanding regarding": 82907, "language models unlike previous": 86341, "large language models works": 88868, "large language model named": 87451, "retrievalaugmented large language model": 144188, "llms demonstrated extraordinary capabilities": 94843, "large language models deep": 87693, "impressive text generation capabilities": 73384, "models llms text generation": 107970, "extensive experiments conducted using": 55815, "experiments conducted using realworld": 54198, "demonstrate model outperforms stateoftheart": 38445, "language models survey rapid": 86250, "models llm shown impressive": 107046, "large language models infer": 87901, "texts large language model": 165742, "extend capabilities large language": 55619, "increasing size large language": 75363, "surge large language models": 159431, "transfer learning fewshot learning": 168940, "learning natural language explanations": 90755, "nlp especially large language": 113731, "language models llms experienced": 85117, "language models llms studied": 85575, "roadmap large language models": 145131, "natural language processing artificial": 111704, "language processing artificial intelligence": 86490, "demonstrated effectiveness approach code": 38643, "effectiveness approach code data": 46124, "language models llms continue": 84980, "models llms continue advance": 107223, "knowledge reasoning capabilities large": 82341, "natural language processing benchmarks": 111707, "generate code natural language": 63419, "results demonstrate approach outperforms": 143283, "outperforms previous stateoftheart sota": 117826, "innovation natural language processing": 77147, "range large language models": 135639, "attracted wide research attention": 14057, "growing large language models": 68031, "experiments reveal key insights": 54448, "large language models recommender": 88685, "language models recommender systems": 86070, "significantly outperforms stateoftheart baselines": 151115, "recent progress generative language": 137593, "progress generative language models": 129971, "starting point future research": 154968, "models achieved remarkable results": 105246, "conduct thorough evaluation method": 29196, "investigate ability pretrained language": 80365, "large language models release": 88692, "large language model speech": 87487, "model significantly outperforms existing": 104576, "language models llms accurately": 84846, "llms exhibit high degree": 95139, "language models bart t5": 84162, "conversational large language model": 31884, "beginning era large language": 16538, "nlp tasks sentiment analysis": 113898, "transformer gpt models specifically": 169139, "natural language understanding capabilities": 111898, "derived large language models": 39361, "strong incontext learning ability": 156398, "language models achieve comparable": 84059, "labels using large language": 82842, "tasks demonstrate effectiveness proposed": 162174, "language model llm using": 83781, "language models llm emerged": 84820, "paper presents innovative approach": 119169, "large language models accomplish": 87532, "requires considerable human effort": 141352, "estimation large language models": 50754, "conduct extensive experiments involving": 29122, "outperforms previous stateoftheart models": 117825, "recent advancements field large": 137351, "advancements field large language": 5888, "use proximal policy optimization": 172832, "proximal policy optimization ppobased": 133433, "largescale code generation models": 89279, "code generation models codex": 24904, "tasks including code generation": 162549, "including code generation translation": 74460, "models existing methods struggle": 106226, "work opens new possibilities": 179146, "recent surge large language": 137693, "proposed approach significantly enhances": 132245, "language models llms gaining": 85162, "models llms gaining increasing": 107453, "exploring potential large language": 55496, "language models vision transformers": 86375, "future research directions field": 62331, "grammatical error correction tasks": 67457, "llms applied wide range": 94418, "research domains natural language": 141732, "large language models translate": 88824, "prompt learning large language": 130575, "generation paper present novel": 64915, "automated metrics human evaluation": 14575, "reinforcement learning proximal policy": 139090, "learning proximal policy optimization": 90886, "adopt curriculum learning strategy": 5573, "paper explores integration large": 118934, "language models llms automatic": 84904, "llms incontext learning capabilities": 95585, "response large language models": 142670, "llms demonstrated ability learn": 94832, "accuracy holdout test set": 3263, "language models llm llms": 84830, "achieves stateoftheart performance nlp": 4098, "programs large language models": 129916, "translating natural language descriptions": 169430, "llm convert natural language": 93564, "hallucination scale language models": 68414, "bert generative pretrained transformer": 17538, "using natural language input": 174515, "llms gain comprehensive understanding": 95319, "language models existing benchmarks": 84484, "stateoftheart models like gpt4": 155235, "propose simple effective data": 132122, "pretrained finetuned large language": 126809, "language models llms ranging": 85452, "contribute responsible development llms": 31420, "problem neural text generation": 128338, "language models llms striking": 85571, "models llms striking balance": 107949, "measurement large language models": 99903, "completion paper propose novel": 27335, "large language models online": 88559, "text natural language processing": 165321, "remarkable capabilities generating highquality": 140155, "shown language models lms": 150297, "specialized domains like law": 153886, "enabled large language models": 48142, "different ways data augmentation": 42088, "understand generate humanlike text": 171014, "novel framework leverages large": 114523, "framework leverages large language": 61281, "models llms shown potential": 107884, "methods based pretrained language": 101341, "chatgpt ai language model": 22691, "language models llms input": 85271, "remains key challenge paper": 140017, "conduct extensive experiments various": 29129, "holds significant potential enhancing": 70282, "propose use large language": 132196, "results demonstrate proposed approach": 143327, "sentence embeddings large language": 148498, "achieves new stateoftheart result": 4043, "automatically translating natural language": 14870, "using generative language model": 174239, "largescale language models chatgpt": 89337, "llms revolutionized field artificial": 96458, "current generation large language": 34126, "large language model behavior": 87320, "advancements large language model": 5909, "specifically designed chinese language": 154176, "language models llms remarkably": 85479, "models llms sparked debate": 107933, "forms artificial intelligence ai": 60590, "language models conducting experiments": 84288, "large language models implications": 87879, "natural language processing systems": 111811, "language models llm foundation": 84823, "models llm foundation models": 107034, "language models llms humans": 85236, "conduct thorough ablation studies": 29192, "machine learning model order": 98050, "challenge propose novel approach": 21718, "language models translate natural": 86325, "models translate natural language": 109504, "pretrained models paper propose": 127098, "language models llms finetuned": 85144, "language models llms order": 85376, "experimental results benchmark datasets": 53970, "iterations approach yields model": 81107, "approach yields model outperforms": 11673, "great progress recent years": 67716, "aims extract structured information": 7614, "generative language models generative": 65437, "language models generative language": 84588, "models generative language models": 106480, "shown impressive performance tasks": 150280, "performance tasks text generation": 122161, "utilizes generative pretrained transformer": 175132, "direct application gpt models": 42371, "large language models foundation": 87823, "language models revolutionized various": 86110, "based natural language instructions": 15965, "natural language instructions use": 111655, "models llms usually suffer": 108015, "applications address issues propose": 10412, "large language model like": 87381, "language models llms field": 85140, "experimental results approach outperforms": 53968, "training data large language": 168295, "large language model development": 87336, "large language model provides": 87469, "language models llms highlighted": 85225, "impressive capabilities text generation": 73275, "achieve significant performance improvements": 3738, "language models llms demand": 85001, "classification semantic segmentation object": 24082, "semantic segmentation object detection": 148220, "scaling data model size": 146391, "language models llm effectively": 84819, "commonsense knowledge reasoning abilities": 26280, "retrievalenhanced large language models": 144210, "response large language model": 142669, "comparative analysis large language": 26639, "study evaluate capabilities llms": 157320, "current stateoftheart sota models": 34268, "address issue paper introduce": 5266, "large language model realm": 87470, "natural language processing understanding": 111836, "experimental results indicate proposed": 54025, "enhanced large language model": 49345, "framework combines large language": 61014, "large language model case": 87323, "takes natural language task": 160991, "large language models integration": 87911, "experimental results demonstrate significant": 54001, "generate highquality instruction data": 63542, "challenges applying large language": 21777, "future research directions realm": 62333, "language model evaluation benchmark": 83627, "growing using large language": 68063, "effectively improve model performance": 46023, "openais large language models": 116429, "machine translation mt systems": 98120, "language models llms proper": 85435, "large language model powered": 87458, "achieves competitive performance recent": 3996, "llms demonstrate impressive performance": 94819, "models llms large vision": 107599, "llms large vision models": 95731, "large vision models lvms": 89111, "responses large language models": 142840, "large language models era": 87767, "natural language interface querying": 111659, "toolaugmented large language models": 167071, "sampling multiple responses llm": 146107, "llms capable understanding generating": 94540, "generating humanlike text diverse": 64250, "stateoftheart llms gpt35 gpt4": 155192, "models llms represent significant": 107827, "llms represent significant step": 96407, "languages use dataset evaluate": 87154, "extension large language models": 55702, "speech recognition machine learning": 154457, "comparison conventional machine learning": 27029, "conventional machine learning models": 31708, "language models retrievalaugmented generation": 86101, "performance field natural language": 121517, "llms paper present novel": 96037, "modeling natural language processing": 105056, "studies large language models": 157034, "diffusion large language models": 42236, "rising popularity large language": 144922, "language models llms coding": 84963, "existing work behavioral testing": 53637, "models llms generate diverse": 107464, "models llms trained massive": 107981, "demonstrate proposed method outperforms": 38507, "llms demonstrate impressive language": 94817, "demonstrate impressive language understanding": 38379, "extensive experiments mathematical reasoning": 55856, "experiments mathematical reasoning benchmarks": 54349, "mathematical reasoning benchmarks gsm8k": 99588, "normalized discounted cumulative gain": 114191, "discounted cumulative gain ndcg": 42696, "potential applications large language": 124587, "paper investigates large language": 119055, "investigates large language models": 80568, "language models lms produce": 85686, "language models llms autonomous": 84907, "models llms gpt4 palm": 107498, "llms gpt4 palm llama": 95439, "incontext learning icl finetuning": 74917, "incontext learning icl capabilities": 74910, "learning icl capabilities large": 90537, "incontext learning extensive experiments": 74895, "large language models lightweight": 87952, "language models lm shown": 85663, "promising results various tasks": 130313, "models parameterefficient finetuning peft": 108429, "performance fewer trainable parameters": 121509, "inference time memory usage": 76124, "information natural language processing": 76590, "language processing tasks propose": 86640, "tasks propose novel approach": 163036, "potential using llms improve": 125052, "language models llms emergence": 85070, "generation experimental results demonstrate": 64635, "experimental results demonstrate efficacy": 53988, "ability stateoftheart large language": 2384, "results reveal proposed method": 143762, "address issue draw inspiration": 5258, "multilingual natural language processing": 110522, "methods using large language": 101913, "large language models investigated": 87921, "small large language models": 152311, "harnesses power large language": 68813, "models llms acquire extensive": 107086, "address cold start problem": 5199, "applications advent large language": 10417, "advent large language model": 6174, "language model llmbased chat": 83783, "release code pretrained checkpoints": 139451, "utilizing large language model": 175205, "natural language processing llms": 111739, "impressive capabilities various nlp": 73280, "understanding generation capacities llms": 171257, "language models llms erupted": 85089, "querying large language model": 134656, "large language model apply": 87309, "explaining large language models": 54767, "fewshot incontext learning large": 57929, "large language models requires": 88698, "integration instructiontuned large language": 78660, "guide text generation process": 68216, "experimental results analyses demonstrate": 53965, "language processing nlp technology": 86595, "demonstrated outstanding performance various": 38730, "adaptation using large language": 4676, "automation large language models": 14904, "models recent years large": 108843, "garnered significant attention research": 62790, "capabilities paper introduce novel": 20096, "little attention paper presents": 93225, "incontext learning icl using": 74926, "learning icl using large": 90554, "icl using large language": 71701, "aim stimulate research development": 7495, "research provides valuable insights": 142014, "language models distant supervision": 84395, "investigate use large language": 80513, "people interact large language": 120723, "believe dataset serve valuable": 16773, "dataset serve valuable resource": 36530, "serve valuable resource understanding": 149016, "language model llm specifically": 83774, "learning ai feedback rlaif": 90191, "language models era large": 84459, "models era large language": 106145, "language models llms traditional": 85596, "extensive experiments diverse datasets": 55840, "using zeroshot large language": 174882, "natural language tasks question": 111887, "language tasks question answering": 86772, "based automatic human evaluations": 15676, "language model llm applications": 83725, "extensive experiments conducted various": 55817, "tasks experimental results benchmark": 162360, "large language models adaptive": 87545, "significant room improvement especially": 150872, "data address challenges introduce": 34597, "language models llms makes": 85330, "auditing large language models": 14220, "leverages incontext learning icl": 91734, "versatility large language models": 176587, "parameter efficient fine tuning": 119606, "computer vision tasks code": 28515, "language understanding code generation": 86812, "years witnessed rapid development": 179947, "witnessed rapid development large": 178568, "easily implemented lines code": 45320, "generation remains open question": 65041, "extensive experiments multiple datasets": 55862, "experiments multiple datasets demonstrate": 54373, "demonstrated remarkable success various": 38788, "paper presents quantitative analysis": 119183, "responses generated large language": 142803, "speech recognition large language": 154454, "large language models advancements": 87551, "llms generative pretrained transformers": 95401, "synthesis using large language": 159974, "language models llms augmented": 84901, "models achieved remarkable success": 105247, "large language models todays": 88810, "providing solid foundation future": 133372, "databases era large language": 36016, "vision paper large language": 176969, "language models context information": 84303, "language models paper explores": 85842, "fewshot zeroshot learning scenarios": 58088, "does necessarily lead improved": 44005, "sentiment analysis plays crucial": 148627, "analysis plays crucial role": 9063, "models llms paved way": 107712, "reasoning capabilities language models": 136703, "zeroshot generalization capability unseen": 180196, "performance zeroshot fewshot settings": 122319, "interpretable large language model": 79676, "models llms possible generate": 107729, "space large language models": 153590, "era artificial intelligence ai": 50217, "llms shown promise automated": 96559, "language models llms showcasing": 85512, "ai models like gpt4": 7107, "potential implications large language": 124772, "steer large language models": 155555, "language models llms believed": 84912, "llms recently gained popularity": 96341, "various downstream tasks finetuning": 175920, "large language models agents": 87556, "large language models universal": 88833, "models llms chatgpt achieved": 107171, "language models address issue": 84081, "empowered pretrained large language": 48007, "llms achieve competitive performance": 94291, "quality conduct extensive experiments": 134076, "language models llms autonomously": 84908, "experimental results validate effectiveness": 54082, "language processing tasks limited": 86637, "recent years largescale language": 137786, "years largescale language models": 179913, "developing large language models": 41006, "datasets method outperforms existing": 36982, "outperforms existing stateoftheart methods": 117766, "work introduce new paradigm": 179056, "commonsense reasoning reading comprehension": 26317, "language models llms advanced": 84872, "smaller language models slms": 152400, "policy optimization ppo algorithm": 123865, "language models llms renowned": 85480, "models llms emerged dominant": 107338, "language models mbert xlmr": 85728, "data plays crucial role": 35491, "significantly boost performance llms": 150954, "tokens large language models": 166834, "leverage large language model": 91617, "recent work shown promise": 137745, "issue propose novel approach": 80952, "language models llms understanding": 85618, "showing large language models": 150174, "explores use generative pretrained": 55437, "power large language model": 125188, "results generated large language": 143431, "demonstrate method outperforms stateoftheart": 38430, "large language models aligned": 87561, "language models aligned large": 84108, "models aligned large language": 105335, "models llms demonstrate exceptional": 107247, "novel benchmark designed evaluate": 114421, "code generation mathematical reasoning": 24899, "llms finetuning pretrained llms": 95278, "language models llms employing": 85074, "extensive experiments diverse nlp": 55841, "experimental results demonstrate competitive": 53983, "results demonstrate competitive performance": 143289, "models based large language": 105457, "chat models chatgpt gpt4": 22548, "engage multiturn conversations chatgpt": 48828, "language models trained general": 86303, "augment large language models": 14248, "work present novel approach": 179179, "language models llms ignited": 85240, "efficient natural language processing": 46684, "simply prompting large language": 151621, "large language models planning": 88605, "paper propose new framework": 119236, "large language models textbased": 88802, "language models textbased knowledge": 86285, "results text classification tasks": 143869, "language models existing studies": 84485, "image video audio modalities": 72358, "language model llm gpt4": 83755, "transformerbased models bert roberta": 169270, "yields better performance zeroshot": 180014, "large language models source": 88756, "language models llms planning": 85391, "achieves comparable performance fully": 3985, "comparable performance fully finetuned": 26601, "model llm garnered significant": 103999, "llm garnered significant attention": 93695, "previous research primarily focused": 127640, "various benchmarks demonstrate effectiveness": 175836, "language models llms built": 84924, "models code model weights": 105652, "potential pretrained language models": 124916, "language models ability understand": 84043, "systematic evaluation large language": 160121, "effective large language models": 45797, "answers large language model": 10047, "remains largely unexplored bridge": 140023, "largely unexplored bridge gap": 89184, "unexplored bridge gap present": 171628, "significant attention wide range": 150618, "attention wide range applications": 14010, "recently advent large language": 137831, "order tackle challenge propose": 117246, "scenarios extensive experiments demonstrate": 146601, "language models llms empower": 85075, "models achieve performance comparable": 105227, "ability incontext learning icl": 2223, "language processing tasks work": 86644, "models perform named entity": 108467, "perform named entity recognition": 120990, "future directions address challenges": 62250, "language understanding generation abilities": 86819, "covering zeroshot fewshot scenarios": 33098, "language models achieved remarkable": 84069, "prone hallucinate unintended text": 131564, "information retrieval content generation": 76714, "generation leveraging large language": 64793, "bilingual evaluation understudy bleu": 18417, "evaluation understudy bleu score": 51911, "model large language modelsllms": 103931, "large language models intricate": 87915, "demonstrate approach outperforms existing": 38239, "language models llms employed": 85073, "relying large language models": 139903, "improve quality generated text": 73597, "models diverse set tasks": 106012, "language models llms expanded": 85114, "lack clear definitions systematic": 82894, "future research rapidly evolving": 62369, "understanding generation large language": 171259, "language model evaluation large": 83628, "model evaluation large language": 103573, "potential utilizing large language": 125058, "language models llms highlevel": 85223, "language models llms efficient": 85060, "efficiency empirical results demonstrate": 46448, "language models tabular data": 86265, "language models designed natural": 84365, "models designed natural language": 105933, "potential solution data scarcity": 124990, "tasks demonstrating superior generalization": 162190, "large scale machine learning": 89048, "furthermore conduct comprehensive analysis": 62030, "processing nlp tasks despite": 129252, "generation named entity recognition": 64871, "results demonstrate method improves": 143313, "training code model checkpoints": 168188, "code model checkpoints released": 25000, "leveraging capabilities large language": 91809, "multiple finetuned large language": 110920, "capabilities llms paper propose": 20038, "using automatic human evaluation": 173986, "automatic generation intelligence reports": 14680, "zeroshot learning large language": 180240, "method outperforms stateoftheart methods": 101018, "models llms shown strong": 107901, "limited training data recent": 92870, "problem using large language": 128432, "learning framework large language": 90480, "language models recent studies": 86053, "approach artificial general intelligence": 11003, "utilise large language models": 174933, "models recent work shown": 108839, "comparing large language models": 26994, "complex language understanding tasks": 27455, "paper introduce novel framework": 118998, "significantly reducing training time": 151150, "language models llms establish": 85091, "important task natural language": 73202, "natural language processing requires": 111803, "enhance performance extensive experiments": 49248, "performance extensive experiments demonstrate": 121497, "demonstrate approach significantly improves": 38243, "led stateoftheart results natural": 91252, "consistently enhances model performance": 29867, "language generation models including": 83359, "indepth overview recent advances": 75544, "overview recent advances field": 118445, "language generation nlg large": 83367, "generation nlg large language": 64886, "nlg large language models": 113655, "attributed large language models": 14095, "recently large language model": 137923, "shed light capabilities limitations": 149850, "generate coherent contextually relevant": 63425, "llms various tasks growing": 96963, "recent years witnessed rapid": 137811, "parameterefficient finetuning peft method": 119667, "language models used generate": 86353, "target similarity tuning tst": 161102, "models llms artificial intelligence": 107121, "natural language understanding stateoftheart": 111916, "plays important role human": 123525, "large language models popular": 88608, "models trained vast amounts": 109479, "publicly accessible language models": 133625, "tasks existing works focus": 162351, "language models paper explore": 85841, "using policy gradient optimization": 174583, "large language models advancement": 87549, "transformed landscape artificial intelligence": 169085, "recent advances foundation models": 137396, "achieved remarkable performance wide": 3871, "summary work contributes improving": 158952, "crucial step en route": 33862, "step en route enabling": 155624, "en route enabling widespread": 48060, "route enabling widespread adoption": 145641, "language models llms applications": 84889, "evaluation benchmark large language": 51449, "performance paper propose novel": 121892, "language models llms generated": 85178, "large language models growth": 87855, "language models llms creation": 84988, "creative writing code generation": 33386, "large language models explainable": 87789, "overcome limitations propose novel": 118306, "unlearning llms large language": 171972, "generation tasks demonstrate effectiveness": 65153, "high data annotation costs": 69439, "model outperforms previous approaches": 104182, "realworld applications existing benchmarks": 136399, "point potential avenues future": 123716, "models llms understand reason": 107996, "models llms possess extensive": 107726, "llms possess extensive knowledge": 96135, "provide theoretical analysis support": 133002, "finetuning pretrained large language": 59458, "experiments using publicly available": 54517, "potential wide range tasks": 125076, "large language models handle": 87858, "large language models revolutionizing": 88712, "large language models synthetic": 88789, "stateoftheart multilingual language models": 155243, "falls short human performance": 57153, "model development large language": 103458, "play crucial role shaping": 123445, "achieve stateoftheart sota performance": 3761, "urgent need evaluate llms": 172419, "experimental results indicate llms": 54023, "language processing nlp lack": 86556, "extensive experiments public benchmarks": 55871, "proposed model outperforms strong": 132395, "models llms great performance": 107504, "llms great performance various": 95447, "play pivotal role various": 123464, "large language models preliminary": 88618, "development emergence large language": 41099, "supervision propose novel method": 159214, "code based natural language": 24687, "large language models literature": 87961, "single gpu multiple gpus": 151808, "significantly outperforming baseline methods": 151084, "empirical results human evaluations": 47727, "extensive experiments provide insights": 55869, "experimental results realworld datasets": 54066, "matching large language models": 99469, "large language models possible": 88610, "observe large language models": 115379, "recent successes large language": 137687, "successes large language models": 158328, "foundations large language models": 60858, "various controllable text generation": 175878, "despite impressive performance various": 40140, "characterizing large language models": 22492, "generation making valuable tools": 64814, "llms trained supervised finetuning": 96836, "proposed approach achieves stateoftheart": 132233, "approach achieves stateoftheart performance": 10955, "large language models distill": 87724, "languages recent large language": 87111, "performance lowresource languages training": 121773, "training data models usually": 168312, "performance open source models": 121872, "advancements recent years large": 5958, "study breaks new ground": 157194, "breaks new ground investigating": 19004, "prompts paper propose novel": 131403, "models like chatgpt present": 106976, "nlp particularly large language": 113785, "benchmarks like glue superglue": 17291, "adapt new tasks based": 4547, "limitations propose alternative approach": 92645, "language models llms marked": 85332, "models llms marked significant": 107652, "language models language model": 84759, "rapid advancement artificial intelligence": 135847, "advancement artificial intelligence ai": 5827, "large language models exhibiting": 87782, "holds potential broader applications": 70275, "llms text generation tasks": 96797, "llms shown remarkable proficiency": 96570, "language models llms resulting": 85493, "wrong large language models": 179803, "language models llms given": 85186, "metrics large language models": 102099, "datasets collected social media": 36708, "models llms follow natural": 107433, "llms follow natural language": 95291, "machine translation question answering": 98125, "results suggest llms produce": 143838, "distinct domains using dataset": 43217, "paper proposes new evaluation": 119269, "proposes new evaluation metric": 132474, "confidence large language models": 29352, "reinforcement learning rl technique": 139109, "models llms demonstrate inconsistencies": 107252, "language model llm generating": 83752, "achieves stateoftheart results zeroshot": 4110, "language models generate similar": 84581, "model named entity recognition": 104117, "achieves best performance compared": 3967, "achieved notable success numerous": 3851, "significant progress various domains": 150846, "models llms shown extraordinary": 107869, "benchmarks large language models": 17286, "suite innovative metrics evaluation": 158726, "innovative metrics evaluation conduct": 77182, "metrics evaluation conduct comprehensive": 102058, "evaluation conduct comprehensive experiments": 51496, "conduct comprehensive experiments involving": 29052, "comprehensive experiments involving various": 28045, "human feedback rlhf recent": 70821, "reward model trained using": 144697, "model trained using human": 104778, "trained using human feedback": 168109, "adapt large language model": 4532, "downstream tasks previous works": 44820, "facilitate future research direction": 56618, "retrievalaugmented language models retrievalaugmented": 144185, "exploring incontext learning capabilities": 55474, "study aims address gap": 157146, "address gap conducting comprehensive": 5231, "gap conducting comprehensive evaluation": 62630, "chainofthought cot prompting techniques": 21498, "accurately reflect true performance": 3560, "understanding strengths limitations current": 171488, "machine learning artificial intelligence": 98015, "stateoftheart performance open models": 155288, "models lack interpretability making": 106858, "address gap introduce multimodal": 5233, "demonstrated superior performance various": 38810, "unsupervised domain adaptation uda": 172245, "language processing nlp particularly": 86572, "code results publicly available": 25114, "demonstrated exceptional capabilities various": 38656, "data recently large language": 35624, "llms achieved tremendous success": 94323, "relevant papers summarized consistently": 139628, "papers summarized consistently updated": 119411, "llms revolutionized field natural": 96460, "tasks existing work focuses": 162349, "labeled training data work": 82742, "models llms knowledge bases": 107591, "benchmark datasets demonstrate method": 16905, "stateoftheart approaches large margin": 155078, "study introduces novel approach": 157423, "masked language modelling mlm": 99311, "natural language processing despite": 111721, "address issue introduce novel": 5261, "generate natural language descriptions": 63621, "language models plms especially": 85897, "demonstrate superior performance method": 38575, "llms remains relatively unexplored": 96391, "deploying deep learning models": 39235, "superior performance understanding generating": 159044, "language models conduct extensive": 84284, "models conduct extensive experiments": 105736, "conduct extensive experiments popular": 29123, "language models llms imperative": 85241, "generation natural language processing": 64877, "language models llms helpful": 85221, "multidimensional benchmark evaluating llms": 110374, "hallucination experimental results demonstrate": 68374, "way large language models": 177842, "language models using 3d": 86359, "remarkable achievements large language": 140131, "achievements large language models": 3927, "models exhibit superior performance": 106214, "help make informed decisions": 69143, "language models advancement large": 84087, "long shortterm memory bilstm": 97483, "natural language sql queries": 111873, "llm extensive experiments demonstrate": 93663, "language models like llama": 84804, "models llms gpt4 llama": 107496, "evaluation framework large language": 51603, "language models llms unprecedented": 85623, "language models llms improved": 85246, "language model llm particular": 83762, "propose new nlp task": 131971, "model achieve stateoftheart performance": 103027, "endtoend finetuning large language": 48736, "language models llms adapted": 84862, "representations transformers bert model": 140904, "models llms recently experienced": 107804, "language models llms implement": 85242, "generation process extensive experiments": 64962, "gehman et al 2020": 62855, "gao et al 2023": 62605, "knowledge injection large language": 82130, "injection large language models": 77115, "large models like gpt3": 88928, "demonstrate superior performance efficiency": 38574, "methods implementation publicly available": 101580, "paper introduces innovative approach": 119009, "dataset results publicly available": 36511, "advanced reasoning capabilities large": 5801, "models llms approach begins": 107119, "recent years pretrained language": 137790, "years pretrained language models": 179921, "internet large language models": 79588, "language models llms useful": 85627, "significantly reducing computational requirements": 151146, "large language models equipping": 87766, "large language models safe": 88716, "approach publicly available datasets": 11486, "rapid progress large language": 135899, "large language models quickly": 88656, "large language model meta": 87445, "language model meta ai": 83799, "advancement field natural language": 5840, "dataset generation large language": 36327, "language models llms create": 84986, "transfer knowledge large language": 168922, "paper study llms used": 119342, "ablation studies validate effectiveness": 2446, "llms like gpt4 shown": 95787, "based natural language prompt": 15968, "models instruction tuning significantly": 106782, "enhances performance large language": 49434, "large language models loop": 88494, "stateoftheart sota large language": 155362, "large language models bridge": 87612, "evaluating enhancing large language": 51293, "current stateoftheart llm gpt4": 34261, "policy gradient reinforcement learning": 123845, "basic python problems mbpp": 16435, "language models llms central": 84934, "human evaluation results indicate": 70749, "shown great success various": 150258, "document classification question answering": 43816, "language models llm significant": 84836, "issue parameterefficient finetuning peft": 80941, "paper present comprehensive systematic": 119115, "model training large language": 104788, "tasks code data available": 162054, "frontier large language models": 61650, "llms demonstrated remarkable success": 94883, "address issues paper propose": 5288, "process conduct extensive experiments": 128765, "conduct extensive experiments demonstrate": 29119, "experiments demonstrate significant improvements": 54237, "language models llms performed": 85389, "language models llms quite": 85449, "large language models promise": 88634, "language models llms facilitates": 85137, "address issue paper introduces": 5267, "language models llms yielding": 85660, "including data preparation pretraining": 74485, "range tasks existing methods": 135709, "diverse highquality instruction data": 43540, "code language models llms": 24967, "code generation tasks paper": 24924, "task translating natural language": 161787, "databases large language models": 36020, "potential path artificial general": 124896, "device experimental results demonstrate": 41301, "spoken dialogue large language": 154569, "values large language models": 175543, "llms simulate human behavior": 96617, "unlocking potential large language": 172043, "lack domain knowledge limited": 82930, "fewshot incontext learning ability": 57926, "persian large language model": 122524, "model despite widespread use": 103445, "language models effective tools": 84414, "used various natural language": 173296, "tasks especially text generation": 162319, "significant successes large language": 150897, "language models llms smaller": 85549, "models llms smaller efficient": 107926, "language models llms domainspecific": 85043, "explore different llm architectures": 55184, "models llms achieve high": 107062, "large language models lowresource": 88495, "language models llms deep": 84999, "models llms deep learning": 107243, "language models increasingly large": 84700, "large language models toxicity": 88811, "experiments public benchmark datasets": 54418, "language models recent breakthroughs": 86048, "models recent breakthroughs large": 108828, "llms significant advancements natural": 96584, "text embeddings large language": 165046, "sets new stateoftheart results": 149390, "training data work introduce": 168365, "training data experimental results": 168256, "learning generative pretrained transformers": 90503, "variety use cases language": 175778, "carbon footprint associated large": 20751, "footprint associated large language": 60349, "associated large language models": 13494, "models llms significant concern": 107910, "diffusion models large language": 42251, "texttoimage t2i diffusion models": 165830, "objective subjective evaluations demonstrate": 115229, "question conduct extensive empirical": 134848, "results demonstrate comparable performance": 143286, "language models llms gain": 85154, "code generation automatically generate": 24871, "automatically generate test cases": 14815, "automatic test case generation": 14751, "code publicly available github": 25080, "response challenges work introduces": 142628, "information extraction question answering": 76435, "large language models revolutionize": 88709, "pretrained models available online": 127063, "limited context window size": 92737, "llms like chatgpt gained": 95770, "technical report technical report": 163724, "includes pretrained language models": 74382, "models aligned human preferences": 105333, "efficient finetuning language models": 46618, "lengths large language models": 91404, "models llms present new": 107740, "beam search sampling algorithms": 16506, "measured automated metrics human": 99889, "opensource llms 7b 70b": 116633, "llms 7b 70b parameters": 94249, "abilities various natural language": 2037, "models llms led creation": 107606, "known retrieval augmented generation": 82627, "xu et al 2023": 179864, "downstream tasks paper explore": 44816, "findings offer new insights": 58738, "area receiver operating characteristic": 12345, "models llms significant strides": 107914, "language models llm offer": 84831, "learning solve new tasks": 91009, "large language models apply": 87573, "language models llm conversational": 84817, "reinforcement learning rl specifically": 139108, "insights future research directions": 77568, "language models llms proxy": 85447, "technologies natural language processing": 164103, "benchmark datasets demonstrate effectiveness": 16904, "datasets demonstrate effectiveness llm": 36765, "empirical results demonstrate effectiveness": 47720, "results demonstrate method surpasses": 143316, "language models study demonstrates": 86227, "models llms opened new": 107697, "breakthrough natural language processing": 19013, "leakage large language models": 89937, "software engineering se tasks": 152808, "language models llms machine": 85326, "models face significant challenge": 106291, "models llms revolutionized artificial": 107841, "llms revolutionized artificial intelligence": 96455, "revolutionized artificial intelligence ai": 144641, "artificial intelligence ai field": 12676, "increasingly popular training finetuning": 75425, "requires substantial computational power": 141451, "tasks advent large language": 161925, "models llms notably enhanced": 107676, "scenarios paper introduces novel": 146666, "paper introduces novel llmbased": 119018, "novel llmbased agent framework": 114573, "large language models evolution": 87773, "findings indicate llms effectively": 58703, "like generative pretrained transformer": 92274, "enables multimodal large language": 48226, "singular value decomposition svd": 151917, "research sheds light potential": 142075, "llms shown significant promise": 96575, "promise various applications including": 130206, "language model based largescale": 83553, "codebased large language models": 25228, "detection large language model": 40540, "llms demonstrate approach achieves": 94810, "source large language models": 153453, "light large language models": 92126, "novel benchmark designed assess": 114420, "received attention literature work": 137298, "llms recently gained significant": 96342, "language processing tasks models": 86638, "large language models superpositions": 88780, "propose large language model": 131896, "bridge gap introduce new": 19046, "text generation using llms": 165201, "large language models sllms": 88744, "downstream tasks despite advancements": 44772, "tasks like named entity": 162720, "like named entity recognition": 92361, "prompt guide chatgpt generate": 130534, "prompt engineering techniques various": 130488, "language processing nlp aims": 86540, "paper conduct thorough evaluation": 118805, "models laying groundwork future": 106932, "laying groundwork future research": 89696, "stateoftheart llms including gpt4": 155197, "results experiments demonstrate proposed": 143402, "large language models textual": 88807, "language models llms apparent": 84886, "additionally experimental results indicate": 5060, "consistent performance gains strong": 29828, "like llama 7b 13b": 92337, "models trained brazilian portuguese": 109420, "llms trained nextword prediction": 96832, "understanding generating human language": 171247, "language models llms edge": 85057, "models retrievalaugmented generation rag": 108982, "language models llms incorporating": 85256, "llms incorporating external knowledge": 95594, "language models findings reveal": 84535, "large language models finetune": 87813, "language model lm generate": 83788, "classification conduct extensive experiments": 23977, "llms similar parameter sizes": 96610, "llms achieve higher performance": 94294, "capabilities extensive experiments demonstrate": 19891, "machine learning ml approaches": 98043, "current stateoftheart deep learning": 34256, "tasks involve complex multistep": 162638, "involve complex multistep reasoning": 80687, "using gpt3 base model": 174262, "language models align human": 84106, "models llms field natural": 107424, "llms field natural language": 95261, "experimental results demonstrate unified": 54006, "studied paper present comprehensive": 156937, "paper present comprehensive empirical": 119111, "natural language processing applications large": 111702, "models large deep learning models": 106879, "success large pretrained language models": 158262, "word embeddings large language models": 178634, "language models bert gpt shown": 84177, "challenging natural language processing nlp": 22222, "generation using pretrained language models": 65246, "graph neural networks gnns demonstrated": 67560, "gpt2 radford et al 2019": 66589, "stateoftheart generative pretrained transformer gpt": 155153, "pretrained large language models generate": 127000, "language models lms demonstrated impressive": 85673, "existing pretrained large language models": 53528, "pretrained large language models shown": 127006, "natural language processing tasks question": 111826, "long short term memory lstm": 97480, "machine learning ml natural language": 98048, "learning ml natural language processing": 90700, "ml natural language processing nlp": 102789, "language models like bert achieve": 84795, "generation pretrained language models large": 64946, "large language models able predict": 87530, "natural language processing nlp proposed": 111776, "models llms openais chatgpt googles": 107693, "llms openais chatgpt googles bard": 95981, "generative pretrained transformer gpt2 model": 65553, "lowrank adaptation large language models": 97887, "finally highlight future research directions": 58477, "potential natural language processing tasks": 124879, "seen significant progress recent years": 147709, "large pretrained language models generate": 89000, "models pretrained language models plms": 108615, "commonsense knowledge large language models": 26275, "natural language processing nlp field": 111758, "approaches use pretrained language models": 11945, "large language models lms gpt3": 88488, "remains challenge paper present novel": 139981, "deep neural network dnn models": 37806, "new stateoftheart results benchmark datasets": 113431, "natural language processing nlp leading": 111764, "learning capabilities wide range tasks": 90278, "ability large language models perform": 2247, "gsm8k benchmark math word problems": 68100, "named entity recognition ner tasks": 111409, "train multiple large language models": 167806, "pretrained language models plms prompt": 126957, "language models plms prompt learning": 85909, "results method consistently outperforms baselines": 143600, "method consistently outperforms baselines datasets": 100757, "combined pretrained large language models": 25919, "natural language processing nlp algorithms": 111749, "models llms shown promising results": 107891, "pretrained language models plms gpt2": 126952, "supervised learning large language models": 159137, "achieved remarkable success various natural": 3881, "question answering named entity recognition": 134767, "architectures based large language models": 12252, "knowledge pretrained language models plms": 82290, "pretrained transformer language models large": 127198, "models large language models trained": 106899, "large language model llm like": 87414, "tasks demonstrate superior performance proposed": 162181, "logical reasoning large language models": 97384, "language models trained vast datasets": 86311, "large language models chainofthought prompting": 87628, "performance various natural language reasoning": 122268, "various natural language reasoning tasks": 176057, "source code reproduce results available": 153420, "tasks domains large language models": 162256, "large language models like gpt3": 87956, "codedavinci002 achieves new stateoftheart results": 25251, "achieved great success natural language": 3818, "great success natural language generation": 67739, "large language models llms suffer": 88431, "utilizing pretrained large language models": 175231, "large language models llms evaluate": 88142, "capability pretrained language models plms": 20361, "natural language processing tasks including": 111820, "test large language models llms": 164577, "large language models llms transformative": 88448, "models large language models shown": 106898, "crucial task natural language processing": 33873, "measure large language models llms": 99855, "chainofthought large language models llms": 21512, "large language models llms substantial": 88428, "language models llms generate accurate": 85171, "explicit output programs benefit human": 54948, "output programs benefit human debugging": 117981, "impressive performance wide range nlp": 73354, "neural machine translation nmt systems": 112876, "using large pretrained language model": 174398, "finetuning large language models lms": 59336, "large language models llms translating": 88451, "experiment results demonstrate method achieves": 53906, "study application large language models": 157165, "wide range natural language understanding": 178295, "way pretrained language models plms": 177867, "performance various nlp tasks especially": 122272, "pretrained language models plms furthermore": 126951, "large language models llms reported": 88382, "models long short term memory": 108098, "datasets large language models meet": 36949, "pretrained models recently achieved great": 127107, "models llms recently demonstrated impressive": 107799, "llms recently demonstrated impressive ability": 96334, "large language models llms excellent": 88148, "use large language models zeroshot": 172710, "large language models llms lens": 88267, "language models shown impressive performance": 86154, "impressive performance wide variety tasks": 73356, "large language models llms acquire": 87991, "language processing nlp tasks using": 86592, "large language models using fewshot": 88846, "intersection large language models llms": 79765, "llms currently forefront intertwining ai": 94773, "currently forefront intertwining ai systems": 34320, "forefront intertwining ai systems human": 60389, "intertwining ai systems human communication": 79781, "years large language models achieved": 179908, "incontext learning incontext learning icl": 74931, "planning generation large language models": 123278, "text large language models llms": 165271, "natural language processing nlp llms": 111766, "large language models llm generate": 87973, "large language model machine translation": 87444, "recent years pretrained large language": 137793, "years pretrained large language models": 179925, "studies shown large pretrained language": 157087, "shown large pretrained language models": 150304, "extremely large language models finetuning": 56437, "demonstrated exceptional proficiency natural language": 38664, "expressive power large language models": 55607, "large language models machine translation": 88497, "large language models based transformer": 87598, "language models based transformer architecture": 84166, "models llms like gpt3 chatgpt": 107631, "shown remarkable capabilities natural language": 150356, "learning language models promptbased learning": 90615, "large language models llms new": 88296, "tasks known llms served highquality": 162666, "large language models llms brings": 88038, "generative language models lms increasingly": 65442, "language models widespread adoption large": 86399, "models widespread adoption large language": 109696, "experimental results demonstrate effectiveness method": 53986, "demonstrate effectiveness proposed approach improving": 38308, "available github large language models": 15126, "pretrained generative large language models": 126827, "like chatgpt demonstrated remarkable performance": 92220, "method using large language models": 101166, "large language model llm evaluation": 87399, "task natural language processing involves": 161562, "natural language processing involves identifying": 111732, "language processing involves identifying extracting": 86522, "language models llms chatgpt provides": 84952, "models llms chatgpt provides opportunity": 107191, "extraction large language models llms": 56313, "medical knowledge large language models": 100190, "algorithms large language models llms": 7942, "empirical study pretrained language models": 47760, "recent proliferation large language models": 137604, "models llms demonstrated significant potential": 107293, "large language models empirical study": 87752, "large language model llm extract": 87401, "large language models design robot": 87709, "framework using large language models": 61481, "large language models llms require": 88386, "significant attention impressive performance variety": 150610, "attention impressive performance variety tasks": 13904, "impressive performance variety tasks chatgpt": 73343, "performance variety tasks chatgpt developed": 122249, "variety tasks chatgpt developed openai": 175769, "llms garnered significant attention impressive": 95341, "nlp tasks including machine translation": 113853, "surprising abilities natural language understanding": 159543, "zeroshot performance various natural language": 180292, "language models llms using machinegenerated": 85633, "models llms using machinegenerated instructionfollowing": 108013, "llms using machinegenerated instructionfollowing data": 96928, "recent introduction large language models": 137527, "large language models empirical results": 87751, "academic research large language models": 2755, "models llms demonstrated remarkable zeroshot": 107291, "llms demonstrated remarkable zeroshot generalization": 94885, "classical machine learning models finetuning": 23939, "language processing computer vision reinforcement": 86501, "processing computer vision reinforcement learning": 129135, "language large language models llms": 83480, "models llms shown remarkable performance": 107895, "llms shown remarkable performance various": 96569, "trained reinforcement learning human feedback": 168061, "testing large language models llms": 164727, "instructions training large language models": 78365, "recent large language models llm": 137539, "large language models llms instruction": 88246, "different natural language processing nlp": 41869, "ai models large language models": 7104, "power large language models fewshot": 125190, "research capabilities large language models": 141628, "baseline future research code available": 16218, "experimental results method achieves stateoftheart": 54038, "results method achieves stateoftheart performance": 143597, "relation extraction using large language": 139258, "language models llms chatgpt shown": 84956, "models llms chatgpt shown impressive": 107196, "named entity recognition ner models": 111405, "machine translation using large language": 98137, "translation using large language models": 169544, "does require additional training data": 44019, "large language models relation extraction": 88691, "prediction large language models llms": 125816, "despite remarkable ability large language": 40196, "inspired recent progress large language": 77760, "emergent capabilities large language models": 47475, "descriptions large language models llms": 39472, "systems like large language models": 160466, "powerful tools natural language processing": 125347, "chatgpt leveraging large language models": 23103, "significant room improvement current llms": 150871, "substantial improvements compared strong baselines": 158073, "robustness large language models prompt": 145401, "large language models critical issue": 87685, "large language models follow instructions": 87821, "language models llms gpt4 demonstrated": 85200, "language models llms gpt3 gpt4": 85194, "research recently large language models": 142039, "models llms demonstrated exceptional proficiency": 107265, "instruction tuning instruction tuning large": 78103, "tuning instruction tuning large language": 170034, "language model finetuned diverse collection": 83646, "code data models publicly available": 24753, "language models llms shown surprising": 85534, "tasks paper conduct empirical study": 162911, "large language models llms static": 88420, "experimental results demonstrate superior performance": 54003, "benchmark chinese large language models": 16859, "large language models llms benchmarks": 88033, "large language models llms questionanswering": 88363, "harnessing capabilities large language models": 68822, "leveraging pretrained large language models": 91929, "large language models llms utilize": 88470, "capability llms large language models": 20339, "transformerbased pretrained language models plms": 169287, "natural language processing tasks efficacy": 111818, "language processing tasks efficacy challenging": 86631, "processing tasks efficacy challenging domainspecific": 129316, "tasks efficacy challenging domainspecific tasks": 162272, "efficacy challenging domainspecific tasks remains": 46366, "language models llms make predictions": 85329, "enhancing logical reasoning large language": 49521, "models significant progress recent years": 109126, "large language models llms attractive": 88021, "models llms like chatgpt gpt4": 107625, "large language models llms evaluation": 88144, "grounding large language models dynamic": 67904, "experimental results method outperforms stateoftheart": 54041, "conversations large language models llms": 31955, "large language models llms existing": 88152, "paper investigates capabilities large language": 119049, "investigates capabilities large language models": 80551, "natural language processing tasks effectiveness": 111817, "extensive experimental results demonstrate effectiveness": 55786, "results demonstrate effectiveness proposed framework": 143295, "emergent ability large language models": 47467, "incontext learning incontext learning paradigm": 74932, "large language models downstream tasks": 87730, "remarkable advancements large language models": 140137, "language models llms significantly enhanced": 85543, "paper explores potential leveraging large": 118941, "explores potential leveraging large language": 55422, "potential leveraging large language models": 124823, "large language models llms data": 88084, "language models llms data augmentation": 84995, "address issue introduce simple effective": 5263, "overall study provides valuable insights": 118245, "remarkable language understanding generation capabilities": 140213, "llms like chatgpt gpt4 exhibit": 95773, "range natural language understanding generation": 135660, "benchmarking large language models fewshot": 17150, "size large language models llms": 152019, "language models llms demonstrated great": 85015, "remarkable capabilities large language models": 140160, "various natural language processing applications": 176052, "models data code publicly available": 105845, "large language models solve complex": 88753, "execution large language models llms": 52959, "address issue paper presents novel": 5269, "largescale pretrained language models llms": 89380, "pretrained language models llms chatgpt": 126922, "shown impressive capabilities natural language": 150270, "natural language understanding generation potential": 111902, "large language model llm technology": 87431, "language models bert roberta gpt3": 84180, "prompts pretrained language models plms": 131414, "models llms achieved impressive performance": 107071, "extensive experiments demonstrate proposed method": 55831, "applied large language models llms": 10778, "models especially large language models": 106153, "thinking large language models llms": 166155, "language models llms gpt llama2": 85189, "language processing nlp recently gained": 86577, "study recently large language models": 157587, "language models llms generation code": 85181, "novel application large language models": 114362, "natural language processing nlp task": 111782, "mbert devlin et al 2019": 99715, "paper propose novel method called": 119245, "language models instructiontuned large language": 84723, "models instructiontuned large language models": 106790, "large language models unlike previous": 88835, "models llms demonstrated extraordinary capabilities": 107267, "large language models deep learning": 87694, "language models llms text generation": 85592, "extensive experiments conducted using realworld": 55816, "large language models survey rapid": 88785, "language models llm shown impressive": 84835, "development large language models llm": 41151, "extend capabilities large language models": 55620, "increasing size large language models": 75364, "large language models llms propose": 88355, "nlp especially large language models": 113732, "large language models llms experienced": 88156, "large language models knowledge graphs": 87928, "roadmap large language models llms": 145132, "natural language processing artificial intelligence": 111705, "demonstrated effectiveness approach code data": 38644, "large language models llms continue": 88072, "language models llms continue advance": 84981, "innovation natural language processing nlp": 77148, "large language models recommender systems": 88686, "recent progress generative language models": 137594, "results various natural language tasks": 143921, "investigate ability pretrained language models": 80366, "large language models llms accurately": 87988, "prompting large language models zeroshot": 130983, "pretrained transformer gpt models specifically": 127187, "large language model llm using": 87436, "years large language models llm": 179909, "large language models llm emerged": 87969, "derived large language models llms": 39362, "recent advancements field large language": 137352, "advancements field large language models": 5889, "recent surge large language models": 137694, "surge large language models llms": 159432, "evaluation large language models large": 51663, "large language models llms gaining": 88183, "language models llms gaining increasing": 85163, "exploring potential large language models": 55497, "evaluations large language models llms": 51993, "research domains natural language processing": 141733, "opensourced large language models llms": 116698, "prompt learning large language models": 130576, "decoding large language models llms": 37574, "reinforcement learning proximal policy optimization": 139091, "integration large language models automatic": 78671, "paper explores integration large language": 118935, "large language models llms automatic": 88026, "models llms demonstrated ability learn": 107258, "large language models llm llms": 87976, "using large language models current": 174376, "pretrained finetuned large language models": 126810, "finetuned large language models llms": 59049, "large language models llms ranging": 88367, "large language models llms striking": 88424, "language models llms striking balance": 85572, "datasets demonstrate effectiveness proposed method": 36767, "text natural language processing nlp": 165322, "general large language models llms": 62984, "closedsource large language models llms": 24491, "novel framework leverages large language": 114524, "framework leverages large language models": 61282, "language models llms shown potential": 85526, "methods based pretrained language models": 101342, "large language models llms input": 88245, "sentence embeddings large language models": 148499, "models llms revolutionized field artificial": 107844, "llms revolutionized field artificial intelligence": 96459, "current generation large language models": 34127, "large language models llms remarkably": 88380, "language models llms sparked debate": 85556, "models large language models gpt": 106889, "era large language models implications": 50231, "advances large language models llm": 6026, "large language models llm foundation": 87972, "language models llm foundation models": 84824, "large language models llms humans": 88222, "recognition large language models llms": 138086, "language models translate natural language": 86326, "retrieval augmented large language models": 144014, "large language models llms finetuned": 88173, "chinese large language models llms": 23639, "large language models llms order": 88312, "iterations approach yields model outperforms": 81108, "using large language models evaluate": 174378, "generative language models generative language": 65438, "language models generative language models": 84589, "utilizes generative pretrained transformer gpt": 175133, "framework large language models large": 61260, "language models llms usually suffer": 85635, "dialogue large language models llms": 41489, "large language models llms field": 88171, "training data large language models": 168296, "large language models llms highlighted": 88214, "large language models llms demand": 88089, "classification semantic segmentation object detection": 24083, "propose novel approach leverages large": 131985, "large language models llm effectively": 87968, "comparative analysis large language models": 26640, "framework combines large language models": 61015, "challenges applying large language models": 21778, "potential future research directions realm": 124736, "large language model evaluation benchmark": 87347, "growing using large language models": 68064, "potential large language models like": 124808, "large language models llms proper": 88354, "instructing large language models llms": 77957, "models llms demonstrate impressive performance": 107250, "language models llms large vision": 85292, "models llms large vision models": 107600, "models aligning large language models": 105340, "llms capable understanding generating humanlike": 94541, "capable understanding generating humanlike text": 20481, "language models llms represent significant": 85484, "models llms represent significant step": 107828, "llms demonstrated impressive capabilities natural": 94853, "comparison conventional machine learning models": 27030, "large language models retrievalaugmented generation": 88706, "performance field natural language processing": 121518, "modeling natural language processing nlp": 105057, "rising popularity large language models": 144923, "large language models llms coding": 88057, "language models llms generate diverse": 85172, "language models llms trained massive": 85602, "using graph neural networks gnns": 174280, "llms demonstrate impressive language understanding": 94818, "extensive experiments mathematical reasoning benchmarks": 55857, "experiments mathematical reasoning benchmarks gsm8k": 54350, "normalized discounted cumulative gain ndcg": 114192, "potential applications large language models": 124588, "paper investigates large language models": 119056, "investigates large language models llms": 80569, "large language models llms autonomous": 88028, "language models llms gpt4 palm": 85203, "models llms gpt4 palm llama": 107499, "incontext learning icl capabilities large": 74911, "natural language processing tasks propose": 111825, "large language models llms emergence": 88122, "methods using large language models": 101914, "learning large language models incontext": 90626, "language models incontext learning icl": 84691, "harnesses power large language models": 68814, "using large language models knowledge": 174382, "language models llms acquire extensive": 84860, "employs large language models llms": 47970, "large language model llmbased chat": 87438, "era large language models large": 50232, "impressive capabilities various nlp tasks": 73281, "large language models llms erupted": 88139, "fewshot incontext learning large language": 57930, "natural language processing nlp technology": 111786, "adaptation using large language models": 4677, "using large language models automatic": 174372, "language models recent years large": 86059, "models recent years large language": 108844, "garnered significant attention research community": 62791, "incontext learning icl using large": 74927, "learning icl using large language": 90555, "cases large language models llms": 20987, "investigate use large language models": 80514, "people interact large language models": 120724, "interact large language models llms": 79063, "believe dataset serve valuable resource": 16774, "large language model llm specifically": 87429, "reinforcement learning ai feedback rlaif": 139042, "language models era large language": 84460, "models era large language models": 106146, "large language models llms traditional": 88444, "various natural language tasks question": 176059, "natural language tasks question answering": 111888, "large language model llm applications": 87387, "tasks experimental results benchmark datasets": 162361, "large language models llms makes": 88281, "versatility large language models llms": 176588, "years witnessed rapid development large": 179948, "witnessed rapid development large language": 178569, "challenging large language models llms": 22190, "extensive experiments multiple datasets demonstrate": 55863, "responses generated large language models": 142804, "speech recognition large language models": 154455, "models llms generative pretrained transformers": 107480, "availability large language models llms": 15057, "synthesis using large language models": 159975, "large language models llms augmented": 88023, "databases era large language models": 36017, "vision paper large language models": 176970, "large language models context information": 87672, "large language models paper explores": 88574, "generation large language model llm": 64774, "sentiment analysis plays crucial role": 148628, "language models llms paved way": 85384, "process large language models llms": 128897, "language models llms possible generate": 85399, "models llms shown promise automated": 107887, "large language models llms showcasing": 88404, "capabilities large language models large": 19992, "potential implications large language models": 124773, "steer large language models llms": 155556, "large language models llms believed": 88031, "models llms recently gained popularity": 107806, "language models llms chatgpt achieved": 84939, "empowered pretrained large language model": 48008, "large language models llms autonomously": 88029, "natural language processing tasks limited": 111822, "recent years largescale language models": 137787, "large language models llms advanced": 88000, "proximal policy optimization ppo algorithm": 133431, "large language models llms renowned": 88381, "language models llms emerged dominant": 85063, "models using large language models": 109594, "tokens large language models llms": 166835, "address issue propose novel approach": 5275, "large language models llms understanding": 88458, "results generated large language models": 143432, "generated large language models llm": 63903, "large language models aligned large": 87562, "language models aligned large language": 84109, "models aligned large language models": 105336, "aligned large language models llms": 8066, "language models llms demonstrate exceptional": 85004, "large language models llms employing": 88126, "experimental results demonstrate competitive performance": 53984, "models based large language models": 105458, "large language models trained general": 88815, "large language models llms ignited": 88225, "simply prompting large language models": 151622, "large language models textbased knowledge": 88803, "pretrained language models existing studies": 126898, "large language model llm gpt4": 87411, "large language models llms planning": 88322, "achieves comparable performance fully finetuned": 3986, "language model large language model": 83710, "language model llm garnered significant": 83748, "model llm garnered significant attention": 104000, "large language models knowledge base": 87926, "exploration large language models llms": 55082, "large language models llms built": 88041, "systematic evaluation large language models": 160122, "remains largely unexplored bridge gap": 140024, "significant attention wide range applications": 150619, "recently advent large language models": 137832, "large language models llms empower": 88127, "natural language processing tasks work": 111829, "exhibited large language models llms": 53141, "models perform named entity recognition": 108468, "perform named entity recognition ner": 120991, "large language models achieved remarkable": 87541, "language models achieved remarkable success": 84070, "generation leveraging large language models": 64794, "bilingual evaluation understudy bleu score": 18418, "large language models llms employed": 88125, "relying large language models llms": 139904, "large language models llms expanded": 88153, "understanding generation large language models": 171260, "language model evaluation large language": 83629, "model evaluation large language models": 103574, "potential utilizing large language models": 125059, "large language models llms highlevel": 88212, "models language models lms shown": 106869, "shown impressive performance various natural": 150283, "large language models llms efficient": 88119, "language models designed natural language": 84366, "models designed natural language processing": 105934, "designed natural language processing nlp": 39920, "language processing nlp tasks despite": 86584, "experimental results demonstrate method improves": 53993, "training code model checkpoints released": 168189, "leveraging capabilities large language models": 91810, "multiple finetuned large language models": 110921, "zeroshot learning large language models": 180241, "problem using large language models": 128433, "learning framework large language models": 90481, "large language models recent studies": 88677, "language models recent work shown": 86055, "important task natural language processing": 73203, "task natural language processing requires": 161565, "led stateoftheart results natural language": 91253, "extensive experiments benchmark datasets demonstrate": 55807, "indepth overview recent advances field": 75545, "natural language generation nlg large": 111617, "language generation nlg large language": 83368, "generation nlg large language models": 64887, "nlg large language models llms": 113656, "recently large language model llm": 137924, "models llms various tasks growing": 108024, "language models llms artificial intelligence": 84895, "models large language models diffusion": 106885, "large language models paper explore": 88573, "incorporating large language models llms": 75115, "crucial step en route enabling": 33863, "step en route enabling widespread": 155625, "en route enabling widespread adoption": 48061, "large language models llms applications": 88014, "evaluation benchmark large language models": 51450, "methods natural language processing nlp": 101675, "tasks named entity recognition relation": 162835, "large language models llms generated": 88189, "large language models llms creation": 88079, "unlearning llms large language models": 171973, "generation tasks demonstrate effectiveness proposed": 65154, "language models llms understand reason": 85617, "language models llms possess extensive": 85397, "models llms possess extensive knowledge": 107727, "finetuning pretrained large language model": 59459, "model development large language models": 103459, "natural language processing nlp lack": 111762, "language models llms great performance": 85207, "models llms great performance various": 107505, "llms great performance various tasks": 95448, "benchmark datasets experimental results demonstrate": 16911, "assistance large language models llms": 13375, "based large language models knowledge": 15909, "recent successes large language models": 137688, "pretrained large language models paper": 127003, "large language models paper present": 88578, "languages recent large language models": 87112, "advancements recent years large language": 5959, "study breaks new ground investigating": 157195, "enabled large language models llms": 48143, "generative models like chatgpt present": 65500, "nlp particularly large language models": 113786, "large language models llms marked": 88283, "language models llms marked significant": 85333, "rapid advancement artificial intelligence ai": 135848, "models llms shown remarkable proficiency": 107896, "large language models llms resulting": 88391, "using large language models article": 174371, "large language models llms given": 88193, "metrics large language models llms": 102100, "language models llms follow natural": 85149, "models llms follow natural language": 107434, "llms follow natural language instructions": 95292, "paper proposes new evaluation metric": 119270, "remarkable capabilities wide range tasks": 140183, "language models llms demonstrate inconsistencies": 85006, "large language model llm generating": 87408, "language models llms shown extraordinary": 85519, "benchmarks large language models llms": 17287, "extensive experiments demonstrate effectiveness method": 55825, "suite innovative metrics evaluation conduct": 158727, "innovative metrics evaluation conduct comprehensive": 77183, "metrics evaluation conduct comprehensive experiments": 102059, "evaluation conduct comprehensive experiments involving": 51497, "conduct comprehensive experiments involving various": 29053, "learning human feedback rlhf recent": 90527, "reward model trained using human": 144698, "model trained using human feedback": 104779, "aims address gap conducting comprehensive": 7575, "natural language processing nlp particularly": 111774, "integrate large language models llms": 78496, "finetuning pretrained large language models": 59460, "data recently large language models": 35625, "models llms achieved tremendous success": 107083, "relevant papers summarized consistently updated": 139629, "models llms revolutionized field natural": 107845, "llms revolutionized field natural language": 96461, "datasets experimental results demonstrate effectiveness": 36848, "language models llms knowledge bases": 85285, "pretrained language models plms especially": 126948, "large language models conduct extensive": 87663, "language models conduct extensive experiments": 84285, "models conduct extensive experiments popular": 105737, "large language models llms imperative": 88226, "make large language models llms": 98564, "large language models llms helpful": 88210, "way large language models llms": 177843, "large language models using 3d": 88845, "remarkable achievements large language models": 140132, "achievements large language models llms": 3928, "large language models advancement large": 87550, "language models advancement large language": 84088, "potential using large language model": 125049, "bidirectional long shortterm memory bilstm": 18360, "language models llms gpt4 llama": 85201, "large language models llms unprecedented": 88461, "large language models llms improved": 88230, "large language model llm particular": 87418, "using large language model apply": 174365, "endtoend finetuning large language models": 48737, "large language models llms adapted": 87993, "encoder representations transformers bert model": 48442, "language models llms recently experienced": 85467, "large language models llms implement": 88227, "knowledge injection large language models": 82131, "advanced reasoning capabilities large language": 5802, "language models llms approach begins": 84893, "vision natural language processing nlp": 176966, "recent years pretrained language models": 137791, "years pretrained language models plms": 179922, "internet large language models llms": 79589, "large language models llms useful": 88464, "providing valuable insights future research": 133402, "rapid progress large language models": 135900, "large language model meta ai": 87446, "advancement field natural language processing": 5841, "dataset generation large language models": 36328, "large language models llms create": 88077, "models llms like gpt4 shown": 107635, "enhances performance large language models": 49435, "evaluating enhancing large language models": 51294, "large language models llms central": 88048, "models llms shown great success": 107872, "llms shown great success various": 96542, "large language models llm significant": 87980, "prior knowledge large language models": 127906, "model training large language models": 104789, "optimization large language models llms": 117006, "models llms demonstrated remarkable success": 107290, "large language models llms performed": 88320, "large language models llms quite": 88364, "large language models llms facilitates": 88168, "large language models llms yielding": 88483, "databases large language models llms": 36021, "potential path artificial general intelligence": 124897, "spoken dialogue large language models": 154570, "paper propose novel approach called": 119241, "unlocking potential large language models": 172044, "large language models effective tools": 87738, "used various natural language processing": 173297, "significant successes large language models": 150898, "successes large language models llms": 158329, "large language models llms smaller": 88411, "language models llms smaller efficient": 85550, "large language models finetuning large": 87817, "large language models llms domainspecific": 88107, "large language models llms deep": 88088, "language models llms deep learning": 85000, "large language models recent breakthroughs": 88674, "language models recent breakthroughs large": 86049, "models recent breakthroughs large language": 108829, "models llms significant advancements natural": 107909, "llms significant advancements natural language": 96585, "text embeddings large language models": 165047, "training data experimental results demonstrate": 168257, "introduction large language models llms": 80256, "carbon footprint associated large language": 20752, "footprint associated large language models": 60350, "associated large language models llms": 13495, "language models llms significant concern": 85538, "diffusion models large language models": 42252, "large language models capable generating": 87620, "large language models llms gain": 88181, "llms limited context window size": 95795, "models llms like chatgpt gained": 107624, "context large language models llms": 30810, "language models llms present new": 85410, "abilities large language models critical": 1945, "measured automated metrics human evaluation": 99890, "opensource llms 7b 70b parameters": 116634, "language models llms led creation": 85298, "known retrieval augmented generation rag": 82628, "language models llms significant strides": 85540, "large language models llm offer": 87977, "large language models llm conversational": 87966, "large language models llms proxy": 88362, "generated using large language model": 64039, "experimental results demonstrate method surpasses": 53994, "large language models study demonstrates": 88773, "language models llms opened new": 85372, "breakthrough natural language processing nlp": 19014, "large language models llms machine": 88278, "language models llms revolutionized artificial": 85497, "models llms revolutionized artificial intelligence": 107842, "llms revolutionized artificial intelligence ai": 96456, "tasks advent large language models": 161926, "language models llms notably enhanced": 85354, "processing nlp tasks including machine": 129254, "powered large language models llm": 125243, "enables multimodal large language models": 48227, "models llms shown significant promise": 107900, "advancements large language models facilitated": 5911, "decoderonly large language models llms": 37543, "models llms recently gained significant": 107807, "natural language processing tasks models": 111823, "source large language models llms": 153454, "tasks like named entity recognition": 162721, "like named entity recognition ner": 92362, "advancement large language models llm": 5848, "area natural language processing nlp": 12335, "natural language processing nlp aims": 111748, "popular large language model chatgpt": 124009, "large language models llms apparent": 88012, "large language models llms edge": 88116, "language models retrievalaugmented generation rag": 86102, "large language models llms incorporating": 88235, "tasks involve complex multistep reasoning": 162639, "language models llms field natural": 85141, "models llms field natural language": 107425, "llms field natural language processing": 95262, "recent years witnessed rapid development": 137812, "paper present comprehensive empirical study": 119112, "ide": 71722, "comfortable": 26025, "testcases": 164661, "91k": 1771, "prevented": 127549, "bread": 18981, "binaries": 18463, "spec": 153845, "ida": 71720, "multimode": 110804, "859": 1715, "falsepositive": 57178, "838": 1698, "lyra": 97989, "userwritten": 173828, "apr": 12045, "hideandseek": 69346, "alphago": 8526, "bloated": 18713, "javascript": 81215, "renaming": 140375, "corrector": 32510, "vegalite": 176415, "decompilation": 37610, "662": 1487, "678": 1498, "592": 1402, "962": 1812, "sped": 154380, "houses": 70466, "rooms": 145596, "penalties": 120700, "harmfulness": 68754, "firstprinciples": 59669, "transferrable": 169025, "import": 73010, "dualchannel": 45078, "qlearning": 133950, "repositorylevel": 140635, "longlasting": 97565, "copilots": 32112, "codegenerating": 25260, "projectspecific": 130117, "outdoor": 117477, "richly": 144820, "multivocal": 111295, "magnifies": 98197, "188": 529, "functionlevel": 61898, "ros": 145609, "incoder": 74798, "mutated": 111327, "risksensitive": 145029, "pessimistic": 122777, "n21": 111371, "beware": 18081, "647": 1470, "3195": 1003, "recompose": 138284, "undefined": 170752, "declare": 37495, "crashes": 33161, "meters": 100617, "embodiments": 47319, "dice": 41578, "incharacter": 74313, "pda": 120629, "django": 43780, "menus": 100517, "macros": 98186, "linelevel": 92993, "guis": 68289, "flight": 59846, "recode": 138036, "fuzzers": 62421, "fuzzing": 62422, "mutate": 111326, "mutationbased": 111332, "deduplicating": 37701, "weighing": 178068, "cow": 33119, "1234": 288, "tilebased": 166336, "bros": 19237, "textprompted": 165669, "682": 1503, "autocompleting": 14458, "compactly": 26541, "ltl": 97970, "geometricbased": 65732, "softwareintensive": 152857, "toolbased": 167074, "synergise": 159855, "architect": 12104, "superlinearly": 159077, "utilitydriven": 174986, "25m": 854, "75k": 1588, "palme": 118671, "textitrealworld": 165652, "microlevel": 102182, "tyranny": 170539, "threetiered": 166299, "restraining": 142997, "847": 1706, "1590": 438, "instantiates": 77857, "quadrotor": 133969, "matcha": 99434, "rgbd": 144753, "verbally": 176451, "prosocial": 132534, "834": 1695, "hugginggpt": 70547, "707": 1538, "matured": 99655, "coarseresolution": 24633, "morally": 110125, "n24": 111372, "tester": 164688, "753": 1582, "administrator": 5556, "gi": 65790, "mutants": 111325, "maintainability": 98335, "clutter": 24605, "colocated": 25789, "mediates": 100127, "instructable": 77935, "asserts": 13035, "accessory": 2980, "2d3d": 933, "25000": 838, "top3": 167304, "popup": 124116, "codegen2": 25259, "504": 1323, "selfaligned": 147926, "621": 1449, "selfish": 148014, "912": 1763, "vault": 176370, "codetext": 25330, "vln": 177491, "gpt2like": 66619, "608": 1435, "humanassisted": 71135, "touted": 167438, "solidity": 152884, "fabricating": 56507, "imagining": 72552, "interindividual": 79488, "2a": 921, "todate": 166658, "machinebased": 98144, "suitably": 158713, "lpe": 97946, "fourstage": 60865, "zerocode": 180094, "programmability": 129765, "vec": 176374, "mdl": 99734, "ipc": 80820, "tailors": 160956, "swaps": 159762, "443": 1231, "r2r": 135381, "474": 1259, "embraces": 47324, "zealand": 180061, "hole": 70289, "endeffector": 48707, "reachable": 136122, "bts": 19263, "citizen": 23806, "draganddrop": 44874, "highlyperformant": 69973, "astbased": 13582, "nonai": 114014, "coordinators": 32097, "cospeech": 32644, "manuallycrafted": 99111, "hardcoding": 68663, "forging": 60440, "selfevolve": 147991, "repos": 140621, "723": 1556, "57000": 1387, "afl": 6363, "sys": 160096, "foot": 60344, "wizardcoder": 178585, "humanengineered": 71168, "desk": 40064, "disassemble": 42649, "toddler": 166686, "thirsty": 166169, "malfunction": 98833, "modelers": 104945, "evokes": 52248, "preconstructed": 125640, "xml": 179852, "tame": 161021, "293": 913, "hardwareintheloop": 68707, "interprocedural": 79745, "cartpole": 20856, "waypoints": 177893, "cisco": 23792, "epidemic": 50140, "pandemics": 118680, "billing": 18421, "dubious": 45089, "realrobot": 136367, "panorama": 118692, "autoformalization": 14482, "radio": 135403, "sdr": 147273, "consultation": 30253, "facilitator": 56723, "overrely": 118403, "dueling": 45090, "predominately": 125989, "cartographic": 20854, "ai2thor": 7326, "econometric": 45389, "successfailure": 158332, "glean": 66075, "ubi": 170541, "toolusage": 167289, "groundedsam": 67882, "environmentspecific": 50123, "1700": 486, "473": 1258, "nonllmbased": 114100, "oss": 117430, "humandriven": 71167, "dms": 43791, "multithreaded": 111250, "commented": 26059, "reverie": 144456, "neuroevolutionary": 113001, "bertrand": 17638, "monopoly": 110080, "interrogates": 79753, "monitors": 110057, "roads": 145137, "populationbased": 124111, "astounding": 13588, "123": 287, "iccv": 71649, "poker": 123795, "directive": 42508, "communicator": 26434, "cubes": 33917, "pointed": 123729, "launches": 89592, "intake": 78467, "higheraccuracy": 69651, "gpt4tools": 67240, "polygons": 123918, "legged": 91327, "localisation": 97263, "253": 842, "2600": 863, "counselors": 32925, "joy": 81302, "vicinity": 176661, "languagealigned": 86903, "administration": 5554, "terraform": 164497, "396k": 1112, "pluralistic": 123681, "prohibit": 130049, "interpolates": 79618, "selfhealing": 148001, "copypaste": 32125, "foregoing": 60390, "254": 844, "abstaining": 2630, "liquid": 93116, "meal": 99739, "coordinator": 32096, "dispatch": 43062, "autometric": 14916, "grafted": 67433, "terrains": 164499, "futures": 62419, "oversights": 118413, "217": 760, "screens": 147242, "aitw": 7711, "opponent": 116818, "frustrated": 61693, "duo": 45097, "warnings": 177717, "5g": 1411, "fortifying": 60652, "396": 1111, "xt": 179860, "odometry": 115609, "visiontotext": 177095, "lagrangian": 83065, "fdpo": 57342, "targetoriented": 161147, "ppos": 125376, "p3o": 118482, "textstyle": 165806, "simtoreal": 151629, "320k": 1008, "bellman": 16799, "feasibly": 57381, "x0": 179817, "rlms": 145108, "selfdesigned": 147972, "sbert": 146204, "cocostuff": 24641, "mouth": 110217, "auction": 14155, "bidding": 18335, "3h": 1158, "irl": 80841, "hopping": 70416, "industrystandard": 75892, "constructivist": 30242, "minimalistic": 102364, "closeloop": 24502, "reframes": 138837, "ignite": 72065, "collector": 25776, "medicines": 100247, "lidar": 92059, "zerosum": 180379, "generalsum": 63376, "representatives": 140949, "collaborators": 25644, "invariants": 80327, "interconnection": 79369, "1158": 246, "507": 1327, "438": 1224, "advertisers": 6266, "oversimplified": 118414, "pinnacle": 122995, "unattained": 170634, "highestperforming": 69673, "groupspecific": 67990, "declared": 37496, "feedbackdriven": 57822, "arity": 12494, "circles": 23769, "imbuing": 72567, "tensions": 164353, "epickitchens": 50138, "cash": 21035, "mandating": 98907, "unidirectionally": 171697, "ddpo": 37259, "dafny": 34500, "dereference": 39336, "symbiosis": 159795, "sim2real": 151200, "706": 1537, "ppt": 125377, "preferential": 126076, "browsers": 19255, "basing": 16451, "pointtopoint": 123776, "intercluster": 79364, "overfitted": 118338, "mobility": 102909, "alarm": 7741, "undecidable": 170750, "hill": 70129, "pgm": 122788, "weakest": 177947, "dire": 42363, "twotier": 170289, "rpa": 145658, "liberate": 92026, "silently": 151192, "postures": 124533, "omits": 115951, "operationalising": 116769, "algorithmlevel": 7894, "reprompt": 141032, "novicefriendly": 114775, "wars": 177733, "snake": 152504, "diverting": 43763, "breed": 19035, "maas": 97993, "fpt": 60878, "murderer": 111305, "choreography": 23737, "henceforth": 69267, "scanqa": 146465, "generativebased": 65612, "associates": 13524, "poem": 123693, "preconceived": 125634, "6g": 1519, "iou": 80817, "triaging": 169736, "taint": 160958, "gpt432k": 67224, "4gb": 1280, "weaktostrong": 177971, "simulationbased": 151725, "engineeringspecific": 49006, "bearing": 16510, "666": 1491, "barring": 15578, "classbased": 23899, "informationtheoretical": 76863, "sand": 146127, "rural": 145768, "630": 1457, "533": 1353, "neighbourhood": 112584, "customerfacing": 34389, "openaibased": 116386, "rebuild": 137258, "hybridization": 71575, "970": 1818, "fulfillment": 61715, "penalized": 120697, "invent": 80329, "elite": 47093, "aps": 12050, "informationdense": 76854, "spade": 153641, "deformation": 37973, "exchanged": 52863, "llmcentric": 94181, "implant": 72812, "commenting": 26060, "abovedescribed": 2581, "toolintegrated": 167080, "281": 895, "texas": 164808, "cfr": 21441, "cloudnative": 24573, "enlist": 49598, "misgeneralization": 102476, "mapgpt": 99136, "flagship": 59737, "mandates": 98906, "happy": 68627, "500k": 1319, "4900": 1271, "accentuate": 2819, "accentuating": 2823, "photography": 122875, "aesthetically": 6294, "pleasing": 123548, "420": 1210, "madrl": 98188, "lsc": 97951, "inviting": 80672, "876": 1725, "393": 1110, "excuse": 52894, "606": 1433, "narrower": 111466, "emrs": 48040, "fluids": 59921, "swimmer": 159778, "neuroevolution": 113000, "deconstructing": 37650, "rfc": 144749, "landuse": 83109, "code address": 24656, "code given": 24935, "tree structural": 169670, "generate arbitrary": 63400, "recommendations used": 138265, "stateoftheart largescale": 155180, "code contexts": 24734, "work high": 179012, "model discuss": 103475, "github repositories": 65825, "research order": 141945, "interfaces used": 79471, "major modules": 98442, "mimic style": 102264, "sequences trained": 148843, "gpt2 finetuning": 66534, "28 million": 889, "generates plausible": 64093, "form models": 60473, "agents model": 6661, "text strings": 165487, "contained text": 30320, "systems provided": 160563, "instead downstream": 77872, "approach producing": 11464, "producing suitable": 129563, "generation transformers": 65218, "development support": 41229, "flaws code": 59779, "code existing": 24820, "task adopting": 161175, "language source": 86732, "survey professional": 159671, "preference terms": 126029, "countries access": 32985, "new reinforcement": 113381, "environment compatible": 49990, "tasks successfully": 163309, "problem converting": 128212, "successfully generates": 158382, "accurate robust": 3490, "learning accurate": 90175, "based incomplete": 15867, "especially different": 50456, "contextual dependencies": 31080, "outputs task": 118131, "achieves 990": 3951, "respectively surpassing": 142583, "work introduced": 179059, "generation lead": 64785, "output final": 117931, "quantitatively evaluated": 134388, "strategy showing": 156204, "language documentation": 83264, "common style": 26202, "26 million": 861, "platform model": 123389, "features baseline": 57451, "availability data": 15050, "perform code": 120886, "results related": 143737, "android applications": 9409, "creating complex": 33289, "complex application": 27358, "synthesis method": 159955, "grounded human": 67865, "broadly applicable": 19230, "syntax errors": 159918, "models gptneo": 106549, "problems machine": 128559, "benchmark provide": 17060, "cost code": 32654, "support single": 159331, "dynamically control": 45186, "features predict": 57554, "predict correct": 125679, "results integrate": 143534, "closer real": 24541, "capabilities distinct": 19860, "measure functional": 99846, "model surprisingly": 104703, "reveals limitations": 144432, "including difficulty": 74496, "synthesis performance": 159964, "10 percentage": 128, "ability engage": 2146, "difficult generate": 42150, "unable predict": 170607, "today ai": 166660, "walks life": 177672, "nlp used": 113927, "generating output": 64286, "simulation methods": 151703, "aibased text": 7349, "work support": 179325, "support evaluation": 159287, "nlp metrics": 113764, "datasets imperative": 36918, "models baselines": 105467, "techniques realworld": 164002, "gpt recently": 66485, "rely encoderonly": 139835, "encoderdecoder transformer": 48467, "code semantics": 25136, "semantics conveyed": 148292, "code tokens": 25182, "released https": 139519, "gpt2 learn": 66555, "sparse reward": 153743, "assumption does": 13562, "provides data": 133130, "multimodal reward": 110759, "given short": 66009, "want investigate": 177691, "art techniques": 12560, "achieves 98": 3950, "98 coverage": 1825, "openais hideandseek": 116422, "ai humancomputer": 7030, "researchers world": 142277, "possible challenges": 124405, "recent successful": 137689, "survey compare": 159613, "techniques utilized": 164054, "drawbacks current": 44919, "finally hope": 58478, "review provide": 144537, "model codex": 103298, "available software": 15201, "benchmark problems": 17057, "problems compare": 128468, "achieved results": 3883, "textual semantic": 165947, "baseline techniques": 16268, "program analysis": 129724, "similar inputs": 151256, "inputs maximizing": 77428, "maximizing distance": 99687, "effective application": 45690, "pair programmer": 118522, "program semantics": 129748, "suggested code": 158600, "functional programming": 61877, "performs surprisingly": 122463, "90 exact": 1745, "continue improve": 31198, "cases user": 21027, "feedback correct": 57659, "correct ii": 32389, "repair model": 140414, "errors occur": 50384, "prompted appropriately": 130809, "effectively decompose": 45970, "shows resulting": 150472, "highly beneficial": 69893, "constraints semantic": 30111, "code addition": 24653, "variable function": 175591, "function names": 61849, "flexible interface": 59813, "utterances similar": 175259, "examples pretrained": 52662, "constraints partial": 30103, "languages sql": 87133, "capabilities software": 20185, "purpose capabilities": 133735, "examination models": 52358, "llms ready": 96298, "networks encode": 112739, "complete code": 27271, "produce functionally": 129414, "context detailed": 30728, "description process": 39421, "simulation model": 151704, "focus highlevel": 59992, "holistic thinking": 70302, "tremendous promise": 169692, "completing code": 27313, "stateoftheart code": 155103, "largest existing": 89434, "opensource existing": 116604, "aligned users": 8079, "toxic output": 167461, "generation having": 64713, "having minimal": 68886, "makes simple": 98688, "problem computational": 128205, "complete simple": 27289, "evaluations recent": 52024, "synthesis despite": 159939, "characters background": 22500, "consists human": 29967, "need express": 112287, "express intent": 55561, "bert clip": 17520, "user command": 173384, "combine features": 25876, "multimodal attention": 110591, "trajectory generation": 168865, "approaches addition": 11687, "robot arm": 145170, "project webpage": 130088, "program solution": 129751, "open benchmark": 116204, "extremely useful": 56451, "realworld experience": 136454, "needs perform": 112485, "contextually appropriate": 31143, "eyes language": 56473, "connect knowledge": 29471, "realworld robotic": 136488, "robotic tasks": 145199, "abstract natural": 2651, "projects website": 130116, "applications efficiently": 10499, "single run": 151855, "behavioral tests": 16677, "interpretation models": 79709, "process release": 128969, "tasks dont": 162259, "approach tackles": 11592, "compile runtime": 27227, "attributes types": 14134, "tasks giving": 162468, "automated repair": 14601, "capability produce": 20362, "study automated": 157178, "repair apr": 140401, "apr techniques": 12046, "produced language": 129495, "location information": 97301, "fault localization": 57319, "planning exploration": 123271, "trained internet": 167955, "unseen objects": 172174, "employed finetuning": 47885, "bias harmfulness": 18131, "model rl": 104493, "close original": 24448, "general point": 63015, "accessible discrete": 2950, "systematically paper": 160199, "approach reinforcement": 11502, "network generates": 112657, "training reward": 168704, "models gpts": 106550, "explores capability": 55386, "strong assumptions": 156345, "sequences finetuning": 148817, "supervision reinforcement": 159215, "distribution matching": 43371, "different distribution": 41740, "sample space": 145965, "standard reinforcement": 154876, "suffer similar": 158455, "way answer": 177770, "different tools": 42054, "extent stateoftheart": 56026, "traditional tools": 167711, "modelbased tools": 104937, "design appropriate": 39547, "model example": 103579, "example providing": 52499, "diverse ways": 43697, "aims implement": 7626, "skill set": 152140, "set humans": 149213, "planning knowledge": 123282, "mitigate spurious": 102639, "rankers large": 135789, "execute generated": 52909, "impractical realworld": 73245, "development paper": 41177, "humaneval mbpp": 71172, "datasets extracting": 36856, "3d scene": 1146, "labels including": 82804, "hope pave": 70365, "usually expensive": 174900, "essential training": 50644, "data harder": 35147, "likely share": 92466, "share similar": 149802, "terms pass1": 164446, "models adopted": 105288, "scale introduce": 146298, "original programs": 117373, "code finetune": 24844, "insight large": 77489, "operators applied": 116799, "changes humans": 22375, "llms hot": 95511, "llm planning": 93889, "capabilities based": 19797, "domains used": 44547, "function useful": 61863, "tasks issue": 162648, "learning value": 91118, "functions used": 61923, "addition empirically": 4855, "empirically validating": 47810, "settings demonstrating": 149554, "dialogue effectively": 41466, "test using": 164653, "use test": 172907, "50 human": 1300, "example strong": 52506, "important work": 73216, "llm making": 93823, "llm conduct": 93551, "dream software": 44963, "report issues": 140539, "evaluations necessary": 52006, "understand developers": 170995, "solutions used": 153082, "used results": 173217, "generated copilot": 63837, "critical limitations": 33516, "particular follow": 120079, "potentially useful": 125144, "predict functional": 125682, "better pretraining": 17986, "data quite": 35598, "limited especially": 92759, "especially early": 50460, "model evidence": 103576, "providing good": 133303, "specifying goals": 154350, "image makes": 72285, "instructions videos": 78375, "videos experiments": 176775, "check project": 23528, "world map": 179588, "change time": 22354, "sources feedback": 153506, "feedback significantly": 57794, "simulated real": 151664, "using unseen": 174837, "programmers use": 129781, "practitioners able": 125522, "popular open": 124034, "systematic multivocal": 160138, "multivocal literature": 111296, "peerreviewed literature": 120672, "modeling sentiment": 105088, "analysis extract": 8925, "extract summarize": 56167, "result paper": 143053, "unique combination": 171831, "combination features": 25823, "sparse rewards": 153744, "given programming": 65962, "benefit use": 17448, "code solution": 25148, "cases manual": 20993, "cases performs": 21003, "performs dual": 122440, "outputs code": 118032, "samples conduct": 145997, "business process": 19546, "process automation": 128744, "inevitable question": 75918, "help write": 69196, "starting explored": 154965, "explored research": 55367, "generation synthesis": 65127, "language solutions": 86731, "generation train": 65210, "problems code": 128467, "continuous integration": 31241, "manipulation experiments": 98944, "designed solve": 39945, "common simple": 26193, "gym environments": 68299, "comes number": 26019, "usually involves": 174906, "paper formulate": 118962, "code naturalness": 25027, "code approach": 24667, "approach lightweight": 11361, "explicitly models": 54983, "demonstrate generalizability": 38357, "generalizability approach": 63107, "standard generation": 154826, "hard define": 68638, "tedious timeconsuming": 164187, "code patterns": 25047, "small corpora": 152280, "estimate language": 50723, "built big": 19473, "measuring number": 99959, "exact matches": 52342, "buggy versions": 19286, "code solve": 25150, "variety problems": 175745, "fundamental differences": 61949, "finally draw": 58442, "end user": 48695, "enduser programming": 48782, "codex codegen": 25338, "allow explore": 8337, "highly valuable": 69970, "domain increasingly": 44185, "promoted use": 130349, "text open": 165329, "daily programming": 34514, "framework test": 61454, "completed code": 27297, "output reflects": 117986, "systems notably": 160497, "programming ai": 129784, "expressed concerns": 55567, "human codes": 70641, "score 056": 147030, "code terms": 25177, "performance regarding": 122005, "replication package": 140504, "aims maximize": 7639, "maximize expected": 99672, "expected reward": 53761, "opportunities improve": 116854, "improve safety": 73615, "context approaches": 30689, "drl investigated": 45027, "direct approach": 42373, "distribution function": 43361, "discrete action": 42799, "broad class": 19173, "variance reduction": 175610, "risk profiles": 144960, "openai safety": 116376, "safety gym": 145865, "onpolicy methods": 116157, "provide higher": 132819, "repair llms": 140412, "llms programmers": 96216, "repair techniques": 140416, "data retraining": 35670, "engine powered": 48860, "programming assistance": 129792, "code suggestion": 25161, "effort present": 46865, "visual inspection": 177194, "background recent": 15446, "inspection model": 77681, "bias method": 18161, "pair programmers": 118523, "tracking data": 167535, "direct visual": 42414, "conducted original": 29272, "standard accuracy": 154797, "artifact efficient": 12638, "paper employed": 118880, "development tasks": 41232, "applications facilitate": 10525, "google play": 66325, "hosted github": 70430, "consistently exhibits": 29872, "types furthermore": 170360, "adaptability generalization": 4575, "new policy": 113336, "depending context": 39163, "pick place": 122960, "videos available": 176770, "developers questions": 40955, "aspects code": 12926, "answers code": 10002, "based queries": 16054, "static analysis": 155450, "assess value": 13134, "evaluate baseline": 50909, "need create": 112253, "llm mobile": 93830, "scenarios conversational": 146567, "interaction method": 79143, "generalizable approach": 63117, "mobile interaction": 102903, "scene representations": 146742, "representations real": 140877, "llms unlocked": 96893, "unlocked new": 172038, "prior attempts": 127882, "integrate contextual": 78481, "based object": 15980, "objects query": 115297, "effort large": 46854, "sequences directly": 148813, "instruction natural": 78038, "enumerating possible": 49977, "text contain": 164956, "prompt structure": 130682, "environments robot": 50110, "example programs": 52496, "exploring llmbased": 55488, "aid developers": 7358, "developers writing": 40971, "automation existing": 14899, "techniques largely": 163947, "largely fall": 89152, "bug report": 19279, "bug reports": 19280, "validity evaluation": 175392, "improving alignment": 74109, "separately demonstrate": 148700, "assignments using": 13331, "class instructors": 23876, "introductory python": 80276, "combining stateoftheart": 25996, "programs produce": 129926, "code humans": 24940, "simple easy": 151424, "baselines building": 16293, "problem aligning": 128181, "lms human": 97150, "problem reinforcement": 128376, "generation rl": 65060, "greater stability": 67774, "2017 based": 642, "algorithms developed": 7920, "action knowledge": 4322, "learning multitask": 90752, "little total": 93249, "total data": 167416, "good zeroshot": 66303, "automatically video": 14877, "human testers": 71057, "possibility leveraging": 124384, "detect video": 40380, "design transformerbased": 39791, "outperforms alternative": 117706, "code video": 25205, "robotic agents": 145188, "typically consider": 170471, "environment resulting": 50027, "able execute": 2497, "llm action": 93437, "improvement correctness": 73774, "work complete": 178851, "code empirical": 24801, "comparable humans": 26584, "reasoning form": 136865, "considerable portion": 29627, "exploration specifically": 55105, "code answering": 24665, "agreement dataset": 6828, "used visual": 173299, "robot navigation": 145179, "matching images": 99464, "descriptions object": 39482, "mapping environment": 99144, "exploration approaches": 55054, "used translate": 173284, "multiple robots": 111029, "world environments": 179546, "languagerelated capabilities": 86938, "paper frame": 118964, "game given": 62561, "data partial": 35472, "state given": 155004, "framework augmenting": 60966, "failures detected": 57020, "detected traditional": 40388, "templates generate": 164232, "task known": 161501, "explores key": 55404, "transformers graph": 169311, "clip blip": 24391, "emerges effective": 47491, "progress comprehending": 129953, "highly plausible": 69936, "programs automatically": 129891, "input parameters": 77302, "models inception": 106698, "images code": 72400, "applying ai": 10881, "ai business": 6893, "include data": 74328, "specific terminology": 154111, "concerns aligning": 28762, "programmers generating": 129776, "productivity gains": 129604, "effort needed": 46862, "complete coding": 27272, "metric combines": 101960, "correlation value": 32554, "evaluating comparing": 51279, "shows current": 150424, "biases inherited": 18274, "code specific": 25152, "biases failure": 18264, "test finally": 164556, "code satisfies": 25124, "joint prediction": 81258, "achieve 100": 3570, "datasets relatively": 37075, "outlines requirements": 117508, "software program": 152834, "address conflicts": 5210, "face considerable": 56524, "incur substantial": 75476, "results supervised": 143850, "just 32": 81363, "similar level": 151266, "assumptions type": 13573, "prompting based": 130864, "respectively outperforming": 142572, "experience enhanced": 53830, "point areas": 123701, "corrective actions": 32453, "llm offers": 93853, "designing intelligent": 40003, "resolving errors": 142355, "attempts propose": 13819, "agents execute": 6601, "methods ensuring": 101485, "techniques automatically": 163841, "automatically fix": 14807, "tools applications": 167101, "opportunities arising": 116828, "employ best": 47816, "observed challenges": 115401, "improving productivity": 74194, "techniques proven": 163994, "detection objective": 40575, "objective determine": 115182, "objective identify": 115204, "code fixed": 24846, "generation stimulate": 65104, "responsible research": 142972, "poor sample": 123956, "capable tasks": 20475, "generation mobile": 64834, "generation inspired": 64744, "93 higher": 1779, "higher best": 69582, "advantage zeroshot": 6125, "surpassed stateoftheart": 159469, "mathematical field": 99565, "unmanned vehicles": 172051, "demonstrate adaptability": 38222, "27 existing": 874, "track latest": 167523, "properties critical": 131638, "robustness text": 145439, "code tasks": 25173, "benchmark robustness": 17082, "function variable": 61865, "code syntax": 25169, "original semantic": 117383, "meaning original": 99772, "gptj models": 67298, "fewer errors": 57864, "framework comprising": 61033, "scenarios finetuning": 146605, "traditional fuzzing": 167624, "generate input": 63570, "input programs": 77315, "humanlike code": 71252, "bugs paper": 19296, "automated generalizable": 14554, "required understand": 141264, "december 2022": 37340, "preprocessing methods": 126186, "performance surprisingly": 122145, "previous opensource": 127624, "state spaces": 155020, "descriptions target": 39502, "alignment research": 8229, "safe ethical": 145803, "ways difficult": 177901, "challenges alignment": 21772, "specifically context": 154159, "summaries train": 158783, "specific improvements": 154010, "improvements experimental": 73901, "finding fixing": 58604, "software bugs": 152777, "repair methods": 140413, "repair approaches": 140400, "output certain": 117901, "error message": 50306, "input types": 77365, "input extensive": 77243, "novel actions": 114346, "guided world": 68243, "llm decompose": 93578, "llms verifying": 96969, "based agent": 15648, "agent experience": 6443, "corrects errors": 32512, "environment dynamics": 49994, "creativity multiple": 33394, "design solutions": 39760, "chatbot tools": 22590, "solution complex": 152911, "intuitive access": 80289, "access paper": 2891, "learn reward": 90043, "obtaining accurate": 115541, "modeling achieve": 104967, "reward information": 144688, "algorithm successfully": 7864, "accurately locate": 3546, "crucial capability": 33771, "operate real": 116739, "interact objects": 79071, "generalizes poorly": 63288, "experience training": 53848, "object reasoning": 115158, "llms apr": 94423, "patch generation": 120410, "conversational manner": 31890, "test evaluate": 164550, "developed chatgpt": 40863, "functions standard": 61922, "popular opensource": 124036, "tasks carefully": 162027, "automatically assess": 14769, "function generation": 61836, "complementary abilities": 27252, "environments main": 50097, "qualitative performance": 134009, "achieve alignment": 3580, "interacts environment": 79357, "performance solve": 122088, "environment designed": 49993, "llms boost": 94508, "boost sample": 18827, "various rl": 176147, "social values": 152675, "remarkable successes": 140304, "form feedback": 60454, "learn extensive": 89979, "types feedback": 170357, "condition model": 28945, "model sequence": 104546, "negative attributes": 112508, "perception control": 120798, "probabilistic graphical": 128083, "possible integrate": 124436, "structurally novel": 156533, "perform accurate": 120863, "structured planning": 156661, "language llm": 83493, "llm act": 93436, "underspecified goals": 170977, "goals case": 66216, "seen wide": 147716, "pipeline achieve": 123029, "baseline algorithms": 16192, "surpasses supervised": 159502, "controlling llm": 31667, "technique generate": 163775, "way generating": 177822, "meaningful content": 99791, "openended manner": 116495, "mario bros": 99211, "openended discovery": 116487, "tests play": 164786, "ensuring correctness": 49731, "laborious task": 82869, "need automation": 112230, "presents largescale": 126595, "similarity existing": 151346, "llm starcoder": 94023, "pretraining reinforcement": 127424, "exploration method": 55086, "rewards agent": 144721, "tasks type": 163397, "quite good": 135361, "autocompleting code": 14459, "tools systems": 167264, "limited functionality": 92766, "model having": 103788, "previous interactions": 127598, "interactions context": 79213, "developed prototype": 40907, "evaluation 42": 51415, "42 participants": 1209, "varied levels": 175674, "emerge llm": 47330, "producing accurate": 129544, "available based": 15074, "commands corresponding": 26042, "dataset automatically": 36123, "major focus": 98430, "software research": 152844, "research highlevel": 141823, "elusive difficulty": 47113, "difficulty understanding": 42223, "semantics code": 148288, "edits human": 45502, "accompanied extensive": 2996, "simulator used": 151737, "gpt35 surpassing": 66860, "surpassing best": 159509, "use lm": 172753, "use vlm": 172937, "identify best": 71862, "learning verify": 91124, "generation execution": 64628, "restricted set": 143005, "models reliability": 108906, "generation repair": 65043, "numerous language": 115045, "model logic": 104042, "explainability bridge": 54722, "bridge research": 19074, "approaches highlight": 11798, "code transformation": 25190, "discover stateoftheart": 42739, "reveals various": 144453, "limited robustness": 92840, "benchmarks critical": 17198, "moving forward": 110238, "goal prompt": 66190, "converse effectively": 31975, "automate processes": 14503, "processes ensure": 129062, "prompts form": 131282, "interactions llm": 79242, "patterns provide": 120557, "particular context": 120065, "provides following": 133152, "engineering apply": 48882, "solve range": 153151, "second presents": 147501, "applied successfully": 10810, "linear temporal": 92979, "logic ltl": 97335, "temporal constraints": 164252, "generalization behaviors": 63136, "environments finally": 50078, "indoor environments": 75812, "information object": 76600, "object relationships": 115161, "vlms llms": 177467, "llms endtoend": 95071, "compared clipbased": 26761, "clipbased methods": 24422, "primitive tasks": 127836, "utilizes stateoftheart": 175160, "design enables": 39619, "prompt way": 130743, "study provided": 157566, "presented discussed": 126513, "softwareintensive systems": 152858, "stakeholders perspectives": 154781, "despite benefits": 40083, "stem lack": 155584, "limitations scarcity": 92663, "impede development": 72785, "chatgpt disruptive": 22860, "synthesis evaluation": 159941, "chatgpt tackle": 23375, "tackle emerging": 160821, "variety machine": 175722, "unforeseen events": 171656, "domain definition": 44129, "domain complexity": 44112, "ii ability": 72082, "make action": 98478, "aim providing": 7483, "domains leveraging": 44459, "intents large": 79039, "developers models": 40950, "introduce subtle": 80116, "utility using": 174981, "samples generative": 146019, "model leads": 103939, "safety constraints": 145851, "policies limited": 123818, "setting construct": 149435, "set grounded": 149206, "human societies": 71040, "threefold provide": 166290, "social effects": 152570, "textbased applications": 165582, "bias ai": 18093, "code segments": 25135, "overlap reference": 118369, "execution introduce": 52955, "date consisting": 37216, "execution engine": 52949, "excel wide": 52780, "robotics problems": 145208, "continuous state": 31256, "single large": 151820, "model benefits": 103207, "performance okvqa": 121866, "exploration novel": 55091, "demonstrate llmbased": 38408, "conduct new": 29161, "delve emerging": 38090, "problems reinforcement": 128612, "quality images": 134159, "generated diffusion": 63854, "enhance generated": 49204, "work advances": 178783, "approach aligning": 10984, "ai supported": 7233, "human average": 70610, "engineering solving": 48989, "engineering require": 48980, "ai things": 7281, "completion tools": 27346, "copilot does": 32108, "checking abstract": 23538, "writing formal": 179729, "task facilitate": 161387, "requirements natural": 141312, "users iteratively": 173696, "specification languages": 154310, "implementation including": 72847, "simultaneously learn": 151752, "insights novel": 77612, "learning experimentally": 90438, "exploration approach": 55053, "additional useful": 5018, "environment interaction": 50006, "policy framework": 123836, "models personalised": 108504, "years integration": 179901, "chatgpt search": 23294, "like bing": 92209, "ensure models": 49693, "like reinforcement": 92388, "mitigate safety": 102637, "preferences values": 126073, "different people": 41899, "normative challenges": 114198, "challenges defining": 21820, "tendency technology": 164332, "individuals society": 75780, "simply optimizing": 151617, "methods enables": 101475, "generation concise": 64521, "maintenance recently": 98400, "objectives simultaneously": 115262, "checking methods": 23539, "model prompttuning": 104371, "precisely detect": 125602, "limitation previous": 92518, "results reflect": 143736, "accuracy method": 3306, "syntactical information": 159909, "budget compared": 19268, "motion planning": 110151, "models object": 108323, "process achieving": 128723, "knowledge semantically": 82397, "motion planner": 110150, "scene geometry": 146734, "demonstrate practical": 38474, "profoundly influenced": 129718, "practitioners propose": 125540, "approaches automating": 11703, "repair software": 140415, "security performance": 147605, "pretrained contrastive": 126775, "generator large": 65623, "development workflow": 41265, "policies continuous": 123807, "request help": 141044, "feedback proposed": 57765, "trained policies": 168038, "nlp paradigm": 113781, "leverage stateoftheart": 91665, "scenarios utilizing": 146718, "requirements elicitation": 141286, "dataefficient learning": 36053, "modes communication": 109850, "like linear": 92334, "specifications limited": 154318, "generates large": 64081, "perception using": 120830, "models programming": 108673, "behavior complex": 16576, "interactive perception": 79327, "ability exploited": 2159, "chatgpt generalize": 22973, "fundamental applications": 61929, "challenge distribution": 21628, "study established": 157316, "predicting common": 125736, "method treats": 101154, "prediction code": 125772, "stateoftheart seq2seq": 155352, "code method": 24995, "dynamic contexts": 45120, "decoding scheme": 37595, "scheme incorporates": 146788, "particularly rare": 120246, "results fewer": 143409, "model simultaneous": 104583, "perception environment": 120802, "world address": 179528, "major features": 98428, "features detect": 57471, "tracking mapping": 167537, "language navigation": 86438, "buggy program": 19282, "information unique": 76824, "heuristicbased approaches": 69314, "unique opportunity": 171849, "strategies prompting": 156058, "15 respectively": 416, "used interact": 173118, "agents remains": 6712, "quickly efficiently": 135343, "better decisionmaking": 17844, "coding benchmark": 25373, "agent types": 6505, "models aibased": 105319, "codex similar": 25357, "2x likely": 948, "possibility producing": 124386, "planning framework": 123272, "longhorizon reasoning": 97556, "consider feasibility": 29570, "rate 82": 135971, "achieve 13": 3571, "manner important": 98994, "model behaviour": 103202, "structures second": 156714, "cases additionally": 20939, "scenarios align": 146534, "way perceived": 177863, "human environments": 70717, "execute action": 52902, "verb phrase": 176432, "extend semantic": 55642, "manipulation actions": 98937, "introduce problem": 80088, "set semantic": 149305, "guided task": 68240, "lowlevel robot": 97870, "remains unverified": 140110, "automatic iterative": 14695, "language syntactically": 86753, "chemistry experiments": 23568, "executed real": 52923, "example crucial": 52470, "developers understand": 40961, "easily use": 45341, "target method": 161084, "building multitask": 19431, "environments human": 50080, "environment reinforcement": 50024, "planning skills": 123322, "types finegrained": 170359, "finegrained basic": 58857, "intrinsic rewards": 79900, "planning leverage": 123290, "feedback potential": 57757, "exciting recent": 52884, "algorithm learning": 7824, "time instead": 166423, "require feedback": 141108, "solve computer": 153111, "tasks agents": 161928, "automating repetitive": 14890, "problem require": 128382, "tasks guided": 162488, "programmers productive": 129779, "complicated ai": 27713, "modalities key": 102936, "handle complicated": 68535, "chatgpt connect": 22803, "solve ai": 153092, "conduct task": 29189, "receiving user": 137328, "response according": 142614, "abundant ai": 2697, "speech challenging": 154387, "tasks paves": 162937, "paves new": 120591, "code key": 24962, "techniques existing": 163892, "requirement understanding": 141272, "llms codex": 94623, "developers prefer": 40954, "techniques rapid": 164000, "fix software": 59702, "reduce manual": 138442, "learning numerous": 90778, "bring new": 19129, "propose uniform": 132188, "paradigm generating": 119458, "test failure": 164554, "information construct": 76325, "new prompt": 113357, "way avoid": 177775, "employed improve": 47887, "testing time": 164762, "fault detection": 57318, "detection capability": 40454, "capability test": 20381, "similarity measurement": 151359, "achieving greater": 4180, "attaining significantly": 13761, "preparation time": 126167, "applicable challenging": 10276, "challenging domains": 22152, "explainable automated": 54745, "adopted industry": 5598, "industry critical": 75873, "provided automatic": 133038, "debugging results": 37319, "interact code": 79051, "lead efficient": 89741, "20 participants": 604, "including professional": 74680, "patch correctness": 120409, "70 participants": 1527, "participants answered": 119994, "language natural": 86436, "action corresponding": 4313, "process takes": 129003, "results action": 143159, "results open": 143647, "benchmark artificial": 16832, "agents traditionally": 6748, "agents naturally": 6668, "measure behaviors": 99830, "use annotations": 172499, "ethical violations": 50845, "day enable": 37242, "model store": 104660, "sandbox environment": 146129, "behaviors example": 16696, "agents autonomously": 6543, "make new": 98573, "benchmarks recently": 17346, "emerged evaluate": 47351, "code changes": 24701, "programs popular": 129924, "case application": 20867, "application paper": 10360, "applications easy": 10495, "impact chatgpts": 72627, "state operating": 155013, "experiments confirmed": 54204, "confirmed proposed": 29400, "requirements various": 141322, "models business": 105556, "opportunities business": 116831, "problems need": 128575, "solution challenging": 152907, "mistakes investigating": 102549, "improves baseline": 73982, "improves prediction": 74059, "notably improves": 114278, "improves sample": 74078, "development maintenance": 41157, "misuse chatgpt": 102569, "numerous aigc": 115024, "detectors developed": 40674, "domain created": 44122, "including commercial": 74462, "human detection": 70696, "implementation making": 72850, "larger parameter": 89240, "leverage sampled": 91661, "learn rank": 90037, "efficiently align": 46765, "longterm goal": 97601, "work qualitative": 179249, "source framework": 153443, "enduser programmers": 48781, "infinite space": 76172, "utterances effective": 175256, "learning challenge": 90292, "code shows": 25137, "study n24": 157500, "implicit biases": 72970, "aligning models": 8106, "human ethics": 70720, "ethics preferences": 50854, "applications prior": 10645, "problem generative": 128268, "designed align": 39814, "align generative": 7998, "selects highquality": 147916, "pre postconditions": 125557, "simple level": 151484, "analysis extracting": 8926, "shows llm": 150448, "benefits fewshot": 17466, "examples information": 52615, "including different": 74495, "30 bleu": 957, "appearance variations": 10233, "variations leverage": 175655, "semantic image": 148154, "detect objects": 40371, "clip propose": 24411, "label object": 82694, "indoor scenarios": 75813, "gptlike large": 67302, "generate execute": 63483, "prompts asking": 131164, "applications spanning": 10694, "10 categories": 109, "llm believe": 93508, "argue prompt": 12416, "research identifying": 141838, "enables humans": 48195, "environment challenging": 49987, "alignment aligning": 8122, "driven rapid": 44995, "reduce required": 138469, "rely highquality": 139854, "corpus product": 32340, "fully permissive": 61777, "model corpus": 103385, "construct good": 30134, "generation chatgpt": 64490, "quality inspired": 134170, "task specify": 161744, "tasks collaboratively": 162071, "direct code": 42375, "gpt4 showcase": 67155, "ones trained": 116020, "repair large": 140409, "contain inherent": 30300, "notably outperformed": 114288, "outperformed previous": 117662, "performed zeroshot": 122386, "learningbased prompt": 91166, "based manual": 15938, "repaired codes": 140420, "potential software": 124987, "applies deep": 10829, "way dialogue": 177796, "facilitate performance": 56637, "issue observed": 80931, "effective current": 45724, "capabilities planning": 20107, "toolaugmented llm": 167072, "exhibits improved": 53205, "gpt4 excels": 66995, "systems order": 160505, "complexity scale": 27698, "required ensure": 141232, "frequently discussed": 61615, "comments online": 26064, "online discussion": 116094, "synthesis natural": 159962, "texts empirical": 165704, "paradigm improve": 119463, "software existing": 152817, "demonstrating llms": 38942, "believe combination": 16769, "humans including": 71408, "remarkable development": 140190, "codes based": 25285, "ambiguous instructions": 8638, "showed gpt4": 150137, "experiments fully": 54293, "fully autonomous": 61746, "programs semantically": 129931, "tests small": 164790, "llms needs": 95931, "explore tradeoffs": 55306, "use openai": 172787, "offering ability": 115726, "respectively comparison": 142544, "considering code": 29705, "minutes chatgpt": 102440, "highlights strengths": 69880, "practitioners selecting": 125544, "enhancing decisionmaking": 49473, "conversational process": 31896, "models aidriven": 105321, "aidriven chatbots": 7380, "chatgpt caused": 22765, "identified promising": 71832, "data systematic": 35843, "completeness correctness": 27308, "robot learning": 145177, "challenge ensuring": 21636, "world tasks": 179622, "model 475": 103005, "improvement 30": 73745, "videos website": 176791, "code comment": 24712, "facilitate developers": 56605, "bottleneck existing": 18890, "empirically investigates": 47794, "feasibility utilizing": 57371, "intuition based": 80284, "semantic connection": 148122, "adequate prompts": 5508, "abilities stateoftheart": 2023, "different benchmark": 41673, "provide feasible": 132787, "prompting automatically": 130862, "detecting software": 40430, "challenge addressed": 21580, "chatgpt low": 23112, "program correct": 129729, "recognizing subtle": 138177, "intended behavior": 78973, "synthesize programs": 159994, "including direct": 74497, "baseline chatgpt": 16200, "programming assistant": 129793, "llm received": 93944, "interesting insights": 79397, "engineering providing": 48976, "results solving": 143807, "answer making": 9732, "proper design": 131612, "software bug": 152775, "tracking systems": 167541, "using similarity": 174715, "achieve bleu": 3596, "humans robots": 71467, "develop interactive": 40788, "study designs": 157280, "chatgpt ability": 22662, "agents future": 6614, "transparency explainability": 169580, "propose explainable": 131814, "performance computer": 121318, "established metrics": 50692, "tests fail": 164781, "code findings": 24841, "coding tools": 25414, "planning recent": 123314, "models physical": 108510, "capable interacting": 20435, "interacting environment": 79085, "evaluate code": 50927, "programming concepts": 129802, "develop evaluation": 40781, "humanwritten test": 71527, "spatial concepts": 153781, "visionbased policies": 177017, "model established": 103560, "model execute": 103586, "simulation real": 151712, "policies large": 123814, "videos code": 176772, "enable intelligent": 48094, "enabling autonomous": 48272, "tasks plan": 162948, "underscores critical": 170939, "behaviors deployment": 16690, "log files": 97315, "aspects study": 12977, "prompt code": 130387, "adopted practice": 5606, "starts outlining": 154972, "coarse fine": 24626, "tailored transformer": 160945, "reasoning procedure": 137051, "world virtual": 179630, "interaction task": 79182, "information validate": 76842, "scene generation": 146733, "applications metaverse": 10605, "previously undetected": 127749, "outperform chatgpt": 117571, "commands particularly": 26046, "harnessing data": 68825, "data program": 35560, "manipulation domain": 98942, "approaches utilized": 11952, "available input": 15141, "databases sql": 36026, "top3 accuracy": 167305, "personalized tutoring": 122631, "selected code": 147793, "code openly": 25035, "vanilla chatgpt": 175571, "unified simple": 171748, "provide final": 132789, "recipe training": 138027, "agents pretrained": 6695, "involving active": 80777, "novel performance": 114629, "capture specific": 20686, "documentation using": 43873, "focus study": 60060, "bert powerful": 17580, "llm enables": 93624, "approach showed": 11531, "approach proved": 11477, "comparable efficiency": 26570, "proving potential": 133409, "helpful ethical": 69203, "quality reliability": 134246, "biases address": 18248, "stages use": 154774, "synthetic prompts": 160062, "principles ai": 127853, "reliable responses": 139746, "generate desirable": 63456, "query directly": 134575, "responses applying": 142729, "including 200": 74402, "require synthesizing": 141205, "complex control": 27386, "structures including": 156701, "time limit": 166437, "just demonstration": 81364, "cases given": 20969, "editing prompt": 45482, "direction gradient": 42438, "llm jailbreak": 93782, "jailbreak detection": 81180, "similar dissimilar": 151229, "runtime information": 145764, "need execute": 112281, "capability enhanced": 20287, "sample training": 145967, "teach code": 163597, "current largescale": 34153, "difficulties selecting": 42198, "teach model": 163607, "potential incorporating": 124782, "programming tools": 129883, "poor accuracy": 123941, "accuracy inspired": 3281, "code perform": 25048, "timeconsuming laborious": 166546, "effective chatgpt": 45708, "including diverse": 74498, "tests chatgpt": 164773, "novel chatgptbased": 114436, "leverages chatgpt": 91715, "tests correct": 164777, "developed existing": 40874, "chatgpts response": 23507, "extract raw": 56151, "effectively generates": 46004, "architecture components": 12134, "solution approach": 152896, "outperforms seven": 117844, "behavior code": 16574, "enable gpt": 48090, "decisions notably": 37474, "future scenarios": 62379, "cultural background": 33946, "samples use": 146074, "rulebased deep": 145698, "pairs code": 118550, "text resulting": 165429, "summarization finetuning": 158833, "datasets assess": 36663, "llms introduces": 95680, "tool make": 167008, "tuning rlhf": 170113, "method proven": 101044, "leads increased": 89896, "learn useful": 90071, "directly exposed": 42537, "capabilities preserving": 20113, "performance rlhf": 122032, "user observe": 173460, "instructional augmented": 78147, "augmented framework": 14342, "caption model": 20568, "code contains": 24731, "compared cot": 26774, "code performance": 25049, "model grounded": 103775, "planning essential": 123266, "methods examine": 101493, "main limitations": 98248, "model treated": 104808, "employ limited": 47841, "set pretraining": 149275, "relevant downstream": 139596, "zeroshot finetuning": 180188, "generation completion": 64515, "investigating emergent": 80598, "economics study": 45403, "agents various": 6762, "agents level": 6645, "explore factors": 55204, "gpt4 available": 66925, "crucial investigate": 33813, "building valuable": 19460, "requires text": 141459, "text contents": 164961, "represented text": 140963, "text formats": 165097, "interaction ability": 79100, "structured texts": 156681, "platform used": 123392, "provide base": 132682, "appropriate benchmark": 11970, "test benchmarks": 164518, "presents research": 126631, "members community": 100312, "ensure test": 49709, "influenced prompt": 76229, "evaluates capability": 51225, "capability stateoftheart": 20377, "avenues development": 15243, "tools study": 167260, "study underlines": 157680, "automating supporting": 14891, "required fully": 141235, "peoples daily": 120744, "life automated": 92074, "weak generalization": 177928, "iterative testing": 81146, "feedback study": 57801, "game playing": 62569, "creating strong": 33323, "strong ai": 156343, "lower price": 97835, "gpt claude": 66398, "paper initiative": 118979, "language act": 83128, "spatial representations": 153803, "problems remains": 128617, "electronic design": 46992, "description form": 39409, "original code": 117321, "ways propose": 177914, "domain particular": 44243, "particular consider": 120063, "prompted summarize": 130836, "respect training": 142520, "actions large": 4378, "including texttoimage": 74760, "generation panoptic": 64910, "sequential actions": 148862, "access multiple": 2888, "multiple foundation": 110923, "models robotic": 109013, "convert complex": 31987, "accommodating various": 2991, "practicality efficiency": 125469, "efficiency approach": 46424, "furthermore zeroshot": 62180, "engineers researchers": 49009, "alleviate burden": 8281, "routine tasks": 145649, "llms collaboratively": 94629, "collaboratively solve": 25641, "tools tool": 167269, "fail work": 56985, "generating regular": 64316, "word token": 178686, "prompted complete": 130811, "expanding set": 53706, "answering embodied": 9840, "set complex": 149158, "scenarios comparing": 146559, "application artificial": 10300, "issues areas": 80982, "requirements including": 141300, "human bias": 70624, "paper posits": 119101, "comparison software": 27067, "aibased solutions": 7347, "aibased methods": 7345, "humanintheloop processes": 71204, "performance software": 122085, "graphbased approach": 67590, "addressing need": 5463, "based transformerbased": 16154, "attributes large": 14117, "approaches generalpurposed": 11786, "chatgpt targeted": 23377, "additionally performed": 5102, "code authoring": 24671, "authoring tools": 14428, "blocks code": 18726, "authoring paper": 14426, "developed deployed": 40867, "decisions model": 37472, "needed ensure": 112441, "sufficiently accurate": 158504, "code files": 24838, "concerns lack": 28785, "understanding dynamic": 171201, "comprehend code": 27841, "stateoftheart foundational": 155144, "comprehending code": 27867, "importantly study": 73230, "surrounding objects": 159589, "navigation vln": 112073, "similar capabilities": 151216, "representations limited": 140842, "using community": 174068, "algorithm utilizing": 7875, "practicality effectiveness": 125468, "master openended": 99395, "human cultural": 70680, "attempt capture": 13782, "agents trajectories": 6752, "master large": 99394, "generate readable": 63672, "incorrect paper": 75164, "realworld code": 136420, "code evaluate": 24810, "concise natural": 28848, "cases discuss": 20958, "disadvantages chatgpt": 42632, "opportunities chatgptbased": 116842, "question teach": 134944, "tools effectively": 167148, "usage enhancing": 172443, "perform case": 120880, "argued large": 12419, "capabilities proof": 20130, "newer models": 113519, "better metrics": 17945, "value general": 175486, "incorporate relationship": 75034, "testing propose": 164745, "feedback aligning": 57641, "novel alignment": 114357, "alignment learning": 8187, "learning resulting": 90929, "trained outputs": 168034, "shown generalize": 150246, "llms closely": 94617, "different techniques": 42040, "result llms": 143046, "relevant cases": 139576, "experiences experiments": 53864, "using challenging": 174030, "frameworks demonstrate": 61509, "concepts essential": 28651, "concepts human": 28658, "human world": 71097, "shape material": 149777, "objects ii": 115286, "results understanding": 143892, "concepts analysis": 28640, "knowledge inspired": 82133, "propose distillation": 131787, "work exploits": 178948, "travel planning": 169621, "length mdl": 91380, "features designing": 57469, "diversity code": 43711, "code knowledge": 24963, "llms helps": 95483, "enables generate": 48191, "synthesizing algorithmic": 160007, "lack guaranteed": 82951, "correctness require": 32499, "shows llmgenerated": 150449, "manner enhance": 98985, "rate chatgpt": 135981, "highlevel textual": 69716, "capability design": 20281, "random number": 135533, "number generator": 114872, "development improve": 41135, "design practical": 39717, "utility work": 174985, "aim spur": 7492, "spur research": 154611, "construct utilize": 30165, "growing applying": 68002, "llms interface": 95666, "ai crucial": 6940, "endtoend multimodal": 48752, "model embodied": 103520, "ego4d dataset": 46946, "dataset corresponding": 36200, "ii introduce": 72095, "lowlevel control": 97867, "task extracting": 161386, "extracting effective": 56225, "effective features": 45758, "metaworld benchmark": 100609, "compared blip2": 26758, "baseline finetuned": 16213, "broader community": 19208, "tasks toxicity": 163376, "outperform gpt3": 117598, "seen impressive": 147694, "potential effectively": 124687, "gpt4 largely": 67061, "flexible user": 59830, "quantifying social": 134329, "gaining importance": 62497, "prompts successfully": 131491, "quantify severity": 134322, "different demographics": 41729, "work contains": 178869, "potentially implicate": 125109, "implicate stereotypes": 72891, "stereotypes associations": 155784, "associations harms": 13533, "harms offensive": 68776, "offensive individuals": 115616, "individuals certain": 75764, "certain social": 21417, "goal prioritization": 66186, "high sample": 69529, "complex openworld": 27509, "game large": 62562, "context description": 30727, "action environment": 4317, "stateoftheart rl": 155347, "finally potential": 58506, "understand programming": 171066, "typical programming": 170457, "confident incorrect": 29367, "abstract understanding": 2662, "data mere": 35363, "ones employed": 115991, "limited best": 92719, "unknown llms": 171937, "control programming": 31579, "prompts 10": 131143, "analyze control": 9280, "demonstrated useful": 38818, "prompt collection": 130390, "test compare": 164534, "specific goal": 154002, "questions write": 135325, "predict protein": 125701, "makes novel": 98678, "novel discoveries": 114470, "skill library": 152138, "complex behaviors": 27365, "new iterative": 113241, "mechanism incorporates": 99998, "feedback execution": 57674, "skills developed": 152151, "prior sota": 127930, "opensource codebase": 116586, "formal theorem": 60518, "proving large": 133406, "intriguing avenue": 79873, "avenue exploration": 15236, "utilization models": 175009, "learning robotics": 90955, "minif2f benchmark": 102306, "software tool": 152850, "risks exposing": 144986, "analyzing common": 9360, "demonstrate opensource": 38455, "insights motivate": 77607, "literature demonstrate": 93164, "evaluate techniques": 51116, "90 success": 1748, "environments agent": 50063, "synthesis approach": 159933, "generated specifications": 63986, "designed simulate": 39943, "social settings": 152667, "distinct families": 43223, "asking predict": 12886, "making choice": 98713, "significant reasoning": 150851, "potential training": 125024, "data advancing": 34604, "zeroshot sequential": 180334, "perform highlevel": 120956, "actions path": 4385, "multimodality inputs": 110798, "visual navigation": 177237, "base gpt2": 15602, "closedloop framework": 24479, "tool making": 167009, "tool using": 167052, "tools applied": 167102, "beneficial solving": 17414, "division labor": 43777, "cost effectiveness": 32667, "degrading quality": 38006, "solutions example": 153017, "environments large": 50087, "serving rich": 149105, "aiming create": 7542, "superior robustness": 159059, "robustness compared": 145361, "notably agent": 114259, "extensive capabilities": 55727, "cpu cores": 33128, "prediction challenges": 125769, "difficult measure": 42162, "searchbased approach": 147435, "improvement overall": 73829, "systems deal": 160323, "paper document": 118865, "write short": 179700, "new zealand": 113514, "directions use": 42502, "trains pretrained": 168848, "code generates": 24864, "programs challenging": 129896, "especially users": 50560, "program consists": 129728, "code python": 25083, "implemented llm": 72873, "domains release": 44513, "finetuning visionlanguage": 59607, "learning highlevel": 90518, "results address": 143163, "automatically collect": 14774, "robot dataset": 145174, "text plans": 165356, "plans paired": 123364, "model autoregressively": 103170, "observations input": 115341, "finegrained spatial": 58894, "approach autonomous": 11017, "instructions presented": 78323, "set experiment": 149191, "participants able": 119991, "industry 40": 75868, "chatgpt greatly": 23038, "memorize large": 100339, "pipelines using": 123115, "power ai": 125160, "role transforming": 145546, "tackling tasks": 160878, "interface enable": 79428, "attributes paper": 14122, "principles architecture": 127855, "comprehensive opensource": 28083, "solution developers": 152918, "llms induced": 95616, "unfortunately use": 171677, "repair using": 140418, "dataset evidence": 36269, "offer benefits": 115637, "areas code": 12361, "increase future": 75207, "understanding analyzing": 171124, "code blocks": 24697, "task breakdown": 161226, "engineering tools": 49000, "impact domain": 72641, "context view": 30956, "view llms": 176814, "diverse highly": 43536, "topperforming models": 167401, "programmers code": 129775, "revealed consistent": 144388, "perturbationbased method": 122752, "automatically completing": 14776, "automated completion": 14531, "helping humans": 69226, "automate tasks": 14508, "fundamental framework": 61951, "capabilities predicting": 20111, "enhancing security": 49566, "capabilities leverage": 20012, "introduce local": 80008, "effects agents": 46326, "solid baseline": 152878, "multimodal graph": 110649, "llms reinforcement": 96367, "rl policies": 145069, "features support": 57587, "multimodal queries": 110748, "based images": 15865, "uses graph": 173863, "based embeddings": 15770, "location objects": 97302, "baselines gpt": 16327, "robotic applications": 145189, "cospeech gesture": 32645, "gesture generation": 65775, "appropriate gestures": 11976, "utilizing recent": 175235, "enables development": 48173, "llms adds": 94356, "effects user": 46352, "technology generate": 164142, "enhance decisionmaking": 49182, "generate process": 63656, "improvement furthermore": 73799, "evidence make": 52199, "processes large": 129075, "efficiency reduce": 46519, "business operations": 19544, "workflows evaluating": 179385, "evaluation programming": 51788, "required solution": 141254, "problemsolving techniques": 128676, "measure enhance": 99844, "enhance ai": 49149, "difficulty results": 42221, "insights improving": 77583, "improving ai": 74108, "ai programming": 7168, "programming capabilities": 129796, "predefined vocabulary": 125663, "capabilities prompt": 20126, "dalle brought": 34524, "forms humanai": 60601, "personal ai": 122549, "function based": 61824, "initial policy": 77039, "deterministic output": 40727, "design loss": 39684, "artificialintelligence tools": 12799, "content accessible": 30425, "accessible blind": 2943, "content particularly": 30569, "physics mathematics": 122943, "applications security": 10678, "rich multimodal": 144793, "queries use": 134553, "data fundamental": 35082, "applications major": 10602, "web knowledge": 178009, "simulated behaviors": 151653, "novel simulation": 114694, "verification evaluate": 176474, "margin datasets": 99182, "tasks leaving": 162700, "context predict": 30873, "plans based": 123350, "finally generates": 58471, "generates questions": 64097, "questions search": 135272, "search terms": 147424, "information assist": 76287, "snapshot current": 152506, "generates reasonable": 64100, "evaluation complex": 51492, "detect errors": 40354, "errors python": 50395, "code wild": 25215, "effectively demonstrate": 45971, "integrates external": 78554, "knowledge exchange": 81962, "reliability software": 139707, "experiments 15": 54125, "sophisticated prompt": 153323, "code fail": 24836, "introduce study": 80114, "mitigating adverse": 102651, "synthesis present": 159965, "intent application": 79006, "intent expressed": 79010, "language specialized": 86734, "focus discussion": 59971, "cloud server": 24562, "environments compared": 50069, "environment code": 49988, "findings applied": 58637, "differences interaction": 41627, "measures benefits": 99917, "measures used": 99937, "expertise levels": 54619, "planning method": 123297, "designed llm": 39908, "volume task": 177537, "parameters text": 119873, "precise location": 125586, "cognitive structure": 25485, "certain improvements": 21391, "achieving embodied": 4168, "learn generalized": 89985, "simulation environment": 151692, "instances 400": 77816, "corpus employed": 32301, "unseen tools": 172195, "capabilities comparable": 19822, "data infeasible": 35219, "tasks imagebased": 162526, "interactions environments": 79223, "connecting bridge": 29478, "apart previous": 10144, "works utilized": 179518, "produces text": 129541, "action policies": 4330, "descriptions provided": 39491, "model selections": 104536, "environments tasks": 50117, "confirming effectiveness": 29402, "model detecting": 103448, "codes purpose": 25315, "detecting correcting": 40401, "rules contrast": 145712, "video available": 176688, "language directly": 83260, "descriptions intermediate": 39467, "prompts videos": 131523, "progress tackling": 130019, "method associated": 100691, "highlevel programming": 69703, "process incorporate": 128870, "relevant metrics": 139620, "solution effective": 152922, "understanding implicit": 171291, "benchmarks vulnerability": 17394, "potential perform": 124900, "commands natural": 26043, "craft diverse": 33138, "controller feasible": 31659, "compared design": 26781, "tasks total": 163375, "inspired insights": 77732, "equipping llm": 50188, "average results": 15310, "suite opensource": 158736, "project create": 130074, "opensource alternative": 116568, "opensource finetuned": 116605, "commercial use": 26096, "private document": 128047, "document search": 43856, "development make": 41158, "models needs": 108279, "complex instruction": 27438, "method domain": 100801, "experiments prominent": 54402, "margin model": 99186, "llms advance": 94361, "efforts applying": 46890, "flexible representations": 59821, "paradigm harnesses": 119460, "define reward": 37941, "interactive behavior": 79288, "method real": 101053, "human recognize": 71012, "make right": 98591, "contains images": 30377, "average 15": 15259, "active perception": 4438, "framework contextaware": 61052, "humans remarkable": 71465, "ability navigate": 2295, "descriptions associated": 39435, "associated physical": 13501, "framework solves": 61422, "vast prior": 176349, "series input": 148929, "interactions using": 79277, "targets complex": 161149, "language created": 83224, "created purpose": 33269, "provides unprecedented": 133238, "evaluation showed": 51857, "remarkable aptitude": 140144, "settings despite": 149556, "past actions": 120375, "englishlanguage questions": 49133, "objects actions": 115272, "comprehend instruction": 27850, "high value": 69555, "annotation benchmark": 9512, "reliable interactive": 139725, "llms classify": 94610, "method collected": 100739, "massive human": 99357, "dataset textual": 36583, "produce reward": 129457, "associated individual": 13490, "converts textbased": 32010, "like github": 92275, "producing inaccurate": 129560, "incorporate relevant": 75035, "closely match": 24517, "objective results": 115222, "dataset 200": 36078, "contexts additionally": 31001, "rl emerged": 145050, "properties text": 131662, "generation seek": 65073, "seek investigate": 147656, "llm optimized": 93860, "procedure guide": 128702, "used complete": 173001, "physics biology": 122926, "robust order": 145298, "years software": 179938, "associated complex": 13468, "systems starting": 160624, "potential gptbased": 124752, "applications commonly": 10452, "allow precise": 8347, "requires tedious": 141458, "uses core": 173839, "substantially faster": 158120, "fixing syntax": 59726, "ai nonai": 7127, "technically propose": 163731, "languages java": 87033, "contains security": 30390, "security functional": 147585, "confidence aiding": 29342, "llms classification": 94609, "complex dynamics": 27408, "skills human": 152163, "actions integrating": 4377, "leveraging prior": 91932, "gpt4 received": 67132, "modeling simulation": 105092, "task seeks": 161711, "modeling probabilistic": 105070, "learn actions": 89959, "language driving": 83270, "ubiquitous adoption": 170543, "intelligent models": 78952, "feature customization": 57391, "comprising 10000": 28254, "achieving exceptional": 4170, "exceptional accuracy": 52810, "authorship attribution": 14447, "llms transformerbased": 96851, "problems extent": 128509, "robustness popular": 145418, "fact slight": 56745, "performance careful": 121217, "interactive coding": 79291, "coding execution": 25381, "humans write": 71495, "resolve ambiguities": 142339, "exhibited promising": 53145, "code final": 24839, "language platform": 86466, "platform agnostic": 123378, "provide safe": 132965, "available visual": 15224, "point reference": 123722, "overall understanding": 118256, "crucial rapidly": 33838, "humancomputer interactions": 71156, "detect analyze": 40345, "failure scenarios": 57017, "scenarios demonstrate": 146572, "codex zeroshot": 25361, "realtime approach": 136372, "operations enabling": 116779, "performance computing": 121319, "optimization human": 116999, "contain misleading": 30302, "need align": 112222, "employed achieve": 47872, "principles model": 127864, "presents experimental": 126577, "robotics applications": 145202, "tasks robotics": 163193, "introduce opensourced": 80083, "reasoning significant": 137121, "dimension large": 42315, "code repair": 25098, "work providing": 179247, "suggestions results": 158648, "query comprehensive": 134570, "corpus query": 32345, "online code": 116079, "identifies potential": 71848, "knowledge possess": 82278, "textual plan": 165934, "planning generating": 123274, "cases compared": 20950, "engineering problems": 48970, "yield desired": 179965, "new components": 113117, "data control": 34853, "programs continuously": 129899, "avoid repeating": 15353, "demonstrates advantages": 38824, "llms embodied": 95019, "general environments": 62950, "world usually": 179627, "indoor scenes": 75814, "rgb images": 144752, "prone confidently": 131556, "baselines involve": 16341, "promising lightweight": 130273, "modeling uncertainty": 105115, "analysis business": 8834, "information standard": 76775, "available event": 15104, "energy use": 48796, "second goal": 147477, "goal analyze": 66147, "energy usage": 48795, "finetuned variety": 59138, "models carbon": 105571, "utilization natural": 175010, "role facilitating": 145493, "explores challenges": 55387, "incorporating nlp": 75123, "evaluate leading": 51001, "study tools": 157668, "fail produce": 56970, "based software": 16103, "shows exceptional": 150426, "reasoning cases": 136728, "write good": 179699, "community relatively": 26518, "descriptions recently": 39492, "recently increasing": 137911, "current representative": 34224, "limiting exploration": 92885, "new sample": 113394, "online rl": 116131, "data realtime": 35609, "model producing": 104354, "llm assisted": 93482, "professional software": 129630, "generation testing": 65198, "testing llmbased": 164730, "llmbased technology": 94175, "students professionals": 156889, "cause concern": 21244, "assist teachers": 13362, "instructors use": 78428, "results report": 143744, "report paper": 140545, "generating customized": 64182, "effective representations": 45871, "representations source": 140888, "corpora code": 32210, "data achieving": 34586, "code treat": 25192, "key structural": 81579, "generation customization": 64552, "real systems": 136253, "patterns words": 120576, "path planning": 120432, "interpretability flexibility": 79642, "reduced manual": 138495, "combine gpt4": 25877, "required define": 141228, "human prompts": 70987, "intelligence primary": 78878, "paramount significance": 119901, "significant barrier": 150623, "alignment safe": 8232, "ppo algorithms": 125369, "analysis rlhf": 9145, "chatgpt absence": 22668, "agent empowered": 6436, "agents mimic": 6660, "dynamic modeling": 45141, "modeling offering": 105060, "represent human": 140642, "profoundly reshaping": 129719, "code successfully": 25160, "chatgpt directly": 22857, "performance feasible": 121506, "main topics": 98277, "having varying": 68893, "transparency accountability": 169574, "release openais": 139489, "involved careful": 80699, "fairness accountability": 57050, "curation model": 34036, "motion primitives": 110154, "closedloop robot": 24482, "perform large": 120975, "requires visual": 141470, "visual natural": 177234, "understanding navigation": 171367, "prompt action": 130365, "clip determine": 24395, "tasks grounding": 162484, "horizon llm": 70419, "fundamental paradigm": 61963, "environments present": 50103, "assess basic": 13045, "application approach": 10297, "way obtaining": 177857, "obtaining strong": 115547, "reranking llm": 141531, "involve additional": 80684, "framework theoretically": 61458, "improvements best": 73883, "access token": 2913, "breakthrough technology": 19016, "handle largescale": 68548, "software products": 152833, "scope complexity": 147016, "types prompt": 170404, "direction work": 42451, "identifying gaps": 72001, "platforms large": 123405, "llms wireless": 97010, "wireless technologies": 178550, "tasks developing": 162219, "far greater": 57219, "complex computation": 27377, "potentially yield": 125147, "example task": 52507, "overall task": 118251, "module results": 109956, "systems overall": 160507, "processes natural": 129088, "apply nlp": 10867, "increase quality": 75225, "range representative": 135687, "refined using": 138749, "codebleu scores": 25233, "reaching humanlevel": 136137, "underscores immense": 170942, "advancements domain": 5879, "dataset accessible": 36089, "engineering practices": 48969, "core paradigm": 32178, "model meticulously": 104085, "fostering collaborative": 60694, "environments code": 50068, "typically scarce": 170519, "navigate large": 112046, "understand study": 171084, "provide details": 132751, "provide usage": 133016, "evaluate user": 51125, "use perceive": 172799, "example demonstrate": 52471, "inference python": 76083, "language github": 83391, "ensure accuracy": 49666, "inference problem": 76077, "value type": 175506, "users especially": 173642, "used supporting": 173254, "necessary tools": 112157, "tools identifying": 167179, "humanwritten aigenerated": 71508, "gptzero openai": 67333, "openai text": 116378, "classification performances": 24050, "user testing": 173529, "including unstructured": 74770, "textual documents": 165905, "specific respective": 154078, "process tasks": 129005, "generation extensively": 64645, "naive prompt": 111389, "prompt novel": 130612, "reduces false": 138517, "methods bridging": 101354, "agents robotics": 6718, "robotics remains": 145212, "phenomena known": 122820, "autonomous robotic": 14947, "obstacle avoidance": 115453, "manner paradigm": 99004, "contributing safe": 31465, "enhance autonomous": 49155, "environments addressing": 50062, "compiler error": 27232, "code issues": 24960, "model version": 104873, "effectiveness adding": 46115, "recent example": 137499, "applications cost": 10462, "agent choose": 6426, "algorithm setting": 7854, "ambiguous nature": 8640, "capable capturing": 20407, "context object": 30858, "function policy": 61854, "targeted instruction": 161135, "instruction execution": 77991, "abilities previous": 1992, "descriptions learning": 39474, "descriptions evaluate": 39451, "challenging video": 22317, "quality api": 134042, "textbased approach": 165583, "core issues": 32174, "enhanced evaluation": 49335, "dominant strategy": 44648, "correctness validation": 32507, "flexibility particularly": 59794, "integrating virtual": 78631, "model deficiencies": 103415, "accurately determine": 3523, "object interactions": 115136, "interactions dataset": 79218, "interaction understanding": 79187, "inspire research": 77706, "research complex": 141654, "characterizing mitigating": 22493, "uncover factors": 170723, "time tasks": 166516, "issues mitigated": 81034, "programs contain": 129898, "code static": 25154, "code style": 25158, "build knowledge": 19323, "obtained series": 115533, "key process": 81556, "proficiency interpreting": 129662, "generation field": 64658, "emerged leading": 47369, "biased content": 18226, "information aligning": 76274, "online offline": 116118, "training parameterefficient": 168629, "parameterefficient training": 119681, "avenues field": 15245, "humanoriented tasks": 71320, "associated github": 13479, "github link": 65819, "link collecting": 93091, "collecting latest": 25716, "llm processing": 93907, "languages ultimately": 87150, "refers problem": 138723, "incorporate semantic": 75036, "knowledge priors": 82305, "knowledge typically": 82482, "constructed based": 30169, "bard anthropics": 15550, "dynamics survey": 45216, "social dilemma": 152565, "dilemma games": 42309, "beliefs values": 16763, "values preferences": 175552, "statistical physics": 155506, "play shaping": 123469, "furthermore survey": 62168, "survey outlines": 159659, "effectively processes": 46066, "features code": 57461, "utilizing nlp": 175223, "framework robot": 61393, "planners motion": 123233, "diverse rich": 43636, "diffusion policy": 42257, "new multitask": 113289, "weekly basis": 178060, "simulation plays": 151707, "challenges social": 22065, "offers extensive": 115802, "ensure agents": 49668, "evaluation encompassing": 51565, "realworld social": 136517, "step realm": 155674, "realm social": 136363, "provides limited": 133176, "limited value": 92877, "complementary existing": 27258, "ensures greater": 49720, "training ai": 168150, "finetune stateoftheart": 58972, "understand improve": 171023, "propose auditing": 131722, "significant boost": 150627, "programming despite": 129809, "exposure private": 55554, "private code": 128041, "code specifically": 25153, "user involvement": 173447, "private ones": 128051, "support comprehensive": 159267, "benchmarks consistently": 17196, "ability execute": 2152, "computing framework": 28541, "automating tasks": 14893, "workflows accelerating": 179382, "platform explore": 123387, "llms creates": 94757, "creates powerful": 33281, "insights strategies": 77649, "engineering automated": 48888, "detailed insights": 40302, "constructing effective": 30194, "strategies leveraging": 156028, "future researchers": 62374, "alternative recent": 8574, "sophisticated reasoning": 153324, "assistive role": 13453, "role complement": 145470, "paper deep": 118831, "open space": 116306, "study end": 157310, "nondeterministic nature": 114034, "tested realworld": 164683, "extensive realworld": 55941, "systems solve": 160615, "human workflows": 71095, "assembly line": 13024, "tools usage": 167277, "result undesirable": 143070, "descriptions individual": 39466, "substantiate claim": 158147, "available tool": 15215, "tracking using": 167544, "detection survey": 40627, "detection vital": 40657, "types languages": 170376, "code vector": 25204, "capabilities offering": 20081, "robust llmbased": 145283, "object information": 115134, "information understand": 76822, "attempt evaluate": 13788, "challenging code": 22127, "perform study": 121051, "study 11": 157120, "generation compared": 64513, "gpt35 exhibit": 66804, "generation strategy": 65106, "agents policy": 6686, "users existing": 173645, "verbal feedback": 176436, "introduces principled": 80215, "agents learning": 6644, "prior failed": 127893, "considerably outperforms": 29647, "architecture enhance": 12162, "deal large": 37265, "large action": 87175, "dynamic sampling": 45160, "rl human": 145056, "ai communication": 6918, "language increasingly": 83420, "language potentially": 86470, "number publications": 114932, "years aiming": 179884, "concepts review": 28690, "common problem": 26181, "research literature": 141890, "high degrees": 69442, "default configuration": 37877, "role managing": 145511, "abstract description": 2637, "baseline does": 16206, "code interface": 24949, "advancing state": 6097, "used automate": 172970, "15 categories": 402, "traditional nonllmbased": 167675, "weaknesses finally": 177965, "suggest providing": 158584, "study kind": 157457, "unseen code": 172149, "generalization challenge": 63154, "techniques precisely": 163987, "preservation llm": 126661, "agents challenging": 6561, "abilities multiturn": 1972, "code high": 24937, "improve agent": 73405, "complexity methods": 27688, "techniques evaluation": 163891, "extracting aggregating": 56218, "evaluation 12": 51409, "dataset popular": 36456, "users explain": 173649, "chatgptlike large": 23474, "interactive gui": 79312, "systems lines": 160468, "ensure optimal": 49694, "photorealistic images": 122878, "images segmentation": 72482, "advancement greatly": 5844, "incontext alignment": 74840, "finetuning note": 59407, "inferencetime alignment": 76149, "undergone extensive": 170793, "understand produce": 171065, "reached level": 136126, "generating functional": 64226, "proficiency chatgpt": 129646, "2022 gained": 668, "recognition impressive": 138073, "evaluated 10": 51141, "study performed": 157528, "universal fuzzing": 171901, "vulnerabilities various": 177637, "enables approach": 48161, "potential present": 124913, "novel llmpowered": 114575, "updates prompt": 172356, "focusing critical": 60177, "security specifically": 147626, "findings uncover": 58817, "limitations arise": 92543, "safety guarantees": 145863, "language traditional": 86791, "alternatives like": 8595, "come strong": 26009, "steep learning": 155546, "programmers paper": 129778, "llm deliver": 93580, "peak accuracy": 120638, "generating design": 64190, "target designs": 161055, "solutions challenging": 153000, "challenging addition": 22106, "gpt35 proposed": 66848, "enhancing trust": 49578, "field rapid": 58236, "frameworks pose": 61523, "nocode tools": 113960, "relevant new": 139623, "address evolving": 5226, "applied fault": 10758, "potentially vast": 125146, "techniques compared": 163854, "fl promising": 59730, "particularly llms": 120220, "secure ai": 147545, "model validates": 104864, "conditioning past": 28996, "available provide": 15188, "conduct simulations": 29178, "planning llm": 123292, "difficult costly": 42138, "accurate representation": 3485, "scenarios contrast": 146566, "presents llm": 126597, "react baseline": 136141, "task frame": 161413, "llms instructions": 95653, "starcoder model": 154944, "faithfully capture": 57084, "capture complexity": 20639, "presence data": 126208, "compete traditional": 27117, "cognition making": 25432, "coherent natural": 25535, "nature resulting": 112028, "messages paper": 100548, "lack historical": 82958, "described language": 39379, "complex navigation": 27495, "subtasks subtask": 158188, "cases study": 21020, "help domain": 69108, "specifically crafted": 154162, "includes detailed": 74366, "detailed labels": 40305, "stage automated": 154726, "various regulatory": 176142, "llm proposed": 93925, "concept automated": 28585, "llm understanding": 94069, "reliability maintainability": 139697, "chat bot": 22525, "able automatically": 2470, "number attempts": 114824, "finally generalpurpose": 58468, "competitive approach": 27159, "modeling reinforcement": 105080, "using offline": 174547, "knowledge optimal": 82254, "limited need": 92807, "deep analysis": 37710, "appropriate domain": 11974, "blackbox code": 18629, "developing field": 40993, "explicitly indicate": 54976, "bias hand": 18130, "model contextual": 103368, "seemingly simple": 147683, "bias inherent": 18137, "generation surprisingly": 65120, "practice code": 125478, "produce impressive": 129429, "presents effective": 126570, "data highresource": 35157, "coverage use": 33063, "apply new": 10866, "decades researchers": 37330, "reports accurately": 140582, "accurately recent": 3557, "reports address": 140583, "reports use": 140615, "approaches datasets": 11726, "llms game": 95336, "roles specific": 145563, "conversations various": 31973, "adversarial objectives": 6216, "metrics new": 102116, "evaluates model": 51241, "vln tasks": 177493, "agents infer": 6631, "instruction large": 78029, "automation eda": 14898, "effectively managing": 46050, "language generating": 83341, "llms thoroughly": 96803, "code especially": 24809, "lead severe": 89773, "misuse code": 102570, "incorrect code": 75148, "coding interviews": 25386, "unexpected consequences": 171616, "approaches generally": 11785, "employs gpt4": 47962, "underlining potential": 170823, "directions large": 42486, "possible limitations": 124439, "distinctive features": 43269, "analyze methods": 9313, "employed optimize": 47896, "practical contributions": 125404, "gaps existing": 62757, "future study": 62386, "agents empowered": 6589, "llms undergone": 96876, "generalize broad": 63243, "task accomplishment": 161156, "human group": 70843, "single agent": 151777, "strategies leverage": 156027, "soon released": 153289, "studying complex": 157718, "communication results": 26411, "variant models": 175621, "intriguing insights": 79876, "review automation": 144485, "numerous domainspecific": 115035, "supplemented domainspecific": 159241, "automating code": 14880, "llm realm": 93940, "realm code": 136349, "different peft": 41898, "modality language": 102973, "pattern prompting": 120506, "framework automates": 60969, "prompts framework": 131283, "vision module": 176960, "direction build": 42433, "methods policy": 101710, "agents capacity": 6559, "dynamically adapting": 45181, "present state": 126456, "actual behaviors": 4481, "astounding performance": 13589, "aiming answer": 7538, "reviewed current": 144563, "evaluation content": 51510, "performance effectiveness": 121441, "field focuses": 58168, "focuses training": 60165, "decisions recently": 37478, "delivering systematic": 38075, "fields social": 58304, "challenge iccv": 21653, "agent propose": 6491, "transformer capture": 169114, "capture spatiotemporal": 20685, "generating proper": 64303, "instruction enable": 77990, "input experiments": 77242, "researchers address": 142167, "address code": 5196, "research largely": 141883, "account confounding": 3072, "confounding variables": 29434, "chatgpts generative": 23492, "study showcase": 157627, "reducing bias": 138546, "offer interpretable": 115665, "solution accuracy": 152887, "analysis introduction": 8985, "large samples": 89041, "conclude gpt4": 28868, "strategies relatively": 156065, "address domainspecific": 5223, "generated agents": 63790, "designed replicate": 39937, "additionally designed": 5042, "classroom settings": 24230, "action models": 4325, "contributions novel": 31500, "providing stateoftheart": 133376, "optimization applied": 116981, "target behavior": 161044, "problems environments": 128496, "static scene": 155467, "descriptions method": 39478, "user specify": 173500, "arbitrary target": 12092, "yielded accuracy": 179990, "strategies effectively": 155990, "enabling navigate": 48332, "operational efficiency": 116765, "strategic decisionmaking": 155941, "systems extensively": 160378, "characteristics code": 22452, "commercial tools": 26095, "dynamic field": 45130, "field growing": 58173, "limited accessibility": 92694, "accessible broader": 2944, "asking probing": 12887, "leverage better": 91568, "obtain responses": 115499, "potentially used": 125143, "observed patterns": 115429, "highlight advantages": 69723, "planning challenges": 123255, "systems task": 160638, "correctness address": 32478, "iterative selfrefinement": 81143, "selfrefinement process": 148034, "markedly higher": 99225, "studies achieved": 156945, "development developers": 41084, "learning constrain": 90320, "aligned different": 8048, "distribution different": 43353, "discuss effectiveness": 42886, "chatgpt stack": 23352, "chatgpt quickly": 23243, "platforms offer": 123411, "productivity paper": 129606, "paper conducted": 118806, "exploratory user": 55129, "overflow chatgpt": 118344, "groups students": 67983, "groups results": 67980, "chatgpt group": 23040, "groups similar": 67982, "survey participants": 159665, "paper launches": 119067, "refers information": 138717, "prediction sequence": 125862, "experiment 27": 53877, "benchmark semantic": 17085, "learning surge": 91044, "task researchers": 161700, "aim utilize": 7503, "designed semantic": 39941, "lack reusable": 82999, "automated validation": 14626, "true semantic": 169814, "learn execute": 89977, "usually directly": 174896, "model ignores": 103819, "contains main": 30382, "effectively enhances": 45987, "stateoftheart level": 155181, "description source": 39425, "untrusted parties": 172297, "organizations paper": 117288, "task llmbased": 161525, "manipulation using": 98963, "additionally address": 5021, "address potential": 5331, "processing proficiency": 129279, "evaluation identifies": 51640, "exploration language": 55076, "processing providing": 129280, "legged robots": 91328, "like real": 92386, "power advanced": 125159, "animal motion": 9423, "motion datasets": 110146, "animal behavior": 9422, "model holds": 103804, "number challenging": 114836, "finally taskspecific": 58533, "required developers": 141230, "developers endusers": 40943, "recent advance": 137336, "perspective task": 122692, "dynamic analysis": 45114, "injection techniques": 77118, "metric code": 101959, "suffers significant": 158472, "needed fully": 112446, "novel avenues": 114414, "decisions regarding": 37479, "address complexities": 5203, "language dsl": 83271, "integration providing": 78687, "concise prompts": 28851, "compared benchmarks": 26753, "context possible": 30871, "cost high": 32686, "robotic grasping": 145192, "interaction introduce": 79135, "chatgpt summarize": 23370, "handle intricate": 68546, "framework evaluation": 61146, "models accommodate": 105204, "contribution design": 31474, "conversational robot": 31919, "human counselors": 70672, "distinct patterns": 43237, "approach led": 11346, "mutation testing": 111331, "generating effective": 64202, "detecting certain": 40397, "types bugs": 170332, "corner cases": 32195, "scaling reinforcement": 146442, "effective aligning": 45687, "gathering highquality": 62812, "alternative leverages": 8566, "aligned ai": 8044, "scalability limitations": 146218, "systems generalpurpose": 160402, "llms treat": 96858, "resembling human": 142289, "llm completion": 93546, "suggestions provided": 158644, "evaluation subset": 51880, "age generative": 6392, "approaches highlights": 11799, "foundation modelbased": 60750, "llms analytical": 94395, "tailored process": 160931, "business models": 19543, "required business": 141225, "allowing deeper": 8363, "possible argue": 124400, "need solved": 112390, "having human": 68881, "utilize predefined": 175075, "efforts customize": 46896, "environment proposed": 50021, "propose hypothesis": 131866, "cost millions": 32710, "feasibility efficiency": 57351, "constituent components": 30010, "focused identifying": 60103, "outlining potential": 117510, "examination identify": 52355, "planning propose": 123310, "propose way": 132216, "including generalpurpose": 74525, "generalpurpose specialized": 63367, "56 tasks": 1380, "respectively significant": 142579, "focused performance": 60117, "code commit": 24714, "scenarios findings": 146604, "detection ability": 40433, "require attention": 141072, "constructing models": 30199, "findings emphasize": 58665, "effectiveness transformerbased": 46306, "manipulation current": 98941, "current vlms": 34300, "vlms limited": 177466, "concepts including": 28660, "concepts visual": 28703, "easily inferred": 45322, "results adapt": 143160, "past couple": 120377, "couple decades": 32997, "immediate attention": 72588, "train different": 167763, "finally integrate": 58484, "improve interaction": 73492, "different religions": 41966, "scenarios explore": 146597, "set furthermore": 149202, "especially general": 50478, "various problems": 176115, "problems prompt": 128603, "code distributions": 24792, "popularity various": 124102, "distribution significantly": 43390, "worse data": 179657, "labels compared": 82791, "compared data": 26778, "samples frequent": 146016, "code commits": 24715, "conversations collected": 31938, "providing dataset": 133277, "paper paves": 119096, "engineering particularly": 48964, "availability cloud": 15048, "internet access": 79580, "privacy policies": 128014, "external transmission": 56096, "modulo theories": 110011, "algorithm identifies": 7814, "vulnerability prediction": 177644, "semantic reasoning": 148200, "crucial autonomous": 33767, "tasks unknown": 163414, "generalization complex": 63156, "executed pretrained": 52922, "perceived information": 120762, "learning navigate": 90758, "complex behavior": 27364, "learn mistakes": 90009, "improvements current": 73892, "information games": 76467, "explore problem": 55276, "llms communication": 94648, "tuningfree framework": 170151, "approach keeps": 11327, "strategic behavior": 155938, "reveal complex": 144322, "exhibits nuanced": 53209, "crucial reduce": 33841, "searchbased techniques": 147436, "javascript code": 81216, "known alignment": 82584, "light pressing": 92137, "errors examine": 50355, "produce fully": 129413, "run using": 145745, "gpt used": 66506, "assistance study": 13377, "help generate": 69120, "variants given": 175630, "assessed gpt3s": 13141, "variants findings": 175629, "generation offering": 64900, "attains impressive": 13771, "score achieved": 147044, "methods proximal": 101746, "emerged attractive": 47339, "attractive alternatives": 14066, "using sequence": 174707, "sampled policy": 145977, "ability sample": 2362, "demanding indepth": 38146, "work novel": 179137, "improve optimization": 73535, "depth understanding": 39330, "suite test": 158741, "programs approach": 129890, "91 time": 1760, "evaluate use": 51123, "use opensource": 172792, "work based": 178819, "based openai": 15990, "ai continues": 6935, "research typically": 142127, "solution demonstrate": 152916, "llms promote": 96228, "raw images": 136087, "massive multimodal": 99366, "global scene": 66106, "scene information": 146738, "robots acquire": 145215, "shown method": 150310, "automatically solve": 14861, "direction artificial": 42430, "control agents": 31517, "makes easily": 98645, "object attribute": 115103, "visual object": 177238, "predefined object": 125653, "equivalent manner": 50203, "experiments ai2thor": 54138, "investigation effectiveness": 80632, "reliability engineers": 139683, "spend time": 154538, "code list": 24983, "finetuned annotated": 58980, "errorprone task": 50331, "processes unclear": 129103, "focusing automated": 60174, "refinement tasks": 138771, "em bleu": 47118, "identify root": 71956, "challenges study": 22072, "effort automate": 46833, "set optimize": 149259, "outperforms humanengineered": 117786, "generation 25": 64379, "llms conventional": 94736, "action data": 4314, "videos enable": 176774, "robotic precision": 145196, "empowers robots": 48037, "collection manual": 25741, "users effortlessly": 173633, "pipeline producing": 123083, "llm retrieve": 93974, "recipe instructions": 138025, "efficiency evaluation": 46452, "works task": 179510, "semantic concept": 148120, "concept grounding": 28599, "consider scene": 29588, "tasks scene": 163202, "mask prediction": 99288, "bugs human": 19292, "adopting pretrained": 5624, "patterns using": 120573, "properties written": 131668, "set explore": 149194, "correctness completeness": 32484, "needed prompt": 112454, "safety properties": 145886, "properties addition": 131630, "gpt4 create": 66955, "errors particularly": 50388, "systems understanding": 160653, "sense agency": 148380, "universal representation": 171909, "limited compared": 92731, "including objects": 74645, "encounter daily": 48567, "detection visionbased": 40655, "domain llm": 44220, "ensuring compliance": 49728, "safely deploying": 145828, "safety violation": 145900, "reasoning explaining": 136850, "utility prompt": 174968, "walk large": 177668, "vast internetscale": 176334, "power foundation": 125175, "motions address": 110160, "paradigm use": 119525, "prompts collected": 131190, "control commands": 31526, "motion control": 110144, "prompt feedback": 130501, "new autometric": 113076, "case existing": 20872, "directly code": 42520, "especially unsupervised": 50558, "map improvements": 99126, "convert highlevel": 31988, "problem encompassing": 128241, "experiments span": 54469, "extensive comparative": 55735, "exist humans": 53238, "advancements object": 5943, "environments leveraging": 50092, "complex terrains": 27625, "possible futures": 124429, "analysis public": 9103, "public proprietary": 133597, "proprietary datasets": 132512, "neglecting nuanced": 112553, "cases introduce": 20976, "reproducibility provide": 141016, "carefully curate": 20803, "especially opensource": 50521, "opensource communities": 116590, "data mixed": 35371, "light effectiveness": 92111, "years reinforcement": 179928, "simulation environments": 151693, "requirements multiple": 141311, "complex unknown": 27637, "adversarial imitation": 6204, "enables agent": 48159, "reusable skills": 144305, "motion data": 110145, "motion tasks": 110157, "environment perception": 50019, "leading zeroshot": 89868, "advantages method": 6145, "performance latest": 121730, "aims deliver": 7592, "risks mitigate": 145007, "previous action": 127564, "help agent": 69080, "unique instructions": 171845, "agentbased models": 6514, "learning designing": 90364, "costs development": 32820, "automates generation": 14632, "rl recent": 145072, "utilize existing": 175038, "refinement human": 138758, "simulation research": 151714, "showcase models": 150077, "development financial": 41114, "humanlike attributes": 71245, "systems unable": 160652, "actively monitors": 4453, "coding using": 25415, "errors reports": 50396, "location context": 97300, "algorithm evaluate": 7803, "task evaluated": 161360, "automated using": 14625, "truth compared": 169879, "build errors": 19314, "examine gpt35": 52389, "assistants specifically": 13430, "check systems": 23531, "key concern": 81481, "correct existing": 32384, "devise approach": 41324, "respect given": 142505, "step explore": 155633, "model purpose": 104396, "based tool": 16144, "tool findings": 166976, "using pair": 174565, "quality checks": 134061, "closely follows": 24513, "rank candidate": 135770, "reduce false": 138426, "used argue": 172965, "creation evaluation": 33337, "allows interactive": 8442, "constraints text": 30115, "easier interpretation": 45288, "best automated": 17658, "manual inspection": 99048, "value enhancing": 175480, "bolstering security": 18788, "subsequent analyses": 157945, "making robust": 98805, "chatgpt modern": 23133, "aim integrate": 7468, "challenges capabilities": 21794, "mobile application": 102896, "generates test": 64114, "architectures interaction": 12270, "interactive storytelling": 79340, "storytelling natural": 155913, "categories evaluate": 21094, "placement objects": 123183, "fundamental tasks": 61984, "stability robustness": 154679, "considering robustness": 29731, "method extensively": 100861, "extensively evaluated": 55984, "overcome critical": 118283, "rigid object": 144846, "bias testing": 18209, "contain social": 30307, "bias sensitive": 18197, "sensitive attributes": 148417, "generation posing": 64932, "posing risks": 124248, "risks unintended": 145026, "unintended harmful": 171802, "software behaviors": 152774, "results refine": 143735, "mitigating bias": 102652, "80 90": 1651, "particularly difficult": 120172, "translation approaches": 169441, "rulebased systems": 145704, "code appropriate": 24668, "output test": 118008, "error recovery": 50321, "differ original": 41606, "leads potential": 89906, "distance similar": 43123, "code level": 24977, "present design": 126280, "particularly openais": 120234, "understanding integrating": 171305, "potential offer": 124887, "offer solutions": 115704, "method resolve": 101076, "meets generative": 100295, "based use": 16162, "multirobot systems": 111136, "comprehend interact": 27851, "understanding place": 171407, "clip features": 24400, "room classification": 145580, "data covering": 34865, "estimation tasks": 50761, "model lastly": 103935, "demonstrate systems": 38585, "approaches vary": 11954, "ability modern": 2288, "models working": 109715, "token dataset": 166697, "extract dataset": 56128, "utility dataset": 174947, "dataset showing": 36538, "llms exception": 95128, "prompts works": 131529, "importance token": 73063, "multirobot coordination": 111135, "rely preexisting": 139877, "navigation maps": 112061, "environments different": 50072, "task planner": 161618, "enhance systems": 49297, "time project": 166473, "inherent difficulty": 76950, "llms aligned": 94384, "generation way": 65258, "baselines demonstrates": 16306, "llms raise": 96281, "misuse ai": 102567, "necessitating effective": 112189, "challenges complexity": 21801, "policy approach": 123828, "sequences work": 148848, "llms assistive": 94440, "framework related": 61383, "complex robotic": 27574, "exhibit notably": 53076, "methods direct": 101445, "maintain robustness": 98330, "scenes language": 146750, "provide proper": 132935, "thought exclusive": 166224, "multitude downstream": 111260, "particularly trained": 120268, "possess advanced": 124330, "tooluse planning": 167293, "furthermore developed": 62046, "demonstrate significantly": 38551, "ensuring rapid": 49750, "integrated software": 78541, "socially aware": 152678, "accessible understandable": 2970, "decisions language": 37465, "adaptive feedback": 4777, "application complex": 10305, "environments sparse": 50113, "adapter language": 4706, "need intricate": 112324, "finetuning maintaining": 59371, "maintaining llms": 98363, "dedicated evaluation": 37677, "solve challenge": 153095, "help evaluate": 69113, "dynamics agents": 45200, "greedy adversarial": 67805, "imperfect information": 72807, "information gpt4": 76483, "data notable": 35424, "engineering achieve": 48875, "framework adaptively": 60926, "coordinates multiple": 32090, "agents build": 6555, "agents collaborate": 6565, "tasks concurrently": 162105, "solutions existing": 153018, "challenging particular": 22235, "plans future": 123358, "state key": 155006, "planning bayesian": 123251, "generate optimal": 63635, "uncertainty reduction": 170679, "achieved reasoning": 3863, "frameworks achieves": 61505, "creating retrieving": 33320, "modules image": 109985, "tailoring specific": 160954, "specific code": 153957, "models component": 105708, "approach contributes": 11083, "reasoning python": 137080, "analyze typical": 9341, "typical failure": 170447, "tasks infinite": 162600, "cooking recipe": 32059, "cooking actions": 32057, "llm newly": 93847, "realistic simulation": 136304, "state evaluation": 155000, "exhibit harmful": 53055, "behavior involves": 16602, "function approximation": 61823, "optimization p3o": 117018, "p3o outperforms": 118483, "developed applied": 40858, "literature examine": 93168, "showcase capability": 150068, "enable models": 48112, "used literature": 173136, "benchmark use": 17115, "practical issues": 125427, "robot locomotion": 145178, "locomotion challenging": 97308, "locomotion policy": 97309, "directly paper": 42581, "information environments": 76395, "vlm large": 177445, "network evaluate": 112648, "tests designed": 164778, "sensitive changes": 148419, "basic information": 16422, "works mainly": 179470, "constraints data": 30071, "end prior": 48675, "alignment make": 8192, "uses different": 173845, "behave differently": 16553, "llms optimization": 96003, "prompting tuning": 131112, "similar prior": 151293, "diverse external": 43524, "instances code": 77819, "facilitate inspire": 56624, "small portions": 152349, "text step": 165485, "based motivation": 15951, "attempt design": 13785, "evolution algorithm": 52253, "automatically optimizing": 14844, "text tasks": 165528, "collecting large": 25714, "proposes task": 132488, "gpt4 expand": 67001, "programs enhance": 129903, "role bridging": 145466, "outputs scale": 118120, "community current": 26459, "highquality diversified": 70019, "designed overcome": 39924, "compile diverse": 27224, "including reward": 74705, "benchmarks data": 17201, "potential humanlike": 124762, "help agents": 69081, "development community": 41068, "tracking reasoning": 167539, "conversational turns": 31931, "hope problem": 70371, "currently lacks": 34327, "methodology evaluating": 101225, "features unique": 57597, "unique setting": 171856, "testing ground": 164717, "highly similar": 69956, "similar written": 151326, "fail consider": 56949, "ones written": 116026, "powerful automated": 125257, "fl techniques": 59732, "detect security": 40374, "vulnerabilities code": 177613, "level gpt4": 91471, "gpt4 replicate": 67141, "systems brought": 160277, "brought forth": 19241, "data manual": 35350, "contains small": 30393, "implications leveraging": 72940, "llms correctly": 94744, "correctly translate": 32474, "quantitative methods": 134360, "code finally": 24840, "used advanced": 172954, "knowledge mllms": 82231, "offer enhanced": 115645, "leverage mllms": 91631, "compare endtoend": 26673, "requires strong": 141448, "strong human": 156392, "designing agents": 39985, "design automatic": 39554, "agent makes": 6472, "performs reasoning": 122454, "specific subjects": 154092, "agents generative": 6618, "interactions highly": 79229, "humans low": 71429, "key innovations": 81521, "innovations include": 77152, "3d virtual": 1151, "agents solve": 6734, "autonomous collaboration": 14929, "underscore transformative": 170930, "seven metrics": 149698, "step enhancing": 155627, "overall efficiency": 118188, "leveraging transformers": 91964, "transformers selfattention": 169352, "content interestingly": 30531, "methods showcasing": 101814, "generation era": 64613, "repair bugs": 140404, "bugs hard": 19290, "specific test": 154112, "definition remains": 37964, "prediction approaches": 125761, "work performed": 179163, "features study": 57580, "work assumes": 178810, "assumes human": 13555, "investigate consequences": 80391, "humans preferences": 71448, "used using": 173290, "noise better": 113975, "effectively counter": 45968, "tool selecting": 167027, "contains various": 30396, "trigger llms": 169756, "llms majority": 95842, "valuebased deep": 175512, "create accurate": 33170, "capabilities integration": 19973, "losses current": 97706, "rich collection": 144765, "predominant use": 125975, "explores applicability": 55381, "demonstrate leverage": 38400, "spatialtemporal reasoning": 153819, "benchmark systematically": 17100, "longterm temporal": 97607, "agents scientific": 6725, "hypotheses designing": 71608, "designing experiments": 39997, "dataset build": 36138, "automatically evaluates": 14799, "survey emerging": 159624, "sets open": 149392, "llms technical": 96778, "activities including": 4464, "including coding": 74461, "design requirements": 39743, "hallucinations survey": 68459, "play development": 123447, "challenge effective": 21632, "dynamic interplay": 45138, "context interaction": 30800, "analyze architectural": 9268, "achieve downstream": 3626, "effective settings": 45883, "rlhf reward": 145099, "programs use": 129933, "llmbased models": 94156, "additionally overcome": 5098, "control theory": 31596, "crucial deploying": 33783, "llms poorly": 96120, "time prompts": 166474, "offering foundational": 115739, "models rlms": 109009, "contribution consists": 31473, "powerful method": 125303, "method guarantees": 100897, "demonstrate reward": 38537, "consistently effective": 29863, "novel benchmarking": 114425, "support pipeline": 159317, "terms proposed": 164452, "program properties": 129742, "challenging verification": 22316, "verification tools": 176504, "important considerations": 73115, "validation large": 175362, "opensource alternatives": 116569, "need complete": 112245, "derive probabilistic": 39349, "openvocabulary segmentation": 116717, "llms playing": 96113, "agents benchmark": 6553, "chatgpt playing": 23189, "testbed developing": 164658, "integrating planning": 78622, "chatgpt subsequently": 23363, "explicitly tailored": 54990, "scenarios codes": 146554, "bias reinforcement": 18190, "societal values": 152699, "requires vast": 141468, "technique separate": 163803, "framework main": 61297, "bias enhance": 18115, "leverage combination": 91574, "model identifies": 103816, "object data": 115115, "set present": 149272, "participants generated": 120008, "step making": 155662, "typically consists": 170473, "implicit values": 72995, "set attributes": 149134, "broad scope": 19186, "properties models": 131654, "code pass": 25046, "relies static": 139810, "static benchmarks": 155452, "strategies past": 156049, "baselines human": 16329, "demonstrations combined": 38992, "agents significant": 6727, "significant limitation": 150769, "limitation approach": 92494, "making application": 98705, "challenging difficulties": 22145, "scores based": 147124, "research aligning": 141584, "improved controllability": 73678, "instructions delivering": 78229, "prompting evaluation": 130923, "policy updates": 123875, "perception paper": 120817, "policies using": 123825, "llms motion": 95900, "demonstrate learning": 38399, "opensourced pretrained": 116705, "developers challenges": 40937, "reports study": 140613, "area automatic": 12316, "require precise": 141172, "form test": 60489, "build assumption": 19302, "largely focused": 89153, "propose consider": 131760, "realistically represent": 136310, "reports inputs": 140595, "reports associated": 140584, "executable test": 52900, "finally report": 58518, "alignment diverse": 8142, "reduce impact": 138436, "limitation leads": 92509, "ample training": 8715, "theory approach": 166073, "preference feedback": 126009, "feedback achieve": 57634, "enhanced alignment": 49319, "rlhf used": 145106, "analysis stage": 9175, "output diversity": 117919, "refers models": 138722, "generalises better": 63084, "collaborative generative": 25618, "agents endowing": 6594, "abilities specialized": 2021, "skills evaluation": 152155, "properly paper": 131626, "tedious costly": 164184, "costly errorprone": 32784, "focus augmenting": 59950, "study characterize": 157205, "approach set": 11528, "approach deliver": 11095, "errors produced": 50391, "designed reduce": 39936, "bard llama2": 15563, "particular concern": 120062, "based code": 15703, "inherently challenging": 76982, "analysis application": 8814, "llm input": 93763, "derived code": 39354, "provides actionable": 133104, "generation evaluations": 64623, "intelligent autonomous": 78941, "interaction enabling": 79116, "difficult extract": 42149, "context limiting": 30833, "limiting number": 92892, "achieving significantly": 4213, "allow developers": 8335, "timeconsuming tedious": 166563, "studies conducted": 156966, "stepbystep guidance": 155698, "technique mitigate": 163785, "models pursuit": 108746, "planning motion": 123300, "generation core": 64540, "costperformance tradeoffs": 32809, "open ended": 116230, "performance privacy": 121945, "better future": 17881, "behaviours large": 16744, "papers primarily": 119400, "overview present": 118441, "analysis apply": 8817, "surprisingly significant": 159576, "chatgpt project": 23216, "assertion types": 13031, "work complements": 178850, "better assessment": 17809, "discrete language": 42805, "simtoreal transfer": 151630, "transfer transfer": 169000, "learning policies": 90828, "llms global": 95406, "global planner": 66103, "scene comprehension": 146727, "generic object": 65665, "object classes": 115111, "zeroshot interactive": 180218, "users solve": 173783, "performance interactive": 121689, "agent design": 6431, "design work": 39802, "framework simplifies": 61418, "specification used": 154313, "guarantees llm": 68120, "largescale testing": 89407, "set potential": 149270, "vlms achieved": 177449, "furthermore seamlessly": 62160, "contextaware systems": 30985, "trained leveraging": 167983, "functionality present": 61889, "prompt systems": 130685, "prompts combined": 131191, "contrast approach": 31295, "involves simple": 80763, "navigation train": 112068, "iterative design": 81118, "building findings": 19405, "study 12": 157121, "intelligent code": 78945, "escalating complexity": 50417, "analysis agent": 8806, "holds considerable": 70266, "robots navigate": 145226, "grounding dino": 67892, "engineering example": 48912, "risk data": 144934, "codet5 plbart": 25328, "prompts problem": 131417, "findings pinpoint": 58743, "work calls": 178832, "achievements obtained": 3929, "benchmarking language": 17142, "providing limited": 133328, "training incentives": 168486, "contributions proposing": 31505, "social welfare": 152676, "framework inference": 61224, "regenerate new": 138910, "llms opensourced": 95995, "conducted formative": 29255, "approach generated": 11250, "distinguish correct": 43274, "mechanism significantly": 100027, "notable reduction": 114244, "existing policies": 53523, "dynamics environment": 45206, "successful policies": 158354, "pretrained policies": 127141, "domain generating": 44178, "environment interactions": 50007, "dynamics unknown": 45218, "model testing": 104738, "focused creating": 60088, "diverse concepts": 43486, "identified diverse": 71821, "llms mastering": 95864, "combining vision": 25998, "signals work": 150542, "learns policy": 91191, "prompts multitask": 131380, "improvement success": 73854, "causes software": 21265, "llms promises": 96223, "validation specifically": 175380, "generation develop": 64572, "validation effectiveness": 175360, "systems analysis": 160240, "biases popular": 18300, "impressive incontext": 73304, "consider textual": 29594, "exploit llms": 55011, "programs given": 129909, "examples positive": 52654, "feedback based": 57646, "objective train": 115230, "gpt35 terms": 66861, "expert supervision": 54594, "instead approach": 77864, "learns accomplish": 91172, "llms witnessed": 97011, "altering landscape": 8536, "examine biases": 52368, "bias bias": 18103, "longer answers": 97521, "measure bias": 99831, "leveraging semantics": 91951, "benchmarks outperforming": 17320, "range visual": 135732, "unified vision": 171754, "significant engineering": 150700, "costs recently": 32845, "mllms emerged": 102817, "framework mitigating": 61308, "address visual": 5386, "selection tuning": 147896, "classification information": 24017, "algorithmic perspective": 7885, "measure potential": 99867, "model took": 104750, "efficient reinforcement": 46702, "crucial training": 33879, "important properties": 73174, "based properties": 16042, "algorithm tailored": 7866, "scientific experiments": 146960, "represent major": 140644, "major step": 98452, "generation coherent": 64503, "planning crucial": 123260, "framework task": 61449, "representations measure": 140848, "ability reconstruct": 2348, "explore robustness": 55291, "areas science": 12390, "open platform": 116259, "agents potential": 6688, "utilizing natural": 175219, "nonexpert user": 114059, "data tools": 35869, "agent autonomous": 6416, "interact agent": 79049, "responses common": 142744, "different goals": 41786, "novel highlevel": 114538, "user sends": 173493, "check details": 23526, "new interesting": 113239, "existing generative": 53378, "diversity limited": 43744, "leverages semantic": 91777, "descriptors produced": 39532, "codes existing": 25301, "function guiding": 61839, "consider integrate": 29573, "granular understanding": 67476, "representation code": 140677, "obtain features": 115475, "improving potential": 74187, "navigation efficiency": 112057, "complex noisy": 27502, "challenging visual": 22318, "task real": 161676, "powerful foundation": 125274, "descriptions online": 39485, "maintain spatial": 98331, "understanding unseen": 171520, "lab environment": 82671, "incentive compatible": 74305, "stochastically generated": 155828, "problem generally": 128264, "problem key": 128293, "possible design": 124411, "forms based": 60591, "function llm": 61845, "generation intention": 64756, "performing code": 122393, "participants use": 120026, "performance pass1": 121899, "perform largescale": 120976, "user participation": 173462, "method simulate": 101110, "understanding complete": 171166, "code accurately": 24651, "set realworld": 149290, "create examples": 33198, "capable assessing": 20403, "comment pairs": 26056, "accuracy dataset": 3193, "generated pairs": 63933, "groups existing": 67968, "methods bias": 101350, "data advanced": 34603, "analysis generation": 8945, "results uses": 143900, "programs propose": 129928, "personalized large": 122605, "perspectives work": 122723, "problem compared": 128200, "achieve personalized": 3707, "user work": 173534, "skills given": 152162, "prompt incontext": 130542, "possess understanding": 124354, "range common": 135598, "samples focus": 146015, "consistent policy": 29832, "adaptively adjusts": 4789, "reasoning aspects": 136677, "llms closedloop": 94614, "closedloop planning": 24480, "serve baselines": 148963, "effective automated": 45700, "evaluation focuses": 51595, "compare leading": 26690, "researchers tool": 142265, "considering chatgpt": 29704, "evolutionary optimization": 52292, "investigates novel": 80573, "new version": 113494, "safe reinforcement": 145808, "performance safety": 122037, "tension objectives": 164352, "propose safe": 132108, "ability mitigate": 2278, "mitigate harmful": 102609, "hinder efficiency": 70133, "simple blackbox": 151411, "costs findings": 32826, "llms compromising": 94680, "compromising general": 28278, "strategy combining": 156117, "comparable gpt35turbo": 26579, "coding large": 25388, "acquire complex": 4251, "outperform expert": 117589, "diverse suite": 43667, "opensource rl": 116676, "rl environments": 145052, "environments include": 50082, "rapid speed": 135907, "performance binary": 121204, "ai leveraging": 7067, "generative techniques": 65599, "text reason": 165407, "developing testing": 41031, "comprehensive strategies": 28123, "environmental factors": 50043, "creative tool": 33382, "complicated realworld": 27717, "locally optimal": 97290, "tree searchbased": 169668, "adoption software": 5656, "existing bug": 53308, "gpt training": 66504, "generalize results": 63270, "realworld java": 136469, "agents visual": 6763, "process akin": 128733, "easy understand": 45360, "collect extensive": 25660, "prediction planning": 125840, "range perspectives": 135670, "training utilization": 168814, "capabilities evaluations": 19878, "complex history": 27429, "rl reinforcement": 145073, "model optimizing": 104160, "assumption human": 13564, "optimization challenges": 116984, "preferences learning": 126052, "original base": 117316, "associated source": 13509, "increase f1score": 75205, "offering alternative": 115729, "demonstrating proficiency": 38949, "interpreting generating": 79733, "smart contract": 152474, "development including": 41137, "evaluating critical": 51283, "conventional accuracy": 31688, "tasks overlooked": 162905, "trustworthy model": 169871, "paper formally": 118960, "weaknesses code": 177960, "state action": 154979, "feedback aim": 57640, "proposed reward": 132427, "application value": 10395, "particularly target": 120262, "suite called": 158719, "largescale benchmark": 89273, "webbased application": 178029, "architectures technologies": 12297, "research result": 142051, "feature requests": 57426, "construction approaches": 30205, "description target": 39426, "form user": 60493, "egocentric vision": 46951, "recognizing objects": 138175, "objects robustly": 115304, "technique effectively": 163762, "ego4d epickitchens": 46947, "tracking task": 167542, "improvements average": 73878, "agent equipped": 6440, "action programs": 4334, "instruction correction": 77972, "need improvement": 112316, "techniques response": 164014, "moe technique": 110020, "effectively transfers": 46097, "smallscale models": 152462, "model retrieve": 104481, "ppo reinforcement": 125372, "users applications": 173580, "high context": 69427, "results achieves": 143158, "achieves 78": 3944, "especially mobile": 50514, "integral daily": 78475, "lives despite": 93264, "exploration evaluate": 55068, "behaviors lead": 16711, "sufficient understanding": 158502, "framework analysis": 60954, "requirements additionally": 141275, "used feedback": 173070, "building safe": 19448, "values ai": 175518, "align outputs": 8026, "values critical": 175526, "arising limitations": 12467, "investigate specific": 80498, "align ai": 7991, "agents values": 6761, "time windows": 166529, "whitebox models": 178237, "corpus generate": 32312, "harmful toxic": 68753, "like ppo": 92376, "alignment complex": 8134, "emerged offering": 47376, "costly need": 32794, "data considering": 34833, "chatgpt relatively": 23261, "instructionfollowing responses": 78195, "bottleneck introduce": 18892, "model blackbox": 103219, "exceeds existing": 52759, "value evaluating": 175482, "detectors proposed": 40681, "designed purpose": 39934, "repair dataset": 140407, "explanatory text": 54914, "capabilities present": 20112, "approach supervised": 11582, "generalization use": 63236, "model online": 104146, "evaluations experimental": 51969, "data ai": 34609, "optimization ddpo": 116987, "tasks metaworld": 162794, "comparison recent": 27063, "using endtoend": 174164, "environments like": 50093, "neural policy": 112961, "based verbal": 16174, "verbal commands": 176434, "behavior particular": 16625, "language conditioned": 83211, "massively multitask": 99390, "multimodal tools": 110777, "prompts inaccurate": 131322, "efficiency versatility": 46554, "dataset llms": 36394, "models generalist": 106428, "learn wide": 90076, "generation simulation": 65090, "generate 3d": 63379, "images 3d": 72389, "files generated": 58328, "learning robot": 90952, "llmpowered tool": 94231, "specific types": 154120, "improve detection": 73443, "focus types": 60073, "method adversarial": 100665, "evolutionary search": 52293, "evaluates new": 51244, "getting stuck": 65784, "investigate power": 80475, "llms advancements": 94364, "imperative paper": 72799, "lidar points": 92060, "containing objects": 30341, "scored higher": 147114, "approach accurate": 10943, "chatgpt advance": 22686, "testing chatgpt": 164700, "wellknown artificial": 178166, "chatbot used": 22591, "purpose conduct": 133736, "comparable large": 26585, "considering privacy": 29728, "balancing performance": 15519, "model looks": 104045, "sum paper": 158752, "insights using": 77666, "light tradeoffs": 92156, "randomly sample": 135568, "llms exist": 95165, "models prevents": 108635, "created model": 33265, "world impact": 179560, "trading performance": 167583, "composed models": 27792, "40 time": 1176, "safe effective": 145802, "environment train": 50035, "achieve acceptable": 3574, "formats modalities": 60565, "environment hand": 50003, "text describing": 165006, "code editing": 24797, "practical usefulness": 125461, "editing scenarios": 45484, "reveal opensource": 144360, "lack adaptability": 82880, "inspired popular": 77745, "guessing game": 68130, "intelligence performance": 78876, "agent possess": 6487, "abilities deep": 1892, "incorporating multiagent": 75120, "framework easy": 61095, "design flexible": 39634, "assignment systems": 13327, "collecting human": 25712, "data optimizing": 35448, "rlhf relies": 145098, "various pieces": 176104, "methods selected": 101804, "selected llm": 147799, "help close": 69098, "good performances": 66286, "response development": 142637, "potential variety": 125063, "quick accurate": 135331, "perception decisionmaking": 120800, "intelligence based": 78790, "forecasts future": 60384, "field comprehensive": 58138, "generalizing outofdistribution": 63294, "single type": 151873, "model reasons": 104418, "trends multimodal": 169724, "propose visionlanguage": 132214, "99 accuracy": 1831, "ai emergence": 6971, "referred ai": 138707, "utilizes machine": 175149, "autocomplete code": 14455, "issues solutions": 81061, "solutions resolve": 153071, "issue common": 80889, "copilot users": 32111, "progress vision": 130031, "data resolve": 35661, "including robotics": 74707, "robotics data": 145206, "novel visionlanguage": 114746, "opensource vlms": 116685, "exceeding stateoftheart": 52749, "adapt vlms": 4569, "models autonomous": 105427, "training ability": 168139, "autonomy stack": 14965, "control inputs": 31552, "experiments ability": 54128, "scenarios robot": 146696, "model gptj": 103770, "14 llms": 379, "testing zeroshotfewshot": 164768, "utilizing complex": 175177, "investigated address": 80526, "api sequence": 10170, "various llmgenerated": 176017, "api sequences": 10171, "environments framework": 50079, "representation enable": 140683, "delivers performance": 38079, "broader set": 19222, "including mobile": 74621, "algorithms face": 7924, "llms encoder": 95063, "learning robotic": 90953, "agent developing": 6434, "provide humanlike": 132826, "question specifically": 134939, "usefulness generated": 173363, "promise pitfalls": 130196, "pitfalls chatgpt": 123125, "prompts categories": 131182, "curated enable": 34015, "meticulous manual": 101940, "assessment methodology": 13246, "evaluating correctness": 51282, "strengths data": 156250, "highlights chatgpts": 69848, "design superior": 39772, "accuracy suggesting": 3399, "metrics qualitative": 102134, "makes valuable": 98699, "contributions advancing": 31489, "plan corresponding": 123206, "specified task": 154337, "predictive control": 125947, "manipulation llms": 98953, "control work": 31604, "building idea": 19419, "structure object": 156587, "objects generate": 115285, "manipulation effectively": 98943, "precise 3d": 125572, "shows powerful": 150462, "different object": 41884, "agents meet": 6657, "problems bridging": 128462, "challenge explore": 21640, "frameworks ability": 61504, "outcomes additionally": 117446, "code learning": 24975, "ai improving": 7038, "improving software": 74219, "classification generated": 24005, "employed including": 47888, "including logistic": 74600, "forest neural": 60407, "study showcases": 157628, "models codellms": 105658, "solutions remains": 153068, "focuses modeling": 60153, "inputs approach": 77385, "track 2023": 167520, "develop solutions": 40838, "model tools": 104752, "methodology uses": 101258, "language modelgenerated": 83976, "python scripts": 133853, "used case": 172988, "study believe": 157185, "entry building": 49971, "automated proof": 14596, "proof synthesis": 131583, "adoption recently": 5652, "iteratively queries": 81158, "intelligence robotics": 78895, "understand surroundings": 171085, "tasks missing": 162802, "introduced knowledge": 80159, "method instantiate": 100932, "prompting patterns": 131037, "amenable automation": 8654, "lack tools": 83021, "tools methods": 167210, "metrics precision": 102127, "turbo perform": 170159, "alignment alignment": 8123, "currently main": 34335, "alignment approaches": 8124, "based supervised": 16120, "expected behaviors": 53750, "problem make": 128317, "querying databases": 134648, "creating structured": 33324, "reasoning implicit": 136906, "existing static": 53585, "intentions given": 79034, "achieves precision": 4056, "false alarm": 57155, "alarm rate": 7742, "llms suggests": 96726, "llm achieving": 93435, "performance heldout": 121622, "dataset likely": 36392, "module context": 109924, "highlight differences": 69734, "categories results": 21120, "incorporating context": 75087, "lack publicly": 82991, "reports paper": 140603, "gpt4all model": 67227, "technical overview": 163709, "ecosystem llm": 45408, "learning prior": 90854, "dont need": 44657, "primary factors": 127809, "demands intricate": 38160, "enhance multistep": 49243, "iteratively develop": 81150, "requirements making": 141308, "difficult nonexperts": 42165, "model server": 104551, "agents analyze": 6538, "robustness safety": 145431, "article proposes": 12595, "model involves": 103903, "memory decisionmaking": 100387, "public events": 133568, "specific public": 154066, "high flexibility": 69462, "metric uses": 101989, "consistently ranks": 29918, "suggest metric": 158565, "task making": 161537, "bart models": 15584, "correct critical": 32381, "demonstrated closedsource": 38631, "tasks multimodality": 162825, "suggests unique": 158676, "intelligence complex": 78798, "swift progress": 159771, "aims summarize": 7675, "robotics recent": 145209, "decisionmaking control": 37406, "way significant": 177874, "generating python": 64304, "accuracy time": 3408, "examine aspects": 52367, "significant variations": 150917, "study lays": 157467, "implications utilizing": 72961, "learning python": 90888, "completion work": 27347, "capabilities integrating": 19972, "past history": 120388, "capabilities proposed": 20132, "field leveraging": 58194, "leverages linguistic": 91749, "explore evaluate": 55199, "models games": 106422, "fundamental reasoning": 61974, "reasoning programs": 137068, "properties given": 131645, "formal proof": 60512, "undecidable problem": 170751, "remains far": 140008, "problems programs": 128602, "loops design": 97632, "checked correctness": 23534, "correctness using": 32506, "versions given": 176618, "detection powerful": 40590, "version code": 176603, "advancements code": 5872, "30 evaluation": 962, "code modeling": 25010, "taken nlp": 160969, "annotation generated": 9531, "annotation resources": 9549, "generation distribution": 64586, "based comprehensive": 15713, "embeddings code": 47218, "capabilities field": 19900, "model ptm": 104392, "entire code": 49797, "semantics rich": 148319, "methods 100": 101265, "paradigm test": 119518, "knowledge help": 82096, "stated paper": 155036, "extraction contextual": 56274, "knowledge suggesting": 82440, "extraction applied": 56256, "multiagent environments": 110320, "framework captures": 60999, "llms multiagent": 95903, "navigating complex": 112051, "social cognitive": 152538, "dimensions benchmark": 42325, "narrow range": 111462, "dire need": 42365, "systems multilingual": 160487, "programming environments": 129816, "satisfy diverse": 146174, "programming practices": 129862, "coverage compared": 33051, "dataset case": 36145, "utility safety": 174975, "language grounding": 83396, "grounding physical": 67920, "information second": 76750, "second level": 147488, "physics principles": 122944, "settings establish": 149567, "sufficiently address": 158505, "raise open": 135453, "levels domain": 91536, "proficiency learning": 129667, "productivity large": 129605, "smaller encoderonly": 152391, "builds existing": 19465, "existing natural": 53498, "curated subset": 34027, "method best": 100714, "documents understanding": 43942, "humans encompassing": 71380, "code teacher": 25174, "learner generating": 90143, "bugs based": 19288, "explored automatic": 55337, "problem immense": 128275, "immense search": 72601, "search outperforms": 147387, "search history": 147363, "engineering algorithm": 48878, "communities resulting": 26444, "understand key": 171030, "contract code": 31276, "select large": 147780, "evaluation general": 51615, "provides efficient": 133139, "demonstrated performance": 38733, "feedback time": 57808, "experiences based": 53859, "visual similarity": 177311, "online language": 116112, "retrieves knowledge": 144271, "outperforms techniques": 117878, "intelligence especially": 78811, "elaborate design": 46965, "design workflow": 39803, "construction execution": 30215, "agents empirical": 6587, "assistants paper": 13420, "assistants rely": 13428, "reveals major": 144435, "getting worse": 65785, "application developers": 10312, "cause performance": 21250, "performance regression": 122006, "study toxicity": 157671, "perception human": 120805, "deploy generated": 39196, "evaluates correctness": 51228, "popular stateoftheart": 124058, "taxonomy highlights": 163580, "highlights common": 69849, "physical interaction": 122900, "technological advancements": 164067, "extended reality": 55663, "environments 3d": 50059, "experience compared": 53827, "challenges concerning": 21805, "apis prompt": 10198, "humans distinguishing": 71376, "agents operating": 6676, "individual component": 75708, "component integrated": 27736, "examples complex": 52540, "writing secure": 179750, "learn write": 90078, "evaluation prompting": 51795, "average number": 15300, "pipeline enhances": 123051, "video task": 176739, "navigation natural": 112062, "available multimodal": 15166, "need present": 112365, "spatial relation": 153799, "reveal approach": 144315, "agent 3d": 6407, "3d world": 1155, "schemes large": 146806, "challenge remains": 21728, "interacting 3d": 79084, "argue limitation": 12411, "significantly hinders": 151014, "3d visionlanguage": 1153, "necessitating deep": 112187, "3d captioning": 1125, "trajectory prediction": 168867, "reliable autonomous": 139718, "current trajectory": 34285, "account potential": 3079, "environments results": 50109, "integration autonomous": 78644, "learning widely": 91135, "curated high": 34017, "captions improve": 20612, "visual appeal": 177109, "appeal text": 10218, "account diffusion": 3074, "finetune base": 58912, "improving visual": 74236, "critical process": 33534, "takes significant": 160995, "employs distinct": 47958, "extract representations": 56155, "representation capabilities": 140674, "dpo method": 44863, "minimizing computational": 102388, "relative scale": 139382, "using groundtruth": 174286, "teacher training": 163625, "tackling specific": 160876, "agent incorporating": 6452, "guidance teacher": 68164, "agents particular": 6679, "objects introduce": 115289, "commonsense object": 26288, "capabilities commonsense": 19821, "norms safety": 114204, "physical state": 122913, "questions probing": 135231, "model space": 104636, "solve model": 153130, "statistical signal": 155509, "complex global": 27423, "llms binary": 94500, "similarity detection": 151341, "prediction designed": 125785, "optimization align": 116977, "preferences recently": 126067, "crucial ingredient": 33811, "distribution finally": 43360, "modeling assumptions": 104971, "annotators diverse": 9630, "learning automation": 90235, "showed potential": 150148, "future potential": 62300, "performance presence": 121927, "technique align": 163739, "given response": 65990, "rate improved": 135997, "diversity inclusion": 43734, "requirements ai": 141276, "raising ethical": 135502, "risks perpetuating": 145011, "needs diverse": 112470, "values essential": 175533, "engineering fundamental": 48924, "fundamental process": 61969, "additionally investigated": 5086, "investigated capability": 80529, "model multiagent": 104101, "networks multiagent": 112776, "array issues": 12516, "online safety": 116133, "data accurately": 34577, "emergent effects": 47480, "measured accuracy": 99886, "detection technique": 40635, "technique commonly": 163751, "rlhf played": 145094, "network finetunes": 112652, "algorithm framework": 7808, "code generators": 24933, "principles transform": 127869, "benchmarks finetuning": 17250, "30 compared": 958, "evolution using": 52283, "evolution model": 52272, "algorithm obtained": 7834, "simple handcrafted": 151468, "compared domain": 26789, "modelbased algorithms": 104926, "initial code": 77015, "aid subsequent": 7369, "coding abilities": 25365, "traditional zeroshot": 167718, "solutions structured": 153077, "agents master": 6656, "modular customizable": 109903, "software platform": 152831, "robot operating": 145180, "operating ros": 116752, "effectiveness developing": 46158, "socially interactive": 152679, "multimodal behaviors": 110592, "lowering barriers": 97851, "exhibit correct": 53034, "correct behavior": 32375, "potential automatically": 124611, "detecting logic": 40413, "generating explaining": 64208, "learning programming": 90864, "address inherent": 5250, "indepth domain": 75529, "knowledge intricate": 82145, "structure comprising": 156542, "promising enhanced": 130253, "modules hierarchical": 109984, "objects multiple": 115293, "based key": 15891, "overall reliability": 118224, "static image": 155462, "demonstrated text": 38813, "hand training": 68497, "inefficient paper": 75905, "benchmark highlight": 16993, "rate llms": 136005, "llms touted": 96814, "daily work": 34519, "discussed topic": 42968, "unclear potential": 170701, "evidence use": 52227, "degree current": 38012, "current tools": 34283, "significantly results": 151151, "simulation world": 151724, "ai simulate": 7216, "simulation effectiveness": 151690, "collective human": 25767, "attributes leading": 14118, "understanding historical": 171281, "enhanced context": 49327, "unveiling power": 172312, "models perceive": 108455, "jointly reason": 81284, "process enabling": 128808, "world including": 179561, "spatial layouts": 153788, "supports flexible": 159395, "flexible multimodal": 59817, "goal specification": 66198, "simulated environments": 151658, "effectiveness wide": 46321, "various behaviors": 175830, "works thoroughly": 179513, "gpt agents": 66384, "demanding tasks": 38151, "valuable time": 175458, "new breed": 113098, "tools aim": 167097, "prompts contextualized": 131206, "contextualized information": 31128, "following initial": 60280, "lessons technical": 91431, "better prepared": 17982, "collection evaluation": 25733, "compared common": 26764, "prediction experimental": 125792, "algorithm problem": 7843, "methods extend": 101507, "samples human": 146022, "baselines realworld": 16361, "selected vocabulary": 147807, "textual query": 165940, "added text": 4816, "available blackbox": 15077, "critically important": 33583, "research built": 141624, "foresee future": 60402, "introduce integration": 79988, "structured representation": 156671, "gap past": 62699, "past future": 120387, "modern learning": 109813, "related objects": 139188, "introduce chinese": 79932, "agents developed": 6580, "developed specialized": 40918, "specialized methods": 153902, "skills furthermore": 152160, "aims offer": 7643, "consistently generates": 29874, "model term": 104733, "novel algorithmic": 114354, "descent algorithm": 39374, "architectures demonstrate": 12255, "focus structured": 60058, "recently address": 137823, "gap researchers": 62729, "extract rules": 56156, "synthesis increasing": 159948, "diverse sectors": 43643, "automated novel": 14583, "emphasis safety": 47623, "generate unique": 63769, "disruptive impact": 43099, "intelligence mainly": 78859, "decisionmaking important": 37413, "important reference": 73183, "diverse object": 43594, "generate scene": 63696, "interactive feedback": 79308, "greatly increases": 67795, "objects diverse": 115283, "decision framework": 37368, "safety chatgpt": 145847, "direct integration": 42388, "leverage chatgpts": 91573, "ai robot": 7201, "meet functional": 100278, "priors specifically": 127980, "collects diverse": 25778, "arrangement examples": 12507, "positioning objects": 124279, "superficial alignment": 158971, "alignment hypothesis": 8162, "llms posing": 96128, "web development": 178004, "incorporating domain": 75091, "improvement based": 73761, "llm aims": 93455, "planning results": 123319, "white box": 178226, "methods reinforcement": 101764, "target ai": 161040, "spurring research": 154629, "integrate diverse": 78484, "mitigate inherent": 102612, "production diverse": 129588, "realistic controllable": 136287, "answering remarkable": 9954, "humanannotated preference": 71127, "human llmgenerated": 70919, "data pairs": 35458, "pairs tailored": 118621, "model huggingface": 103808, "identify remove": 71951, "space use": 153628, "knowledge devise": 81872, "devise novel": 41330, "instances paper": 77840, "demonstration videos": 38986, "remarkable comprehension": 140187, "executes actions": 52925, "rate experimental": 135988, "realworld robots": 136490, "output users": 118015, "harmless recent": 68758, "framework human": 61204, "automation advent": 14895, "opportunities field": 116848, "capabilities allow": 19779, "allows precise": 8463, "modular components": 109902, "mobile tasks": 102908, "accuracy reduces": 3368, "gpt4 powered": 67116, "evaluation apply": 51433, "actions grounded": 4374, "digital space": 42294, "models abms": 105197, "real digital": 136227, "chatgpt reached": 23247, "reached 100": 136124, "prompt hacking": 130536, "manipulate llm": 98928, "span broad": 153648, "literacy gap": 93147, "gap effectively": 62639, "generative chatbots": 65403, "used business": 172987, "using conversational": 174091, "instruction describing": 77984, "values similar": 175556, "similar incorrect": 151254, "possibility designing": 124378, "development human": 41132, "human consciousness": 70664, "development relies": 41209, "contrast common": 31297, "interactions lead": 79241, "design interfaces": 39663, "correctness automatically": 32480, "field recent": 58237, "prompt problem": 130639, "intelligence model": 78861, "coherent content": 25524, "documentation support": 43872, "tools significantly": 167252, "data conducted": 34827, "support individuals": 159301, "propose agent": 131703, "investigate systems": 80501, "experiments superiority": 54484, "learning field": 90458, "drone autonomy": 45030, "review offers": 144526, "enhancing operational": 49537, "underscore challenges": 170912, "challenging road": 22264, "3d physical": 1139, "especially code": 50435, "updating models": 172365, "based mechanism": 15943, "automatically large": 14835, "tool frequently": 166977, "theory capability": 166076, "theory specifically": 166102, "fundamental principle": 61965, "analyze extent": 9292, "instance llms": 77803, "taking actions": 161002, "worth millions": 179680, "motivate new": 110167, "llms defined": 94799, "prompted fewshot": 130813, "findings design": 58659, "generated gpt35turbo": 63878, "leveraging reinforcement": 91945, "process recent": 128961, "rely machine": 139869, "process compare": 128758, "models concerning": 105728, "guiding chatgpt": 68270, "matching key": 99466, "techniques chatgpt": 163851, "global view": 66112, "chatgpt design": 22843, "important insights": 73148, "using visionlanguage": 174856, "efficient technique": 46722, "tasks combination": 162074, "online videos": 116153, "text motion": 165315, "falls outside": 57149, "presenting challenges": 126537, "expressions human": 55597, "adopt various": 5587, "generate sequences": 63709, "actions time": 4395, "explicit programming": 54951, "assistant automatically": 13385, "interface elements": 79427, "predicting actions": 125734, "enable automated": 48064, "environment notably": 50017, "exceptional reasoning": 52842, "excel ability": 52764, "ability integrate": 2231, "inputs realtime": 77439, "progress visual": 130033, "scenarios benchmark": 146541, "realworld videos": 136540, "objects complex": 115277, "mllms revealing": 102848, "models evolved": 106179, "humanobject interactions": 71315, "feedback introduce": 57714, "instructions learning": 78298, "speed learning": 154508, "potentially benefit": 125082, "humans existing": 71385, "task isnt": 161498, "robust various": 145334, "gym interface": 68301, "automatic blackbox": 14643, "effectiveness use": 46310, "robotics ai": 145201, "method llm": 100966, "collected observations": 25697, "environments video": 50120, "directly consider": 42525, "instruction generate": 78022, "consecutive human": 29515, "scene semantic": 146743, "efficiency exploring": 46457, "evolving digital": 52307, "digital landscape": 42289, "individual gpt": 75718, "12 participants": 274, "user strategies": 173503, "research technical": 142113, "similar systems": 151310, "preferences large": 126050, "pluralistic world": 123682, "calibration performance": 19642, "data negatively": 35420, "alpaca7b model": 8516, "key metric": 81536, "usually struggle": 174920, "openended multimodal": 116496, "design sophisticated": 39761, "functional modules": 61876, "22 success": 774, "entirely novel": 49825, "online model": 116115, "future survey": 62387, "survey applications": 159608, "applications pretrained": 10640, "stack perception": 154715, "openvocabulary visual": 116719, "remain particularly": 139929, "data safety": 35685, "provide opportunities": 132910, "pathways future": 120453, "paper preliminary": 119103, "llms 6g": 94245, "communication data": 26365, "enhance potential": 49257, "feasible solutions": 57378, "agent provide": 6492, "considerable traction": 29640, "concerns implications": 28783, "language purpose": 86676, "believe tool": 16793, "intersection union": 79767, "union iou": 171814, "different classic": 41687, "classic reinforcement": 23928, "perform static": 121048, "examining code": 52442, "analysis hampered": 8953, "analysis especially": 8911, "analysis specifically": 9174, "prototype tool": 132599, "taint analysis": 160959, "analysis prototype": 9094, "specific design": 153970, "customized llm": 34406, "llm solution": 94009, "generation remarkable": 65042, "furthermore successfully": 62166, "function single": 61858, "versatile action": 176557, "access control": 2851, "novel field": 114500, "conclude hybrid": 28870, "new use": 113488, "resource accessibility": 142372, "script generated": 147245, "advanced learning": 5760, "ability avoid": 2078, "allowing generate": 8373, "falcon 7b": 57109, "questions exhibit": 135120, "complex ways": 27648, "consistently perform": 29915, "make empirical": 98530, "challenge aligning": 21585, "multidisciplinary approach": 110381, "approach testing": 11606, "development wide": 41263, "responsible agi": 142953, "environment provide": 50022, "provide dynamic": 132759, "interact make": 79066, "mimicking realistic": 102272, "serve primary": 148997, "exhibiting high": 53168, "dynamics research": 45215, "endeavors contribute": 48702, "models binary": 105523, "functions introduce": 61911, "pivotal insights": 123146, "literature effective": 93166, "highlight tradeoffs": 69789, "establish best": 50656, "interplay iterative": 79612, "course future": 33007, "software engineeringspecific": 152814, "particularly true": 120270, "language frequently": 83335, "technical concepts": 163693, "automatic tools": 14755, "detection furthermore": 40513, "prevalence impact": 127502, "emotion classification": 47562, "documentation essential": 43869, "completeness relevance": 27310, "relevance understandability": 139568, "levels code": 91526, "evaluation employs": 51563, "comparable generation": 26577, "service health": 149063, "perception modeling": 120813, "computer graphics": 28476, "initial progress": 77044, "integrating datadriven": 78589, "localization repair": 97278, "identifying root": 72029, "methodology designed": 101218, "dynamics human": 45207, "domain findings": 44167, "considerations research": 29673, "collaboration realize": 25600, "consider types": 29597, "results chatgpts": 143225, "terms coverage": 164404, "performance superior": 122137, "suggesting combination": 158612, "agents field": 6609, "focuses teaching": 60163, "insights textual": 77658, "analysis considering": 8866, "capabilities safety": 20165, "tasks regular": 163112, "consider standard": 29592, "investigate behavior": 80377, "applications framework": 10536, "framework robust": 61394, "novel rlhf": 114679, "experiment large": 53895, "practical implementations": 125422, "outdoor 3d": 117478, "build 3d": 19300, "llm build": 93515, "reducing manual": 138579, "concepts unseen": 28696, "tool modeling": 167012, "systems offering": 160500, "behaviors interactions": 16704, "challenges promising": 22021, "interdisciplinary field": 79380, "model evolution": 103577, "artifacts software": 12642, "evolution supporting": 52282, "evolution software": 52280, "systems controlled": 160311, "contrast behavior": 31296, "editing instruction": 45461, "edge llms": 45421, "evaluation exposes": 51581, "detailed case": 40274, "llms construction": 94714, "garnering attention": 62796, "attention tools": 13993, "methodology systematically": 101254, "aiming shed": 7563, "light practical": 92136, "efficacy challenges": 46361, "methodologies employing": 101192, "sports games": 154589, "applicability domains": 10255, "selecting source": 147825, "aim use": 7502, "best tool": 17760, "tool based": 166949, "tool evaluation": 166972, "advancement natural": 5853, "designer agent": 39976, "sota baselines": 153341, "languages core": 86967, "expose new": 55539, "boosting human": 18837, "works leveraging": 179463, "mechanism adept": 99974, "remains substantial": 140077, "development based": 41061, "reducing errors": 138565, "video generative": 176712, "images sequence": 72484, "future images": 62268, "methods improves": 101584, "scenes objects": 146753, "pipelines paper": 123113, "detailed investigation": 40304, "involves data": 80725, "prompt elements": 130434, "app built": 10208, "insights evolving": 77558, "editing tools": 45492, "industrial robots": 75858, "range industries": 135631, "applications investigate": 10571, "finetuning foundation": 59274, "exploration alignment": 55050, "llms judgments": 95694, "fully capitalize": 61747, "alignment results": 8231, "judgment data": 81319, "method systematically": 101133, "generation new": 64882, "set natural": 149248, "correctly solves": 32473, "openai cohere": 116332, "systematically identifying": 160190, "values training": 175561, "objectives article": 115238, "wideranging impact": 178450, "algorithms human": 7931, "understanding rapidly": 171434, "studies applied": 156952, "interactive use": 79347, "demonstrate qualitative": 38514, "improvement significant": 73849, "source libraries": 153456, "required achieve": 141219, "quantitative studies": 134380, "existing documentation": 53351, "demonstrates 70": 38821, "queries popular": 134516, "generates realistic": 64099, "examples addition": 52519, "setting enhancing": 149450, "depends quality": 39184, "quality issue": 134174, "tasks survey": 163328, "maintenance software": 98404, "techniques employing": 163878, "information applications": 76281, "commonly utilized": 26248, "aspects optimization": 12960, "optimization applications": 116980, "security attacks": 147562, "opportunities applying": 116827, "understanding achievements": 171112, "repair approach": 140399, "traditional visual": 167715, "scenes multiple": 146752, "paper investigated": 119043, "presented novel": 126525, "approaches trained": 11933, "successfully learn": 158388, "control policy": 31574, "rate 970": 135974, "pioneering framework": 123018, "enhancing utility": 49583, "safety harmlessness": 145866, "assessing relative": 13202, "spectrum human": 154358, "researchers attempted": 142175, "taskoriented finetuning": 161850, "requires users": 141467, "users professional": 173743, "schemes widely": 146811, "finetuning scheme": 59526, "standardized assessment": 154900, "research highlight": 141824, "methodology data": 101215, "demonstrating current": 38926, "promise limitations": 130186, "ensure successful": 49707, "fundamental insight": 61954, "pose prediction": 124167, "world design": 179539, "simulator realworld": 151736, "automating knowledge": 14886, "applied learning": 10780, "experiment demonstrates": 53889, "developed binary": 40862, "algorithms ppo": 7962, "simulation human": 151698, "simulation ai": 151684, "consequently evaluating": 29542, "impact overall": 72705, "facilitating autonomous": 56698, "processing efficacy": 129147, "tools promising": 167235, "protocols multimodal": 132590, "communication protocols": 26406, "addressing increasing": 5451, "protocol design": 132581, "establish quantifiable": 50669, "verification complex": 176471, "verification validation": 176505, "adoption industrial": 5638, "patches based": 120413, "significance paper": 150556, "techniques providing": 163996, "discusses implications": 42973, "researchers leverage": 142231, "objective offline": 115218, "users world": 173819, "world result": 179614, "number important": 114876, "components leverages": 27762, "comprehension behavior": 27882, "behavior planning": 16628, "aimed advancing": 7509, "code exists": 24821, "observation llms": 115325, "relative baseline": 139358, "works overcome": 179474, "history available": 70217, "converge faster": 31744, "experts design": 54649, "algorithms automatically": 7903, "automatically paper": 14845, "depth accuracy": 39327, "accuracy specialized": 3393, "performance exploration": 121492, "reasons answer": 137248, "areas artificial": 12356, "tool integration": 166994, "issues considered": 80994, "critical insight": 33508, "potential integration": 124795, "advanced intelligent": 5744, "locate objects": 97292, "graph extract": 67528, "textbased descriptions": 165588, "images readily": 72473, "readily interpretable": 136177, "enhancements achieved": 49390, "literature uses": 93211, "descriptions remains": 39493, "data pipelines": 35486, "unpredictable potentially": 172100, "potentially catastrophic": 125084, "accuracy requirements": 3374, "different realworld": 41957, "inputoutput pair": 77381, "setup gpt4": 149673, "respectively contrast": 142545, "prediction highlighting": 125806, "model close": 103288, "improvement understanding": 73864, "offering advanced": 115728, "decisionmaking challenges": 37405, "challenges realm": 22035, "result model": 143049, "decisionmaking especially": 37411, "studies research": 157072, "llms forms": 95298, "high stakes": 69544, "social economic": 152569, "offer extensive": 115649, "surveys current": 159712, "reasoning needed": 137001, "perspectives assessing": 122700, "ai detectors": 6953, "implications education": 72918, "increasingly concerned": 75386, "potential exploitation": 124715, "detectors academic": 40670, "bypass detection": 19563, "samples sample": 146061, "corresponding humanwritten": 32586, "solution codes": 152910, "obtained various": 115538, "including 80": 74404, "outputs subsequently": 118128, "distinguishing humanwritten": 43299, "features natural": 57544, "endtoend methods": 48749, "descriptions objects": 39483, "exposing bias": 55547, "bias limited": 18153, "systems simulate": 160612, "increased scrutiny": 75272, "engineering solutions": 48988, "based research": 16072, "research need": 141921, "active efforts": 4427, "efforts support": 46935, "methodology inspired": 101240, "way applying": 177772, "centered large": 21325, "information align": 76273, "control benchmark": 31523, "including application": 74414, "effectively bridging": 45953, "environmental issues": 50049, "capabilities vlms": 20257, "vlms present": 177471, "vlms understanding": 177486, "worlds state": 179641, "reasoning control": 136775, "overview emerging": 118429, "perceptions results": 120840, "exemplar code": 52981, "snippets natural": 152514, "investigations indicate": 80654, "settings diverse": 149561, "code notably": 25031, "llm debugging": 93576, "models api": 105367, "problem effective": 128238, "reports crucial": 140588, "software oss": 152829, "automated processes": 14589, "research seeks": 142065, "devise automated": 41325, "maintaining reliability": 98376, "developed reliable": 40914, "approach accurately": 10944, "example knowing": 52483, "successful cases": 158337, "wrong predictions": 179804, "techniques total": 164041, "finally assess": 58415, "importance researching": 73057, "support essential": 159286, "llm employing": 93620, "employing prompt": 47943, "llms evolve": 95114, "code producing": 25063, "improved generation": 73689, "key technologies": 81591, "technologies researchers": 164112, "users efficiently": 173632, "obtain information": 115481, "deeply integrated": 37858, "step discuss": 155618, "architecture capability": 12128, "summarizing key": 158924, "followed indepth": 60240, "messages generated": 100544, "humans best": 71353, "explores limitations": 55406, "testing existing": 164712, "code descriptions": 24787, "description apply": 39403, "detect inconsistencies": 40363, "inconsistencies propose": 74825, "crucial technology": 33875, "harmless responses": 68759, "face following": 56529, "pairs dataset": 118562, "generalize examples": 63251, "outside distribution": 118148, "perspective propose": 122685, "mechanism multiple": 100014, "learning minimum": 90688, "existing rl": 53564, "rewriting task": 144742, "framework transforming": 61466, "information extensive": 76413, "improving access": 74106, "designed automate": 39820, "cognitive limitations": 25457, "provides blueprint": 133114, "finetuning offline": 59411, "comprising 680": 28257, "projects evaluate": 130111, "question benchmarks": 134836, "contexts assess": 31003, "hope facilitate": 70353, "machine human": 98004, "methods detectgpt": 101437, "carefully study": 20818, "techniques detecting": 163867, "detecting machinegenerated": 40415, "challenge compounded": 21606, "small talk": 152371, "leverage rules": 91660, "agents engage": 6595, "engage meaningful": 48822, "focused information": 60105, "notably identify": 114275, "research context": 141663, "directly integrated": 42559, "easily modify": 45330, "creating feedback": 33300, "minimum effort": 102402, "results demo": 143278, "capabilities reinforcement": 20150, "highlevel information": 69695, "setting framework": 149460, "abstract information": 2639, "exploration policy": 55094, "annotate types": 9442, "extract type": 56172, "successfully addressing": 158364, "technique aimed": 163738, "advancing automated": 6078, "measures evaluation": 99925, "subsequent researchers": 157954, "requires simple": 141440, "interaction ai": 79101, "active human": 4430, "build scalable": 19349, "business problems": 19545, "workflow automation": 179378, "model algorithms": 103101, "algorithms use": 7980, "capability present": 20357, "goal misgeneralization": 66179, "capabilities outofdistribution": 20092, "policies training": 123824, "scenarios rl": 146695, "learnt llm": 91197, "specifically convert": 154161, "r2r reverie": 135382, "vln agents": 177492, "agents require": 6714, "llms realistic": 96301, "comprises highquality": 28244, "samples assess": 145988, "tackle present": 160840, "potential realworld": 124933, "typically single": 170520, "unstable learning": 172207, "comprehensive feedback": 28056, "process investigate": 128884, "performance policy": 121915, "model supported": 104693, "potentially enhance": 125098, "ambiguous lack": 8639, "lack literature": 82980, "potential specific": 125001, "investigated approaches": 80528, "objective generate": 115201, "aligned given": 8050, "results deep": 143277, "better resource": 18008, "benchmark constructed": 16876, "gpt4 highlight": 67044, "number task": 114954, "field task": 58252, "baselines notably": 16353, "code finetuned": 24845, "finetuned repair": 59101, "employ recent": 47859, "exploration application": 55051, "application potential": 10361, "conventional manual": 31710, "robust representation": 145316, "verification strategy": 176499, "learning generated": 90498, "widelyused models": 178421, "underscore urgent": 170932, "bolster robustness": 18785, "dynamic scenes": 45162, "scenes large": 146751, "visual agents": 177105, "focus solving": 60053, "imagebased tasks": 72367, "dynamic video": 45172, "limited internal": 92786, "experiments incorporate": 54316, "tools assess": 167106, "domains novel": 44485, "novel llmdriven": 114574, "effectiveness benchmarks": 46135, "language identifying": 83407, "gpt4 accuracy": 66900, "objects 3d": 115271, "data encode": 34970, "generate subsequent": 63733, "captioning task": 20596, "optimization hardware": 116998, "design contrast": 39585, "exploration design": 55061, "codes analyzing": 25283, "outputs program": 118105, "challenging analyze": 22112, "stands extensive": 154930, "extensive code": 55733, "crafting formal": 33156, "semantics complex": 148289, "extent large": 56013, "straight line": 155916, "low error": 97751, "text completions": 164937, "generation styles": 65115, "ethically aligned": 50848, "emerges crucial": 47490, "extraction relevant": 56348, "information recently": 76681, "promise addressing": 130164, "novel optimization": 114622, "maintaining models": 98368, "largely reduced": 89168, "signal current": 150518, "pro gpt4": 128067, "prowess various": 133423, "llms enhancement": 95079, "llm integrated": 93769, "research era": 141758, "identified challenges": 71817, "potential innovative": 124789, "innovative collaboration": 77163, "application designing": 10311, "number trials": 114974, "code iterations": 24961, "perspective existing": 122662, "including evolutionary": 74511, "facilitates development": 56679, "despite achievements": 40074, "languages remain": 87117, "remain scarce": 139933, "enhance programming": 49266, "experience research": 53844, "research bridging": 141620, "study illustrates": 157403, "identified paper": 71830, "paper emphasize": 118872, "field specifically": 58246, "interactions designing": 79219, "programming domain": 129810, "notably improvements": 114277, "exploit visual": 55016, "reasoning correspond": 136783, "transformer capable": 169113, "significantly varying": 151177, "using features": 174195, "autoregressive prediction": 15007, "learning exploit": 90445, "scalable data": 146238, "offers actionable": 115780, "skill transfer": 152142, "scenes framework": 146749, "features following": 57496, "including rigid": 74706, "providing actionable": 133260, "actionable guidance": 4352, "training requirements": 168694, "assistants tailored": 13431, "annotation model": 9538, "training linear": 168548, "experiments general": 54294, "indicate high": 75593, "operation research": 116760, "research extends": 141782, "realworld testing": 136529, "provide visual": 133031, "process inconsistencies": 128868, "ensembling predictions": 49662, "quality alignment": 134034, "human control": 70666, "activities crucial": 4460, "solutions design": 153009, "design stage": 39769, "analysis indicate": 8972, "design deploy": 39600, "failing adhere": 56989, "social moral": 152637, "safe exploration": 145804, "exploration use": 55110, "popular tool": 124065, "use explore": 172614, "compare emergent": 26672, "multiagent deep": 110316, "learning madrl": 90661, "languageoriented semantic": 86932, "communication lsc": 26387, "availability opensource": 15061, "difficult automate": 42132, "recent line": 137546, "llms probability": 96197, "developed generate": 40878, "knowledge repository": 82360, "view work": 176820, "adequately fulfill": 5515, "conducted rigorous": 29283, "findings input": 58709, "vlms scene": 177479, "proposing diverse": 132497, "diverse novel": 43593, "design specification": 39768, "generating architecture": 64142, "scratch converting": 147215, "task gptbased": 161436, "preliminary exploratory": 126128, "understand strengths": 171081, "problems impact": 128536, "chatgpt finally": 22944, "methods focused": 101536, "execution experiments": 52953, "effectiveness reducing": 46282, "lower reliance": 97838, "finetuning underscore": 59601, "domain evaluating": 44139, "try generate": 169909, "require timeconsuming": 141209, "techniques envision": 163887, "analyses evaluate": 8762, "environments reinforcement": 50106, "learn policies": 90030, "scratch makes": 147222, "policies enhance": 123808, "actor critic": 4471, "decisionmaking environment": 37410, "present recent": 126432, "sparked growing": 153700, "tool gained": 166979, "tool aims": 166934, "given understanding": 66042, "fix code": 59699, "built dataset": 19475, "model meets": 104079, "benchmarks surpasses": 17378, "codex gpt35": 25343, "generation nonetheless": 64894, "craft new": 33140, "assistants potential": 13421, "experiences task": 53871, "command interpretation": 26035, "module user": 109964, "utilization diverse": 174990, "engineering leveraging": 48947, "incomplete code": 74809, "chatgpt technical": 23383, "developers seek": 40960, "thoroughly evaluated": 166206, "demonstrate expressive": 38335, "datasets social": 37121, "generate motion": 63612, "patches vulnerable": 120415, "benchmark revealing": 17080, "humancentered approach": 71146, "effectively support": 46084, "support user": 159343, "guide alignment": 68168, "applying real": 10922, "feedback iteratively": 57716, "reasoning behavior": 136680, "empowers researchers": 48035, "behavior key": 16603, "actions expressions": 4371, "challenging comprehend": 22129, "ii applying": 72084, "improvements tools": 73958, "criteria paper": 33437, "available corpus": 15088, "corpus researchers": 32349, "minimal latency": 102344, "retrievalbased learningbased": 144201, "extensive taskspecific": 55956, "recommendations reasoning": 138259, "approaches publicly": 11877, "consequently enhancing": 29541, "confronted new": 29440, "constructed novel": 30182, "bolsters models": 18790, "handling novel": 68603, "leverages visual": 91795, "identify locate": 71918, "based perceived": 15999, "model opensourced": 104153, "perceptions llms": 120838, "leap artificial": 89952, "usefulness llms": 173365, "explicitly prohibit": 54984, "prohibit use": 130050, "future outlook": 62297, "foundational code": 60831, "insights provide": 77632, "latest breakthroughs": 89540, "chatgpt write": 23441, "review code": 144489, "debug programs": 37315, "study analyze": 157159, "dataset 4000": 36085, "chatgpt method": 23123, "potential problems": 124920, "warrant research": 177726, "data inherent": 35225, "smaller domainspecific": 152389, "inherent strengths": 76976, "strengths language": 156254, "effectiveness extensive": 46175, "pivotal bridge": 123139, "lays solid": 89717, "potential applicability": 124576, "design defects": 39599, "dataset enabling": 36254, "enabling identification": 48301, "demonstrated methods": 38722, "methods target": 101863, "techniques achieved": 163821, "benchmark access": 16816, "content provides": 30588, "explore advanced": 55140, "methods automate": 101325, "lack global": 82949, "functions code": 61902, "execution output": 52961, "feedback efficient": 57667, "adopted approach": 5591, "predictions result": 125931, "misaligned human": 102460, "make accurate": 98476, "using ensemble": 174167, "efficient ensemble": 46606, "models verify": 109625, "improve alignment": 73410, "abilities create": 1890, "research robust": 142059, "presents framework": 126582, "unable confirm": 170598, "framework directly": 61086, "reports outcomes": 140602, "solution automating": 152902, "testing purposes": 164746, "comprehensive tool": 28148, "necessity comprehensive": 112193, "applying complex": 10885, "rulebased retrievalbased": 145703, "possibilities generating": 124367, "trained specifically": 168084, "generators generating": 65636, "generating fake": 64213, "catastrophic outcomes": 21077, "automate task": 14507, "paradigm designing": 119442, "study utilize": 157703, "gpt4 train": 67197, "prompt composed": 130397, "nuanced aspects": 114792, "form data": 60450, "chatgpt informed": 23072, "consuming prone": 30274, "prompts derived": 131221, "focused improving": 60104, "methods open": 101690, "applied gpt4": 10765, "cryptographic protocol": 33894, "discuss implementation": 42897, "security internet": 147595, "recently based": 137840, "survey offer": 159657, "study summarize": 157653, "generates texts": 64116, "preferences offering": 126058, "framework emphasizing": 61104, "modern urban": 109845, "inclusive solutions": 74795, "participatory process": 120041, "communities exhibit": 26437, "llms adaptability": 94335, "evaluated metrics": 51189, "reasoning strong": 137152, "lowcost efficient": 97798, "planning states": 123324, "key medium": 81534, "proven difficult": 132639, "reached point": 136128, "scenarios grounded": 146611, "concepts demonstrate": 28647, "process improving": 128864, "research design": 141691, "tasks illustrating": 162521, "illustrating promising": 72166, "forward ai": 60660, "lms capabilities": 97111, "reviewing recent": 144570, "gpt4s responses": 67238, "finegrained guidance": 58867, "mitigate social": 102638, "analysis enhance": 8905, "uncertainty calibration": 170664, "efficacy language": 46386, "domain remains": 44269, "introduce largescale": 79999, "higher uncertainty": 69649, "varied performance": 175675, "simulation using": 151723, "code code data": 24706, "sequences trained model": 148844, "model generates valid": 103736, "game engine using": 62557, "results demonstrate language": 143306, "provide detailed exploration": 132749, "new reinforcement learning": 113382, "reinforcement learning environment": 139055, "language modeling learn": 84001, "natural language documentation": 111587, "test set best": 164620, "set best model": 149142, "methods applied various": 101310, "propose endtoend machine": 131801, "endtoend machine learning": 48745, "framework allows users": 60953, "problems machine learning": 128560, "evaluate ability models": 50897, "complex text datasets": 27627, "dataset improves performance": 36354, "performance 10 percentage": 121100, "10 percentage points": 129, "finetuned model achieves": 59073, "given specific input": 66016, "quality generated code": 134139, "achieves classification accuracy": 3978, "paper define new": 118833, "bert gpt recently": 17544, "encoderdecoder transformer model": 48468, "unified framework seamlessly": 171720, "understanding tasks code": 171500, "domain expertise large": 44152, "assumption does hold": 13563, "model trained large": 104767, "state art techniques": 154995, "insights researchers field": 77642, "language model codex": 83582, "learning large neural": 90630, "pretraining contrastive learning": 127282, "capture semantic relationships": 20679, "new approach learning": 113064, "contrastive learning aims": 31361, "similar inputs maximizing": 151257, "inputs maximizing distance": 77429, "related downstream tasks": 139163, "data code pretrained": 34769, "capable generating code": 20426, "ai pair programmer": 7135, "paper explores capabilities": 118928, "using pretrained t5": 174602, "natural language make": 111672, "variable function names": 175592, "language descriptions using": 83247, "languages sql queries": 87134, "neural networks encode": 112922, "time paper proposes": 166462, "models open door": 108342, "opensource models achieve": 116652, "using supervised learning": 174771, "training resources data": 168698, "perform task particular": 121061, "realworld robotic tasks": 136489, "abstract natural language": 2652, "advancements large pretrained": 5917, "complex programming tasks": 27533, "program repair apr": 129744, "repair apr techniques": 140402, "produced language models": 129496, "automatically generated code": 14817, "experimental results generated": 54014, "reinforcement learning prompting": 139088, "tuning soft prompt": 170122, "approach reinforcement learning": 11503, "unsupervised text style": 172278, "supervision reinforcement learning": 159216, "standard reinforcement learning": 154877, "code generation tools": 24927, "model code codex": 103292, "fewshot language models": 57944, "rankers large language": 135790, "instances llms generate": 77838, "development paper propose": 41178, "3d scene understanding": 1149, "hope pave way": 70366, "generation code generation": 64499, "data essential training": 34988, "past years including": 120404, "generation code translation": 64501, "insight large language": 77490, "conditional language model": 28960, "models llms hot": 107532, "learning value functions": 91120, "blackbox access llm": 18622, "dream software engineering": 44964, "program synthesis code": 129754, "synthesis code generation": 159937, "network trained predict": 112702, "introduce new generation": 80032, "strong zeroshot transfer": 156461, "zeroshot transfer capability": 180361, "llms gpt3 codex": 95418, "pretrained models language": 127084, "models language vision": 106870, "systematic multivocal literature": 160139, "multivocal literature review": 111297, "result paper presents": 143054, "generated pretrained language": 63939, "quality correctness code": 134086, "costly timeconsuming paper": 32804, "test cases code": 164524, "generated test cases": 64001, "samples conduct comprehensive": 145998, "language model translate": 83940, "compare performance various": 26717, "benchmark machine learning": 17022, "functionally correct programs": 61893, "presents significant hurdle": 126639, "openai gym environments": 116355, "confirm effectiveness approach": 29394, "propose novel pretraining": 132024, "models trained small": 109472, "solve variety problems": 153165, "problems expressed natural": 128506, "stateoftheart code generation": 155104, "evaluate new models": 51040, "text open source": 165330, "problems using natural": 128648, "language problem descriptions": 86481, "openai safety gym": 116377, "engine powered large": 48861, "background recent advancements": 15447, "visual inspection model": 177195, "static code analysis": 155454, "furthermore examine impact": 62064, "adaptability generalization capabilities": 4576, "code videos available": 25207, "models conversational agents": 105797, "target task paper": 161111, "representations real world": 140878, "models llms unlocked": 108000, "llms unlocked new": 96894, "attempts apply llms": 13811, "integrate contextual information": 78482, "effort large language": 46855, "instruction natural language": 78039, "tasks key insight": 162659, "framework uses large": 61475, "prior work explored": 127943, "approaches require substantial": 11896, "introductory python programming": 80277, "processing benchmarks baselines": 129120, "models lms human": 108067, "problem reinforcement learning": 128377, "models based current": 105452, "data recent works": 35621, "works shown large": 179498, "explore possibility leveraging": 55254, "benchmark dataset consists": 16893, "language model families": 83638, "language models detect": 84371, "models detect video": 105946, "detect video game": 40381, "textual visual tokens": 165967, "trained using massive": 168112, "neural models code": 112883, "weights used downstream": 178134, "introduce novel practical": 80067, "used visual language": 173300, "images natural language": 72456, "language descriptions object": 83246, "simulated real world": 151665, "challenge artificial intelligence": 21589, "test cases paper": 164527, "transformers graph neural": 169312, "models conduct study": 105739, "metrics human judgments": 102084, "programmers generating code": 129777, "does fully capture": 43979, "code generation systems": 24920, "generation systems based": 65132, "biases failure modes": 18265, "essential software development": 50632, "outperforming previous state": 117688, "errors using large": 50405, "language models extracting": 84516, "deep neural networkbased": 37808, "source code code": 153396, "models study focuses": 109261, "poor sample efficiency": 123957, "trained using training": 168116, "different natural languages": 41870, "work step bridging": 179310, "step bridging gap": 155605, "transfer learning abilities": 168933, "learning abilities llms": 90165, "field paper present": 58224, "best knowledge survey": 17691, "function variable names": 61866, "semantic meaning original": 148179, "generate humanlike code": 63549, "work mainly focuses": 179114, "ai alignment research": 6862, "ai alignment aims": 6861, "specifically context llms": 154160, "unclear paper evaluate": 170700, "contrast previous approaches": 31320, "generation important research": 64731, "inputs images text": 77415, "learning rl agents": 90939, "algorithm successfully applied": 7865, "operate real world": 116740, "popular opensource projects": 124037, "paper propose benchmark": 119208, "struggle generalize new": 156749, "tasks hand large": 162491, "ability adapt new": 2055, "approach code released": 11053, "additionally present new": 5108, "models llm abilities": 107022, "agent interacts environment": 6458, "boost sample efficiency": 18828, "achieved remarkable successes": 3882, "language models observed": 85814, "surpasses previous methods": 159494, "models human preferences": 106639, "probabilistic graphical models": 128084, "reinforcement learning seen": 139113, "problem language models": 128299, "llms powerful tools": 96150, "powerful tools capable": 125344, "lack ability generate": 82878, "gpt2 model trained": 66566, "super mario bros": 158965, "llms recently applied": 96329, "paper presents largescale": 119170, "effectiveness llms automated": 46225, "pretraining reinforcement learning": 127425, "language models reinforcement": 86075, "llms trained general": 96825, "benchmark evaluate llms": 16948, "emerging research field": 47534, "offer unique opportunities": 115711, "remain elusive difficulty": 139918, "models given highlevel": 106503, "use lm generate": 172754, "using test cases": 174795, "like code generation": 92253, "chatgpt prompt engineering": 23220, "research prompt engineering": 142000, "prompt engineering apply": 130443, "software development tasks": 152794, "linear temporal logic": 92980, "temporal logic ltl": 164267, "require training data": 141211, "compared clipbased methods": 26762, "case study provided": 20918, "conducted evaluate effectiveness": 29234, "language models presented": 85939, "case study involves": 20910, "accuracy model size": 3311, "similar model size": 151273, "variety machine learning": 175723, "planning using large": 123339, "intents large language": 79040, "interaction data available": 79111, "understanding generation translation": 171269, "lexical overlap reference": 91992, "excel wide range": 52781, "commonsense reasoning capabilities": 26305, "detection using pretrained": 40653, "using pretrained visionlanguage": 174604, "models play crucial": 108517, "results llms able": 143575, "problems reinforcement learning": 128613, "enhance generated images": 49205, "intelligence ai human": 78745, "code completion tools": 24727, "requirements natural language": 141313, "new neural models": 113298, "solve given task": 153121, "language models personalised": 85881, "range tasks set": 135717, "chatgpt search engines": 23295, "like reinforcement learning": 92389, "individuals society large": 75781, "allows users experience": 8482, "consistency checking methods": 29754, "language model prompttuning": 83865, "trained models publicly": 168012, "language models object": 85812, "pretrained contrastive learning": 126776, "generator large language": 65624, "zeroshot learning natural": 180243, "prompt design leverage": 130421, "use generated data": 172644, "models code analysis": 105640, "challenge distribution shift": 21629, "features detect text": 57472, "hypothesis large language": 71625, "learning methods require": 90686, "methods require extensive": 101778, "require extensive training": 141104, "language models aibased": 84101, "public github repositories": 133571, "introduce problem semantic": 80089, "language instructions remains": 83453, "promising results generating": 130307, "study building multitask": 157199, "environment reinforcement learning": 50025, "potential pretrained large": 124917, "training time instead": 168790, "previous approaches problem": 127570, "using simple prompting": 174717, "complicated ai tasks": 27714, "handle complicated ai": 68536, "ai models solve": 7114, "models solve complicated": 109178, "chatgpt connect various": 22804, "various ai models": 175796, "solve ai tasks": 153093, "tasks specifically use": 163278, "abundant ai models": 2698, "tackle wide range": 160855, "ai tasks spanning": 7264, "techniques rapid development": 164001, "automatically fix software": 14808, "models pretrained largescale": 108620, "generation tasks code": 65150, "language models codebert": 84252, "capabilities llms including": 20034, "llms paper focuses": 96031, "20 participants including": 605, "language natural language": 86437, "open questions large": 116276, "results open new": 143648, "open new research": 116258, "agents naturally learn": 6669, "use annotations evaluate": 172500, "tools paper introduce": 167220, "believable human behavior": 16767, "language model store": 83916, "benchmarks recently emerged": 17347, "recently emerged evaluate": 137869, "stateoftheart performance code": 155273, "generation benchmarks including": 64455, "improves sample efficiency": 74079, "applications including software": 10563, "including software development": 74727, "software development maintenance": 152790, "potential misuse chatgpt": 124861, "including commercial opensource": 74463, "conducted human study": 29260, "generalization remains challenge": 63222, "open source framework": 116297, "generative foundation model": 65419, "generative foundation models": 65420, "foundation models susceptible": 60812, "aligning models human": 8107, "human ethics preferences": 70721, "ensuring responsible effective": 49754, "deployment realworld applications": 39300, "realworld applications prior": 136406, "summarization task evaluate": 158885, "performance different settings": 121397, "language models cases": 84214, "appearance variations leverage": 10234, "foundation models uses": 60817, "models uses large": 109578, "trained large data": 167969, "necessitates large amounts": 112177, "data expensive create": 35012, "code generation chatgpt": 24874, "exemplified chatgpt specifically": 52992, "repair large language": 140410, "models finetuned datasets": 106350, "applies deep learning": 10830, "paper explore chatgpts": 118911, "evaluate results using": 51098, "llms recent research": 96323, "llms enhance capabilities": 95074, "results demonstrate gpt35": 143304, "crucial role determining": 33849, "synthesis natural language": 159963, "texts empirical results": 165705, "llms improve effectiveness": 95557, "believe combination llms": 16770, "llms gpt4 generate": 95434, "lowlevel robot actions": 97871, "models current approaches": 105831, "use openai codex": 172788, "quality metrics results": 134201, "gap providing systematic": 62722, "learning despite great": 90367, "real world tasks": 136277, "instructions using large": 78370, "language model multistep": 83811, "stateoftheart supervised learning": 155381, "research directions using": 141726, "different benchmark problems": 41674, "test cases test": 164528, "chatgpt stateoftheart llm": 23356, "problems experiments reveal": 128503, "leveraging vast knowledge": 91967, "prompt engineering providing": 130481, "data improves performance": 35195, "contextual information help": 31092, "software bug reports": 152776, "recent studies propose": 137668, "remains significant concern": 140071, "ai tools based": 7287, "report experiments using": 140528, "ai code generation": 6915, "planning recent advances": 123315, "assess quality generated": 13116, "addresses limitations existing": 5420, "simulation real world": 151713, "policies large language": 123815, "limitations future work": 92588, "raised significant concerns": 135474, "models llms analyzing": 107108, "tailored transformer architecture": 160946, "interactive ai agents": 79285, "models collect large": 105669, "ai applications metaverse": 6868, "llms generate code": 95355, "data program synthesis": 35561, "extensively evaluate approach": 55982, "code openly accessible": 25036, "preliminary evaluation indicates": 126121, "possible future research": 124426, "data compare different": 34800, "bert powerful large": 17581, "language models scratch": 86133, "llm generate synthetic": 93702, "ai models follow": 7096, "develop ai assistant": 40753, "tasks require synthesizing": 163153, "proposed method learns": 132362, "access training data": 2917, "benchmark nlp tasks": 17044, "demonstrates effectiveness approach": 38838, "automatically generating source": 14825, "field research recent": 58241, "research recent years": 142035, "difficulties selecting appropriate": 42199, "developers using tools": 40966, "novel approach integrates": 114388, "model use tools": 104837, "method using chatgpt": 101162, "generated code llms": 63823, "execute generated code": 52910, "demonstrates superior accuracy": 38907, "various domains remains": 175910, "conduct quantitative analysis": 29170, "approach leverages chatgpt": 11349, "search optimal solution": 147385, "demonstrate potential benefits": 38467, "just handful examples": 81369, "provide detailed analyses": 132745, "models code code": 105642, "instruction tuning rlhf": 78134, "promising avenues research": 130234, "prove effectiveness approach": 132621, "approach qualitative results": 11488, "prompting outperforms stateoftheart": 131032, "promising potential future": 130295, "potential future application": 124731, "llms pretrained vast": 96179, "settings including zeroshot": 149589, "coderelated tasks code": 25279, "llms specifically gpt35": 96666, "llms ability generalize": 94256, "advanced llms like": 5763, "novel benchmark based": 114417, "responses wide range": 142944, "analysis code generation": 8850, "code generated models": 24863, "urgent need effective": 172417, "incontext learning ai": 74870, "challenging paper introduce": 22232, "ability llms solve": 2266, "electronic design automation": 46993, "applications deep learning": 10471, "actions large language": 4379, "models significant strides": 109127, "multiple foundation models": 110924, "models segment model": 109060, "reasoning knowledgebased question": 136943, "question answering embodied": 134705, "application artificial intelligence": 10301, "ai natural language": 7121, "existing approaches generalpurposed": 53265, "techniques improve models": 163925, "code analysis large": 24659, "comprehend code syntax": 27842, "vision language navigation": 176939, "language navigation vln": 86439, "incorrect paper presents": 75165, "concise natural language": 28849, "comparing stateoftheart sota": 27016, "advantages disadvantages chatgpt": 6133, "challenges opportunities chatgptbased": 21978, "induce large language": 75820, "learning use tools": 91106, "argued large language": 12420, "proprietary llms chatgpt": 132523, "models trained outputs": 109463, "design framework based": 39637, "llms language models": 95718, "shows llms provide": 150451, "description length mdl": 39417, "work address challenges": 178771, "zeroshot finetuning settings": 180189, "code generation introduce": 24893, "random number generator": 135534, "reinforcement learning challenging": 139050, "demonstrates strong capability": 38900, "llms use tools": 96905, "quantifying social biases": 134330, "generation models propose": 64855, "social biases generated": 152532, "work contains examples": 178870, "contains examples potentially": 30373, "examples potentially implicate": 52657, "potentially implicate stereotypes": 125110, "implicate stereotypes associations": 72892, "stereotypes associations harms": 155785, "associations harms offensive": 13534, "harms offensive individuals": 68777, "offensive individuals certain": 115617, "individuals certain social": 75765, "certain social groups": 21418, "use knowledge learned": 172693, "game large language": 62563, "aim evaluate effectiveness": 7452, "tasks potential llms": 162963, "explore llms used": 55241, "environment feedback execution": 49999, "shows strong incontext": 150482, "formal theorem proving": 60519, "theorem proving large": 166008, "proving large language": 133407, "present intriguing avenue": 126345, "intriguing avenue exploration": 79874, "reinforcement learning robotics": 139112, "realworld tasks demonstrate": 136526, "90 success rate": 1749, "recently demonstrated potential": 137853, "tasks recent progress": 163090, "textual descriptions visual": 165903, "reasoning capabilities pretrained": 136713, "work initial step": 179042, "environments large language": 50088, "models llms textbased": 107971, "language processing study": 86621, "trained using nexttoken": 168113, "reinforcement learning using": 139121, "methods achieve significant": 101273, "chatgpt gpt4 based": 23012, "performance close random": 121250, "close random chance": 24451, "like chatgpt greatly": 92231, "work highlights benefits": 179015, "stateoftheart code llm": 155105, "researchers practitioners better": 142241, "source code analysis": 153392, "language model unsupervised": 83943, "software engineering tools": 152812, "engineering tools based": 49001, "models llms reinforcement": 107815, "rl policies task": 145070, "comparison stateoftheart baselines": 27069, "cospeech gesture generation": 32646, "recent progress llms": 137599, "uses deep learning": 173843, "potential enhance decisionmaking": 124696, "make decisions based": 98524, "learning techniques provide": 91067, "provide insights recommendations": 132857, "capabilities ai models": 19774, "emulate human problemsolving": 48044, "enhance ai models": 49150, "prompting need automated": 131026, "fewshot learning chainofthought": 57957, "new forms humanai": 113196, "model llm empowered": 103989, "loss function based": 97671, "empirical results provide": 47734, "vulnerability detection code": 177640, "research provides novel": 142012, "augment llms retrieved": 14251, "specifically designed evaluating": 154178, "questions search terms": 135273, "domain specific information": 44291, "static analysis tools": 155451, "framework case studies": 61001, "showcase potential applications": 150080, "reliability software systems": 139708, "process paper conduct": 128933, "llms traditional approaches": 96816, "context finally investigate": 30768, "program synthesis present": 129756, "user intent expressed": 173427, "intent expressed natural": 79011, "text datasets recent": 164999, "reinforcement learning based": 139048, "methods face challenges": 101514, "combines human expertise": 25933, "crucial achieving embodied": 33750, "achieving embodied intelligence": 4169, "corpus employed finetune": 32302, "ability models utilize": 2287, "previous works utilized": 127704, "works utilized language": 179519, "methods rely primarily": 101771, "natural language directly": 111586, "highlevel programming language": 69704, "extensive experiments explore": 55847, "results approach improves": 143177, "paper proposes approach": 119260, "commands natural language": 26044, "compared design choices": 26782, "inspired insights cognitive": 77733, "insights cognitive science": 77528, "pose significant risks": 124177, "goal project create": 66189, "llms substantial margin": 96713, "using llms advance": 174426, "llms work introduce": 97019, "vast prior knowledge": 176350, "prior knowledge inherent": 127903, "complex multimodal interactions": 27483, "enables zeroshot transfer": 48261, "handle different types": 68540, "diverse highquality data": 43538, "textual descriptions associated": 165900, "coding assistants like": 25370, "assistants like github": 13416, "like github copilot": 92276, "closely match performance": 24518, "learning rl emerged": 90943, "emerged powerful paradigm": 47385, "paradigm finetuning large": 119456, "llm finetuning provide": 93678, "recent years software": 137806, "years software systems": 179939, "pretraining approach substantially": 127263, "fixing syntax errors": 59727, "approach achieves high": 10952, "code contains security": 24732, "classification evaluate performance": 23992, "using state art": 174751, "use largescale pretrained": 172725, "closely matches human": 24521, "extensive dataset comprising": 55746, "code datasets opensource": 24772, "models solving programming": 109181, "transformerbased models like": 169272, "robustness popular llms": 145419, "introductory programming problems": 80274, "models instructgpt chatgpt": 106778, "interactive coding execution": 79292, "coding execution feedback": 25382, "llms recently exhibited": 96338, "language platform agnostic": 86467, "multiple stateoftheart llms": 111052, "important challenging problem": 73108, "problem work address": 128438, "timeconsuming process large": 166557, "learning study presents": 91036, "leverages llms generate": 91752, "high performance computing": 69498, "tools perform complex": 167222, "data available online": 34707, "language models automate": 84148, "tasks introduce new": 162626, "introduce new model": 80036, "outperforms existing alignment": 117751, "existing alignment algorithms": 53255, "enhance performance human": 49249, "paper presents experimental": 119161, "experimental study regarding": 54096, "allowing users interact": 8400, "dimension large language": 42316, "pretrained t5 model": 127167, "t5 model generate": 160715, "compared supervised methods": 26945, "design paper propose": 39710, "strengths weaknesses llms": 156277, "llms generate effective": 95359, "recent progress pretrained": 137600, "llms visual perception": 96987, "multimodal dataset containing": 110618, "pretrained llms inference": 127023, "using domain knowledge": 174151, "source code trained": 153426, "models finetuned variety": 106357, "models carbon footprint": 105572, "utilization natural language": 175011, "paper presents overview": 119180, "gpt35 gpt4 palm": 66821, "explore potential using": 55270, "achieves promising results": 4058, "recently increasing number": 137912, "increasing number studies": 75340, "integrated various applications": 78544, "learning effective representations": 90396, "llms like codex": 95777, "code treat code": 25193, "work investigate zeroshot": 179073, "reduced manual effort": 138496, "advancement artificial general": 5824, "intelligence primary objective": 78879, "demonstrating remarkable performance": 38954, "chatgpt ability generate": 22663, "solve problem hand": 153142, "release openais chatgpt": 139490, "visual natural language": 177235, "language understanding spatial": 86859, "spatial temporal reasoning": 153812, "3d scene graph": 1147, "significantly advances stateoftheart": 150936, "access token probabilities": 2914, "handle largescale datasets": 68549, "types prompt engineering": 170405, "roadmap future research": 145128, "potential avenues exploration": 124616, "task presents unique": 161639, "processes natural language": 129089, "finetuned model using": 59077, "underscores immense potential": 170943, "recent advancements deep": 137348, "advancements deep learning": 5878, "software engineering practices": 152804, "models llm use": 107050, "empirical study investigate": 47753, "study investigate feasibility": 157427, "investigates application large": 80545, "sets stage future": 149405, "models textual descriptions": 109396, "remains unexplored work": 140105, "llms ai agents": 94375, "agents robotics remains": 6719, "llms proven capable": 96251, "llms address problems": 94353, "complex language queries": 27452, "learning value function": 91119, "scenarios involving multiple": 146629, "challenges models understand": 21959, "interactions natural language": 79248, "uncover factors influence": 170724, "gpt4 googles bard": 67032, "area research community": 12348, "training parameterefficient training": 168630, "light promising future": 92140, "future research avenues": 62315, "associated github link": 13480, "github link collecting": 65820, "link collecting latest": 93092, "collecting latest papers": 25717, "study feasibility using": 157359, "feasibility using large": 57366, "leveraging power llms": 91922, "zeroshot generalization novel": 180199, "propose novel benchmark": 131986, "stateoftheart llms used": 155200, "including openais gpt4": 74650, "bard anthropics claude": 15551, "social dilemma games": 152566, "new multitask benchmark": 113290, "reinforcement learning paper": 139082, "simulation plays crucial": 151708, "ensure agents behavior": 49669, "realworld social network": 136518, "social network data": 152640, "accuracy work represents": 3424, "human feedback reinforcement": 70814, "training ai systems": 168151, "used finetune stateoftheart": 173077, "llms despite popularity": 94906, "models llms codex": 107203, "utilizing llms code": 175212, "llms inherently lack": 95639, "chatgpt generate diverse": 22977, "llms develop novel": 94913, "demonstrates remarkable ability": 38884, "ability execute complex": 2153, "strong zeroshot generalization": 156457, "llms creates powerful": 94758, "prompt engineering automated": 130446, "provide detailed insights": 132750, "leveraging llms generate": 91897, "language models static": 86214, "analysis widely used": 9237, "extensive realworld datasets": 55942, "widely adopted large": 178358, "ability llms detect": 2258, "code generation based": 24872, "paper introduces principled": 119021, "considerably outperforms baselines": 29648, "deal large action": 37266, "large action space": 87176, "rl human feedback": 145057, "recent years aiming": 137769, "humanmachine interactions llm": 71308, "introduced large language": 80161, "researchers exploring potential": 142212, "present largescale empirical": 126357, "largescale empirical study": 89302, "strengths weaknesses finally": 156276, "results end propose": 143379, "code analysis tasks": 24662, "improve agent performance": 73406, "pretrained massive datasets": 127040, "computer vision applications": 28495, "undergone extensive training": 170794, "extensive training using": 55967, "generating functional code": 64227, "released openai november": 139530, "openai november 2022": 116369, "november 2022 gained": 114766, "llms highly valuable": 95498, "findings uncover potential": 58818, "steep learning curve": 155547, "finally highlight challenges": 58474, "terms performance explainability": 164448, "pivotal role shaping": 123155, "secure ai systems": 147546, "like chatgpt emerged": 92221, "llms demonstrating significant": 94894, "demonstrating significant promise": 38958, "human cognition making": 70644, "existing datasets lack": 53335, "lack historical data": 82959, "foundation models specifically": 60809, "model trained source": 104774, "opensource benchmark suite": 116572, "learning techniques recently": 91068, "demonstrated considerable potential": 38638, "vital stage automated": 177415, "requires considerable effort": 141350, "promising results identifying": 130309, "proof concept automated": 131581, "given limited size": 65929, "language modeling reinforcement": 84018, "modeling reinforcement learning": 105081, "generate code perform": 63420, "llms produce impressive": 96207, "presents effective approach": 126571, "open training data": 116308, "past decades researchers": 120383, "deep learningbased approaches": 37782, "address aforementioned challenges": 5155, "chatgpt specifically leverage": 23347, "specifically leverage chatgpt": 154244, "overcoming limitations previous": 118320, "distinct roles specific": 43251, "various llms providing": 176022, "abilities solve complex": 2018, "instruction large language": 78030, "design automation eda": 39556, "demonstrated proficiency handling": 38746, "natural language generating": 111609, "code generated llms": 24862, "benchmark datasets focus": 16913, "robustness code generated": 145357, "generated code contains": 63820, "directions large language": 42487, "used data collection": 173018, "models llms undergone": 107994, "provide intriguing insights": 132862, "domainspecific pretrained models": 44611, "despite success models": 40230, "resources pretraining scratch": 142469, "given remarkable capabilities": 65987, "supplemented domainspecific knowledge": 159242, "tasks remains largely": 163127, "components including input": 27758, "model llm paper": 104013, "address complex realworld": 5201, "complex realworld scenarios": 27548, "compared traditional methods": 26955, "research direction build": 141711, "scenarios address challenge": 146527, "text generation reasoning": 165178, "products like chatgpt": 129612, "software engineering llms": 152803, "present comprehensive overview": 126260, "account confounding variables": 3073, "llms benchmark available": 94485, "case study showcase": 20923, "incomplete information paper": 74813, "powerful capabilities large": 125261, "llama code llama": 93298, "reinforcement learning control": 139051, "recent works suggest": 137765, "propose llmbased approach": 131905, "dynamics paper presents": 45214, "generation systems work": 65134, "systems work propose": 160673, "language models represented": 86085, "models represented chatgpt": 108937, "parameterefficient finetuning approach": 119660, "accessible broader range": 2946, "asking probing questions": 12888, "questions various topics": 135320, "code work explore": 25217, "limitations potential future": 92637, "iterative selfrefinement process": 81144, "model does rely": 103488, "chatgpt stack overflow": 23353, "exploratory user study": 55130, "user study compare": 173518, "study compare performance": 157219, "stack overflow chatgpt": 154709, "tasks additionally conducted": 161908, "various domains code": 175897, "appropriate prompt engineering": 11985, "holds significant importance": 70280, "overcome limitation introduce": 118296, "demonstrated strong ability": 38800, "paper present alternative": 119106, "language processing proficiency": 86607, "exploration language models": 55077, "previous approaches including": 127567, "model work introduce": 104906, "performance llms compared": 121752, "performance suffers significant": 122132, "research needed fully": 141925, "harness potential llms": 68795, "potential llms like": 124843, "like chatgpt practical": 92238, "domainspecific language dsl": 44592, "code generation execution": 24885, "model application large": 103118, "paper propose interactive": 119226, "visual grounding object": 177181, "knowledge pretrained large": 82291, "specialized domain knowledge": 153883, "topic modeling overall": 167328, "performance llms benchmark": 121751, "recently researchers leveraged": 137983, "test cases detecting": 164525, "proposed method able": 132335, "evaluation findings suggest": 51591, "detecting certain types": 40398, "scaling reinforcement learning": 146443, "promising alternative leverages": 130216, "directly prompting llm": 42592, "tasks directly applied": 162237, "resembling human writing": 142290, "outperforms stateoftheart techniques": 117867, "age generative ai": 6393, "study investigate large": 157428, "gaining increasing attention": 62499, "transformer gpt series": 169141, "insights potential applications": 77623, "designed evaluate llms": 39869, "tasks primarily focused": 162999, "prediction tasks using": 125876, "achieved better performance": 3793, "past couple decades": 120378, "research efforts devoted": 141743, "human feedback aligning": 70796, "applications work propose": 10733, "data distribution significantly": 34928, "effectiveness llms code": 46226, "paper paves way": 119097, "shown remarkable effectiveness": 150358, "remarkable effectiveness various": 140192, "availability cloud services": 15049, "satisfiability modulo theories": 146166, "massive human knowledge": 99358, "building recent advances": 19445, "enabling llm generate": 48322, "execution results llm": 52965, "language models communication": 84265, "gpt35 gpt4 llama2": 66815, "results highlight current": 143454, "llms reinforcement learning": 96368, "light pressing issue": 92138, "leads significantly different": 89913, "approach provide valuable": 11479, "using advanced language": 173964, "challenge previous approaches": 21711, "online rl methods": 116132, "methods proximal policy": 101747, "furthermore model shows": 62117, "domains paper proposes": 44492, "models llms promote": 107762, "massive multimodal data": 99367, "object attributes relationships": 115105, "experiments shown method": 54464, "shown method outperforms": 150311, "direction artificial general": 42431, "finetuned annotated data": 58981, "domainspecific tasks using": 44631, "exploring potential chatgpt": 55494, "chatgpt cuttingedge language": 22821, "model demonstrated impressive": 103424, "chatgpt results chatgpt": 23281, "results chatgpt achieves": 143219, "various tasks rely": 176222, "carefully crafted prompts": 20800, "processing capabilities llms": 129125, "prompts llms based": 131367, "opensource llms including": 116638, "llms including gpt35": 95573, "spatial temporal scales": 153813, "foundation model leverages": 60744, "foundation model trained": 60746, "response challenges propose": 142626, "additional data collection": 4948, "data collection manual": 34785, "generation pipeline producing": 64928, "tasks work aims": 163481, "model llm convert": 103983, "fix software bugs": 59703, "models provide substantial": 108729, "adopting pretrained models": 5625, "pretrained models generate": 127078, "gpt4 generate correct": 67024, "encounter daily lives": 48568, "deploying llm agents": 39247, "power foundation models": 125176, "models realworld settings": 108805, "models physical world": 108511, "motions address issues": 110161, "fewshot prompts collected": 58037, "tasks require extensive": 163143, "learning fewshot prompt": 90457, "evaluations new autometric": 52008, "large language corpora": 87298, "create benchmark dataset": 33174, "human values preferences": 71079, "evaluation framework llms": 51604, "align models human": 8022, "experiments standard benchmarks": 54472, "model generalization performance": 103708, "recent years reinforcement": 137796, "years reinforcement learning": 179929, "adversarial imitation learning": 6205, "visual language navigation": 177216, "artificial intelligence discuss": 12718, "similar better task": 151214, "success rate exceeding": 158292, "ai models specifically": 7115, "gpt4 exhibits promising": 67000, "tools like github": 167199, "ground truth compared": 67840, "llms assist developers": 94438, "reduce false positives": 138427, "subject human review": 157833, "harness capabilities large": 68784, "language models google": 84601, "models google bard": 106513, "aim address challenges": 7422, "proposed method extensively": 132356, "overcome critical limitation": 118284, "framework multiple tasks": 61317, "llms automatic code": 94455, "age gender race": 6391, "bias testing framework": 18210, "llms findings reveal": 95270, "posing risks unintended": 124249, "models evaluate bias": 106163, "way paper proposes": 177860, "models particularly openais": 108442, "particularly openais chatgpt": 120235, "models new approach": 108285, "conversational agents like": 31832, "models extract information": 106283, "promising results automatic": 130305, "thought cot techniques": 166222, "concerns potential misuse": 28808, "misuse ai systems": 102568, "llms align human": 94383, "tasks evaluate framework": 162324, "direct use llms": 42411, "tasks previously thought": 162996, "previously thought exclusive": 127747, "language model series": 83897, "chat models particularly": 22549, "impressive performance compared": 73323, "realworld scenarios results": 136508, "scenarios results highlight": 146694, "decisions language models": 37466, "environments sparse rewards": 50114, "prompt engineering achieve": 130441, "demonstrate impressive reasoning": 38381, "design prompt template": 39733, "generating code snippets": 64158, "generation capabilities large": 64466, "typical failure modes": 170448, "infinite space possible": 76173, "proposes new framework": 132475, "policy optimization p3o": 123863, "approach aligning llms": 10985, "existing literature examine": 53414, "directly paper propose": 42582, "vlm large language": 177446, "explore effect different": 55191, "compared prior works": 26902, "trained neural network": 168024, "llm proposed method": 93926, "crucial role bridging": 33848, "poses great challenge": 124206, "outperform existing opensource": 117586, "performance multiple benchmarks": 121826, "reinforcement learning enhance": 139054, "methodology evaluating llms": 101226, "rigorous testing ground": 144875, "overall performance llm": 118216, "similar written humans": 151327, "detect security vulnerabilities": 40375, "given large language": 65923, "paper examine llms": 118892, "implications leveraging llms": 72941, "llms correctly translate": 94745, "problem leveraging llms": 128309, "visual understanding reasoning": 177337, "existing approaches employ": 53262, "complicated tasks like": 27721, "algorithm based unsupervised": 7782, "generative agents powered": 65303, "low computational cost": 97739, "key innovations include": 81522, "findings underscore transformative": 58829, "underscore transformative potential": 170931, "maintenance recently large": 98401, "llms gained popularity": 95325, "llm llms generate": 93818, "model based transformers": 103192, "transformers selfattention mechanism": 169353, "existing methods showcasing": 53465, "generation era large": 64614, "bugs hard detect": 19291, "work assumes human": 178811, "assumes human preferences": 13556, "dataset contains various": 36198, "valuebased deep reinforcement": 175513, "stateoftheart performance compared": 155274, "experimental results promise": 54055, "finetuned llms achieved": 59058, "hypotheses designing experiments": 71609, "problem machine learning": 128316, "ml models tasks": 102785, "llms reveal inherent": 96449, "language models opensource": 85828, "llmbased code generator": 94135, "llm prompting prompt": 93920, "prompting prompt engineering": 131050, "greatly enhance performance": 67786, "language models rlms": 86115, "main contribution consists": 98229, "llms present novel": 96166, "mathematical reasoning pretrained": 99597, "validation large language": 175363, "various prompt engineering": 176121, "like chatgpt playing": 92236, "realworld scenarios codes": 136498, "paper propose innovative": 119225, "foundation models provide": 60798, "semantic understanding objects": 148249, "language model building": 83564, "data set present": 35739, "consistent human values": 29817, "ai capable generating": 6897, "code like codex": 24980, "models llms motion": 107660, "llm specifically designed": 94019, "training process extensive": 168651, "automatic generation test": 14681, "work largely focused": 179090, "work investigate feasibility": 179067, "test case new": 164521, "current alignment methods": 34060, "ample training data": 8716, "data available paper": 34708, "smaller training dataset": 152450, "feedback rlhf used": 57790, "realworld scenarios models": 136502, "llm finetuning methods": 93677, "valuable insights role": 175442, "manual effort required": 99037, "models llms comprehending": 107212, "approach promising future": 11466, "errors produced llms": 50392, "input prompts generated": 77318, "prompts generated code": 131289, "language models resolve": 86092, "mobile interaction enabling": 102904, "superior generalization performance": 159009, "language models pursuit": 86006, "tasks traditionally performed": 163382, "poses considerable challenge": 124202, "human preferences values": 70976, "behaviours large language": 16745, "conduct qualitative analysis": 29166, "vision models approach": 176955, "new framework termed": 113203, "exhibits significant improvement": 53221, "behavior llmbased agents": 16613, "agents powered llms": 6693, "emerged promising tools": 47396, "maintaining high efficiency": 98358, "models vlms achieved": 109652, "achieved substantial progress": 3913, "multimodal perception reasoning": 110744, "language models facilitate": 84517, "simple text prompt": 151542, "model using human": 104851, "iterative design process": 81119, "hierarchical task decomposition": 69377, "user study 12": 173514, "work inspire research": 179045, "large language visionlanguage": 88886, "annotated data training": 9462, "demonstrated promising performance": 38748, "promising performance variety": 130287, "risk data leakage": 144935, "conducted formative study": 29256, "user study indicates": 173521, "chatgpt case studies": 22760, "empirically evaluate efficacy": 47788, "improvement success rate": 73855, "feasibility effectiveness using": 57350, "impressive incontext learning": 73305, "llms evaluate representative": 95103, "reinforcement learning require": 139093, "models llms witnessed": 108039, "llms witnessed remarkable": 97012, "language model bias": 83562, "significant engineering challenges": 150701, "models mllms emerged": 108202, "compare performance classical": 26707, "performance data generated": 121355, "simple effective efficient": 151428, "efficient reinforcement learning": 46703, "crucial training large": 33880, "based properties develop": 16043, "answering generation coherent": 9863, "generation coherent text": 64504, "coherent text code": 25547, "automatic evaluation framework": 14660, "evaluation framework task": 51609, "utilizing natural language": 175220, "rich semantic features": 144800, "capabilities llms incontext": 20035, "large models code": 88921, "human evaluation involving": 70739, "improves average performance": 73980, "different groups existing": 41791, "quality output results": 134216, "personalized large language": 122606, "responses aligned human": 142727, "ability generalize new": 2181, "methods serve baselines": 101811, "recently explored various": 137885, "provide new opportunities": 132899, "robust generalization performance": 145271, "safe reinforcement learning": 145809, "value alignment safe": 175467, "according human evaluations": 3041, "coding large language": 25389, "capabilities stateoftheart llms": 20196, "rl environments include": 145053, "quality safety generated": 134258, "based generative artificial": 15831, "domains findings underscore": 44414, "using recent stateoftheart": 174656, "methods rely explicit": 101768, "offers flexible efficient": 115805, "solution extensive experiments": 152934, "planning reasoning tasks": 123313, "evidence large language": 52192, "carry extensive experiments": 20841, "rl reinforcement learning": 145074, "learn reward function": 90044, "associated source code": 13510, "quality generated data": 134142, "training data limitations": 168298, "development using llms": 41254, "paper formally define": 118961, "exhibited promising performance": 53146, "incontext learning llm": 74942, "solving downstream tasks": 153210, "investigates llms generate": 80571, "instructions introduce new": 78289, "help improve performance": 69128, "paper explore application": 118906, "explore application large": 55146, "recent focus large": 137505, "improve quality model": 73598, "optimization ppo reinforcement": 117025, "ppo reinforcement learning": 125373, "leveraging knowledge llms": 91875, "daily lives despite": 34511, "outputs human values": 118066, "ai systems using": 7261, "ai alignment using": 6863, "specific user groups": 154125, "algorithms like ppo": 7946, "align language model": 8010, "study investigates effectiveness": 157441, "future research exploring": 62340, "good performance downstream": 66283, "evaluations experimental results": 51970, "previous research shown": 127641, "improves task accuracy": 74090, "learning based large": 90244, "called large language": 19660, "reinforcement learning policy": 139084, "remarkable performance llms": 140231, "breaks complex task": 19001, "image audio video": 72180, "demonstrating superior accuracy": 38962, "large pretrained generative": 88991, "reinforcement learning robot": 139110, "analysis tasks including": 9195, "adversarial robustness pretrained": 6228, "gap study aims": 62735, "adversarial training method": 6239, "satisfactory performance work": 146161, "models llms advancements": 107099, "wellknown artificial intelligence": 178167, "chatgpt used generate": 23413, "extensive evaluation comparison": 55767, "evaluation comparison various": 51491, "opensource llms gpt4": 116637, "considering privacy concerns": 29729, "high cost associated": 69432, "performance commonly used": 121268, "real world impact": 136267, "models match exceed": 108149, "ensure safe effective": 49703, "data formats modalities": 35074, "leverages fact llms": 91721, "trained vast corpus": 168123, "based user instructions": 16166, "findings reveal opensource": 58783, "reveal opensource llms": 144361, "opensource llms finetuned": 116636, "advanced proprietary llms": 5794, "models automatic evaluation": 105423, "providing comprehensive evaluation": 133271, "flexible natural language": 59819, "extrinsic evaluation metrics": 56461, "ml models future": 102781, "commercial opensource llms": 26088, "continued pretraining supervised": 31212, "help close gap": 69099, "years rapid advancement": 179927, "complex tasks using": 27622, "trained largescale synthetic": 167981, "largescale synthetic dataset": 89406, "new evaluation metrics": 113175, "intelligence ai emergence": 78739, "ai emergence large": 6972, "utilizes machine learning": 175150, "foundation models effective": 60761, "progress vision language": 130032, "language models autonomous": 84154, "datasets shown impressive": 37115, "results gpt4 outperforms": 143445, "systems make decisions": 160477, "reinforcement learning robotic": 139111, "language model compared": 83583, "quantitative metrics qualitative": 134363, "metrics qualitative analysis": 102135, "robust foundation future": 145267, "model predictive control": 104307, "recent efforts focus": 137484, "problems bridging gap": 128463, "generative ai improving": 65324, "research paper addresses": 141951, "including logistic regression": 74601, "random forest neural": 135523, "precision recall f1score": 125622, "study showcases potential": 157629, "language models codellms": 84253, "learning framework based": 90476, "supervised learning model": 159139, "language model tools": 83935, "case study use": 20928, "large language modelgenerated": 87515, "automated proof synthesis": 14598, "llms static analysis": 96679, "results demonstrate significantly": 143336, "significantly reduces human": 151138, "artificial intelligence robotics": 12767, "pretrained models enhance": 127074, "metrics precision recall": 102128, "impressive success various": 73381, "detection techniques rely": 40637, "low false alarm": 97755, "false alarm rate": 57156, "work overcome limitation": 179150, "15 llms including": 412, "opensource llms demonstrate": 116635, "lack publicly available": 82992, "agents trained using": 6750, "excel tasks like": 52776, "enhance multistep reasoning": 49244, "task data model": 161295, "agents emulate human": 6591, "proposed framework aims": 132299, "immense potential llms": 72598, "comprehensive review aims": 28111, "perception decisionmaking control": 120801, "paper reports results": 119305, "enables llms utilize": 48214, "learning techniques allow": 91066, "detection powerful llms": 40591, "challenges potential future": 22007, "preference optimization human": 126020, "human preference alignment": 70966, "pretrained model ptm": 127054, "programming languages natural": 129846, "tasks code vulnerability": 162065, "entire code snippet": 49798, "prompt learning paradigm": 130580, "showcasing potential llms": 150118, "gaps existing benchmarks": 62758, "models finetuned humanannotated": 106352, "simple textual descriptions": 151544, "stateoftheart multimodal llms": 155248, "multimodal llms evaluation": 110706, "raise open questions": 135454, "test suite evaluating": 164641, "benchmark dataset called": 16889, "existing natural language": 53499, "language understanding generalization": 86817, "baseline results using": 16259, "surpasses baseline models": 159473, "immense search space": 72602, "prompt engineering algorithm": 130442, "study conduct comprehensive": 157230, "aim address questions": 7423, "smart contract code": 152475, "approaches study propose": 11917, "llms generate programs": 95373, "tool designed empower": 166963, "models fewshot examples": 106323, "quantitative evaluation shows": 134344, "qualitative evaluation shows": 133994, "navigation natural language": 112063, "publicly available multimodal": 133656, "experiments reveal approach": 54443, "schemes large language": 146807, "significant challenge remains": 150643, "necessitating deep understanding": 112188, "existing approaches furthermore": 53264, "llms diffusion model": 94934, "using direct preference": 174144, "finetune pretrained model": 58965, "visual appeal text": 177110, "text alignment propose": 164826, "account diffusion model": 3075, "finetune base model": 58913, "significantly outperforms base": 151089, "comparable performance training": 26609, "significant research gap": 150861, "feature extraction method": 57403, "capabilities pretrained llms": 20121, "framework holds potential": 61202, "optimization dpo method": 116990, "denoising diffusion policy": 39073, "diffusion policy optimization": 42258, "approach requires training": 11511, "costs paper introduce": 32836, "reasoning capabilities commonsense": 136699, "tasks offering insights": 162876, "overall best performance": 118180, "theoretical empirical results": 166027, "finetune opensource llm": 58952, "ai systems artificial": 7238, "systems artificial intelligence": 160250, "raising ethical concerns": 135503, "ethical concerns potential": 50796, "ai development deployment": 6957, "research aims address": 141578, "language model multiagent": 83805, "challenges opportunities future": 21979, "models specifically large": 109213, "technique commonly used": 163752, "feedback rlhf played": 57786, "large models chatgpt": 88920, "improving performance work": 74185, "demonstrate improved performance": 38383, "models outperform larger": 108382, "solving programming tasks": 153241, "code generated llm": 24861, "poses challenge llms": 124196, "abilities compared traditional": 1887, "proposed evaluation method": 132289, "vision speech processing": 176984, "robot operating ros": 145181, "language models identifying": 84663, "tasks including generating": 162555, "observe significant improvement": 115392, "tools discuss potential": 167143, "students learning programming": 156877, "indepth domain knowledge": 75530, "knowledge intricate reasoning": 82146, "code generation data": 24878, "models llms touted": 107973, "improvements baseline methods": 73880, "agent leveraging large": 6469, "models llm generative": 107036, "multiple gpt agents": 110929, "future work argue": 62404, "data collection evaluation": 34783, "different aspects including": 41662, "feedback rlhf large": 57783, "bridge gap past": 19054, "improve agents performance": 73408, "methods work aims": 101934, "understanding llm capabilities": 171338, "establish new benchmark": 50667, "focus structured data": 60059, "researchers developed techniques": 142196, "outline future research": 117492, "use advanced language": 172489, "prompting llm generate": 130996, "disruptive impact field": 43100, "artificial intelligence mainly": 12751, "language model previous": 83854, "meet functional requirements": 100279, "conditional generative models": 28958, "scenarios demonstrate effectiveness": 146573, "superficial alignment hypothesis": 158972, "match surpass performance": 99428, "incorporating domain knowledge": 75092, "human feedback llms": 70810, "demonstrates strong generalizability": 38901, "question answering remarkable": 134799, "training efficiency large": 168410, "rate experimental results": 135989, "helpful harmless recent": 69206, "framework consists steps": 61045, "data realworld scenarios": 35612, "dataset extensive experiments": 36292, "agentbased models abms": 6515, "wide array applications": 178248, "applications scientific research": 10676, "dialogues humans llms": 41561, "people interact llm": 120725, "support paper presents": 159315, "instruction describing task": 77985, "software program synthesis": 152835, "artificial intelligence model": 12752, "understanding users query": 171525, "3d physical world": 1140, "especially code generation": 50436, "automatically large language": 14836, "worth millions parameters": 179681, "llm adaptation methods": 93441, "motivate new research": 110168, "datasets conduct extensive": 36728, "showcases potential llms": 150102, "leveraging reinforcement learning": 91946, "rely machine learning": 139870, "techniques paper introduces": 163980, "variety evaluation metrics": 175709, "insights improving future": 77584, "assistants like siri": 13418, "main contributions novel": 98233, "models mllms building": 108200, "work introduce benchmark": 179051, "construct instructiontuning dataset": 30141, "speed learning process": 154509, "natural language ai": 111549, "openai gym interface": 116356, "llms proposed method": 96248, "like gpt4 results": 92301, "evolving digital landscape": 52308, "study 12 participants": 157122, "preferences large language": 126051, "significantly improves prediction": 151046, "key metric evaluating": 81537, "extensive experiments prove": 55867, "22 success rate": 775, "reward model improve": 144692, "applications pretrained foundation": 10641, "openvocabulary visual recognition": 116720, "challenges remain particularly": 22046, "training data safety": 168339, "potential pathways future": 124899, "allowing users input": 8399, "gained considerable traction": 62459, "reinforcement learning training": 139119, "learning training deep": 91091, "intersection union iou": 79768, "classic reinforcement learning": 23929, "stateoftheart deep rl": 155124, "mitigate hallucinations llms": 102608, "code generation remarkable": 24918, "learning foundation models": 90474, "propose framework leverages": 131837, "existing works suffer": 53654, "suffer limitations terms": 158439, "model consistently perform": 103356, "wide application llms": 178245, "language models binary": 84190, "review current literature": 144495, "course future research": 33008, "emotion classification dataset": 47563, "range applications various": 135582, "attention exceptional performance": 13877, "various domains work": 175914, "models llms introduces": 107585, "models furthermore conduct": 106407, "semantic information extraction": 148160, "finite state machine": 59633, "descriptions using large": 39512, "approaches terms sample": 11926, "terms sample efficiency": 164467, "experiment large language": 53896, "settings address challenges": 149527, "need labelled data": 112333, "data providing better": 35587, "concepts unseen training": 28697, "annotated data large": 9456, "language models empowered": 84438, "challenges promising future": 22022, "promising future directions": 130258, "field introduce background": 58184, "controlled experiments using": 31636, "significant research focused": 150860, "language models variety": 86365, "detailed case study": 40275, "models llms construction": 107219, "explore integration llms": 55223, "aiming shed light": 7564, "potential benefits limitations": 124622, "propose evaluate new": 131807, "advancement natural language": 5854, "nlp tasks particularly": 113879, "explored paper proposes": 55359, "utilizing llms perform": 175214, "works leveraging large": 179464, "existing methods performance": 53460, "thorough analysis current": 166179, "setting stage future": 149510, "evaluating generated code": 51304, "video generative pretraining": 176713, "methodology involves data": 101242, "insights evolving landscape": 77559, "capable performing complex": 20457, "framework enables agent": 61120, "finetuning foundation models": 59275, "foundation models limited": 60781, "set natural language": 149249, "llms openai cohere": 95977, "article aims provide": 12566, "case studies applied": 20893, "providing detailed description": 133282, "open source libraries": 116299, "readily available paper": 136174, "paper present systematic": 119140, "metrics assess quality": 102006, "comprehensive understanding achievements": 28152, "novel method effectively": 114588, "capabilities llms code": 20027, "optimal control policy": 116937, "success rate 970": 158287, "alignment human feedback": 8159, "automatically generating natural": 14823, "natural language summaries": 111876, "schemes widely used": 146812, "widely used metrics": 178401, "language models contribute": 84309, "models mllms enhance": 108203, "image text prompt": 72345, "real world design": 136263, "enable model better": 48111, "response given input": 142661, "simulation human behavior": 151699, "language processing efficacy": 86511, "diverse range user": 43623, "domains remains challenge": 44515, "reduce manual efforts": 138444, "models llms enhanced": 107362, "llms enhanced ability": 95078, "mainstream llms using": 98311, "systems paper discusses": 160509, "finetuning pretrained llm": 59461, "learning data available": 90347, "suggest llms capable": 158557, "llms research community": 96420, "effort model training": 46861, "effectiveness approach provide": 46130, "areas artificial intelligence": 12357, "growing research area": 68049, "code model publicly": 25003, "llms generating incorrect": 95391, "input output prediction": 77298, "source models model": 153463, "provide design implications": 132742, "study reveals llms": 157602, "multiple ai agents": 110833, "given high stakes": 65898, "paper surveys current": 119354, "foundation models used": 60816, "empirical study llm": 47757, "obtained various sources": 115539, "results demonstrate existing": 143300, "language inputs using": 83438, "features natural language": 57545, "natural language textual": 111894, "assess capabilities existing": 13049, "largescale human evaluation": 89316, "article presents new": 12593, "centered large language": 21326, "privacy concerns related": 127990, "incontext learning enhance": 74890, "perception language models": 120809, "models advancements large": 105296, "comprehensive overview emerging": 28087, "overview emerging integration": 118430, "emerging integration llms": 47513, "results based diverse": 143189, "survey evaluation llms": 159631, "code snippets natural": 25145, "snippets natural language": 152515, "commercial opensource models": 26089, "propose incontext learning": 131872, "models llms established": 107369, "powerful semantic understanding": 125331, "solutions address challenges": 152994, "challenges using large": 22094, "surpass existing methods": 159455, "human evaluations llms": 70767, "different strengths weaknesses": 42014, "language models ii": 84665, "models produce helpful": 108663, "produce helpful harmless": 129419, "helpful harmless responses": 69207, "propose method measure": 131923, "widely used training": 178409, "llms using tools": 96930, "performance applied diverse": 121153, "findings propose novel": 58754, "llms based agents": 94469, "intelligence ai techniques": 78775, "users easily modify": 173631, "models llms creating": 107229, "mutual enhancement large": 111338, "capabilities reinforcement learning": 20151, "evaluate effectiveness method": 50956, "intelligence ai development": 78737, "great potential llms": 67705, "large annotated data": 87192, "aligning llms new": 8103, "specific prompt design": 154062, "evaluating llms realistic": 51338, "novel framework utilizes": 114526, "research directions llms": 141723, "automated test case": 14616, "approach automatically generate": 11013, "automated proof generation": 14597, "approach compared previous": 11063, "novel approach automatic": 114369, "pretrained source code": 127162, "current research predominantly": 34228, "varying levels noise": 176295, "indepth analysis models": 75520, "light findings propose": 92114, "mainly focus solving": 98292, "dynamic video tasks": 45173, "crucial task computer": 33869, "response challenge introduce": 142622, "various baseline models": 175826, "overcome limitations existing": 118299, "limitations existing methods": 92582, "comprehension capability llms": 27889, "input program code": 77314, "models excel generating": 106190, "model trained human": 104765, "way finetune llms": 177814, "ethically aligned ai": 50849, "extraction relevant information": 56349, "shown promise addressing": 150334, "analysis case study": 8838, "sentiment analysis capabilities": 148608, "maintaining models performance": 98369, "gemini pro gpt4": 62865, "prowess various domains": 133424, "provides thorough review": 133235, "contribute ongoing discourse": 31415, "guidance researchers practitioners": 68159, "artificial intelligence using": 12779, "models gained immense": 106417, "demonstrated outstanding results": 38731, "various tasks despite": 176200, "tasks despite achievements": 162209, "intelligence ai enhance": 78743, "literature review study": 93200, "research bridging gap": 141621, "bridging gap understanding": 19094, "annotation model training": 9539, "language models control": 84310, "novel framework employs": 114517, "paper introduce approach": 118986, "llms demonstrated capability": 94835, "achieve fully automated": 3648, "use human oversight": 172672, "multiagent deep reinforcement": 110317, "reinforcement learning madrl": 139075, "languageoriented semantic communication": 86933, "semantic communication lsc": 148116, "using human language": 174307, "high training cost": 69551, "paper investigate recent": 119036, "recent line work": 137547, "processes large language": 129076, "vlms scene understanding": 177480, "advanced capabilities large": 5711, "application llms key": 10344, "llms key aspects": 95697, "task gptbased models": 161437, "different prompts using": 41950, "achieved promising success": 3862, "various llm sizes": 176015, "brings significant improvement": 19151, "environments reinforcement learning": 50107, "impressive performance numerous": 73337, "llms decisionmaking agents": 94787, "performance compared conventional": 121283, "attention given understanding": 13888, "language model meets": 83797, "code generation nonetheless": 24907, "natural languages extensive": 111933, "languages extensive experimental": 87006, "prompt engineering leveraging": 130469, "incomplete code snippets": 74810, "demonstrate feasibility employing": 38339, "language model ability": 83512, "applying real world": 10923, "empowers researchers practitioners": 48036, "publicly available corpus": 133633, "existing static analysis": 53586, "remarkable success llms": 140292, "approaches achieved remarkable": 11681, "approaches publicly available": 11878, "accurately identify locate": 3539, "achieved remarkable accuracy": 3865, "promising results domain": 130306, "explicitly prohibit use": 54985, "llms paper analyze": 96027, "suggest llms play": 158558, "latest breakthroughs large": 89541, "code review code": 25117, "lays solid foundation": 89718, "new avenues field": 113081, "domains analysis reveals": 44355, "make accurate predictions": 98477, "alignment performance rlhf": 8210, "existing benchmarks predominantly": 53299, "benchmarks predominantly focus": 17331, "multiturn interactions address": 111277, "interactions address gap": 79200, "future research robust": 62371, "propose approach automatically": 131711, "new possibilities generating": 113338, "goal assess extent": 66149, "data generated different": 35097, "approach prompting llms": 11473, "task introduce novel": 161493, "llm developed openai": 93591, "terms training speed": 164488, "time consuming prone": 166368, "using carefully crafted": 174019, "models llms test": 107968, "coverage paper present": 33062, "methods open source": 101691, "modern urban planning": 109846, "generative capabilities enable": 65392, "real world applications": 136262, "generation capabilities proposed": 64471, "domain specific knowledge": 44292, "small medium large": 152321, "tasks illustrating promising": 162522, "generated dataset publicly": 63845, "introduce largescale benchmark": 80000, "largescale benchmark dataset": 89274, "deep learning models trained": 37766, "data used train models": 35919, "test set best model": 164621, "propose endtoend machine learning": 131802, "performance 10 percentage points": 121101, "pretrained language models used": 126984, "similar inputs maximizing distance": 151258, "data code pretrained models": 34770, "generation natural language descriptions": 64874, "code natural language descriptions": 25024, "natural language descriptions using": 111584, "aligning language models user": 8094, "despite success large pretrained": 40227, "open large language model": 116247, "recent advancements large pretrained": 137364, "automated program repair apr": 14592, "program repair apr techniques": 129745, "produced large language models": 129501, "unsupervised text style transfer": 172279, "stateoftheart pretrained language model": 155306, "language model code codex": 83581, "rankers large language models": 135791, "code generation code translation": 24877, "language models llms hot": 85230, "program synthesis code generation": 129755, "strong zeroshot transfer capability": 156462, "models llms gpt3 codex": 107487, "large pretrained models language": 89012, "systematic multivocal literature review": 160140, "generated pretrained language models": 63940, "problems expressed natural language": 128507, "problems using natural language": 128649, "natural language problem descriptions": 111696, "engine powered large language": 48862, "background recent advancements large": 15448, "study large language model": 157463, "language models llms unlocked": 85621, "models llms unlocked new": 108001, "effort large language models": 46856, "framework uses large language": 61476, "use reinforcement learning human": 172848, "language processing benchmarks baselines": 86493, "language models lms human": 85678, "language models based current": 84164, "recent works shown large": 137762, "works shown large language": 179499, "large language model families": 87352, "models detect video game": 105947, "challenge artificial intelligence ai": 21590, "transformers graph neural networks": 169313, "language models conduct study": 84286, "improve performance language models": 73553, "generation models large language": 64849, "outperforming previous state art": 117689, "errors using large language": 50406, "large language models extracting": 87800, "language models study focuses": 86229, "work step bridging gap": 179311, "reinforcement learning rl agents": 139097, "crucial making informed decisions": 33823, "pretrained vision language model": 127229, "code generation models based": 24903, "language models llm abilities": 84813, "large language models observed": 88556, "significantly surpasses previous methods": 151168, "language models human preferences": 84653, "models llms powerful tools": 107737, "models llms recently applied": 107796, "large language models reinforcement": 88688, "language models reinforcement learning": 86076, "llms demonstrated strong capabilities": 94889, "linear temporal logic ltl": 92981, "planning using large language": 123340, "intents large language models": 79041, "models play crucial role": 108518, "artificial intelligence ai human": 12677, "large language models personalised": 88601, "wide range tasks set": 178321, "trained models publicly available": 168013, "large language models object": 88554, "large language model codex": 87327, "zeroshot learning natural language": 180244, "language models code analysis": 84243, "natural language instructions remains": 111654, "shown promising results generating": 150344, "environment reinforcement learning rl": 50026, "potential pretrained large language": 124918, "approach significantly outperforms existing": 11544, "handle complicated ai tasks": 68537, "current challenges future directions": 34087, "open questions large language": 116277, "intelligence machine learning natural": 78857, "large language model store": 87488, "benchmarks recently emerged evaluate": 17348, "achieves stateoftheart performance code": 4096, "applications including software development": 10564, "including software development maintenance": 74728, "paper present empirical study": 119117, "proposed framework significantly outperforms": 132308, "large language models cases": 87624, "foundation models uses large": 60818, "models uses large language": 109579, "llms exemplified chatgpt specifically": 95134, "repair large language models": 140411, "large language model automatically": 87316, "instructions using large language": 78371, "light future research directions": 92119, "intelligence ai tools based": 78780, "ai tools based large": 7288, "field natural language generation": 58214, "novel framework combines large": 114511, "study explores potential large": 157350, "language models llms analyzing": 84882, "generative ai applications metaverse": 65307, "advanced natural language generation": 5783, "natural language generation models": 111613, "possible future research directions": 124427, "bert powerful large language": 17582, "evaluation demonstrates effectiveness approach": 51539, "automatically generating source code": 14826, "generating source code natural": 64340, "field research recent years": 58242, "language models code code": 84245, "models code code llms": 105643, "feedback reinforcement learning human": 57775, "chatgpt shown impressive performance": 23317, "class large language models": 23883, "models llms pretrained vast": 107749, "coderelated tasks code generation": 25280, "models llms specifically gpt35": 107939, "advanced llms like gpt4": 5764, "demonstrated superior performance generating": 38809, "end propose novel method": 48682, "models segment model sam": 109061, "models llms external tools": 107413, "reasoning knowledgebased question answering": 136944, "ai natural language processing": 7122, "code analysis large language": 24660, "induce large language models": 75821, "large language models utilize": 88847, "make large language model": 98562, "argued large language models": 12421, "models llms demonstrated potential": 107278, "minimum description length mdl": 102401, "large language models construct": 87669, "work contains examples potentially": 178871, "contains examples potentially implicate": 30374, "examples potentially implicate stereotypes": 52658, "potentially implicate stereotypes associations": 125111, "implicate stereotypes associations harms": 72893, "stereotypes associations harms offensive": 155786, "associations harms offensive individuals": 13535, "harms offensive individuals certain": 68778, "offensive individuals certain social": 115618, "individuals certain social groups": 75766, "theorem proving large language": 166009, "present intriguing avenue exploration": 126346, "llms recently demonstrated potential": 96335, "environments large language models": 50089, "language models llms textbased": 85593, "natural language processing study": 111810, "trained using nexttoken prediction": 168114, "language model paper presents": 83827, "performance close random chance": 121251, "software engineering tools based": 152813, "emerged powerful tools capable": 47389, "language models llms reinforcement": 85473, "uses deep learning techniques": 173844, "language model llm empowered": 83738, "large language models resulting": 88702, "offers valuable insights future": 115861, "user intent expressed natural": 173428, "intent expressed natural language": 79012, "crucial achieving embodied intelligence": 33751, "training experimental results demonstrate": 168438, "previous works utilized language": 127705, "demonstrate method surpasses existing": 38436, "inspired insights cognitive science": 77734, "coding assistants like github": 25371, "assistants like github copilot": 13417, "reinforcement learning rl emerged": 139101, "recent years software systems": 137807, "tasks natural language instructions": 162840, "use largescale pretrained language": 172726, "language models solving programming": 86197, "interactive coding execution feedback": 79293, "models llms applied tasks": 107117, "dimension large language models": 42317, "large language models predicting": 88617, "utilization natural language processing": 175012, "llms gpt35 gpt4 palm": 95428, "explore potential using llms": 55273, "models llms like codex": 107628, "language models propose novel": 85994, "rlhf large language models": 145093, "advancement artificial general intelligence": 5825, "natural language understanding spatial": 111915, "llms paper provides comprehensive": 96041, "feasibility using llms generate": 57370, "task presents unique challenges": 161640, "models llm like chatgpt": 107038, "recent advancements deep learning": 137349, "language models llm use": 84838, "investigates application large language": 80546, "large language models offer": 88558, "learning human feedback large": 90522, "models llms proven capable": 107772, "models llms address problems": 107093, "associated github link collecting": 13481, "github link collecting latest": 65821, "link collecting latest papers": 93093, "collecting latest papers available": 25718, "feasibility using large language": 57367, "simulation plays crucial role": 151709, "human feedback reinforcement learning": 70815, "language models llms codex": 84962, "large language models master": 88504, "large language models static": 88766, "adopted large language model": 5604, "experimental results various tasks": 54085, "rl human feedback rlhf": 145058, "introduced large language models": 80162, "present largescale empirical study": 126358, "like natural language processing": 92365, "source code analysis tasks": 153393, "undergone extensive training using": 170795, "released openai november 2022": 139531, "tasks machine translation question": 162768, "plays pivotal role shaping": 123534, "llms like chatgpt emerged": 95768, "machine learning techniques recently": 98085, "language modeling reinforcement learning": 84019, "paper propose approach called": 119207, "chatgpt specifically leverage chatgpt": 23348, "evaluating models existing evaluation": 51349, "abilities solve complex problems": 2019, "instruction large language models": 78031, "electronic design automation eda": 46994, "robustness code generated llms": 145358, "directions large language models": 42488, "language models llms undergone": 85615, "focus large language model": 60011, "tasks remains largely unexplored": 163128, "language model llm paper": 83761, "address complex realworld scenarios": 5202, "large language models building": 87616, "experiments method significantly improves": 54358, "powerful capabilities large language": 125262, "large language models represented": 88695, "language models represented chatgpt": 86086, "opensource models like llama": 116656, "propose novel method named": 132015, "realworld applications existing methods": 136400, "strides natural language processing": 156311, "natural language processing proficiency": 111796, "reinforcement learning generative pretrained": 139064, "potential llms like chatgpt": 124844, "large language model application": 87306, "language model application large": 83528, "model application large language": 103119, "knowledge pretrained large language": 82292, "scaling reinforcement learning human": 146444, "study investigate large language": 157429, "grounding large language model": 67901, "pretrained transformer gpt series": 127189, "domainspecific large language model": 44597, "valuable insights potential applications": 175436, "significant research efforts devoted": 150859, "shown remarkable effectiveness various": 150359, "large language models communication": 87651, "llms gpt35 gpt4 llama2": 95427, "models work propose novel": 109713, "methods proximal policy optimization": 101748, "introduce novel approach called": 80048, "based natural language inputs": 15964, "language models llms promote": 85429, "direction artificial general intelligence": 42432, "model demonstrated impressive performance": 103425, "language processing capabilities llms": 86497, "need additional data collection": 112215, "paper introduces novel task": 119020, "planning large language model": 123287, "language model llm convert": 83732, "address issues introduce novel": 5285, "incontext learning fewshot prompt": 74897, "aligning models human values": 8108, "extensive experiments standard benchmarks": 55888, "recent years reinforcement learning": 137797, "visual language navigation vln": 177217, "generative ai models specifically": 65341, "tools like github copilot": 167200, "harness capabilities large language": 68785, "language models google bard": 84602, "models llms automatic code": 107131, "llms automatic code generation": 94456, "chaining large language models": 21481, "chain thought cot techniques": 21465, "tasks previously thought exclusive": 162997, "base language models models": 15608, "llms demonstrate impressive reasoning": 94820, "generation capabilities large language": 64467, "paper proposes new framework": 119271, "proximal policy optimization p3o": 133429, "plays crucial role bridging": 123515, "outperform existing opensource models": 117587, "llms demonstrated great potential": 94846, "larger language models trained": 89212, "given large language models": 65924, "findings underscore transformative potential": 58830, "maintenance recently large language": 98402, "models llms gained popularity": 107446, "compared existing methods showcasing": 26800, "work assumes human preferences": 178812, "benchmark designed evaluate llms": 16930, "valuebased deep reinforcement learning": 175514, "large language models opensource": 88565, "llm prompting prompt engineering": 93921, "validation large language models": 175364, "results validate effectiveness approach": 143912, "language models llms motion": 85341, "training process extensive experiments": 168652, "ample training data available": 8717, "human feedback rlhf used": 70824, "language models llms comprehending": 84970, "approach promising future research": 11467, "llms shown promising capabilities": 96561, "actions large language models": 4380, "large language models pursuit": 88653, "behaviours large language models": 16746, "finetune smaller language model": 58970, "propose new framework termed": 131963, "visionlanguage models vlms achieved": 177067, "large language models facilitate": 87801, "large language visionlanguage models": 88887, "large language model gpt35": 87366, "llms gaining increasing attention": 95334, "leveraging machine learning ml": 91902, "language models llms witnessed": 85654, "models llms witnessed remarkable": 108040, "language models mllms emerged": 85754, "help large language model": 69134, "performance data generated llm": 121356, "crucial training large language": 33881, "question answering generation coherent": 134726, "answering generation coherent text": 9864, "generation coherent text code": 64505, "foundation future research development": 60720, "bridge gap paper proposes": 19053, "capabilities llms incontext learning": 20036, "foundation models proposed framework": 60797, "conduct human evaluation involving": 29142, "llms brought significant advancements": 94519, "researchers recently explored various": 142257, "stateoftheart performance various tasks": 155297, "performance various tasks llms": 122279, "coding large language models": 25390, "capabilities stateoftheart llms gpt4": 20197, "based generative artificial intelligence": 15832, "evidence large language models": 52193, "trained large multimodal model": 167975, "rl reinforcement learning human": 145075, "largelanguage models llms shown": 89143, "paper explore application large": 118907, "explore application large language": 55147, "recent focus large language": 137506, "policy optimization ppo reinforcement": 123866, "optimization ppo reinforcement learning": 117026, "directions future research exploring": 42476, "learning based large language": 90245, "large pretrained generative models": 88992, "adversarial training method improve": 6240, "models align human preferences": 105330, "language models llms advancements": 84873, "large language models practical": 88614, "extensive evaluation comparison various": 55768, "findings reveal opensource llms": 58784, "reveal opensource llms finetuned": 144362, "continued pretraining supervised finetuning": 31213, "pretraining supervised finetuning sft": 127452, "recent years rapid advancement": 137795, "artificial intelligence ai emergence": 12672, "intelligence ai emergence large": 78740, "ai emergence large language": 6973, "machine learning models trained": 98059, "learning models trained large": 90736, "existing visionlanguage models vlms": 53630, "large language models autonomous": 87592, "large language models codellms": 87640, "human large language model": 70909, "large language models increase": 87893, "low false alarm rate": 97756, "policies large language models": 123816, "classification tasks code vulnerability": 24113, "tasks code vulnerability detection": 162066, "language models prompt learning": 85977, "propose new benchmark dataset": 131956, "large language models leverage": 87950, "language models fewshot examples": 84527, "extensive experiments reveal approach": 55883, "schemes large language models": 146808, "models llms diffusion model": 107309, "using direct preference optimization": 174145, "experiments validate effectiveness proposed": 54522, "llms using human feedback": 96922, "preference optimization dpo method": 126019, "denoising diffusion policy optimization": 39074, "approach achieves superior performance": 10958, "commonsense reasoning language models": 26313, "embodied artificial intelligence ai": 47306, "ai systems artificial intelligence": 7239, "systems artificial intelligence ai": 160251, "large language model multiagent": 87448, "models specifically large language": 109214, "human feedback rlhf played": 70820, "improving performance work investigate": 74186, "computer vision speech processing": 28513, "large language models identifying": 87876, "language models llms touted": 85595, "significant improvements baseline methods": 150743, "agent leveraging large language": 6470, "large language model evaluate": 87345, "language models llm generative": 84826, "human feedback rlhf large": 70818, "feedback rlhf large language": 57784, "architecture large language model": 12181, "large language model significantly": 87482, "llms chatgpt shown remarkable": 94602, "previous works primarily focus": 127701, "llms opened new opportunities": 95987, "automatically large language models": 14837, "datasets conduct extensive experiments": 36729, "study showcases potential llms": 157630, "paper introduces new framework": 119012, "models llms reinforcement learning": 107816, "llms reinforcement learning rl": 96369, "language models mllms building": 85752, "user study 12 participants": 173515, "applications pretrained foundation models": 10642, "llms gained considerable traction": 95324, "reinforcement learning training deep": 139120, "large language models binary": 87607, "wide range applications various": 178266, "range applications various fields": 135583, "significant attention exceptional performance": 150603, "language models llms introduces": 85279, "outline potential future research": 117495, "descriptions using large language": 39513, "approaches terms sample efficiency": 11927, "models reinforcement learning human": 108890, "3d scene graph generation": 1148, "annotated data large language": 9457, "large language models empowered": 87755, "presents promising avenue enhancing": 126626, "challenges promising future directions": 22023, "large language models promising": 88635, "large language models variety": 88849, "language models llms construction": 84977, "advancement natural language processing": 5855, "works leveraging large language": 179465, "experimental results reveal proposed": 54069, "automatically generating natural language": 14824, "results human evaluation demonstrate": 143472, "large language models contribute": 87676, "language models mllms enhance": 85755, "like chatgpt gpt4 demonstrated": 92229, "chatgpt gpt4 demonstrated exceptional": 23015, "natural language processing efficacy": 111723, "language models llms enhanced": 85085, "models llms enhanced ability": 107363, "language models realworld scenarios": 86036, "models llms trained datasets": 107978, "code model publicly available": 25004, "advanced generative ai models": 5738, "generative ai models like": 65338, "findings reveal significant bias": 58788, "centered large language models": 21327, "models advancements large language": 105297, "present novel framework called": 126389, "comprehensive overview emerging integration": 28088, "overview emerging integration llms": 118431, "combination natural language instructions": 25838, "code snippets natural language": 25146, "propose incontext learning approach": 131873, "language models llms established": 85092, "powerful semantic understanding reasoning": 125332, "semantic understanding reasoning capabilities": 148251, "challenges using large language": 22095, "models produce helpful harmless": 108664, "produce helpful harmless responses": 129420, "paper propose new benchmark": 119235, "based findings propose novel": 15815, "approach significantly outperforms stateoftheart": 11546, "models llms based agents": 107138, "artificial intelligence ai techniques": 12703, "language models llms creating": 84987, "capabilities reinforcement learning rl": 20152, "artificial intelligence ai development": 12670, "challenge paper introduces novel": 21697, "automated test case generation": 14617, "large language models streamline": 88768, "era large language model": 50229, "language models gained immense": 84565, "various tasks despite achievements": 176201, "artificial intelligence ai enhance": 12675, "large language models control": 87677, "models llms demonstrated capability": 107260, "multiagent deep reinforcement learning": 110318, "deep reinforcement learning madrl": 37822, "languageoriented semantic communication lsc": 86934, "processes large language models": 129077, "advanced capabilities large language": 5712, "paper propose method generate": 119231, "impressive performance numerous tasks": 73338, "gap propose novel framework": 62716, "languages extensive experimental results": 87007, "leveraging recent advances large": 91939, "specific large language model": 154029, "existing benchmarks predominantly focus": 53300, "paper propose approach automatically": 119206, "using carefully crafted prompts": 174020, "language models llms test": 85590, "generated dataset publicly available": 63846, "despite success large pretrained language": 40228, "large language models language model": 87933, "automated program repair apr techniques": 14593, "challenge large language models llms": 21672, "large language models llms hot": 88219, "language models llms gpt3 codex": 85192, "background recent advancements large language": 15449, "large language models llms unlocked": 88460, "language models llms unlocked new": 85622, "framework uses large language models": 61477, "natural language processing benchmarks baselines": 111708, "large language models based current": 87597, "recent works shown large language": 137763, "works shown large language models": 179500, "generation models large language models": 64850, "errors using large language models": 50407, "code large language models llms": 24971, "large language models study focuses": 88775, "large language models llm abilities": 87964, "language models llms powerful tools": 85407, "language models llms recently applied": 85463, "large language models reinforcement learning": 88689, "models llms demonstrated strong capabilities": 107295, "planning using large language models": 123341, "zeroshot learning natural language processing": 180245, "large language models code analysis": 87636, "models shown promising results generating": 109112, "potential pretrained large language models": 124919, "open questions large language models": 116278, "artificial intelligence machine learning natural": 12750, "intelligence machine learning natural language": 78858, "applications including software development maintenance": 10565, "large language models human preferences": 87870, "different large language models cases": 41822, "foundation models uses large language": 60819, "leverages stateoftheart large language model": 91783, "artificial intelligence ai tools based": 12708, "intelligence ai tools based large": 78781, "ai tools based large language": 7289, "use large language models assess": 172706, "novel framework combines large language": 114512, "combines large language models llms": 25943, "study explores potential large language": 157351, "large language models llms analyzing": 88009, "models llms demonstrated remarkable abilities": 107284, "bert powerful large language model": 17583, "automatically generating source code natural": 14827, "generating source code natural language": 64341, "empirical results demonstrate method significantly": 47722, "large language models code code": 87638, "language models code code llms": 84246, "feedback reinforcement learning human feedback": 57776, "class large language models llms": 23884, "language models llms pretrained vast": 85417, "language models llms specifically gpt35": 85562, "language models llms external tools": 85130, "ai natural language processing nlp": 7123, "argued large language models llms": 12422, "language models llms demonstrated potential": 85018, "work contains examples potentially implicate": 178872, "contains examples potentially implicate stereotypes": 30375, "examples potentially implicate stereotypes associations": 52659, "potentially implicate stereotypes associations harms": 125112, "implicate stereotypes associations harms offensive": 72894, "stereotypes associations harms offensive individuals": 155787, "associations harms offensive individuals certain": 13536, "harms offensive individuals certain social": 68779, "offensive individuals certain social groups": 115619, "capabilities large language models automated": 19990, "models llms recently demonstrated potential": 107800, "large language models llms textbased": 88441, "large language models propose new": 88644, "dataset large language models llms": 36384, "large language model paper presents": 87455, "large language models llms reinforcement": 88376, "large language model llm empowered": 87397, "user intent expressed natural language": 173429, "results demonstrate method surpasses existing": 143317, "coding assistants like github copilot": 25372, "use largescale pretrained language models": 172727, "large language models solving programming": 88755, "language models llms applied tasks": 84891, "utilization natural language processing nlp": 175013, "language models llms like codex": 85312, "large language models propose novel": 88645, "llms paper provides comprehensive review": 96042, "language models llm like chatgpt": 84828, "large language models llm use": 87982, "investigates application large language models": 80547, "documents using natural language processing": 43950, "using large language models results": 174389, "advanced large language models like": 5758, "reinforcement learning human feedback large": 139067, "learning human feedback large language": 90523, "language models llms proven capable": 85439, "language models llms address problems": 84867, "associated github link collecting latest": 13482, "github link collecting latest papers": 65822, "link collecting latest papers available": 93094, "feasibility using large language models": 57368, "using large language models llm": 174384, "human feedback reinforcement learning human": 70816, "large language models llms codex": 88056, "models llms like chatgpt emerged": 107622, "based large language model llm": 15905, "instruction large language models llms": 78032, "large language models llms undergone": 88456, "large language model llm paper": 87417, "harnesses large language models llms": 68808, "powerful capabilities large language models": 125263, "large language models represented chatgpt": 88696, "programming large language models large": 129853, "large language model application large": 87307, "language model application large language": 83529, "scaling reinforcement learning human feedback": 146445, "study investigate large language models": 157430, "grounding large language model agents": 67902, "generative pretrained transformer gpt series": 65551, "potential large language models generating": 124807, "large language models llms promote": 88349, "large language model llm convert": 87391, "large language models like llama": 87959, "harness capabilities large language models": 68786, "language models llms automatic code": 84905, "models llms automatic code generation": 107132, "models llms demonstrate impressive reasoning": 107251, "generation capabilities large language models": 64468, "models llms demonstrated great potential": 107269, "given large language models llms": 65925, "potential multimodal large language models": 124873, "maintenance recently large language models": 98403, "language models llms gained popularity": 85158, "impressive natural language processing nlp": 73320, "validation large language models llms": 175365, "experimental results validate effectiveness approach": 54083, "large language models llms motion": 88290, "learning human feedback rlhf used": 90529, "large language models llms comprehending": 88063, "models llms shown promising capabilities": 107889, "models llms gaining increasing attention": 107454, "shown impressive performance various tasks": 150284, "abilities large language models llm": 1947, "large language models llms witnessed": 88479, "language models llms witnessed remarkable": 85655, "large language models mllms emerged": 88522, "help large language model llm": 69135, "crucial training large language models": 33882, "question answering generation coherent text": 134727, "answering generation coherent text code": 9865, "recent large language model based": 137535, "models llms brought significant advancements": 107152, "endtoend trained large multimodal model": 48776, "rl reinforcement learning human feedback": 145076, "paper explore application large language": 118908, "explore application large language models": 55148, "experiments demonstrate effectiveness proposed framework": 54223, "proximal policy optimization ppo reinforcement": 133432, "policy optimization ppo reinforcement learning": 123867, "code analysis large language models": 24661, "including large language models code": 74584, "large language models llms advancements": 88001, "findings reveal opensource llms finetuned": 58785, "continued pretraining supervised finetuning sft": 31214, "advancement artificial intelligence ai emergence": 5828, "artificial intelligence ai emergence large": 12673, "intelligence ai emergence large language": 78741, "ai emergence large language models": 6974, "machine learning models trained large": 98060, "feedback large language models reinforcement": 57725, "models llms demonstrated superior performance": 107297, "classification tasks code vulnerability detection": 24114, "large language models fewshot examples": 87808, "including natural language processing computer": 74637, "language models llms diffusion model": 85036, "direct preference optimization dpo method": 42399, "ai systems artificial intelligence ai": 7240, "models specifically large language models": 109215, "learning human feedback rlhf played": 90526, "large language models llms touted": 88443, "agent leveraging large language models": 6471, "large language models llm generative": 87974, "learning human feedback rlhf large": 90525, "human feedback rlhf large language": 70819, "feedback rlhf large language models": 57785, "models llms chatgpt shown remarkable": 107197, "models llms opened new opportunities": 107698, "provided large language models llms": 133072, "openais generative pretrained transformer gpt": 116406, "language models llms reinforcement learning": 85474, "models llms reinforcement learning rl": 107817, "large language models mllms building": 88520, "rapid development large language model": 135870, "models llms gained considerable traction": 107445, "wide range applications various fields": 178267, "large language models llms introduces": 88252, "models reinforcement learning human feedback": 108891, "annotated data large language models": 9458, "large language models llms construction": 88069, "advancement natural language processing nlp": 5856, "using large language models automating": 174373, "stateoftheart large language models llm": 155178, "large language models mllms enhance": 88523, "llms like chatgpt gpt4 demonstrated": 95772, "large language models llms enhanced": 88136, "language models llms enhanced ability": 85086, "large language models realworld scenarios": 88668, "centered large language models llms": 21328, "models advancements large language models": 105298, "comprehensive overview emerging integration llms": 28089, "large language models llms established": 88141, "powerful semantic understanding reasoning capabilities": 125333, "challenges using large language models": 22096, "models produce helpful harmless responses": 108665, "social interactions large language models": 152593, "interactions large language models llms": 79240, "language models llms based agents": 84910, "large language models llms creating": 88078, "large language models gained immense": 87830, "language models llms demonstrated capability": 85011, "leveraging large language models llm": 91886, "multiagent deep reinforcement learning madrl": 110319, "processes large language models llms": 129078, "advanced capabilities large language models": 5713, "leveraging recent advances large language": 91940, "available large language models llms": 15155, "based multimodal large language models": 15957, "breakthroughs large language models llm": 19024, "domain specific large language model": 44297, "advanced large language model llm": 5756, "large language models llms test": 88439, "iu": 81170, "videogpt": 176758, "latents": 89524, "transformer2": 169225, "430k": 1218, "juxtaposing": 81402, "836": 1697, "vim": 176840, "frechet": 61540, "videoqa": 176766, "anisotropy": 9430, "tempos": 164295, "contentrich": 30663, "p2": 118480, "clamp": 23851, "textualonly": 165968, "instructpix2pix": 78429, "240": 811, "discriminates": 42834, "gestalt": 65773, "520": 1342, "invert": 80355, "cnnbased": 24613, "generalisable": 63079, "legibility": 91329, "36k": 1086, "noised": 113988, "companys": 26554, "raster": 135962, "aesthetics": 6295, "modifiers": 109881, "soared": 152520, "perexample": 120851, "album": 7750, "polished": 123887, "vividness": 177427, "nonparallel": 114113, "imageonly": 72384, "humanperceived": 71322, "rarer": 135959, "timevarying": 166627, "064": 57, "902": 1753, "interpretableexplainable": 79699, "modelssystems": 109756, "volumetric": 177548, "vlp": 177495, "portraying": 124135, "bev": 18080, "waymo": 177892, "reformatted": 138822, "waffle": 177659, "rarity": 135960, "minting": 102436, "adl": 5550, "textures": 165971, "fiber": 58102, "multigrain": 110405, "permeated": 122480, "sensical": 148406, "veteran": 176637, "politeness": 123890, "16m": 479, "translational": 169547, "0327": 27, "nonspatial": 114137, "imagenet21k": 72383, "5m": 1413, "revert": 144472, "300k": 981, "unordered": 172067, "2585": 852, "residential": 142311, "lowparameter": 97875, "amounting": 8676, "tin": 166630, "promisingly": 130333, "gptassisted": 67274, "inertial": 75915, "660k": 1486, "aggregations": 6784, "nearfield": 112100, "fading": 56940, "printing": 127875, "printed": 127874, "topography": 167384, "distributionaware": 43417, "superb": 158966, "cure": 34045, "inequitable": 75911, "improbable": 73394, "oscillatory": 117427, "eo": 50132, "vegetation": 176416, "kinetics": 81668, "semanticcoherence": 148281, "clarified": 23857, "complementarities": 27249, "sparkdesk": 153695, "881": 1729, "testify": 164690, "machinelearningbased": 98158, "consistencies": 29747, "subcategory": 157798, "organizer": 117296, "hare": 68709, "sociolinguistic": 152718, "nutshell": 115080, "facetoface": 56582, "openimages": 116519, "overrelying": 118404, "inventive": 80333, "0781": 75, "allencompassing": 8279, "pedestrian": 120656, "parsons": 119972, "967": 1814, "panacea": 118673, "reanalysis": 136545, "awaken": 15367, "multitarget": 111197, "perceivers": 120768, "flowcharts": 59878, "976": 1821, "hallucinationminimized": 68418, "iai": 71645, "446": 1233, "signify": 151186, "chineselanguage": 23672, "meshes": 100536, "kinematics": 81666, "sustaining": 159749, "nuscenes": 115076, "disadvantageous": 42630, "decoration": 37653, "arranging": 12509, "fullyautomatic": 61804, "narrating": 111440, "renderer": 140379, "orange": 117157, "llmgeneration": 94211, "subactions": 157795, "untrustworthy": 172298, "binds": 18483, "characteraware": 22444, "kit": 81672, "apriori": 12049, "llamp": 93408, "amodal": 8673, "1786": 510, "usersupplied": 173826, "inpaint": 77198, "steerability": 155562, "anatomical": 9397, "categoryspecific": 21157, "409": 1195, "hallucinationfree": 68417, "wholebody": 178239, "045": 36, "manipulates": 98934, "downplaying": 44688, "mistral7binstruct": 102560, "trackgpt": 167531, "stateof": 155055, "theart": 165993, "dogs": 44045, "autism": 14449, "superficially": 158974, "lei": 91338, "splatting": 154557, "computeraided": 28517, "expertlabeled": 54632, "warming": 177701, "eventlevel": 52101, "315": 999, "relaxing": 139432, "cooccurring": 32053, "nonprofessional": 114119, "layperson": 89709, "fared": 57242, "sewing": 149724, "stroke": 156336, "relief": 139793, "crossapplication": 33604, "designed pretrain": 39926, "capture dependencies": 20644, "natural responses": 111945, "challenging involves": 22179, "different dynamics": 41752, "combining visual": 25999, "conceptual captions": 28706, "iu xray": 81171, "learning transferable": 91096, "million image": 102229, "30 different": 960, "object classification": 115112, "tasks competitive": 162089, "need dataset": 112258, "incorrect content": 75149, "documentlevel detection": 43883, "task associated": 161206, "analyses create": 8756, "pretrained transformer2": 127208, "regardless user": 138906, "scenarios multimodal": 146653, "methods utilized": 101920, "proposed uses": 132451, "network video": 112707, "588 accuracy": 1398, "knowledge vital": 82505, "implicitly inferred": 73000, "mining causal": 102406, "offer rich": 115697, "aid process": 7367, "received lot": 137311, "video inputs": 176716, "random model": 135532, "predicts masked": 125969, "image investigate": 72282, "setting address": 149420, "modality able": 102963, "powerful generation": 125278, "features reasoning": 57564, "carefully investigating": 20816, "content ii": 30521, "information historical": 76495, "frechet inception": 61541, "inception distance": 74310, "distance fid": 43119, "huge sizes": 70528, "analysis observe": 9036, "multimodal embedding": 110628, "just learn": 81380, "similar language": 151259, "image paper": 72297, "context making": 30843, "resulting captions": 143093, "corpora provided": 32244, "bidirectional generation": 18352, "dataset 145": 36077, "additional text": 5006, "text source": 165472, "generation objective": 64898, "recent artificial": 137443, "exploring bias": 55456, "methodological tools": 101185, "literature assess": 93156, "assess biases": 13047, "images embedded": 72415, "facilitate collaborative": 56599, "automatic modeling": 14714, "creating text": 33327, "pretrained convolutional": 126777, "network cnn": 112633, "using recurrent": 174659, "feature vector": 57435, "representations formed": 140810, "multimodal image": 110651, "image classifier": 72211, "significantly mitigates": 151074, "eos token": 50134, "quantized codebook": 134425, "careful balance": 20775, "discrete space": 42815, "text remarkable": 165418, "controls generation": 31672, "scheme does": 146785, "method notable": 100993, "effective encoding": 45747, "fid score": 58111, "zeroshot classifier": 180146, "score image": 147072, "prompt sentence": 130665, "techniques early": 163872, "prevent prompt": 127543, "generation application": 64422, "strategy better": 156110, "align text": 8036, "capability foundation": 20297, "image image": 72275, "communication requires": 26409, "popular game": 123998, "image pretrained": 72303, "highlight interesting": 69751, "tap rich": 161035, "rich body": 144764, "advances capabilities": 5990, "connecting language": 29480, "attempts bridge": 13813, "settings outperforming": 149620, "text type": 165542, "motivated fact": 110176, "detecting new": 40422, "notable shift": 114246, "captioning language": 20582, "unlike image": 172005, "generation minimal": 64833, "incorporating stylistic": 75133, "scenes single": 146755, "2d image": 929, "image challenging": 72200, "humans objects": 71438, "real images": 136235, "images demonstrate": 72409, "customized prompts": 34410, "models classify": 105627, "arbitrary set": 12090, "prompts relying": 131445, "far fewer": 57217, "contain important": 30298, "regions image": 138933, "accuracy range": 3355, "task interface": 161487, "simple modular": 151495, "scalable design": 146239, "ability interpretability": 2235, "provide annotations": 132676, "cot language": 32871, "supervision method": 159206, "clip encoder": 24398, "imagelanguage models": 72377, "image demonstrate": 72224, "vlms clip": 177452, "clip shown": 24412, "query image": 134592, "use rich": 172860, "framework classification": 61007, "proven perform": 132646, "research trend": 142125, "generation forecasting": 64668, "forecast models": 60369, "continuous values": 31259, "ai 3d": 6841, "design workflows": 39804, "workflows designers": 179384, "generative design": 65411, "explores zeroshot": 55446, "second address": 147454, "concepts different": 28648, "encoder pretrained": 48434, "architecture need": 12196, "multimodal encoder": 110629, "collected realworld": 25699, "dataset image": 36350, "inversion model": 80354, "matter seconds": 99652, "interpretable rationale": 79688, "generated program": 63943, "motion capture": 110143, "enables multiple": 48228, "consists following": 29965, "continuous motion": 31245, "latent code": 89493, "motion tokens": 110158, "robust finetuning": 145265, "exhibits unprecedented": 53233, "robustness wide": 145444, "robustness downstream": 145375, "robustness ood": 145412, "datasets imagenet": 36917, "access target": 2911, "steering target": 155572, "preserving content": 126683, "boost observed": 18820, "llms conditioned": 94691, "stateoftheart visionlanguage": 155410, "model standard": 104651, "observe overall": 115385, "generate entirely": 63477, "algorithm benchmark": 7783, "cuttingedge performance": 34445, "different populations": 41913, "nonenglish speakers": 114045, "openai recently": 116372, "tool applications": 166939, "input different": 77226, "dalle model": 34528, "allows creation": 8418, "storytelling framework": 155909, "nonenglish texts": 114046, "able create": 2485, "specify constraints": 154344, "provide robust": 132964, "opportunities offered": 116869, "use sophisticated": 172882, "traditional datadriven": 167606, "model suitable": 104685, "based encoderdecoder": 15774, "textual queries": 165939, "masked generative": 99296, "generative transformers": 65606, "embedding extracted": 47163, "gpt human": 66430, "clip contrastive": 24392, "various image": 175972, "performance poisoned": 121914, "poisoned data": 123788, "potential consequences": 124655, "improves wellbeing": 74101, "bias prevalent": 18180, "visual context": 177144, "visionlanguage pretrained": 177078, "groundtruth label": 67937, "combine proposed": 25885, "images modalities": 72450, "text research": 165426, "proposes leveraging": 132466, "inference abilities": 75953, "hierarchical label": 69360, "finetuning little": 59352, "pose issues": 124160, "proceeds steps": 128720, "produce set": 129462, "datasets underlying": 37167, "using diffusion": 174140, "categories model": 21112, "identify zeroshot": 71981, "particular ask": 120049, "finegrained classification": 58859, "aim reducing": 7488, "score computed": 147054, "furthermore shown": 62161, "estimating carbon": 50743, "vehicles equipped": 176419, "classification required": 24072, "feature similarity": 57431, "supervisory signal": 159226, "autonomous surface": 14948, "surface vehicle": 159419, "extract types": 56173, "generalized representations": 63283, "produce textual": 129473, "images dalle": 72408, "potential different": 124675, "training trained": 168795, "users despite": 173620, "categories information": 21102, "categories given": 21100, "sufficiently explored": 158506, "positive pairs": 124303, "capability visionlanguage": 20389, "constraints integrating": 30091, "attempts mitigate": 13817, "potential conducted": 124654, "api access": 10150, "opensource platform": 116664, "platform data": 123381, "offers intuitive": 115823, "flexibility human": 59791, "recognition image": 138072, "dictionary based": 41588, "matching text": 99489, "performance 14": 121108, "unsupervised generative": 172247, "style input": 157752, "rewards learning": 144722, "experiments quantitatively": 54425, "layers tailored": 89681, "features benchmark": 57452, "2d images": 930, "images used": 72503, "train clip": 167754, "dataset utilized": 36609, "unimodal models": 171789, "encoders clip": 48478, "intention classification": 79028, "creation automatic": 33333, "leverage technology": 91670, "chatgpt furthermore": 22958, "demonstrated unique": 38816, "provides quantitative": 133203, "quantitative benchmarking": 134338, "inherent instability": 76954, "images users": 72504, "process imposes": 128862, "content aligned": 30434, "prevalent nlp": 127517, "hour finetuning": 70450, "commands approach": 26041, "approach simply": 11551, "mechanism finetuning": 99991, "3d visual": 1154, "text 3d": 164811, "text branch": 164864, "enhance framework": 49200, "transparency model": 169584, "guide development": 68172, "different subfields": 42018, "weaknesses evaluation": 177963, "selfsupervised multimodal": 148068, "mining techniques": 102415, "data difficulty": 34917, "challenge diverse": 21630, "approach eliminates": 11151, "replacement technique": 140469, "chart analysis": 22509, "framework foundation": 61169, "provides capabilities": 133115, "corresponding visual": 32615, "promise method": 130189, "classes pretrained": 23913, "problem does": 128233, "applications zeroshot": 10734, "editing image": 45459, "instead text": 77901, "discover emergent": 42728, "interactive model": 79323, "versatility introduce": 176584, "queries including": 134488, "labels semantic": 82826, "diverse segmentation": 43644, "learning design": 90362, "generalize distribution": 63246, "used novel": 173162, "base classes": 15592, "robustness comprehensive": 145362, "llava large": 93412, "desired features": 40045, "performing spatial": 122416, "action able": 4305, "autoregressive causal": 14975, "trained joint": 167957, "performance initial": 121679, "fms gpt4": 59934, "impact wide": 72743, "classifying data": 24220, "accuracy 520": 3109, "tasks notable": 162859, "cuttingedge llm": 34440, "exploring applicability": 55451, "model explicit": 103609, "offers good": 115813, "text vector": 165565, "early fusion": 45250, "gaining significant": 62502, "discrete distributions": 42803, "distributions extracted": 43422, "humans completing": 71360, "jointly leverages": 81278, "surge use": 159439, "representations providing": 140874, "descriptions human": 39463, "using computer": 174075, "diverse textual": 43684, "contributes growing": 31441, "data require": 35652, "report initial": 140536, "used legal": 173133, "image human": 72274, "requests llms": 141055, "parameters learning": 119791, "proposed adapt": 132225, "model significant": 104569, "reports significantly": 140609, "corpora scraped": 32248, "appear model": 10226, "propose simpleyeteffective": 132135, "goal collect": 66156, "collect annotate": 25652, "transfer largescale": 168930, "difficult given": 42151, "tasks content": 162125, "content preservation": 30577, "artistic expression": 12809, "preservation furthermore": 126660, "agi models": 6804, "solutions similar": 153073, "scant existing": 146468, "objects relationships": 115302, "review research": 144545, "review application": 144481, "application visionlanguage": 10399, "model computer": 103334, "exist especially": 53237, "work discusses": 178914, "presents outlook": 126615, "applications serve": 10683, "4096 tokens": 1197, "devices like": 41308, "tasks emotion": 162281, "classification questionanswering": 24064, "leverage advanced": 91565, "techniques bridge": 163846, "task computational": 161263, "improved evaluation": 73685, "visual large": 177222, "texts highly": 165728, "models validate": 109606, "using images": 174316, "measure alignment": 99829, "score accompanied": 147042, "reveals highest": 144424, "generation garnered": 64681, "prompts order": 131392, "focus inserting": 60002, "replace words": 140459, "generate smaller": 63717, "visualization tool": 177357, "live demo": 93258, "flexibly various": 59842, "textbased responses": 165601, "interface designs": 79425, "information utilizing": 76841, "chatgpt likely": 23104, "clip demonstrated": 24393, "realm zeroshot": 136364, "introduce chainofthought": 79929, "collaboration recent": 25601, "aigc technology": 7396, "idea leverage": 71737, "userfriendly pipeline": 173555, "achieve controllable": 3616, "process repeated": 128972, "set systematic": 149320, "large image": 87282, "manner generation": 98993, "propose finegrained": 131822, "extracted attributes": 56179, "template retrieval": 164219, "considering noise": 29725, "texts contribute": 165695, "models exponential": 106262, "inputs various": 77452, "effective unified": 45914, "sourced different": 153488, "able adapt": 2462, "false claims": 57159, "offer explanation": 115647, "gpt4 identify": 67049, "average furthermore": 15286, "prompts languages": 131349, "boxes human": 18932, "computational tasks": 28413, "classification detection": 23985, "power robustness": 125220, "designed explore": 39877, "text combine": 164930, "align modalities": 8019, "traditionally developed": 167722, "potential generalpurpose": 124743, "involves freezing": 80734, "exploring ability": 55448, "enabling inclusion": 48302, "consistency prevent": 29782, "overhead address": 118353, "developed predict": 40903, "combination automated": 25820, "facial images": 56588, "methods showed": 101815, "feature diffusion": 57394, "combines zeroshot": 25960, "space enables": 153567, "precise editing": 125581, "promising candidate": 130236, "multimodal capability": 110595, "need optimize": 112357, "adaption llms": 4768, "visual modules": 177233, "lms overcoming": 97171, "classes demonstrate": 23905, "substantial burden": 158033, "language concepts": 83210, "effectiveness potential": 46260, "primarily complexity": 127773, "novel languageguided": 114560, "feedback visual": 57821, "benefits incorporating": 17473, "tasks revealing": 163188, "vlp models": 177496, "information composition": 76322, "determine text": 40716, "using bart": 173996, "automatic results": 14729, "method release": 101067, "costs dramatically": 32822, "achieve reliable": 3720, "results maintaining": 143583, "typically offer": 170503, "manual reannotation": 99060, "captions explore": 20606, "yielding comprehensive": 179999, "captioning generation": 20580, "textguided image": 165633, "prompts models": 131377, "segmentation framework": 147737, "harnessed create": 68802, "efficiency data": 46438, "associated realworld": 13503, "generation beginning": 64452, "exclusively trained": 52893, "process effectiveness": 128799, "unlabeled image": 171954, "classification enabling": 23989, "synthesis visual": 159976, "new content": 113123, "text fully": 165099, "support various": 159346, "qa extensive": 133885, "model vast": 104869, "containing aligned": 30327, "generation enhances": 64612, "potential employing": 124692, "tools advanced": 167096, "plm bias": 123557, "bias tendency": 18207, "changes high": 22373, "plm generate": 123559, "advancing stateoftheart": 6098, "combined prompt": 25920, "process image": 128860, "processing retrieved": 129290, "images model": 72451, "training transferable": 168798, "prevent overfitting": 127539, "texts exhibit": 165707, "image context": 72217, "deeplearning models": 37854, "captioning images": 20581, "generation explored": 64642, "alongside respective": 8498, "temperature decoding": 164199, "according relevance": 3051, "detection mechanisms": 40554, "mechanisms introduce": 100042, "potentially reduce": 125130, "implemented evaluated": 72869, "contrastive language": 31353, "image pretraining": 72304, "clip used": 24417, "detected using": 40389, "forest classifier": 60406, "classifier order": 24162, "bert results": 17590, "arbitrary textual": 12096, "limited domainspecific": 92751, "investigate adapt": 80367, "probabilistic postprocessing": 128093, "previous unsupervised": 127681, "possible chatgpt": 124406, "contexts previous": 31042, "list words": 93130, "word list": 178651, "remarkable linguistic": 140214, "semantic regions": 148202, "produces highly": 129533, "language contents": 83215, "pretraining vlp": 127478, "wellknown chinese": 178170, "crossmodal retrieval": 33689, "tasks progress": 163016, "progress open": 129998, "dataset showcasing": 36537, "customer satisfaction": 34381, "satisfaction users": 146155, "prompts recently": 131442, "terms quantity": 164454, "effectively aligns": 45944, "collection pipeline": 25745, "synthesis methods": 159956, "approaches multimodal": 11848, "textbased classifiers": 165584, "classifiers second": 24197, "classifiers provide": 24195, "demonstrate textbased": 38590, "highlighting robustness": 69832, "performance sam": 122038, "recently numerous": 137947, "scenarios recognize": 146686, "diffusion chatgpt": 42227, "new works": 113511, "instructions enhancing": 78247, "chatgpt proposed": 23224, "adapting novel": 4754, "behavior propose": 16636, "future llmbased": 62286, "tracing provenance": 167517, "tracing ownership": 167516, "technology advanced": 164120, "rich source": 144804, "opportunity explore": 116890, "cultural artifacts": 33944, "methodology encompassing": 101224, "various cultural": 175884, "validated case": 175339, "llm seamlessly": 93983, "integrates visual": 78575, "modality modules": 102976, "instances data": 77821, "research multimodal": 141915, "dominant role": 44647, "evaluation efficacy": 51558, "benchmarks provides": 17341, "issues generate": 81006, "immediate changes": 72589, "model utilization": 104857, "introduce discrete": 79948, "enable multimodal": 48113, "experimentation demonstrate": 54107, "generation introducing": 64761, "demand highquality": 38127, "contains annotations": 30359, "annotations provided": 9610, "provided human": 133061, "typically produce": 170508, "information furthermore": 76463, "different sota": 42003, "judgment evaluated": 81320, "set combining": 149155, "various sota": 176177, "gap automated": 62613, "nft image": 113619, "guided reinforcement": 68236, "nft images": 113620, "texts recent": 165764, "image generator": 72271, "images high": 72430, "higher market": 69613, "design needs": 39697, "activities daily": 4461, "daily living": 34513, "data expand": 35009, "survey multimodal": 159652, "research hotspot": 141832, "descriptions consisting": 39443, "llms compact": 94649, "access image": 2862, "benchmark visionlanguage": 17120, "strategies improvements": 156012, "tokens similar": 166884, "learning pretrain": 90842, "motion prediction": 110152, "prediction motion": 125827, "review recently": 144542, "features evaluate": 57485, "extract important": 56139, "approach tackling": 11593, "outputs set": 118122, "recognition vision": 138150, "provide interactive": 132859, "challenge 2023": 21572, "predicts future": 125968, "generation frozen": 64674, "converts raw": 32009, "performance process": 121947, "termed multimodal": 164375, "reduced human": 138492, "responses automatically": 142732, "finetuned machine": 59066, "images music": 72454, "framework requiring": 61387, "variation operators": 175642, "need realistic": 112372, "annotated video": 9501, "shows greater": 150432, "evaluated outofdomain": 51199, "scenarios research": 146691, "abilities lack": 1935, "attribute information": 14080, "candidates potential": 19746, "achieves recall": 4059, "technique does": 163761, "successfully reduces": 158393, "145 average": 390, "adoption realworld": 5651, "reasoning limits": 136966, "descriptions volume": 39517, "imagetotext model": 72539, "extract texts": 56171, "texts question": 165761, "various modeling": 176041, "quantifying analyzing": 134325, "behavior analysis": 16563, "interactive languagebased": 79318, "refine results": 138742, "leverages transfer": 91789, "score 0327": 147028, "development traditional": 41242, "quantitative performance": 134365, "domain project": 44254, "generation consisting": 64527, "sample selection": 145961, "experiments evaluations": 54278, "enables learning": 48207, "efficacy learning": 46391, "performance basic": 121191, "tool researchers": 167022, "practitioners interested": 125534, "images require": 72477, "concretely given": 28927, "process essential": 128817, "cater users": 21163, "users conveniently": 173607, "participants demonstrated": 119999, "limitations remain": 92658, "original recipe": 117379, "prediction mechanism": 125822, "discrete visual": 42821, "openended research": 116505, "answering various": 9981, "llms precise": 96154, "efficiency study": 46536, "imagespecific text": 72519, "absence paired": 2593, "contrastive pretrained": 31382, "outperform recently": 117622, "types prompting": 170406, "view images": 176811, "images use": 72502, "attention diverse": 13867, "potential inherent": 124788, "employs range": 47978, "extracting reasoning": 56239, "cloud models": 24557, "potential boost": 124626, "geometrical structure": 65730, "results proved": 143705, "proved superiority": 132634, "revolution artificial": 144618, "analysis domain": 8898, "large vlms": 89125, "idea work": 71745, "allowing comprehensive": 8360, "vlms context": 177454, "evaluated leading": 51185, "text davinci": 165000, "gap exploring": 62650, "llms project": 96220, "attention capabilities": 13850, "features bridge": 57453, "systems handle": 160415, "cost longterm": 32705, "bias induced": 18136, "hallucination paper": 68399, "finetuning effectively": 59239, "extract regional": 56152, "features present": 57555, "extending existing": 55678, "extensive pretraining": 55931, "querying thousands": 134662, "suggests significant": 158675, "attributes total": 14133, "furthermore new": 62120, "summarize knowledge": 158910, "lvlms demonstrated": 97979, "cuttingedge developments": 34432, "serves baseline": 149033, "design enhance": 39621, "images current": 72407, "issues problematic": 81047, "method synthesize": 101132, "particularly natural": 120230, "features topic": 57595, "evaluated case": 51155, "study user": 157696, "augmentation use": 14322, "technology lacks": 164145, "lacks capability": 83045, "propose memory": 131914, "dataset achieved": 36091, "especially visual": 50562, "train benchmark": 167746, "following inspired": 60283, "caption describes": 20565, "model wins": 104903, "model rising": 104491, "rising demand": 144919, "digital realm": 42293, "innovation lies": 77143, "contextual relevance": 31109, "module module": 109948, "insights chatgpt": 77522, "inpainting techniques": 77202, "current frame": 34120, "comparisons stateoftheart": 27084, "conversation capabilities": 31777, "scenes specifically": 146756, "specifically align": 154135, "strategy efficiently": 156134, "userfriendly interaction": 173550, "interaction scheme": 79178, "knowledge responses": 82373, "diverse queries": 43612, "tokens enables": 166804, "new product": 113353, "multiple product": 111005, "including product": 74679, "attribute extraction": 14079, "autoregressively predicts": 15024, "features given": 57501, "visually similar": 177389, "encoders using": 48498, "features second": 57570, "imagetext features": 72526, "combined features": 25899, "limited effectively": 92754, "stateoftheart scores": 155348, "lightweight blackbox": 92170, "alleviate hallucinations": 8289, "demonstrate reduction": 38524, "pairs finetuning": 118578, "access quality": 2906, "openais dalle": 116402, "diffusion framework": 42229, "issues current": 80996, "addition efficiently": 4854, "strategies construct": 155978, "concept needs": 28612, "framework introducing": 61241, "effectively synthesize": 46085, "generation largely": 64783, "dynamics modeling": 45212, "modification text": 109869, "applying methodology": 10910, "collection automatically": 25725, "annotated evaluation": 9474, "comparable chatgpt": 26565, "additional advantages": 4919, "including low": 74603, "argue existing": 12407, "introduces knowledge": 80189, "logically coherent": 97401, "space need": 153597, "data multimodal": 35404, "images primary": 72464, "conversational competence": 31857, "substantially exceeding": 158119, "handling realworld": 68607, "specifically leverages": 154246, "pairs enable": 118568, "aligning latent": 8099, "model rigorously": 104490, "rigorously evaluate": 144878, "existing 2d": 53247, "new textual": 113465, "words present": 178746, "diverse attributes": 43467, "classifier distinguishes": 24154, "studies results": 157073, "performance attribute": 121173, "ai texttoimage": 7279, "network gan": 112655, "results diffusion": 143355, "decoder used": 37526, "generation result": 65049, "images revolutionizing": 72481, "revolutionizing way": 144677, "delve different": 38089, "improvement future": 73800, "work future": 179001, "creation particularly": 33348, "aigc era": 7392, "methods generalization": 101548, "generalization domain": 63166, "inspiration large": 77686, "efforts detection": 46902, "benchmarks analyze": 17173, "scenarios occur": 146659, "tool analyzing": 166938, "evaluation cases": 51468, "having llm": 68884, "higher number": 69615, "consistency personalized": 29781, "simulations demonstrate": 151729, "adapting specialized": 4763, "methods exist": 101496, "terms parameters": 164445, "grown popularity": 68068, "3d printing": 1144, "enable pretrained": 48121, "manipulation including": 98948, "implications limitations": 72942, "additionally methods": 5092, "inconsistent performance": 74833, "model style": 104671, "style paper": 157759, "concepts present": 28680, "concepts approach": 28642, "techniques findings": 163906, "attempts learn": 13816, "pretrained imagenet": 126846, "constantly changing": 30003, "changing nature": 22404, "learners used": 90159, "learnable vectors": 90086, "set hard": 149208, "tuning present": 170085, "modalities demonstrate": 102921, "instructions enabling": 78246, "chatgpt conditional": 22799, "global image": 66093, "tasks dealing": 162161, "queries visual": 134559, "fully consistent": 61753, "benchmark encompasses": 16940, "vlms evaluate": 177456, "recently remarkable": 137980, "inequitable treatment": 75912, "superb performance": 158967, "risk factors": 144939, "value risk": 175497, "driving large": 45015, "application deep": 10307, "blackbox optimizers": 18657, "embeddings output": 47265, "continue develop": 31192, "systems susceptible": 160635, "propose research": 132100, "effectively tune": 46100, "specifics downstream": 154329, "particular compared": 120059, "approach demonstrate": 11097, "overall average": 118178, "unsolved problems": 172203, "training enhances": 168418, "ethics multimodal": 50853, "trained based": 167870, "enhanced capability": 49322, "unveil intriguing": 172305, "prevailing strategy": 127497, "llama2chat 7b": 93389, "range future": 135624, "demonstrate embeddings": 38322, "embeddings learnt": 47252, "use classification": 172549, "quantitative metric": 134361, "3d generative": 1132, "ensuring adherence": 49726, "adeptly handles": 5500, "components achieve": 27746, "revealing hidden": 144400, "task focusing": 161405, "output ensuring": 117923, "parameters smaller": 119865, "encompasses core": 48533, "generation ii": 64727, "development natural": 41169, "synthesize relevant": 159996, "guided discovery": 68222, "llms steer": 96680, "semantics generated": 148297, "respectively demonstrated": 142548, "framework utilized": 61483, "utilized realworld": 175113, "evaluate opensource": 51045, "interplay textual": 79613, "investigation examine": 80633, "suggest prompts": 158582, "article forward": 12582, "messages interpreted": 100545, "efficiency demonstrate": 46439, "potential introduce": 124796, "scientific fields": 146961, "extracted data": 56184, "establish unified": 50680, "face substantial": 56553, "seamless interactions": 147292, "focuses zeroshot": 60169, "temporal semantics": 164285, "furthermore ensure": 62057, "modifications adapting": 109871, "frame sequences": 60899, "concepts inspired": 28662, "artistic creation": 12808, "ambiguity llms": 8633, "integrated generate": 78530, "advancements works": 5980, "various advancements": 175791, "instructions develop": 78239, "token masking": 166722, "analysis comprising": 8861, "poisoned samples": 123791, "backdoor attack": 15422, "detectors focus": 40676, "detecting poisoned": 40424, "semantic inconsistency": 148156, "image visual": 72359, "content answering": 30438, "classifiers built": 24182, "certain descriptors": 21381, "mllms facilitate": 102821, "instructions provides": 78333, "motion patterns": 110149, "approach trainingfree": 11612, "remains scarce": 140066, "factchecking datasets": 56761, "standard visual": 154891, "hand paper": 68493, "abstracts away": 2691, "resulting image": 143105, "constructing instruction": 30195, "flamingo model": 59741, "model subsequent": 104672, "paradigm evaluate": 119449, "goto solution": 66349, "training instruction": 168507, "solution study": 152981, "efficiently tackle": 46821, "follow openended": 60223, "encoders language": 48485, "work discover": 178912, "summarization reasoning": 158869, "improvement general": 73801, "leveraged different": 91689, "built natural": 19496, "test feasibility": 164555, "short effectively": 149968, "assisted evaluation": 13441, "hallucinations paper": 68449, "hallucination control": 68362, "tuning peft": 170078, "domains enabling": 44394, "satisfactory model": 146158, "advances research": 6063, "gap comprehensively": 62624, "years using": 179943, "repository model": 140629, "novel challenging": 114435, "help appropriate": 69086, "manner achieving": 98967, "comprehensive quantitative": 28102, "models bestperforming": 105507, "gpt4v model": 67252, "gap underscores": 62743, "development generalpurpose": 41124, "highlighting promising": 69830, "good teacher": 66297, "images like": 72442, "model converts": 103382, "forces model": 60364, "data openended": 35441, "user experiments": 173411, "presenting challenge": 126536, "common struggles": 26199, "struggles current": 156784, "settings current": 149546, "better solve": 18030, "truthfulness factuality": 169897, "versions llms": 176621, "visually conditioned": 177383, "extracting consolidating": 56221, "models gradual": 106554, "rapid convergence": 135860, "illustrate models": 72154, "current visionlanguage": 34297, "weighted ensemble": 178088, "adversarial questions": 6225, "judge model": 81307, "documents background": 43888, "analysis currently": 8875, "generate inaccurate": 63563, "analysis address": 8802, "generating selecting": 64328, "learning analysis": 90207, "extracted automatic": 56180, "generation fusion": 64677, "efficiency utilizing": 46552, "capitalizes robust": 20556, "robust linguistic": 145282, "model introduces": 103900, "texts better": 165679, "output embedding": 117920, "trained align": 167864, "coherent precise": 25537, "capture spatialtemporal": 20684, "creating specialized": 33322, "learning zero": 91149, "capabilities serves": 20171, "instructions deriving": 78235, "produce tremendous": 129475, "combinations multiple": 25856, "common detection": 26133, "instructions foundation": 78262, "nonsensical unfaithful": 114134, "furthermore uncover": 62173, "risk object": 144956, "appropriate llm": 11981, "concise expressive": 28844, "minority groups": 102433, "framework multimodal": 61315, "input stream": 77352, "task finegrained": 161398, "information temporal": 76801, "task 2023": 161152, "objects text": 115306, "information cause": 76309, "fashion facilitate": 57251, "grapple challenges": 67661, "language addressing": 83136, "degradation llms": 37986, "concepts integration": 28663, "prompting largelanguage": 130988, "proposed lmm": 132328, "detection essential": 40496, "trustworthy machine": 169869, "detection currently": 40473, "generation extract": 64648, "model multitask": 104113, "multistage training": 111156, "retrieval image": 144061, "answering evaluation": 9843, "baselines analyze": 16287, "impact editing": 72643, "extent effect": 56005, "task hope": 161450, "provide nlp": 132901, "community insights": 26488, "insights code": 77526, "prompts produce": 131419, "images investigate": 72438, "various advantages": 175792, "ideas design": 71759, "study validates": 157711, "encoders mllms": 48493, "branch mllms": 18959, "range benchmarks": 135591, "enhance multimodal": 49242, "content understanding": 30637, "mllms multimodal": 102838, "research centers": 141629, "image database": 72220, "propose tackle": 132154, "scalable pipeline": 146252, "model unified": 104826, "general interface": 62969, "description visual": 39428, "unique identifiers": 171843, "visionlanguage generalist": 177027, "vision autonomous": 176891, "texts neglecting": 165750, "effectiveness representation": 46284, "alternative text": 8583, "solution efficient": 152923, "address needs": 5324, "users designed": 173618, "data encoding": 34971, "comparing chatgptgenerated": 26977, "chatgptgenerated responses": 23469, "attitudes chatgpt": 14029, "use scientific": 172865, "use largelanguage": 172720, "prompts common": 131193, "common names": 26161, "likely included": 92457, "tracking control": 167534, "complex abstract": 27350, "machine vision": 98140, "given sets": 66007, "negative model": 112521, "identify set": 71960, "imposes significant": 73237, "current fewshot": 34118, "neurosymbolic reasoning": 113042, "garnered increased": 62781, "metrics summary": 102150, "rates finally": 136032, "improves previous": 74060, "detecting reducing": 40427, "papers evaluate": 119394, "summarizing multiple": 158927, "number hallucinations": 114873, "papers llm": 119398, "diffusionbased generative": 42265, "advanced texttoimage": 5812, "lengthy intricate": 91409, "extract critical": 56126, "evaluates refines": 51252, "ensure consistency": 49675, "generation quantitatively": 64996, "analysis scenarios": 9148, "methodology validates": 101262, "management disaster": 98875, "domain lack": 44213, "accurate captions": 3437, "aerial images": 6291, "model adapts": 103073, "use academic": 172486, "relatively noisy": 139412, "problem explore": 128251, "related attributes": 139148, "vector using": 176394, "texts chatgpt": 165682, "applying chatgpt": 10883, "guidance potential": 68155, "marking step": 99253, "ai address": 6848, "detection despite": 40486, "patterns including": 120539, "llms expose": 95207, "predictive results": 125959, "guidance capabilities": 68136, "generate diagrams": 63459, "gap connecting": 62631, "agent organizes": 6481, "integrates core": 78550, "effectively human": 46015, "existing measures": 53432, "applications autonomous": 10430, "driving embodied": 45009, "results benchmarking": 143195, "prediction multimodal": 125828, "benchmark assesses": 16836, "prediction develop": 125786, "context empirical": 30739, "paper problem": 119198, "explicit external": 54930, "common limitation": 26151, "reproducible pipeline": 141024, "face major": 56542, "tool suggesting": 167038, "designer intent": 39978, "suggests novel": 158668, "retrieval questionanswering": 144118, "relevant models": 139622, "models tap": 109354, "documents conduct": 43895, "understanding interpretation": 171311, "images paired": 72457, "questions designed": 135100, "design scenarios": 39748, "goal develop": 66162, "design creativity": 39590, "style addition": 157733, "easily replicable": 45333, "outside knowledge": 118151, "primarily utilize": 127798, "framework integration": 61235, "aspects specifically": 12974, "stimulated researchers": 155803, "conducted gpt4": 29257, "gpt4 showed": 67157, "showed promising": 150150, "furthermore preliminary": 62129, "study suggested": 157650, "hallucinations address": 68421, "respectively paper": 142573, "retraining models": 143981, "claim generation": 23824, "autoencoding autoregressive": 14475, "autoregressive pretraining": 15009, "cloud representation": 24561, "representation tasks": 140742, "enable flexible": 48086, "state transition": 155024, "intuitive languagebased": 80296, "chatgpt successors": 23365, "developing applying": 40978, "applying natural": 10913, "personalized federated": 122597, "models federated": 106315, "learning fl": 90466, "fl settings": 59731, "fl clients": 59729, "client data": 24302, "information shared": 76757, "prompts specialized": 131479, "prompts reduce": 131443, "llm incorporates": 93751, "llm engine": 93631, "high efficacy": 69451, "advancements generating": 5896, "assessed tasks": 13151, "detection studies": 40624, "challenges discussed": 21832, "approaches focusing": 11779, "parts image": 120300, "finetuned improved": 59036, "improved data": 73680, "semantic annotations": 148101, "datasets weak": 37200, "remarkable generalist": 140200, "suffer excessive": 158424, "information webbased": 76848, "times computation": 166581, "candidate future": 19718, "classification tackled": 24104, "classifying images": 24221, "explainable approach": 54741, "interface demonstrate": 79423, "demonstrate text": 38589, "precision comprehensiveness": 125610, "strength llm": 156242, "directly related": 42595, "various pedestrian": 176100, "available supervision": 15210, "role propose": 145528, "explicitly handle": 54974, "healthcare domain": 68994, "implementation deployment": 72839, "healthcare make": 69004, "models trustworthy": 109517, "necessary condition": 112141, "healthcare specifically": 69019, "context healthcare": 30786, "need verified": 112425, "potential downstream": 124684, "llms struggling": 96703, "problems enable": 128493, "run llms": 145742, "biased task": 18240, "design interactive": 39662, "instruction flexible": 78003, "based chef": 15698, "standardized framework": 154906, "valuable observations": 175445, "benchmark bias": 16847, "models tendency": 109373, "leading questions": 89856, "including art": 74419, "generator produce": 65628, "used make": 173141, "multiple techniques": 111066, "intelligent prompting": 78954, "platforms developed": 123401, "foundation numerous": 60827, "particularly recognizing": 120249, "analysis hierarchical": 8954, "detectors propose": 40680, "samples prove": 146057, "provide similar": 132974, "associated utilizing": 13522, "introduce versatile": 80143, "universal interface": 171904, "modules facilitate": 109981, "mllm model": 102800, "ineffective propose": 75896, "outputs new": 118091, "cases new": 20997, "testing set": 164754, "model possesses": 104292, "tasks able": 161880, "parsons problems": 119973, "models reshaping": 108955, "demonstrated models": 38723, "potential academic": 124543, "presented diverse": 126514, "panacea issues": 118674, "generation alongside": 64416, "content inconsistent": 30526, "attracts increasing": 14070, "delve factors": 38093, "giving rise": 66066, "taskspecific information": 163523, "provided different": 133049, "generalpurpose multimodal": 63361, "activate relevant": 4401, "users inputs": 173683, "inputs fulfill": 77405, "actively engaged": 4448, "datasets generative": 36894, "wizardofoz study": 178589, "short supporting": 149997, "chatbot enables": 22575, "better explore": 17865, "ability vlms": 2417, "extracted training": 56211, "used pick": 173171, "vllms visual": 177442, "tasks detection": 162215, "approaches formulate": 11781, "600 million": 1426, "models signifying": 109134, "encounter significant": 48574, "consequences evaluating": 29526, "high evaluation": 69458, "dimensions types": 42352, "transform landscape": 169042, "related aspects": 139147, "aspects comprehensive": 12927, "text develop": 165023, "evaluation distinct": 51550, "target classes": 161045, "potentially providing": 125129, "mllms integrate": 102834, "gpt4 handle": 67041, "imagebased questions": 72366, "pathway artificial": 120451, "lead erroneous": 89743, "risks society": 145022, "enhance accessibility": 49143, "surveys existing": 159713, "prone producing": 131571, "efficacy mitigating": 46398, "lastly paper": 89462, "mitigating llms": 102669, "intelligence particular": 78870, "concerted effort": 28840, "crucial supervised": 33866, "increasing integration": 75325, "integration multimodal": 78681, "related paper": 139191, "users hand": 173667, "solution aforementioned": 152892, "generative manner": 65464, "exhibiting robust": 53172, "million people": 102238, "based vision": 16176, "information multimodalities": 76583, "associated confidence": 13470, "challenges experimental": 21858, "setting outperform": 149485, "generating trustworthy": 64366, "accurate text": 3500, "15 distinct": 408, "feedback present": 57758, "stage enhance": 154732, "entities actions": 49830, "differences original": 41635, "finally model": 58492, "framework current": 61057, "intelligence foundation": 78820, "models facilitating": 106295, "facilitating development": 56705, "provides versatile": 133253, "model prioritizes": 104341, "benchmark advance": 16823, "financial decision": 58565, "domain ai": 44090, "day day": 37240, "day lives": 37243, "primarily caused": 127770, "biased training": 18245, "perform real": 121019, "tweets total": 170211, "ai iai": 7033, "prompts share": 131469, "agents replicate": 6713, "communication computing": 26358, "module transform": 109962, "generate multiview": 63618, "metrics showcase": 102145, "performance assessing": 121170, "driving scenarios": 45020, "comparing similarity": 27012, "outputs suffer": 118129, "tools proposed": 167238, "capable classifying": 20408, "information time": 76809, "distribution adaptation": 43343, "names leads": 111429, "categories additionally": 21087, "physics engine": 122936, "fields llms": 58284, "model guide": 103778, "embedding encoder": 47161, "content introduce": 30532, "hallucinatory outputs": 68468, "largescale machinegenerated": 89351, "identify factual": 71890, "errors present": 50390, "distribution enhancing": 43356, "resistance hallucinations": 142330, "representations video": 140910, "questions earlier": 135108, "endtoend learning": 48743, "llms intuitively": 95681, "freeform descriptions": 61561, "learning disentangle": 90376, "example images": 52482, "language remains": 86701, "classification layer": 24025, "practical efficient": 125411, "robustness image": 145390, "sr provide": 154653, "integrate text": 78506, "long paragraph": 97461, "images depicting": 72410, "human voting": 71091, "compromise model": 28269, "faster rcnn": 57298, "benchmark mscoco": 17033, "reached new": 136127, "measure taskspecific": 99881, "alignment increasingly": 8169, "automated assessments": 14521, "training effectively": 168407, "combined different": 25897, "states instance": 155427, "llms craft": 94753, "evaluation rules": 51841, "furthermore assess": 62018, "chineselanguage dataset": 23673, "dataset dedicated": 36221, "novel visual": 114748, "engaging llms": 48849, "modules modules": 109993, "latent quantized": 89509, "scores various": 147178, "easily interpretable": 45324, "studies emerged": 156985, "answers use": 10091, "possess considerable": 124333, "resource future": 142385, "generation comprehensive": 64520, "dataset adapted": 36094, "parameters exhibits": 119751, "model autonomous": 103165, "driving understanding": 45023, "driving existing": 45012, "learning world": 91145, "world evolution": 179550, "obtain discrete": 115472, "nuscenes benchmark": 115077, "driving scenes": 45021, "development model": 41160, "model establishment": 103561, "crucial end": 33792, "videos offering": 176783, "limited help": 92775, "data causes": 34741, "content guidance": 30514, "diversity paper": 43748, "keywords text": 81626, "understanding planning": 171408, "data loss": 35331, "responses mitigating": 142852, "categories attributes": 21088, "enhancement compared": 49379, "model generally": 103713, "article create": 12568, "potential proposed": 124926, "model primitive": 104337, "correct class": 32377, "class prediction": 23888, "proficiency reasoning": 129677, "prompts yields": 131530, "curate comprehensive": 33994, "propose referencebased": 132094, "brightness contrast": 19113, "preserved regions": 126672, "wider applications": 178433, "survey recently": 159681, "emphasizing potential": 47657, "review llms": 144522, "potential venues": 125066, "development survey": 41230, "underscores profound": 170954, "distill information": 43137, "collected annotated": 25679, "ensuring highquality": 49739, "learning applied": 90215, "improvement 35": 73747, "llm handle": 93734, "design input": 39656, "provide multimodal": 132892, "pseudo samples": 133480, "creativity innovation": 33392, "principles paper": 127865, "highlight superiority": 69788, "aid large": 7361, "denoising network": 39075, "convenient form": 31684, "develop practical": 40822, "scoring llms": 147189, "training diverse": 168396, "leading models": 89845, "training rapid": 168675, "token encodes": 166707, "hierarchical levels": 69361, "translate semantic": 169412, "possible path": 124446, "dataset temporal": 36577, "collection framework": 25735, "includes experiments": 74370, "neural rendering": 112968, "emotion label": 47569, "mechanism provides": 100023, "defined emotion": 37947, "scheme including": 146787, "intricate correlations": 79840, "introduce visual": 80145, "mllms capabilities": 102811, "alleviating hallucination": 8313, "designed data": 39843, "novel mllm": 114600, "selection necessary": 147874, "process leverages": 128902, "proves challenging": 132657, "variability human": 175588, "analysis abilities": 8794, "multiple scientific": 111036, "dataset retraining": 36513, "respect time": 142519, "tasks videos": 163462, "llms benefits": 94489, "generation detailed": 64570, "text llmgenerated": 165284, "framework employing": 61107, "traditional human": 167627, "nuanced reasoning": 114800, "approach simplifies": 11550, "moving traditional": 110242, "release resulting": 139495, "term applied": 164364, "sequence motion": 148775, "input training": 77363, "textguided 3d": 165632, "problematic text": 128445, "complex scene": 27576, "serving knowledge": 149098, "evaluations zeroshot": 52044, "approach best": 11027, "training benchmarking": 168171, "trained tested": 168097, "richness variety": 144823, "human inspection": 70852, "representative set": 140940, "task 11": 161151, "compute using": 28459, "act intelligent": 4294, "achieving precise": 4203, "minimal input": 102343, "generated objects": 63930, "obtain output": 115491, "approaches proven": 11875, "challenging provide": 22247, "allowing generalize": 8372, "framework additionally": 60928, "spatial resolution": 153804, "features effectively": 57478, "align imagetext": 8008, "features interactive": 57519, "outperforms advanced": 117705, "robustness variety": 145443, "generative visual": 65610, "performance adapted": 121128, "slightly outperforms": 152236, "help classification": 69096, "image finegrained": 72256, "foundation introduce": 60723, "visually pleasing": 177386, "consistent highquality": 29814, "embedding input": 47168, "harnesses reasoning": 68816, "quality low": 134192, "remarkable pace": 140221, "inefficient study": 75906, "detection achieved": 40435, "achieved incorporating": 3836, "context serves": 30913, "extended tasks": 55666, "boundary detection": 18913, "mutual learning": 111345, "ood scenarios": 116186, "gpt35 use": 66865, "finegrained textual": 58898, "textual annotations": 165878, "using subset": 174767, "crucial insights": 33812, "lmms reveal": 97092, "style does": 157744, "observed domain": 115403, "million frames": 102227, "scale provided": 146335, "hope release": 70374, "generation solve": 65093, "generate creative": 63448, "creative content": 33365, "far perfection": 57231, "build universal": 19359, "datalimited scenarios": 36063, "preserve semantic": 126670, "control state": 31589, "change action": 22334, "image pixel": 72299, "end finetune": 48661, "model vllm": 104880, "descriptions address": 39433, "prior image": 127896, "studies analysis": 156949, "insights method": 77602, "prompt learners": 130568, "classification domain": 23987, "llamp large": 93409, "interaction multimodal": 79149, "lmms using": 97094, "techniques evaluate": 163889, "affects accuracy": 6328, "context location": 30838, "minimizing negative": 102394, "concept recognition": 28618, "search potential": 147390, "models multilabel": 108243, "label recognition": 82697, "scenarios intended": 146626, "approach widely": 11665, "applicable choices": 10277, "unstructured interviews": 172215, "experts ai": 54641, "research medical": 141906, "way developing": 177794, "customized users": 34414, "various new": 176065, "articles web": 12625, "applying finetuning": 10889, "employing generative": 47925, "language automatically": 83166, "context fusion": 30776, "transformers methods": 169332, "dataset need": 36424, "personality factors": 122571, "informative prefixes": 76879, "access specific": 2909, "leads considerable": 89881, "using aggregated": 173966, "furthermore based": 62019, "text critical": 164978, "chatgpt opened": 23161, "simple problems": 151511, "formal model": 60510, "arise llms": 12455, "query wide": 134637, "architecture leveraging": 12186, "practical guidelines": 125419, "inputs integration": 77418, "assurance tasks": 13577, "diffusion generation": 42231, "rarely seen": 135957, "vocabulary merging": 177508, "certain fields": 21388, "template prompts": 164218, "extensive customization": 55742, "generate range": 63670, "fundamental element": 61950, "achieve comprehensive": 3612, "improvement 83": 73749, "training involves": 168510, "excel understanding": 52777, "enabling innovative": 48306, "interactions input": 79234, "importance visual": 73070, "properties flexibility": 131643, "user friendly": 173413, "discriminative ai": 42840, "detection sentiment": 40616, "potential revolutionizing": 124950, "efficacy highlighting": 46381, "accuracy applicability": 3146, "efficiently integrate": 46791, "integrate natural": 78501, "challenging distinguish": 22148, "frames understanding": 60906, "expose limitations": 55538, "tradeoff various": 167569, "masking large": 99327, "new architectural": 113068, "unintended memorization": 171803, "particularly respect": 120254, "poses privacy": 124220, "generating representations": 64319, "expectations closely": 53740, "concept known": 28602, "context face": 30762, "pretrained encoders": 126800, "better option": 17953, "environmental contexts": 50041, "approaches fail": 11769, "patterns paper": 120554, "approach brings": 11031, "textual guidance": 165919, "object identifiers": 115132, "research evidenced": 141766, "handling challenging": 68585, "introduce use": 80142, "onetoone correspondence": 116049, "object identifier": 115131, "incorporate complex": 75004, "alignment established": 8145, "tuning experiments": 170008, "framework maintains": 61298, "efficient sampling": 46709, "just steps": 81387, "steps achieving": 155713, "like writing": 92430, "writing emails": 179727, "generalist visual": 63099, "art model": 12552, "ai creation": 6938, "prompt fully": 130513, "generate spatial": 63721, "ai training": 7299, "transformer vision": 169222, "processes text": 129102, "problem explored": 128252, "method incorporate": 100926, "prompts ensuring": 131250, "enhance adaptation": 49146, "spatial tasks": 153809, "abilities handling": 1921, "misalignment text": 102463, "rich feedback": 144781, "feedback leveraged": 57727, "finetune improve": 58927, "research aigenerated": 141572, "task advance": 161176, "dominant paradigm": 44645, "properly designed": 131623, "descriptions framework": 39456, "architecture demonstrate": 12141, "accuracy outperforming": 3328, "large visual": 89123, "sourced various": 153490, "considerations furthermore": 29662, "method resulting": 101077, "regarding perception": 138881, "perform decisionmaking": 120919, "language imagery": 83411, "possesses following": 124361, "following characteristics": 60259, "tools deployment": 167137, "tools accomplish": 167093, "phase uses": 122811, "focused textbased": 60125, "aim enable": 7446, "including requirement": 74701, "tasks assessing": 161979, "enhanced vision": 49374, "extension chainofthought": 55699, "step based": 155601, "curated domain": 34014, "expert large": 54579, "limited expertise": 92762, "problem formulated": 128259, "solve optimization": 153138, "integral modern": 78476, "tokens prepended": 166854, "effectively learning": 46040, "llm process": 93906, "video sequences": 176735, "contributions design": 31490, "various axes": 175823, "multiple axes": 110845, "dataset research": 36505, "model steerability": 104656, "showed high": 150138, "human body": 70626, "greater accuracy": 67750, "representations provides": 140873, "hierarchical multimodal": 69364, "novel vqa": 114749, "learning assessment": 90232, "assessment widely": 13277, "novel hierarchical": 114536, "novel measures": 114579, "comparison earlier": 27035, "higherlevel tasks": 69654, "achieved breakthroughs": 3794, "existing dlbased": 53349, "focus unimodal": 60075, "information involved": 76532, "segmentation network": 147744, "image metadata": 72286, "encoder crossmodal": 48411, "mean f1": 99749, "rich expressiveness": 144778, "concise interpretable": 28846, "determine corresponding": 40700, "proposed simple": 132434, "highlights necessity": 69864, "major impediment": 98433, "classifiers use": 24201, "generators including": 65637, "comparisons various": 27087, "designs experimental": 40018, "systems progress": 160552, "design largescale": 39675, "aligns llm": 8270, "systems powerful": 160541, "detection superior": 40626, "2d pretrained": 931, "technique based": 163745, "text transfer": 165538, "texts need": 165749, "openworld scenarios": 116729, "leverages general": 91725, "significantly weaker": 151178, "intelligence introduction": 78843, "ai refers": 7189, "mathematical formulas": 99567, "students postgraduate": 156886, "postgraduate students": 124496, "teach courses": 163598, "lms excel": 97131, "impact combining": 72630, "datasets assessed": 36664, "embedding approaches": 47152, "lms reasoning": 97190, "distributions large": 43426, "large frozen": 87258, "enhancement technique": 49386, "final nexttoken": 58386, "sizes families": 152096, "charts providing": 22513, "giant leap": 65792, "existing diffusion": 53348, "constraints present": 30104, "secondly introduce": 147523, "different latent": 41823, "llms heightened": 95478, "heightened potential": 69063, "images field": 72423, "images public": 72472, "answering basic": 9816, "limitations tasks": 92673, "domains image": 44428, "insights gpt4vs": 77574, "reasoning specialized": 137136, "overall analysis": 118174, "foundational multimodal": 60848, "issue model": 80929, "effective addressing": 45685, "results established": 143387, "statespace layers": 155448, "specialized prompt": 153907, "captions answer": 20605, "previous bestperforming": 127579, "understanding tools": 171512, "ability openended": 2299, "path future": 120429, "understanding challenges": 171154, "modeling significantly": 105090, "trackgpt achieves": 167532, "stateof theart": 155056, "impacted academic": 72747, "application variety": 10396, "google introduced": 66323, "analysis 12": 8793, "general domainspecific": 62943, "images synthetic": 72493, "resulting representations": 143132, "integrate vision": 78509, "applications generalpurpose": 10542, "heralds new": 69274, "lmms exploring": 97090, "skin images": 152198, "respective datasets": 142526, "conducted dataset": 29225, "accuracy 55": 3110, "prevention strategies": 127558, "cases word": 21032, "detection methodologies": 40557, "structure semantics": 156602, "videos modalities": 176782, "task heads": 161444, "models presenting": 108606, "unimodal text": 171792, "framework merges": 61303, "14 diverse": 377, "consistent visual": 29848, "generation technically": 65190, "includes prompt": 74384, "entity finally": 49890, "advance ability": 5672, "impact peoples": 72708, "systems focused": 160392, "information biases": 76298, "modifying information": 109893, "2023 furthermore": 702, "detailed taxonomy": 40323, "distinguish diverse": 43277, "stateoftheart algorithms": 155072, "spanning dimensions": 153676, "prompt dataset": 130417, "gains stateoftheart": 62530, "datasets potentially": 37035, "engineering cost": 48897, "llms abundant": 94272, "categories used": 21125, "text 2d": 164810, "3d gaussian": 1129, "gaussian splatting": 62837, "discussing ai": 42978, "summary vision": 158949, "collect construct": 25654, "construct extensive": 30132, "content poses": 30572, "tackle llm": 160836, "detection source": 40621, "specially construct": 153923, "effective detection": 45736, "hallucination furthermore": 68375, "factors lead": 56809, "finally implement": 58482, "used techniques": 173264, "work led": 179095, "works showed": 179494, "limited autoencoding": 92711, "develop prompt": 40823, "computeraided design": 28518, "workflows paper": 179386, "discussion explores": 42994, "pedagogy curriculum": 120655, "thinking design": 166150, "parametric modeling": 119894, "effort invested": 46851, "birds eye": 18592, "eye view": 56470, "benchmarks studies": 17373, "survey comprehensively": 159614, "introduce recent": 80093, "lms prone": 97183, "manifest diverse": 98915, "chatgpt llama2chat": 23109, "scenarios train": 146711, "data detect": 34907, "approaches mitigate": 11843, "learning embeddings": 90404, "original information": 117343, "reasoning neglecting": 137002, "perception introduce": 120806, "struggle address": 156727, "process manually": 128914, "critical realworld": 33539, "python source": 133854, "plans address": 123348, "compare tools": 26736, "effectiveness commercial": 46144, "hallucination omission": 68397, "data retrieve": 35673, "ranging 30": 135743, "address dilemma": 5221, "aiming comprehensively": 7541, "ability significant": 2366, "inspire community": 77697, "llama achieved": 93284, "concerns limit": 28790, "problem problem": 128358, "hallucination hallucination": 68380, "models defining": 105876, "implemented different": 72868, "series prompt": 148946, "features challenging": 57457, "intelligence visual": 78922, "gpt4v visual": 67261, "finetuned dataset": 59005, "noticed models": 114323, "datasets constructed": 36736, "chatgpt visual": 23433, "image potential": 72301, "interpretation techniques": 79713, "agent utilizes": 6508, "chatgpt users": 23416, "vlms propose": 177473, "interaction wide": 79193, "faced models": 56565, "especially processing": 50526, "particularly event": 120186, "level study": 91511, "generation drawing": 64590, "inspiration success": 77693, "challenge achieved": 21576, "masked ones": 99317, "driving environments": 45011, "using vlms": 174861, "inputs limited": 77425, "domains introduce": 44441, "experiments comparisons": 54181, "image possible": 72300, "answers finally": 10025, "prompts achieves": 131147, "evaluation utilize": 51927, "directions correcting": 42464, "aligned embeddings": 8049, "limitation stems": 92524, "10 accuracy": 104, "harnessing powerful": 68841, "including dalle": 74481, "exhibits wide": 53235, "compatibility various": 27091, "count number": 32927, "number pretraining": 114931, "pretraining texts": 127463, "fail recognize": 56974, "using concept": 174077, "learn successful": 90062, "enabling collaborative": 48278, "intricate instructions": 79846, "explored date": 55340, "date paper": 37218, "latent image": 89505, "llms involved": 95687, "pivotal effective": 123144, "skills comprehensive": 152150, "tools significant": 167251, "manipulation interface": 98949, "entire design": 49802, "nonprofessional users": 114120, "llms reshaping": 96422, "input leverage": 77278, "largescale textimage": 89409, "pipeline involving": 123068, "involving language": 80791, "images complex": 72401, "highquality paired": 70059, "circumvent need": 23784, "llm appear": 93468, "types outofdistribution": 170395, "reasoning finally": 136861, "knowledge state": 82417, "context complex": 30708, "attributes prediction": 14123, "parameters remains": 119851, "pairs significantly": 118617, "humancentered design": 71147, "undergone series": 170800, "high recognition": 69519, "recognition interactive": 138076, "interactive functionality": 79310, "ai emerging": 6975, "emerging smart": 47537, "augments human": 14406, "ai prototype": 7173, "data predominantly": 35517, "motivated realworld": 110189, "evaluation probing": 51784, "nature project": 112023, "factors research": 56821, "regional variations": 138927, "cultural dimensions": 33956, "communication leveraging": 26385, "selective data": 147902, "applicability specific": 10269, "prompts introduced": 131339, "flexibility controllability": 59787, "functionality enabling": 61884, "complex neural": 27498, "filtering module": 58358, "generate natural responses": 63625, "learning applications paper": 90214, "400 million image": 1179, "million image text": 102230, "image text pairs": 72342, "text pairs collected": 165339, "pairs collected internet": 118552, "study performance approach": 157526, "sentence document level": 148490, "sentence documentlevel detection": 148492, "generative pretrained transformer2": 65563, "f1score compared stateoftheart": 56497, "gpt2 pretrained language": 66581, "systems deep learning": 160326, "learning models perform": 90726, "tasks scene understanding": 163203, "detection demonstrate effectiveness": 40484, "representation learning models": 140713, "received lot attention": 137312, "given image text": 65902, "powerful generation ability": 125279, "results best model": 143199, "best model significantly": 17707, "knowledge graphs knowledge": 82080, "language model various": 83952, "frechet inception distance": 61542, "inception distance fid": 74311, "models performance different": 108482, "transfer learning techniques": 168962, "generative pretraining framework": 65569, "transformer model based": 169172, "deep learning technologies": 37778, "training data significantly": 168344, "using external data": 174188, "pretrained convolutional neural": 126778, "neural network cnn": 112895, "using recurrent neural": 174660, "controls generation process": 31673, "foundation models language": 60775, "capability foundation models": 20298, "vision encoder large": 176909, "introduce novel promptbased": 80069, "attempts bridge gap": 13814, "highly realistic images": 69945, "classification social media": 24097, "captioning language data": 20583, "approach improves accuracy": 11291, "vision language multimodal": 176937, "language multimodal tasks": 86433, "pretrained encoderdecoder language": 126797, "multihop reasoning ability": 110431, "cot language models": 32872, "data achieve performance": 34580, "contrastive learning train": 31373, "conditioned input image": 28981, "prompt learning provides": 130586, "models vlms clip": 109653, "vlms clip shown": 177453, "use rich context": 172861, "rich context additional": 144768, "context additional information": 30677, "quality generated images": 134145, "conducted evaluate performance": 29235, "performance proposed model": 121962, "design workflows designers": 39805, "proposed prompting strategies": 132421, "capabilities work present": 20264, "pretrained models multimodal": 127092, "manually annotated data": 99074, "carefully crafting prompts": 20802, "capabilities proposed approach": 20133, "robustness wide range": 145445, "robustness downstream tasks": 145376, "natural language target": 111880, "language model standard": 83915, "strong reasoning skills": 156439, "selfsupervised learning selfsupervised": 148061, "key challenge lies": 81469, "relevant text information": 139659, "shows better performance": 150410, "currently largest dataset": 34332, "outstanding results various": 118165, "data poisoning attacks": 35496, "context finetuning pretrained": 30772, "prompt engineering using": 130489, "using finetuned large": 174206, "visionlanguage pretrained models": 177079, "downstream task data": 44754, "language using chatgpt": 86876, "llms chatgpt gpt3": 94585, "data security privacy": 35716, "performance zeroshot classification": 122317, "using diffusion models": 174141, "opened new possibilities": 116482, "present novel neural": 126391, "proposed framework generates": 132302, "models furthermore shown": 106409, "previous approaches require": 127571, "autonomous surface vehicle": 14949, "better fewshot learning": 17871, "texttoimage generation systems": 165817, "systems recent developments": 160572, "models findings provide": 106343, "analysis powered large": 9073, "resulting models demonstrate": 143121, "models llms far": 107421, "language models perception": 85868, "train large number": 167786, "experiments advantages method": 54136, "framework improve quality": 61210, "downstream tasks investigate": 44797, "image classification datasets": 72203, "performance based findings": 121186, "attention mechanism finetuning": 13929, "diverse linguistic knowledge": 43566, "gpt2 gpt3 chatgpt": 66544, "framework seamlessly integrates": 61397, "approach eliminates need": 11152, "reduce manual effort": 138443, "downstream tasks focus": 44789, "applications zeroshot classification": 10735, "prompt engineering solving": 130484, "potential ethical concerns": 124707, "propose novel decoding": 131990, "diverse segmentation tasks": 43645, "robustness comprehensive experiments": 145363, "llava large language": 93413, "large language vision": 88883, "language vision assistant": 86886, "generative models demonstrated": 65485, "models fms gpt4": 106372, "impact wide range": 72744, "using visionlanguage models": 174858, "models llms associated": 107123, "shown substantial potential": 150387, "textual descriptions images": 165901, "task release code": 161687, "models methods suffer": 108184, "gaining significant attention": 62503, "labeled data required": 82717, "unlabeled target data": 171957, "humans completing tasks": 71361, "compact model size": 26538, "using computer vision": 174076, "ai models introduce": 7101, "training data require": 168333, "images textual input": 72500, "information paper introduces": 76616, "datasets datasets limited": 36759, "annotate new dataset": 9439, "style transfer largescale": 157769, "intelligence agi models": 78722, "deeper understanding underlying": 37849, "understanding image captioning": 171288, "specifically review application": 154283, "application visionlanguage models": 10400, "revolutionized nlp field": 144661, "model computer vision": 103335, "learning text image": 91077, "generative model work": 65473, "annotated training datasets": 9498, "visual large language": 177223, "real generated images": 136232, "generation garnered significant": 64682, "demonstrated text generation": 38814, "novel prompting strategies": 114654, "method code released": 100737, "models clip demonstrated": 105631, "strong generalization capabilities": 156389, "metrics results demonstrate": 102141, "language models exponential": 84507, "models exponential growth": 106263, "gpt demonstrated impressive": 66406, "sourced different datasets": 153489, "learning methods directly": 90679, "chatgpt gpt4 identify": 23021, "models struggle complex": 109247, "language modeling propose": 84016, "propose novel multimodal": 132020, "capabilities zeroshot fewshot": 20266, "models reasoning capabilities": 108810, "models challenging limited": 105601, "challenging limited availability": 22195, "latent space enables": 89514, "great potential generalpurpose": 67703, "language model leverages": 83714, "writing process work": 179740, "use diffusion model": 172589, "proposed method release": 132369, "method release code": 101068, "model model outperforms": 104096, "model outperforms current": 104172, "textguided image editing": 165634, "single sentence multiple": 151860, "synthesis visual programming": 159977, "conducted demonstrate effectiveness": 29228, "gpt4 shown remarkable": 67162, "containing aligned text": 30328, "gpt4 shown great": 67160, "great potential tool": 67709, "models typically rely": 109525, "machine translated data": 98107, "image text data": 72335, "using contrastive loss": 174088, "contrastive language image": 31354, "language image pretraining": 83410, "random forest classifier": 135522, "limited domainspecific data": 92752, "foundation model image": 60740, "model image segmentation": 103821, "propose novel zeroshot": 132048, "generating complex natural": 64167, "natural language contents": 111567, "visionlanguage pretraining vlp": 177081, "enable researchers conduct": 48126, "carefully curated datasets": 20805, "dataset encourage research": 36258, "proposed method proposed": 132368, "need model retraining": 112351, "demonstrate promise approach": 38485, "image understanding generation": 72353, "generation capabilities human": 64465, "stable diffusion chatgpt": 154689, "conducts comprehensive survey": 29331, "extensive experimental study": 55790, "validated case studies": 175340, "future research multimodal": 62357, "publicly available large": 133648, "extensive experimentation demonstrate": 55792, "dataset contains annotations": 36196, "captions paper present": 20620, "novel approach address": 114366, "bridging gap automated": 19089, "guided reinforcement learning": 68237, "texts recent advances": 165765, "user studies demonstrate": 173505, "activities daily living": 4462, "survey multimodal large": 159653, "finally discuss existing": 58438, "surpassing prior stateoftheart": 159527, "motion prediction motion": 110153, "features using large": 57601, "order solve problem": 117241, "proposed model used": 132398, "generation frozen llms": 64675, "optimization framework using": 116996, "language model joint": 83700, "models language generation": 106863, "developed large language": 40883, "article generation task": 12584, "language vision models": 86890, "trained proposed dataset": 168049, "stateoftheart multimodal large": 155245, "study new problem": 157508, "new problem called": 113351, "leverages transfer learning": 91790, "recently achieved remarkable": 137821, "future model development": 62292, "future advancements domain": 62216, "domain project page": 44255, "generate highquality images": 63540, "current approaches struggle": 34069, "propose evaluation metrics": 131811, "extensive experiments evaluations": 55845, "tool researchers practitioners": 167023, "researchers practitioners interested": 142243, "models llms emergent": 107348, "discrete visual tokens": 42822, "openended research questions": 116506, "workshop paper discuss": 179523, "paper discuss design": 118858, "models image classification": 106670, "use domain expertise": 172595, "gpt4 used generate": 67209, "outperform recently proposed": 117623, "significant attention diverse": 150601, "revolution artificial intelligence": 144619, "language models smallscale": 86182, "language models healthcare": 84635, "training transformer based": 168800, "feature extraction module": 57405, "present new opportunities": 126381, "dataset method achieves": 36405, "models lvlms demonstrated": 108110, "visual reasoning visual": 177292, "emerging field aims": 47511, "particularly natural language": 120231, "evaluated case study": 51156, "used train benchmark": 173273, "image inpainting techniques": 72278, "comparisons stateoftheart methods": 27085, "coherence compared existing": 25508, "natural language present": 111694, "generalization ability extensive": 63125, "model pretrained text": 104326, "models ability utilize": 105190, "explored work introduce": 55375, "based image generation": 15864, "dalle stable diffusion": 34530, "exhibited impressive capabilities": 53137, "data generation strategies": 35120, "address problem present": 5341, "dataset baseline models": 36130, "approaches existing stateoftheart": 11758, "set baseline results": 149138, "datasets prove effectiveness": 37053, "models extend capabilities": 106269, "contextually appropriate responses": 31144, "twostage training strategy": 170275, "ai texttoimage generation": 7280, "results diffusion models": 143356, "models improved performance": 106691, "creation particularly context": 33349, "16 datasets demonstrate": 453, "challenging problem requires": 22242, "inspiration large language": 77687, "potential directions future": 124679, "ai models particularly": 7109, "test performance various": 164592, "analyze strengths weaknesses": 9335, "discuss implications limitations": 42900, "language models prevalent": 85952, "prevalent use large": 127526, "tuning visionlanguage models": 170144, "input image text": 77258, "instruction tuning present": 78127, "existing works mainly": 53651, "works mainly focus": 179471, "image features extracted": 72254, "generation quality code": 64994, "generated llms like": 63917, "models different kinds": 105969, "autonomous driving large": 14935, "driving large language": 45016, "application deep learning": 10308, "data generated large": 35098, "specifics downstream task": 154330, "3d generative models": 1133, "model adeptly handles": 103085, "multiple datasets showcasing": 110885, "parameterefficient training methods": 119682, "finetuning additionally study": 59157, "models llms endtoend": 107360, "model llm framework": 103996, "development natural language": 41170, "compared pretrained model": 26879, "models gpt35 llama2": 106538, "interplay textual visual": 79614, "textual visual auditory": 165964, "especially complex language": 50443, "including llama2 70b": 74597, "detecting poisoned samples": 40425, "image visual question": 72360, "studied different ways": 156925, "human evaluation maintaining": 70740, "widespread applications various": 178461, "llms remains scarce": 96392, "datasets codes publicly": 36703, "llms large multimodal": 95726, "encoders language models": 48486, "natural language translation": 111896, "based machine learning": 15937, "model architectures using": 103136, "handle multimodal data": 68556, "fall short effectively": 57124, "fine tuning peft": 58844, "satisfactory model performance": 146159, "using stateoftheart sota": 174758, "comprehensive quantitative evaluation": 28103, "model achieves overall": 103046, "achieves overall accuracy": 4048, "nature task studies": 112032, "task studies evaluate": 161752, "common struggles current": 26200, "struggles current methods": 156785, "realworld scenarios diverse": 136499, "pretrained vision encoders": 127227, "llms enabling effective": 95060, "instruction tuning approaches": 78070, "current visionlanguage models": 34298, "generation tasks novel": 65174, "integrating natural language": 78617, "risks associated using": 144976, "language models enrich": 84452, "method using gpt4": 101163, "paper propose hierarchical": 119223, "using llms finetuning": 174432, "enhancing efficiency data": 49482, "analysis address issue": 8803, "machine learning analysis": 98010, "extracted automatic speech": 56181, "models present novel": 108603, "present novel task": 126395, "instructions foundation models": 78263, "model surpasses existing": 104700, "multimodal llms proposed": 110712, "text images model": 165232, "llms shown ability": 96531, "purpose require large": 133757, "prompting largelanguage models": 130989, "use large multimodal": 172711, "trustworthy machine learning": 169870, "analysis paper propose": 9049, "paper propose apply": 119204, "retrieval image captioning": 144062, "question answering evaluation": 134708, "models paper focus": 108409, "work provide nlp": 179233, "provide nlp community": 132902, "nlp community insights": 113707, "community insights code": 26489, "paper conduct extensive": 118799, "vision encoders mllms": 176914, "wide range benchmarks": 178268, "text generation training": 165196, "introduce comprehensive assessment": 79935, "models large amounts": 106876, "using pretrained generative": 174594, "language model unified": 83942, "model codes available": 103297, "gap explore potential": 62649, "use largelanguage models": 172721, "seamless integration large": 147287, "positive negative model": 124298, "recently introduced large": 137915, "neurosymbolic reasoning approach": 113043, "diffusionbased generative models": 42266, "novel approach leveraging": 114395, "llms extract critical": 95226, "growing popularity generative": 68042, "address problem explore": 5337, "method harnessing llms": 100904, "limited availability annotated": 92713, "generative ai including": 65325, "ai including large": 7040, "texts generated llms": 165725, "models provide comprehensive": 108723, "short providing holistic": 149987, "various types llms": 176240, "additionally propose information": 5113, "effectiveness pretrained llms": 46264, "applications autonomous driving": 10431, "autonomous driving embodied": 14932, "gap introduce novel": 62665, "develop evaluation methods": 40782, "face major challenges": 56543, "data use llms": 35911, "given context paper": 65861, "perform human evaluations": 120959, "facilitating natural language": 56714, "llms produce highquality": 96206, "systems perform complex": 160526, "challenges including limited": 21912, "models zeroshot prompting": 109742, "autoencoding autoregressive pretraining": 14476, "models encoderdecoder models": 106111, "data using natural": 35930, "potential future improvements": 124733, "applying natural language": 10914, "personalized federated learning": 122598, "models federated learning": 106316, "federated learning fl": 57627, "data distributions paper": 34930, "present novel algorithm": 126384, "limitations current models": 92562, "human evaluations model": 70768, "models achieved notable": 105242, "terms model performance": 164438, "image classification framework": 72204, "dataset used finetune": 36606, "llms shown capability": 96532, "task finally provide": 161395, "detection performance long": 40588, "prompt learning numerous": 130579, "data using prompt": 35933, "potential downstream tasks": 124685, "language models bias": 84187, "models highlight need": 106605, "foundation model various": 60749, "foundation models llms": 60782, "comprehension capabilities extensive": 27884, "language models reshaping": 86091, "potential academic integrity": 124544, "understanding generation alongside": 171254, "attracts increasing attention": 14071, "giving rise new": 66067, "outside llms training": 118153, "learning pretrained visionlanguage": 90846, "extracted training data": 56212, "future research enabling": 62335, "offers valuable information": 115858, "significant progress multimodal": 150838, "progress multimodal tasks": 129992, "despite promising performance": 40184, "comparable performance fewshot": 26598, "review paper explores": 144529, "models mllms integrate": 108208, "potential risks society": 124958, "alignment methods llms": 8197, "paper explores challenges": 118929, "explores challenges associated": 55388, "tasks text mining": 163362, "text mining text": 165305, "artificial intelligence particular": 12756, "addresses critical issue": 5412, "analysis instruction tuning": 8981, "crucial supervised training": 33867, "solution aforementioned challenges": 152893, "exhibiting robust generalization": 53173, "present promising results": 126420, "novel visionlanguage model": 114747, "challenges experimental results": 21859, "remarkable proficiency generating": 140266, "artificial intelligence foundation": 12723, "intelligence foundation models": 78821, "day day lives": 37241, "currently large language": 34329, "question answering capabilities": 134689, "biased training data": 18246, "perform real world": 121020, "interactive ai iai": 79286, "addition propose simple": 4896, "proposed method capable": 132343, "employs gpt4 generate": 47963, "prompt experimental results": 130498, "model able accurately": 103010, "remain underexplored work": 139944, "identify factual errors": 71891, "models llms intuitively": 107586, "generated using visionlanguage": 64042, "using visionlanguage model": 174857, "human ability detect": 70551, "evaluate responses openended": 51094, "assess performance large": 13107, "room improvement compared": 145587, "compared human accuracy": 26833, "propose novel visual": 132046, "language models adopt": 84083, "resource future research": 142386, "vast knowledge powerful": 176340, "powerful text generation": 125339, "image captioning method": 72186, "parameters exhibits superior": 119752, "world model autonomous": 179590, "model autonomous driving": 103166, "autonomous driving understanding": 14938, "autonomous driving existing": 14934, "world model based": 179592, "nlp tasks human": 113847, "significantly improves baseline": 151039, "methods predominantly rely": 101719, "curate comprehensive dataset": 33995, "prompts additionally propose": 131153, "emphasizing potential revolutionize": 47658, "shedding light strengths": 149871, "development survey aims": 41231, "models significant advancements": 109122, "significant advancements recent": 150578, "hallucination problem models": 68405, "introduces novel solution": 80211, "codes models datasets": 25310, "results multiple datasets": 143621, "design principles paper": 39720, "based user input": 16165, "important step addressing": 73198, "aid large language": 7362, "content text images": 30631, "models typically require": 109526, "remedy issue present": 140334, "data collection framework": 34784, "capabilities instruction following": 19969, "costs paper present": 32837, "alleviate hallucination issue": 8288, "addressing complex challenges": 5435, "limited data paper": 92744, "framework employing large": 61108, "textual visual inputs": 165966, "sequence motion tokens": 148776, "existing methods generate": 53450, "recent development generative": 137465, "text prompt using": 165383, "compared baseline approaches": 26747, "applications address challenge": 10410, "stateoftheart results diverse": 155332, "results diverse range": 143361, "images existing methods": 72421, "visual incontext learning": 177187, "visual tasks like": 177320, "results llms achieve": 143576, "remarkable performance natural": 140232, "llms produce set": 96209, "building foundation introduce": 19407, "new sota performance": 113418, "outofdistribution ood scenarios": 117528, "powerful visual understanding": 125355, "distribution training data": 43400, "propagate downstream tasks": 131596, "offer crucial insights": 115643, "dataset existing datasets": 36278, "generation solve problem": 65094, "model designed specifically": 103440, "generate creative content": 63449, "understanding capability existing": 171149, "demonstrate method performs": 38431, "language model vllm": 83958, "validate proposed model": 175333, "conduct detailed ablation": 29064, "models llms vast": 108025, "llamp large language": 93410, "compared traditional text": 26956, "language models multilabel": 85774, "multilabel classification tasks": 110443, "decisionmaking recent advances": 37435, "generated chatgpt paper": 63815, "employing generative models": 47926, "llmgenerated text critical": 94208, "tasks address gap": 161913, "quality assurance tasks": 134048, "rarely seen training": 135958, "study propose endtoend": 157559, "used generate synthetic": 173088, "understanding textual data": 171510, "understanding paper presents": 171393, "language model takes": 83922, "data poses significant": 35505, "enabling innovative applications": 48307, "innovative applications domains": 77157, "extensive experiments examine": 55846, "ai tools easily": 7292, "recognition natural language": 138101, "marking significant step": 99251, "integrate natural language": 78502, "hard negative examples": 68650, "remarkable generative capabilities": 140204, "poses privacy risks": 124221, "quality model outputs": 134203, "chainofthought prompting technique": 21535, "paper address limitations": 118702, "generation framework construct": 64671, "llms incorporate additional": 95589, "instruction tuning experiments": 78088, "showcase effectiveness proposed": 150072, "tasks like writing": 162733, "generalist visual language": 63100, "state art model": 154987, "pretrained transformer vision": 127206, "transformer vision language": 169223, "detection perform experiments": 40585, "human feedback leveraged": 70809, "aigenerated content paper": 7404, "establish benchmark evaluating": 50655, "prompting framework llms": 130941, "large visual language": 89124, "ethical considerations furthermore": 50800, "work introduce comprehensive": 179052, "possesses following characteristics": 124362, "assessing performance large": 13195, "demonstrate effectiveness dataset": 38296, "learn specific knowledge": 90059, "mathematical problem solving": 99578, "indepth analysis impact": 75518, "experiments validate proposed": 54524, "classification tasks assessing": 24109, "enhanced vision capabilities": 49375, "expert large language": 54580, "solve optimization problem": 153139, "optimization problem propose": 117029, "model effectively integrates": 103513, "given task paper": 66025, "task paper present": 161596, "following contributions design": 60265, "wide variety evaluation": 178347, "mathematical reasoning problems": 99598, "create synthetic dataset": 33235, "empirical results obtained": 47732, "underscore importance developing": 170918, "previous natural language": 127622, "intelligence ai deep": 78735, "method effectively handle": 100809, "new training dataset": 113473, "training dataset result": 168373, "model demonstrates superior": 103429, "tasks surpassing existing": 163326, "stateoftheart methods significant": 155215, "believe proposed model": 16788, "systems code available": 160291, "llm models ability": 93833, "exponential growth large": 55530, "models comprehensively understand": 105716, "rapidly advancing field": 135913, "artificial intelligence introduction": 12741, "intelligence ai refers": 78764, "students postgraduate students": 156887, "tackle challenges present": 160807, "learning led development": 90639, "development powerful language": 41186, "models lms excel": 108063, "investigates potential impact": 80579, "reasoning visual question": 137236, "gap current research": 62636, "improve reasoning capabilities": 73605, "models llms observed": 107680, "determine final nexttoken": 40704, "final nexttoken predictions": 58387, "charts providing valuable": 22514, "computational resources extensive": 28401, "models llms heightened": 107517, "gpt4vs capabilities limitations": 67270, "challenges research focus": 22052, "tasks datasets evaluation": 162157, "modeling significantly improved": 105091, "visual understanding capabilities": 177335, "commonsense reasoning abilities": 26302, "learning visual representations": 91129, "models given rise": 106505, "models seamlessly integrate": 109053, "heralds new era": 69275, "new era artificial": 113167, "create benchmark datasets": 33175, "compared stateoftheart models": 26935, "gap work introduces": 62753, "demonstrates significant superiority": 38894, "continue advance ability": 31188, "impact peoples lives": 72709, "llms practical settings": 96152, "online text data": 116146, "methods based various": 101343, "content generated ai": 30505, "advanced texttoimage models": 5813, "performance gains stateoftheart": 121556, "zeroshot setting code": 180336, "excellent generalization abilities": 52793, "work propose combine": 179197, "limited availability largescale": 92715, "zeroshot classification accuracy": 180143, "outperforms prior work": 117834, "human aigenerated text": 70566, "3d gaussian splatting": 1130, "vision language information": 176931, "factually incorrect content": 56930, "address challenges work": 5194, "recent works showed": 137760, "does rely predefined": 44013, "workflows paper introduces": 179387, "computeraided design cad": 28519, "framework employs large": 61112, "dataset specifically tailored": 36556, "largescale models increasingly": 89357, "birds eye view": 18593, "architectures training data": 12301, "data training stages": 35883, "discuss current practices": 42882, "sheds light important": 149877, "models lms prone": 108076, "suffer poor performance": 158446, "study tackle challenge": 157658, "rich source information": 144805, "python source code": 133855, "like chatgpt research": 92241, "address dilemma propose": 5222, "highquality annotations provided": 69993, "experimental results underscore": 54079, "ability significant gap": 2367, "including chatgpt bard": 74444, "paper discusses challenges": 118861, "natural language natural": 111679, "vlms propose novel": 177474, "demo code dataset": 38174, "level study introduces": 91512, "drawing inspiration success": 44933, "pretrained models zeroshot": 127118, "provided input llm": 133064, "extensive experiments comparisons": 55812, "strategies results demonstrate": 156070, "pretrained vision encoder": 127226, "text image features": 165228, "multimodal llms enhance": 110705, "models including dalle": 106709, "significant challenge especially": 150638, "explored date paper": 55341, "need highquality paired": 112306, "reasoning finally provide": 136862, "knowledge probing llms": 82307, "enhances ability models": 49397, "training data approach": 168226, "advances generative artificial": 6013, "user studies demonstrating": 173506, "studies demonstrating effectiveness": 156979, "high recognition interactive": 69520, "recognition interactive functionality": 138077, "propose comprehensive benchmark": 131755, "face limitations terms": 56539, "complex neural network": 27499, "400 million image text": 1180, "million image text pairs": 102231, "image text pairs collected": 72343, "text pairs collected internet": 165340, "generative models like gpt3": 65501, "gpt2 pretrained language model": 66582, "paper present simple effective": 119137, "present simple effective method": 126452, "frechet inception distance fid": 61543, "source code trained models": 153427, "field computer vision natural": 58143, "pretrained convolutional neural networks": 126779, "framework significantly outperforms stateoftheart": 61413, "pretrained visionlanguage models vlms": 127238, "vision encoder large language": 176910, "data experiments demonstrate method": 35019, "vision language multimodal tasks": 176938, "pretrained encoderdecoder language models": 126798, "visionlanguage models vlms clip": 177068, "models vlms clip shown": 109654, "use rich context additional": 172862, "rich context additional information": 144769, "results proposed approach achieves": 143698, "selfsupervised learning selfsupervised learning": 148062, "ablation studies demonstrate effectiveness": 2440, "using finetuned large language": 174207, "models llms chatgpt gpt3": 107181, "significantly outperforms existing stateoftheart": 151103, "analysis powered large language": 9074, "language models llms far": 85138, "approach eliminates need manual": 11153, "large language vision assistant": 88884, "demonstrated remarkable capabilities generating": 38758, "foundation models fms gpt4": 60763, "preliminary results demonstrate effectiveness": 126142, "language models llms associated": 84897, "language models methods suffer": 85742, "performance various multimodal tasks": 122264, "model performance work propose": 104263, "performance work propose novel": 122313, "general intelligence agi models": 62964, "remarkable zeroshot performance various": 140312, "models paper introduces novel": 108413, "generation garnered significant attention": 64683, "address limitations propose new": 5318, "large language models exponential": 87795, "language models exponential growth": 84508, "ability natural language understanding": 2294, "evaluation demonstrate effectiveness proposed": 51533, "proposed method release code": 132370, "model outperforms current stateoftheart": 104173, "large language model extract": 87351, "models set new stateoftheart": 109083, "generative models like gpt4": 65502, "experiments conducted demonstrate effectiveness": 54191, "llms gpt4 shown remarkable": 95441, "chatgpt gpt4 shown great": 23029, "gpt4 shown great potential": 67161, "visual natural language inputs": 177236, "contrastive language image pretraining": 31355, "foundation model image segmentation": 60741, "generating complex natural language": 64168, "models achieve comparable performance": 105219, "conduct extensive experimental study": 29114, "hope pave way future": 70367, "models shown great potential": 109103, "survey multimodal large language": 159654, "finally discuss existing challenges": 58439, "features using large language": 57602, "recently developed large language": 137858, "developed large language models": 40884, "large language vision models": 88885, "stateoftheart multimodal large language": 155246, "models recently achieved remarkable": 108848, "ability generate highquality images": 2192, "language models llms emergent": 85071, "workshop paper discuss design": 179524, "generative pretrained models like": 65543, "model outperforms stateoftheart baselines": 104185, "visionlanguage models vlms large": 177071, "models present new opportunities": 108602, "visionlanguage models lvlms demonstrated": 177050, "models demonstrated strong ability": 105916, "language model pretrained text": 83850, "recently achieved remarkable success": 137822, "language models improved performance": 84680, "inspiration large language models": 77688, "potential directions future research": 124680, "large language models prevalent": 88625, "prevalent use large language": 127527, "prompt tuning visionlanguage models": 130730, "paper propose novel promptbased": 119247, "existing works mainly focus": 53652, "autonomous driving large language": 14936, "driving large language model": 45017, "language model like chatgpt": 83716, "data generated large language": 35099, "language models llms endtoend": 85083, "language model llm framework": 83745, "multimodal machine learning models": 110715, "interplay textual visual auditory": 79615, "models llms generative models": 107477, "llms including llama2 70b": 95580, "demonstrate stateoftheart performance various": 38559, "image visual question answering": 72361, "metrics human evaluation maintaining": 102081, "widespread applications various domains": 178462, "datasets codes publicly available": 36704, "models llms large multimodal": 107597, "llms large multimodal models": 95727, "efficient fine tuning peft": 46614, "model achieves overall accuracy": 103047, "nature task studies evaluate": 112033, "captioning large language model": 20586, "common struggles current methods": 26201, "extract structured information unstructured": 56166, "language models chatgpt gpt4": 84235, "language generation tasks novel": 83386, "analysis address issue propose": 8804, "extracted automatic speech recognition": 56182, "large language models enabling": 87759, "method surpasses existing stateoftheart": 101130, "models llms shown ability": 107864, "use large multimodal models": 172712, "work provide nlp community": 179234, "provide nlp community insights": 132903, "nlp community insights code": 113708, "large language model unified": 87496, "use largelanguage models llms": 172722, "seamless integration large language": 147288, "recently introduced large language": 137916, "models trained large datasets": 109448, "limited availability annotated data": 92714, "generative ai including large": 65326, "ai including large language": 7041, "fall short providing holistic": 57130, "ai systems perform complex": 7256, "language models zeroshot prompting": 86416, "data using natural language": 35931, "models federated learning fl": 106317, "coherent contextually relevant responses": 25527, "automatic human evaluations model": 14689, "models llms shown capability": 107865, "present comprehensive evaluation framework": 126257, "large language models reshaping": 88700, "learning pretrained visionlanguage models": 90847, "extensive experiments results demonstrate": 55881, "garnered significant attention potential": 62789, "significant progress multimodal tasks": 150839, "large language models act": 87543, "language models mllms integrate": 85759, "paper explores challenges associated": 118930, "artificial intelligence foundation models": 12724, "currently large language models": 34330, "addition propose simple effective": 4897, "improve generalization ability unseen": 73473, "llms gained significant popularity": 95329, "proposed method achieves stateoftheart": 132339, "language models llms intuitively": 85280, "generated using visionlanguage model": 64043, "evaluate responses openended questions": 51095, "parameters exhibits superior performance": 119753, "world model autonomous driving": 179591, "offering valuable insights future": 115774, "adapting pretrained language model": 4757, "significant advancements recent years": 150579, "large language model frozen": 87357, "framework employing large language": 61109, "stateoftheart results diverse range": 155333, "shown remarkable performance natural": 150361, "remarkable performance natural language": 140233, "language model specifically designed": 83912, "demonstrated impressive capabilities generating": 38691, "visual large language model": 177224, "large language model vllm": 87504, "conduct detailed ablation studies": 29065, "language models llms vast": 85644, "large language models multilabel": 88535, "used generate synthetic data": 173089, "generate synthetic data using": 63739, "data poses significant challenge": 35506, "using generative ai tools": 174234, "similar generative ai tools": 151242, "showcase effectiveness proposed method": 150073, "generative pretrained transformer vision": 65561, "pretrained transformer vision language": 127207, "prompts extensive experiments demonstrate": 131270, "experiments demonstrate effectiveness dataset": 54219, "experiments validate proposed method": 54525, "expert large language model": 54581, "results underscore importance developing": 143885, "artificial intelligence ai deep": 12668, "intelligence ai deep learning": 78736, "model demonstrates superior performance": 103430, "exponential growth large language": 55531, "large language models attributed": 87583, "artificial intelligence ai refers": 12693, "development powerful language models": 41187, "powerful language models lms": 125288, "language models lms excel": 85674, "reasoning visual question answering": 137237, "language models llms observed": 85358, "determine final nexttoken predictions": 40705, "language models llms heightened": 85219, "demonstrate approach significantly outperforms": 38244, "enhance large language models": 49221, "new era artificial intelligence": 113168, "bridge gap work introduces": 19062, "llms continue advance ability": 94725, "significant performance gains stateoftheart": 150805, "aims provide comprehensive overview": 7652, "framework employs large language": 61113, "language models lms prone": 85687, "large language models perception": 88595, "models like chatgpt research": 106978, "models llms including chatgpt": 107551, "language models llms foundation": 85150, "vlms propose novel approach": 177475, "exceptional performance diverse domains": 52827, "visual question answering datasets": 177265, "generalization ability extensive experiments": 63126, "large language model framework": 87356, "recent advances generative artificial": 137399, "advances generative artificial intelligence": 6014, "domainoriented large language model": 44346, "user studies demonstrating effectiveness": 173507, "high recognition interactive functionality": 69521, "language models shown remarkable success": 86160, "400 million image text pairs": 1181, "million image text pairs collected": 102232, "image text pairs collected internet": 72344, "paper present simple effective method": 119138, "field computer vision natural language": 58144, "vision encoder large language model": 176911, "visionlanguage models vlms clip shown": 177069, "use rich context additional information": 172863, "ability large language models generate": 2244, "prompt pretrained large language model": 130637, "using finetuned large language model": 174208, "language models llms chatgpt gpt3": 84946, "developments large language models llm": 41287, "large language models llms far": 88169, "large language models llms associated": 88019, "large language models methods suffer": 88515, "stateoftheart sota large language models": 155363, "artificial general intelligence agi models": 12652, "language models paper introduces novel": 85846, "large language models exponential growth": 87796, "models large language models emerged": 106886, "evaluation demonstrate effectiveness proposed method": 51534, "language models llms gpt4 shown": 85204, "models llms gpt4 shown remarkable": 107501, "chatgpt gpt4 shown great potential": 23030, "using large language models making": 174386, "hope pave way future research": 70368, "survey multimodal large language models": 159655, "features using large language models": 57603, "recently developed large language models": 137859, "stateoftheart multimodal large language models": 155247, "large language models llms emergent": 88123, "pretrained large language model domainspecific": 126997, "visionlanguage models vlms large language": 177072, "large visionlanguage models lvlms demonstrated": 89119, "propose using large language models": 132202, "language models demonstrated strong ability": 84355, "multimodal large language models generate": 110691, "large language models improved performance": 87885, "prevalent use large language models": 127528, "autonomous driving large language model": 14937, "data generated large language models": 35100, "large language models llms endtoend": 88134, "language models llms generative models": 85184, "domains natural language processing computer": 44479, "progress large language models llm": 129979, "language models llms large multimodal": 85291, "models llms large multimodal models": 107598, "llms large multimodal models lmms": 95728, "parameter efficient fine tuning peft": 119607, "language models llms shown ability": 85514, "datasets experimental results demonstrate proposed": 36849, "use large multimodal models lmms": 172713, "work provide nlp community insights": 179235, "provide nlp community insights code": 132904, "seamless integration large language models": 147289, "recently introduced large language models": 137917, "generative ai including large language": 65327, "ai including large language models": 7042, "language models llms shown capability": 85515, "learning pretrained visionlanguage models vlms": 90848, "large language models mllms integrate": 88526, "models llms gained significant popularity": 107449, "proposed method achieves stateoftheart performance": 132340, "large language models llms intuitively": 88253, "offering valuable insights future research": 115775, "valuable insights future research directions": 175432, "framework employing large language models": 61110, "prompttuning large language models llms": 131547, "shown remarkable performance natural language": 150362, "remarkable performance natural language processing": 140234, "large language model specifically designed": 87485, "large language models llms vast": 88474, "capabilities large language models chatgpt": 19991, "generative pretrained transformer vision language": 65562, "extensive experiments demonstrate effectiveness dataset": 55824, "artificial intelligence ai deep learning": 12669, "exponential growth large language models": 55532, "development powerful language models lms": 41188, "large language models llms observed": 88303, "large language models llms heightened": 88208, "enhance large language models llms": 49222, "tasks experimental results demonstrate significant": 162364, "framework employs large language models": 61114, "generative ai models like chatgpt": 65339, "large language models knowledge retrieval": 87929, "language models llms including chatgpt": 85248, "large language models llms foundation": 88178, "language models llms foundation models": 85151, "recent advances generative artificial intelligence": 137400, "evolution natural language processing nlp": 52276, "improvement large language models llms": 73815, "covariance": 33029, "buying": 19559, "racist": 135392, "indistinguishably": 75696, "sexist": 149728, "failsafe": 57002, "osint": 117428, "attackdefense": 13675, "fingerprint": 59619, "withindomain": 178557, "weibo": 178065, "stealing": 155540, "conceals": 28571, "disseminate": 43108, "laden": 83055, "selfdiagnosing": 147975, "lgbtqia": 92015, "454": 1242, "distress": 43315, "cbc": 21284, "january": 81198, "friendship": 61640, "33k": 1034, "proliferates": 130121, "fakes": 57107, "honeypot": 70334, "desirability": 40027, "essentials": 50649, "derogatory": 39371, "automatized": 14914, "disfluent": 43044, "populist": 124115, "masses": 99340, "mds": 99738, "216": 759, "rf": 144748, "insulting": 78459, "unharmful": 171684, "attenuates": 14024, "heading": 68912, "blindness": 18705, "worries": 179648, "polishing": 123888, "mobilization": 102910, "implants": 72813, "unaddressed": 170614, "regulator": 139012, "outcompete": 117470, "unmarked": 172052, "australia": 14413, "detections": 40662, "1e5": 572, "vibrant": 176655, "houyi": 70468, "tide": 166320, "covid19related": 33118, "zeroday": 180095, "thrilling": 166304, "heed": 69058, "privacypreserving": 128038, "bytepair": 19582, "obfuscation": 115100, "summarises": 158792, "sexism": 149727, "commodities": 26113, "admitting": 5562, "leq": 91423, "sport": 154587, "exaggerated": 52349, "refused": 138848, "symmetrically": 159840, "upb": 172322, "unsanitized": 172138, "pervasiveness": 122776, "recentlydeveloped": 138015, "persisted": 122529, "0640": 58, "capturetheflag": 20711, "ctf": 33909, "debunking": 37324, "foolproof": 60343, "violence": 176852, "pornography": 124117, "ate": 13606, "diseasespecific": 43036, "occasions": 115578, "9698": 1815, "sexual": 149730, "predatory": 125643, "adolescents": 5563, "predators": 125642, "honeypots": 70335, "adversarys": 6249, "bitstrings": 18606, "mitres": 102704, "peftlora": 120688, "solicited": 152876, "worldviews": 179644, "homophobic": 70328, "mis": 102457, "kits": 81674, "responders": 142604, "trainfromscratch": 168135, "pretrainandfinetune": 126746, "peculiar": 120646, "accentuates": 2821, "infringe": 76912, "inequality": 75910, "hotels": 70440, "prolific": 130132, "intangible": 78468, "vigilant": 176834, "aienhanced": 7386, "userside": 173822, "apprehension": 10937, "verdicts": 176458, "fourweek": 60871, "existent": 53244, "es": 50412, "elude": 47110, "fullspectrum": 61735, "sanitization": 146134, "dangerously": 34545, "band": 15523, "operability": 116732, "unbound": 170653, "emotionbased": 47596, "interfering": 79482, "constitutional": 30019, "mart": 99284, "eating": 45370, "dissonance": 43115, "664": 1489, "debunk": 37322, "refugees": 138842, "ciphertext": 23765, "2116": 752, "indistinguishability": 75688, "domainspecialized": 44554, "subtlety": 158197, "anonymity": 9664, "unpleasantness": 172075, "purity": 133731, "917": 1768, "wrapped": 179690, "crossdatabase": 33617, "complicate": 27711, "disturbance": 43434, "assaying": 13015, "chatgptenabled": 23464, "thwart": 166316, "invasion": 80328, "stifle": 155793, "misogyny": 102518, "amass": 8610, "discloses": 42682, "summarised": 158791, "pap": 118694, "tsne": 169917, "predicated": 125672, "sir": 151920, "destabilize": 40257, "viewer": 176825, "classifier paper": 24164, "paper extensive": 118948, "using evolution": 174173, "noise added": 113973, "added original": 4813, "including simple": 74723, "simple genetic": 151465, "evolution strategy": 52281, "attacks necessary": 13727, "topic work": 167340, "sentiment using": 148672, "accuracy 96": 3131, "showed participants": 150145, "accurately detect": 3521, "examples highlight": 52606, "input dataset": 77221, "exploit dataset": 55001, "attacks present": 13733, "present generative": 126327, "fever 20": 57856, "research started": 142091, "undesired effects": 171593, "language complexity": 83199, "2019 openai": 651, "public debate": 133564, "media messages": 100096, "like twitter": 92423, "17 human": 483, "markov chains": 99256, "clean inputs": 24250, "data deep": 34888, "libraries using": 92031, "lms including": 97151, "selection processes": 147882, "efficacy data": 46369, "techniques impact": 163922, "performed comparably": 122363, "readable text": 136160, "finetuned generate": 59026, "probable word": 128133, "news using": 113592, "tweets dataset": 170209, "data applying": 34645, "bert classification": 17519, "original labels": 117347, "classifiers bert": 24181, "reviews vital": 144597, "taskspecific layers": 163531, "media news": 100100, "openai developed": 116334, "gpt2 generative": 66541, "spread false": 154596, "text line": 165282, "using twitter": 174827, "api used": 10177, "embeddings based": 47215, "obtained accuracy": 115512, "reviews research": 144589, "populate knowledge": 124106, "intelligence osint": 78865, "learn incorrect": 89994, "adverse impacts": 6255, "study cybersecurity": 157260, "study professional": 157553, "datasets achieved": 36633, "data imbalanced": 35179, "utilize different": 175034, "groups given": 67969, "sexist racist": 149729, "accuracy high": 3259, "twitter paper": 170229, "based exclusively": 15785, "media increasingly": 100090, "literature compared": 93159, "set modern": 149242, "future datasets": 62239, "design better": 39561, "perturbationbased methods": 122753, "shows high": 150433, "explanations factchecking": 54846, "news claims": 113552, "perform comparative": 120893, "misinformation datasets": 102483, "metrics automatic": 102009, "approaches successfully": 11919, "10 pretrained": 134, "demonstrate limitations": 38404, "methods problem": 101728, "companys website": 26555, "questions requests": 135254, "accurate way": 3511, "application generate": 10324, "text brings": 164865, "security features": 147584, "attacks based": 13691, "backdoor attacks": 15423, "particular performance": 120106, "taskspecific supervised": 163549, "analysis centered": 8841, "twitter data": 170226, "method highlights": 100906, "analytical approach": 9250, "disinformation related": 43050, "detection deep": 40481, "use internet": 172687, "different cultures": 41716, "educational backgrounds": 45601, "checking text": 23541, "compromise privacy": 28272, "privacy training": 128031, "responses labeled": 142833, "times likely": 166598, "stance labels": 154788, "achieves 19": 3938, "19 reduction": 534, "corpus available": 32279, "approaches investigate": 11814, "atari environments": 13605, "utilize gpt": 175047, "methods artificial": 101316, "novel types": 114735, "features task": 57589, "models opposed": 108364, "analysis features": 8932, "imperative deploying": 72795, "bias nlp": 18168, "create model": 33210, "social platforms": 152647, "facebook comments": 56559, "compared simply": 26916, "analysis web": 9235, "analysis systems": 9192, "late fusion": 89471, "chinese news": 23651, "benchmark environment": 16945, "gpt2small gpt2medium": 66625, "gpt2medium gpt2large": 66621, "gpt2large gpt2xl": 66618, "present adversarial": 126219, "vulnerabilities modern": 177627, "problem far": 128254, "documents used": 43943, "attacks various": 13748, "pretrained google": 126832, "similar functionality": 151238, "efforts detect": 46901, "methodology identify": 101235, "annotations use": 9620, "clip identify": 24402, "score 081": 147032, "detection automatically": 40449, "academic publishing": 2751, "research content": 141662, "extracted original": 56200, "better benchmark": 17816, "distinguishing original": 43300, "increased social": 75275, "users led": 173702, "observed using": 115440, "achieved macro": 3839, "team achieved": 163661, "2021 exploring": 659, "bias shown": 18200, "memorize parts": 100340, "parts training": 120307, "texts comparison": 165688, "lms memorization": 97168, "current lms": 34169, "phenomena data": 122818, "dataset adversarial": 36104, "minority group": 102432, "framework adversarial": 60935, "publiclyavailable datasets": 133684, "online texts": 116147, "current capacity": 34084, "given proposed": 65966, "reasoning facts": 136855, "facts mentioned": 56840, "application nlp": 10358, "finance medical": 58556, "vulnerabilities paper": 177629, "interacting victim": 79098, "applied largescale": 10779, "recent algorithms": 137438, "text provides": 165390, "compared related": 26909, "case social": 20891, "role context": 145473, "proposed far": 132293, "tweets using": 170212, "utility approach": 174944, "misinformation spreads": 102500, "english speaking": 49109, "good transferability": 66300, "content purpose": 30589, "large news": 88961, "studies tried": 157099, "dialogpt model": 41439, "different attribute": 41665, "manifest biases": 98914, "annotated social": 9491, "strengths generative": 156252, "cyberbullying detection": 34470, "features word": 57605, "used harm": 173097, "provide piece": 132921, "especially certain": 50431, "lgbtqia community": 92016, "people color": 120711, "dataset enable": 36252, "conduct exploratory": 29102, "fullyconnected neural": 61806, "furthermore mitigate": 62115, "imbalanced training": 72563, "models f1": 106287, "hardware data": 68680, "security issue": 147596, "applicable fewshot": 10282, "scenarios evaluating": 146589, "models handcrafted": 106580, "users sensitive": 173777, "gpt3 investigate": 66712, "outputs ai": 118020, "order maintain": 117219, "propose implement": 131867, "assistants interactive": 13412, "largescale measurement": 89352, "responses set": 142916, "relies finetuning": 139798, "attack effective": 13639, "proposed previous": 132416, "reduce attack": 138401, "tool work": 167064, "work pave": 179154, "safety large": 145870, "knowledge fundamental": 82016, "accurate secure": 3494, "world events": 179549, "generated corpus": 63838, "seeking simulate": 147669, "simulate large": 151643, "framework embedding": 61102, "models deemed": 105864, "scenarios paired": 146662, "investigate types": 80505, "users social": 173782, "sources news": 153527, "people online": 120731, "groups users": 67987, "applying unsupervised": 10930, "users engaged": 173639, "tfidf bert": 165978, "deploy advanced": 39193, "features stance": 57579, "detection complex": 40465, "network features": 112649, "templates realworld": 164239, "context toxicity": 30941, "models blender": 105530, "need rely": 112374, "domain pretrained": 44248, "harm good": 68712, "hand results": 68495, "large content": 87218, "promote social": 130346, "spontaneous emergence": 154584, "language evolution": 83294, "effects social": 46348, "envision framework": 50126, "used aid": 172955, "originate human": 117407, "comparison study": 27070, "strategy finetuning": 156148, "revealing sensitive": 144406, "varies based": 175679, "critical perspectives": 33531, "language internet": 83462, "stateoftheart tool": 155396, "public sources": 133606, "models suggestions": 109293, "demonstrate novel": 38454, "novel attacks": 114409, "human computer": 70660, "detection collaborative": 40462, "user demographic": 173394, "cyber security": 34466, "assets like": 13314, "confidential information": 29371, "ongoing maintenance": 116069, "organizations seeking": 117289, "harms large": 68772, "models log": 108088, "improving detection": 74128, "articles generated": 12611, "approach feasible": 11227, "need significant": 112387, "detect explain": 40355, "decisions machine": 37470, "number users": 114979, "use abuse": 172485, "human chatgptgenerated": 70637, "text short": 165458, "trained differentiate": 167895, "comparing humangenerated": 26989, "text experiment": 165069, "using shap": 174711, "reviews challenging": 144575, "rephrased text": 140450, "analyses case": 8753, "studies various": 157114, "sophisticated adversaries": 153292, "output detector": 117913, "applications personal": 10634, "tailored assistance": 160909, "concern ability": 28736, "issue lack": 80920, "past months": 120391, "suggests adversarial": 158654, "security perspective": 147606, "information ecosystem": 76371, "novel security": 114682, "demonstrate attacks": 38250, "emerging threats": 47542, "safe responsible": 145812, "potential attacks": 124608, "study internal": 157416, "difficult solve": 42180, "uncover models": 170729, "sparked concerns": 153697, "proposed comprehensive": 132267, "social networking": 152641, "resolve data": 142344, "accuracy raw": 3360, "analysis purposes": 9104, "implicit explicit": 72977, "used deep": 173023, "explanations classification": 54824, "content supporting": 30627, "particular develop": 120068, "infer hidden": 75940, "malicious code": 98839, "specifically ability": 154130, "ai effective": 6968, "model probes": 104346, "challenging discern": 22147, "authored human": 14423, "bias existing": 18121, "benchmark framework": 16983, "significantly diminish": 150979, "data emerging": 34960, "trained clean": 167878, "million imagetext": 102234, "pairs method": 118598, "supervised text": 159178, "conceptual overview": 28716, "ai significant": 7214, "developed method": 40890, "human academic": 70552, "particular group": 120082, "consequences increasingly": 29527, "human authorship": 70604, "scale resulting": 146341, "progress poses": 130008, "concerns necessitating": 28798, "ones prior": 116010, "texts study": 165785, "framework designs": 61074, "prominent models": 130157, "numbers training": 114989, "popular baseline": 123984, "llms uniquely": 96888, "specifically adapted": 154132, "majority scenarios": 98467, "increasingly essential": 75399, "chatgpt detection": 22848, "evaluation curated": 51519, "questions medical": 135194, "finance domains": 58547, "nonnative english": 114105, "simultaneously raising": 151762, "native nonnative": 111509, "conversation ethical": 31787, "deploying chatgpt": 39232, "leveraging social": 91954, "media address": 100069, "similar topics": 151320, "factchecking tasks": 56767, "stereotype detection": 155782, "suggest based": 158517, "evidence supporting": 52224, "drawing information": 44927, "aimed developing": 7514, "concerns plagiarism": 28803, "academic contexts": 2728, "text poor": 165357, "limited support": 92860, "detection process": 40597, "controlled user": 31655, "multitask ai": 111202, "generated single": 63978, "limited furthermore": 92767, "inferential tasks": 76154, "half 2023": 68315, "chatgpt equipped": 22895, "worldwide study": 179646, "multidimensional scaling": 110377, "scaling mds": 146421, "papers focusing": 119396, "35 human": 1054, "humans terms": 71481, "japanese language": 81205, "generated scientific": 63970, "generated researchers": 63960, "concerns models": 28794, "discriminatory content": 42861, "content reflect": 30599, "evaluated model": 51190, "safety assessments": 145841, "including openai": 74648, "promise chatgpt": 130170, "content require": 30605, "potential understand": 125030, "chatgpt impacts": 23059, "implications employing": 72919, "provides guidance": 133158, "inherent characteristics": 76946, "experimentally demonstrated": 54102, "extremely harmful": 56432, "possible negative": 124443, "idea model": 71738, "imdb demonstrate": 72570, "professionals paper": 129637, "related covid19": 139157, "headlines use": 68916, "gpt35 finetuning": 66808, "blackbox generative": 18630, "traditional attack": 167593, "attack effectiveness": 13640, "distinct human": 43226, "chatgpt revolutionary": 23285, "expensive computing": 53779, "valuable assets": 175403, "new emerging": 113162, "given period": 65951, "threats challenges": 166280, "various common": 175860, "choice classification": 23685, "threat integrity": 166269, "media outlets": 100103, "proper security": 131617, "copyright protection": 32136, "robust manner": 145286, "despite possible": 40171, "corruption types": 32629, "inversion attack": 80351, "attack recover": 13659, "reconstruct input": 138293, "finetune powerful": 58958, "inputs generating": 77411, "ease accessibility": 45278, "users risk": 173770, "prevent potential": 127540, "important related": 73184, "create unique": 33242, "help prevent": 69164, "vs humanwritten": 177600, "designed implemented": 39894, "interpretability study": 79655, "words representing": 178749, "media monitoring": 100099, "mainstream news": 98313, "million articles": 102224, "january 2022": 81199, "protecting copyright": 132559, "copyright large": 32131, "significant losses": 150773, "copyright llms": 32135, "embeddings texts": 47289, "text allows": 164827, "model copyright": 103384, "copyright verification": 32137, "effectively protect": 46068, "gpt35 successfully": 66857, "exhibits potential": 53211, "tool future": 166978, "ai ability": 6842, "engage endusers": 48817, "traditional software": 167697, "models convolutional": 105799, "tracing code": 167513, "introduce contextual": 79939, "gpt generated": 66422, "detection gpt": 40518, "carry risk": 20844, "detection strategies": 40623, "text detector": 165021, "identifying synthetic": 72034, "identify text": 71973, "style text": 157765, "performed expert": 122368, "content create": 30462, "explainability critical": 54724, "dataset interpretable": 36369, "writing capability": 179716, "avoid potential": 15349, "far studies": 57238, "aggregate metrics": 6770, "complex emotions": 27409, "promote responsible": 130344, "detection public": 40600, "societal issues": 152693, "speech complex": 154391, "highly open": 69931, "legal experts": 91295, "questions number": 135206, "identification social": 71806, "manipulate information": 98926, "articles task": 12623, "additionally developed": 5044, "achieve 90": 3573, "domains generated": 44418, "results problem": 143684, "perspective focusing": 122664, "icl particularly": 71689, "particularly given": 120196, "increasing significance": 75360, "llms simply": 96614, "perform survey": 121055, "secure efficient": 147550, "speed security": 154513, "making useful": 98819, "unknown model": 171938, "benchmarks domains": 17223, "wrote code": 179807, "legal concerns": 91282, "copyright issues": 32130, "techniques exploring": 163898, "bard large": 15560, "applications misuse": 10607, "attacks additionally": 13685, "technology provides": 164163, "positive note": 124301, "simulate realistic": 151645, "implementing robust": 72888, "model detection": 103449, "datasets fall": 36860, "short generalizing": 149971, "vlms gpt4": 177460, "propose evaluating": 131808, "highrisk setting": 70108, "generating targeted": 64357, "quantitative understanding": 134382, "significant discrepancies": 150687, "trained millions": 168002, "content moderator": 30553, "explanations specifically": 54901, "content survey": 30628, "pose generating": 124156, "acceptable response": 2834, "dataset largescale": 36385, "recent releases": 137615, "texts like": 165745, "identification mechanisms": 71798, "proposed algorithms": 132228, "word replacements": 178671, "underscoring urgent": 170971, "setting robust": 149506, "effectiveness attacks": 46134, "attacks allows": 13689, "designing practical": 40007, "advantages generative": 6137, "tested proposed": 164682, "focusing large": 60190, "design research": 39745, "security applications": 147561, "underlines importance": 170820, "importance integrating": 73043, "periodic table": 122472, "efforts ensure": 46911, "highly problematic": 69941, "agreement annotators": 6827, "improve annotation": 73411, "ultimately lead": 170586, "regulatory requirements": 139018, "applications highlighting": 10553, "highlighting constraints": 69807, "present holistic": 126331, "holistic investigation": 70299, "classification module": 24034, "articles model": 12613, "rank information": 135776, "huge text": 70530, "prompts develop": 131226, "text preventing": 165371, "preventing malicious": 127551, "achieve level": 3679, "plms proposing": 123632, "attack based": 13633, "chatgpt emergence": 22877, "chatgpt having": 23042, "gpt4v demonstrated": 67245, "potential prompts": 124924, "open market": 116253, "text general": 165106, "competitive market": 27180, "particularly relation": 120251, "samples furthermore": 146017, "accurate realtime": 3480, "news generated": 113562, "ai generation": 7016, "models excellent": 106192, "fight misinformation": 58314, "transformerbased decoder": 169233, "formulate process": 60622, "based cosine": 15731, "94 accuracy": 1785, "academic settings": 2759, "dissemination medical": 43112, "medical misinformation": 100199, "general medical": 62991, "domain encompassing": 44135, "based existence": 15788, "evolution vulnerabilities": 52284, "users days": 173613, "generated chatbots": 63811, "investigated chatgpt": 80530, "identify risks": 71955, "undesirable outputs": 171586, "develop diverse": 40775, "discover classes": 42726, "content emergence": 30482, "perspective additionally": 122650, "safety implications": 145868, "second highlight": 147478, "models interpret": 106806, "volume variety": 177540, "variety velocity": 175780, "led increasing": 91229, "bert study": 17607, "models privacypreserving": 108648, "continue rise": 31202, "expanding rapidly": 53700, "hybrid solutions": 71573, "traffic analysis": 167730, "extent existing": 56006, "content question": 30591, "privacy ethics": 128000, "need resolved": 112379, "type analysis": 170294, "reliably differentiate": 139764, "tools accurate": 167094, "comprehensive tests": 28146, "broad coverage": 19175, "behavior downstream": 16586, "induce specific": 75825, "deployments llms": 39313, "promising approaches": 130226, "quality perplexity": 134221, "promoting responsible": 130355, "vulnerabilities address": 177611, "identify vulnerabilities": 71980, "technical analysis": 163685, "releases chatgpt": 139546, "existing ad": 53249, "chatgpt brings": 22751, "text consequently": 164952, "identified using": 71834, "detection empirically": 40493, "phenomenon called": 122828, "content communication": 30451, "quantify degree": 134316, "regime paper": 138914, "2023 proposed": 709, "identification classification": 71788, "models obtaining": 108330, "extraction language": 56308, "proposed time": 132446, "teams participated": 163669, "misinformation online": 102494, "education comparative": 45526, "chatgpt cases": 22762, "cases recent": 21011, "wide availability": 178256, "integrity education": 78700, "combat problem": 25814, "purpose work": 133761, "insights educators": 77547, "better maintain": 17938, "maintain academic": 98317, "solution help": 152945, "considerable research": 29633, "values generate": 175535, "target groups": 161071, "chatbots large": 22618, "particular seen": 120120, "reveals substantial": 144451, "vulnerabilities largely": 177622, "leveraging finetuned": 91850, "toxic harmful": 167457, "interactive environment": 79303, "used industry": 173112, "industry researchers": 75886, "prompts automatic": 131167, "gaps providing": 62764, "released open": 139527, "risks arise": 144973, "aspects ai": 12923, "heterogeneous values": 69304, "information asymmetry": 76290, "pretrained ai": 126749, "process chatgpt": 128753, "including misinformation": 74618, "corpora comprising": 32211, "era chatgpt": 50218, "intelligence aibased": 78783, "aibased large": 7342, "llms holds": 95509, "considerable promise": 29631, "promise revolutionizing": 130198, "employ machine": 47844, "dataset paves": 36451, "detection humanai": 40521, "students leverage": 156878, "work ai": 178785, "concerns prior": 28811, "collaboratively written": 25642, "llms hybrid": 95526, "hybrid text": 71574, "different experiment": 41763, "studies ai": 156948, "experience paper": 53839, "moderation policies": 109774, "crowdsourcing collect": 33729, "moderation policy": 109775, "examples generation": 52596, "prediction does": 125787, "hinders application": 70156, "benchmarks sst2": 17370, "exhibiting higher": 53169, "recent ai": 137437, "detection research": 40610, "images leverages": 72441, "practitioners make": 125539, "perform particular": 121004, "capable diverse": 20415, "prevent undesirable": 127545, "required significant": 141253, "approach finds": 11235, "range queries": 135680, "approach quite": 11489, "experimentally validate": 54105, "prevent abuse": 127532, "proven reliable": 132648, "patterns generated": 120531, "study topic": 157669, "watermarking technology": 177748, "women men": 178603, "potential attackers": 124607, "finegrained manipulation": 58879, "texts increasingly": 165735, "new statistical": 113436, "models identification": 106658, "embedding extraction": 47164, "maintaining text": 98384, "strong attacks": 156346, "scores calculate": 147127, "information unavailable": 76820, "perturbation methods": 122749, "attack query": 13658, "addition evaluate": 4856, "aigenerated humanwritten": 7406, "automated detection": 14538, "legal texts": 91322, "spanish dataset": 153663, "attacks potentially": 13732, "targeting llms": 161145, "langchain framework": 83114, "using langchain": 174351, "attacks language": 13716, "emerged prominent": 47390, "software vulnerabilities": 152854, "datasets labeling": 36940, "meteoric rise": 100614, "texts designing": 165699, "need protect": 112370, "unauthorized use": 170637, "deliver satisfactory": 38066, "api leverages": 10162, "user results": 173488, "public platforms": 133594, "prompts hope": 131311, "available wide": 15227, "wide public": 178261, "ai classification": 6912, "basic text": 16443, "new trends": 113481, "toxicity classification": 167469, "bypass safety": 19565, "llms secret": 96495, "carry empirical": 20836, "features lexical": 57534, "notably llm": 114283, "currently rely": 34337, "successfully use": 158402, "platforms rely": 123414, "code interpretation": 24951, "longitudinal study": 97564, "categories zeroshot": 21128, "constraining model": 30047, "utilizing language": 175201, "using chain": 174026, "preserving utility": 126702, "media using": 100121, "capturetheflag challenges": 20712, "finding text": 58627, "assistance research": 13376, "cases types": 21025, "ethical safeguards": 50832, "harmful output": 68744, "models equally": 106138, "model factchecking": 103632, "experiment llm": 53898, "reveals ai": 144413, "false news": 57165, "need policies": 112363, "brings risk": 19149, "various societal": 176172, "societal needs": 152694, "content consequently": 30457, "llm forgetting": 93685, "provide technical": 132998, "spanish chinese": 153662, "conducted models": 29270, "ai behavior": 6886, "impact multiple": 72695, "designed supervised": 39952, "data establish": 34989, "dataset time": 36584, "summarization various": 158897, "processes present": 129093, "adaptable various": 4593, "ai programs": 7169, "fourth group": 60869, "asked explain": 12870, "malicious intent": 98842, "surpassed human": 159467, "slightly accurate": 152228, "economic aspects": 45391, "attacks showing": 13742, "dataset historical": 36339, "english historical": 49061, "like topic": 92420, "safeguards llms": 145824, "capabilities emerging": 19869, "cycle models": 34481, "evaluated classification": 51159, "deploying largescale": 39245, "models affect": 105308, "perplexity values": 122517, "communication networks": 26396, "intelligent services": 78956, "data computing": 34818, "providing opportunity": 133344, "problems open": 128578, "critical area": 33457, "approaches develop": 11732, "opportunity address": 116885, "internet digital": 79585, "applications sentiment": 10681, "record analysis": 138304, "sets text": 149408, "conducting experiment": 29310, "control generative": 31547, "models runtime": 109026, "models secure": 109056, "creating image": 33304, "explore types": 55307, "leak information": 89926, "stateoftheart vlm": 155411, "increasingly ubiquitous": 75448, "training region": 168686, "quickly ubiquitous": 135355, "practically useful": 125474, "baseline defense": 16204, "feasible effective": 57376, "settings discuss": 149560, "raised ethical": 135466, "code end": 24807, "chatgpt automatic": 22728, "waste time": 177737, "capable engaging": 20418, "response rate": 142694, "approaches discuss": 11736, "recently great": 137904, "llms math": 95867, "model attack": 103148, "math benchmark": 99522, "ability release": 2350, "guarantees given": 68119, "performance safe": 122036, "primary studies": 127824, "vulnerability information": 177641, "insights vulnerabilities": 77671, "lack details": 82923, "contextual attributes": 31070, "creation labeled": 33341, "f1scores ranging": 56499, "tackle data": 160816, "problem detecting": 128228, "power contrastive": 125164, "considers possibility": 29741, "detection finetuning": 40509, "finetuning peftlora": 59436, "peftlora based": 120689, "tasks analysing": 161942, "analysing text": 8790, "extracting named": 56237, "entities sentiments": 49873, "sentiments obtained": 148681, "perform deep": 120922, "extracted sentiments": 56206, "sentiments named": 148677, "entities considered": 49837, "considered predictive": 29696, "predictive features": 125948, "minimal degradation": 102323, "dire consequences": 42364, "model inspection": 103869, "security evaluations": 147578, "figures media": 58321, "experiments uncover": 54505, "safety llms": 145875, "task facilitating": 161388, "llms absence": 94271, "llms comprises": 94677, "rise social": 144911, "biased news": 18231, "media challenging": 100076, "2022 brought": 664, "particularly significant": 120259, "significant domains": 150692, "crucial responsible": 33845, "text ai": 164822, "used features": 173069, "model attribution": 103154, "text shown": 165459, "biased texts": 18242, "intensified concerns": 78987, "related legal": 139181, "legal contexts": 91284, "information electronic": 76377, "using gptbased": 174270, "labels indicating": 82805, "news remains": 113577, "legal applications": 91278, "teaming large": 163664, "popularity widely": 124103, "instead manual": 77887, "balancing efficiency": 15518, "rate surpassing": 136016, "encourage exploration": 48593, "safety present": 145883, "ai advanced": 6849, "model extracted": 103627, "11 increase": 227, "risks introducing": 144995, "enhance detection": 49184, "combine approaches": 25871, "llm gpt": 93722, "news analysis": 113546, "models huggingface": 106636, "representations semantic": 140881, "study advent": 157136, "collected thousands": 25703, "hidden semantics": 69333, "various machinelearning": 176027, "health text": 68981, "source results": 153466, "attribute text": 14085, "delves model": 38114, "model identification": 103814, "ptms bert": 133529, "attacks existing": 13706, "attacks data": 13697, "potentially cause": 125085, "political figures": 123897, "models restrict": 108967, "restrict generation": 143000, "prompt attacks": 130371, "creation scale": 33354, "assessments validate": 13308, "garnering significant": 62797, "various concerns": 175870, "endeavors furnish": 48703, "adopting lens": 5617, "alignment present": 8211, "present wide": 126502, "advent generative": 6171, "chatgpt catalyzed": 22763, "highly persuasive": 69935, "dataset integrating": 36364, "technical accuracy": 163683, "actionable ai": 4350, "digital assets": 42275, "core functions": 32166, "user taking": 173527, "organizations work": 117291, "predict veracity": 125712, "plms adapted": 123574, "prompt processed": 130640, "reason medical": 136570, "llms medicine": 95877, "manipulation just": 98950, "performance biomedical": 121205, "accentuates need": 2822, "protective measures": 132571, "reliable safe": 139749, "medical practice": 100201, "prompts vulnerability": 131525, "detection optimization": 40577, "quantifiable measure": 134303, "guarantees paper": 68121, "autonomously discovered": 14957, "tasks constructed": 162121, "attribution large": 14141, "rise concerns": 144893, "data provider": 35583, "corresponding unique": 32612, "attribution data": 14140, "algorithm solve": 7859, "reduce ratio": 138465, "queries release": 134529, "studied methods": 156933, "investigation methods": 80642, "chatgpt texts": 23393, "individuals chatgpt": 75767, "universities research": 171923, "institutions large": 77923, "articles abstracts": 12605, "created study": 33273, "composed random": 27794, "rapidly deployed": 135915, "learning raises": 90894, "multiplechoice prompting": 111093, "models ideally": 106657, "llms measures": 95873, "previously limited": 127731, "speakers languages": 153836, "poses risk": 124223, "community emphasizing": 26468, "address pressing": 5333, "pressing challenges": 126710, "security analysts": 147560, "pipeline combining": 123039, "reports stateoftheart": 140612, "risks work": 145028, "private conversations": 128043, "samples perturbed": 146051, "embedded bias": 47135, "hinder development": 70131, "finally elaborate": 58443, "finetuning gpt35": 59288, "reinforcing safety": 139130, "specially crafted": 153924, "private model": 128050, "decisionmaking tools": 37448, "created extensive": 33257, "attacks adversaries": 13686, "challenges intend": 21919, "algorithm extensive": 7805, "automates process": 14633, "introducing ai": 80226, "research initial": 141854, "regulating ai": 139007, "llms according": 94280, "samples selfassessment": 146062, "chatgpts capacity": 23488, "effectiveness detecting": 46157, "associated aigenerated": 13461, "approach suggests": 11579, "stateoftheart detectors": 155128, "societal risks": 152698, "humanauthored content": 71137, "application demonstrate": 10309, "review data": 144497, "attention ai": 13838, "architecture vast": 12243, "perspective ai": 122651, "underscores limitations": 170947, "networks rely": 112795, "presents valuable": 126656, "valuable geospatial": 175415, "implications social": 72955, "science challenges": 146854, "multifaceted applications": 110397, "governments research": 66363, "interplay generative": 79611, "impact daily": 72633, "negatively affects": 112539, "societal perceptions": 152696, "safer trustworthy": 145830, "model unique": 104827, "performance computationally": 121316, "interpretable representation": 79690, "articles present": 12617, "results insufficient": 143533, "work determined": 178903, "techniques contextual": 163857, "exhibit undesirable": 53116, "consider potential": 29581, "formation online": 60554, "examples compare": 52538, "introduce vulnerabilities": 80146, "model emotion": 103522, "groups work": 67989, "secure data": 147549, "placing emphasis": 123188, "current strategies": 34272, "services applications": 149077, "applications services": 10684, "usage policies": 172470, "service provider": 149066, "unified methodology": 171733, "explainability address": 54718, "coax llms": 24637, "inspired social": 77768, "detection challenge": 40455, "based convolution": 15727, "theorem shows": 166010, "assert automated": 13026, "maintain reliability": 98328, "methods semantically": 101807, "critical domain": 33483, "differences 11": 41619, "concerns users": 28835, "users physical": 173734, "analysis rapid": 9113, "numerous opportunities": 115057, "llms inadvertently": 95564, "direct llms": 42391, "outcomes utilizing": 117467, "overall utility": 118260, "tasks ensuring": 162310, "objective language": 115209, "challenge automated": 21591, "match different": 99410, "improvements competitive": 73891, "baselines enhances": 16314, "attacks survey": 13743, "models revealed": 108987, "various learning": 176006, "learning structures": 91030, "specifically targeting": 154290, "focus fundamental": 59985, "digital media": 42291, "report outlines": 140544, "analysis iii": 8962, "important protect": 73176, "licenses opensource": 92052, "remains hidden": 140012, "names making": 111430, "industries analyzing": 75865, "tokens iii": 166825, "soft promptbased": 152738, "area prompt": 12341, "injects malicious": 77122, "enables design": 48170, "including target": 74748, "vulnerable points": 177654, "models industry": 106758, "historical actions": 70194, "shown previous": 150330, "capture social": 20682, "applicability llm": 10261, "audit llms": 14214, "description generating": 39411, "posts using": 124524, "counter speech": 32931, "experiments conduct": 54184, "efficacy generated": 46378, "outperform humangenerated": 117602, "understand gaps": 171008, "primarily based": 127769, "provide diagnosis": 132752, "low attack": 97733, "bias evaluations": 18119, "strongly biased": 156496, "contextual analysis": 31069, "roberta longformer": 145155, "achieved significantly": 3896, "expression social": 55593, "need bolster": 112236, "responsible artificial": 142958, "ai aim": 6858, "detection useful": 40648, "useful resources": 173350, "algorithmic solutions": 7889, "concerns end": 28778, "lacks comprehensive": 83046, "emerging risk": 47535, "identifying key": 72011, "challenges prospects": 22030, "adaptable robust": 4592, "content relevant": 30601, "llm led": 93802, "models filters": 106334, "ability assess": 2071, "case analysis": 20866, "analysis increasingly": 8970, "types included": 170366, "likely contain": 92451, "reference model": 138664, "manual feature": 99045, "security model": 147604, "design incorporates": 39654, "capturing hidden": 20728, "stateoftheart mlbased": 155221, "levels models": 91547, "raise ethical": 135447, "terms authenticity": 164386, "artificial content": 12646, "models scibert": 109044, "detection realworld": 40604, "conversation despite": 31785, "overlooked challenges": 118380, "detection emerging": 40489, "researchers focused": 142219, "domains consider": 44376, "consider use": 29598, "specific authors": 153942, "linear kernel": 92961, "private key": 128049, "range experiments": 135620, "data focus": 35067, "points use": 123773, "comparing standard": 27014, "text attacks": 164842, "llms invaluable": 95682, "imitate wellknown": 72574, "mechanisms employed": 100039, "new defense": 113141, "specifically closedsource": 154150, "evaluations additionally": 51938, "proposed defense": 132275, "developers apply": 40935, "prevent misuse": 127537, "incorporating extensive": 75095, "feedback remains": 57777, "specifically finetuning": 154204, "likely future": 92453, "finetuning practical": 59450, "disagreement using": 42635, "serve ground": 148983, "communities gpt": 26438, "visual aspects": 177113, "revealing strengths": 144410, "strengths potential": 156266, "offers comparative": 115787, "comparative understanding": 26654, "annotations despite": 9579, "biases research": 18313, "contributes broader": 31434, "broader discourse": 19211, "ai handling": 7022, "designs automated": 40015, "generate diversified": 63469, "network environment": 112647, "llms categorized": 94553, "categorized groups": 21143, "groups llms": 67974, "sequence generative": 148744, "important identify": 73141, "attempted tackle": 13806, "effective supervision": 45893, "demonstrates method": 38864, "expressed social": 55576, "begin explaining": 16527, "employ variety": 47867, "emotion sentiment": 47572, "malicious party": 98843, "dataset humangenerated": 36345, "set constraints": 149164, "behavior security": 16644, "normal behavior": 114177, "development increasingly": 41138, "systems pose": 160534, "point problem": 123717, "building similar": 19451, "detection recent": 40605, "academic assignments": 2724, "feasible alternative": 57374, "developing generative": 40997, "poses threat": 124237, "effective paper": 45837, "like falcon": 92267, "method steer": 101121, "concern paper": 28744, "form questions": 60484, "model likely": 103961, "application specialized": 10386, "consider semantic": 29589, "identifying vulnerable": 72040, "model weaknesses": 104886, "prove result": 132628, "required know": 141240, "computational capabilities": 28336, "approaches solve": 11909, "entry point": 49972, "approaches exist": 11756, "landscape business": 83093, "applying new": 10916, "step employing": 155620, "aidriven content": 7382, "intricate challenge": 79833, "trained various": 168118, "strategy development": 156128, "distinct biases": 43206, "biases text": 18317, "comprising mixture": 28263, "detected anomaly": 40386, "topic artificial": 167312, "provided underlying": 133092, "model privacy": 104342, "privacy paper": 128013, "attacks code": 13694, "wild engaging": 178509, "qualitative methodology": 134005, "unfortunately datasets": 171663, "level granularity": 91472, "numerous models": 115048, "principles fairness": 127860, "palm2 gpt4": 118667, "gpt4 claude2": 66942, "addressing paper": 5466, "finetuned safety": 59104, "remains stable": 140075, "simultaneously posing": 151758, "text original": 165332, "auroc score": 14412, "corresponding defense": 32577, "problem received": 128372, "overfit spurious": 118336, "harm areas": 68711, "content warning": 30649, "eating disorders": 45371, "sufficient prevent": 158493, "multitude applications": 111258, "risks notably": 145008, "alignment efforts": 8143, "alongside traditional": 8501, "augmentation pipeline": 14302, "weve observed": 178210, "llms detecting": 94909, "crucial deployment": 33784, "deployment llm": 39286, "content encoding": 30486, "leverage simple": 91662, "llms theoretical": 96801, "evaluated abilities": 51142, "face greater": 56532, "prompts gpt4v": 131297, "critical vulnerabilities": 33570, "offer recommendations": 115695, "attack attack": 13631, "based contrastive": 15726, "contains content": 30362, "content offensive": 30558, "driving ai": 45003, "result analysis": 143021, "data raising": 35601, "datasets extract": 36855, "comprises diverse": 28243, "introduce potential": 80086, "model watermarking": 104884, "modelbased methods": 104933, "level detection": 91461, "evaluations extensive": 51971, "baselines scenarios": 16367, "varying expertise": 176287, "develop annotated": 40755, "multiple annotators": 110835, "models amidst": 105350, "amidst growing": 8671, "unintended effects": 171801, "cases future": 20966, "cognitive overload": 25466, "unethical responses": 171611, "attacks proposed": 13737, "reveal various": 144382, "pose notable": 124163, "chapter provide": 22419, "recall low": 137271, "emotional response": 47584, "presenting considerable": 126539, "vulnerabilities inherent": 177617, "synergistic effect": 159858, "taxonomy large": 163581, "focusing security": 60194, "proposes taxonomy": 132489, "categorize attacks": 21135, "examples showcase": 52692, "ones large": 116001, "texts tend": 165789, "perplexity measures": 122513, "optimization possible": 117022, "models vulnerability": 109669, "custom gpts": 34369, "frameworks design": 61510, "model stealing": 104655, "model examine": 103578, "exploring landscape": 55478, "domains generating": 44419, "datasets baseline": 36673, "models illustrate": 106667, "precision detection": 125611, "pretraining modelbased": 127391, "features proposed": 57562, "conducted realworld": 29281, "established practices": 50697, "stands pioneering": 154931, "features multiple": 57543, "article analyzes": 12567, "systems emphasizing": 160351, "consider new": 29578, "responses need": 142859, "stimulate future": 155797, "llm sampling": 93979, "works discovered": 179439, "align realworld": 8029, "including tasks": 74750, "prompts creative": 131214, "twitter sentiment": 170232, "evaluating standard": 51395, "challenging conditions": 22130, "resources quantitative": 142478, "allows freeform": 8437, "mitigating vulnerabilities": 102684, "identified vulnerabilities": 71835, "result users": 143071, "openai gpt35": 116349, "policies openai": 123819, "privacy risk": 128020, "utility preservation": 174967, "biased behavior": 18225, "methodology make": 101247, "model properly": 104373, "limited annotated": 92700, "prompttuning using": 131552, "generalizable features": 63118, "useful desired": 173320, "task analyzing": 161191, "media study": 100116, "significantly alter": 150943, "sentiment paper": 148659, "development discourse": 41090, "achieves satisfactory": 4069, "keywords extracted": 81621, "extracted malicious": 56196, "employed large": 47889, "reliable way": 139760, "enables trace": 48252, "terms robustness": 164464, "file formats": 58323, "frequency analysis": 61600, "media automated": 100074, "validate framework": 175321, "10 classes": 110, "automatic construction": 14650, "models caution": 105588, "related human": 139171, "llms establishes": 95097, "ethical awareness": 50793, "heightened concerns": 69061, "researchers invested": 142227, "harms llms": 68775, "grown significantly": 68070, "significantly recent": 151124, "simple attacks": 151407, "slightly modify": 152235, "tools train": 167272, "utility finally": 174950, "visual interaction": 177204, "adversary access": 6246, "access visual": 2925, "initially utilize": 77087, "technologies continue": 164081, "continue gain": 31196, "enable ai": 48063, "rules patterns": 145724, "equipped multiple": 50185, "technique tree": 163812, "content research": 30607, "measures assess": 99915, "text apply": 164837, "author text": 14421, "accuracy order": 3326, "large sample": 89040, "verify data": 176526, "compromising integrity": 28281, "tendency llms": 164329, "analysis exploration": 8922, "considerations development": 29661, "development secure": 41217, "generating undesirable": 64367, "gap perform": 62700, "signals endtoend": 150531, "framework infer": 61223, "potential generation": 124747, "methods introduces": 101611, "comparable levels": 26588, "users follow": 173659, "analyzing interactions": 9373, "networks random": 112790, "cultural moral": 33962, "lived experiences": 93261, "moral judgment": 110115, "crosscultural differences": 33615, "moral values": 110123, "world values": 179628, "raised critical": 135465, "critical question": 33537, "demonstrate vulnerabilities": 38612, "need strengthening": 112395, "spectrum nlp": 154364, "poses threats": 124238, "domain demonstrated": 44131, "arxiv preprints": 12820, "relevance results": 139564, "good knowledge": 66275, "domain observe": 44239, "observe limitations": 115380, "services raise": 149087, "prevent unintended": 127546, "agents create": 6570, "topics discussed": 167353, "informal nature": 76255, "graphbased models": 67591, "implications realworld": 72951, "needed evaluate": 112442, "detection competition": 40464, "responses survey": 142926, "algorithms play": 7960, "including success": 74738, "technology promoting": 164160, "process prior": 128943, "process utilizing": 129029, "performance 100": 121102, "preserving tokens": 126701, "understand measure": 171042, "attention awareness": 13844, "analyzing chatgpts": 9359, "chatgpt responds": 23276, "varying effects": 176286, "writing various": 179769, "llms pervasive": 96101, "attacks allow": 13688, "making case": 98710, "comprising 19": 28255, "based output": 15996, "factchecking large": 56762, "highlight llms": 69757, "serve preliminary": 148996, "preliminary screening": 126144, "subsequently finetuned": 157978, "content drawing": 30479, "moral selfcorrection": 110121, "challenges risk": 22057, "contributing field": 31460, "studies uncover": 157102, "communications especially": 26430, "warrants investigation": 177732, "developer communication": 40929, "blackbox methods": 18649, "content experimental": 30492, "defense method": 37908, "metaverse applications": 100607, "vulnerabilities enhance": 177614, "educate users": 45510, "strengthen defense": 156244, "risks additionally": 144969, "address ethical": 5224, "evaluators assess": 52051, "lives internet": 93266, "attribution using": 14149, "inappropriate use": 74289, "evaluates generative": 51237, "llms concerns": 94689, "quantitative approach": 134336, "aigenerated ones": 7409, "tool identifying": 166988, "detection providing": 40599, "gpt35turbo release": 66881, "expertise complex": 54606, "methods facilitate": 101516, "inputs providing": 77438, "providing contextual": 133276, "various computational": 175865, "scalability efficient": 146213, "localized social": 97285, "network interactions": 112660, "research computational": 141655, "things know": 166130, "privacy measures": 128012, "llms manipulate": 95855, "content llm": 30542, "integrated applications": 78513, "susceptibility attacks": 159724, "framework quantifying": 61367, "process employed": 128806, "impact providing": 72720, "robust measurement": 145287, "establishing effective": 50709, "compromising accuracy": 28277, "integrity study": 78705, "variety risks": 175759, "framework categorize": 61003, "discern respond": 42664, "aspects social": 12973, "comprising 6k": 28258, "requires practitioners": 141427, "apply stateoftheart": 10875, "use insight": 172685, "delve novel": 38096, "tuning tackle": 170131, "identify potentially": 71940, "compromising models": 28283, "security efficacy": 147576, "early identification": 45251, "tools developed": 167140, "online community": 116082, "classify individual": 24211, "moderation scale": 109777, "ethical oversight": 50822, "realworld large": 136472, "base contextual": 15595, "prompt requesting": 130652, "change answer": 22336, "tasks teams": 163349, "forth potential": 60646, "copyright concerns": 32128, "finetuning processes": 59470, "copyrighted content": 32139, "concerns possible": 28806, "speaking given": 153838, "applied incontext": 10767, "everyday language": 52159, "decades social": 37331, "defenses advocate": 37914, "data shifts": 35749, "furthermore given": 62086, "box llms": 18927, "challenges implications": 21906, "model generator": 103743, "directly informs": 42555, "llm discern": 93599, "followed detailed": 60236, "architecture implementation": 12171, "engaging content": 48844, "content scale": 30613, "scale concerns": 146271, "need focus": 112296, "argument schemes": 12433, "big5 personality": 18389, "detection far": 40507, "augmentation adversarial": 14262, "indicate tested": 75627, "especially successful": 50547, "potential lack": 124800, "approximately 67": 12026, "farreaching implications": 57244, "online interaction": 116108, "interaction study": 79181, "gap examining": 62645, "replicating humanlike": 140501, "training suggesting": 168771, "studies integration": 157023, "editing controlled": 45451, "model selfsupervised": 104539, "utility downstream": 174948, "pioneer novel": 123006, "introduces distinct": 80180, "crucial benchmark": 33768, "study establishes": 157317, "comparison traditional": 27071, "spans diverse": 153690, "nuanced diversity": 114793, "work undertake": 179350, "systems domains": 160342, "study largescale": 157466, "organizational settings": 117285, "require investigation": 141127, "incident management": 74316, "propose machine": 131909, "existing infrastructure": 53391, "previously believed": 127713, "stored local": 155873, "responses original": 142866, "intelligence concept": 78799, "ethical integrity": 50812, "domain aspect": 44097, "costeffective tool": 32766, "sense belonging": 148381, "detecting emerging": 40403, "tested context": 164665, "users posts": 173736, "followed assessment": 60232, "enhanced safety": 49368, "high susceptibility": 69548, "safety reliability": 145887, "latency time": 89487, "stop generating": 155840, "generated sequence": 63974, "original images": 117341, "datasets presents": 37038, "presents potential": 126619, "people interested": 120726, "novel inferencetime": 114545, "attacks maintaining": 13724, "propose targeted": 132156, "learned policy": 90115, "document based": 43812, "document calculated": 43813, "threat llms": 166272, "language preprocessing": 86471, "preprocessing nlp": 126188, "gpt4v additionally": 67244, "text calculating": 164867, "academic commercial": 2726, "essays code": 50571, "lowerresource language": 97854, "rlhf supervised": 145101, "inference facilitate": 76008, "maintaining security": 98378, "opportunities study": 116878, "alpaca alpacalora": 8505, "source intelligence": 153446, "existing chatbot": 53311, "f1score 090": 56495, "classification highlighting": 24012, "known generate": 82595, "methods success": 101846, "sampling techniques": 146120, "differences human": 41626, "increase alignment": 75189, "emphasis placed": 47622, "gaps research": 62766, "concludes forwardlooking": 28891, "ai methodologies": 7085, "studies addressing": 156947, "implemented finetuning": 72870, "use especially": 172601, "evaluation cuttingedge": 51521, "designed identify": 39893, "detection necessary": 40570, "techniques accurately": 163819, "resulting harmful": 143102, "computationally costly": 28419, "models differ": 105965, "technical insight": 163706, "needs addressed": 112466, "technologies challenge": 164079, "guide process": 68199, "process despite": 128789, "anticipate ai": 10111, "develop taxonomy": 40843, "media impacts": 100089, "focus specifically": 60057, "survey academic": 159595, "global ai": 66085, "ensure integrity": 49690, "significantly elevating": 150984, "examines existing": 52433, "categorizes current": 21145, "significant media": 150777, "media attention": 100073, "models society": 109167, "arise use": 12457, "gives overview": 66057, "affect performance models": 6312, "simple genetic algorithm": 151466, "specific topic work": 154115, "models exploit dataset": 106253, "adversarial attacks present": 6195, "generation training procedure": 65213, "textual data existing": 165891, "text generative models": 165208, "social media messages": 152615, "systems best knowledge": 160273, "stateoftheart pretrained transformer": 155310, "combination techniques including": 25850, "reinforcement learningbased method": 139124, "language model solve": 83907, "model obtained accuracy": 104140, "intelligence using transformerbased": 78919, "using transformerbased models": 174823, "model learn incorrect": 103941, "architecture models trained": 12192, "datasets achieved stateoftheart": 36634, "training data imbalanced": 168279, "roberta language model": 145153, "social media increasingly": 152612, "shows high accuracy": 150434, "approach based pretrained": 11021, "pretrained language gpt2": 126855, "models lms generate": 108065, "using realworld dataset": 174650, "compare models finetuned": 26698, "bert roberta models": 17600, "publicly available realworld": 133661, "detection deep learning": 40482, "bert bidirectional encoder": 17516, "public data used": 133557, "privacy training data": 128032, "achieves 19 reduction": 3939, "prior work relies": 127950, "use cases social": 172537, "extraction text using": 56365, "gpt2small gpt2medium gpt2large": 66626, "gpt2medium gpt2large gpt2xl": 66622, "paper present adversarial": 119105, "current future large": 34122, "based neural language": 15972, "better benchmark evaluate": 17817, "generated text using": 64020, "data make use": 35342, "memorize parts training": 100341, "decoding method generate": 37577, "stateoftheart capabilities variety": 155097, "knowledge work focus": 82514, "propose neural network": 131948, "graph convolutional neural": 67508, "vulnerabilities paper propose": 177630, "promptbased learning paradigm": 130781, "texts training data": 165794, "annotated social media": 9492, "style transfer large": 157768, "style transfer models": 157771, "benchmarking language models": 17143, "produce humanlike text": 129427, "evaluate language model": 50995, "models achieve promising": 105228, "fullyconnected neural network": 61807, "language models handcrafted": 84631, "outputs ai systems": 118021, "finetuning gpt2 generate": 59286, "work pave way": 179155, "pave way designing": 120584, "models large ai": 106874, "methods results hold": 101792, "learning framework embedding": 90478, "anomaly detection using": 9661, "llms provide powerful": 96257, "language model models": 83804, "stance detection complex": 154787, "network features users": 112650, "domain pretrained language": 44249, "paper provide framework": 119285, "effects social media": 46349, "contrastive learning models": 31368, "evaluation generated text": 51618, "emphasizes need study": 47646, "training set work": 168735, "sequences training data": 148846, "agents like chatgpt": 6648, "harms large language": 68773, "models llms highlight": 107522, "models trained downstream": 109431, "trained downstream tasks": 167905, "significant amounts labeled": 150588, "challenging multimodal task": 22218, "extensive experiments publicly": 55872, "analyses case studies": 8754, "llms provide strong": 96259, "llms increasingly powerful": 95607, "results chatgpt shows": 143223, "work offers promising": 179140, "comprehensive evaluation metrics": 28017, "models evaluate performance": 106164, "data using bert": 35926, "finetuned transformerbased models": 59134, "contributes growing body": 31442, "responsible use llms": 142976, "intelligence ai support": 78773, "existing methods detecting": 53442, "ablation study shows": 2449, "methods achieve similar": 101274, "fewer training samples": 57875, "available paper propose": 15176, "million imagetext pairs": 102235, "field ai research": 58118, "security privacy concerns": 147611, "provides useful insights": 133240, "investigates effectiveness large": 80556, "samples training set": 146073, "fewshot settings findings": 58056, "methods effectively detect": 101463, "nonnative english writers": 114106, "rapid adoption generative": 135842, "simultaneously raising concerns": 151763, "concerns regarding potential": 28823, "native nonnative english": 111510, "conversation ethical implications": 31788, "drawing information theory": 44928, "future research aimed": 62310, "research aimed developing": 141575, "capability generating humanlike": 20306, "controlled user study": 31656, "intelligence ai including": 78746, "gpt35 gpt4 openai": 66817, "multidimensional scaling mds": 110378, "language models publicly": 86004, "learning models aim": 90706, "results chatgpt achieve": 143218, "study provides guidance": 157570, "important aspect developing": 73086, "data perform thorough": 35481, "core idea model": 32169, "learning rl finetuning": 90944, "generative models gpt4": 65492, "conduct comprehensive investigation": 29055, "achieve reasonable performance": 3719, "proper security measures": 131618, "prevent potential misuse": 127541, "recent progress artificial": 137589, "highlighting need research": 69823, "generated content paper": 63829, "llms exhibit humanlike": 95140, "applicable realworld scenarios": 10286, "protecting copyright large": 132560, "copyright large language": 32132, "learning models convolutional": 90710, "models convolutional neural": 105800, "method achieved average": 100629, "achieved average accuracy": 3788, "identifying synthetic text": 72035, "ai technologies learning": 7274, "avoid potential risks": 15350, "promote responsible use": 130345, "different prompt types": 41939, "performance additionally developed": 121133, "problem far solved": 128255, "emergence powerful large": 47443, "generated texts large": 64022, "googles bard large": 66334, "bard large language": 15561, "comparative analysis performance": 26641, "make use llms": 98624, "datasets fall short": 36861, "fall short generalizing": 57125, "examples pretrained models": 52663, "provide reasonable explanations": 132946, "llms paper investigate": 96035, "underscoring urgent need": 170972, "text using machine": 165558, "machine learningbased solution": 98092, "highlight promising potential": 69779, "study underlines importance": 157681, "integrating human expertise": 78599, "use cases large": 172530, "propose using chatgpt": 132199, "llms academic writing": 94274, "text preventing malicious": 165372, "training data methods": 168309, "improve state art": 73631, "lowresource scenarios like": 97935, "generating prompts llms": 64301, "high accuracy identifying": 69390, "highlight potential llms": 69773, "framework comprises main": 61030, "comprises main components": 28248, "based cosine similarity": 15732, "million users days": 102248, "analyze performance llms": 9321, "generated responses chatgpt": 63963, "field ai alignment": 58117, "volume variety velocity": 177541, "use llms offer": 172750, "language models privacypreserving": 85958, "growing need efficient": 68037, "models propose benchmark": 108705, "content paper examines": 30566, "hope work sheds": 70406, "importance data quality": 73019, "influence social media": 76220, "language models obtaining": 85816, "poses new challenges": 124217, "models llms dataset": 107239, "development deployment llms": 41082, "research social sciences": 142085, "extraction language models": 56309, "education comparative study": 45527, "academic integrity education": 2739, "maintain academic integrity": 98318, "models llms align": 107105, "llms emphasizing need": 95043, "present systematic analysis": 126471, "chatbots large language": 22619, "intelligence ai services": 78768, "particular seen widespread": 120121, "chatbots chatgpt bard": 22606, "significant step understanding": 150882, "context paper present": 30865, "open benchmark dataset": 116205, "released open source": 139528, "pretrained ai models": 126750, "human aigenerated texts": 70567, "artificial intelligence aibased": 12710, "aibased large language": 7343, "models llms holds": 107531, "employ machine learning": 47845, "learning models classify": 90709, "demonstrate efficacy models": 38316, "dataset paves way": 36452, "detection humanai collaborative": 40522, "proposed approach consistently": 132235, "different experiment settings": 41764, "adversarial examples generation": 6201, "models general purpose": 106427, "chatgpt bard claude": 22734, "information code available": 76314, "application scenarios work": 10381, "training data expensive": 168254, "language models classify": 84237, "responses based human": 142734, "based human instructions": 15858, "data proposed method": 35573, "language models identification": 84659, "zeroshot performance chatgpt": 180280, "findings provide insight": 58761, "texts social media": 165780, "attacks language models": 13717, "propose effective defense": 131791, "llm generates responses": 93709, "deliver satisfactory performance": 38067, "text classification generation": 164884, "harmful content llms": 68730, "llms paper conduct": 96028, "facilitate research community": 56644, "bypass safety alignment": 19566, "chatgpt gpt4 different": 23017, "able correctly identify": 2484, "addresses gap conducting": 5414, "categories zeroshot learning": 21129, "utilizing language models": 175202, "llms taken world": 96762, "producing harmful outputs": 129555, "questions covering wide": 135087, "social media using": 152634, "proposed model traditional": 132397, "model outperformed models": 104168, "information generated large": 76473, "recent artificial intelligence": 137444, "languages english russian": 86993, "important research direction": 73187, "contributes ongoing dialogue": 31446, "reinforcement learning environments": 139056, "language model make": 83792, "llms low cost": 95828, "nlp tasks illustrate": 113848, "applications sentiment analysis": 10682, "future research needed": 62358, "language models math": 85724, "adversarial prompting large": 6221, "harmful content work": 68732, "addresses critical challenge": 5410, "including chatgpt gpt35": 74446, "labeled source data": 82736, "model paper considers": 104203, "paper considers possibility": 118814, "finetuning peftlora based": 59437, "peftlora based approach": 120690, "based approach used": 15657, "approach used study": 11632, "used study model": 173248, "study model finetuned": 157489, "finetuned following tasks": 59023, "following tasks analysing": 60316, "tasks analysing text": 161943, "extracting named entities": 56238, "named entities sentiments": 111397, "sentiments obtained results": 148682, "obtained results finetuned": 115529, "results finetuned llama": 143416, "llama model perform": 93326, "extracted sentiments named": 56207, "sentiments named entities": 148678, "named entities considered": 111394, "entities considered predictive": 49838, "considered predictive features": 29697, "predictive features supervised": 125949, "features supervised machine": 57584, "meticulously crafted prompts": 101946, "crafted prompts elicit": 33150, "given small dataset": 66013, "security evaluations large": 147579, "language model corpus": 83591, "safety large language": 145871, "chinese english llms": 23625, "rise social media": 144912, "combines strengths graph": 25954, "social context social": 152550, "context social media": 30922, "biased news media": 18232, "sufficiently large datasets": 158509, "intelligence ai natural": 78756, "processing tasks content": 129309, "datasets used study": 37175, "set test set": 149329, "texts generated large": 165722, "present novel paradigm": 126392, "red teaming large": 138374, "teaming large language": 163665, "chatgpt llama2 models": 23108, "ai systems model": 7254, "text different text": 165025, "nlp tasks lack": 113865, "mental health large": 100497, "results reveal key": 143759, "models additionally model": 105276, "study contributes valuable": 157253, "models ptms bert": 108738, "ptms bert gpt": 133530, "bert gpt achieved": 17542, "attacks data poisoning": 13698, "learning models new": 90724, "additionally propose simple": 5117, "llms transformative impact": 96848, "potentially cause harm": 125086, "witnessed remarkable progress": 178572, "work aims address": 178793, "llms machine learning": 95834, "availability largescale annotated": 15059, "realworld benchmarks demonstrate": 136412, "medical knowledge reason": 100192, "llms healthcare settings": 95476, "prompts vulnerability detection": 131526, "attribution large language": 14142, "given rise concerns": 65993, "used train llm": 173277, "remarkable performances various": 140260, "generated llms significantly": 63919, "llms humans write": 95522, "second step use": 147510, "shown potential handling": 150326, "multiple input prompts": 110940, "downstream use cases": 44850, "performance experiments demonstrate": 121489, "experiments evaluate efficacy": 54276, "paper introduce concept": 118988, "architecture vast parameters": 12244, "ai quality assurance": 7182, "implications social science": 72956, "gpt4 demonstrated remarkable": 66964, "openended questions covering": 116504, "superior performance computationally": 159025, "detection conduct experiments": 40467, "potential challenges llms": 124642, "exhibit undesirable behavior": 53117, "querying llms using": 134659, "potentially harmful content": 125105, "formation online social": 60555, "annotated data difficult": 9454, "proposed approach utilizes": 132251, "test set model": 164627, "processing nlp multimodal": 129234, "advanced generative models": 5739, "models generate creative": 106444, "promising solution achieve": 130315, "approaches proposed recently": 11873, "key idea leverage": 81512, "effective solution problem": 45885, "utility language model": 174955, "rise powerful large": 144908, "language models revealed": 86104, "present systematic review": 126473, "supervised finetuning model": 159119, "models prompts significantly": 108699, "widely used llms": 178399, "research area prompt": 141595, "variety realworld applications": 175753, "attacks propose framework": 13736, "research field code": 141788, "settings demonstrating effectiveness": 149555, "llms using benchmark": 96919, "low attack success": 97734, "offer viable solution": 115717, "chatgpt exhibit strong": 22910, "pressing need bolster": 126715, "responsible artificial intelligence": 142959, "aim survey provide": 7499, "raised concerns potential": 135463, "models llms raised": 107783, "llms raised concerns": 96283, "llms best knowledge": 94493, "provide broad understanding": 132694, "research aims build": 141581, "analysis increasingly crucial": 8971, "given piece text": 65954, "pretraining corpus additional": 127286, "detection methods require": 40560, "manual feature engineering": 99046, "models remains challenging": 108918, "data using pretrained": 35932, "discuss implications findings": 42899, "baselines including logistic": 16339, "consistently achieve high": 29854, "model training llms": 104790, "future work needed": 62411, "models llms invaluable": 107587, "capabilities including ability": 19951, "remains critical concern": 139998, "response study introduces": 142704, "serve ground truth": 148984, "strengths potential limitations": 156267, "human annotations despite": 70581, "research contributes broader": 141666, "expressed social media": 55577, "including data collection": 74483, "help researchers study": 69177, "finetuning data contains": 59216, "alignment problem context": 8215, "increasingly capable ai": 75380, "capable ai systems": 20400, "ai systems make": 7253, "ai systems pose": 7257, "existing nlp systems": 53505, "conducted benchmark datasets": 29211, "step employing llms": 155621, "benchmark dataset comprising": 16891, "dataset comprising mixture": 36180, "topic artificial intelligence": 167313, "concerns associated large": 28766, "language models mitigate": 85747, "quality code data": 134065, "addressing paper propose": 5467, "models llms incorporates": 107559, "novel approaches based": 114403, "content warning paper": 30650, "new product development": 113354, "generation llms generate": 64799, "hope work contribute": 70392, "methods llms rely": 101650, "paper contains content": 118818, "contains content offensive": 30363, "content offensive upsetting": 30559, "driving ai development": 45004, "superior performance general": 159029, "larger models vulnerable": 89237, "training data raising": 168328, "results underscore efficacy": 143883, "playing important role": 123502, "potential ethical risks": 124710, "human annotations work": 70586, "llms used downstream": 96908, "cases future research": 20967, "llms specifically analyze": 96661, "using deep neural": 174125, "performance finetuned llms": 121532, "using gpt35 model": 174266, "recall low precision": 137272, "clip demonstrated remarkable": 24394, "taxonomy large language": 163582, "paper addresses gap": 118708, "risks posed llms": 145013, "generated texts tend": 64023, "information recent years": 76680, "llms work aims": 97015, "llms capability predict": 94530, "study reveals significant": 157603, "underscore urgent need": 170933, "systems increasingly integrated": 160436, "models deep learningbased": 105870, "features proposed method": 57563, "realworld case studies": 136415, "performance findings highlight": 121523, "stimulate future research": 155798, "closely align realworld": 24505, "align realworld scenarios": 8030, "research findings results": 141795, "prompts stateoftheart llms": 131485, "openai gpt35 gpt4": 116350, "limited annotated data": 92701, "based keywords extracted": 15893, "employed large language": 47890, "generated text paper": 64015, "novel framework based": 114508, "manually annotate dataset": 99072, "language models caution": 84219, "heightened concerns potential": 69062, "grown significantly recent": 68071, "significantly recent years": 151125, "ml models respective": 102784, "generate harmful biased": 63526, "automated method generating": 14571, "improves previous stateoftheart": 74061, "method achieves excellent": 100635, "generating undesirable outputs": 64368, "implications generative models": 72930, "bridge gap perform": 19055, "comprehensive exploration various": 28054, "complex reasoning conduct": 27555, "models gpt4 demonstrated": 106545, "methods proposed mitigate": 101740, "allows model generate": 8453, "ai technologies chatgpt": 7269, "spectrum nlp tasks": 154365, "harnessing power llm": 68839, "services raise ethical": 149088, "pretrained bert models": 126759, "novel method based": 114585, "research needed evaluate": 141924, "future directions development": 62251, "improve accuracy llms": 73404, "generation process utilizing": 64963, "llmbased applications existing": 94122, "factchecking large language": 56763, "offering promising avenue": 115763, "pressing need understand": 126716, "typically designed specific": 170479, "massive datasets finetuned": 99351, "datasets finetuned specifically": 36872, "finetuned specifically task": 59116, "specifically task detecting": 154292, "concerns associated llms": 28769, "usage generative artificial": 172451, "results reveal varying": 143765, "approach using synthetic": 11649, "critical domains like": 33485, "systematic evaluation analysis": 160119, "response introduce novel": 142665, "analysis security privacy": 9151, "security privacy issues": 147613, "language model integrated": 83695, "introduces new method": 80201, "resources publicly accessible": 142476, "language models users": 86356, "tuning tackle challenges": 170132, "identify potentially harmful": 71941, "content moderation scale": 30551, "effectively capture context": 45957, "knowledge base contextual": 81767, "shared tasks teams": 149830, "findings underline potential": 58820, "applied incontext learning": 10768, "challenge ai safety": 21584, "ai safety research": 7204, "decades social science": 37332, "mimic human writing": 102261, "samples language models": 146032, "method requires small": 101075, "big5 personality traits": 18390, "human values using": 71083, "data augmentation adversarial": 34666, "utility downstream tasks": 174949, "potential llms generate": 124840, "computational costs associated": 28352, "models rapidly advancing": 108790, "emerged crucial area": 47346, "reinforcement learning generate": 139062, "natural language preprocessing": 111692, "language preprocessing nlp": 86472, "black box llms": 18613, "feedback rlhf supervised": 57788, "rlhf supervised finetuning": 145102, "approach achieves better": 10949, "llms led increasing": 95748, "various llms demonstrate": 176020, "approach achieves comparable": 10950, "opportunities study explores": 116879, "open source intelligence": 116298, "previous research efforts": 127634, "approach leveraging generative": 11357, "comprehensive survey delves": 28132, "various domains like": 175902, "currently lack comprehensive": 34324, "raises ethical concerns": 135485, "key technical insight": 81587, "emerging ai technologies": 47504, "biases generated text": 18267, "diverse data source": 43497, "aspects daily life": 12931, "study examines existing": 157333, "llm end users": 93629, "significant media attention": 150778, "language models society": 86186, "neural language models human": 112861, "deep reinforcement learning approach": 37820, "language model paper present": 83826, "use ai tools like": 172493, "intelligence using transformerbased models": 78920, "language model downstream task": 83612, "approach based pretrained language": 11022, "language models lms generate": 85676, "use deep learning models": 172584, "deep reinforcement learning agents": 37819, "generative language models enabled": 65436, "gpt2small gpt2medium gpt2large gpt2xl": 66627, "pretrained natural language models": 127134, "language models including gpt2": 84686, "graph convolutional neural network": 67509, "pretrained language models using": 126985, "pretrained language models extract": 126899, "annotated social media posts": 9493, "textual style transfer large": 165956, "benchmarking language models large": 17144, "models large ai models": 106875, "domain pretrained language models": 44250, "harms large language models": 68774, "language models llms highlight": 85224, "models trained downstream tasks": 109432, "significant amounts labeled data": 150589, "extensive experiments publicly available": 55873, "models llms increasingly powerful": 107568, "artificial intelligence ai support": 12701, "methods achieve similar performance": 101275, "investigates effectiveness large language": 80557, "native nonnative english writers": 111511, "future research aimed developing": 62311, "tasks address gap propose": 161914, "artificial intelligence ai including": 12678, "language models publicly available": 86005, "machine learning models aim": 98052, "generative ai models potential": 65340, "using generative ai models": 174231, "reinforcement learning rl finetuning": 139102, "models recent progress artificial": 108834, "recent progress artificial intelligence": 137590, "llms highlighting need research": 95494, "generative language models produce": 65443, "protecting copyright large language": 132561, "copyright large language models": 32133, "deep learning models convolutional": 37758, "learning models convolutional neural": 90711, "models convolutional neural networks": 105801, "emergence powerful large language": 47444, "googles bard large language": 66335, "text using machine learning": 165559, "transformer large language model": 169158, "findings highlight promising potential": 58684, "use cases large language": 172531, "generating prompts llms based": 64302, "framework comprises main components": 61031, "large language models privacypreserving": 88627, "traditional machine learning ml": 167653, "hope work sheds light": 70407, "influence social media platforms": 76221, "large language models mbert": 88508, "large language models obtaining": 88557, "language models llms dataset": 84996, "language models llms align": 84879, "models llms align human": 107106, "chatbots large language models": 22620, "artificial intelligence ai services": 12697, "proficiency understanding generating humanlike": 129681, "aibased large language models": 7344, "language models llms holds": 85229, "results demonstrate efficacy models": 143298, "demonstrate proposed method yields": 38509, "various text generation models": 176230, "responses based human instructions": 142735, "large language models identification": 87874, "evaluate zeroshot performance chatgpt": 51139, "texts social media posts": 165781, "leveraging natural language processing": 91912, "stateoftheart llms including chatgpt": 155195, "models llms taken world": 107965, "llms taken world storm": 96763, "questions covering wide range": 135088, "information generated large language": 76474, "recent artificial intelligence ai": 137445, "language models emergent capabilities": 84429, "large language models math": 88505, "solving math word problem": 153226, "adversarial prompting large language": 6222, "paper addresses critical challenge": 118707, "model paper considers possibility": 104204, "finetuning peftlora based approach": 59438, "peftlora based approach used": 120691, "based approach used study": 15658, "approach used study model": 11633, "used study model finetuned": 173249, "study model finetuned following": 157490, "model finetuned following tasks": 103668, "finetuned following tasks analysing": 59024, "following tasks analysing text": 60317, "sentiments obtained results finetuned": 148683, "obtained results finetuned llama": 115530, "results finetuned llama model": 143417, "finetuned llama model perform": 59053, "extracted sentiments named entities": 56208, "sentiments named entities considered": 148679, "named entities considered predictive": 111395, "entities considered predictive features": 49839, "considered predictive features supervised": 29698, "predictive features supervised machine": 125950, "features supervised machine learning": 57585, "security evaluations large language": 147580, "pretrained language model corpus": 126859, "safety large language models": 145872, "social context social media": 152551, "shown impressive performance variety": 150281, "artificial intelligence ai natural": 12687, "intelligence ai natural language": 78757, "language processing tasks content": 86625, "texts generated large language": 165723, "red teaming large language": 138375, "teaming large language models": 163666, "mental health large language": 100498, "study contributes valuable insights": 157254, "largescale pretrained models ptms": 89386, "pretrained models ptms bert": 127103, "models ptms bert gpt": 108739, "scenarios paper propose novel": 146668, "deep learning models new": 37763, "models llms transformative impact": 107986, "significant concerns regarding potential": 150664, "models llms including gpt35": 107552, "annotated data difficult obtain": 9455, "experiment large language models": 53897, "demonstrated superior performance compared": 38808, "language processing nlp multimodal": 86566, "models generate creative content": 106445, "simple effective solution problem": 151438, "rise powerful large language": 144909, "large language models deployed": 87707, "inspire future research field": 77701, "future research field code": 62342, "chatgpt shown remarkable success": 23322, "underscore pressing need bolster": 170926, "responsible artificial intelligence ai": 142960, "language models llms raised": 85450, "baselines including logistic regression": 16340, "language models llms invaluable": 85281, "increasingly capable ai systems": 75381, "dataset social media content": 36549, "llms achieve comparable performance": 94289, "experiments conducted benchmark datasets": 54187, "topic artificial intelligence ai": 167314, "concerns associated large language": 28767, "large language models mitigate": 88517, "language models llms incorporates": 85255, "content warning paper contains": 30651, "warning paper contains content": 177712, "paper contains content offensive": 118819, "contains content offensive upsetting": 30364, "llms work aims address": 97016, "language models deep learningbased": 84336, "performance findings highlight potential": 121524, "closely align realworld scenarios": 24506, "generated text paper propose": 64016, "large language models caution": 87625, "grown significantly recent years": 68072, "gpt large language model": 66441, "paper conducts comprehensive survey": 118810, "challenges future directions development": 21881, "new natural language processing": 113294, "factchecking large language models": 56764, "typically designed specific tasks": 170480, "pretrained massive datasets finetuned": 127041, "massive datasets finetuned specifically": 99352, "datasets finetuned specifically task": 36873, "finetuned specifically task detecting": 59117, "usage generative artificial intelligence": 172452, "use generative ai tools": 172650, "validate approach using synthetic": 175302, "large language model integrated": 87374, "processing machine learning techniques": 129191, "language generation capabilities large": 83344, "decades social science research": 37333, "low attack success rates": 97735, "witnessed significant advancements recent": 178575, "using automatic human evaluations": 173987, "models llms gpt4 llama2": 107497, "language models rapidly advancing": 86029, "models rapidly advancing field": 108791, "modeling reinforcement learning generate": 105082, "natural language preprocessing nlp": 111693, "human feedback rlhf supervised": 70822, "feedback rlhf supervised finetuning": 57789, "models llms led increasing": 107609, "various aspects daily life": 175816, "using neural language models human": 174525, "use ai tools like chatgpt": 172494, "benchmarking language models large language": 17145, "stateoftheart pretrained language models plms": 155308, "large language models llms highlight": 88213, "investigates effectiveness large language models": 80558, "large language models chatgpt gpt4": 87633, "language models recent progress artificial": 86051, "models recent progress artificial intelligence": 108835, "recent progress artificial intelligence ai": 137591, "protecting copyright large language models": 132562, "deep learning models convolutional neural": 37759, "learning models convolutional neural networks": 90712, "advances large language models raised": 6028, "emergence powerful large language models": 47445, "large language models generate text": 87835, "use cases large language models": 172532, "emergence large language models like": 47430, "large language models llms dataset": 88085, "large language models llms align": 88007, "language models llms align human": 84880, "large language models llms holds": 88218, "stateoftheart llms including chatgpt gpt4": 155196, "language models llms taken world": 85588, "models llms taken world storm": 107966, "vulnerabilities large language models llms": 177621, "environments large language models llms": 50090, "large language models emergent capabilities": 87748, "adversarial prompting large language models": 6223, "finetuning peftlora based approach used": 59439, "peftlora based approach used study": 120692, "based approach used study model": 15659, "approach used study model finetuned": 11634, "used study model finetuned following": 173250, "study model finetuned following tasks": 157491, "model finetuned following tasks analysing": 103669, "finetuned following tasks analysing text": 59025, "sentiments obtained results finetuned llama": 148684, "obtained results finetuned llama model": 115531, "results finetuned llama model perform": 143418, "extracted sentiments named entities considered": 56209, "sentiments named entities considered predictive": 148680, "named entities considered predictive features": 111396, "entities considered predictive features supervised": 49840, "considered predictive features supervised machine": 29699, "predictive features supervised machine learning": 125951, "features supervised machine learning models": 57586, "security evaluations large language models": 147581, "artificial intelligence ai natural language": 12688, "intelligence ai natural language processing": 78758, "natural language processing tasks content": 111814, "texts generated large language models": 165724, "red teaming large language models": 138376, "largescale pretrained models ptms bert": 89387, "pretrained models ptms bert gpt": 127104, "language models llms transformative impact": 85607, "language models llms including gpt35": 85249, "effective natural language processing nlp": 45828, "natural language processing nlp multimodal": 111770, "rise powerful large language models": 144910, "llms chatgpt shown remarkable success": 94603, "large language models llms raised": 88365, "large language models llms invaluable": 88254, "concerns associated large language models": 28768, "large language models llms incorporates": 88234, "warning paper contains content offensive": 177713, "paper contains content offensive upsetting": 118820, "pretrained visionlanguage models vlms clip": 127239, "large language models deep learningbased": 87695, "safety large language models llms": 145873, "pretrained massive datasets finetuned specifically": 127042, "massive datasets finetuned specifically task": 99353, "datasets finetuned specifically task detecting": 36874, "usage generative artificial intelligence ai": 172453, "stateoftheart performance natural language tasks": 155284, "language generation capabilities large language": 83345, "witnessed significant advancements recent years": 178576, "latest large language models llms": 89560, "language models llms gpt4 llama2": 85202, "language models rapidly advancing field": 86030, "learning human feedback rlhf supervised": 90528, "human feedback rlhf supervised finetuning": 70823, "language models llms led increasing": 85301, "afflicted": 6345, "vader": 175282, "autosklearn": 15026, "minorities": 102429, "muslims": 111323, "peertopeer": 120675, "standardised": 154896, "sadness": 145796, "legislators": 91333, "addiction": 4819, "sexuality": 149731, "empathybased": 47618, "therapists": 166114, "scrubbing": 147260, "female": 57848, "contextinformed": 30995, "entrenched": 49958, "ethnic": 50855, "genderrelated": 62899, "male": 98831, "circular": 23778, "prevail": 127486, "plurality": 123683, "reactivity": 136148, "genders": 62900, "amendments": 8657, "seniority": 148377, "risking": 144967, "definitively": 37972, "hindus": 70172, "diverged": 43441, "permissible": 122484, "flights": 59847, "everyones": 52167, "ailed": 7418, "scientifically": 147001, "reimagined": 139028, "lawmakers": 89609, "gun": 68291, "2class": 925, "035": 28, "019": 18, "sex": 149725, "portrait": 124131, "058": 50, "ethicality": 50846, "recruiters": 138333, "equitably": 50195, "outpatient": 117561, "resounding": 142369, "korea": 82643, "eroding": 50258, "nonmale": 114101, "minoritized": 102430, "criminology": 33420, "alice": 7989, "humansounding": 71497, "prescreening": 126200, "polis": 123884, "snd": 152508, "intimate": 79818, "arose": 12501, "vsm": 177608, "injustice": 77124, "trauma": 169617, "dialogic": 41437, "counselor": 32924, "wellaccepted": 178139, "triadic": 169734, "decisionsupport": 37487, "duties": 45110, "coloniality": 25791, "colonialism": 25790, "selfdiagnose": 147974, "hispanic": 70187, "usbased": 172481, "chinabased": 23599, "york": 180049, "females": 57849, "fruits": 61692, "n25": 111373, "natures": 112041, "liked": 92432, "postpandemic": 124506, "nonclinical": 114021, "nineteen": 113636, "knowledgetuned": 82581, "binaryvalued": 18480, "hair": 68313, "emotionallyaware": 47595, "bios": 18586, "zeitgeist": 180062, "multiplying": 111125, "covariates": 33031, "tending": 164334, "comfort": 26024, "rush": 145769, "consultant": 30252, "explicate": 54915, "dbt": 37253, "cohorts": 25556, "discreet": 42790, "wt": 179812, "therapies": 166112, "delegates": 38038, "considerate": 29652, "fatigue": 57316, "covariation": 33032, "cpgs": 33124, "snomedct": 152518, "angiography": 9417, "morbidity": 110126, "immigration": 72610, "rightwing": 144844, "coexistence": 25425, "financing": 58587, "dopamine": 44662, "washington": 177734, "insilico": 77673, "ttm": 169926, "findable": 58590, "unscalable": 172142, "deontological": 39123, "bertweet": 17653, "gaibased": 62430, "award": 15368, "quantifiably": 134305, "dei": 38026, "attention owing": 13955, "sentiment scores": 148662, "annotate text": 9441, "text sentiment": 165454, "bias machine": 18158, "assessing bias": 13169, "level demonstrate": 91460, "need novel": 112354, "depending data": 39165, "world data": 179538, "generating poetry": 64295, "independent datasets": 75496, "undesirable societal": 171587, "generation understand": 65223, "approach online": 11413, "seek provide": 147659, "health conversations": 68937, "aims transform": 7680, "understanding empathy": 171209, "learns make": 91185, "emotions joy": 47602, "model entity": 103553, "health study": 68978, "annotated domain": 9470, "extracting relationships": 56241, "associations different": 13531, "data reducing": 35630, "patient notes": 120469, "treatment decisions": 169636, "applied medicine": 10785, "models reinforced": 108886, "modelfree algorithm": 104947, "algorithm shown": 7855, "used transfer": 173283, "models scarce": 109041, "significantly change": 150962, "dataset reflects": 36499, "evaluate process": 51070, "suggest technical": 158592, "need combine": 112244, "acknowledge address": 4239, "provide services": 132969, "support existing": 159288, "solutions developing": 153011, "stateoftheart emotion": 155133, "bias overfitting": 18172, "names associated": 111423, "practices used": 125518, "various stakeholders": 176184, "including ai": 74411, "sentiment understanding": 148671, "conversational partner": 31894, "bias stereotypes": 18205, "data style": 35818, "existing style": 53601, "suffers low": 158467, "data algorithms": 34612, "ai fairness": 6992, "cultural values": 33973, "language cultural": 83230, "conflicting values": 29415, "discussion results": 43008, "mutations finally": 111334, "sentiment social": 148663, "information enhancing": 76392, "distilled language": 43177, "distillation propose": 43162, "systems moral": 160486, "gap creating": 62634, "understand differences": 170996, "templatebased prompts": 164223, "grow popularity": 67997, "datasets measuring": 36977, "combine set": 25887, "investigate biases": 80379, "quest human": 134670, "piece evidence": 122971, "dont forget": 44655, "benchmarks addressing": 17166, "interactions digital": 79220, "improve fairness": 73463, "leveraged make": 91704, "llmbased method": 94153, "paragraphlevel generation": 119552, "technical barrier": 163688, "experts characterize": 54645, "dataset selection": 36523, "provide online": 132908, "act world": 4298, "problem instead": 128286, "preregistered experiments": 126195, "information steer": 76777, "set provide": 149286, "human samples": 71030, "practical research": 125443, "algorithmic bias": 7878, "large surveys": 89069, "surveys conducted": 159711, "humans society": 71471, "results level": 143565, "use community": 172557, "increasingly utilized": 75455, "analysis educational": 8899, "glove embeddings": 66121, "quality education": 134103, "education novel": 45562, "model did": 103462, "embedding encode": 47160, "biases associated": 18251, "critical appraisal": 33455, "deliberative democracy": 38052, "different subpopulations": 42021, "social topics": 152673, "responses majority": 142846, "diversity equity": 43723, "equity inclusion": 50198, "opensource demos": 116599, "reasoning developed": 136809, "analysis suggest": 9185, "suggest directions": 158529, "impact fairness": 72651, "far focused": 57218, "diagnostic tests": 41389, "instances social": 77843, "content model": 30549, "results evaluate": 143388, "bias learned": 18152, "international conference": 79576, "insights analysis": 77508, "database provides": 36002, "studying new": 157723, "scoring tasks": 147202, "using openended": 174560, "use topic": 172914, "technology rapidly": 164165, "preferences recent": 126066, "step best": 155602, "generate naturalsounding": 63627, "varied question": 175676, "reasoning measured": 136981, "capabilities highly": 19941, "humanlike understanding": 71293, "series using": 148957, "research pointed": 141971, "introduced chatgpt": 80155, "witnessed tremendous": 178583, "days release": 37247, "findings robust": 58790, "using demographic": 174129, "helps predict": 69257, "efficient inclusive": 46637, "models affects": 105310, "treatment group": 169639, "participants writing": 120029, "biased original": 18233, "reduce propagation": 138464, "learning simultaneously": 90997, "representation includes": 140697, "transfer tst": 169003, "metrics semantic": 102143, "domain used": 44321, "proposed mathematical": 132330, "order deliver": 117184, "attributes results": 14129, "different runs": 41975, "followup study": 60333, "offline settings": 115886, "participants perception": 120014, "chatgpt social": 23336, "chatgpt test": 23387, "opensource comprehensive": 116592, "human flourishing": 70832, "life paper": 92081, "14 attributes": 374, "universities country": 171921, "essential address": 50584, "highlighting shortcomings": 69834, "difficulties faced": 42196, "virtual personalities": 176867, "assessments different": 13282, "ai evaluation": 6984, "prediction sentiment": 125860, "task generally": 161421, "hand chatgpt": 68482, "shows robustness": 150474, "twitter focusing": 170228, "simulated participants": 151663, "demonstrated human": 38680, "support view": 159350, "dialogue framework": 41475, "personalized customer": 122593, "address bias": 5159, "systematically translated": 160207, "bias related": 18191, "gun control": 68292, "control abortion": 31515, "digitized media": 42306, "capabilities behavior": 19798, "especially focusing": 50477, "2class classification": 926, "widespread recognition": 178473, "quantitative framework": 134350, "topics ranging": 167364, "sex ethnicity": 149726, "discussing ethical": 42979, "ai demonstrate": 6946, "research widespread": 142148, "capabilities automated": 19793, "based prompts": 16041, "according results": 3053, "analysis addition": 8800, "exploring value": 55517, "experiment used": 53918, "approach measuring": 11384, "used combination": 172998, "points view": 123775, "chatgpt hold": 23051, "claims prior": 23846, "prior reports": 127922, "physical mental": 122903, "responses relevant": 142900, "essential acknowledge": 50583, "including privacy": 74677, "concerns chatgpt": 28771, "treatment processes": 169643, "strategies providing": 156061, "multiple areas": 110840, "concerns emerging": 28777, "systems involving": 160444, "investigating ability": 80586, "stories authored": 155881, "textbased emotion": 165589, "datasets effective": 36806, "way protect": 177870, "users protect": 173749, "media paper": 100104, "chatgpt fair": 22933, "evaluate fairness": 50969, "quality effectiveness": 134107, "demo publicly": 38181, "methodological framework": 101182, "discuss practical": 42932, "privacy using": 128034, "fairness literature": 57059, "major bottlenecks": 98413, "bias fairness": 18122, "accuracy translating": 3413, "center study": 21321, "completely failing": 27301, "benchmark broad": 16849, "respect individual": 142506, "queries large": 134497, "study necessary": 157502, "exponential time": 55534, "human beliefs": 70623, "ai powered": 7155, "causing potential": 21268, "bias lack": 18143, "based sentiment": 16091, "measure social": 99878, "experiments commercial": 54175, "deployed conversational": 39209, "people perceive": 120733, "perceive chatgpt": 120753, "gender identity": 62889, "summarizing text": 158929, "perception chatgpt": 120795, "chatgpt extracting": 22927, "chat histories": 22535, "harm paper": 68716, "documentation model": 43870, "llms account": 94281, "opinions important": 116814, "utilizing relevant": 175236, "similar task": 151312, "specific practical": 154057, "framework social": 61421, "helps understand": 69262, "content reduced": 30597, "unknown users": 171944, "generate personas": 63644, "personas target": 122644, "implications downstream": 72916, "fairness chatgpt": 57053, "regarding fairness": 138871, "highstakes fields": 70121, "fields work": 58310, "field experimental": 58160, "models trustworthiness": 109516, "controlled experimental": 31634, "analysis overall": 9046, "problems rely": 128616, "injecting knowledge": 77108, "suggest ways": 158597, "cultural diversity": 33957, "datasets world": 37204, "40 countries": 1171, "bias online": 18170, "humansounding text": 71498, "propagation harmful": 131600, "automated sentiment": 14604, "delves current": 38108, "finally current": 58431, "specific generative": 154001, "content finetuning": 30500, "fairness preventing": 57064, "method provably": 101043, "setup evaluating": 149672, "accuracy inability": 3274, "results lack": 143548, "health crisis": 68938, "approach promptbased": 11471, "augmentation generate": 14282, "corpora makes": 32237, "gain popularity": 62449, "offer users": 115713, "followed comparison": 60234, "immense popularity": 72596, "varying scientific": 176303, "human populations": 70962, "models efforts": 106062, "attack vector": 13673, "deliberative processes": 38053, "insight quality": 77500, "discuss risks": 42943, "conclude open": 28875, "corpora human": 32226, "intelligence accuracy": 78714, "learning chain": 90288, "human emotional": 70713, "states current": 155423, "works generally": 179452, "reliable techniques": 139757, "present chinese": 126244, "dimensions related": 42348, "dataset exhibits": 36276, "coverage high": 33058, "define metric": 37935, "framework run": 61395, "constitutional ai": 30020, "processed web": 129048, "agents used": 6757, "twostage approach": 170252, "responses best": 142737, "product recommendation": 129578, "chatgpt textbased": 23391, "strategy optimize": 156191, "corresponding stateoftheart": 32605, "chatgpt novel": 23150, "early late": 45254, "distribution public": 43383, "supreme court": 159407, "differences chatgpt": 41622, "emotion data": 47564, "performance variability": 122230, "identifying understanding": 72038, "french italian": 61594, "values argue": 175522, "perspectives different": 122704, "work outline": 179148, "assessed llms": 13144, "understanding necessary": 171368, "assessment focusing": 13232, "understand implications": 171022, "data gpt2": 35135, "narratives present": 111452, "studies mitigating": 157044, "data european": 34992, "economic indicators": 45394, "conduct automatic": 29026, "45 tasks": 1239, "llms grasp": 95444, "assistive tool": 13455, "discusses potential": 42976, "technologies paper": 164104, "abilities gpt": 1919, "showed highest": 150140, "initial study": 77060, "providing superior": 133382, "weak areas": 177924, "functions demonstrate": 61904, "studies study": 157092, "replicate study": 140496, "moral beliefs": 110108, "method eliciting": 100815, "cases right": 21015, "ambiguous scenarios": 8642, "applications powered": 10638, "storage capacity": 155846, "humanlike abilities": 71242, "identification based": 71785, "knowledge medpalm": 82225, "human clinical": 70638, "clinical raters": 24359, "general clinical": 62925, "method analyzing": 100679, "applications understand": 10710, "opinion expression": 116804, "networks limited": 112773, "llms reached": 96296, "seeking help": 147665, "extent chatgpt": 56003, "including variations": 74778, "areas refinement": 12386, "truth reference": 169888, "models digital": 105979, "performance development": 121383, "research fairness": 141786, "introduce evaluation": 79957, "framework detecting": 61076, "impacts individuals": 72760, "explainable zeroshot": 54753, "educational scenarios": 45624, "dynamic zeroshot": 45176, "llms assessors": 94435, "used clinical": 172996, "clinical symptoms": 24365, "fewshort learning": 57881, "societal benefits": 152685, "designed set": 39942, "advanced tuning": 5816, "pivotal step": 123158, "used important": 173102, "researchers investigate": 142228, "finding suggest": 58624, "llms cultural": 94765, "relatively stable": 139423, "making judgments": 98761, "bias building": 18104, "peoples perceptions": 120748, "individuals communities": 75769, "way comprehensive": 177786, "recommendations enhancing": 138243, "analysis exhibits": 8917, "generate reasons": 63677, "machine vs": 98141, "generation humanlike": 64723, "range recent": 135685, "prevent propagation": 127544, "rights duties": 144843, "values crucial": 175527, "steering ai": 155565, "proving process": 133410, "use process": 172823, "participants survey": 120022, "topics conversation": 167347, "aspects especially": 12936, "study harness": 157385, "gender results": 62895, "contexts research": 31049, "classification finetuning": 24001, "focused dataset": 60089, "processes dataset": 129058, "fair models": 57040, "related public": 139199, "performance public": 121969, "surpassed performance": 159468, "field particularly": 58225, "presents evaluates": 126575, "architectures range": 12291, "evidence construct": 52173, "construct test": 30163, "processes represented": 129098, "multiple variations": 111082, "provide comparative": 132704, "domain datasets": 44127, "highly imbalanced": 69923, "results bert": 143197, "competition ranking": 27150, "sectors understanding": 147543, "realm autonomous": 136347, "practitioners general": 125532, "present protocol": 126426, "conversations conducted": 31940, "analysis algorithmic": 8811, "especially concerning": 50444, "biases prior": 18304, "costly access": 32777, "biases embedded": 18260, "conditions requiring": 29017, "35 using": 1058, "battery tests": 16472, "capabilities stable": 20193, "content selection": 30616, "tremendous impact": 169687, "experiments introduce": 54322, "indian context": 75561, "western context": 178207, "cases gpt35": 20971, "challenges annotating": 21773, "datasets quantify": 37062, "report correlations": 140515, "chatgpt ernie": 22897, "ernie large": 50254, "gaining momentum": 62500, "contexts chatgpt": 31008, "findings reflect": 58768, "level abilities": 91443, "vector spaces": 176392, "dimensions processing": 42346, "parameters order": 119821, "hard interpret": 68644, "bias aigenerated": 18094, "new york": 113513, "provide unbiased": 133012, "content headlines": 30519, "llm demonstrates": 93583, "dataset report": 36504, "report summarizes": 140561, "work common": 178846, "control ownership": 31570, "agency ownership": 6403, "biases public": 18309, "alignment test": 8250, "associated challenges": 13465, "platform new": 123390, "twitter research": 170231, "platform employ": 123383, "vision methods": 176951, "challenge construct": 21609, "environments use": 50118, "accuracy depend": 3197, "score equivalent": 147061, "sources covering": 153498, "chatgpt obtain": 23154, "unlike generic": 172003, "states conduct": 155422, "users significant": 173779, "help analyse": 69084, "interviews application": 79812, "error bias": 50276, "gap recent": 62725, "domains clinical": 44366, "llms comprising": 94678, "clinical psychology": 24358, "existing empirical": 53356, "framework aim": 60940, "chatgpt useful": 23414, "years used": 179942, "theory data": 166078, "field experiments": 58162, "sources bias": 153494, "responses proposes": 142888, "opportunities inherent": 116858, "suitability clinical": 158686, "major depressive": 98420, "depressive disorder": 39323, "patients understanding": 120496, "specialized vocabulary": 153919, "accurately mirrors": 3548, "diverse groups": 43535, "groups including": 67971, "establishment evaluation": 50716, "llms collectively": 94632, "behavioral decisions": 16667, "terms semantics": 164473, "simulating social": 151681, "realistic personas": 136296, "simulated social": 151668, "hold considerable": 70242, "various sections": 176159, "shows tools": 150490, "performance 90": 121117, "alignment case": 8130, "ethical policies": 50823, "ethical policy": 50824, "substantial promise": 158095, "albeit relatively": 7747, "35 version": 1059, "models responded": 108963, "utterances derived": 175254, "systematic methodology": 160137, "fairness concerns": 57054, "postpandemic era": 124507, "uses dynamic": 173846, "user sentiment": 173494, "chatbot results": 22586, "emotion analysis": 47560, "exhibited lower": 53142, "revealing underlying": 144411, "harm humans": 68713, "propose mitigation": 131928, "creating conversational": 33291, "levels create": 91532, "needed better": 112437, "basic ability": 16407, "highlighting inherent": 69814, "vision propose": 176975, "key applications": 81459, "concerns humans": 28782, "intended purpose": 78978, "incurring minor": 75481, "mitigate cultural": 102597, "llms fast": 95251, "design machine": 39685, "external dataset": 56042, "dataset development": 36239, "lead effective": 89740, "conversations contain": 31941, "health risks": 68971, "twitter reddit": 170230, "good classification": 66264, "using clinical": 174053, "unify tasks": 171779, "influencing perceptions": 76241, "furthermore analyzing": 62014, "underlying assumptions": 170828, "providing overview": 133346, "work lead": 179093, "techniques deep": 163862, "feasibility llms": 57355, "recognition evaluating": 138064, "situation result": 151935, "work fills": 178981, "extent llm": 56014, "moral acceptability": 110107, "starts small": 154973, "models targeted": 109356, "notable margin": 114238, "greater levels": 67768, "suggest modern": 158569, "finetuning plm": 59445, "experience llms": 53837, "language serves": 86722, "biases pose": 18301, "examines ethical": 52431, "method representing": 101073, "intended help": 78975, "results qualitative": 143719, "unable detect": 170599, "means evaluate": 99814, "research showing": 142076, "core human": 32167, "opinions behaviors": 116811, "applications simulation": 10689, "experimental participants": 53955, "elicitation techniques": 47047, "development practical": 41189, "distinct characters": 43211, "various questions": 176134, "subset dataset": 157999, "research ultimately": 142128, "performs multiple": 122449, "fully replace": 61781, "units gru": 171883, "extract multimodal": 56149, "interactive scenarios": 79337, "multimodal conversational": 110612, "reporting affect": 140573, "word usage": 178688, "problematic model": 128443, "diverse metrics": 43573, "investigated using": 80539, "results curated": 143270, "clip llava": 24406, "textbased language": 165594, "way forward": 177815, "systems gap": 160400, "results derive": 143347, "detection achieving": 40436, "assessment employing": 13227, "advice users": 6270, "need gain": 112299, "responses cover": 142759, "people make": 120728, "use theory": 172911, "impact learners": 72680, "pretrained gpt35": 126837, "gpt35 using": 66867, "analysis word": 9238, "consider relevant": 29587, "biases case": 18253, "subjective labels": 157860, "barrier adoption": 15574, "design dataset": 39596, "pitfalls using": 123132, "affects human": 6329, "development contextspecific": 41072, "llm related": 93953, "goal present": 66185, "continuous representation": 31253, "demographic parity": 38208, "iii used": 72122, "diagnosis method": 41366, "belief updates": 16758, "outcomes especially": 117449, "recommendations concerns": 138240, "email addresses": 47123, "classification systems": 24103, "answers avoiding": 9998, "capabilities generalize": 19911, "processes inherent": 129070, "political debates": 123894, "discern interpret": 42662, "continues improve": 31220, "impact biases": 72625, "leverage novel": 91634, "realworld context": 136426, "datasets baselines": 36674, "treatment plan": 169641, "scalable support": 146257, "considerations user": 29679, "examining potential": 52454, "health research": 68970, "llms concerning": 94688, "methods research": 101789, "approach simulating": 11553, "simulated agents": 151651, "like climate": 92249, "evolution human": 52264, "collective behavior": 25764, "highlighting intricacies": 69815, "unreliable assessing": 172123, "properly understand": 131628, "widespread practice": 178471, "prompting target": 131097, "assess best": 13046, "loss value": 97703, "specifically potential": 154260, "recent discussions": 137479, "methods instead": 101602, "complement human": 27244, "questions standardized": 135288, "vital tools": 177420, "potential llmgenerated": 124832, "fostering engagement": 60699, "applications bias": 10434, "impact patient": 72706, "patient outcomes": 120471, "embeddings geometric": 47238, "analyze textual": 9339, "practice guidelines": 125484, "unstructured clinical": 172210, "clinical dialogue": 24329, "external clinical": 56032, "treatment field": 169638, "ai witnessed": 7318, "interpretability bias": 79638, "experience developing": 53829, "llms culture": 94766, "behavior communication": 16575, "automate various": 14510, "embedded ai": 47134, "bias time": 18213, "practical framework": 125416, "prompting leading": 130992, "model chatgpt35": 103269, "harness large": 68792, "data electronic": 34954, "records ehr": 138311, "patient experiences": 120465, "personalized treatment": 122630, "treatment plans": 169642, "ehr systems": 46957, "development implementation": 41134, "health tools": 68982, "help shape": 69180, "shape future": 149776, "health treatment": 68983, "management recent": 98886, "streamline clinical": 156229, "facilitate clinical": 56598, "deployment artificial": 39260, "ai particular": 7140, "diagnosis intervention": 41362, "morbidity mortality": 110127, "clinical guidelines": 24335, "clinical accuracy": 24313, "management used": 98893, "ai rise": 7199, "digital health": 42284, "models ushered": 109580, "general population": 63016, "potentially unfair": 125140, "various occupations": 176083, "agents proposed": 6700, "benchmark measuring": 17027, "domains comprehensive": 44372, "develop comprehensive": 40766, "balance tradeoffs": 15505, "information names": 76586, "scale remains": 146340, "future possible": 62299, "scale tackling": 146348, "llms overview": 96023, "problem introducing": 128289, "learned explicit": 90097, "use learning": 172732, "principles learning": 127863, "evidence potential": 52205, "strategies evaluating": 155996, "safety ethics": 145856, "enhanced content": 49326, "interpreting natural": 79737, "considered offensive": 29694, "extensive media": 55924, "resulted improvements": 143079, "raise intriguing": 135449, "serves starting": 149053, "highrisk use": 70109, "generalist ai": 63088, "psychological principles": 133506, "underscore significant": 170929, "actual clinical": 4482, "perspectives review": 122719, "required medical": 141245, "selfsupervision vast": 148080, "pretraining simultaneously": 127442, "explore interplay": 55224, "intelligence benchmark": 78791, "emotions social": 47605, "benchmarking pipeline": 17156, "original form": 117334, "effectiveness usability": 46309, "models leak": 106937, "language boundaries": 83172, "chinese hindi": 23629, "dataset involves": 36372, "styles demonstrate": 157780, "output additionally": 117893, "health conditions": 68936, "media interactions": 100092, "method layer": 100951, "moderate agreement": 109760, "selected model": 147800, "provides crucial": 133129, "directly instructing": 42557, "high volume": 69558, "responses gpt35": 142814, "political knowledge": 123899, "knowledge content": 81838, "associated sentiment": 13506, "recognizing value": 138181, "ai scoring": 7209, "bert gpt35": 17558, "effects emotional": 46330, "demonstrate textual": 38591, "documented ways": 43879, "precise mechanisms": 125588, "ai method": 7084, "opensourced model": 116701, "idea ai": 71724, "mathematical formula": 99566, "advanced sentiment": 5807, "analysis representative": 9124, "enhancing fairness": 49484, "social equity": 152574, "ai generally": 7010, "emerging potential": 47528, "fairness crucial": 57055, "prompts focusing": 131281, "types arguments": 170327, "asked human": 12873, "represents important": 140979, "capability generic": 20309, "importance responsible": 73058, "implications privacy": 72950, "investigating cultural": 80590, "explores cultural": 55390, "comprehending responding": 27871, "studies understanding": 157105, "severe consequences": 149708, "consequences paper": 29529, "questions solutions": 135279, "additional research": 4994, "tutor education": 170193, "education nlp": 45561, "legal issues": 91300, "approaches follow": 11780, "nlp particular": 113782, "recent history": 137513, "offering innovative": 115745, "essential advancing": 50585, "technical ethical": 163701, "sensitive areas": 148415, "addressing associated": 5427, "research environment": 141757, "development humanlike": 41133, "2023 using": 718, "preferred reporting": 126082, "reporting items": 140576, "items systematic": 81089, "reviews metaanalyses": 144586, "metaanalyses prisma": 100561, "diagnostics patient": 41394, "llms domains": 94969, "collection analysis": 25723, "considerable global": 29617, "gap persists": 62702, "pervasive everyday": 122771, "group dynamic": 67953, "discourse online": 42712, "current role": 34233, "needs research": 112490, "needs various": 112496, "ai aid": 6857, "overview relevant": 118447, "chatgpts current": 23489, "advancements mitigating": 5927, "fair findable": 57035, "findable accessible": 58591, "accessible interoperable": 2955, "interoperable reusable": 79605, "fair data": 57033, "usefulness framework": 173362, "transparent ethical": 169598, "people experiencing": 120716, "ethical effective": 50804, "ai mental": 7081, "care evaluating": 20763, "words benchmark": 178716, "predictions despite": 125896, "comparing systems": 27018, "issues possible": 81044, "includes conversation": 74362, "generated chatgpt35": 63816, "dialogues chatgpt": 41551, "attentional focus": 14013, "emotional tone": 47592, "detection methodology": 40558, "structures trained": 156718, "highly inconsistent": 69924, "causes llm": 21262, "important concern": 73113, "direct indirect": 42386, "gpt4 mixtral": 67079, "approach included": 11297, "llms tendency": 96784, "cautious integration": 21280, "inspired checklist": 77714, "universal sentence encoder": 171913, "models manually annotate": 108136, "representations bert gpt2": 140771, "positive negative sentiment": 124300, "mental health study": 100500, "annotated domain experts": 9471, "learned representations used": 90126, "encoded language models": 48394, "language models reinforced": 86074, "ai models developed": 7094, "pretraining data consequently": 127293, "showed finetuned model": 150135, "method based transformer": 100709, "style transfer model": 157770, "data style transfer": 35819, "style transfer accuracy": 157767, "sentiment social media": 148664, "automatically generate new": 14812, "ai models help": 7098, "applications built using": 10437, "prompt based method": 130376, "learning artificial neural": 90228, "machine learning experts": 98031, "embeddings pretrained large": 47272, "social biases study": 152533, "diversity equity inclusion": 43724, "exploring language models": 55480, "ai systems increasingly": 7250, "suggest directions future": 158530, "models work investigates": 109710, "used nlp tasks": 173161, "highlight potential use": 69775, "potential use llms": 125038, "ability generate naturalsounding": 2200, "help people use": 69157, "language processing text": 86648, "openai introduced chatgpt": 116359, "textbased data augmentation": 165586, "entities mentioned text": 49857, "effectiveness extensive experiments": 46176, "style transfer tst": 157774, "highlighting shortcomings current": 69835, "chatgpt shown potential": 23318, "prediction sentiment analysis": 125861, "highlights importance considering": 69856, "human participants using": 70948, "language models broader": 84199, "gun control abortion": 68293, "recent release chatgpt": 137612, "release chatgpt garnered": 139440, "exceptional ability generate": 52809, "lms increasingly used": 97153, "advanced language model": 5750, "generation series experiments": 65081, "physical mental health": 122904, "including privacy concerns": 74678, "emerging field ai": 47510, "multimodal ai systems": 110585, "llms generate content": 95356, "research marks significant": 141904, "ethical concerns regarding": 50797, "language models palm": 85839, "foundation models paper": 60788, "experiments conducted realworld": 54195, "queries large language": 134498, "measure social bias": 99879, "future research chatgpt": 62317, "scenarios explore impact": 146598, "downstream tasks little": 44805, "language generation evaluate": 83346, "implications downstream applications": 72917, "responsible ai deployment": 142955, "fields including education": 58279, "field experimental results": 58161, "openais chatgpt generative": 116393, "avoid generating harmful": 15340, "experimental setup evaluating": 54091, "data augmentation generate": 34676, "followed comparison responses": 60235, "gained immense popularity": 62465, "evaluation model performance": 51735, "dataset findings highlight": 36305, "recent llms possess": 137554, "work present chinese": 179174, "responses human responses": 142822, "data increasingly important": 35215, "prompting strategy designed": 131090, "attributes gender age": 14112, "capabilities solve problems": 20188, "implications work outline": 72965, "paper aims analyze": 118727, "ai models addressing": 7089, "factors influence performance": 56803, "objective functions demonstrate": 115200, "models llms empowered": 107353, "prompting fewshot prompting": 130936, "fewshot prompt designs": 58019, "performance llms tasks": 121763, "experiments conducted explore": 54192, "llms explicitly trained": 95197, "medical knowledge medpalm": 100191, "llms particularly openais": 96054, "language models digital": 84387, "methods finally discuss": 101528, "new ranking task": 113375, "including limited data": 74594, "future research ai": 62309, "social media platform": 152619, "research provides insights": 142009, "assess capabilities large": 13050, "related public health": 139200, "proposed improve performance": 132317, "paper propose combine": 119210, "different types biases": 42065, "models social media": 109164, "realm autonomous driving": 136348, "achieves performance similar": 4054, "gpt 35 using": 66378, "manual annotation process": 99023, "ernie large language": 50255, "based findings reflect": 15817, "text data pretraining": 164991, "analysis apply approach": 8818, "language models affect": 84094, "computer vision methods": 28502, "gpt4 significantly better": 67165, "results chatgpt generate": 143220, "faces challenges lack": 56570, "processing tasks diverse": 129311, "involving various baselines": 80808, "era chatgpt large": 50219, "llms gpt35 bard": 95425, "investigates performance llms": 80575, "major depressive disorder": 98421, "findings discuss implications": 58663, "explore potential applications": 55256, "paper aims shed": 118740, "simulated social media": 151669, "llms hold considerable": 95504, "capable making decisions": 20445, "attention remarkable performance": 13979, "answer users questions": 9795, "datasets compare results": 36716, "learned training data": 90137, "models aim identify": 105323, "platforms like twitter": 123410, "factors influencing perceptions": 56806, "results llms exhibit": 143577, "indicate llms demonstrate": 75603, "shedding light potential": 149870, "theory approach based": 166074, "hope work lead": 70399, "widely used llm": 178398, "work fills gap": 178982, "data findings suggest": 35054, "underscore need research": 170921, "developments generative ai": 41281, "experiment results indicate": 53908, "risks challenges associated": 144979, "results qualitative analysis": 143720, "prior research showing": 127927, "answers various questions": 10095, "explore ability gpt4": 55134, "developments generative artificial": 41282, "recurrent units gru": 138355, "introduce task detecting": 80122, "human commonsense understanding": 70654, "achieving average f1": 4146, "applied various fields": 10821, "students divided groups": 156855, "use ai writing": 172495, "evaluation demonstrate efficacy": 51535, "existing approaches ii": 53269, "evaluating ai systems": 51261, "current systems like": 34278, "decisionmaking processes inherent": 37431, "language models societal": 86185, "model uses deep": 104847, "ethical considerations user": 50801, "comprehensive evaluation conducted": 28008, "groundwork future explorations": 67945, "models llms identify": 107542, "models llms findings": 107426, "like climate change": 92250, "contexts research contributes": 31050, "complement human expertise": 27245, "impact patient outcomes": 72707, "transformer models including": 169179, "clinical practice guidelines": 24356, "external clinical knowledge": 56033, "models provide explanations": 108726, "ability models like": 2286, "intelligence ai witnessed": 78782, "humanlike text used": 71287, "generative ai especially": 65316, "data electronic health": 34955, "health records ehr": 68966, "intelligence particularly large": 78872, "mental health treatment": 100502, "deployment artificial intelligence": 39261, "language models ushered": 86357, "work demonstrates potential": 178898, "ensure responsible ethical": 49699, "responsible ethical use": 142969, "specifically use large": 154300, "reinforcement learning explicitly": 139057, "ai safety ethics": 7203, "raise intriguing questions": 135450, "paper serves starting": 119321, "serves starting point": 149054, "highrisk use cases": 70110, "use cases study": 172538, "best knowledge paper": 17687, "current applications large": 34063, "emotions social interactions": 47606, "evaluation framework named": 51606, "social media interactions": 152614, "data propose methodology": 35570, "case studies results": 20897, "specifically automatic scoring": 154142, "work addresses gap": 178778, "addresses gap studying": 5415, "opensourced model data": 116702, "models study explores": 109260, "analysis conducted using": 8864, "advanced sentiment analysis": 5808, "large model sizes": 88916, "performance pretrained transformerbased": 121936, "model findings demonstrate": 103657, "contributes understanding ai": 31451, "underscores importance responsible": 170946, "enhanced understanding complex": 49371, "lead severe consequences": 89774, "require additional research": 141065, "important role daily": 73191, "delves capabilities models": 38105, "privacy ethical implications": 127999, "models evolution large": 106176, "llms introduced new": 95679, "growing use large": 68057, "comprehensive review applications": 28112, "preferred reporting items": 126083, "reporting items systematic": 140577, "items systematic reviews": 81090, "systematic reviews metaanalyses": 160151, "reviews metaanalyses prisma": 144587, "rise generative artificial": 144896, "language models addressing": 84082, "llms pervasive everyday": 96102, "comprehensive overview relevant": 28093, "fair findable accessible": 57036, "findable accessible interoperable": 58592, "accessible interoperable reusable": 2956, "assist researchers developers": 13359, "ethical effective use": 50805, "ai mental health": 7082, "llm created openai": 93572, "ethical issues possible": 50818, "nlp language models": 113749, "existing methods tend": 53469, "impressive capabilities llms": 73268, "models llms llama2": 107640, "contributes broader understanding": 31435, "particularly openais gpt4": 120236, "results showed finetuned model": 143790, "text style transfer model": 165496, "machine learning artificial neural": 98016, "learning artificial neural networks": 90229, "large language models address": 87546, "using language models simulate": 174358, "understand large language models": 171034, "natural language processing text": 111832, "large language models broader": 87614, "models lms increasingly used": 108069, "generative ai systems chatgpt": 65359, "large language models palm": 88571, "queries large language models": 134499, "solving downstream tasks little": 153211, "assessing performance large language": 13196, "avoid generating harmful content": 15341, "language models perform poorly": 85875, "chatgpt results indicate chatgpt": 23283, "paper propose novel task": 119248, "provide preliminary evaluation chatgpt": 132932, "provide natural language explanations": 132895, "design artificial intelligence ai": 39551, "language models llms empowered": 85076, "zeroshot prompting fewshot prompting": 180303, "zeroshot fewshot prompt designs": 180181, "models llms particularly openais": 107709, "large language models digital": 87723, "assess capabilities large language": 13051, "shedding light strengths limitations": 149872, "models machine learning models": 108117, "language models social media": 86184, "llms including gpt35 gpt4": 95574, "language models offer significant": 85818, "ernie large language models": 50256, "large language models affect": 87555, "language processing tasks diverse": 86627, "processing tasks diverse domains": 129312, "llms paper introduces innovative": 96034, "experiments involving various baselines": 54330, "era chatgpt large language": 50220, "paper aims shed light": 118741, "recent developments generative ai": 137472, "recent developments generative artificial": 137473, "developments generative artificial intelligence": 41283, "gated recurrent units gru": 62804, "various nlp tasks potential": 176076, "achieving average f1 score": 4147, "model uses deep learning": 104848, "language models llms identify": 85239, "language models llms findings": 85142, "models llms findings reveal": 107427, "conduct extensive experiments validate": 29128, "artificial intelligence ai witnessed": 12709, "data electronic health records": 34956, "electronic health records ehr": 47000, "artificial intelligence particularly large": 12758, "intelligence particularly large language": 78873, "paper serves starting point": 119322, "current applications large language": 34064, "models llms various applications": 108021, "generative ai models large": 65336, "work addresses gap studying": 178779, "language models study explores": 86228, "sophisticated natural language processing": 153319, "plays important role daily": 123523, "important role daily lives": 73192, "paper delves capabilities models": 118838, "overview current state llms": 118426, "models llms introduced new": 107584, "growing use large language": 68058, "preferred reporting items systematic": 126084, "reporting items systematic reviews": 140578, "items systematic reviews metaanalyses": 81091, "systematic reviews metaanalyses prisma": 160152, "rise generative artificial intelligence": 144897, "large language models addressing": 87547, "models like bert xlnet": 106972, "fair findable accessible interoperable": 57037, "findable accessible interoperable reusable": 58593, "model size large language": 104603, "language models llms llama2": 85321, "llms particularly openais gpt4": 96055, "autoregressive large language model": 14994, "machine learning artificial neural networks": 98017, "understand large language models llms": 171035, "new natural language processing nlp": 113295, "large language models pretrained large": 88623, "language models lms increasingly used": 85680, "openais large language model chatgpt": 116428, "assessing performance large language models": 13197, "developed large language models llms": 40885, "using large language models enhance": 174377, "large language models llms empowered": 88128, "language models llms particularly openais": 85382, "assess capabilities large language models": 13052, "large language models social media": 88746, "natural language processing tasks diverse": 111816, "language processing tasks diverse domains": 86628, "era chatgpt large language models": 50221, "recent developments generative artificial intelligence": 137474, "learning large language models recently": 90629, "large language models llms identify": 88224, "large language models llms findings": 88172, "language models llms findings reveal": 85143, "data electronic health records ehr": 34957, "artificial intelligence particularly large language": 12759, "intelligence particularly large language models": 78874, "current applications large language models": 34065, "language models llms various applications": 85641, "generative ai models large language": 65337, "large language models study explores": 88774, "plays important role daily lives": 123524, "language models llms introduced new": 85278, "growing use large language models": 68059, "preferred reporting items systematic reviews": 126085, "reporting items systematic reviews metaanalyses": 140579, "items systematic reviews metaanalyses prisma": 81092, "fair findable accessible interoperable reusable": 57038, "model size large language models": 104604, "models large language model llm": 106882, "large language models llms llama2": 88275, "models llms particularly openais gpt4": 107710, "traumatic": 169618, "deaths": 37281, "lstmcrf": 97963, "drugdrug": 45054, "deidentification": 38027, "humanevaluation": 71176, "assay": 13014, "625": 1450, "modelwhich": 109757, "091": 91, "succinctly": 158410, "florida": 59868, "lowdose": 97806, "427": 1214, "hipaa": 70183, "reidentifying": 139026, "0301": 25, "privacyaware": 128036, "japan": 81201, "lim": 92476, "screened": 147235, "concordance": 28917, "idc": 71721, "imagegeneration": 72374, "bat": 16456, "7k": 1646, "irrelevance": 80847, "1319": 341, "precipitated": 125569, "clt": 24586, "coronavirus": 32203, "adjudicators": 5536, "outofbox": 117513, "biographical": 18502, "cosmology": 32642, "currency": 34051, "agis": 6815, "reluctance": 139823, "bestinclass": 17771, "rocauc": 145449, "glass": 66072, "pbl": 120619, "categorised": 21130, "infectious": 75934, "1990": 552, "humanquality": 71327, "consumerfacing": 30263, "explicates": 54916, "modelcentered": 104938, "patent": 120418, "persisting": 122536, "grey": 67816, "humanoutoftheloop": 71321, "penalising": 120695, "educating": 45512, "subcellular": 157799, "trailed": 167740, "posttest": 124528, "pretest": 126727, "atoms": 13621, "tops": 167404, "003": 5, "beginner": 16532, "emits": 47551, "ph": 122789, "gcp": 62847, "0766": 73, "assays": 13016, "300000": 978, "subjectmatter": 157868, "stratification": 156221, "blood": 18739, "oa": 115092, "n17": 111367, "sac": 145785, "tasks concept": 162101, "incorporating generative": 75102, "potential aiding": 124567, "data class": 34753, "train bertbased": 167748, "generation medical": 64821, "moved online": 110219, "problem aim": 128178, "firstly regions": 59657, "graph encoder": 67524, "paragraph generation": 119549, "seek answers": 147655, "questions responses": 135265, "responses search": 142914, "responses bert": 142736, "scientists researchers": 147007, "bidirectional lstmcrf": 18361, "drugdrug interaction": 45055, "sentence information": 148507, "generation sentences": 65076, "filtering rules": 58362, "relationships neural": 139346, "help early": 69110, "consequently significant": 29553, "notes clinical": 114305, "resulted stateoftheart": 143084, "pretrained corpus": 126780, "developing countries": 40985, "progress machine": 129984, "pipeline aim": 123033, "efficient privacypreserving": 46699, "automated question": 14599, "including sample": 74710, "decisions demonstrate": 37455, "make strides": 98607, "problem achieve": 128174, "investigation demonstrates": 80630, "added context": 4811, "encrypted data": 48631, "performed indepth": 122373, "texts perform": 165754, "learning biomedical": 90265, "texts texts": 165791, "use labeled": 172695, "literature prompt": 93191, "learning able": 90173, "validated human": 175345, "span identification": 153653, "demonstrated gpt35": 38672, "following components": 60262, "compared rulebased": 26912, "learning fashion": 90453, "problems lack": 128544, "problem referred": 128375, "accurate clear": 3439, "aforementioned approaches": 6365, "previous report": 127632, "practice finetuning": 125483, "models hosted": 106632, "sensitive real": 148443, "risks software": 145023, "software available": 152773, "prediction deep": 125783, "data private": 35549, "sensitive nature": 148430, "generate artificial": 63401, "method common": 100742, "architecture selfsupervised": 12222, "text matching": 165296, "identifying correct": 71993, "identify false": 71892, "framework textbased": 61457, "semistructured format": 148362, "learning patterns": 90815, "purposes large": 133771, "benchmark combining": 16864, "present systems": 126475, "high f1": 69460, "low f1": 97752, "boolean query": 18806, "comprehensive reviews": 28118, "systems future": 160399, "generaldomain llms": 63072, "including better": 74433, "improving prediction": 74188, "challenges utilizing": 22098, "healthcare assess": 68989, "assess current": 13067, "generating features": 64215, "llm empower": 93621, "texts focus": 165715, "tasks resulted": 163175, "enhance applicability": 49154, "ai seamlessly": 7210, "usually involve": 174905, "data designing": 34904, "indicating advantage": 75646, "attention humanlike": 13896, "according evaluation": 3032, "successfully translate": 158401, "general relevant": 63042, "offers specific": 115850, "chatgpt presents": 23208, "gpt4 showing": 67158, "confidentiality privacy": 29374, "health insurance": 68945, "insurance portability": 78462, "portability accountability": 124120, "accountability act": 3082, "solutions lack": 153037, "task privacy": 161647, "data deidentification": 34891, "limited available": 92717, "information encompassing": 76387, "outputs prompts": 118107, "introduce modelagnostic": 80016, "llms indicate": 95615, "gpt4 generalpurpose": 67022, "prompt crafting": 130415, "discussed potential": 42964, "medical consultation": 100143, "access utilize": 2921, "early prediction": 45257, "baseline prompts": 16254, "clinical trials": 24374, "lack interoperability": 82966, "improve compatibility": 73430, "security confidentiality": 147569, "gpt4 provides": 67130, "processes information": 129069, "information makes": 76571, "showing similar": 150195, "chatgpt japanese": 23078, "characteristics important": 22462, "using electronic": 174159, "valuable benchmark": 175404, "gpt4 outperformed": 67098, "answer chatgpt": 9683, "level consistency": 91457, "highly knowledgeable": 69928, "knowledgeable assistants": 82522, "10000 samples": 173, "bagofwords bow": 15478, "finetuned biobert": 58994, "bow model": 18923, "multisource information": 111152, "providing timely": 133392, "timely accurate": 166571, "exciting area": 52872, "hope review": 70380, "models ready": 108798, "limitations warrant": 92688, "scenarios hand": 146612, "development potential": 41184, "neural embedding": 112845, "results collected": 143233, "recall 10": 137261, "emergence artificial": 47414, "fields medicine": 58288, "patient privacy": 120472, "innovative dataset": 77167, "domains survey": 44534, "solution support": 152982, "distill key": 43138, "comprehensive uptodate": 28156, "foundational concepts": 60832, "researchers allowing": 142173, "exploring tradeoffs": 55509, "emerged gained": 47354, "users upload": 173802, "reallife cases": 136335, "medicine education": 100238, "physics knowledge": 122939, "chatgpt4 able": 23453, "able suggest": 2562, "13 questions": 333, "engineering healthcare": 48927, "review introduce": 144515, "nlp medical": 113761, "systems text": 160643, "performance openai": 121873, "novel workflow": 114754, "openai textdavinci003": 116379, "considerations paper": 29669, "risk exposing": 144937, "algorithmic biases": 7879, "teams team": 163670, "background artificial": 15433, "case text": 20930, "gpt35 accurately": 66789, "cases attempt": 20945, "identical prompts": 71777, "datasets legal": 36957, "direction make": 42442, "methods set": 101812, "experience article": 53823, "conditions proposed": 29016, "train deep": 167758, "image results": 72320, "imaging data": 72550, "successfully generated": 158381, "challenges ranging": 22033, "catalyzed significant": 21062, "suggested significant": 158606, "performance approaching": 121158, "context develop": 30730, "sources evaluated": 153504, "exceeds average": 52756, "pass examination": 120319, "showcasing great": 150112, "finetune multiple": 58950, "significantly challenging": 150961, "drug development": 45048, "concepts target": 28693, "impressive development": 73288, "trained approach": 167867, "information raised": 76670, "llama2 using": 93372, "need attention": 112227, "insights opportunities": 77615, "foundation ai": 60709, "remained untapped": 139960, "comprehensive model": 28077, "perform like": 120977, "bring following": 19123, "reinforced learning": 139033, "caused different": 21255, "greater consistency": 67757, "remain understudied": 139945, "26 datasets": 860, "questions metrics": 135196, "challenges semantic": 22062, "diagnosis using": 41375, "multimodality data": 110796, "cognitive memory": 25460, "use currently": 172575, "especially missioncritical": 50513, "understandable language": 171102, "subset generated": 158001, "axes factuality": 15389, "progress leveraging": 129982, "applications area": 10423, "area benefit": 12318, "timeconsuming tasks": 166562, "research timely": 142118, "generate search": 63699, "reducing workload": 138602, "focuses generating": 60142, "abstractive summarisation": 2680, "label additional": 82674, "systems llm": 160470, "instructiontuned generative": 78382, "expensive lack": 53788, "circumvent issue": 23783, "end release": 48689, "translationbased methods": 169549, "tool various": 167055, "reviews work": 144598, "types capture": 170333, "health domains": 68943, "basic science": 16439, "highlights opportunities": 69867, "framework extends": 61153, "tasks underscores": 163405, "literature potential": 93187, "extract userspecified": 56176, "databases provide": 36025, "opportunity assist": 116886, "abstract title": 2661, "form hand": 60460, "accurately inferring": 3543, "domainspecific reasoning": 44621, "review explore": 144506, "challenges pitfalls": 21993, "implications agi": 72900, "blip2 stateoftheart": 18709, "streamlining clinical": 156236, "augmentation chatgpt": 14269, "key variables": 81598, "privacy standards": 128029, "development healthcare": 41130, "framework systematic": 61442, "lowest cost": 97859, "attributed requirement": 14097, "scarcity publicly": 146499, "versatility scalability": 176594, "certain entities": 21386, "domainspecific finetuned": 44582, "models empowering": 106101, "empowering researchers": 48024, "researchers accelerate": 142163, "research roadmap": 142058, "mining tasks": 102414, "entity representation": 49936, "span boundary": 153647, "trust safety": 169838, "chatgptgenerated answers": 23466, "million user": 102246, "shortcomings using": 150026, "chatgpt explainable": 22921, "results private": 143683, "private dataset": 128045, "effectiveness explainability": 46172, "proven impractical": 132644, "method review": 101081, "cases presented": 21006, "evaluated work": 51220, "model choice": 103279, "large findings": 87251, "particular lack": 120088, "query classification": 134569, "patients specific": 120494, "thought fewshot": 166226, "gpt4 accurately": 66901, "reasoning explore": 136852, "solutions evaluating": 153016, "settings ultimately": 149651, "ultimately promoting": 170590, "settings medical": 149612, "shift field": 149907, "applications medical": 10604, "models curate": 105829, "cases suggesting": 21022, "milestone development": 102207, "sources comprehensive": 153497, "advancing drug": 6084, "time task": 166515, "data 14": 34559, "perform broad": 120878, "local training": 97260, "llama bert": 93293, "multilabel tasks": 110447, "extract complex": 56123, "conditioned generative": 28978, "integration text": 78690, "different entity": 41756, "advance language": 5683, "llms extracting": 95227, "using corpus": 174092, "fields study": 58307, "useful guide": 173328, "tool combines": 166957, "novel ones": 114619, "extremely valuable": 56452, "bestperforming finetuned": 17776, "detailed set": 40317, "challenge adapting": 21578, "process explore": 128827, "gpt4 prompted": 67125, "providing helpful": 133306, "leverage extensive": 91588, "limited image": 92778, "llms emphasizes": 95041, "prompting numerous": 131030, "analysis investigated": 8987, "efficiently realworld": 46809, "guidance chatgpt": 68138, "simplifying complex": 151606, "realm automated": 136346, "accuracy automated": 3151, "solution leverages": 152954, "realworld dialogues": 136443, "terms standard": 164477, "trend analysis": 169698, "present automated": 126231, "specifically employed": 154193, "compared bidirectional": 26757, "retrieval domains": 144044, "trends different": 169716, "development current": 41074, "privacy regulations": 128018, "literature use": 93210, "notes findings": 114306, "demonstrate synthetic": 38583, "learns better": 91174, "domain traditional": 44313, "data optimize": 35447, "module developed": 109928, "practical capabilities": 125399, "conducted validate": 29298, "notably gpt4turbo": 114274, "datadriven personalized": 36045, "contexts address": 31002, "data highly": 35155, "frequently associated": 61612, "efficiently retrieve": 46813, "evidence relevant": 52209, "query work": 134638, "patient risk": 120474, "end review": 48691, "process makes": 128912, "alternative sources": 8580, "available time": 15214, "similarity evaluation": 151345, "studies identified": 157013, "addressed future": 5395, "analyzing vast": 9394, "vast textual": 176358, "promise natural": 130190, "llms spanning": 96646, "scarce expensive": 146473, "science requires": 146911, "challenge stemming": 21740, "static llm": 155465, "selecting model": 147820, "accuracy challenges": 3164, "french annotated": 61591, "translated versions": 169420, "effectiveness high": 46196, "simulations used": 151731, "dynamic interactions": 45136, "leverage llm": 91626, "cases respectively": 21013, "peerreviewed articles": 120671, "underscores considerable": 170938, "broader application": 19205, "learning pbl": 90816, "tasks emergence": 162279, "contrast extractive": 31303, "business documents": 19537, "solution finetuning": 152937, "models boosts": 105537, "learning aiming": 90192, "35 model": 1055, "micro f1": 102174, "require high": 141115, "result highlights": 143039, "shift use": 149928, "levels specificity": 91555, "decisions study": 37481, "evaluate performances": 51064, "code tools": 25183, "evaluation 20": 51412, "indicate framework": 75585, "predictions important": 125911, "concepts gpt4": 28656, "classification small": 24095, "number concepts": 114846, "challenges surrounding": 22077, "impact digital": 72639, "beating stateoftheart": 16514, "preparation results": 126165, "contexts comprehensive": 31010, "fastest adoption": 57305, "significant paradigm": 150792, "structures important": 156700, "comparison provide": 27062, "handle complexities": 68534, "privacy transparency": 128033, "discovery cancer": 42759, "biological processes": 18512, "chance ai": 22330, "affect reliability": 6315, "challenges directly": 21831, "study introduction": 157424, "texts knowledge": 165737, "intelligence witnessed": 78924, "gpt4vs ability": 67267, "ability multiple": 2291, "advancements computer": 5873, "basis foundation": 16453, "leveraged llm": 91702, "texts corresponding": 165696, "text demonstrated": 165003, "domains development": 44385, "responses languages": 142836, "systems spans": 160617, "tuning benchmark": 169970, "generation establish": 64617, "extensive error": 55764, "outputs overall": 118095, "providing general": 133302, "200 questions": 616, "field automatic": 58129, "data peerreviewed": 35478, "grey literature": 67817, "tasks comprehensively": 162099, "accuracy par": 3333, "style specific": 157763, "designed integrate": 39897, "generate medical": 63609, "application gpt4": 10328, "leveraging transformative": 91962, "multimodal chatgpt": 110603, "score conclude": 147055, "expert level": 54582, "focus representative": 60045, "evaluation case": 51466, "gpt4v excels": 67247, "scientific publishing": 146983, "emerged potent": 47381, "potent approach": 124537, "approach automating": 11016, "cell lines": 21309, "task infers": 161469, "publishing models": 133701, "models areas": 105386, "law science": 89608, "effectively aligning": 45943, "semantic learning": 148171, "method preserve": 101032, "healthcare results": 69014, "challenges long": 21949, "facilitate integration": 56625, "markedly improved": 99226, "applications implications": 10556, "types like": 170382, "technique developing": 163759, "emergence transformer": 47450, "innovations underpin": 77153, "guidance insights": 68151, "safety efficiency": 145854, "various individuals": 175974, "setting participants": 149489, "human cohorts": 70651, "response confidence": 142631, "test administered": 164509, "showed significantly": 150152, "images evaluated": 72419, "outperformed humans": 117659, "able synthesize": 2565, "synthesize information": 159991, "suggest multimodal": 158570, "understand respond": 171072, "performance perception": 121902, "information generative": 76479, "downstream clinical": 44709, "informationseeking users": 76860, "achieve study": 3769, "limited aspects": 92707, "new annotation": 113056, "capturing finegrained": 20726, "extractive models": 56380, "new protocol": 113366, "domains encounter": 44395, "field faces": 58165, "encompasses critical": 48534, "consensus reached": 29518, "highly uncertain": 69966, "outperforming llms": 117682, "domains greater": 44422, "generation roberta": 65061, "performance revealed": 122030, "research reports": 142043, "allowing researchers": 8390, "probe chatgpts": 128137, "leads increase": 89895, "analysis remains": 9121, "quality processing": 134229, "lexical metrics": 91990, "evaluation practices": 51779, "accuracy accuracy": 3133, "sentencelevel evidence": 148547, "adoption largescale": 5643, "finetuning prefix": 59451, "validate significance": 175334, "potential textbased": 125019, "opportunities enabled": 116844, "important realworld": 73181, "research output": 141948, "detection challenging": 40456, "technologies address": 164075, "boosts llms": 18850, "palm gpt4": 118660, "scale 13b": 146264, "parameters adapted": 119706, "opensource development": 116600, "surprising capabilities": 159545, "innovation unlock": 77149, "leading results": 89858, "fewer calls": 57862, "challenge context": 21610, "questions serving": 135275, "assistive tools": 13456, "suggests llm": 158664, "shortcomings paper": 150025, "benchmark allows": 16827, "challenging access": 22103, "solely human": 152867, "maintains high": 98393, "vital information": 177409, "accurately extract": 3532, "comprehensive standardized": 28122, "communicating uncertainty": 26343, "evaluated ability": 51143, "accuracy methods": 3307, "confidence conclude": 29345, "healthcare environments": 68997, "employing ai": 47912, "provide decision": 132737, "domain holistic": 44182, "results gpt4vs": 143447, "relevant domain": 139594, "outperforms language": 117787, "keywords end": 81620, "prompts updated": 131511, "model promise": 104364, "model served": 104550, "handling range": 68605, "classification fewshot": 23999, "profound significance": 129713, "tasks holds": 162506, "utilization semantic": 175018, "embeddings similar": 47283, "resulting notable": 143126, "learning time": 91082, "driving emergence": 45010, "advanced publicly": 5795, "spanning natural": 153683, "based publicly": 16049, "disease models": 43030, "aiming identify": 7554, "explanations conclusion": 54828, "robustness training": 145440, "notes research": 114308, "review hybrid": 144514, "solution architecture": 152898, "information robust": 76742, "veracity responses": 176430, "inability models": 74254, "assessment current": 13224, "including comprehensive": 74468, "exclusion criteria": 52889, "conditions findings": 29005, "applications foster": 10533, "simulation study": 151719, "students evaluate": 156860, "1000 sentences": 168, "ner dataset": 112587, "used select": 173226, "particularly achieving": 120143, "customize llms": 34400, "llms instantiate": 95647, "feasibility performance": 57358, "images enhance": 72417, "personalized responsive": 122621, "finetuned chatgpt": 58996, "important method": 73158, "set cases": 149150, "key ensure": 81494, "database model": 35999, "experts accuracy": 54639, "humans future": 71391, "supervision text": 159220, "amounts unstructured": 8708, "combine unstructured": 25889, "tools bridge": 167118, "validation testing": 175384, "significance prompt": 150557, "healthcare diagnostics": 68993, "knowledge precise": 82281, "llms outstanding": 96019, "contextual comprehension": 31075, "capabilities opensourced": 20091, "domainspecific downstream": 44575, "technique general": 163774, "instructionbased model": 78159, "instructionbased dataset": 78156, "emerged models": 47372, "model drug": 103497, "medical science": 100220, "multi scale": 110300, "performance fact": 121502, "data grown": 35143, "images improve": 72433, "measures using": 99939, "tasks prediction": 162969, "recent contrastive": 137461, "analysis utilizing": 9228, "outcomes research": 117462, "performance employ": 121451, "specifically generative": 154213, "information case": 76307, "related techniques": 139216, "prone factual": 131559, "approach answer": 10992, "customer relationship": 34378, "relationship management": 139327, "stateoftheart specialized": 155375, "difficult transfer": 42185, "multitask selfsupervised": 111240, "encoder multimodal": 48433, "process feedback": 128834, "progress optimizing": 130004, "feedback additionally": 57636, "screening phase": 147238, "templates generated": 164233, "execute code": 52904, "biology medicine": 18527, "aiming guide": 7553, "research paving": 141963, "indicate generative": 75587, "knowledge stepbystep": 82420, "n17 investigate": 111368, "genetic variation": 65685, "genetic variations": 65686, "literature searches": 93203, "literature retrieval": 93198, "increased sense": 75273, "sense control": 148382, "errors common": 50343, "chemistry large": 23569, "appear text": 10229, "domain time": 44312, "entities entity": 49845, "method focus": 100880, "exhibit improved": 53064, "information increasingly": 76516, "critical questions": 33538, "reliability comparative": 139678, "insights suitability": 77654, "study applying": 157169, "managing complex": 98902, "limitations generalized": 92591, "applying stateoftheart": 10926, "techniques foundation": 163910, "framework semantic": 61400, "summaries based": 158757, "confusion matrices": 29450, "coding errors": 25379, "gpt35 identify": 66829, "context adult": 30682, "analytic methods": 9247, "tokens included": 166827, "framework predicting": 61350, "strategies reinforcement": 156062, "gpt4 novel": 67087, "aiding healthcare": 7376, "diagnosis process": 41369, "meaningful summaries": 99801, "media user": 100119, "coherent summaries": 25545, "benchmark impeded": 16996, "expertlevel performance": 54635, "14 opensourced": 380, "issues proposed": 81052, "results detailed": 143351, "accuracy future": 3247, "detection enhanced": 40495, "tree thought": 169671, "meta llama": 100557, "rouge bleu": 145620, "involved developing": 80704, "variability llm": 175589, "data discussion": 34923, "demonstrates feasibility": 38846, "longitudinal electronic": 97561, "fail lack": 56958, "predictions scenarios": 125933, "compounds related": 27839, "methodology findings": 101230, "testing novel": 164739, "model pretrained general": 104317, "publicly available information": 133645, "fundamental building block": 61936, "data class imbalance": 34754, "11 f1 score": 226, "results using rouge": 143908, "evaluate generated responses": 50977, "bert model transformerbased": 17570, "lack large training": 82977, "achieved best performance": 3790, "medical question answering": 100206, "progress machine learning": 129985, "learning nlp natural": 90770, "systems demonstrated impressive": 160330, "text datasets lack": 164998, "performed indepth analysis": 122374, "hope study provides": 70387, "largescale annotated corpora": 89269, "study shows proposed": 157635, "requires model understand": 141418, "augmentation method generate": 14297, "performance augmented data": 121175, "purposes large language": 133772, "data deep learning": 34889, "applications language model": 10578, "language model probability": 83855, "demonstrate language models": 38392, "low f1 score": 97753, "model outperforms bert": 104171, "data experiments using": 35020, "overall study demonstrates": 118240, "tasks sequence generation": 163222, "capabilities variety natural": 20237, "investigate potential chatgpt": 80469, "entity recognition task": 49927, "using annotated data": 173971, "health insurance portability": 68946, "insurance portability accountability": 78463, "portability accountability act": 124121, "llm chatgpt gpt4": 93533, "processing text data": 129338, "task privacy protection": 161648, "development use llms": 41251, "foundation models trained": 60815, "providing accurate reliable": 133258, "processing nlp approaches": 129210, "prompts improve performance": 131318, "showing similar performance": 150196, "challenges applying llms": 21779, "llms gain popularity": 95320, "chatgpt gpt35 chatgpt": 23004, "potential llms work": 124847, "highly knowledgeable assistants": 69929, "useful resource researchers": 173349, "llms specialized domain": 96654, "effectiveness various generaldomain": 46316, "emergence artificial intelligence": 47415, "capable solving various": 20470, "processing nlp medical": 129231, "needed fully understand": 112447, "tasks various fields": 163453, "tasks require strong": 163152, "background artificial intelligence": 15434, "evaluating model performance": 51346, "experience article aims": 53824, "exceeds average human": 52757, "finetuned llama2 using": 59055, "prediction tasks demonstrate": 125874, "downstream tasks model": 44811, "largely remained untapped": 89173, "using neural network": 174526, "language model efficiency": 83613, "tasks 26 datasets": 161874, "evaluate llm performance": 51004, "demonstrated remarkable promise": 38786, "potential use chatgpt": 125037, "instructiontuned generative large": 78383, "finetuned specific task": 59113, "generative transformers chatgpt": 65607, "extraction document classification": 56282, "domain findings demonstrate": 44168, "models evaluated human": 106166, "vision models large": 176956, "challenges pitfalls associated": 21994, "models possess remarkable": 108571, "trained extensive datasets": 167918, "domain knowledge enhance": 44196, "task furthermore introduce": 161417, "primarily attributed requirement": 127768, "data diverse domains": 34932, "scarcity publicly available": 146500, "potential revolutionize way": 124949, "paving way new": 120605, "text mining tasks": 165304, "significant strides natural": 150888, "capabilities large models": 19995, "automatically generate additional": 14810, "associated training large": 13516, "finetuning small subset": 59548, "domain expert knowledge": 44149, "language models time": 86291, "keeping large language": 81425, "applications paper study": 10630, "labeled data despite": 82711, "large findings suggest": 87252, "potential pitfalls using": 124906, "pitfalls using large": 123133, "model chatgpt gpt4": 103268, "chain thought fewshot": 21466, "analysis offers valuable": 9041, "potential applications limitations": 124589, "success various downstream": 158308, "set model weights": 149240, "models wide margin": 109686, "advancing drug development": 6085, "models capable learning": 105564, "language reasoning capabilities": 86691, "ability handle complex": 2213, "data study aim": 35816, "different entity types": 41757, "models systematic review": 109340, "comparable performance conventional": 26595, "achieves improved results": 4028, "llms realm automated": 96304, "reveals llms fail": 144434, "synthetic clinical notes": 160015, "real clinical notes": 136221, "models specialized domains": 109197, "systems specialized domains": 160619, "ablation studies conducted": 2438, "effectiveness robustness proposed": 46287, "robustness proposed framework": 145425, "enhance proficiency llms": 49265, "experimental results medical": 54035, "enhancing accuracy furthermore": 49454, "evaluation metrics including": 51723, "vast textual data": 176359, "promise natural language": 130191, "understanding strengths weaknesses": 171490, "understanding potential limitations": 171410, "effective variety tasks": 45923, "innovative approach empowers": 77159, "reports using large": 140618, "study presents novel": 157543, "model surpassed performance": 104697, "work underscores potential": 179348, "llms including gpt2": 95571, "gpt 35 model": 66376, "micro f1 score": 102175, "latest generative pretrained": 89550, "llms generating explanations": 95390, "llm explanations significantly": 93656, "errors llm outputs": 50375, "recall f1 scores": 137267, "generated content research": 63830, "potential significantly improve": 124982, "tasks recently large": 163101, "data conducted experiments": 34828, "chatgpt gpt35turbo gpt4": 23008, "provide comprehensive investigation": 132713, "significant paradigm shift": 150793, "approaches generative ai": 11790, "model achieved best": 103030, "performance study demonstrates": 122122, "evaluate wide range": 51134, "examines ethical considerations": 52432, "concerns regarding data": 28818, "regarding data privacy": 138865, "data privacy transparency": 35548, "contribution study introduction": 31484, "artificial intelligence witnessed": 12780, "advancements computer vision": 5874, "results underscore potential": 143887, "represents pioneering effort": 140990, "basis foundation models": 16454, "strengths limitations adopting": 156259, "extensive error analysis": 55765, "introduced new era": 80168, "alignment instruction tuning": 8174, "understand generate human": 171011, "generate human language": 63547, "paper critically evaluate": 118829, "model plm t5": 104284, "evaluation case study": 51467, "unlike previous studies": 172015, "effectiveness different large": 46160, "challenges arise use": 21782, "provide insights opportunities": 132854, "learning domain knowledge": 90385, "effectiveness generalization capabilities": 46186, "despite current limitations": 40090, "human evaluation help": 70738, "stateoftheart results medical": 155334, "models field natural": 106330, "enhancing models performance": 49532, "tasks generalization capabilities": 162449, "suite opensource llms": 158737, "language models accurate": 84054, "address shortcomings paper": 5370, "domain instruction tuning": 44188, "process timeconsuming costly": 129014, "relying solely human": 139909, "showcasing immense potential": 150114, "soft prompts updated": 152743, "based transformer models": 16153, "llms offer promise": 95958, "proficiency handling range": 129661, "tasks holds great": 162507, "autonomous driving emergence": 14933, "based publicly available": 16050, "human expert evaluation": 70780, "tasks leveraging large": 162705, "inclusion exclusion criteria": 74790, "gpt35 gpt4 opensource": 66818, "gpt4 opensource llms": 67095, "conditions findings reveal": 29006, "zeroshot fewshot prompts": 180183, "evaluation domain experts": 51555, "results demonstrate finetuned": 143301, "existing studies focused": 53593, "human evaluation automated": 70724, "models study compares": 109257, "domain experts accuracy": 44155, "utilizing multimodal llms": 175217, "large amounts unstructured": 87190, "training validation testing": 168818, "validation testing sets": 175385, "gpt4 demonstrated superior": 66965, "significance prompt engineering": 150558, "improve prediction accuracy": 73583, "research represents significant": 142045, "represents significant stride": 140997, "models llms outstanding": 107704, "llms outstanding performance": 96020, "domainspecific downstream tasks": 44576, "research development area": 141699, "achieve f1 scores": 3642, "remarkable proficiency understanding": 140267, "public benchmark dataset": 133549, "processing related techniques": 129286, "customer relationship management": 34379, "model finetuned domainspecific": 103664, "various opensource llms": 176091, "research paving way": 141964, "novel framework employing": 114514, "models llms simplify": 107923, "potential llms improve": 124842, "chemistry large language": 23570, "case study results": 20922, "foundation models set": 60806, "study focused evaluating": 157372, "focused evaluating enhancing": 60099, "general llms like": 62988, "techniques foundation models": 163911, "strategies reinforcement learning": 156063, "reinforcement learning objective": 139080, "models demonstrated high": 105901, "approach compared baselines": 11062, "social media user": 152632, "conduct extensive evaluations": 29111, "zeroshot performance significantly": 180286, "intelligence ai significantly": 78769, "study aim address": 157141, "longitudinal electronic health": 97562, "chemical compounds related": 23559, "neural language model gpt2": 112856, "language model pretrained general": 83845, "learning nlp natural language": 90771, "nlp natural language processing": 113777, "scenario large language models": 146513, "data natural language processing": 35414, "data augmentation method generate": 34681, "purposes large language models": 133773, "capabilities variety natural language": 20238, "named entity recognition task": 111412, "health insurance portability accountability": 68947, "insurance portability accountability act": 78464, "models llm chatgpt gpt4": 107025, "language models foundation models": 84554, "language processing nlp approaches": 86544, "models llms address challenges": 107092, "models llms gain popularity": 107441, "chatgpt gpt35 chatgpt gpt4": 23005, "conduct comprehensive evaluation stateoftheart": 29048, "effectiveness various generaldomain natural": 46317, "language processing nlp medical": 86563, "research needed fully understand": 141926, "leverages incontext learning ability": 91732, "incontext learning ability llms": 74868, "model achieves sota performance": 103051, "instructiontuned generative large language": 78384, "extraction document classification question": 56283, "domain findings demonstrate chatgpt": 44169, "models foundation models fms": 106389, "significant strides natural language": 150889, "associated training large language": 13517, "large language models time": 88809, "keeping large language model": 81426, "pitfalls using large language": 123134, "analysis offers valuable insights": 9042, "insights potential applications limitations": 77624, "success various downstream tasks": 158309, "models llms recently exhibited": 107803, "language models systematic review": 86260, "demonstrate effectiveness proposed model": 38311, "analysis reveals llms fail": 9140, "systems specialized domains like": 160620, "effectiveness robustness proposed framework": 46288, "promise natural language processing": 130192, "shown effective variety tasks": 150225, "reports using large language": 140619, "applying natural language processing": 10915, "using publicly available dataset": 174633, "external knowledge bases large": 56063, "latest generative pretrained transformer": 89551, "language models specifically designed": 86208, "precision recall f1 scores": 125621, "powerful text generation capabilities": 125340, "tasks recently large language": 163102, "model achieved best performance": 103031, "concerns regarding data privacy": 28819, "understand generate human language": 171012, "language model plm t5": 83837, "effectiveness different large language": 46161, "results underscore potential llms": 143888, "models field natural language": 106331, "pretraining language model based": 127355, "large language models accurate": 87534, "models llms offer promise": 107684, "tasks holds great promise": 162508, "gpt35 gpt4 opensource llms": 66819, "publicly available large language": 133649, "models zeroshot fewshot settings": 109740, "paper proposes novel framework": 119274, "language models study compares": 86226, "training validation testing sets": 168819, "research represents significant stride": 142046, "language models llms outstanding": 85377, "language processing related techniques": 86612, "novel framework employing large": 114515, "language models llms simplify": 85547, "chemistry large language models": 23571, "study focused evaluating enhancing": 157373, "artificial intelligence ai significantly": 12698, "longitudinal electronic health records": 97563, "learning nlp natural language processing": 90772, "health insurance portability accountability act": 68948, "language models llm chatgpt gpt4": 84816, "large language models foundation models": 87824, "natural language processing nlp approaches": 111751, "language models llms address challenges": 84866, "language models llms gain popularity": 85155, "effectiveness various generaldomain natural language": 46318, "natural language processing nlp medical": 111767, "leverages incontext learning ability llms": 91733, "instructiontuned generative large language models": 78385, "extraction document classification question answering": 56284, "traditional machine learning ml models": 167654, "significant strides natural language processing": 150890, "associated training large language models": 13518, "valuable insights potential applications limitations": 175437, "using large language models case": 174374, "language models llms recently exhibited": 85466, "large language models systematic review": 88791, "experimental results demonstrate proposed approach": 53999, "biomedical natural language processing tasks": 18565, "based natural language processing nlp": 15967, "promise natural language processing nlp": 130193, "reports using large language models": 140620, "external knowledge bases large language": 56064, "tasks recently large language models": 163103, "pretrained language model plm t5": 126864, "effectiveness different large language models": 46162, "models field natural language processing": 106332, "understanding multimodal large language models": 171360, "language models llms offer promise": 85362, "publicly available large language models": 133650, "large language models llms outstanding": 88313, "natural language processing related techniques": 111801, "novel framework employing large language": 114516, "large language models llms simplify": 88409, "chemistry large language models llms": 23572, "uspto": 174885, "earned": 45273, "restrains": 142998, "cart": 20853, "investor": 80665, "emphasises": 47626, "litigation": 93217, "switzerland": 159788, "legislation": 91331, "staffers": 154723, "rulings": 145731, "363": 1080, "youchat": 180051, "515": 1339, "inflation": 76179, "pagerank": 118503, "forecasters": 60371, "spf": 154542, "thor": 166172, "differenceindifference": 41616, "shocks": 149947, "earnings": 45274, "signaltonoise": 150544, "securities": 147557, "funds": 61999, "courts": 33028, "dualphase": 45083, "nasdaq": 111485, "shipping": 149945, "latitude": 89579, "fortifies": 60649, "disciplinary": 42674, "affiliated": 6331, "zs": 180396, "signalling": 150525, "chaos": 22415, "priced": 127761, "walmart": 177681, "station": 155474, "ruling": 145730, "deposition": 39316, "equities": 50196, "bitcoin": 18599, "ethereum": 50787, "beckons": 16518, "reverts": 144473, "unhealthy": 171685, "interministerial": 79540, "826": 1689, "addresses challenging": 5406, "problem perspective": 128349, "following concept": 60263, "neural topic": 112988, "challenges neural": 21966, "extended dataset": 55655, "workinprogress paper": 179410, "generation constraint": 64530, "different complex": 41696, "term extraction": 164365, "framework performing": 61343, "includes features": 74373, "emotions play": 47603, "terms usefulness": 164492, "learning surprisingly": 91045, "cost multitask": 32716, "services major": 149084, "models product": 108668, "focused optimizing": 60115, "multiple objectives": 110988, "mining identifying": 102409, "strategy overcome": 156193, "analysis involves": 8989, "important tool": 73208, "sector using": 147539, "set ai": 149127, "method artificial": 100687, "topic modelling": 167329, "main domains": 98236, "multiple granularities": 110931, "strides creating": 156304, "presents challenging": 126551, "data adhering": 34601, "learners propose": 90154, "available pile": 15177, "legal administrative": 91277, "law help": 89600, "providing exciting": 133291, "powerful advantages": 125252, "approach integrate": 11310, "use exploring": 172615, "levels furthermore": 91539, "llm performing": 93884, "natural legal": 111936, "federal supreme": 57621, "court switzerland": 33027, "answers key": 10041, "finetuning open": 59412, "generate stable": 63724, "target given": 161069, "texts research": 165770, "media contents": 100079, "chatgpt launched": 23096, "ideas written": 71773, "interested using": 79389, "legal standards": 91318, "standards ai": 154915, "73 accuracy": 1561, "types algorithms": 170323, "developed researchers": 40915, "challenging complex": 22128, "answering straightforward": 9960, "method introduces": 100938, "extraction ate": 56260, "crossdomain transfer": 33632, "maintaining healthy": 98356, "industry trends": 75889, "trends using": 169730, "impact noise": 72700, "idea paper": 71739, "longterm research": 97605, "dataset 21": 36081, "legal data": 91285, "prediction recently": 125857, "2023 specifically": 715, "broad complex": 19174, "complex applications": 27359, "gain deep": 62438, "processing fall": 129156, "chatgpt scores": 23293, "traditional sentiment": 167696, "capacity complex": 20498, "development trustworthy": 41246, "significance work": 150561, "estimates derived": 50737, "using product": 174612, "capability furthermore": 20299, "analysis context": 8867, "legal paper": 91308, "effectively analyze": 45945, "negatively correlated": 112541, "surprisingly zeroshot": 159580, "decisions integrating": 37464, "new legal": 113255, "knowledge estimated": 81956, "plms largescale": 123618, "million sentences": 102241, "undergone rapid": 170799, "challenges effective": 21837, "trends large": 169720, "suggest cases": 158518, "important policy": 73171, "existing computational": 53319, "related crypto": 139158, "ai emerged": 6970, "related machine": 139183, "current academic": 34053, "fostering advancements": 60692, "slms trained": 152246, "deployed specific": 39227, "chatgptgenerated ones": 23468, "40 license": 1174, "journal articles": 81293, "text capacity": 164868, "demonstrate necessary": 38448, "llms classifying": 94611, "prediction chatgpt": 125770, "distinguish genuine": 43279, "law research": 89605, "legal professionals": 91309, "efficiency legal": 46483, "legal services": 91317, "bing search": 18488, "strides large": 156305, "domainspecific ones": 44607, "case law": 20879, "higher information": 69606, "forecasting paper": 60376, "signals historical": 150532, "unified solution": 171749, "insights leveraging": 77597, "comparison gpt4": 27046, "personal experience": 122558, "causal framework": 21188, "legal intelligence": 91299, "techniques recent": 164003, "llms yielded": 97030, "trading strategy": 167584, "realistic trading": 136307, "factors evaluate": 56794, "important element": 73127, "pretrained huge": 126840, "similar pretrained": 151290, "legal large": 91302, "revolutionize natural": 144631, "ai product": 7166, "power deep": 125166, "modeling knowledge": 105025, "labeled documents": 82726, "efficiency achieves": 46419, "transformative benefits": 169062, "concerns position": 28804, "advocate development": 6279, "segments based": 147760, "established industry": 50690, "process consists": 128768, "standard named": 154854, "groups used": 67986, "bank account": 15538, "credit card": 33408, "decisions related": 37480, "llms lot": 95826, "performance 22": 121111, "signaltonoise ratio": 150545, "analogous tasks": 8735, "advantage focusing": 6107, "evidence available": 52171, "reasoning numbers": 137007, "questions complex": 135072, "learners gain": 90147, "effective trading": 45907, "limitations especially": 92573, "initiate dialogue": 77089, "analysis leveraging": 9002, "questions predicting": 135224, "serves pioneering": 149048, "traditional customer": 167604, "develop deploy": 40772, "structure openended": 156588, "decisionmaking based": 37401, "accuracy fairness": 3237, "outlines existing": 117505, "conclude suggestions": 28885, "strong emphasis": 156377, "methodology achieves": 101209, "based business": 15691, "ai analyze": 6865, "questions raised": 135243, "ai facilitate": 6989, "learning gpt35": 90509, "perceived advantages": 120758, "considerations use": 29675, "advancing domain": 6083, "offer unprecedented": 115712, "gauge effectiveness": 62820, "automated factchecking": 14551, "limit order": 92488, "order book": 117179, "data converting": 34856, "forecast performance": 60370, "pivotal concern": 123142, "performance strategies": 122115, "report analysis": 140513, "reports publicly": 140606, "paper intends": 118983, "standout feature": 154924, "gpt35turbo datasets": 66875, "particularly legal": 120218, "finance economics": 58548, "bringing domain": 19133, "hyperparameters performance": 71604, "based probabilities": 16032, "used compute": 173005, "narrower scope": 111467, "probability intermediate": 128114, "papers explore": 119395, "annotated legal": 9484, "document explore": 43827, "tailored distinct": 160912, "applying code": 10884, "way synergistic": 177879, "ability access": 2048, "various users": 176245, "potentially sensitive": 125132, "curated instruction": 34019, "followed training": 60245, "contributing valuable": 31468, "ai frameworks": 7003, "model reference": 104436, "metrics insights": 102092, "utilizes gpt4": 175134, "possess reliably": 124346, "detailed answers": 40272, "individuals businesses": 75763, "surpass conventional": 159453, "inclusive comprehensive": 74793, "nlp potential": 113790, "economic political": 45395, "goal research": 66196, "systems control": 160310, "function given": 61837, "pairs make": 118597, "humanreadable form": 71329, "challenges level": 21937, "quality scientific": 134261, "legal llms": 91305, "directly acquire": 42511, "application capabilities": 10303, "performance require": 122015, "implementing framework": 72878, "structures benefit": 156690, "generation emphasizing": 64597, "efficiency speed": 46532, "method average": 100705, "study attempts": 157177, "addition differences": 4850, "collection metrics": 25743, "regarding risks": 138888, "store process": 155858, "set serves": 149307, "indicate finetuned": 75583, "llms complement": 94660, "collaboration legal": 25594, "critical capability": 33465, "dataset previous": 36462, "exploration methodology": 55087, "field legal": 58193, "court decisions": 33026, "strategic approaches": 155937, "model 50": 103006, "gap computational": 62625, "collaborative role": 25630, "stage final": 154736, "outcomes various": 117468, "collaborative process": 25625, "opinions emotions": 116813, "context sentiment": 30911, "coordinate information": 32086, "limited gains": 92768, "systems integrate": 160439, "verifying source": 176550, "value extraction": 175483, "theyre getting": 166125, "provide contrastive": 132728, "lead critical": 89735, "separate test": 148696, "regulatory compliance": 139016, "serving valuable": 149107, "blockchain technology": 18721, "decentralized transparent": 37348, "able verify": 2572, "results enhanced": 143382, "accuracy investigation": 3283, "stanford sentiment": 154939, "sentiment treebank": 148669, "nearly half": 112112, "generation simultaneously": 65091, "community foster": 26481, "significant information": 150761, "existing risk": 53563, "propose datacentric": 131774, "language sentiment": 86720, "wellestablished natural": 178156, "claims collected": 23836, "consistency scalability": 29792, "modeling legal": 105033, "legal researchers": 91316, "writers explore": 179705, "technical development": 163699, "additional techniques": 5004, "sentiments related": 148685, "research utilized": 142142, "utilized generative": 175102, "performance application": 121151, "employs t5": 47982, "recommendations potential": 138256, "highdimensional text": 69571, "various subfields": 176190, "ai provide": 7175, "tool integrates": 166993, "methodologies enhance": 101194, "comprehensive answer": 27957, "ai law": 7062, "llms worth": 97026, "offer alternative": 115635, "rise chatgpt": 144892, "tech companies": 163680, "companies research": 26545, "financial problems": 58576, "values understanding": 175563, "automation personalized": 14907, "making work": 98825, "handle lengthy": 68550, "complex sequences": 27584, "aim quantify": 7484, "involves types": 80770, "knowledge finance": 82002, "detailed solution": 40318, "like chainofthoughts": 92213, "chainofthoughts programofthoughts": 21552, "expert performance": 54590, "augmentation math": 14294, "skills effective": 152152, "applications finance": 10529, "survey focused": 159635, "explanations produced": 54890, "81 questions": 1674, "frequently necessitate": 61623, "multiple stakeholders": 111050, "potential framework": 124726, "proofofconcept using": 131586, "languagebased interactions": 86908, "specific numerical": 154047, "forecasting performance": 60378, "reduction impact": 138612, "impact specific": 72727, "demonstrate proposal": 38495, "llms examined": 95117, "substantial variability": 158108, "understanding impacts": 171290, "explained llms": 54756, "attention outstanding": 13954, "country names": 32989, "implementation perspective": 72853, "predictions terms": 125935, "paper envision": 118882, "methods structured": 101839, "information query": 76667, "queries manually": 134506, "development aigenerated": 41048, "rapid emergence": 135878, "powerful understanding": 125351, "systems foster": 160393, "automated classification": 14527, "latent patterns": 89508, "valuable documents": 175411, "forms generative": 60598, "tool created": 166959, "asset management": 13312, "latent dirichlet": 89499, "dirichlet allocation": 42621, "allocation lda": 8330, "llms distill": 94957, "key indicators": 81516, "finetune llama2": 58938, "concerning sensitive": 28756, "scarce study": 146478, "trends llms": 169722, "security regulatory": 147615, "change work": 22358, "provide actionable": 132668, "approach mobile": 11390, "model 2023": 103000, "recommendations generation": 138248, "integration legal": 78674, "fully realized": 61780, "idea generation": 71732, "ultimate objective": 170579, "implementation project": 72855, "graph databases": 67515, "12 hidden": 267, "used experiment": 173057, "including databases": 74487, "finetuning output": 59420, "compile list": 27225, "share identical": 149795, "elements specifically": 47021, "analyze sentiment": 9333, "perform natural": 120992, "leveraged solve": 91706, "classical neural": 23943, "adapted using": 4695, "propose chinese": 131745, "chef dataset": 23556, "exceed human": 52738, "shift legal": 149915, "systems coupled": 160314, "avenue increasing": 15239, "treat chatgpt": 169629, "endeavors chatgpt": 48701, "india using": 75559, "better gpt35turbo": 17894, "gpt4 training": 67199, "various tasks particularly": 176220, "future researchers explore": 62375, "deep learning field": 37741, "models demonstrated substantial": 105917, "emotions social media": 47607, "performance computational cost": 121315, "language models product": 85969, "proposed approach stateoftheart": 132246, "sentiment analysis involves": 148614, "analysis involves extracting": 8990, "language processing approaches": 86488, "great strides creating": 67728, "federal supreme court": 57622, "supreme court switzerland": 159408, "finetuning open source": 59413, "social media contents": 152604, "neural topic model": 112989, "answering straightforward questions": 9961, "finetuned machine learning": 59067, "term extraction ate": 164366, "crossdomain transfer learning": 33633, "experiments based proposed": 54158, "data bias fairness": 34721, "extensive data sources": 55744, "like chatgpt gpt35": 92227, "insights chatgpts capabilities": 77524, "processing fall short": 129157, "complex language models": 27451, "yield accurate predictions": 179959, "challenges limitations using": 21943, "models exploring alternative": 106259, "data text images": 35862, "additionally study provides": 5136, "related machine learning": 139184, "learning methods provide": 90685, "diverse set questions": 43653, "accuracy despite using": 3200, "models slms trained": 109156, "enhances llms ability": 49420, "method results suggest": 101079, "users existing research": 173646, "tasks particular demonstrate": 162934, "consistently outperformed stateoftheart": 29897, "highlights potential chatgpt": 69870, "comprehensive framework including": 28058, "paper present opensource": 119133, "recent strides large": 137649, "strides large language": 156306, "challenge language models": 21668, "results indicate generative": 143504, "indicate generative ai": 75588, "series forecasting paper": 148925, "forecasting paper presents": 60377, "effectively improve accuracy": 46021, "models llms yielded": 108044, "training data pretrained": 168320, "similar pretrained language": 151291, "legal large language": 91303, "power deep learning": 125167, "concerns position paper": 28805, "position paper explores": 124267, "llms generating text": 95392, "standard named entity": 154855, "data approach relies": 34647, "modeling framework leverages": 105006, "existing llms fall": 53424, "potential largescale language": 124814, "performance traditional machine": 122190, "generative ai tool": 65363, "descriptions evaluate model": 39452, "questions predicting future": 135225, "learning models reaching": 90729, "feedback paper propose": 57754, "models particularly chatgpt": 108438, "study finetuned models": 157368, "incontext learning gpt35": 74904, "empirical evaluations underscore": 47689, "considerations use large": 29676, "limit order book": 92489, "stateoftheart models use": 155238, "paper intends provide": 118984, "bringing domain experts": 19134, "used previous works": 173188, "explore use generative": 55311, "pave way synergistic": 120587, "like healthcare law": 92311, "publicly available internet": 133646, "learning research applications": 90923, "contributing valuable insights": 31469, "efficacy challenges potential": 46362, "openai gpt model": 116342, "possess reliably perform": 124347, "like chatgpt llama": 92233, "processing nlp potential": 129241, "economic political social": 45396, "model gpt 35": 103755, "able directly acquire": 2490, "llms store process": 96686, "tailored specific domains": 160937, "llms gpt models": 95414, "language models empowering": 84439, "llms rival performance": 96473, "dataset previous datasets": 36463, "bridging gap computational": 19090, "address challenges design": 5178, "context sentiment analysis": 30912, "designed evaluate performance": 39870, "understanding public opinion": 171430, "pioneering approach leverages": 123012, "tasks unknown llms": 163415, "stanford sentiment treebank": 154940, "pretrained generative transformer": 126830, "wellestablished natural language": 178157, "llms offer unprecedented": 95964, "enabling users explore": 48359, "sentiment analysis current": 148610, "utilized generative pretrained": 175103, "employs t5 model": 47983, "advanced language generation": 5749, "structure using large": 156615, "challenges paper explores": 21984, "including artificial intelligence": 74421, "performance test set": 122172, "word problem solving": 178663, "complex math word": 27469, "evaluate wide spectrum": 51135, "strategies like chainofthoughts": 156032, "like chainofthoughts programofthoughts": 92214, "numerical reasoning capabilities": 115007, "numerical reasoning skills": 115009, "llms capabilities solve": 94526, "capabilities solve challenging": 20187, "finetuning domainspecific data": 59230, "domainspecific data training": 44571, "domain experts using": 44157, "present unified framework": 126490, "models llms chatbots": 107167, "accessible broader audience": 2945, "significant challenges work": 150656, "broad range applications": 19183, "paper explores application": 118926, "learning algorithms study": 90203, "potential llms human": 124841, "development aigenerated content": 41049, "verification evaluate performance": 176475, "tasks results reveal": 163181, "forms generative ai": 60599, "latent dirichlet allocation": 89500, "dirichlet allocation lda": 42622, "accuracy numerical reasoning": 3322, "paper discusses potential": 118863, "finetuning gpt35 model": 59289, "12 hidden layers": 268, "numerical reasoning datasets": 115008, "perform natural language": 120993, "promising avenue increasing": 130230, "large language models product": 88631, "natural language processing approaches": 111703, "models perform poorly task": 108473, "variety nlp tasks models": 175739, "federal supreme court switzerland": 57623, "finetuned machine learning models": 59068, "model outperforms existing models": 104176, "experimental results models perform": 54046, "results models perform tasks": 143614, "language models exploring alternative": 84504, "using deep neural networks": 174126, "statistical machine learning deep": 155496, "novel approach using generative": 114400, "language models slms trained": 86179, "prompt tuning large language": 130709, "recent strides large language": 137650, "strides large language models": 156307, "results indicate generative ai": 143505, "time series forecasting paper": 166502, "series forecasting paper presents": 148926, "language models llms yielded": 85659, "legal large language model": 91304, "standard named entity recognition": 154856, "data approach relies knowledge": 34648, "existing llms fall short": 53425, "potential largescale language models": 124815, "performance traditional machine learning": 122191, "considerations use large language": 29677, "prompting chainofthought cot prompting": 130877, "large language models leading": 87943, "gpt4 demonstrated exceptional capabilities": 66962, "llms like chatgpt llama": 95774, "language processing nlp potential": 86573, "utilizing natural language processing": 175221, "language model gpt 35": 83665, "explore potential using large": 55271, "language models help humans": 84638, "structure using large language": 156616, "math word problem solving": 99544, "complex math word problems": 27470, "different prompting strategies like": 41945, "prompting strategies like chainofthoughts": 131085, "strategies like chainofthoughts programofthoughts": 156033, "benchmark evaluate llms capabilities": 16949, "evaluate llms capabilities solve": 51009, "llms capabilities solve challenging": 94527, "llms opened new possibilities": 95988, "language models llms chatbots": 84936, "application machine learning ml": 10347, "machine learning algorithms study": 98009, "advent artificial intelligence ai": 6163, "development aigenerated content aigc": 41050, "latent dirichlet allocation lda": 89501, "models trained extensive datasets": 109438, "task natural language processing recent": 161564, "stateoftheart large language models like": 155177, "experimental results models perform tasks": 54047, "statistical machine learning deep learning": 155497, "prompt tuning large language models": 130710, "recent strides large language models": 137651, "strides large language models llms": 156308, "time series forecasting paper presents": 166503, "harnessing large language models llms": 68830, "large language models llms yielded": 88482, "recently large language models like": 137926, "considerations use large language models": 29678, "powered large language model llm": 125241, "models llms like chatgpt llama": 107626, "natural language processing nlp potential": 111775, "large language model gpt 35": 87364, "explore potential using large language": 55272, "large language models help humans": 87861, "structure using large language models": 156617, "different prompting strategies like chainofthoughts": 41946, "prompting strategies like chainofthoughts programofthoughts": 131086, "benchmark evaluate llms capabilities solve": 16950, "evaluate llms capabilities solve challenging": 51010, "models llms opened new possibilities": 107699, "large language models llms chatbots": 88050, "rolling": 145572, "bid": 18334, "sai": 145913, "displacement": 43068, "weapon": 177978, "educator": 45634, "reap": 136548, "selfgoverned": 147998, "fastestgrowing": 57306, "banned": 15542, "industryacademic": 75890, "publisher": 133698, "disclosing": 42683, "aifacilitated": 7388, "intermediaries": 79503, "quasiexperimental": 134444, "humanonly": 71318, "breadthfirst": 18983, "technologydriven": 164178, "woven": 179687, "changer": 22363, "culminates": 33937, "algorithmicallygenerated": 7893, "gpt30": 66783, "wallet": 177680, "flock": 59856, "bachelors": 15405, "careers": 20771, "futureproofing": 62418, "geotechnics": 65754, "2027": 725, "extinction": 56102, "lends": 91341, "highest level": 69667, "generate redundant": 63678, "creativity using": 33397, "tradeoff efficiency": 167559, "built text": 19503, "variety research": 175757, "technology mapping": 164150, "patterns indicate": 120540, "easily handled": 45316, "synthesize target": 159998, "results good": 143438, "biological systems": 18515, "approach bridge": 11030, "provide creative": 132732, "creative solutions": 33379, "responses expert": 142786, "multiple parts": 110994, "various effects": 175925, "task followed": 161406, "poetry writing": 123698, "range knowledge": 135632, "ai liability": 7068, "individual rights": 75736, "significant consequences": 150666, "regulation eu": 139009, "ai sustainability": 7235, "sustainability impact": 159742, "act sustainable": 4297, "conventional ai": 31689, "effects ai": 46327, "impact educational": 72645, "society enormous": 152705, "example generative": 52478, "capable transforming": 20476, "huge attention": 70506, "similar ai": 151205, "ai value": 7314, "value chain": 175471, "output chatgpt": 117902, "provided feedback": 133056, "experience quality": 53841, "design chatgpt": 39569, "tasks assigned": 161980, "study does": 157290, "does highlight": 43984, "significant ethical": 150704, "governance challenges": 66354, "needed plan": 112453, "education comprehensive": 45528, "exposure ai": 55551, "internet tools": 79597, "behave trained": 16555, "chatgpt dalle2": 22823, "dialogue design": 41464, "evaluation creative": 51514, "tasks corresponding": 162136, "iterative humanai": 81124, "january 2023": 81200, "80 different": 1655, "outside context": 118147, "metrics grading": 102074, "transformer uses": 169217, "principles chatgpt": 127856, "llmpowered tools": 94232, "intelligence collaborative": 78796, "questions challenges": 135059, "timely response": 166575, "potentially surprising": 125137, "applications demonstrating": 10475, "approach intelligent": 11313, "coherence fluency": 25513, "numerous researchers": 115066, "programming rapid": 129875, "designed help": 39889, "applicable scenarios": 10287, "attracted 100": 14033, "measurement chatgpts": 99898, "curated set": 34026, "opportunities threats": 116880, "conducted experimental": 29238, "largest online": 89445, "development ethical": 41106, "lack nuanced": 82984, "chatgpt assessments": 22720, "introduction development": 80251, "positive attitude": 124286, "ai policy": 7152, "business model": 19542, "users data": 173612, "provider paper": 133097, "gpt4 architecture": 66911, "employed advanced": 47875, "advanced prompt": 5791, "students ability": 156839, "influence external": 76196, "ai companies": 6920, "range ai": 135579, "perceptions generative": 120836, "generally positive": 63323, "valuable lessons": 175443, "gpt3 ai": 66641, "effects particular": 46343, "ai navigating": 7124, "parameters allow": 119711, "original authors": 117315, "ai experimental": 6987, "future projects": 62302, "empower data": 47987, "science era": 146870, "research conduct": 141657, "chatgpt november": 23151, "2022 march": 674, "paper generative": 118966, "directions improving": 42482, "recognize patterns": 138157, "design generative": 39642, "contribution twofold": 31486, "aim protect": 7477, "design problems": 39723, "solutions multiple": 153048, "computational metrics": 28382, "intersection ai": 79759, "new usage": 113487, "usage patterns": 172468, "based certain": 15694, "ideal testing": 71750, "drawing lessons": 44934, "codes conduct": 25286, "argument existing": 12426, "intelligence internet": 78842, "discuss need": 42913, "student homework": 156810, "data chatbots": 34750, "pose question": 124170, "reserved humans": 142295, "explores innovative": 55398, "solving abilities": 153191, "sensitive personal": 148435, "practices public": 125515, "valuable research": 175447, "creation comprehensive": 33335, "dataset hypothetical": 36348, "subjected evaluation": 157849, "design integrating": 39659, "involves development": 80727, "tool study": 167036, "dynamic collaboration": 45117, "empirical standpoint": 47743, "technologies transform": 164114, "played pivotal": 123483, "offering open": 115752, "article highlights": 12585, "testing ideas": 164720, "creativity generative": 33391, "scenarios information": 146622, "efficiently create": 46771, "experts development": 54650, "investigating humanai": 80601, "guidance use": 68166, "use gai": 172639, "gai including": 62427, "authors publishers": 14444, "computing performance": 28548, "enhance design": 49183, "study experiments": 157336, "processes perceptions": 129092, "creative coding": 33364, "ml objective": 102790, "offering services": 115767, "transformative force": 169066, "attention llm": 13919, "currently hinder": 34321, "level obtain": 91493, "indicate positive": 75615, "expert assessments": 54554, "tools face": 167160, "challenges necessitating": 21962, "humancentric design": 71150, "ai promising": 7171, "art form": 12543, "puts forward": 133812, "domains studies": 44531, "include examples": 74333, "considering inherent": 29715, "caution critical": 21272, "chatgpt policy": 23194, "experiment assess": 53881, "chatgpt accelerate": 22670, "term generative": 164367, "dalle gpt4": 34526, "systems applications": 160245, "generators like": 65643, "second problem": 147502, "article aim": 12564, "able shed": 2557, "light copyright": 92105, "good ai": 66254, "risk disclosures": 144936, "construct informative": 30138, "conflicting perceptions": 29414, "perceptions concerns": 120835, "genai integration": 62874, "gap fundamental": 62655, "literature effectively": 93167, "academia chatgpt": 2715, "demonstrated range": 38753, "papers academic": 119389, "groundbreaking paradigm": 67852, "adapt individual": 4527, "enhanced accessibility": 49317, "protect user": 132555, "stateoftheart framework": 155145, "developing novel": 41017, "breadthfirst depthfirst": 18984, "education influence": 45546, "complex interaction": 27441, "sample expert": 145948, "professional tasks": 129631, "association task": 13529, "ai native": 7119, "considerations unique": 29674, "potential fms": 124725, "agents cas": 6560, "academia especially": 2716, "agents designed": 6578, "cas identified": 20858, "identified previous": 71831, "scientific technological": 146995, "present 10": 126217, "thanks generative": 165987, "responsible creating": 142961, "ai emphasizing": 6976, "llms violate": 96975, "arts humanities": 12815, "rapidly developing": 135916, "intelligent chatbot": 78943, "implications academic": 72898, "networks highlighting": 112759, "coming decades": 26029, "level chatbot": 91451, "sources provide": 153533, "safety privacy": 145884, "successful task": 158358, "general research": 63044, "software providers": 152839, "emerged recently": 47398, "game changer": 62551, "platforms grow": 123403, "policies guidelines": 123811, "challenges deploying": 21821, "directions emphasizing": 42471, "discovering connections": 42751, "pivotal ensuring": 123145, "messages compared": 100542, "examined influence": 52423, "ai concerns": 6929, "public perspective": 133593, "advanced automated": 5708, "qualitative insights": 134002, "led various": 91256, "genai including": 62873, "causal impact": 21190, "associations knowledge": 13537, "released online": 139526, "chatgpt public": 23235, "manner analyze": 98973, "senior high": 148375, "large online": 88976, "sector particularly": 147538, "forecasting models": 60375, "ability conversational": 2112, "identify emerging": 71885, "discovery present": 42786, "task ai": 161180, "ai compose": 6923, "realworld chatgpt": 136417, "multipronged approach": 111129, "comprehend synthesize": 27858, "including students": 74737, "solutions different": 153012, "specific engineering": 153986, "details synthetic": 40340, "assessing compliance": 13173, "lack automated": 82885, "information software": 76764, "assessments findings": 13283, "ai image": 7034, "scholarly discourse": 146818, "models copyright": 105802, "issues ai": 80976, "paper prove": 119280, "question ability": 134672, "focus ai": 59942, "range technologies": 135719, "transformative effects": 169065, "regarding privacy": 138884, "states according": 155419, "ai global": 7018, "capabilities scope": 20169, "completed tasks": 27298, "ai like": 7069, "privacy intellectual": 128003, "legal regulatory": 91314, "approach understand": 11624, "study groups": 157383, "deployment llmpowered": 39287, "surprisingly diverse": 159560, "controlled trial": 31652, "tool allow": 166935, "legal requirements": 91315, "main effects": 98237, "llms locally": 95816, "playing increasingly": 123503, "role revolutionizing": 145532, "assessment research": 13261, "privacy confidentiality": 127991, "confidentiality copyright": 29373, "constraints cost": 30068, "generate various": 63778, "memory making": 100424, "work explore llm": 178956, "reasoning domain knowledge": 136817, "sustainable ai regulation": 159746, "ai act sustainable": 6847, "future research opportunities": 62361, "ai regulation eu": 7191, "conventional ai models": 31690, "ai value chain": 7315, "generating appropriate responses": 64139, "significant attention ability": 150599, "ability effectively answer": 2144, "study does highlight": 157291, "regarding use ai": 138898, "ethical issues arise": 50815, "open questions challenges": 116275, "case study conducted": 20904, "position paper propose": 124268, "technology applications challenges": 164123, "attracted 100 million": 14034, "concerns raised potential": 28814, "raised ethical concerns": 135467, "legal ethical challenges": 91292, "work language models": 179083, "brief introduction development": 19105, "using chatgpt large": 174040, "discuss potential benefits": 42927, "model using language": 104852, "wide range ai": 178264, "perceptions generative ai": 120837, "researchers current work": 142191, "including domain adaptation": 74501, "science era chatgpt": 146871, "launch chatgpt november": 89585, "chatgpt november 2022": 23152, "2022 march 2023": 675, "content recent advances": 30595, "multiple perspectives including": 110997, "make use information": 98621, "model position paper": 104290, "content generation llms": 30509, "artificial intelligence internet": 12740, "problem solving abilities": 128403, "sensitive personal data": 148436, "public attitudes chatgpt": 133542, "generation synthetic dataset": 65129, "explores potential generative": 55414, "applications domains like": 10493, "played pivotal role": 123484, "tasks explore llms": 162372, "holds immense promise": 70272, "tools including chatgpt": 167182, "proposed framework promotes": 132305, "generative ai particularly": 65344, "enhance creative coding": 49180, "results reveal significant": 143763, "emerged transformative force": 47406, "examine use cases": 52418, "light recent advances": 92145, "findings study serve": 58804, "term generative ai": 164368, "context information systems": 30796, "able shed light": 2558, "domain knowledge base": 44193, "concerns paper propose": 28801, "evaluating performance chatgpt": 51365, "language diffusion models": 83258, "limitations study suggest": 92669, "research harnessing power": 141821, "compare results different": 26727, "ushered transformative changes": 173932, "conversational agents cas": 31826, "learning ml algorithms": 90692, "rapidly developing field": 135917, "neural networks highlighting": 112930, "release chatgpt november": 139441, "research directions emphasizing": 141718, "investigates potential ai": 80577, "various tasks like": 176215, "senior high school": 148376, "led significant improvement": 91245, "era advanced ai": 50213, "complex engineering problems": 27411, "potential llms transform": 124846, "models llms shows": 107906, "integration generative ai": 78657, "future research innovation": 62348, "group used chatgpt": 67960, "privacy intellectual property": 128004, "implications generative ai": 72929, "randomized controlled trial": 135557, "ethical issues ai": 50814, "tackle issues limited": 160831, "garnered significant attention ability": 62786, "models paper presents comprehensive": 108418, "attracted 100 million users": 14035, "using chatgpt large language": 174041, "launch chatgpt november 2022": 89586, "study explores potential generative": 157349, "models llms including gpt4": 107553, "assess large language models": 13093, "machine learning ml algorithms": 98041, "release chatgpt november 2022": 139442, "future research directions emphasizing": 62329, "paper investigates potential ai": 119059, "ai models particularly large": 7110, "language models llms shows": 85535, "generative ai particularly large": 65345, "based generative pretrained language model": 15838, "neural language models large language": 112863, "language models paper presents comprehensive": 85850, "development large language models like": 41150, "using chatgpt large language model": 174042, "language models llms including gpt4": 85250, "generative ai tools like chatgpt": 65368, "using generative ai tools chatgpt": 174235, "ai models particularly large language": 7111, "large language models llms shows": 88406, "generative ai particularly large language": 65346, "leakages": 89943, "metaframework": 100570, "memorability": 100323, "spaced": 153631, "devastating": 40748, "lipschitz": 93115, "977": 1822, "gdpr": 62849, "collisions": 25785, "blockchains": 18723, "reevaluated": 138635, "polled": 123913, "illinois": 72131, "tsinghua": 169914, "decentralised": 37343, "stellar": 155580, "compiletime": 27237, "semidefinite": 148350, "callback": 19645, "congestion": 29452, "gamechanger": 62577, "large billion": 87200, "private datasets": 128046, "distributed data": 43320, "model benefit": 103206, "faster algorithms": 57283, "propose metaframework": 131915, "private training": 128055, "evidence security": 52214, "spaced repetition": 153632, "practical protocol": 125439, "prevent privacy": 127542, "literature particular": 93186, "policy function": 123838, "function algorithm": 61821, "access text": 2912, "model highest": 103798, "easy interpret": 45359, "largescale private": 89393, "dataset gpt2": 36331, "increasingly adopting": 75375, "accomplish downstream": 3006, "explore limits": 55238, "criteria research": 33438, "cases providing": 21010, "networks finally": 112745, "work hard": 179008, "smart contracts": 152476, "song 2023": 153274, "2023 brand": 690, "brand song": 18966, "song zhou": 153283, "natural mathematical": 111937, "centralized training": 21354, "novel distribution": 114472, "especially potential": 50523, "information successful": 76785, "presented different": 126512, "build private": 19343, "following features": 60275, "regression resnet": 138964, "evaluate algorithm": 50902, "identification furthermore": 71794, "advancement widespread": 5861, "tool represents": 167021, "agent level": 6466, "intelligence evolution": 78812, "right erasure": 144832, "protection regulation": 132566, "regulation gdpr": 139010, "deeper integration": 37846, "users vulnerable": 173816, "led concerns": 91215, "propose problem": 132075, "needs reevaluated": 112489, "gan based": 62596, "kept secret": 81439, "use naive": 172772, "including poor": 74669, "tsinghua university": 169915, "regarding trustworthiness": 138894, "literature subject": 93206, "apart providing": 10145, "transparency adaptability": 169575, "control research": 31584, "presents numerous": 126611, "components input": 27759, "results corroborate": 143265, "access precise": 2895, "entities similar": 49874, "benchmark advanced": 16824, "gained great": 62461, "robustness evaluated": 145381, "ensuring consistency": 49730, "reduces effectiveness": 138515, "global models": 66101, "risks benefits": 144977, "gap analyzed": 62612, "dataset formal": 36315, "education background": 45523, "resolve pressing": 142348, "killer applications": 81659, "problem relatively": 128379, "tokens related": 166870, "datasets scenarios": 37099, "years artificial": 179885, "dynamic spectrum": 45165, "attention score": 13986, "points trained": 123771, "like right": 92390, "largely unaddressed": 89175, "messages specific": 100549, "data brought": 34730, "unresolved paper": 172129, "evaluations llm": 51996, "given point": 65955, "enhanced security": 49369, "training decentralized": 168377, "developed address": 40855, "linguistic prowess": 93056, "2020 study": 657, "dominant paradigms": 44646, "enable finetuning": 48085, "constrained quadratic": 30037, "security copyright": 147572, "provides scalable": 133211, "delves deep": 38109, "execute intricate": 52912, "intricate commands": 79835, "center stage": 21320, "transformative ai": 169061, "data global": 35131, "abstraction develop": 2666, "neural embeddings": 112846, "complexity work": 27707, "maintain data": 98322, "application history": 10331, "way democratize": 177790, "professional programmers": 129627, "callback functions": 19646, "issues large": 81021, "policy work": 123879, "tasks vast": 163458, "exhibits relatively": 53215, "physical space": 122912, "hosted cloud": 70429, "adaptability wide": 4586, "consisting 20": 29938, "module retrieval": 109957, "hope stimulate": 70384, "review security": 144549, "domains transportation": 44543, "learning finetuning large": 90463, "online user study": 116151, "different finetuning methods": 41776, "lack systematic study": 83018, "language models secure": 86136, "aims address challenge": 7572, "deep learning especially": 37740, "alman song 2023": 8492, "song 2023 brand": 153275, "2023 brand song": 691, "brand song zhou": 18967, "song zhou 2023": 153284, "llms especially important": 95093, "models trained solely": 109473, "datasets models used": 36990, "text classification summarization": 164906, "represents pioneering step": 140991, "general data protection": 62934, "data protection regulation": 35576, "protection regulation gdpr": 132567, "approach used search": 11631, "led concerns regarding": 91216, "field faces challenges": 58166, "adversarial network gan": 6213, "concerns regarding trustworthiness": 28824, "model size input": 104601, "downstream applications improving": 44700, "range applications language": 135581, "results future directions": 143425, "foundation model finetuning": 60737, "recent years artificial": 137770, "years artificial intelligence": 179886, "remains unresolved paper": 140108, "avenues future exploration": 15247, "results datasets demonstrate": 143276, "existing training frameworks": 53622, "privacy security copyright": 128027, "opensource proprietary models": 116670, "foundation model large": 60742, "paper delves deep": 118839, "execute intricate commands": 52913, "approach introduces novel": 11316, "case study study": 20926, "issues large language": 81022, "adaptability wide range": 4587, "various domains transportation": 175912, "text generation translation": 165197, "improving user experience": 74235, "learning finetuning large language": 90464, "alman song 2023 brand": 8493, "song 2023 brand song": 153276, "2023 brand song zhou": 692, "brand song zhou 2023": 18968, "general data protection regulation": 62935, "data protection regulation gdpr": 35577, "generative adversarial network gan": 65298, "models llms presents opportunity": 107743, "foundation model finetuning using": 60738, "recent years artificial intelligence": 137771, "experimental results datasets demonstrate": 53979, "foundation model large language": 60743, "paper present novel solution": 119132, "issues large language models": 81023, "learning finetuning large language models": 90465, "alman song 2023 brand song": 8494, "song 2023 brand song zhou": 153277, "2023 brand song zhou 2023": 693, "general data protection regulation gdpr": 62936, "issues large language models llms": 81024, "gen": 62871, "sagemath": 145912, "miscalculations": 102466, "schooling": 146841, "reconciling": 138288, "constitutive": 30021, "neuralnetwork": 112993, "unawareness": 170645, "minimise": 102367, "undergrad": 170802, "dig": 42269, "miami": 102171, "catalytic": 21058, "questions work": 135324, "pedagogical ability": 120648, "different agents": 41646, "dimensions especially": 42330, "copilot publicly": 32109, "successfully solves": 158395, "scale learning": 146307, "end online": 48666, "tool academic": 166930, "measures address": 99913, "constrained learning": 30034, "intermediate algebra": 79507, "prior access": 127877, "trained enormous": 167909, "technology innovations": 164144, "support prediction": 159318, "videos potential": 176784, "fluid dynamics": 59919, "aibased tool": 7350, "number successful": 114950, "policy development": 123832, "education dataset": 45532, "llms helping": 95482, "scratch based": 147214, "ideas future": 71761, "science principles": 146903, "challenge introducing": 21663, "recent high": 137512, "gpt enhancing": 66412, "aipowered chatbots": 7690, "principles educational": 127858, "taking approach": 161005, "education despite": 45533, "chatgpt related": 23260, "technologies key": 164094, "school physics": 146837, "finding issues": 58609, "gpt4 identified": 67048, "time solve": 166504, "components discuss": 27753, "automates evaluation": 14631, "strategies use": 156087, "tools scale": 167249, "efficiency tasks": 46539, "science high": 146876, "correct students": 32420, "reasoning reflection": 137095, "mathematical operations": 99575, "llms vulnerability": 96992, "questions problems": 135232, "condensed overview": 28940, "llm intelligent": 93773, "predictions research": 125930, "capabilities determine": 19854, "benefit learning": 17441, "technologies llms": 164100, "course problems": 33013, "missing data": 102527, "gpt35 automatically": 66793, "diverse behaviors": 43471, "personalized assistance": 122588, "benefits remaining": 17491, "patterns real": 120559, "questions course": 135083, "time period": 166464, "problems designed": 128482, "strategies solving": 156076, "exploiting chatgpt": 55027, "discussion underscores": 43009, "education recently": 45580, "instructors teach": 78426, "models modeling": 108224, "rapid deployment": 135862, "develop sound": 40839, "methodology employed": 101220, "elementary school": 47010, "sparked surge": 153704, "intelligence transforming": 78915, "automatic software": 14739, "addition survey": 4910, "conducted provide": 29277, "suggest contemporary": 158522, "develop policy": 40820, "foundational capabilities": 60830, "problem considered": 128206, "learning qualitative": 90889, "algorithms successfully": 7975, "contributing advancement": 31455, "methods using language": 101910, "language models application": 84126, "research using large": 142138, "copilot publicly available": 32110, "recent emergence powerful": 137490, "gpt4 based model": 66931, "language translation sentiment": 86801, "diverse range questions": 43619, "methods provide effective": 101743, "opportunities challenges prospects": 116839, "potential applications generative": 124584, "generative ai field": 65318, "evaluate chatgpts ability": 50923, "use ai models": 172491, "learning tasks work": 91058, "complex problems study": 27524, "tasks generative ai": 162461, "high school physics": 69536, "generation tools including": 65207, "harnessing power ai": 68835, "discuss ideas future": 42896, "data collection analysis": 34780, "require natural language": 141165, "field survey endeavors": 58249, "artificial intelligence transforming": 12778, "work explores llms": 178967, "vast knowledge base": 176336, "conclude paper discussion": 28878, "machine learning including": 98033, "llms diverse tasks": 94963, "code findings indicate": 24842, "generative ai products": 65350, "ai models tailored": 7116, "methods using language models": 101911, "large language models application": 87571, "research using large language": 142139, "recent emergence powerful large": 137491, "language translation sentiment analysis": 86802, "potential applications generative ai": 124585, "leverages recent advances large": 91774, "study investigates application large": 157438, "code findings indicate llms": 24843, "research using large language models": 142140, "recent emergence powerful large language": 137492, "leverages recent advances large language": 91775, "using large language models accurate": 174370, "study investigates application large language": 157439, "standpoints": 154926, "braking": 18957, "characterisation": 22446, "mdp": 99735, "meteorological": 100615, "cones": 29333, "hurricane": 71549, "202": 652, "lane": 83110, "apollo": 10206, "deployment reinforcement": 39301, "effects human": 46333, "benchmark tool": 17110, "strategy optimization": 156190, "ground truths": 67845, "existing body": 53307, "stems ability": 155589, "challenge capture": 21596, "solutions propose": 153062, "contribute modern": 31411, "log reports": 97317, "introduce autonomous": 79918, "operation time": 116762, "challenges autonomous": 21791, "urban science": 172409, "control reinforcement": 31582, "applications intelligent": 10568, "process mdp": 128918, "embeddings preserve": 47270, "handle problems": 68562, "llms mature": 95871, "realistic dynamics": 136290, "studies remains": 157070, "capabilities domain": 19862, "future autonomous": 62229, "realism diversity": 136280, "transfer simulation": 168992, "spatial structure": 153807, "forecasting task": 60380, "engineering achieves": 48876, "module enable": 109930, "novel interpretable": 114555, "align numeric": 8023, "prediction efficacy": 125788, "predicting key": 125741, "dynamically interact": 45193, "accurate guidance": 3460, "researchers utilize": 142273, "implicitly capture": 72997, "reasons firstly": 137250, "large continuous": 87220, "fully datadriven": 61754, "learning robust": 90956, "varying conditions": 176281, "accurately discern": 3525, "reduced overall": 138498, "based trajectories": 16148, "potential equally": 124704, "design objectives": 39704, "continuous trajectory": 31258, "capabilities innovative": 19966, "prediction rely": 125858, "new standards": 113421, "accurately different": 3524, "executing codes": 52930, "simulation gap": 151697, "behavioral reactions": 16673, "algorithms techniques": 7978, "research perspectives": 141968, "range spatial": 135701, "successes achieved": 158323, "equipped ability": 50179, "retrieval ability": 143987, "geoscience community": 65742, "timeseries forecasting": 166620, "comprehensively considering": 28165, "research accelerating": 141559, "series analysis": 148903, "forecasting tackle": 60379, "efficiency sustainability": 46537, "development smart": 41221, "deployment reinforcement learning": 39302, "require significant domain": 141192, "control reinforcement learning": 31583, "decision process mdp": 37379, "provides effective way": 133138, "performance superior comparable": 122138, "superior comparable stateoftheart": 158998, "work leverage llms": 179101, "provides insights strengths": 133171, "results highlight substantial": 143463, "learning world models": 91146, "learning robotic agents": 90954, "challenge 2023 competition": 21573, "reasoning capabilities innovative": 136701, "prediction fundamental task": 125801, "significant challenges face": 150648, "crucial role development": 33850, "model training address": 104781, "serve foundation future": 148978, "llms various aspects": 96949, "time series analysis": 166499, "markov decision process mdp": 99259, "performance superior comparable stateoftheart": 122139, "abilities large language model": 1943, "lifes": 92091, "nontransformer": 114148, "renewable": 140385, "spectra": 154351, "d2": 34494, "stations": 155477, "densities": 39117, "reranks": 141540, "including deep": 74490, "datadriven models": 36044, "free energy": 61549, "materials design": 99507, "scarce libraries": 146474, "families results": 57189, "modelagnostic method": 104920, "performance properties": 121954, "biology chemistry": 18522, "dataset deep": 36222, "sequences language": 148825, "pipeline remains": 123087, "science finance": 146874, "science based": 146852, "utilize combination": 175027, "combination gpt4": 25825, "issues automatically": 80985, "integrates diverse": 78553, "values spanning": 175559, "strategy model": 156185, "applications materials": 10603, "exploration strategies": 55106, "dataset negative": 36425, "collected instruction": 25690, "application multimodal": 10353, "tasks function": 162434, "model engage": 103541, "renewable energy": 140386, "material knowledge": 99499, "improving usability": 74232, "enhance reproducibility": 49283, "perception critical": 120799, "predict physical": 125697, "series benchmark": 148906, "applied complex": 10743, "similarities natural": 151333, "chemistry problems": 23574, "capability utilize": 20386, "numerical properties": 115003, "theoretical experimental": 166028, "tuning employ": 169999, "precise prediction": 125592, "experiments address": 54132, "physics domain": 122933, "reranks candidates": 141541, "domainspecific literature": 44599, "structural properties": 156523, "problems opens": 128579, "results showcase potential": 143786, "challenge limited data": 21678, "dataset negative examples": 36426, "collected instruction tuning": 25691, "model learns generate": 103947, "llms playing increasingly": 96114, "playing increasingly important": 123504, "machine learning statistical": 98078, "investigate performance chatgpt": 80460, "llms playing increasingly important": 96115, "playing increasingly important role": 123505, "great success natural language processing": 67740, "llms playing increasingly important role": 96116, "lunar": 97973, "importing": 73231, "planetary": 123226, "verificationaware": 176507, "finally share": 58523, "propose deep": 131777, "technology research": 164167, "use traditional": 172916, "setting limited": 149471, "model incorporated": 103843, "convex optimization": 32014, "network additionally": 112622, "returns computed": 144299, "dynamic systems": 45167, "local convergence": 97231, "offpolicy reinforcement": 115896, "essential solving": 50634, "method converges": 100765, "potential means": 124856, "applied time": 10816, "model checking": 103271, "model checker": 103270, "modeling environmental": 104997, "combination method": 25832, "leveraging artificial": 91804, "existing libraries": 53410, "performance environments": 121462, "simulate conditions": 151634, "reinforcement learning paradigm": 139083, "opensource software package": 116678, "offpolicy reinforcement learning": 115897, "leveraging artificial intelligence": 91805, "astrophysics": 13595, "celestial": 21306, "rebound": 137257, "latest gpt3": 89552, "series modifications": 148940, "method prototype": 101042, "difficulties encountered": 42195, "models hybrid": 106653, "knowledge utilize": 82498, "significantly contributes": 150969, "augment capability": 14234, "format task": 60550, "todays sota": 166682, "productivity research": 129607, "dataset recent llms": 36497, "enhance effectiveness llms": 49188, "domains empirical": 44393, "projects like": 130114, "answers propose": 10068, "life cycles": 92077, "llms inefficiency": 95620, "improved methods": 73701, "compute platform": 28448, "continues rapidly": 31225, "gpt architectures": 66388, "models llms automatically generate": 107134, "loss prove": 97690, "methods number": 101686, "chatgptbased evaluation": 23463, "transformers specifically": 169360, "tools automatically analyze": 167110, "generative pretrained language model gpt2": 65537 } } }