{ "ctfidf_model": { "bm25_weighting": false, "reduce_frequent_words": false }, "vectorizer_model": { "params": { "analyzer": "word", "binary": false, "decode_error": "strict", "encoding": "utf-8", "input": "content", "lowercase": true, "max_df": 1.0, "max_features": null, "min_df": 2, "ngram_range": [ 1, 5 ], "stop_words": "english", "strip_accents": null, "token_pattern": "(?u)\\b\\w\\w+\\b", "vocabulary": null }, "vocab": { "story": 23882, "ending": 7537, "prediction": 19347, "transferable": 25884, "bert": 2714, "recent": 21137, "advances": 931, "gpt": 10220, "shown": 23010, "success": 24254, "incorporating": 11527, "pretrained": 19520, "transformer": 25898, "language": 12682, "model": 15669, "finetuning": 9117, "operation": 17875, "improve": 11347, "downstream": 6970, "nlp": 17409, "systems": 24573, "framework": 9392, "fundamental": 9539, "problems": 19791, "effectively": 7168, "supervised": 24379, "knowledge": 12494, "related": 21430, "tasks": 24853, "study": 24058, "investigate": 12293, "training": 25745, "transfer": 25866, "general": 9689, "largescale": 13625, "unlabeled": 26388, "data": 5414, "specific": 23576, "kinds": 12489, "various": 27024, "semantically": 22742, "target": 24722, "task": 24739, "particularly": 18436, "propose": 20273, "utilizing": 26913, "including": 11442, "natural": 17053, "inference": 11683, "sentiment": 22798, "classification": 3778, "action": 690, "train": 25692, "based": 2464, "enables": 7459, "better": 2768, "initialization": 11840, "conduct": 4541, "experiments": 8367, "final": 8995, "result": 21989, "accuracy": 501, "dramatically": 7004, "outperforms": 18033, "previous": 19661, "stateoftheart": 23755, "baseline": 2551, "methods": 15415, "comparative": 4153, "helpful": 10670, "suggestions": 24320, "select": 22676, "error": 7775, "analysis": 1390, "shows": 23061, "strength": 23932, "weakness": 27328, "bertbased": 2738, "models": 15993, "contextual": 4837, "contextualized": 4848, "word": 27436, "representations": 21676, "comparing": 4216, "geometry": 10131, "gpt2": 10242, "embeddings": 7316, "replacing": 21632, "static": 23821, "yielded": 27671, "significant": 23089, "improvements": 11393, "just": 12436, "produced": 19935, "infinitely": 11720, "contextspecific": 4836, "words": 27456, "essentially": 7815, "assigned": 2082, "finite": 9197, "number": 17591, "layer": 13686, "contextualizing": 4854, "different": 6488, "contexts": 4830, "greater": 10462, "cosine": 5128, "similarity": 23208, "selfsimilarity": 22710, "lower": 14875, "upper": 26465, "layers": 13688, "suggests": 24322, "produce": 19921, "like": 14069, "lstms": 14894, "taskspecific": 25105, "average": 2392, "variance": 26982, "explained": 8443, "embedding": 7309, "providing": 20503, "justification": 12439, "learning": 13759, "transformers": 25951, "fake": 8802, "news": 17382, "challenge": 3345, "stance": 23708, "detection": 6319, "paper": 18180, "report": 21645, "improved": 11377, "results": 22006, "stage": 23702, "gain": 9603, "performance": 18582, "generalization": 9724, "power": 19253, "large": 13315, "architecture": 1899, "trained": 25713, "publicly": 20570, "released": 21477, "years": 27656, "specifically": 23612, "best": 2745, "performing": 18812, "adding": 753, "sentence": 22777, "input": 11860, "sequences": 22830, "feature": 8855, "finetuned": 9087, "xlnet": 27652, "roberta": 22323, "extended": 8587, "dataset": 5643, "obtained": 17668, "evaluating": 7933, "commonsense": 4108, "raw": 20975, "text": 25281, "given": 10142, "remarkable": 21561, "question": 20717, "answering": 1565, "reading": 20997, "comprehension": 4363, "works": 27587, "showing": 23003, "syntactic": 24509, "semantic": 22717, "sense": 22760, "contained": 4745, "explains": 8447, "benefit": 2703, "relatively": 21461, "little": 14229, "work": 27458, "investigating": 12328, "crucial": 5291, "human": 10892, "ability": 323, "testing": 25268, "seven": 22931, "challenging": 3410, "benchmarks": 2685, "finding": 9035, "modeling": 15977, "variants": 26989, "effective": 7139, "objectives": 17633, "promoting": 20077, "bidirectional": 2837, "context": 4795, "larger": 13613, "set": 22874, "additionally": 772, "current": 5328, "poorly": 19055, "require": 21715, "necessary": 17158, "steps": 23857, "finally": 9001, "test": 25234, "robustness": 22353, "making": 15003, "dual": 7039, "cases": 3246, "correlated": 5106, "correct": 5077, "sample": 22437, "lead": 13698, "interestingly": 12165, "confusion": 4618, "learn": 13729, "surface": 24431, "deep": 5878, "level": 13980, "release": 21466, "named": 17023, "future": 9577, "research": 21774, "longterm": 14836, "planning": 18944, "situational": 23289, "awareness": 2417, "openai": 17781, "understanding": 26261, "world": 27600, "represented": 21691, "modelfree": 15975, "reinforcement": 21409, "major": 14965, "black": 2895, "box": 2965, "nature": 17132, "process": 19833, "highdimensional": 10725, "observation": 17641, "spaces": 23537, "alphastar": 1334, "agents": 1026, "explicit": 8467, "hierarchical": 10689, "reach": 20978, "superhuman": 24370, "skill": 23311, "games": 9631, "taking": 24712, "thousands": 25482, "actions": 697, "reaching": 20982, "goal": 10186, "assessing": 2059, "plans": 18949, "game": 9626, "lack": 12646, "hierarchy": 10692, "coupled": 5174, "incomprehensible": 11493, "internal": 12179, "distributed": 6766, "learned": 13745, "gradually": 10413, "course": 5176, "introduce": 12236, "technique": 25141, "hidden": 10685, "states": 23817, "identify": 11134, "formation": 9334, "subgoals": 24184, "agent": 1019, "evidence": 8067, "minutes": 15582, "executed": 8192, "perform": 18540, "qualitative": 20624, "predictions": 19366, "dota": 6967, "champions": 3439, "april": 1889, "2019": 106, "efficient": 7228, "scalable": 22477, "ecosystem": 7089, "robot": 22333, "highperformance": 10805, "computational": 4421, "built": 3053, "programming": 19981, "mujoco": 16883, "physics": 18905, "simulator": 23260, "combining": 4063, "easeofuse": 7073, "highlevel": 10753, "native": 17047, "addition": 755, "straightforward": 23885, "api": 1612, "support": 24405, "parallel": 18346, "computation": 4415, "multiple": 16951, "cores": 5049, "machines": 14942, "overall": 18102, "depending": 6129, "complexity": 4330, "environment": 7723, "faster": 8839, "compared": 4175, "popular": 19059, "abstractions": 430, "openais": 17793, "gym": 10535, "deepminds": 5918, "substantially": 24224, "reduces": 21324, "time": 25500, "algorithms": 1248, "fast": 8838, "realtime": 21028, "predictive": 19375, "control": 4930, "code": 3895, "demonstration": 6099, "videos": 27183, "introducing": 12268, "aspects": 2025, "creativity": 5239, "automatic": 2288, "poetry": 19002, "generation": 9918, "involves": 12347, "teaching": 25128, "automatically": 2311, "generate": 9753, "poetic": 19001, "corpus": 5060, "poems": 19000, "particular": 18424, "style": 24171, "approach": 1725, "finetunes": 9116, "extend": 8585, "prior": 19705, "creative": 5232, "elements": 7278, "express": 8571, "emotion": 7373, "elicit": 7281, "readers": 20994, "use": 26484, "dream": 7022, "able": 391, "correctly": 5097, "emotions": 7383, "joy": 12426, "875": 269, "85": 266, "percent": 18530, "respectively": 21933, "texts": 25400, "capture": 3197, "scores": 22581, "32": 157, "likert": 14107, "scale": 22482, "crowdsourced": 5286, "make": 14973, "cohmetrix": 4001, "tool": 25579, "outlining": 17999, "metrics": 15513, "gauge": 9668, "quality": 20635, "generated": 9821, "generating": 9889, "types": 26127, "chinese": 3727, "classical": 3777, "interesting": 12162, "topic": 25622, "field": 8947, "valuable": 26951, "literary": 14217, "cultural": 5312, "china": 3726, "familiar": 8825, "people": 18522, "characteristics": 3455, "structure": 23985, "ranging": 20917, "form": 9311, "sound": 23505, "meaning": 15180, "regarded": 21373, "ideal": 11116, "define": 5930, "unified": 26350, "format": 9330, "formulating": 9346, "samples": 22446, "integrating": 12040, "detailed": 6290, "information": 11734, "present": 19421, "simple": 23218, "method": 15319, "strengthen": 23933, "special": 23562, "emphasis": 7385, "forms": 9341, "longer": 14820, "body": 2936, "length": 13967, "preliminary": 19398, "experimental": 8335, "enhanced": 7625, "high": 10693, "content": 4760, "validating": 26945, "effectiveness": 7185, "proposed": 20343, "strategy": 23914, "incorporated": 11524, "influential": 11730, "developed": 6380, "university": 26383, "et": 7837, "al": 1222, "mirror": 15584, "affective": 999, "interface": 12167, "emotional": 7379, "introduces": 12263, "new": 17293, "engages": 7562, "user": 26620, "state": 23738, "inspired": 11929, "theory": 25456, "constructed": 4722, "aims": 1190, "expand": 8291, "users": 26651, "accessible": 474, "concepts": 4474, "ultimately": 26157, "reflection": 21365, "regulation": 21403, "uses": 26687, "classified": 3810, "facial": 8722, "expression": 8577, "recognition": 21260, "basis": 2590, "dynamically": 7056, "perceived": 18529, "used": 26549, "seed": 22655, "specially": 23575, "curated": 5321, "evaluate": 7867, "devices": 6433, "foster": 9356, "personalised": 18849, "meaningful": 15183, "experience": 8323, "individual": 11629, "sustained": 24485, "period": 18827, "revealed": 22201, "participants": 18413, "engage": 7559, "participant": 18412, "developing": 6390, "unique": 26362, "interpretation": 12209, "landscape": 12674, "neural": 17252, "scaling": 22500, "law": 13682, "dimension": 6611, "manifold": 15031, "loss": 14848, "achieved": 594, "welltrained": 27367, "networks": 17241, "scales": 22497, "powerlaw": 19281, "network": 17227, "parameters": 18371, "empirical": 7394, "holds": 10848, "wide": 27374, "variety": 27003, "modalities": 15666, "persist": 18839, "orders": 17950, "magnitude": 14946, "regression": 21388, "intrinsic": 12233, "predicts": 19383, "alpha": 1331, "approx": 1876, "crossentropy": 5277, "losses": 14853, "confirm": 4602, "independently": 11592, "measuring": 15201, "teacherstudent": 25126, "properties": 20262, "random": 20875, "teacher": 25122, "cnn": 3886, "image": 11175, "classifiers": 3816, "datasets": 5725, "gpttype": 10390, "common": 4092, "injection": 11850, "following": 9278, "lms": 14762, "focused": 9259, "injecting": 11849, "structured": 23989, "external": 8636, "resources": 21916, "hand": 10554, "joint": 12418, "pretraining": 19614, "scratch": 22589, "primary": 19696, "lm": 14757, "objective": 17621, "prohibitively": 20018, "computationally": 4435, "expensive": 8316, "posthoc": 19146, "catastrophic": 3263, "forgetting": 9309, "distributional": 6775, "complementing": 4266, "conceptual": 4481, "conceptnet": 4473, "corresponding": 5120, "open": 17758, "mind": 15558, "using": 26703, "adapter": 732, "glue": 10183, "benchmark": 2644, "paint": 18166, "picture": 18910, "deeper": 5910, "reveals": 22204, "outperform": 18008, "points": 19008, "type": 26121, "explicitly": 8471, "sourced": 23523, "augmentation": 2219, "subword": 24249, "units": 26372, "morphologically": 16853, "rich": 22271, "online": 17736, "asr": 2032, "recently": 21226, "proven": 20400, "powerful": 19266, "makes": 14995, "difficult": 6577, "apply": 1711, "single": 23268, "pass": 18454, "studies": 24035, "showed": 22995, "considerable": 4651, "transferred": 25885, "traditional": 25672, "ngrams": 17400, "pretrain": 19516, "finetune": 9076, "conversational": 4978, "center": 3301, "isolating": 12368, "languages": 13295, "causes": 3290, "vocabulary": 27267, "explosion": 8560, "called": 3087, "subwordbased": 24250, "statistically": 23833, "derived": 6157, "compare": 4160, "statistical": 23828, "tokenizers": 25560, "significantly": 23144, "wer": 27368, "greatly": 10463, "reducing": 21328, "size": 23291, "memory": 15257, "requirements": 21738, "demonstrate": 5977, "terms": 25219, "fewshot": 8915, "learner": 13754, "taskoriented": 24847, "dialogue": 6454, "connected": 4627, "modules": 16824, "nlu": 17453, "tracking": 25660, "dst": 7038, "policy": 19023, "dp": 6995, "nlg": 17402, "module": 16822, "fewshots": 8943, "cost": 5130, "collection": 4024, "solve": 23453, "problem": 19760, "differently": 6574, "radford": 20850, "gpt3": 10283, "brown": 3021, "2020": 107, "allow": 1308, "priming": 19699, "examples": 8122, "importantly": 11315, "highlight": 10756, "limitations": 14118, "discuss": 6680, "possible": 19135, "congruent": 4620, "gptbased": 10375, "document": 6839, "consists": 4693, "blocks": 2922, "encoding": 7504, "block": 2919, "decoding": 5846, "encoderdecoder": 7496, "standard": 23712, "inserted": 11898, "generates": 9883, "vector": 27115, "vectors": 27118, "believe": 2637, "way": 27301, "conversation": 4970, "understand": 26235, "paragraphs": 18344, "documents": 6851, "consist": 4673, "fewer": 8910, "smaller": 23355, "dimensional": 6612, "secondly": 22637, "note": 17520, "attention": 2157, "utilizes": 26910, "measure": 15188, "space": 23531, "transform": 25889, "matrices": 15154, "queries": 20695, "keys": 12481, "concept": 4471, "modifications": 16812, "increase": 11543, "sentences": 22791, "examining": 8112, "rhetorical": 22269, "capacities": 3180, "demonstrated": 6038, "impressive": 11328, "abilities": 305, "highquality": 10807, "discourse": 6658, "papers": 18330, "analyzed": 1475, "encoded": 7482, "date": 5784, "intersentential": 12219, "quantitatively": 20682, "evaluates": 7927, "examine": 8100, "rhetoric": 22268, "encode": 7480, "linguistic": 14188, "features": 8866, "revealing": 22203, "richer": 22273, "intermediate": 12174, "apparently": 1621, "suggest": 24299, "explanation": 8448, "drawing": 7015, "philosophy": 18892, "avenue": 2388, "quantifying": 20674, "texttotext": 25420, "range": 20887, "masked": 15093, "token": 25547, "bertstyle": 2743, "span": 23539, "infilling": 11718, "t5style": 24668, "relational": 21444, "everyday": 8066, "need": 17167, "augment": 2216, "generative": 10046, "contrastive": 4897, "selfsupervised": 22711, "incrementally": 11587, "furthermore": 9548, "develop": 6368, "unify": 26355, "reinforce": 21407, "extensive": 8593, "conceptaware": 4472, "calm": 3089, "pack": 18158, "relying": 21528, "graphs": 10444, "yielding": 27672, "small": 23332, "consistent": 4677, "margin": 15069, "comparable": 4140, "serve": 22854, "plugandplay": 18993, "improving": 11415, "reasoning": 21050, "really": 21025, "generalize": 9736, "transformerbased": 25936, "led": 13947, "processing": 19885, "typically": 26141, "evaluated": 7910, "framed": 9390, "multiplechoice": 16985, "instances": 11946, "according": 489, "leaderboards": 13709, "hosted": 10872, "institute": 11957, "approaching": 1869, "humanlike": 11034, "80": 259, "generalizes": 9740, "issue": 12371, "designing": 6240, "conducting": 4581, "rigorous": 22277, "scientific": 22555, "controls": 4953, "clear": 3829, "moderate": 16789, "changes": 3447, "setup": 22928, "fact": 8744, "susceptible": 24481, "bias": 2803, "selective": 22693, "consistency": 4674, "analyses": 1385, "insight": 11902, "paraphrase": 18393, "representing": 21693, "predicting": 19342, "spans": 23542, "exemplars": 8198, "longstanding": 14833, "serves": 22860, "essential": 7808, "role": 22365, "despite": 6254, "encouraging": 7523, "confront": 4614, "generic": 10115, "utterance": 26925, "presents": 19483, "novel": 17535, "paraphrasing": 18399, "template": 25189, "masking": 15099, "firstorder": 9203, "irrelevant": 12364, "changed": 3446, "templates": 25191, "competitive": 4249, "baselines": 2570, "especially": 7798, "preservation": 19502, "aspect": 2021, "prevent": 19657, "biased": 2821, "referred": 21351, "secondorder": 22638, "distribution": 6768, "visibility": 27210, "tokens": 25562, "allows": 1318, "provide": 20409, "paraphrased": 18396, "adjusting": 850, "scaleup": 22499, "alternatives": 1349, "equivalent": 7762, "preserving": 19507, "democratizing": 5974, "preparation": 19409, "ai": 1075, "help": 10649, "automate": 2263, "burden": 3060, "scientists": 22571, "practitioners": 19308, "crowd": 5284, "workers": 27576, "answer": 1530, "presenting": 19477, "denoising": 6110, "autoencoder": 2259, "tuple": 26092, "label": 12621, "corrupting": 5125, "reconstruct": 21287, "original": 17964, "adopts": 875, "translation": 25978, "encoder": 7484, "similar": 23187, "autoregressive": 2337, "decoder": 5843, "leading": 13710, "cleaning": 3828, "autocompletion": 2258, "schema": 22530, "matching": 15129, "value": 26964, "normalization": 17507, "transformation": 25891, "annotation": 1508, "complement": 4263, "appealing": 1623, "techniques": 25149, "collaborative": 4008, "entity": 7705, "resolution": 21899, "questionanswering": 20770, "extraction": 8668, "series": 22848, "opportunities": 17885, "advance": 880, "uncertainty": 26172, "surprisal": 24452, "jointly": 12421, "deliver": 5958, "exploiting": 8478, "widely": 27395, "studied": 24031, "datadriven": 5637, "approaches": 1827, "existing": 8241, "does": 6859, "actual": 715, "mechanism": 15208, "break": 2976, "distinct": 6746, "components": 4341, "explore": 8494, "relationship": 21448, "incongruity": 11494, "audience": 2207, "expectations": 8308, "increasingly": 11569, "feed": 8884, "calculate": 3076, "values": 26972, "2021": 108, "capabilities": 3102, "wordlevel": 27453, "adversarial": 970, "dominant": 6958, "solving": 23473, "maximize": 15167, "parameter": 18352, "sharing": 22951, "trains": 25855, "alternative": 1341, "extends": 8590, "earlier": 7060, "prompt": 20079, "attempts": 2153, "concatenated": 4467, "instruct": 11962, "specified": 23637, "trainable": 25711, "public": 20549, "leaderboard": 13708, "initialized": 11841, "humanreadable": 11056, "prompts": 20184, "setting": 22903, "outperforming": 18025, "superglue": 24368, "sequencetosequence": 22835, "sequence": 22815, "rewriting": 22266, "proposing": 20374, "seq2seq": 22813, "provides": 20482, "finegrained": 9069, "signals": 23081, "rewrite": 22264, "imperfect": 11259, "ground": 10470, "truth": 26053, "source": 23506, "t5": 24656, "observe": 17649, "generator": 10111, "indicates": 11616, "perspective": 18867, "transferring": 25886, "impact": 11225, "phrase": 18899, "email": 7301, "composition": 4349, "behaviour": 2631, "nonnative": 17489, "english": 7587, "writers": 27625, "indepth": 11593, "multiword": 17008, "suggestion": 24319, "choices": 3742, "regarding": 21374, "writing": 27627, "compares": 4215, "numbers": 17602, "tradeoff": 25666, "efficiency": 7218, "vs": 27279, "ideation": 11121, "emerging": 7362, "literature": 14218, "editor": 7104, "prototype": 20391, "refined": 21355, "30": 148, "composed": 4344, "conditions": 4539, "reveal": 22192, "benefits": 2705, "costs": 5149, "suggesting": 24315, "phrases": 18900, "speakers": 23559, "insights": 11906, "patterns": 18494, "implications": 11268, "design": 6178, "interactive": 12146, "vision": 27213, "supporting": 24420, "instead": 11953, "exploring": 8547, "seen": 22666, "proliferation": 20030, "mechanisms": 15217, "rise": 22282, "previously": 19681, "architectures": 1913, "lstm": 14893, "ran": 20874, "vanishing": 26978, "gradient": 10403, "distance": 6734, "positions": 19114, "remained": 21533, "linear": 14178, "sequential": 22840, "hindered": 10826, "parallelization": 18349, "processed": 19873, "era": 7764, "carry": 3230, "burgeoning": 3062, "area": 1923, "rapid": 20932, "developments": 6421, "summarization": 24339, "derives": 6158, "achieve": 555, "groundbreaking": 10474, "minimalist": 15568, "systematic": 24549, "perception": 18533, "syntax": 24519, "semantics": 22748, "humans": 11058, "exceptional": 8164, "master": 15115, "arithmetic": 1946, "handwritten": 10576, "hint": 10830, "capability": 3154, "generalizable": 9723, "levels": 13987, "tasked": 24845, "images": 11198, "structurally": 23984, "combined": 4052, "valid": 26935, "realized": 21023, "afford": 1002, "weakly": 27326, "manner": 15037, "focusing": 9266, "carefully": 3216, "interpolation": 12199, "extrapolation": 8695, "wrt": 27647, "determine": 6361, "rapidly": 20948, "complex": 4284, "scenarios": 22512, "comprehend": 4356, "undertake": 26323, "rnns": 22317, "chain": 3323, "thought": 25476, "prompting": 20132, "indicate": 11602, "struggle": 23998, "extrapolate": 8693, "longrange": 14828, "dependency": 6127, "exhibit": 8208, "gap": 9638, "humanlevel": 11031, "discover": 6662, "infeasible": 11680, "merely": 15294, "contributes": 4916, "zeroshot": 27692, "exhibits": 8233, "boosts": 2948, "findings": 9037, "great": 10450, "community": 4129, "offensiveness": 17684, "highly": 10789, "subjective": 24192, "senses": 22763, "pragmatic": 19310, "competence": 4242, "accurately": 547, "detecting": 6310, "humorous": 11086, "offensive": 17683, "compelling": 4239, "recommendation": 21273, "personalized": 18855, "moderation": 16793, "labeled": 12625, "domain": 6880, "explored": 8533, "explores": 8539, "ensembles": 7666, "associated": 2099, "rating": 20967, "reasonable": 21045, "ranked": 20924, "subtask": 24239, "1b": 88, "consistently": 4682, "33": 161, "remaining": 21534, "subtasks": 24240, "extractive": 8686, "abstractive": 431, "explanations": 8451, "factchecking": 8749, "evaluation": 7952, "construction": 4726, "claims": 3766, "assisting": 2094, "applications": 1653, "experiment": 8329, "unsupervised": 26436, "graphbased": 10439, "algorithm": 1235, "evaluations": 8045, "misinformation": 15593, "political": 19032, "health": 10628, "domains": 6913, "promise": 20043, "rulebased": 22397, "heuristics": 10684, "russian": 22406, "important": 11294, "active": 703, "development": 6397, "fair": 8791, "comparison": 4225, "modern": 16794, "driven": 7026, "worlds": 27609, "engineering": 7569, "teams": 25133, "collaborate": 4004, "claimed": 3764, "close": 3855, "higher": 10729, "encouraged": 7521, "thorough": 25466, "cues": 5308, "machine": 14897, "exploit": 8475, "contain": 4740, "artifacts": 1974, "certain": 3311, "rules": 22399, "achieving": 654, "rankings": 20929, "published": 20582, "vulnerable": 27284, "shallow": 22939, "come": 4070, "notorious": 17530, "likely": 14104, "sota": 23496, "real": 21001, "recommendations": 21276, "representative": 21687, "progress": 19998, "implicit": 11278, "derive": 6156, "entirely": 7695, "accurate": 539, "cooccurrence": 5029, "statistics": 23835, "represent": 21665, "reason": 21044, "bart": 2454, "function": 9520, "entities": 7697, "situations": 23290, "evolve": 8083, "functional": 9524, "similarities": 23206, "dynamic": 7053, "relations": 21446, "manipulated": 15033, "predictable": 19338, "effects": 7213, "supported": 24416, "simulation": 23254, "behavior": 2610, "available": 2364, "timedial": 25528, "temporal": 25193, "dialog": 6447, "conversations": 4998, "events": 8061, "turn": 26097, "requires": 21742, "massive": 15105, "dialogs": 6453, "remains": 21536, "largely": 13607, "underexplored": 26191, "formulate": 9342, "cloze": 3878, "23": 131, "absolute": 421, "fail": 8777, "rely": 21518, "motivating": 16862, "robust": 22342, "simultaneous": 23262, "adaptation": 725, "slot": 23326, "filling": 8985, "imperative": 11258, "strong": 23956, "alignment": 1277, "sacrifices": 22408, "inherent": 11827, "scalability": 22476, "paradigm": 18334, "simultaneously": 23263, "modifying": 16816, "formulation": 9347, "preserves": 19505, "leverages": 14008, "opendomain": 17814, "adapts": 746, "inductive": 11657, "biases": 2824, "reformulating": 21370, "leverage": 13992, "achieves": 619, "gains": 9623, "settings": 22908, "f1": 8705, "score": 22575, "improvement": 11386, "highlights": 10781, "extracting": 8665, "operations": 17878, "industries": 11669, "finance": 9026, "banking": 2443, "characterized": 3461, "repetitive": 21622, "business": 3064, "workflows": 27580, "rarely": 20958, "fully": 9509, "automated": 2265, "formally": 9329, "exist": 8238, "describing": 6165, "procedures": 19830, "company": 4137, "plan": 18939, "possibility": 19132, "descriptions": 6168, "leveraged": 14006, "utility": 26892, "generalized": 9739, "extractions": 8685, "directly": 6636, "quite": 20841, "initial": 11834, "point": 19003, "art": 1957, "direction": 6624, "compression": 4401, "adoption": 868, "deployment": 6143, "constraints": 4709, "edge": 7090, "rising": 22289, "footprint": 9291, "compress": 4396, "leveraging": 14020, "emphasize": 7386, "importance": 11285, "compressed": 4397, "respect": 21928, "taskagnostic": 24843, "commonly": 4103, "perplexity": 18835, "squad": 23686, "textual": 25425, "distributions": 6779, "contrasts": 4906, "market": 15080, "topics": 25627, "analytics": 1464, "presently": 19482, "methodologically": 15410, "belong": 2642, "extent": 8629, "possess": 19129, "focuses": 9264, "addressing": 834, "segment": 22671, "broader": 3016, "described": 6161, "applying": 1716, "ml": 15650, "ii": 11160, "variation": 26991, "kullbackleibler": 12618, "divergence": 6782, "application": 1637, "kl": 12492, "corpora": 5053, "naturally": 17129, "occurring": 17680, "identifies": 11133, "address": 788, "sparse": 23546, "practice": 19303, "classroom": 3824, "artificially": 1994, "aligned": 1263, "modelbased": 15971, "chatbot": 3476, "advent": 963, "offtheshelf": 17718, "intelligent": 12091, "home": 10854, "products": 19958, "internet": 12188, "researchers": 21881, "smart": 23364, "computing": 4461, "easier": 7074, "access": 464, "aibased": 1151, "chatbots": 3485, "potential": 19157, "services": 22867, "mental": 15281, "retrievalbased": 22162, "requiring": 21764, "respond": 21940, "constrained": 4703, "answers": 1593, "appropriate": 1872, "reflect": 21360, "patients": 18489, "circumstances": 3752, "generativebased": 10110, "session": 22871, "transcripts": 25863, "family": 8828, "individuals": 11640, "dementia": 5968, "basic": 2587, "qualities": 20634, "measurements": 15198, "proportion": 20270, "outputs": 18083, "response": 21943, "created": 5211, "negative": 17201, "positive": 19115, "reasons": 21117, "solutions": 23442, "investigations": 12334, "demonstrates": 6080, "gptneo": 10382, "appropriately": 1875, "stepbystep": 23853, "demonstrations": 6102, "teach": 25121, "execute": 8190, "mathematical": 15146, "proved": 20398, "deepmind": 5917, "mathematics": 15151, "reported": 21658, "40": 176, "million": 15546, "200": 97, "long": 14808, "division": 6831, "reporting": 21659, "smallest": 23362, "constructing": 4724, "sets": 22897, "useful": 26611, "enabling": 7468, "coax": 3891, "multistep": 16992, "dimensions": 6614, "representational": 21675, "measures": 15199, "vital": 27257, "euclidean": 7858, "successfully": 24279, "cluster": 3880, "applied": 1692, "13": 47, "dominate": 6960, "striking": 23951, "mismatch": 15601, "postprocessing": 19149, "standardization": 23725, "underlying": 26206, "argue": 1932, "accounting": 496, "similaritybased": 23215, "successful": 24276, "conventional": 4959, "numerical": 17604, "required": 21735, "designed": 6223, "preserve": 19503, "outperformed": 18024, "predecessors": 19322, "consider": 4644, "order": 17939, "minimum": 15576, "maximum": 15170, "sorting": 23495, "reasonably": 21047, "considerably": 4659, "crosslingual": 5279, "orthogonal": 17982, "structural": 23981, "probes": 19755, "multilingual": 16914, "ongoing": 17733, "debate": 5798, "shared": 22947, "probe": 19753, "projection": 20025, "monolingual": 16840, "annotated": 1500, "lexical": 14037, "wordnet": 27454, "diverse": 6786, "closely": 3867, "needed": 17192, "beneficial": 2700, "separately": 22809, "parsing": 18407, "employing": 7435, "proverbs": 20407, "abstract": 427, "exciting": 8179, "analogical": 1378, "narratives": 17039, "contains": 4751, "minimal": 15563, "ensuring": 7675, "surfacelevel": 24433, "succeed": 24251, "proverb": 20406, "narrative": 17037, "identifying": 11145, "motifs": 16854, "pose": 19088, "challenges": 3366, "understood": 26320, "ambiguous": 1359, "probing": 19756, "ambiguities": 1357, "arise": 1940, "beginning": 2606, "compatible": 4238, "inspect": 11921, "inputs": 11890, "modulated": 16820, "disambiguating": 6648, "stochastic": 23866, "completions": 4283, "estimate": 7826, "probability": 19747, "assigns": 2086, "unlike": 26394, "scoringbased": 22586, "targeted": 24735, "hypothesized": 11106, "researcher": 21880, "ambiguity": 1358, "materials": 15135, "track": 25659, "degree": 5946, "varies": 26999, "constructions": 4730, "occasional": 17674, "errors": 7789, "areas": 1924, "truthfulqa": 26059, "mimic": 15552, "falsehoods": 8823, "truthful": 26055, "questions": 20779, "comprises": 4408, "38": 170, "categories": 3266, "politics": 19043, "crafted": 5195, "false": 8817, "belief": 2634, "misconception": 15589, "avoid": 2406, "imitating": 11216, "tested": 25263, "t5based": 24666, "58": 215, "94": 284, "misconceptions": 15590, "deceive": 5810, "largest": 13653, "generally": 9744, "improves": 11401, "expected": 8309, "promising": 20047, "truthfulness": 26058, "imitation": 11218, "web": 27337, "ner": 17220, "numerous": 17608, "relevant": 21488, "necessarily": 17155, "facilitate": 8727, "annual": 1524, "quarterly": 20693, "reports": 21660, "1500": 60, "companies": 4136, "kind": 12488, "containing": 4746, "1m": 91, "35": 164, "combines": 4057, "inferencing": 11713, "220m": 127, "rougel": 22387, "27": 142, "oneshot": 17729, "chatgpt": 3494, "obtains": 17672, "highlighting": 10772, "difficulty": 6590, "49": 193, "t5large": 24667, "headline": 10625, "vanilla": 26975, "version": 27160, "surprise": 24454, "surpasses": 24443, "llm": 14249, "15": 57, "hope": 10862, "encourage": 7515, "sophisticated": 23488, "financial": 9028, "carbon": 3206, "emissions": 7371, "benchmarking": 2680, "times": 25531, "definitive": 5938, "growing": 10492, "increases": 11556, "consequently": 4641, "footprints": 9292, "look": 14839, "reduce": 21314, "environmental": 7728, "assess": 2040, "pairs": 18169, "difference": 6484, "analyze": 1465, "pipeline": 18923, "optimized": 17925, "actors": 713, "learners": 13755, "rl": 22303, "implementations": 11263, "robotics": 22339, "care": 3211, "consuming": 4738, "poor": 19049, "accesses": 472, "synchronization": 24503, "overheads": 18130, "multicore": 16892, "replay": 21634, "buffer": 3028, "key": 12456, "component": 4338, "facilitates": 8738, "storage": 23875, "interactions": 12137, "sampling": 22450, "sum": 24335, "tree": 26016, "supports": 24427, "asynchronous": 2129, "priority": 19724, "updates": 26459, "layout": 13692, "store": 23876, "nodes": 17462, "cache": 3072, "employs": 7440, "concurrently": 4523, "collect": 4016, "descent": 6160, "collected": 4018, "dqn": 6996, "accelerating": 449, "gpu": 10393, "platform": 18950, "message": 15299, "passing": 18465, "platforms": 18954, "implicitly": 11279, "primitive": 19700, "build": 3033, "messaging": 15302, "twitter": 26111, "loosely": 14843, "composes": 4346, "scheme": 22531, "bits": 2894, "fixing": 9215, "scenario": 22511, "forced": 9295, "systemlevel": 24572, "algorithmic": 1246, "low": 14860, "capacity": 3183, "transforms": 25968, "naturallanguage": 17128, "suitable": 24329, "posting": 19147, "adversaries": 982, "view": 27189, "posts": 19150, "suite": 24331, "heuristic": 10683, "security": 22647, "tradeoffs": 25668, "operational": 17876, "vietnamese": 27187, "garnered": 9655, "step": 23845, "computer": 4444, "excellent": 8159, "successes": 24274, "took": 25577, "base": 2456, "good": 10200, "proper": 20258, "tone": 25575, "drift": 7024, "inconsistency": 11496, "cohesion": 4000, "additional": 762, "constrain": 4701, "entire": 7691, "examined": 8110, "quantitative": 20676, "losing": 14847, "scoring": 22584, "rule": 22396, "dictionary": 6480, "publish": 20581, "bat": 2591, "26": 140, "styles": 24176, "exploration": 8480, "investigation": 12333, "amounts": 1365, "aim": 1174, "critical": 5251, "artefacts": 1962, "account": 494, "variations": 26996, "factors": 8753, "acquiring": 685, "supervision": 24395, "insufficient": 12032, "innovation": 11855, "aid": 1153, "stimuli": 23865, "computers": 4459, "focus": 9250, "spatial": 23552, "early": 7065, "phase": 18883, "involve": 12343, "verbal": 27127, "korean": 12615, "survey": 24467, "2017": 104, "attentionbased": 2190, "emergence": 7339, "methodologies": 15411, "appear": 1624, "past": 18471, "specialized": 23568, "appeared": 1626, "intend": 12099, "numerically": 17607, "qualitatively": 20632, "plms": 18988, "ethical": 7846, "social": 23374, "risks": 22293, "harm": 10586, "risk": 22290, "responsible": 21978, "posed": 19092, "established": 7820, "anticipated": 1609, "analysed": 1384, "multidisciplinary": 16896, "expertise": 8431, "science": 22545, "linguistics": 14203, "sciences": 22554, "outline": 17996, "discrimination": 6673, "exclusion": 8184, "toxicity": 25645, "hazards": 10617, "iii": 11162, "harms": 10594, "malicious": 15016, "humancomputer": 11014, "interaction": 12129, "automation": 2329, "concerns": 4492, "stereotypes": 23861, "unfair": 26340, "norms": 17512, "toxic": 25641, "group": 10484, "second": 22628, "private": 19735, "leaks": 13726, "inferring": 11716, "sensitive": 22766, "addresses": 829, "arising": 1945, "misleading": 15599, "trust": 26048, "fourth": 9383, "considers": 4672, "try": 26060, "cause": 3288, "llms": 14345, "underpin": 26220, "interact": 12121, "unsafe": 26423, "manipulation": 15035, "deception": 5813, "discusses": 6701, "job": 12415, "disparate": 6717, "effect": 7130, "groups": 10487, "communities": 4128, "total": 25639, "review": 22213, "21": 123, "origin": 17963, "mitigation": 15636, "lastly": 13655, "responsibilities": 21976, "implementing": 11265, "mitigations": 15639, "collaboration": 4006, "participation": 18423, "directions": 6625, "expanding": 8294, "toolkit": 25596, "outlined": 17997, "scripts": 22597, "script": 22595, "recognized": 21270, "manually": 15049, "induce": 11651, "2013": 102, "interested": 12161, "end": 7526, "event": 8058, "repeated": 21618, "induction": 11655, "unseen": 26424, "cake": 3075, "postprocessed": 19148, "robertabased": 22331, "filter": 8990, "remove": 21605, "repetitions": 21621, "reorder": 21614, "temporally": 25200, "manual": 15039, "yields": 27673, "substantial": 24216, "blue": 2927, "room": 22376, "offering": 17696, "inducing": 11654, "mixtureofexperts": 15648, "densetosparse": 6117, "gate": 9662, "moe": 16829, "routing": 22394, "experts": 8435, "pieces": 18913, "easily": 7077, "keeping": 12448, "constant": 4696, "fixed": 9213, "gating": 9667, "topk": 25634, "suffering": 24291, "unstable": 26431, "harmful": 10588, "convergence": 4965, "endtoend": 7543, "starts": 23737, "expert": 8423, "evolves": 8085, "mainly": 14955, "phases": 18885, "adaptive": 742, "activate": 699, "decouples": 5865, "continues": 4868, "permanent": 18829, "begins": 2607, "dense": 6115, "adaptively": 743, "conducted": 4570, "hash": 10608, "revolutionized": 22237, "expressive": 8581, "extensively": 8624, "cope": 5037, "provided": 20475, "output": 18068, "usage": 26480, "languagespecific": 13314, "brazilian": 2973, "portuguese": 19087, "purpose": 20589, "article": 1963, "strategies": 23894, "aggregating": 1064, "include": 11438, "aggregation": 1065, "opensource": 17848, "predefined": 19323, "validation": 26946, "reproducibility": 21702, "highest": 10749, "rocauc": 22364, "majority": 14969, "nonetheless": 17477, "represents": 21694, "creation": 5227, "crowdsourcing": 5289, "crafting": 5199, "diversity": 6824, "brings": 3004, "evaluative": 8053, "starting": 23735, "nli": 17404, "cartography": 3234, "instructs": 12028, "compose": 4343, "filtered": 8992, "resulting": 22001, "strengths": 23935, "remarkably": 21597, "outofdomain": 18004, "11": 33, "4x": 196, "augmented": 2228, "humanai": 11004, "offer": 17685, "unprecedented": 26413, "contextdependent": 4828, "grasp": 10447, "interpreted": 12212, "curating": 5323, "analyzing": 1478, "hci": 10618, "examinations": 8099, "gpt3s": 10331, "argumentative": 1938, "captures": 3202, "63": 228, "sessions": 22873, "contribution": 4922, "collaborator": 4014, "definitions": 5936, "principled": 19703, "discussion": 6704, "promises": 20046, "pitfalls": 18927, "relation": 21440, "replaying": 21636, "planners": 18943, "actionable": 695, "embodied": 7323, "act": 688, "environments": 7730, "grounding": 10478, "expressed": 8572, "chosen": 3748, "fridge": 9491, "surprisingly": 24459, "prompted": 20129, "decompose": 5856, "naively": 17022, "map": 15056, "precisely": 19316, "procedure": 19829, "translates": 25974, "virtualhome": 27206, "executability": 8187, "correctness": 5101, "sign": 23078, "website": 27346, "blackbox": 2897, "increasing": 11558, "generalpurpose": 9745, "necessitates": 17163, "establish": 7816, "discrete": 6670, "resonate": 21903, "cloud": 3876, "infrastructure": 11815, "adapt": 719, "efficiently": 7250, "optimizes": 17928, "gradients": 10409, "attack": 2135, "misuse": 15615, "failure": 8786, "preferable": 19388, "whitebox": 27371, "counterpart": 5166, "infrastructures": 11816, "constraint": 4708, "variancereduced": 26983, "categorical": 3265, "light": 14058, "tune": 26064, "querying": 20713, "bounded": 2963, "calls": 3088, "case": 3236, "comprehensively": 4392, "sizes": 23304, "lengths": 13972, "optimization": 17912, "transferability": 25883, "documenting": 6850, "contextually": 4857, "sources": 23524, "efforts": 7261, "prioritization": 19720, "resulted": 21999, "rights": 22275, "subjects": 24196, "collections": 4027, "considering": 4670, "documentation": 6847, "tools": 25597, "methodology": 15412, "humancentered": 11013, "project": 20020, "initiative": 11845, "identified": 11128, "arabic": 1891, "french": 9483, "indic": 11600, "indonesian": 11649, "spanish": 23540, "metadata": 15307, "effort": 7258, "gathering": 9666, "organized": 17960, "resource": 21905, "regions": 21385, "lessons": 13975, "endeavor": 7535, "universal": 26376, "disclose": 6655, "personal": 18845, "traits": 25858, "age": 1012, "gender": 9680, "race": 20846, "psychology": 20546, "classify": 3821, "attributes": 2203, "presented": 19471, "classifying": 3823, "binary": 2864, "criminal": 5245, "classes": 3775, "frozen": 9498, "backpropagation": 2429, "acts": 714, "classifier": 3811, "encrypted": 7525, "hypothesize": 11105, "metalearning": 15309, "gained": 9609, "property": 20267, "encodes": 7503, "worldly": 27608, "reduced": 21322, "added": 750, "share": 22946, "boundary": 2962, "evades": 7864, "privacypreserving": 19733, "counts": 5172, "selection": 22684, "undesirable": 26326, "wikipedia": 27420, "books": 2940, "newswire": 17393, "anchors": 1486, "selecting": 22680, "filtering": 8993, "school": 22540, "articles": 1969, "written": 27636, "students": 24021, "country": 5171, "preferred": 19393, "schools": 22543, "located": 14787, "educated": 7107, "urban": 26471, "codes": 3965, "filters": 8994, "measurement": 15197, "unaligned": 26163, "sensible": 22764, "factuality": 8770, "entails": 7686, "ideology": 11151, "construct": 4713, "transparency": 26004, "inclusion": 11486, "offline": 17710, "tackling": 24689, "introduction": 12271, "suffers": 24292, "slow": 23328, "speeds": 23653, "advantage": 956, "speed": 23651, "reward": 22254, "potentials": 19252, "inspires": 11939, "completely": 4275, "scraped": 22587, "india": 11599, "lacks": 12667, "forward": 9353, "building": 3038, "inpars": 11859, "retrieval": 22146, "witnessed": 27432, "ingredient": 11825, "ms": 16874, "marco": 15065, "enabled": 7457, "ir": 12361, "equally": 7751, "domainspecific": 6946, "opposed": 17893, "harness": 10598, "synthetic": 24534, "generators": 10112, "solely": 23433, "bm25": 2929, "retrievers": 22176, "httpsgithubcomzetaalphavectorinpars": 10883, "editing": 7097, "factual": 8761, "associations": 2113, "recall": 21119, "correspond": 5118, "computations": 4438, "causal": 3277, "intervention": 12220, "neuron": 17287, "activations": 702, "feedforward": 8902, "subject": 24186, "hypothesis": 11101, "association": 2112, "modify": 16815, "weights": 27354, "update": 26456, "zsre": 27727, "counterfactual": 5160, "assertions": 2038, "maintains": 14963, "specificity": 23636, "sacrifice": 22407, "storing": 23880, "direct": 6619, "feasible": 8854, "visualizations": 27252, "demo": 5969, "notebook": 17521, "memorization": 15250, "memorize": 15254, "parts": 18451, "memorized": 15255, "verbatim": 27133, "violates": 27198, "privacy": 19729, "exposing": 8567, "degrades": 5945, "hurts": 11092, "fairness": 8795, "loglinear": 14806, "relationships": 21451, "quantify": 20672, "grows": 10504, "example": 8114, "duplicated": 7048, "situation": 23288, "complicated": 4337, "generalizing": 9742, "families": 8827, "prevalent": 19654, "believed": 2640, "worse": 27612, "search": 22608, "continued": 4866, "hundreds": 11087, "billions": 2857, "foundation": 9358, "remain": 21530, "unusable": 26446, "fields": 8972, "prevents": 19660, "possibly": 19143, "forces": 9296, "organizations": 17958, "maintain": 14959, "separate": 22807, "billion": 2853, "concurrent": 4522, "175": 72, "measured": 15193, "beir": 2633, "files": 8984, "freely": 9481, "capturing": 3203, "failures": 8790, "cognitive": 3985, "openended": 17829, "outputting": 18095, "class": 3772, "write": 27620, "summaries": 24336, "working": 27582, "asses": 2039, "reliability": 21503, "erroneous": 7774, "draw": 7007, "inspiration": 11925, "deviation": 6430, "rational": 20970, "judgement": 12429, "motivation": 16864, "hypotheses": 11100, "codex": 3972, "predictably": 19339, "adjusts": 854, "frequent": 9486, "highimpact": 10752, "incorrectly": 11542, "characterize": 3460, "behave": 2609, "tracing": 25656, "education": 7108, "refers": 21353, "estimating": 7830, "responses": 21948, "limitation": 14112, "treat": 26010, "student": 24011, "incorrect": 11533, "ignores": 11158, "exact": 8092, "studying": 24168, "grounded": 10475, "solution": 23437, "program": 19973, "synthesis": 24523, "realworld": 21031, "validate": 26936, "educational": 7123, "sensorimotor": 22772, "multidimensional": 16895, "judgments": 12433, "raises": 20861, "isolation": 12369, "table": 24670, "attempted": 2149, "112": 35, "rated": 20964, "448": 185, "ratings": 20968, "overlapping": 18132, "predict": 19327, "relatedness": 21438, "shedding": 22958, "theoretical": 25447, "lowrank": 14884, "softmax": 23420, "mt": 16880, "receives": 21130, "representation": 21667, "dimensionality": 6613, "impossible": 11323, "predicted": 19340, "irrespective": 12366, "empirically": 7417, "happens": 10578, "ask": 2007, "happen": 10577, "practical": 19284, "detect": 6299, "150": 59, "infrequent": 11817, "unlikely": 26402, "gradientfree": 10408, "editbased": 7094, "instruction": 11972, "instructions": 11994, "aimed": 1183, "gradientbased": 10407, "tuning": 26068, "timeconsuming": 25520, "extremely": 8697, "demanding": 5966, "instructional": 11987, "takes": 24707, "returns": 22186, "edited": 7095, "allowing": 1312, "instructgpt": 11965, "percentage": 18531, "opt": 17895, "bloom": 2923, "flant5": 9221, "kshot": 12617, "notably": 17519, "purely": 20588, "examplebased": 8121, "controlling": 4951, "compute": 4439, "budget": 3027, "edits": 7105, "simplify": 23244, "incoherent": 11490, "vast": 27106, "valence": 26934, "correspondence": 5119, "examines": 8111, "contextualization": 4846, "tokenization": 25557, "incorporate": 11520, "closer": 3872, "diverge": 6781, "rho": 22270, "55": 209, "77": 252, "tokenized": 25558, "46": 189, "indicating": 11618, "presence": 19420, "differs": 6576, "singly": 23284, "neurons": 17288, "having": 10612, "rest": 21982, "mask": 15092, "gpt2s": 10282, "recovered": 21296, "principal": 19701, "76": 251, "50": 197, "45": 186, "10": 17, "weat": 27334, "tests": 25275, "differences": 6485, "structures": 23996, "illustrated": 11168, "reproduce": 21696, "processes": 19874, "unclear": 26175, "reuse": 22189, "instance": 11943, "plagiarism": 18934, "idea": 11115, "strongly": 23978, "degrees": 5947, "vary": 27097, "informing": 11812, "owners": 18153, "core": 5043, "ideas": 11118, "exacerbate": 8089, "raising": 20870, "indiscriminately": 11625, "pursuing": 20596, "cast": 3256, "doubt": 6969, "practicality": 19300, "missioncritical": 15610, "urge": 26472, "discussions": 6707, "observed": 17653, "phenomena": 18887, "mixture": 15646, "relied": 21513, "heavily": 10640, "elaborate": 7265, "usually": 26887, "recurrent": 21301, "unwieldy": 26453, "fit": 9206, "dependent": 6128, "mixing": 15645, "selfattention": 22698, "affect": 993, "mlm": 15656, "far": 8832, "investigated": 12315, "learns": 13938, "linguistically": 14200, "motivated": 16859, "acquire": 676, "intuitive": 12280, "hard": 10580, "guess": 10514, "ones": 17726, "surprising": 24456, "informed": 11809, "limited": 14146, "recalling": 21121, "factually": 8771, "tend": 25201, "suffer": 24285, "knowledgeintensive": 12604, "remedies": 21599, "normally": 17509, "costly": 5146, "modification": 16811, "local": 14780, "interacting": 12127, "continuously": 4874, "knowledgeaware": 12602, "guide": 10521, "confirms": 4606, "kids": 12487, "alleviates": 1300, "exposure": 8568, "stable": 23696, "dialogues": 6479, "lowresource": 14888, "african": 1008, "fraught": 9475, "enable": 7453, "contribute": 4907, "swahili": 24489, "turns": 26101, "translate": 25972, "portion": 19085, "multidomain": 16898, "multiwoz": 17009, "subsequently": 24211, "modelling": 15992, "dialogpt": 6451, "blenderbot": 2911, "singleturn": 23283, "votes": 27275, "interannotator": 12155, "agreement": 1073, "host": 10871, "huggingface": 10891, "hub": 10884, "sql": 23684, "engine": 7565, "internals": 12186, "customized": 5386, "decomposes": 5859, "enriched": 7657, "userprovided": 26650, "database": 5630, "query": 20700, "ways": 27314, "knowledgebased": 12603, "latest": 13670, "artificial": 1975, "intelligence": 12061, "uspto": 26885, "patent": 18480, "aigenerated": 1169, "concise": 4505, "understandable": 26259, "synthesize": 24526, "controllable": 4939, "toy": 25650, "varied": 26998, "novelty": 17576, "biologically": 2878, "biological": 2877, "evolved": 8084, "millions": 15549, "technical": 25134, "leads": 13716, "bioinspired": 2876, "biology": 2880, "hinders": 10828, "designers": 6239, "bridge": 2985, "proposes": 20369, "plm": 18987, "retrieve": 22163, "analogy": 1382, "evaluators": 8055, "correlation": 5112, "car": 3205, "tailor": 24697, "promptbased": 20123, "controlled": 4942, "ctg": 5306, "satisfy": 22464, "desirable": 6244, "utilize": 26904, "resort": 21904, "extra": 8652, "attribute": 2200, "short": 22972, "continuous": 4871, "guides": 10532, "prespecified": 19509, "experimentally": 8363, "simply": 23246, "multiattribute": 16890, "retraining": 22143, "fluency": 9242, "decrease": 5866, "position": 19106, "sensitivity": 22770, "concatenating": 4468, "enhance": 7610, "combinations": 4049, "connector": 4633, "attributespecific": 2205, "performances": 18805, "008": 2, "flexible": 9230, "paths": 18486, "emerged": 7331, "gpt34": 10316, "vit": 27255, "adapted": 729, "weight": 27350, "lora": 14844, "principles": 19704, "differential": 6569, "functionally": 9530, "invariant": 12286, "goals": 10193, "sparsification": 23550, "conceptualize": 4483, "equipped": 7758, "metric": 15510, "tensor": 25213, "spectrum": 23642, "defines": 5933, "rank": 20922, "subspaces": 24215, "accommodate": 479, "formalize": 9326, "movement": 16867, "path": 18483, "searching": 22627, "secondary": 22636, "modest": 16810, "continual": 4860, "cnns": 3889, "broadly": 3018, "object": 17617, "iteratively": 12402, "transformed": 25897, "configurations": 4598, "conditioning": 4538, "string": 23954, "ineffective": 11672, "outofsample": 18005, "met": 15303, "lightweight": 14065, "regularized": 21401, "prefixtuning": 19396, "dropout": 7033, "refer": 21343, "participating": 18422, "mentioned": 15289, "noun": 17532, "frequently": 9488, "sentential": 22795, "operators": 17882, "doesnt": 6874, "psycholinguistic": 20541, "assessment": 2066, "higherlevel": 10746, "targets": 24738, "challenged": 3365, "drive": 7025, "emergent": 7351, "incontext": 11499, "regime": 21381, "emerges": 7361, "items": 12396, "clusters": 3883, "uniformly": 26354, "item": 12394, "meanings": 15185, "interpretations": 12211, "exemplified": 8200, "naturalistic": 17127, "depart": 6121, "uniform": 26353, "iid": 11161, "unable": 26160, "later": 13669, "uncovered": 26184, "modes": 16809, "skewed": 23309, "intriguing": 12230, "inweights": 12357, "variational": 26992, "autoencoders": 2261, "vae": 26932, "employ": 7425, "elementary": 7277, "handle": 10565, "multitask": 16995, "huge": 10886, "empowered": 7445, "parameterefficient": 18363, "latent": 13662, "competent": 4243, "organize": 17959, "guided": 10525, "advancements": 912, "deployed": 6136, "daily": 5402, "lives": 14235, "conflicting": 4608, "deliberative": 5956, "exchange": 8176, "perspectives": 18869, "closed": 3856, "oracle": 17934, "searches": 22626, "applicable": 1634, "conditioned": 4534, "issues": 12379, "involved": 12345, "knows": 12613, "coreference": 5046, "widespread": 27411, "labels": 12635, "annotate": 1498, "ripe": 22281, "promptengineering": 20131, "discern": 6652, "return": 22183, "coreferent": 5048, "mentions": 15292, "inconsistent": 11497, "volume": 27271, "machinegenerated": 14936, "unstructured": 26432, "carries": 3229, "depth": 6153, "lines": 14185, "consisting": 4691, "twostage": 26117, "reverse": 22210, "capable": 3170, "syntactical": 24517, "continuity": 4870, "categorized": 3269, "essay": 7804, "linkage": 14205, "passage": 18457, "grand": 10423, "national": 17045, "produces": 19942, "kerple": 12455, "relative": 21452, "positional": 19110, "received": 21124, "conditionally": 4532, "kernels": 12454, "functions": 9535, "known": 12606, "inner": 11854, "product": 19948, "kernel": 12452, "offset": 17717, "absorbed": 426, "logarithmic": 14796, "variant": 26987, "implementation": 11262, "checkpoints": 3717, "claim": 3763, "quantity": 20686, "teaches": 25127, "augmenting": 2235, "endpoint": 7539, "completion": 4280, "optimal": 17902, "genetic": 10118, "giving": 10175, "banglat5": 2441, "bangla": 2440, "comprehensive": 4366, "spoken": 23671, "aggregate": 1061, "conditional": 4528, "clean": 3827, "advancing": 952, "converted": 5010, "superior": 24371, "affects": 1001, "promoted": 20075, "t0": 24650, "questionanswer": 20767, "create": 5202, "converting": 5011, "formulations": 9348, "decomposition": 5862, "unit": 26369, "bigger": 2849, "option": 17930, "owing": 18151, "route": 22391, "expressing": 8576, "simpler": 23234, "involving": 12353, "24": 134, "29": 144, "symbolic": 24493, "calculator": 3081, "viable": 27169, "humanintheloop": 11024, "potentially": 19245, "alternate": 1340, "topology": 25636, "exists": 8289, "summarize": 24355, "seeking": 22661, "alignments": 1293, "welldefined": 27361, "annotations": 1516, "infer": 11681, "induced": 11652, "mark": 15075, "connectivity": 4632, "morphological": 16851, "transitions": 25971, "backbones": 2423, "transition": 25970, "chains": 3343, "know": 12493, "characters": 3464, "schemes": 22533, "characterlevel": 3463, "lacking": 12665, "character": 3453, "glove": 10182, "absence": 418, "alphabetical": 1332, "cat": 3258, "robustly": 22352, "nonlatin": 17485, "cyrillic": 5401, "englishlanguage": 7608, "acquired": 683, "speech": 23646, "variability": 26979, "strings": 23955, "phenomenon": 18890, "extrapolating": 8694, "existence": 8240, "implies": 11282, "outstanding": 18099, "flaws": 9227, "preference": 19389, "proposal": 20271, "investigates": 12318, "weak": 27322, "generalise": 9717, "outside": 18097, "generalisation": 9716, "enhancing": 7634, "novels": 17575, "meet": 15239, "standards": 23728, "definition": 5935, "element": 7276, "fragment": 9385, "outofthebox": 18006, "ais": 1216, "assessed": 2054, "originality": 17976, "usefulness": 26619, "flexibility": 9228, "currently": 5369, "comes": 4071, "matter": 15159, "distill": 6739, "broad": 3007, "completing": 4278, "addressed": 827, "qlearning": 20620, "maximization": 15165, "simplicity": 23237, "stability": 23691, "combination": 4041, "conservatism": 4643, "alongside": 1328, "generations": 10045, "maximizing": 15169, "userspecified": 26685, "demonstrating": 6092, "optimizer": 17926, "optimize": 17923, "comment": 4079, "entertainment": 7689, "description": 6166, "primarily": 19693, "describes": 6164, "occasionally": 17675, "supplemented": 24401, "pronunciation": 20251, "demands": 5967, "figurative": 8981, "covers": 5189, "simplified": 23241, "humanwritten": 11082, "qa": 20614, "chatglm": 3493, "forecasting": 9299, "forecasts": 9302, "conflict": 4607, "economic": 7085, "indicators": 11623, "shape": 22942, "decision": 5820, "judgment": 12432, "accompanying": 483, "taken": 24704, "simulate": 23247, "avoiding": 2413, "leakage": 13721, "global": 10178, "covid19": 5192, "2022": 109, "curate": 5320, "calibration": 3084, "increased": 11552, "incorporation": 11532, "poses": 19095, "bring": 3001, "overview": 18142, "distant": 6736, "foundational": 9370, "seeks": 22662, "graph": 10427, "history": 10838, "roughly": 22388, "patternbased": 18493, "neuralbased": 17283, "exemplary": 8199, "shortcomings": 22979, "contextualize": 4847, "critically": 5268, "shaped": 22943, "condition": 4527, "inputoutput": 11888, "crucially": 5301, "succeeds": 24253, "squares": 23688, "estimator": 7835, "shift": 22966, "inferencetime": 11712, "trees": 26019, "matches": 15126, "exceeds": 8156, "phishing": 18893, "psychological": 20544, "trait": 25857, "legitimate": 13966, "urgency": 26473, "fear": 8849, "threatening": 25487, "desire": 6245, "sentencebert": 22789, "nuances": 17588, "concatenate": 4466, "fullyconnected": 9518, "mitigate": 15619, "imbalanced": 11213, "strongest": 23977, "fictitious": 8945, "passwords": 18470, "databases": 5635, "password": 18469, "breaches": 2974, "distinguish": 6754, "assumes": 2120, "attackers": 2138, "personally": 18860, "identifiable": 11123, "pii": 18915, "secure": 22646, "trustworthy": 26051, "authentication": 2246, "retaining": 22139, "bar": 2446, "pilot": 18918, "asked": 2013, "authentic": 2245, "speculate": 23643, "think": 25461, "nonexperts": 17481, "customizing": 5388, "pursuit": 20597, "generality": 9721, "overwhelming": 18148, "nonexpert": 17479, "limits": 14172, "asking": 2015, "efficacy": 7215, "thinking": 25462, "codeswitching": 3970, "typical": 26139, "cumbersome": 5318, "dubbed": 7043, "nonenglish": 17475, "zero": 27680, "viewed": 27191, "resourcerich": 21914, "utterances": 26926, "randomly": 20881, "selected": 22678, "dailydialog": 5405, "sufficient": 24293, "rationales": 20973, "interleaved": 12172, "persists": 18841, "marker": 15078, "communicate": 4116, "counting": 5168, "symbols": 24499, "complementary": 4265, "guidance": 10517, "timeintensive": 25529, "barrier": 2452, "entry": 7721, "lab": 12620, "concrete": 4519, "illustrate": 11167, "interpreting": 12215, "conceptualization": 4482, "main": 14949, "mapping": 15059, "drawback": 7011, "needs": 17198, "explain": 8437, "debug": 5804, "transforming": 25967, "comprehensible": 4362, "deriving": 6159, "ondemand": 17724, "granularity": 10426, "combine": 4050, "conceptualized": 4484, "weaknesses": 27329, "chainofthought": 3330, "metaphor": 15313, "probabilistic": 19741, "handdesigned": 10560, "contrast": 4883, "array": 1952, "interpretability": 12202, "variables": 26981, "choose": 3744, "paraphrases": 18398, "metaphors": 15315, "theories": 25454, "versions": 27163, "paradigms": 18341, "argument": 1936, "contributions": 4925, "9th": 296, "workshop": 27599, "mining": 15577, "mixed": 15642, "validity": 26948, "estimated": 7828, "extreme": 8696, "summary": 24360, "python": 20605, "chess": 3721, "carried": 3227, "successive": 24283, "gptstyle": 10388, "play": 18960, "eval": 7866, "bleu": 2912, "performs": 18820, "wellbeing": 27359, "mechanical": 15204, "turk": 26096, "largelanguage": 13605, "feasibility": 8850, "brief": 2996, "talk": 24716, "manage": 15022, "randomized": 20880, "identity": 11150, "intent": 12111, "perceptions": 18534, "interpretable": 12205, "highstakes": 10824, "medicine": 15235, "fitting": 9210, "complete": 4268, "instantiations": 11952, "augments": 2242, "additive": 786, "decoupled": 5864, "expansions": 8298, "counterparts": 5167, "6billion": 239, "gptj": 10377, "transparent": 26005, "fmri": 9249, "reproducing": 21704, "github": 10139, "longshort": 14830, "term": 25215, "trend": 26021, "pronounced": 20249, "follow": 9270, "adopt": 859, "personas": 18864, "stories": 23879, "experimentation": 8364, "executions": 8196, "commands": 4077, "followed": 9276, "accompanied": 481, "recipe": 21257, "food": 9290, "survival": 24479, "recipes": 21258, "suit": 24326, "taste": 25114, "creating": 5217, "cooking": 5030, "necessitate": 17162, "preceding": 19313, "glm130b": 10177, "bilingual": 2852, "130": 49, "attempt": 2147, "unveil": 26448, "face": 8712, "unexpected": 26334, "spikes": 23662, "resultant": 21998, "offers": 17699, "outperformance": 18023, "175b": 75, "bloom176b": 2925, "ernie": 7773, "quantization": 20687, "aware": 2416, "2080": 119, "gpus": 10397, "affordable": 1004, "logs": 14807, "opensourced": 17863, "analogies": 1380, "analogous": 1381, "aka": 1218, "pair": 18167, "precise": 19315, "statements": 23751, "temperature": 25188, "systematically": 24562, "injected": 11848, "14k": 56, "precision": 19317, "expanded": 8293, "assessments": 2075, "arguably": 1931, "clozestyle": 3879, "targeting": 24737, "restricted": 21985, "enriching": 7658, "inventory": 12287, "ontology": 17753, "finergrained": 9075, "featuring": 8876, "verbalized": 27130, "triples": 26041, "wikidata": 27418, "producing": 19945, "nontrivial": 17499, "selfsupervision": 22715, "covering": 5184, "updating": 26462, "memories": 15249, "replace": 21626, "obsolete": 17661, "add": 749, "line": 14174, "predominantly": 19385, "6b": 238, "gptneox": 10384, "20b": 120, "exceeding": 8154, "bigbench": 2847, "65": 231, "fall": 8807, "actually": 716, "did": 6481, "cot": 5152, "palm": 18177, "surpass": 24439, "codedavinci002": 3959, "17": 71, "underestimates": 26190, "captured": 3201, "flat": 9225, "compounds": 4355, "compositional": 4350, "head": 10620, "governed": 10216, "interpretive": 12216, "deeply": 5916, "convincing": 5019, "lowlevel": 14882, "physical": 18902, "safety": 22418, "constitutes": 4699, "safe": 22411, "deemed": 5877, "scarcely": 22508, "violent": 27201, "comprising": 4410, "reallife": 21024, "paired": 18168, "physically": 18904, "advice": 985, "anchor": 1485, "judgements": 12430, "wages": 27285, "surveys": 24478, "enrolled": 7660, "submitted": 24201, "includes": 11441, "realistic": 21008, "unrealistic": 26418, "stated": 23749, "influences": 11728, "considered": 4665, "shifting": 22968, "mean": 15179, "establishing": 7824, "100": 21, "splits": 23669, "approximately": 1879, "follows": 9287, "albeit": 1230, "exerts": 8205, "bot": 2953, "adhering": 846, "noted": 17522, "perturbations": 18879, "bots": 2954, "anomalies": 1525, "specifications": 23635, "embedded": 7303, "specification": 23634, "vague": 26933, "synthesizes": 24530, "objects": 17637, "kept": 12450, "altered": 1338, "workflow": 27577, "checking": 3714, "synthesized": 24529, "explaining": 8445, "grow": 10491, "narrow": 17041, "scope": 22573, "covered": 5183, "matters": 15161, "auxiliary": 2352, "true": 26045, "facts": 8759, "rationale": 20971, "connecting": 4628, "acquisition": 687, "leaving": 13944, "mainstay": 14957, "nonlinguistic": 17488, "19": 82, "recognizing": 21271, "regular": 21397, "expressions": 8579, "regularization": 21399, "unexplored": 26336, "connection": 4629, "apparent": 1620, "legal": 13954, "moves": 16869, "board": 2932, "priori": 19718, "uncover": 26183, "nonlinear": 17486, "saliency": 22434, "maps": 15061, "speeding": 23652, "inverted": 12292, "index": 11596, "popularity": 19074, "consumed": 4736, "developers": 6386, "enduser": 7548, "indexing": 11598, "closeddomain": 3860, "conclusions": 4518, "drawn": 7018, "indomain": 11642, "comparisons": 4234, "faithfulness": 8799, "cross": 5272, "crossdomain": 5276, "houlsby": 10874, "mtnlg": 16882, "530b": 207, "xsum": 27653, "2018": 105, "rouge": 22382, "rouge1": 22385, "rouge2": 22386, "surge": 24436, "technologies": 25174, "banks": 2445, "adopted": 860, "virtual": 27202, "va": 26931, "assist": 2087, "customers": 5382, "vas": 27105, "determining": 6364, "handling": 10572, "intents": 12120, "boundaries": 2961, "163": 68, "banking77": 2444, "supplement": 24399, "01": 3, "ablation": 387, "stimulate": 23862, "subset": 24212, "reliable": 21506, "plausibility": 18957, "likelihood": 14102, "amateur": 1353, "opt125m": 17898, "ensures": 7674, "plausible": 18958, "repetition": 21620, "incoherence": 11489, "nucleus": 17589, "hours": 10879, "architectural": 1897, "100b": 25, "decisions": 5838, "sheer": 22962, "big": 2842, "billionparameter": 2856, "practices": 19305, "englishonly": 7609, "diffusion": 6593, "modular": 16817, "match": 15117, "diffusionbased": 6600, "unconstrained": 26182, "vastly": 27113, "modularity": 16819, "advanced": 882, "computeraided": 4458, "inspire": 11926, "earlystage": 7071, "defined": 5932, "facilitation": 8742, "affected": 997, "things": 25459, "comprehending": 4359, "upcoming": 26454, "display": 6721, "probable": 19751, "continuation": 4863, "contemporary": 4757, "albert": 1231, "xlmr": 27651, "indistribution": 11628, "id": 11113, "outofdistribution": 18001, "ood": 17755, "scaled": 22496, "codegen": 3960, "scan": 22506, "decreasing": 5869, "identification": 11126, "adapters": 733, "l1": 12619, "production": 19950, "purposes": 20595, "marketing": 15081, "multilabel": 16907, "recovering": 21297, "annotator": 1521, "aggregated": 1063, "inherently": 11831, "rate": 20960, "objectively": 17631, "annotators": 1522, "attend": 2156, "portions": 19086, "disagreement": 6647, "outliers": 17995, "encounter": 7508, "lowconfidence": 14871, "overly": 18136, "confident": 4593, "remedy": 21600, "overconfidence": 18125, "twostep": 26119, "confidence": 4590, "twice": 26109, "enumerate": 7722, "encourages": 7522, "curve": 5377, "auroc": 2244, "discovering": 6665, "circumventing": 3754, "inside": 11901, "activation": 701, "satisfies": 22462, "logical": 14800, "statement": 23750, "opposite": 17894, "recover": 21295, "half": 10536, "dont": 6963, "analysing": 1389, "psychoanalysis": 20540, "media": 15218, "fictional": 8944, "subjectivity": 24194, "yield": 27668, "frame": 9388, "productions": 19953, "significance": 23088, "trace": 25653, "culminating": 5311, "releases": 21482, "detailing": 6297, "exploratory": 8488, "semistructured": 22755, "interviews": 12225, "moral": 16849, "harmless": 10593, "competing": 4244, "desires": 6251, "immediate": 11220, "projecting": 20024, "agency": 1017, "conclude": 4506, "productive": 19954, "grasping": 10448, "aidriven": 1157, "argumentation": 1937, "arguments": 1939, "persuasion": 18875, "fluent": 9243, "candidate": 3095, "60": 221, "worsening": 27615, "16": 65, "followup": 9288, "copy": 5039, "specifies": 23638, "details": 6298, "adds": 839, "acceptability": 455, "preferences": 19391, "syntactically": 24518, "acceptable": 456, "contextfree": 4829, "surrounding": 24465, "violations": 27200, "grammaticality": 10422, "placed": 18933, "sampled": 22443, "conversely": 5006, "worsen": 27614, "violated": 27197, "amplified": 1374, "unrelated": 26419, "explainable": 8440, "overlap": 18131, "sentencelevel": 22790, "feedback": 8885, "comments": 4081, "pseudo": 20536, "aiding": 1156, "humanlanguage": 11030, "assistance": 2089, "autocomplete": 2257, "humanlm": 11049, "involvement": 12346, "languagebased": 13287, "firstperson": 9205, "thirdparty": 25464, "notions": 17529, "enjoyment": 7651, "ownership": 18154, "cover": 5181, "puzzles": 20603, "labs": 12645, "underscore": 26222, "generalizability": 9722, "today": 25543, "bridges": 2992, "incremental": 11586, "slight": 23321, "tell": 25186, "subtle": 24242, "change": 3441, "gpt35": 10317, "drop": 7032, "guessing": 10515, "spurious": 23680, "todays": 25544, "noisy": 17464, "moving": 16872, "pipelines": 18924, "overhead": 18128, "decoderonly": 5845, "custom": 5378, "german": 10133, "mt5": 16881, "runtime": 22404, "prone": 20245, "parametric": 18391, "nonparametric": 17493, "implying": 11284, "wealth": 27332, "memorizing": 15256, "fails": 8785, "appreciably": 1724, "tail": 24696, "retrievalaugmented": 22160, "devise": 6434, "retrieves": 22177, "titles": 25540, "abstracts": 433, "venues": 27124, "extension": 8592, "harder": 10583, "compile": 4257, "similarly": 23216, "authors": 2253, "slightly": 23322, "clearly": 3833, "underperform": 26217, "pairwise": 18173, "reranking": 21772, "employed": 7431, "suboptimal": 24202, "candidates": 3099, "textdavinci003": 25397, "rerankers": 21771, "agnostic": 1070, "adopting": 864, "scholarship": 22539, "gaps": 9651, "societal": 23406, "impacts": 11250, "cultures": 5317, "alleviate": 1296, "varieties": 27002, "400": 178, "population": 19081, "300": 152, "extrinsic": 8702, "experimenting": 8366, "actively": 706, "attracting": 2198, "lot": 14856, "enormous": 7654, "programs": 19995, "realize": 21021, "iteration": 12398, "theorem": 25444, "selects": 22695, "connects": 4634, "comparatively": 4159, "running": 22402, "repository": 21664, "judges": 12431, "relies": 21514, "personalities": 18850, "auditing": 2214, "checks": 3718, "vote": 27274, "52": 205, "aggressive": 1066, "voting": 27276, "personality": 18851, "inclined": 11437, "assigning": 2083, "cc": 3295, "minimizing": 15575, "accelerate": 445, "prototyping": 20394, "hiring": 10832, "cascading": 3235, "performed": 18808, "availability": 2356, "portability": 19084, "sufficiently": 24297, "distillation": 6740, "kd": 12447, "mbert": 15174, "repeatedly": 21619, "distilling": 6745, "distilled": 6743, "assistant": 2090, "complexities": 4329, "threshold": 25492, "hyperparameters": 11099, "datahungry": 5640, "healthcare": 10634, "selfdriving": 22704, "cars": 3233, "shifts": 22969, "estimation": 7832, "estimates": 7829, "jigsaw": 12414, "geometric": 10128, "transformations": 25892, "mnli": 15659, "proliferates": 20029, "originate": 17979, "writer": 27624, "genre": 10121, "genres": 10122, "influence": 11722, "correlate": 5104, "classifications": 3809, "relevancy": 21487, "imbalance": 11211, "distances": 6735, "movie": 16870, "unbalanced": 26167, "inconsistencies": 11495, "conditionals": 4533, "draft": 6997, "coherent": 3997, "bigrams": 2851, "confuse": 4617, "pitfall": 18926, "means": 15186, "campaigns": 3093, "messages": 15300, "trick": 26029, "criteria": 5248, "bypass": 3068, "spam": 23538, "tricking": 26030, "prevalence": 19653, "attacks": 2141, "emphasizes": 7388, "pressing": 19510, "seek": 22658, "normative": 17510, "undetected": 26331, "avoids": 2414, "questioning": 20777, "assumptions": 2123, "anticipate": 1608, "plethora": 18986, "concretely": 4520, "artistic": 1997, "revolutionizing": 22249, "sectors": 22645, "industry": 11670, "society": 23410, "creatively": 5238, "dalle2": 5408, "3d": 173, "flamingo": 9219, "video": 27178, "audio": 2210, "galactica": 9625, "taxonomy": 25119, "inaccessible": 11428, "argues": 1935, "accessibility": 473, "critics": 5270, "claiming": 3765, "soon": 23487, "trigger": 26034, "wave": 27299, "dramatic": 7002, "favor": 8844, "hybrid": 11093, "lyrics": 14896, "song": 23486, "coherence": 3993, "reviewers": 22224, "distinctive": 6752, "artists": 1999, "multimodal": 16927, "album": 1232, "artist": 1996, "methodological": 15409, "reflections": 21366, "align": 1257, "interests": 12166, "unintended": 26359, "collecting": 4022, "clip": 3845, "languageimage": 13289, "displaying": 6723, "approximate": 1877, "nearest": 17145, "neighbor": 17217, "poisoning": 19014, "poisoned": 19012, "consequences": 4640, "engines": 7586, "instructionbased": 11988, "fallacies": 8812, "seemingly": 22665, "persuade": 18874, "intrinsically": 12235, "lies": 14053, "formulated": 9345, "18": 80, "recognize": 21268, "28": 143, "choice": 3739, "mitigated": 15630, "watermarking": 27297, "invisible": 12339, "detectable": 6306, "proprietary": 20377, "negligible": 17215, "detected": 6307, "green": 10467, "informationtheoretic": 11805, "multibillion": 16891, "infusion": 11821, "volumes": 27272, "nonparallel": 17492, "limiting": 14170, "stylistic": 24177, "memorability": 15247, "empathy": 7384, "infusing": 11820, "audiences": 2209, "bootstrap": 2949, "infuse": 11819, "balancing": 2437, "stylized": 24178, "faces": 8719, "goaldriven": 10191, "dyadic": 7052, "communication": 4118, "nonverbal": 17503, "speaker": 23558, "listener": 14211, "socially": 23403, "backgrounds": 2428, "visionlanguage": 27233, "demographics": 5976, "listeners": 14213, "spur": 23677, "synthesizing": 24532, "veracity": 27125, "academia": 436, "multitude": 17002, "harvesting": 10607, "understandings": 26318, "operationalization": 17877, "smoothly": 23370, "confidently": 4596, "logics": 14802, "reality": 21017, "stepping": 23856, "transport": 26007, "benefiting": 2704, "ranking": 20927, "inherit": 11832, "optical": 17900, "separating": 22811, "bitext": 2893, "red": 21308, "teaming": 25131, "jailbreaking": 12407, "breakthroughs": 2981, "translating": 25975, "impacted": 11247, "businesses": 3066, "software": 23422, "observations": 17647, "prejudice": 19397, "posing": 19104, "accountable": 495, "difficulties": 6588, "examination": 8098, "behaviors": 2628, "accordance": 488, "viewpoints": 27194, "ethics": 7856, "considerations": 4661, "decade": 5807, "skip": 23317, "connections": 4630, "furnish": 9547, "aspiration": 2031, "integrated": 12037, "innovations": 11856, "commercially": 4087, "closedsource": 3864, "gpt4": 10333, "googles": 10209, "morality": 16850, "frames": 9391, "scarcity": 22509, "nuanced": 17587, "sociolinguistic": 23415, "holistic": 10850, "finer": 9074, "promptingbased": 20181, "multiturn": 17003, "attractive": 2199, "prepending": 19412, "desired": 6246, "brittle": 3006, "unfolding": 26345, "subsequent": 24209, "tracks": 25663, "resolved": 21901, "embody": 7328, "lets": 13977, "threads": 25485, "visualization": 27251, "iterations": 12399, "functionalities": 9527, "generaldomain": 9715, "reference": 21344, "classic": 3776, "tractable": 25664, "reduction": 21337, "proximity": 20532, "computed": 4443, "ngram": 17399, "instantiation": 11951, "225": 129, "comparably": 4152, "evolution": 8080, "discoveries": 6664, "tackle": 24679, "unsolved": 26428, "contents": 4794, "universe": 26380, "cold": 4003, "dark": 5412, "unresolved": 26422, "factor": 8752, "anomaly": 1526, "simulations": 23258, "preprocessing": 19414, "unless": 26393, "explainability": 8439, "intensive": 12109, "ahead": 1074, "discussed": 6698, "title": 25538, "caught": 3276, "rethinking": 22142, "technology": 25178, "concern": 4486, "stronger": 23976, "academic": 438, "essays": 7805, "sparked": 23544, "scholars": 22538, "manifest": 15030, "check": 3711, "easy": 7080, "verify": 27147, "institutions": 11959, "advise": 986, "visual": 27237, "truly": 26047, "guiding": 10533, "idiosyncrasies": 11153, "correction": 5090, "validated": 26943, "decreases": 5868, "analysts": 1460, "458": 188, "virtue": 27209, "nl": 17401, "defects": 5923, "tedious": 25185, "overlook": 18133, "pressures": 19513, "stakeholders": 23706, "engineers": 7585, "getting": 10137, "initiatives": 11846, "localizes": 14784, "passages": 18458, "901": 277, "965": 292, "extracts": 8689, "keywords": 12484, "dynamics": 7058, "endeavors": 7536, "serving": 22868, "catalyst": 3259, "journalism": 12423, "remote": 21604, "sector": 22644, "reassess": 21118, "pedagogical": 18509, "scrutinize": 22598, "delve": 5961, "ramifications": 20873, "ultimate": 26156, "scholarly": 22535, "interplay": 12197, "technological": 25172, "driving": 7029, "vice": 27171, "versa": 27154, "versus": 27166, "status": 23836, "kgs": 12486, "empower": 7443, "interfaces": 12169, "simulates": 23252, "kg": 12485, "formal": 9317, "category": 3272, "solver": 23470, "spurred": 23683, "debut": 5806, "deal": 5793, "mistakes": 15612, "generalist": 9719, "20": 95, "tagging": 24694, "geometries": 10130, "said": 22431, "connect": 4625, "expect": 8305, "resnet": 21898, "mae": 14945, "converge": 4963, "partially": 18411, "dispersion": 6720, "polysemy": 19046, "professionals": 19961, "opinions": 17884, "library": 14048, "finds": 9066, "accept": 454, "aipowered": 1214, "designer": 6238, "hypothetical": 11107, "utilized": 26908, "drawbacks": 7012, "forgotten": 9310, "partial": 18410, "evolving": 8086, "novice": 17580, "introductory": 12275, "programmers": 19980, "overreliance": 18138, "negatively": 17209, "retention": 22140, "69": 237, "novices": 17582, "worked": 27575, "week": 27348, "pretest": 19515, "speculative": 23645, "latency": 13661, "exacerbated": 8090, "run": 22400, "sequentially": 22847, "tokenlevel": 25561, "collaboratively": 4013, "runs": 22403, "autoregressively": 2351, "invoked": 12341, "refine": 21354, "inaccurate": 11430, "nonautoregressive": 17469, "coordinate": 5034, "policies": 19019, "fallback": 8814, "determines": 6363, "encompassing": 7507, "2014": 103, "cnndailymail": 3888, "nvidia": 17614, "t4": 24654, "speedup": 23654, "degradation": 5942, "salient": 22436, "chat": 3467, "trivial": 26044, "lists": 14215, "lamda": 12673, "motivate": 16856, "alterations": 1337, "theoryofmind": 25457, "replication": 21643, "attribution": 2206, "tom": 25574, "rates": 20966, "simplistic": 23245, "laws": 13683, "fe": 8848, "decay": 5809, "entropy": 7720, "artifact": 1973, "stationary": 23826, "predictor": 19381, "assumed": 2119, "applies": 1710, "deterministic": 6365, "parameterization": 18369, "asymptotic": 2128, "frequencies": 9484, "relevance": 21484, "dalle": 5406, "selectively": 22694, "neutral": 17292, "guidelines": 10529, "post": 19144, "hoc": 10841, "rationality": 20974, "von": 27273, "decisionmaking": 5831, "violate": 27196, "chatgpts": 3691, "briefly": 2999, "responding": 21941, "trades": 25669, "publications": 20569, "wellknown": 27363, "25": 136, "analytical": 1463, "disambiguation": 6649, "subsets": 24214, "personalize": 18854, "personalization": 18853, "imposed": 11320, "trainers": 25744, "misused": 15617, "revolutionize": 22235, "stages": 23704, "misunderstood": 15614, "struggles": 24006, "educators": 7129, "wrong": 27645, "properly": 20260, "conjunction": 4623, "ensure": 7668, "tendency": 25205, "hallucinations": 10550, "inability": 11427, "stored": 23877, "llmgenerated": 14337, "sacrificing": 22409, "informativeness": 11808, "humanrobot": 11057, "envision": 7739, "robots": 22341, "adaptability": 722, "abuse": 435, "licensing": 14052, "dilemma": 6609, "commensurate": 4078, "governance": 10215, "fuzzy": 9602, "hugging": 10889, "expense": 8315, "replicate": 21638, "bespoke": 2744, "references": 21348, "probably": 19752, "comparability": 4139, "showcasing": 22993, "66": 234, "encounters": 7513, "dropping": 7035, "instability": 11941, "gpt35s": 10328, "semeval2023": 22752, "tweet": 26106, "submission": 24199, "2023": 111, "official": 17709, "humanlabeled": 11029, "stabilizes": 23692, "tweets": 26107, "noticeable": 17525, "confirming": 4605, "interference": 12170, "heading": 10624, "months": 16848, "storm": 23881, "fastest": 8841, "midjourney": 15543, "fed": 8879, "mix": 15641, "goes": 10195, "populate": 19079, "degenerate": 5940, "generalised": 9718, "entailment": 7682, "verification": 27138, "faithful": 8797, "centered": 3302, "verifying": 27151, "webpages": 27345, "pages": 18162, "misinterpretation": 15597, "minor": 15579, "decomposed": 5858, "decomposing": 5861, "visiolinguistic": 27212, "vl": 27261, "allowed": 1311, "resolve": 21900, "missing": 15606, "categorize": 3268, "turing": 26094, "ought": 17985, "child": 3722, "rlhf": 22315, "signal": 23079, "anthropics": 1606, "claude": 3826, "humanity": 11028, "applicability": 1630, "affecting": 998, "societies": 23409, "textbased": 25391, "positively": 19124, "experiences": 8326, "net": 17224, "crosscultural": 5274, "workforce": 27581, "distinguishes": 6758, "saw": 22472, "lens": 13974, "129": 46, "implemented": 11264, "offered": 17695, "choosing": 3746, "informs": 11814, "strategically": 23893, "composite": 4348, "international": 12187, "formed": 9339, "undertaking": 26325, "foreground": 9304, "curation": 5324, "undertaken": 26324, "assemble": 2036, "spanning": 23541, "59": 217, "projects": 20027, "options": 17933, "advancement": 905, "preexisting": 19386, "refining": 21359, "aiassisted": 1150, "simplifies": 23243, "customization": 5384, "zerofewshot": 27686, "stealing": 23839, "adversary": 983, "steal": 23838, "apis": 1615, "dollars": 6877, "08": 12, "nonbinary": 17470, "openly": 17842, "participate": 18421, "treatment": 26013, "pronouns": 20250, "receive": 21123, "followers": 9277, "send": 22758, "aboveaverage": 417, "seeing": 22657, "tiktok": 25498, "teachers": 25124, "perceive": 18527, "february": 8877, "tagged": 24692, "collectively": 4029, "250": 137, "views": 27195, "detectors": 6354, "mirrors": 15586, "grading": 10411, "clips": 3851, "nonsensical": 17496, "unfaithful": 26342, "traffic": 25691, "exemplify": 8201, "raise": 20856, "multimodality": 16948, "bounds": 2964, "coming": 4074, "integration": 12046, "bing": 2868, "intensifies": 12107, "redteaming": 21313, "adequately": 843, "defining": 5934, "aligning": 1269, "clarity": 3771, "providers": 20481, "crowdworker": 5290, "restraining": 21983, "susceptibility": 24480, "mode": 15668, "1000": 23, "simulated": 23250, "engineered": 7567, "64": 229, "pattern": 18491, "populist": 19083, "framing": 9473, "replicated": 21640, "surprised": 24455, "modulation": 16821, "disciplines": 6654, "infinite": 11719, "assistive": 2095, "120": 38, "layouts": 13693, "near": 17142, "hoping": 10868, "mcq": 15176, "snippets": 23372, "courses": 5178, "postsecondary": 19152, "countless": 5169, "exercise": 8202, "cheating": 3707, "andor": 1489, "formative": 9335, "summative": 24363, "530": 206, "mcqs": 15177, "answered": 1564, "blank": 2910, "snippet": 23371, "truefalse": 26046, "reliance": 21512, "reproducible": 21703, "codebase": 3957, "extract": 8654, "extracted": 8659, "opinion": 17883, "labeling": 12632, "generationbased": 10044, "extractor": 8687, "accepted": 458, "socalled": 23373, "believable": 2636, "organisations": 17955, "returned": 22184, "humangenerated": 11020, "merits": 15298, "justifications": 12440, "fostering": 9357, "imagination": 11210, "em": 7300, "dialectic": 6445, "deductive": 5872, "abductive": 303, "conveyed": 5017, "start": 23733, "intensified": 12103, "fullfledged": 9506, "instruments": 12031, "bases": 2582, "exercises": 8203, "70": 241, "obtain": 17664, "alike": 1295, "correcting": 5089, "instructors": 12026, "wishing": 27431, "reminiscent": 21603, "discriminative": 6674, "encoders": 7501, "emerge": 7330, "959": 289, "500": 200, "accuracies": 500, "cifar10": 3749, "imagenet": 11196, "suitability": 24328, "compilers": 4261, "quickly": 20838, "trialanderror": 26027, "reflective": 21367, "episodic": 7743, "trials": 26028, "scalar": 22481, "freeform": 9479, "internally": 12185, "coding": 3976, "91": 279, "pass1": 18456, "humaneval": 11018, "surpassing": 24447, "pragmatics": 19311, "unfactual": 26339, "adjacent": 847, "aigc": 1161, "headlines": 10626, "coverage": 5182, "miss": 15604, "opportunity": 17892, "angle": 1493, "pure": 20587, "worth": 27618, "noting": 17527, "impressed": 11327, "diversified": 6823, "promptly": 20183, "foundations": 9379, "gan": 9635, "mainstream": 14958, "faced": 8718, "outlook": 18000, "tables": 24674, "optimizing": 17929, "eliminating": 7294, "threestep": 25491, "retrieved": 22168, "tabular": 24676, "125": 42, "retriever": 22175, "cell": 3298, "2x": 147, "prefer": 19387, "coherency": 3996, "judge": 12427, "list": 14209, "letter": 13978, "keeps": 12449, "exponentially": 8563, "reproduction": 21708, "disease": 6710, "texttosql": 25419, "sought": 23504, "12": 37, "spider": 23660, "41": 180, "prominence": 20035, "integrity": 12055, "humanauthored": 11011, "exceed": 8153, "par": 18331, "ready": 21000, "party": 18453, "right": 22274, "says": 22473, "influenced": 11727, "google": 10206, "service": 22864, "requests": 21714, "changing": 3450, "command": 4076, "proofofconcept": 20253, "puts": 20600, "device": 6432, "hints": 10831, "llmdriven": 14334, "grammatical": 10416, "gec": 9676, "problematic": 19788, "encountered": 7511, "formats": 9337, "revision": 22230, "corrections": 5094, "scored": 22580, "raters": 20965, "keyphrase": 12478, "predominant": 19384, "referencefree": 21346, "keyphrases": 12480, "naturalness": 17131, "desiderata": 6177, "correlates": 5107, "reevaluate": 21341, "referencebased": 21345, "safetycritical": 22429, "analyst": 1459, "contextaware": 4825, "elicitation": 7284, "exponential": 8562, "nonconvex": 17472, "convex": 5015, "sparsity": 23551, "matrix": 15155, "denoted": 6114, "minimize": 15571, "05": 9, "22": 126, "naive": 17021, "newtons": 17394, "let": 13976, "denote": 6113, "entries": 7719, "multiplication": 16988, "epsilon": 7748, "log": 14793, "unleashing": 26391, "mobile": 15660, "manipulating": 15034, "maintaining": 14961, "begin": 2604, "background": 2426, "fundamentals": 9546, "lifecycle": 14056, "management": 15025, "deploying": 6141, "realization": 21020, "assistants": 2092, "powered": 19262, "singular": 23285, "ignoring": 11159, "enrich": 7656, "youtube": 27678, "contrary": 4881, "mission": 15609, "delivering": 5959, "angles": 1494, "prominent": 20036, "tied": 25495, "liberalism": 14046, "varying": 27099, "blind": 2915, "person": 18842, "touching": 25640, "genuine": 10123, "humanities": 11025, "knowledgeable": 12601, "pain": 18164, "gpts": 10386, "extending": 8589, "reversal": 22209, "44": 183, "750": 250, "templatebased": 25190, "openworld": 17870, "longhorizon": 14826, "inefficient": 11675, "skills": 23314, "rewards": 22260, "accomplish": 484, "walks": 27289, "executing": 8193, "converging": 4969, "quantities": 20685, "quantified": 20670, "61": 224, "central": 3306, "presentation": 19469, "verified": 27140, "datapoints": 5642, "card": 3209, "inferences": 11711, "neglect": 17212, "75": 249, "fallacious": 8813, "34": 163, "humanproduced": 11054, "ordinary": 17953, "bad": 2431, "carrying": 3232, "productivity": 19957, "automating": 2327, "problemsolving": 19824, "ideally": 11117, "impractical": 11324, "recursively": 21307, "sl": 23318, "miniwob": 15578, "handful": 10562, "tens": 25209, "promptings": 20182, "advantages": 959, "stand": 23710, "road": 22318, "eventually": 8062, "realm": 21027, "disruptive": 6730, "confronted": 4616, "verifiable": 27137, "authorship": 2255, "fraud": 9474, "violation": 27199, "spread": 23675, "logic": 14797, "disentangled": 6712, "discovered": 6663, "dnns": 6838, "disentangle": 6711, "arbitrarily": 1892, "artwork": 2001, "childrens": 3725, "prove": 20397, "distributing": 6767, "customer": 5379, "aligns": 1294, "companys": 4138, "geographical": 10127, "locations": 14789, "utilised": 26890, "performant": 18806, "devised": 6435, "completed": 4273, "digital": 6601, "articulate": 1972, "oneoff": 17725, "inadequate": 11431, "reusing": 22191, "trustworthiness": 26050, "integer": 12033, "divided": 6829, "prime": 19698, "depends": 6131, "automl": 2331, "amazon": 1354, "microsoft": 15541, "failed": 8783, "introduced": 12259, "fourier": 9381, "llama": 14239, "conclusion": 4512, "machinelearning": 14940, "keyword": 12482, "occurrence": 17679, "maintenance": 14964, "life": 14055, "gpt1": 10241, "arxiv": 2003, "want": 27291, "square": 23687, "bf": 2799, "1n": 92, "diagonal": 6442, "bound": 2960, "lazy": 13696, "2000": 98, "brand": 2971, "worstcase": 27617, "conjecture": 4621, "tau": 25115, "worst": 27616, "usability": 26478, "predictability": 19335, "frameworks": 9470, "tutorial": 26102, "authoring": 2250, "llmbased": 14327, "humanllm": 11048, "intellectual": 12058, "copyright": 5041, "asks": 2019, "circumvent": 3753, "copilot": 5038, "outlines": 17998, "obstacles": 17663, "llmpowered": 14343, "uncovering": 26185, "secret": 22640, "undergoing": 26200, "scrutiny": 22602, "unfortunately": 26346, "centers": 3305, "consume": 4735, "tesla": 25233, "vehicles": 27121, "consumption": 4739, "asian": 2004, "concerning": 4490, "wake": 27287, "aging": 1069, "responsibility": 21977, "necessity": 17166, "holistically": 10853, "talking": 24717, "adopters": 863, "regard": 21372, "curious": 5327, "sentiments": 22806, "polarity": 19016, "endtask": 7541, "humanmachine": 11050, "cooperation": 5032, "played": 18971, "characterizing": 3462, "labor": 12640, "bard": 2448, "psychometric": 20547, "experienced": 8325, "intraclass": 12226, "gold": 10197, "chitchat": 3737, "converse": 5004, "paragraph": 18342, "multidocument": 16897, "excels": 8162, "showcase": 22987, "astronomical": 2126, "bibliometric": 2835, "scopus": 22574, "growth": 10505, "trends": 26023, "book": 2939, "conference": 4587, "reviews": 22227, "countries": 5170, "thoroughly": 25473, "norm": 17505, "raft": 20855, "outcomes": 17988, "unfairness": 26341, "inefficiencies": 11673, "necessitating": 17164, "undesired": 26329, "excel": 8157, "favors": 8847, "simplification": 23238, "ts": 26061, "piece": 18911, "nuance": 17586, "word2vec": 27451, "userfriendly": 26646, "sari": 22454, "biggest": 2850, "analyzes": 1477, "smallscale": 23363, "politically": 19041, "progressive": 20014, "compass": 4235, "questionnaires": 20778, "respective": 21932, "member": 15242, "hold": 10842, "coordinates": 5035, "axes": 2420, "indicated": 11615, "327": 160, "queried": 20694, "indicator": 11621, "mbti": 15175, "agreeable": 1072, "testtakers": 25280, "eye": 8703, "balanced": 2434, "homework": 10855, "gre": 10449, "equal": 7749, "matched": 15125, "exposed": 8565, "rises": 22288, "67": 235, "round": 22389, "selftraining": 22716, "lexically": 14041, "90": 273, "machineauthored": 14935, "compound": 4354, "networkbased": 17239, "readability": 20990, "plain": 18936, "substitutes": 24236, "substituting": 24237, "triple": 26040, "rephrase": 21624, "retain": 22137, "wording": 27452, "sc": 22474, "ancient": 1487, "facilitated": 8737, "backdrop": 2424, "promote": 20073, "organization": 17957, "dissemination": 6733, "culture": 5316, "attracted": 2193, "englishbased": 7606, "welldesigned": 27362, "200k": 100, "guarantee": 10508, "newly": 17377, "updated": 26458, "hero": 10676, "facilitating": 8740, "modelgenerated": 15976, "theoretically": 25452, "supply": 24403, "execution": 8194, "3b": 171, "mmlu": 15658, "57": 211, "compromising": 4414, "inspiring": 11940, "dataefficient": 5639, "evergrowing": 8065, "optimizers": 17927, "gets": 10136, "homogeneous": 10856, "pile": 18917, "lowquality": 14883, "sparks": 23545, "metaverse": 15317, "caching": 3074, "aiming": 1186, "agi": 1067, "autonomous": 2332, "memoryintensive": 15280, "loading": 14778, "characteristic": 3454, "managing": 15028, "allocating": 1306, "cached": 3073, "energy": 7551, "credible": 5242, "categorizing": 3271, "assessors": 2078, "compromise": 4412, "constructive": 4731, "premise": 19407, "functioning": 9531, "urgent": 26474, "subfields": 24181, "draws": 7020, "mystery": 17020, "sociotechnical": 23417, "consensus": 4638, "expansive": 8299, "engagement": 7561, "occurs": 17681, "inline": 11852, "citations": 3758, "citation": 3757, "audit": 2213, "historical": 10834, "reddit": 21311, "informative": 11806, "mere": 15293, "concerningly": 4491, "informationseeking": 11804, "commercial": 4082, "falls": 8815, "pinpoint": 18919, "truthfully": 26057, "meta": 15304, "informal": 11733, "deduction": 5871, "outofvocabulary": 18007, "whilst": 27369, "raised": 20858, "transparently": 26006, "davinci": 5788, "reflected": 21363, "got": 10212, "visually": 27254, "percentages": 18532, "enhances": 7630, "expectation": 8307, "exhibited": 8228, "altogether": 1350, "proneness": 20247, "notion": 17528, "brought": 3020, "persona": 18844, "jailbreaks": 12408, "breaking": 2978, "guardrails": 10513, "triggering": 26036, "acting": 689, "expose": 8564, "forefront": 9303, "safely": 22415, "trial": 26025, "pythia": 20604, "plot": 18990, "divide": 6827, "converts": 5012, "traceability": 25654, "instructiontuned": 12013, "independent": 11591, "correlations": 5116, "ignored": 11157, "adaptable": 724, "firstly": 9200, "tailored": 24698, "exam": 8096, "lexglue": 14036, "hype": 11095, "gpt35turbo": 10329, "fashion": 8836, "instructionfollowing": 11990, "exceptionally": 8171, "628": 227, "702": 243, "illustrative": 11172, "believes": 2641, "conscious": 4635, "consciousness": 4636, "avoidance": 2411, "overcome": 18115, "sentience": 22796, "passes": 18464, "selfassessment": 22697, "concludes": 4510, "music": 17011, "cognition": 3984, "siri": 23286, "alexa": 1233, "complements": 4267, "tts": 26063, "demand": 5963, "intention": 12117, "multiround": 16989, "ease": 7072, "brains": 2967, "dialoguebased": 6478, "milestone": 15545, "randomness": 20886, "consolidating": 4695, "attains": 2146, "observable": 17640, "evaluator": 8054, "commonlyused": 4107, "partofspeech": 18450, "ratio": 20969, "bank": 2442, "electra": 7270, "perturbation": 18878, "batches": 2594, "socioeconomic": 23414, "mobility": 15663, "affordability": 1003, "personalizing": 18859, "convenience": 4956, "prioritizing": 19723, "tailormade": 24702, "systemic": 24571, "corroborate": 5123, "texttoaudio": 25411, "immense": 11222, "audiocaps": 2212, "ldm": 13697, "attributed": 2201, "pressure": 19512, "obtaining": 17671, "annotating": 1506, "5000": 201, "balances": 2436, "progressively": 20015, "110m": 34, "aids": 1159, "rare": 20957, "humanannotated": 11009, "chatgptgenerated": 3688, "disrupt": 6725, "consideration": 4660, "epistemic": 7745, "markers": 15079, "readily": 20995, "immediately": 11221, "math": 15138, "free": 9476, "guardrail": 10512, "fueled": 9501, "conforms": 4612, "included": 11440, "monitor": 16838, "altering": 1339, "misunderstanding": 15613, "revise": 22228, "linguistannotated": 14187, "flag": 9217, "wild": 27422, "industrial": 11664, "executable": 8188, "twin": 26110, "descriptive": 6174, "interpret": 12200, "orchestrate": 17937, "atomic": 2133, "factory": 8758, "agile": 1068, "underscores": 26225, "demos": 6109, "largerscale": 13624, "twofold": 26115, "sharpness": 22953, "appearing": 1627, "smooth": 23368, "metaanalysis": 15306, "evaporate": 8056, "flan": 9220, "manipulate": 15032, "appears": 1628, "edit": 7092, "bagofwords": 2432, "approximation": 1884, "arbitrary": 1894, "heldout": 10647, "defenses": 5926, "protections": 20387, "exhaustive": 8206, "taskrelated": 24852, "boost": 2943, "mitigating": 15632, "discriminators": 6679, "assume": 2117, "causing": 3291, "conflicts": 4610, "discriminator": 6678, "paving": 18500, "abstraction": 429, "taskaware": 24844, "outlets": 17993, "illegal": 11164, "protection": 20386, "combat": 4038, "protect": 20383, "embed": 7302, "adequate": 842, "watermarks": 27298, "corruption": 5126, "sts": 24008, "inevitable": 11676, "notoriously": 17531, "hindering": 10827, "dub": 7042, "formatting": 9338, "spite": 23668, "achievements": 618, "lag": 12668, "fullysupervised": 9519, "inclination": 11436, "null": 17590, "aforementioned": 1007, "widelyused": 27406, "repairing": 21616, "unethical": 26333, "paramount": 18392, "subtly": 24244, "recast": 21122, "deciding": 5818, "decide": 5815, "onthefly": 17751, "repairs": 21617, "uncovers": 26186, "repair": 21615, "ethically": 7855, "instructiontuning": 12022, "vicuna": 27173, "accessed": 471, "leak": 13720, "nonreproducible": 17494, "shot": 22986, "provision": 20525, "handpicked": 10574, "492": 194, "simulating": 23253, "themes": 25443, "administering": 856, "undergraduate": 26205, "reliably": 21509, "differentiate": 6571, "emulating": 7451, "notable": 17514, "css": 5304, "radically": 20854, "bootstrapping": 2950, "reflects": 21368, "declarative": 5840, "versatile": 27155, "separates": 22810, "wellcalibrated": 27360, "century": 3310, "arrival": 1955, "heralded": 10675, "arrived": 1956, "vein": 27122, "myriad": 17019, "continue": 4864, "ushering": 26702, "profound": 19970, "govern": 10214, "disruption": 6728, "limit": 14109, "strikingly": 23952, "wisdom": 27429, "perfectly": 18539, "constructs": 4732, "parity": 18401, "engaging": 7563, "recommender": 21283, "innovative": 11857, "resist": 21896, "detects": 6359, "forming": 9340, "eliminate": 7288, "advocates": 990, "profile": 19968, "saving": 22470, "revisiting": 22233, "entail": 7680, "tag": 24691, "treated": 26011, "push": 20598, "doing": 6875, "lieu": 14054, "websites": 27347, "iterative": 12400, "imitate": 11215, "brands": 2972, "emulate": 7449, "evasive": 8057, "tactics": 24690, "exploits": 8479, "strategic": 23891, "ultimatum": 26158, "prisoners": 19727, "economics": 7087, "acceptance": 457, "rounds": 22390, "treatments": 26014, "evident": 8078, "grown": 10503, "unreliable": 26421, "learningbased": 13935, "insertion": 11900, "addon": 787, "unlocking": 26407, "kb": 12445, "testbed": 25261, "lay": 13684, "flair": 9218, "authenticity": 2247, "inquiry": 11896, "substitution": 24238, "positioning": 19113, "noise": 17463, "activities": 707, "welcome": 27357, "shortcuts": 22982, "debiasing": 5802, "going": 10196, "yes": 27667, "flexibly": 9233, "adjust": 848, "cognitivelymotivated": 3991, "surfacing": 24435, "perturbed": 18880, "children": 3724, "transmission": 26003, "deficit": 5929, "specialists": 23565, "cnl": 3885, "replaced": 21628, "restrictive": 21987, "timestamps": 25537, "993": 295, "babi": 2421, "jobs": 12417, "famous": 8829, "bridging": 2994, "untapped": 26442, "plenty": 18985, "dedicated": 5870, "satisfactory": 22459, "wikihow": 27419, "ceval": 3320, "multilevel": 16913, "urgently": 26475, "middle": 15542, "college": 4031, "professional": 19960, "chineseoriented": 3735, "premises": 19408, "compensate": 4241, "triplets": 26043, "triplet": 26042, "optionally": 17932, "prune": 20534, "reconstructing": 21290, "worries": 27611, "passive": 18467, "dividing": 6830, "autonomously": 2335, "inject": 11847, "encodings": 7505, "conform": 4611, "alter": 1336, "contextbased": 4827, "synonyms": 24508, "synonym": 24506, "arduous": 1921, "showcased": 22990, "uncertain": 26170, "intended": 12100, "realism": 21007, "scrutinized": 22599, "cheaply": 3705, "accelerates": 448, "treebased": 26018, "verifier": 27145, "requirement": 21737, "provably": 20396, "goaloriented": 10192, "relate": 21429, "diminish": 6617, "responds": 21942, "devising": 6436, "doremi": 6966, "reweighting": 22263, "proxy": 20533, "fullsized": 9508, "default": 5920, "reaches": 20981, "26x": 141, "tuned": 26065, "bayesian": 2596, "uncertainties": 26171, "illustrating": 11170, "density": 6118, "plus": 18999, "flows": 9241, "icl": 11108, "probabilities": 19746, "preparing": 19411, "frequency": 9485, "recency": 21136, "entityrelation": 7718, "names": 17033, "hit1": 10840, "unnecessary": 26410, "looks": 14841, "recommend": 21272, "degraded": 5944, "metaphorical": 15314, "dl": 6832, "thirteen": 25465, "flower": 9240, "android": 1490, "animation": 1495, "occur": 17678, "assumption": 2122, "removing": 21608, "convert": 5009, "unlocks": 26409, "extractors": 8688, "illustrates": 11169, "adapting": 734, "underrepresented": 26221, "texttoimage": 25413, "t2i": 24651, "laborintensive": 12642, "inserting": 11899, "spontaneous": 23673, "suggested": 24314, "assisted": 2093, "prospects": 20382, "disaster": 6651, "monitoring": 16839, "threats": 25489, "utilization": 26899, "gsm8k": 10506, "multiarith": 16887, "947": 286, "svamp": 24486, "modified": 16813, "turning": 26099, "city": 3760, "spatially": 23556, "seamlessly": 22606, "empowers": 7448, "hierarchically": 10690, "thanks": 25441, "clouds": 3877, "disorder": 6716, "patches": 18479, "ordered": 17948, "triggered": 26035, "plug": 18992, "fly": 9248, "mediumsized": 15238, "827": 263, "33b": 162, "closing": 3875, "usages": 26483, "specialised": 23564, "prototypical": 20393, "intuitively": 12281, "diachronic": 6438, "trajectories": 25859, "breaks": 2979, "fairly": 8794, "compact": 4135, "excessive": 8174, "allocate": 1303, "redundant": 21340, "pruning": 20535, "shortens": 22983, "hardly": 10584, "speedups": 23656, "incorporates": 11526, "bottleneck": 2956, "flops": 9236, "gaokao": 9637, "builds": 3052, "author": 2248, "forensic": 9307, "stylometric": 24179, "humaninterpretable": 11023, "solved": 23468, "afterward": 1011, "delegating": 5951, "explanatory": 8466, "debugging": 5805, "facing": 8743, "markov": 15084, "deploy": 6134, "learnable": 13744, "detoxification": 6366, "publication": 20568, "thematic": 25442, "attempting": 2152, "motivations": 16866, "hallucinate": 10537, "journalistic": 12424, "request": 21712, "dialect": 6444, "american": 1363, "dialects": 6446, "discrepancies": 6669, "highaccuracy": 10724, "composing": 4347, "extensible": 8591, "flow": 9238, "assign": 2081, "heads": 10627, "visualize": 27253, "edges": 7091, "plots": 18991, "fusion": 9575, "pivotal": 18928, "adheres": 845, "parallelism": 18348, "poisson": 19015, "severe": 22935, "coarsegrained": 3890, "throughput": 25494, "temporality": 25199, "shuffle": 23076, "cuttingedge": 5390, "proves": 20408, "efficacious": 7214, "landscapes": 12675, "singlegpu": 23280, "setups": 22930, "multinode": 16950, "transcends": 25861, "hardware": 10585, "87": 268, "hallucination": 10545, "proactive": 19739, "clarification": 3769, "proficiency": 19962, "failing": 8784, "noncollaborative": 17471, "prototypes": 20392, "highlighted": 10771, "vendors": 27123, "charge": 3465, "convey": 5016, "nonuniformity": 17502, "pricing": 19692, "typologically": 26151, "poorer": 19054, "equitable": 7759, "fulfill": 9503, "beliefs": 2635, "blindly": 2916, "15k": 62, "indistinguishable": 11626, "globe": 10181, "universitylevel": 26384, "treating": 26012, "unknown": 26386, "aitext": 1217, "propensity": 20257, "evade": 7862, "invariance": 12284, "devoted": 6437, "elaborating": 7266, "judged": 12428, "revisit": 22232, "chance": 3440, "enhancement": 7628, "tightly": 25497, "customize": 5385, "backend": 2425, "demographic": 5975, "synthetically": 24546, "nearperfect": 17154, "subtraction": 24245, "llamas": 14247, "classifies": 3820, "learnability": 13743, "multidigit": 16893, "vram": 27278, "assists": 2097, "navigation": 17138, "diverging": 6785, "page": 18161, "actor": 710, "summarized": 24356, "62": 225, "traces": 25655, "alpacafarm": 1330, "replicating": 21642, "cheaper": 3704, "ppo": 19282, "10k": 31, "davinci003": 5789, "selfimprovement": 22707, "roles": 22375, "accordingly": 492, "56": 210, "bertscore": 2741, "082": 13, "optimally": 17908, "proximal": 20528, "collects": 4030, "longcontext": 14819, "inverse": 12288, "excessively": 8175, "logits": 14805, "neighboring": 17218, "biasing": 2834, "pertaining": 18876, "removed": 21606, "window": 27423, "compressing": 4399, "soft": 23418, "segments": 22674, "inexpensive": 11678, "counterfactuals": 5162, "slms": 23325, "enhancements": 7629, "regulate": 21402, "multihop": 16902, "uk": 26154, "british": 3005, "entailed": 7681, "consequence": 4639, "stores": 23878, "externally": 8651, "misalignment": 15587, "outdated": 17992, "duration": 7050, "uptodate": 26469, "reasoner": 21048, "distractors": 6764, "bottlenecks": 2959, "uninformative": 26358, "cskb": 5303, "expands": 8295, "groundtruth": 10480, "attain": 2144, "innate": 11853, "sociallyaware": 23405, "records": 21294, "traintest": 25856, "maximally": 15163, "3x": 175, "deficiency": 5928, "stems": 23844, "variable": 26980, "deliberate": 5953, "akin": 1221, "rap": 20931, "carlo": 3224, "balance": 2433, "exploitation": 8476, "superiority": 24375, "leasttomost": 13941, "selfconsistency": 22701, "broaden": 3015, "gamut": 9634, "pervasive": 18882, "plays": 18978, "shelf": 22965, "stream": 23924, "adam": 718, "reweight": 22261, "weighted": 27353, "camels": 3091, "streams": 23930, "electronic": 7273, "hospital": 10870, "medical": 15229, "notes": 17523, "mimiciii": 15553, "viability": 27168, "sections": 22643, "caused": 3289, "456": 187, "summarizing": 24359, "prevailing": 19650, "compatibility": 4237, "conll": 4624, "reformulation": 21371, "mimicking": 15554, "rewritten": 22267, "reformulate": 21369, "weaker": 27323, "alpaca": 1329, "canonical": 3101, "initially": 11842, "adept": 840, "bridged": 2991, "handcrafted": 10559, "profiles": 19969, "proving": 20524, "modelsllms": 16788, "subgoal": 24182, "pertinent": 18877, "intricate": 12229, "determination": 6360, "proof": 20252, "443": 184, "minif2f": 15562, "5times": 220, "differ": 6483, "force": 9294, "modality": 15667, "surrogate": 24464, "preventing": 19658, "detectgpt": 6309, "inefficiency": 11674, "technically": 25140, "37": 168, "specialize": 23567, "inspecting": 11922, "hooks": 10861, "openwebtext": 17869, "localize": 14783, "globally": 10180, "suppress": 24428, "apart": 1611, "checklist": 3715, "multiview": 17007, "recursion": 21305, "astonishing": 2125, "stay": 23837, "drastic": 7005, "gptn": 10381, "tails": 24703, "collapse": 4015, "gaussian": 9670, "intuition": 12279, "seriously": 22853, "crawled": 5201, "codalab": 3894, "competition": 4245, "macroaveraged": 14944, "macro": 14943, "positivenegative": 19127, "reached": 20980, "corresponds": 5122, "place": 18932, "tones": 25576, "faculty": 8775, "turnitin": 26100, "submissions": 24200, "marked": 15076, "members": 15243, "evading": 7865, "misconduct": 15591, "resistant": 21897, "satisfactorily": 22458, "ta": 24669, "controllability": 4938, "journal": 12422, "expertannotated": 8430, "coronavirus": 5052, "fine": 9067, "standardized": 23726, "barriers": 2453, "archives": 1920, "institutional": 11958, "repositories": 21663, "reranker": 21770, "strategyqa": 23923, "140": 55, "chatgptlike": 3690, "disparities": 6718, "unbiased": 26168, "self": 22696, "rendering": 21611, "incapable": 11434, "prepare": 19410, "prioritizes": 19722, "integrate": 12035, "march": 15063, "016": 4, "nouns": 17534, "aann": 301, "beautiful": 2603, "days": 5791, "abstracted": 428, "away": 2418, "waiting": 27286, "universities": 26381, "deviate": 6428, "universitys": 26385, "reputation": 21711, "attitudes": 2191, "dummy": 7044, "peer": 18514, "releasing": 21483, "regimes": 21382, "124m": 41, "cooperate": 5031, "gameplay": 9630, "negotiation": 17216, "anisotropic": 1496, "overwhelmingly": 18149, "dominated": 6961, "outlier": 17994, "exceedingly": 8155, "isotropy": 12370, "flawed": 9226, "differentiable": 6568, "minibatch": 15561, "deceptive": 5814, "instructing": 11971, "synonymous": 24507, "directives": 6635, "protected": 20384, "underscoring": 26230, "discovery": 6666, "clustering": 3882, "clustered": 3881, "stackoverflow": 23701, "semisupervised": 22757, "reviewing": 22225, "proposals": 20272, "dolly": 6878, "openassistant": 17813, "deliberately": 5954, "neurips": 17284, "struggled": 24005, "brainstorming": 2968, "higherquality": 10748, "healthy": 10637, "ingredients": 11826, "leave": 13943, "infrequently": 11818, "handlabeled": 10564, "possibilities": 19131, "coder": 3962, "coders": 3964, "humanoriented": 11053, "concentrate": 4470, "prose": 20379, "trusted": 26049, "patientspecific": 18490, "ehr": 7264, "clinical": 3837, "comprehensiveness": 4395, "5point": 219, "ensembling": 7667, "crossattention": 5273, "chatgptbased": 3686, "topranked": 25638, "capitalizing": 3191, "chemical": 3719, "tst": 26062, "operating": 17874, "cumulative": 5319, "controller": 4949, "productively": 19956, "supplying": 24404, "attacking": 2140, "quantum": 20691, "averaging": 2405, "checkpoint": 3716, "trajectory": 25860, "converged": 4964, "incurs": 11590, "save": 22469, "upto": 26468, "savings": 22471, "stack": 23698, "metas": 15316, "heterogeneous": 10680, "sized": 23302, "2048": 117, "batch": 2592, "187": 81, "800": 261, "exclusively": 8186, "arises": 1944, "chooses": 3745, "benign": 2713, "compliance": 4335, "continuum": 4878, "96": 290, "lost": 14855, "routine": 22392, "sharp": 22952, "declines": 5842, "magnitudes": 14948, "counterintuitive": 5163, "tends": 25207, "condense": 4525, "divideandconquer": 6828, "sequencing": 22839, "potent": 19155, "biomedical": 2882, "depend": 6124, "hampered": 10552, "decouple": 5863, "genes": 10117, "normal": 17506, "cells": 3299, "cancer": 3094, "f1score": 8710, "drug": 7036, "83": 264, "conducts": 4586, "biogpt": 2874, "longform": 14825, "biochemical": 2873, "78": 253, "studentgenerated": 24020, "protocol": 20389, "differentiation": 6573, "correlating": 5111, "exhibiting": 8232, "fragments": 9387, "observing": 17660, "marginal": 15072, "pay": 18503, "enjoy": 7650, "cooperative": 5033, "unavailable": 26165, "paid": 18163, "llama7b": 14245, "gather": 9663, "scarce": 22507, "equip": 7756, "loop": 14842, "labelling": 12634, "regulatory": 21406, "bodies": 2935, "worldwide": 27610, "directive": 6634, "european": 7860, "union": 26361, "section": 22642, "federal": 8880, "trade": 25665, "enforcing": 7557, "obligations": 17639, "enforcement": 7556, "regulations": 21404, "ads": 876, "hinder": 10825, "streamline": 23926, "cyber": 5396, "urls": 26477, "latters": 13678, "cybersecurity": 5397, "protecting": 20385, "tags": 24695, "supplied": 24402, "day": 5790, "advocate": 989, "caters": 3275, "designs": 6243, "invoking": 12342, "links": 14208, "abundant": 434, "stock": 23872, "fund": 9538, "live": 14234, "inspection": 11923, "credibility": 5241, "webbased": 27344, "won": 27434, "prize": 19738, "strict": 23943, "succeeded": 24252, "entirety": 7696, "distinguishing": 6759, "gradual": 10412, "impose": 11318, "penalties": 18519, "safeguarding": 22413, "mislead": 15598, "93": 283, "noticeably": 17526, "incurring": 11589, "intractable": 12227, "breadth": 2975, "objectoriented": 17636, "graphical": 10440, "compositionality": 4352, "app": 1619, "mapped": 15057, "handles": 10571, "parser": 18405, "apps": 1887, "elicited": 7285, "parsers": 18406, "load": 14777, "tunes": 26067, "fuses": 9574, "108": 30, "deepspeed": 5919, "65b": 232, "enormously": 7655, "decades": 5808, "administrative": 857, "tutoring": 26103, "november": 17577, "inevitably": 11677, "samplingbased": 22452, "oriented": 17962, "ckg": 3762, "invalid": 12282, "906": 278, "peerreviewed": 18516, "nonscientific": 17495, "equations": 7754, "paraphraser": 18397, "reviewed": 22223, "conferences": 4589, "mse": 16879, "scibert": 22544, "blm": 2918, "analytic": 1461, "prioritize": 19721, "utmost": 26923, "quantifies": 20671, "quantifiable": 20668, "assesses": 2058, "puzzle": 20601, "originally": 17977, "japanese": 12410, "conversion": 5008, "fidelity": 8946, "ubiquitous": 26152, "languagerelated": 13293, "mpnet": 16873, "compiled": 4258, "calculated": 3077, "epochs": 7747, "10000": 24, "interoperability": 12195, "dependence": 6125, "mastering": 15116, "faithfully": 8798, "diagnosis": 6440, "modelers": 15974, "conveying": 5018, "retrieving": 22178, "nearhuman": 17147, "convincingly": 5020, "receiving": 21131, "v1": 26928, "reader": 20993, "fraction": 9384, "material": 15133, "implement": 11260, "dilemmas": 6610, "revising": 22229, "exemplar": 8197, "elevation": 7280, "pt": 20548, "cohens": 3992, "beats": 2602, "thresholds": 25493, "02": 5, "held": 10646, "beat": 2600, "differentiating": 6572, "dualuse": 7041, "removes": 21607, "pandemic": 18179, "ceiling": 3296, "interventions": 12223, "prerelease": 19418, "eliminated": 7291, "dangerous": 5411, "screening": 22593, "gene": 9688, "cuisines": 5309, "revisions": 22231, "bim": 2862, "aienabled": 1160, "refines": 21358, "shuffling": 23077, "columns": 4037, "header": 10621, "falter": 8824, "taxing": 25118, "orchestrating": 17938, "mechanics": 15206, "fluid": 9246, "solid": 23435, "bioinformatics": 2875, "overlooked": 18135, "risen": 22287, "harnessing": 10601, "threestage": 25490, "causality": 3287, "pioneering": 18921, "frontier": 9495, "opening": 17837, "verifiers": 27146, "discerning": 6653, "agencies": 1016, "stood": 23874, "71": 244, "newer": 17376, "juxtaposed": 12442, "factcheckers": 8748, "persistent": 18840, "kaggle": 12443, "lexiconbased": 14043, "lexicons": 14044, "bestperforming": 2765, "detector": 6353, "misguided": 15592, "ui": 26153, "affordances": 1005, "specify": 23639, "delves": 5962, "plugins": 18997, "locality": 14781, "nondeterministic": 17473, "decentralized": 5812, "tolerance": 25573, "perceptual": 18536, "collision": 4033, "greedy": 10466, "beam": 2599, "stochasticity": 23871, "minimization": 15570, "transformative": 25893, "ip": 12360, "parallels": 18351, "explorations": 8487, "amidst": 1364, "envisioned": 7740, "standpoint": 23729, "endusers": 7549, "a2": 300, "normalized": 17508, "minx": 15583, "shares": 22949, "langle": 12677, "expax": 8300, "rangle1": 20920, "resembling": 21893, "nowadays": 17583, "bringing": 3003, "2011": 101, "mutual": 17015, "anonymous": 1529, "conventionally": 4962, "proxies": 20527, "intentionally": 12118, "merging": 15297, "instantiate": 11949, "refinement": 21356, "sensor": 22771, "ar": 1890, "unlocked": 26406, "marrying": 15091, "ocr": 17682, "alleviating": 1301, "workload": 27585, "unity": 26373, "seamless": 22604, "realities": 21016, "root": 22378, "instructive": 12024, "nextword": 17397, "eliciting": 7286, "regressors": 21396, "73": 246, "numeric": 17603, "geospatial": 10132, "geoai": 10125, "tack": 24678, "dialogrpt": 6452, "completeness": 4277, "contributing": 4921, "thousand": 25481, "delivers": 5960, "evidencebased": 8076, "polling": 19044, "dollar": 6876, "united": 26370, "nations": 17046, "stress": 23942, "controversial": 4954, "firms": 9199, "election": 7268, "abortion": 416, "supreme": 24429, "court": 5180, "breakdown": 2977, "arose": 1951, "war": 27292, "ukraine": 26155, "publics": 20580, "lectures": 13946, "screen": 22592, "organizing": 17961, "sr": 23689, "steer": 23840, "renders": 21612, "errorprone": 7788, "traditionally": 25690, "amenable": 1362, "figures": 8982, "careful": 3213, "populating": 19080, "utilise": 26889, "approximations": 1886, "tagger": 24693, "recommended": 21282, "patents": 18482, "fan": 8830, "ontologies": 17752, "visualised": 27250, "chainofthoughts": 3342, "reconstruction": 21291, "llmguided": 14342, "36": 167, "sketch": 23307, "chart": 3466, "helps": 10673, "cater": 3273, "mixedinitiative": 15644, "plugin": 18996, "sketching": 23308, "conveniently": 4958, "excelled": 8158, "polynomial": 19045, "79": 255, "extraordinary": 8690, "fastpaced": 8842, "swift": 24490, "revolutionary": 22234, "fault": 8843, "patient": 18488, "synergies": 24504, "forth": 9349, "roadmap": 22320, "jailbreak": 12406, "impacting": 11248, "emphasizing": 7391, "translated": 25973, "replacements": 21630, "verbs": 27136, "lowcost": 14872, "recurrence": 21300, "o1": 17615, "parallelly": 18350, "favorable": 8845, "prowess": 20526, "gans": 9636, "descriptors": 6176, "rigorously": 22280, "maintained": 14960, "peak": 18508, "signaltonoise": 23083, "psnr": 20539, "imminent": 11224, "nethack": 17225, "procedural": 19828, "dependencies": 6126, "forecast": 9298, "nontoxic": 17498, "82": 262, "defense": 5925, "speaking": 23560, "helping": 10672, "transcriptions": 25862, "corrected": 5088, "instrument": 12029, "robotic": 22337, "configuration": 4597, "exclusive": 8185, "sensitivities": 22769, "safeguards": 22414, "departure": 6123, "turbo": 26093, "highperforming": 10806, "sheds": 22960, "begun": 2608, "behavioral": 2626, "collective": 4028, "exert": 8204, "activity": 708, "subfield": 24180, "verbalizer": 27131, "imply": 11283, "verbalize": 27129, "priors": 19725, "verbalizers": 27132, "minimally": 15569, "override": 18139, "distinguished": 6757, "histories": 10837, "progressing": 20012, "508": 202, "groundwork": 10482, "preferencebased": 19390, "prohibitive": 20017, "bandit": 2438, "confirmation": 4603, "adversarially": 981, "degrade": 5943, "attacker": 2137, "beating": 2601, "drastically": 7006, "570": 212, "massively": 15114, "credit": 5243, "directed": 6623, "intriguingly": 12232, "mls": 15657, "positives": 19128, "laying": 13689, "threat": 25486, "prevention": 19659, "registration": 21387, "gaining": 9620, "dearth": 5797, "95": 288, "highstake": 10823, "reinforced": 21408, "imposes": 11321, "integrates": 12039, "purposebuilt": 20594, "circumvents": 3755, "accessing": 478, "intensity": 12108, "link": 14204, "damaging": 5410, "agenda": 1018, "profoundly": 19971, "stumbling": 24169, "grouping": 10486, "replaceable": 21627, "splitting": 23670, "linked": 14206, "linking": 14207, "functionality": 9528, "brain": 2966, "cortex": 5127, "redundancy": 21339, "chemistry": 3720, "pace": 18157, "actorcritic": 711, "98": 293, "rival": 22302, "catalyzed": 3262, "stark": 23732, "7b": 257, "scrutinizing": 22601, "distinctly": 6753, "equation": 7753, "restrictions": 21986, "boosting": 2947, "09": 15, "algebra": 1234, "spiking": 23663, "operate": 17871, "equilibrium": 7755, "neuromorphic": 17286, "overcoming": 18123, "nondifferentiability": 17474, "strides": 23946, "47": 190, "007": 1, "unobserved": 26411, "observational": 17646, "principle": 19702, "explosive": 8561, "000": 0, "multifaceted": 16899, "incredible": 11583, "verbosity": 27135, "gorilla": 10211, "conceptually": 4485, "multimodel": 16949, "har": 10579, "channels": 3452, "understudied": 26322, "catering": 3274, "exception": 8163, "looking": 14840, "recommends": 21286, "instructionfinetuning": 11989, "elusive": 7299, "unlock": 26404, "versatility": 27157, "controversy": 4955, "arisen": 1943, "copyrighted": 5042, "establishes": 7822, "liability": 14045, "fundamentally": 9545, "ensemble": 7661, "individualistic": 11636, "unravel": 26417, "coordination": 5036, "bertlarge": 2740, "maker": 14993, "makers": 14994, "utilities": 26891, "diagnosing": 6439, "manufacturing": 15054, "transportation": 26008, "satisfying": 22466, "firstofitskind": 9202, "gui": 10516, "infeasibility": 11679, "render": 21609, "qualitydiversity": 20667, "branch": 2969, "wellperforming": 27364, "reactive": 20988, "instantiating": 11950, "discretized": 6672, "customizable": 5383, "scene": 22523, "2d": 145, "usergenerated": 26648, "discussing": 6703, "implied": 11281, "bayes": 2595, "skeletons": 23306, "federated": 8881, "billionsized": 2860, "fl": 9216, "practically": 19301, "sluggish": 23331, "expedited": 8314, "allocates": 1305, "loads": 14779, "uniquely": 26368, "paves": 18498, "cots": 5157, "curriculum": 5375, "humanprovided": 11055, "selfinstruction": 22708, "multistage": 16991, "introspective": 12278, "tuningfree": 26091, "tuningbased": 26090, "tod": 25541, "watch": 27296, "simulators": 23261, "smoother": 23369, "hosting": 10873, "fragmentation": 9386, "os": 17983, "overseeing": 18140, "sys": 24548, "substantiated": 24233, "cv": 5391, "sensing": 22765, "unveils": 26451, "stands": 23730, "ambitious": 1360, "blip": 2917, "codebases": 3958, "windows": 27424, "effortless": 7260, "lags": 12671, "contingent": 4859, "wellstructured": 27365, "nextgeneration": 17396, "offloading": 17715, "asymmetric": 2127, "aed": 991, "multihead": 16901, "iv": 12405, "predictors": 19382, "peoples": 18526, "shortterm": 22985, "timeaware": 25519, "posit": 19105, "marks": 15090, "formality": 9325, "embedders": 7308, "inferred": 11715, "facets": 8721, "preferring": 19394, "rankbased": 20923, "shed": 22954, "128k": 45, "virtually": 27208, "forum": 9351, "navigate": 17136, "rethink": 22141, "mllm": 15654, "possesses": 19130, "mllms": 15655, "dealing": 5794, "owner": 18152, "decides": 5817, "outcome": 17986, "java": 12411, "regardless": 21379, "subvert": 24248, "differing": 6575, "shannon": 22940, "seminal": 22754, "concerned": 4489, "deals": 5795, "underperformance": 26218, "clicks": 3834, "purchases": 20586, "communicator": 4127, "pluralism": 18998, "tension": 25212, "friend": 9492, "feelings": 8906, "averages": 2404, "contrasting": 4896, "philosophical": 18891, "steering": 23841, "cut": 5389, "tries": 26033, "closedomain": 3863, "chose": 3747, "depths": 6154, "cyclic": 5400, "spirit": 23667, "hallucinated": 10543, "plausibly": 18959, "constantly": 4697, "countermeasure": 5164, "waste": 27295, "wider": 27408, "coined": 4002, "ago": 1071, "fantastic": 8831, "alphazero": 1335, "expedite": 8313, "distraction": 6761, "favored": 8846, "lexicon": 14042, "surpassed": 24441, "referential": 21349, "voice": 27269, "supplementary": 24400, "polarizing": 19018, "regional": 21384, "polarization": 19017, "delineate": 5957, "accounts": 497, "15m": 63, "72": 245, "emoji": 7372, "signs": 23184, "zeroresource": 27688, "ungrounded": 26347, "selfevaluation": 22706, "familiarity": 8826, "unfamiliar": 26343, "confirmed": 4604, "encompasses": 7506, "avenues": 2389, "opened": 17828, "overarching": 18114, "persons": 18866, "debias": 5800, "wish": 27430, "geographic": 10126, "showcases": 22992, "stimulates": 23864, "signalbased": 23080, "humanbased": 11012, "interactionbased": 12136, "justify": 12441, "fare": 8835, "bloomz": 2926, "gptj6b": 10379, "helpfulness": 10671, "networking": 17240, "spent": 23658, "reproduces": 21701, "journals": 12425, "appending": 1629, "costeffective": 5141, "minimizes": 15574, "sgd": 22938, "chaining": 3329, "decreased": 5867, "unaffected": 26161, "superb": 24365, "threatens": 25488, "distorted": 6760, "quantification": 20669, "excluding": 8183, "confounding": 4613, "deficiencies": 5927, "unveiling": 26449, "renowned": 21613, "preprint": 19413, "intellect": 12057, "silver": 23185, "04": 8, "138": 50, "tendencies": 25204, "deviations": 6431, "elucidate": 7296, "fullshot": 9507, "hate": 10609, "transfers": 25888, "racist": 20849, "homophobic": 10857, "multigranularity": 16900, "branches": 2970, "modal": 15665, "granularities": 10425, "publically": 20566, "impede": 11257, "economical": 7086, "golden": 10199, "resourceintensive": 21913, "harnesses": 10600, "benchmarked": 2679, "highresource": 10821, "sft": 22937, "prefix": 19395, "translations": 26001, "14": 53, "englishgerman": 7607, "equivalence": 7761, "mappings": 15060, "flant5xxl": 9224, "svm": 24488, "provable": 20395, "1d": 89, "kronecker": 12616, "row": 22395, "column": 4036, "multilayer": 16911, "cf": 3322, "calibrate": 3082, "calibrators": 3086, "resemble": 21892, "lossless": 14854, "acceleration": 451, "drafting": 6998, "identical": 11122, "llama2": 14244, "kbqa": 12446, "communications": 4125, "wireless": 27426, "impairments": 11256, "resilience": 21895, "interferes": 12171, "elicits": 7287, "indirectly": 11624, "humanexpert": 11019, "historically": 10836, "proficient": 19966, "achievement": 617, "inflection": 11721, "archaeology": 1896, "chatgpt4": 3682, "recursive": 21306, "shaping": 22945, "genai": 9679, "symbol": 24492, "sent": 22776, "reconstructed": 21289, "formalizing": 9328, "byte": 3071, "transducer": 25864, "subproblems": 24206, "paragraphlevel": 18343, "divergences": 6783, "crosslanguage": 5278, "reflecting": 21364, "unimodal": 26357, "subquestions": 24207, "pipelining": 18925, "refactoring": 21342, "iterated": 12397, "interview": 12224, "nsfw": 17584, "lagged": 12669, "resolving": 21902, "respecting": 21931, "freedom": 9478, "120k": 39, "verbose": 27134, "creators": 5240, "learnersourcing": 13758, "peers": 18517, "craft": 5194, "stem": 23842, "scaffold": 22475, "grade": 10398, "subjectmatter": 24195, "vicuna13b": 27177, "studentcreated": 24018, "cloning": 3854, "provider": 20480, "severity": 22936, "countermeasures": 5165, "contamination": 4756, "unintentionally": 26360, "confidential": 4594, "summarisation": 24338, "symptoms": 24502, "region": 21383, "redefining": 21312, "cornerstone": 5051, "inclusive": 11488, "bolster": 2938, "amplify": 1376, "deeplearning": 5914, "weather": 27335, "atmospheric": 2132, "propagation": 20256, "perturbing": 18881, "heat": 10639, "north": 17513, "adjustment": 852, "eliminates": 7292, "concreteness": 4521, "somewhat": 23485, "sandbox": 22453, "applicationspecific": 1691, "parse": 18403, "bypassing": 3069, "shopping": 22971, "aimediated": 1185, "disproportionately": 6724, "minoritized": 15580, "wrote": 27646, "promotion": 20078, "hesitant": 10677, "genders": 9687, "accepting": 463, "nmt": 17457, "nllb": 17408, "unaffordable": 26162, "contend": 4759, "unfold": 26344, "600": 222, "decent": 5811, "quantized": 20689, "llamabased": 14246, "subjected": 24191, "enem": 7550, "seconds": 22639, "calculations": 3080, "integral": 12034, "gpt4s": 10372, "marking": 15082, "mock": 15664, "triggers": 26037, "proceeds": 19832, "proficiently": 19967, "activates": 700, "determined": 6362, "nonadversarial": 17468, "germany": 10134, "composer": 4345, "alleviated": 1299, "celebrities": 3297, "deliberation": 5955, "modeled": 15973, "populations": 19082, "48": 192, "chatbased": 3473, "contributed": 4915, "51": 204, "p0001": 18155, "feeling": 8905, "p001": 18156, "migration": 15544, "goto": 10213, "weeks": 27349, "launch": 13680, "onetoone": 17732, "illuminates": 11166, "cycle": 5398, "cards": 3210, "chatgpt35": 3679, "mentioning": 15291, "confined": 4601, "seldom": 22675, "continually": 4862, "saturation": 22468, "mitigates": 15631, "adverse": 984, "zone": 27726, "experimented": 8365, "ignore": 11156, "minds": 15559, "multiagent": 16884, "thoughts": 25480, "holding": 10846, "grouped": 10485, "ends": 7540, "individually": 11639, "team": 25130, "thread": 25484, "critiques": 5271, "interdisciplinary": 12158, "approachs": 1871, "captions": 3196, "captioning": 3194, "caption": 3193, "tablebased": 24673, "prospect": 20381, "tabletotext": 24675, "022": 6, "llmenabled": 14336, "democratization": 5972, "intensively": 12110, "ignorance": 11155, "tensors": 25214, "onpar": 17750, "optimisation": 17909, "scheduling": 22529, "centred": 3309, "minimized": 15572, "committed": 4090, "boring": 2951, "residual": 21894, "segmentation": 22672, "ax": 2419, "hessian": 10678, "overparameterized": 18137, "exploited": 8477, "combating": 4040, "selfdiagnosis": 22703, "tailoring": 24701, "replicability": 21637, "accomplished": 486, "llmassisted": 14326, "scholar": 22534, "insightful": 11904, "calibrating": 3083, "intentions": 12119, "theorize": 25455, "misalignments": 15588, "enthusiasm": 7690, "median": 15227, "undeniably": 26188, "imprecise": 11326, "detrimental": 6367, "extant": 8584, "vulnerabilities": 27280, "disinformation": 6714, "counter": 5159, "workable": 27574, "optional": 17931, "suited": 24334, "accommodating": 480, "facto": 8750, "hypothesise": 11104, "analyse": 1383, "skews": 23310, "provenance": 20405, "frontiers": 9497, "tap": 24721, "departing": 6122, "decipher": 5819, "evolutionary": 8081, "inadvertently": 11432, "legacy": 13953, "eager": 7059, "tax": 25117, "xai": 27648, "amplifies": 1375, "shap": 22941, "surveyed": 24476, "communicating": 4117, "tenfold": 25208, "envisage": 7738, "government": 10218, "dungeons": 7045, "dragons": 7000, "categorizes": 3270, "dd": 5792, "guarantees": 10511, "planned": 18942, "mdps": 15178, "correspondingly": 5121, "posterior": 19145, "maximizes": 15168, "subroutines": 24208, "nearly": 17152, "perfect": 18537, "playing": 18976, "assuming": 2121, "adaptivity": 745, "pool": 19047, "uncurated": 26187, "imagetext": 11207, "overwriting": 18150, "clutter": 3884, "swiftly": 24491, "reusable": 22188, "buttons": 3067, "rewriter": 22265, "readable": 20992, "nonfactual": 17483, "laborious": 12643, "boasting": 2934, "kappa": 12444, "delete": 5952, "directs": 6643, "merges": 15296, "markedly": 15077, "88": 270, "rectifies": 21299, "elevating": 7279, "standalone": 23711, "costefficiency": 5143, "inferential": 11714, "epistemological": 7746, "absent": 420, "humanunderstandable": 11081, "bert recent": 2731, "recent advances": 21147, "gpt bert": 10223, "bert shown": 2734, "shown success": 23060, "pretrained transformer": 19595, "transformer language": 25916, "language model": 12743, "model finetuning": 15777, "improve downstream": 11352, "downstream nlp": 6979, "nlp systems": 17435, "systems framework": 24603, "fundamental problems": 9542, "problems effectively": 19796, "knowledge related": 12575, "related tasks": 21436, "tasks study": 25069, "study investigate": 24113, "training framework": 25778, "general language": 9701, "language knowledge": 12732, "knowledge largescale": 12547, "largescale unlabeled": 13651, "unlabeled data": 26389, "knowledge various": 12599, "semantically related": 22746, "tasks target": 25077, "target task": 24733, "task particularly": 24811, "transfer tasks": 25882, "tasks including": 24952, "including natural": 11466, "natural language": 17055, "language inference": 12722, "sentiment classification": 22803, "action prediction": 692, "train bert": 25693, "bert based": 2715, "based pretrained": 2523, "pretrained model": 19574, "model enables": 15753, "enables model": 7466, "model better": 15698, "task conduct": 24754, "conduct experiments": 4555, "final result": 9000, "outperforms previous": 18054, "previous stateoftheart": 19674, "stateoftheart baseline": 23758, "baseline methods": 2562, "error analysis": 7776, "analysis shows": 1449, "bertbased models": 2739, "contextualized word": 4851, "word representations": 27447, "representations comparing": 21679, "comparing geometry": 4219, "static word": 23823, "word embeddings": 27439, "significant improvements": 23122, "improvements nlp": 11398, "nlp tasks": 17437, "tasks just": 24969, "model representations": 15895, "different contexts": 6503, "cosine similarity": 5129, "different words": 6567, "models produce": 16596, "bert gpt2": 2720, "transfer learning": 25871, "fake news": 8805, "stance detection": 23709, "task paper": 24810, "paper report": 18308, "detection task": 6347, "performance generalization": 18655, "power large": 19254, "large language": 13338, "language models": 12813, "models based": 16053, "based transformer": 2547, "transformer architecture": 25899, "publicly released": 20579, "best performing": 2754, "performing model": 18815, "sentence embedding": 22780, "input sequences": 11880, "model feature": 15774, "finetuned bert": 9090, "bert xlnet": 2736, "dataset obtained": 5701, "stateoftheart results": 23802, "task evaluating": 24769, "pretrained language": 19539, "trained large": 25725, "raw text": 20977, "text data": 25300, "data given": 5507, "remarkable improvements": 21573, "including question": 11477, "question answering": 20719, "reading comprehension": 20998, "syntactic semantic": 24515, "word sense": 27448, "sense knowledge": 22762, "knowledge contained": 12509, "little work": 14233, "commonsense knowledge": 4112, "crucial human": 5295, "ability gpt": 346, "challenging benchmarks": 3413, "language modeling": 12805, "models commonsense": 16096, "training set": 25837, "current models": 5354, "tasks require": 25043, "inference steps": 11705, "test robustness": 25253, "robustness models": 22360, "models making": 16513, "test cases": 25237, "release test": 21476, "test set": 25256, "future research": 9589, "understanding knowledge": 26281, "deep reinforcement": 5901, "reinforcement learning": 21410, "learning methods": 13851, "major challenge": 14966, "black box": 2896, "learning process": 13882, "highdimensional observation": 10726, "observation action": 17642, "action spaces": 694, "agents trained": 1059, "final goal": 8997, "understanding challenging": 26263, "internal representations": 12183, "paper study": 18319, "representations learned": 21684, "course training": 5177, "training introduce": 25783, "introduce general": 12243, "learning model": 13855, "hidden states": 10688, "agent learn": 1023, "qualitative analysis": 20626, "efficient scalable": 7242, "robot learning": 22334, "learning introduce": 13834, "programming language": 19990, "language performance": 13216, "like openais": 14095, "openais gym": 17807, "substantially reduces": 24230, "training time": 25849, "learning algorithms": 13768, "systems automatically": 24579, "automatically generate": 2320, "generate text": 9818, "deep learning": 5881, "learning learn": 13843, "learn generate": 13734, "training corpus": 25754, "language paper": 13213, "paper propose": 18286, "taking approach": 24715, "gpt2 pretrained": 10269, "model downstream": 15745, "downstream task": 6982, "prior work": 19716, "emotion elicit": 7376, "use language": 26516, "able produce": 412, "model shown": 15914, "likert scale": 14108, "make use": 14991, "metrics use": 15537, "quality text": 20666, "text generated": 25317, "interesting research": 12164, "research topic": 21872, "field text": 8971, "text generation": 25324, "generation particular": 9998, "characteristics language": 3458, "task text": 24833, "generation paper": 9996, "gpt2 based": 10244, "framework generating": 9430, "training samples": 25833, "form information": 9313, "information present": 11772, "present simple": 19459, "special emphasis": 23563, "preliminary experimental": 19402, "experimental results": 8344, "model generate": 15780, "high quality": 10713, "quality form": 20649, "effectiveness proposed": 7207, "et al": 7838, "al 2019": 1225, "paper introduces": 18239, "introduces new": 12265, "new form": 17324, "emotional state": 7380, "emotion concepts": 7375, "facial expression": 8723, "expression recognition": 8578, "dynamically generating": 7057, "emotion used": 7378, "generation based": 9929, "based openais": 2521, "openais gpt2": 17800, "gpt2 model": 10261, "model finetuned": 15776, "corpus evaluate": 5069, "individual users": 11635, "analysis revealed": 1446, "neural networks": 17272, "wide variety": 27393, "data modalities": 5545, "orders magnitude": 17951, "neural models": 17265, "models effectively": 16166, "image classifiers": 11180, "models common": 16094, "common sense": 4099, "world knowledge": 27602, "pretrained transformers": 19609, "neural language": 17255, "models lms": 16505, "lms bert": 14764, "gpt2 variety": 10280, "variety language": 27008, "language understanding": 13271, "understanding tasks": 26314, "tasks recent": 25033, "recent work": 21210, "work focused": 27500, "focused injecting": 9260, "structured knowledge": 23993, "knowledge external": 12524, "external resources": 8645, "resources models": 21922, "models hand": 16261, "training scratch": 25834, "external knowledge": 8640, "computationally expensive": 4437, "lead catastrophic": 13701, "catastrophic forgetting": 3264, "knowledge work": 12600, "work investigate": 27515, "investigate models": 12304, "overall results": 18108, "glue benchmark": 10184, "analysis reveals": 1447, "models substantially": 16713, "substantially outperform": 24228, "inference tasks": 11706, "require type": 21734, "knowledge explicitly": 12522, "code experiments": 3912, "open sourced": 17780, "transformer based": 25902, "based data": 2475, "data augmentation": 5426, "asr recently": 2035, "recently deep": 21232, "transformer models": 25926, "models proven": 16608, "powerful language": 19270, "modeling tasks": 15990, "high complexity": 10695, "makes difficult": 14997, "difficult apply": 6579, "online recent": 17743, "recent studies": 21205, "knowledge neural": 12560, "neural network": 17266, "models lm": 16504, "using neural": 26816, "neural text": 17279, "pretrain gpt2": 19519, "gpt2 transformer": 10278, "general text": 9713, "text corpus": 25299, "task data": 24759, "propose new": 20310, "new method": 17334, "method called": 15333, "generated text": 9879, "methods significantly": 15490, "significantly improve": 23158, "vocabulary size": 27268, "memory requirements": 15271, "finally demonstrate": 9004, "terms overall": 25227, "words language": 27457, "models fewshot": 16215, "taskoriented dialogue": 24849, "dialogue systems": 6471, "systems taskoriented": 24641, "systems use": 24646, "modules natural": 16825, "understanding nlu": 26296, "dialogue state": 6468, "state tracking": 23747, "tracking dst": 25662, "language generation": 12709, "generation nlg": 9992, "given high": 10151, "high cost": 10699, "data collection": 5449, "effective technique": 7164, "technique solve": 25148, "solve problem": 23462, "learning large": 13838, "models pretrained": 16583, "pretrained text": 19594, "taskspecific data": 25107, "data finetuned": 5494, "methods require": 15482, "require finetuning": 21723, "set parameters": 22883, "models gpt2": 16255, "gpt2 radford": 10270, "radford et": 20851, "brown et": 3022, "al 2020": 1226, "fewshot learning": 8923, "examples paper": 8139, "paper evaluate": 18216, "ability language": 352, "nlg tasks": 17403, "tasks importantly": 24949, "highlight current": 10759, "current limitations": 5349, "limitations approach": 14122, "discuss possible": 6689, "future work": 9601, "models report": 16642, "dialogue generation": 6461, "understanding propose": 26304, "sentence encoding": 22783, "embedding vector": 7314, "previous sentence": 19671, "embedding vectors": 7315, "paragraphs documents": 18345, "use smaller": 26539, "similarity concept": 23209, "report experimental": 21646, "model performance": 15853, "performance tasks": 18769, "models recently": 16631, "recently neural": 21244, "demonstrated impressive": 6047, "abilities generating": 308, "generating highquality": 9902, "recent papers": 21196, "knowledge paper": 12562, "propose method": 20305, "neural lms": 17259, "linguistic features": 14194, "lms outperform": 14772, "transformer lms": 25923, "intermediate layer": 12175, "layer representations": 13687, "gpt2 xlnet": 10281, "method shows": 15391, "achieved impressive": 603, "impressive results": 11345, "range natural": 20899, "nlu generation": 17454, "tasks current": 24892, "pretraining objectives": 19640, "masked span": 15098, "explicitly model": 8473, "concepts crucial": 4476, "downstream tasks": 6984, "tasks need": 25001, "understand generate": 26241, "propose generative": 20295, "text use": 25387, "selfsupervised learning": 22712, "learning tasks": 13917, "taskspecific finetuning": 25108, "finetuning downstream": 9129, "downstream datasets": 6975, "datasets furthermore": 5755, "furthermore develop": 9552, "extensive experimental": 8603, "results method": 22074, "parameters pretrained": 18385, "texttotext transformer": 25424, "knowledge graphs": 12536, "better performance": 2787, "relatively small": 21464, "outperforms baseline": 18034, "margin comparable": 15071, "comparable larger": 4147, "plugandplay method": 18994, "method improving": 15372, "commonsense reasoning": 4114, "reasoning ability": 21053, "models really": 16621, "roberta gpt3": 22326, "led significant": 13950, "advances natural": 948, "language processing": 13219, "processing tasks": 19914, "tasks question": 25029, "answering commonsense": 1569, "typically evaluated": 26143, "multiple benchmarks": 16956, "stateoftheart performance": 23791, "performance commonsense": 18604, "reasoning benchmarks": 21060, "humanlike performance": 11042, "performance average": 18592, "average accuracy": 2394, "accuracy 80": 502, "performance loss": 18699, "study using": 24167, "using common": 26731, "statistical analysis": 23829, "models generalize": 16236, "experimental setup": 8359, "bias perform": 2816, "gain deeper": 9604, "deeper insight": 5911, "generative pretraining": 10103, "paraphrase generation": 18395, "essential role": 7813, "problems despite": 19795, "encouraging results": 7524, "results recent": 22097, "recent methods": 21194, "model scratch": 15904, "new dataset": 17312, "dataset paper": 5704, "paper presents": 18276, "presents novel": 19494, "novel approach": 17541, "model develop": 15737, "technique named": 25146, "templates proposed": 25192, "proposed approach": 20345, "approach outperforms": 1794, "competitive baselines": 4250, "technique allows": 25143, "allows model": 1321, "model provide": 15882, "compare performance": 4172, "preserving semantic": 19508, "semantic information": 22723, "data scientists": 5592, "crowd workers": 5285, "answer question": 1550, "denoising autoencoder": 6111, "model reconstruct": 15890, "reconstruct original": 21288, "architecture consists": 1900, "bidirectional encoder": 2838, "bert gpt": 2718, "common data": 4094, "tasks data": 24894, "data cleaning": 5441, "wide range": 27379, "data annotation": 5423, "collaborative training": 4012, "training fewshot": 25775, "learning nlp": 13864, "information extraction": 11753, "research opportunities": 21842, "opportunities advance": 17886, "advance field": 881, "widely studied": 27400, "text classification": 25287, "classification problem": 3799, "problem using": 19786, "datadriven approaches": 5638, "approaches existing": 1840, "existing work": 8286, "work does": 27483, "semantic uncertainty": 22739, "increasingly powerful": 11577, "models able": 15998, "gpt2 language": 10257, "surprisal values": 24453, "conducting experiments": 4582, "task dataset": 24760, "compared existing": 4185, "existing baselines": 8248, "learning pretrained": 13877, "dominant approach": 6959, "approach solving": 1813, "tasks common": 24884, "common approach": 4093, "learning multiple": 13860, "multiple tasks": 16981, "model paper": 15846, "paper present": 18264, "present alternative": 19423, "alternative approach": 1342, "approach based": 1736, "earlier work": 7063, "automatic prompt": 2305, "prompt generation": 20095, "generation adversarial": 9921, "attempts learn": 2154, "learn taskspecific": 13741, "input text": 11882, "model solve": 15927, "task using": 24840, "trainable parameters": 25712, "task approach": 24745, "outperforms existing": 18043, "existing methods": 8268, "fewshot setting": 8934, "superglue tasks": 24369, "32 training": 158, "masked language": 15094, "models proposing": 16606, "sequencetosequence seq2seq": 22838, "pretraining objective": 19639, "provides finegrained": 20488, "text representations": 25371, "ground truth": 10472, "source sentences": 23521, "experiments t5": 8416, "t5 models": 24663, "models various": 16770, "seq2seq model": 22814, "model powerful": 15862, "new perspective": 17343, "transferring knowledge": 25887, "knowledge large": 12542, "large model": 13564, "model smaller": 15925, "smaller model": 23359, "impact multiple": 11240, "native nonnative": 17049, "nonnative english": 17490, "english writers": 7605, "indepth analysis": 11594, "model user": 15960, "user behaviour": 26623, "different numbers": 6543, "recent literature": 21192, "model gpt2": 15788, "results reveal": 22103, "discuss implications": 6686, "implications research": 11275, "design interactive": 6196, "generation gpt": 9963, "recent years": 21217, "attention mechanisms": 2173, "new era": 17321, "paper explore": 18222, "transformerbased models": 25946, "models gpt": 16252, "significant implications": 23119, "generation summarization": 10024, "transformerbased language": 25938, "models achieve": 16007, "syntax semantics": 24521, "inspired humans": 11933, "exceptional ability": 8165, "generalize new": 9737, "present new": 19445, "capability learning": 3163, "learning generalizable": 13823, "various reasoning": 27076, "reasoning tasks": 21111, "weakly supervised": 27327, "supervised manner": 24391, "learned concepts": 13746, "models rapidly": 16620, "learn new": 13738, "new concepts": 17309, "concepts generalize": 4478, "complex scenarios": 4317, "existing models": 8272, "models limitations": 16354, "extensive experiments": 8608, "experiments various": 8422, "sequencetosequence models": 22837, "models including": 16284, "chain thought": 3325, "thought prompting": 25479, "prompting results": 20173, "results indicate": 22060, "models struggle": 16707, "syntactic dependency": 24512, "models exhibit": 16191, "exhibit considerable": 8212, "concepts fewshot": 4477, "dataset model": 5699, "model size": 15919, "finally zeroshot": 9025, "zeroshot gpt3": 27709, "results significantly": 22114, "significantly boosts": 23150, "test accuracy": 25235, "dataset experimental": 5675, "experimental findings": 8343, "learning community": 13786, "task large": 24795, "cultural knowledge": 5314, "use cases": 26491, "recommendation systems": 21275, "systems personalized": 24627, "personalized content": 18856, "content moderation": 4783, "lack extensive": 12652, "labeled dataset": 12627, "prior works": 19717, "explored large": 8536, "large neural": 13568, "understanding paper": 26300, "paper explores": 18225, "explores large": 8542, "detection systems": 6346, "systems models": 24619, "models models": 16526, "language explanations": 12706, "method based": 15331, "content extraction": 4771, "based gpt2": 2491, "model perform": 15852, "perform comparative": 18545, "comparative evaluations": 4155, "misinformation datasets": 15595, "shows promise": 23070, "standard benchmarks": 23714, "fair comparison": 8792, "modern language": 16795, "models driven": 16159, "solve set": 23464, "set tasks": 22890, "tasks general": 24936, "understanding performance": 26301, "human performance": 10974, "performance results": 18746, "thorough analysis": 25467, "benchmark datasets": 2655, "machine learning": 14899, "learning based": 13775, "based language": 2502, "english datasets": 7591, "datasets shown": 5776, "certain tasks": 3316, "tasks simple": 25059, "achieving competitive": 662, "recently published": 21248, "benchmark set": 2672, "test datasets": 25241, "datasets vulnerable": 5783, "approaches based": 1834, "based simple": 2540, "models like": 16347, "like gpt3": 14084, "sota models": 23499, "models performance": 16569, "provide set": 20463, "recommendations improve": 21281, "models does": 16153, "effectiveness neural": 7205, "models derive": 16137, "models represent": 16643, "bart t5": 2455, "t5 transformer": 24664, "models identify": 16274, "contextual word": 4844, "neural representations": 17278, "models dynamic": 16160, "generation results": 10017, "prediction pretrained": 19361, "pretrained neural": 19587, "entity state": 7715, "learned text": 13753, "text training": 25384, "training data": 25756, "data code": 5442, "code data": 3902, "data available": 5434, "requires understanding": 21761, "understanding temporal": 26315, "despite recent": 6276, "recent progress": 21197, "lms t5": 14776, "t5 gpt3": 24659, "temporal reasoning": 25196, "remains largely": 21543, "underexplored paper": 26194, "present study": 19463, "investigate pretrained": 12307, "pretrained lms": 19569, "reasoning capabilities": 21061, "new task": 17356, "challenge set": 3363, "set timedial": 22893, "carefully curated": 3218, "empirical results": 7410, "results demonstrate": 22032, "demonstrate best": 5982, "performing models": 18816, "compared humans": 4190, "absolute points": 424, "accuracy furthermore": 513, "reveals models": 22208, "models fail": 16211, "dialog context": 6448, "based existing": 2482, "research modeling": 21835, "reasoning dataset": 21067, "dataset publicly": 5708, "publicly available": 20572, "generative pretrained": 10086, "pretrained models": 19577, "slot filling": 23327, "achieve strong": 592, "strong alignment": 23959, "taskspecific pretraining": 25111, "learning paradigm": 13870, "opendomain dialog": 17821, "dialog model": 6449, "adapts pretrained": 748, "inductive biases": 11659, "task reformulating": 24819, "better leverage": 2785, "leverage pretrained": 14002, "models capabilities": 16071, "achieves stateoftheart": 645, "fewshot zeroshot": 8940, "zeroshot settings": 27721, "settings achieve": 22909, "achieve f1": 566, "f1 score": 8707, "text using": 25388, "using gpt3": 26767, "perform repetitive": 18565, "sequential tasks": 22846, "tasks despite": 24901, "fully automated": 9511, "extraction methods": 8678, "methods provide": 15478, "language descriptions": 12697, "automated paper": 2283, "paper investigate": 18243, "texts models": 25408, "models shown": 16681, "quite effective": 20843, "translation tasks": 25998, "initial results": 11838, "able generate": 404, "results comparable": 22026, "comparable current": 4144, "current state": 5359, "state art": 23739, "need improving": 17180, "word embedding": 27437, "compression large": 4402, "models natural": 16532, "processing nlp": 19900, "nlp led": 17423, "great success": 10461, "number parameters": 17595, "models improve": 16281, "inference time": 11707, "time memory": 25510, "memory footprint": 15264, "token embeddings": 25550, "models leveraging": 16346, "emphasize importance": 7387, "proposed method": 20355, "does require": 6872, "modeling pretraining": 15986, "pretraining method": 19633, "method significantly": 15392, "significantly outperforms": 23169, "outperforms commonly": 18039, "commonly used": 4106, "model perplexity": 15857, "evaluate proposed": 7900, "tasks glue": 24941, "outperform baseline": 18009, "baseline scenarios": 2568, "scenarios code": 22513, "textual data": 25426, "data distributions": 5468, "gpt2 generated": 10251, "generated texts": 9880, "supervised unsupervised": 24394, "unsupervised learning": 26438, "generation open": 9994, "open research": 17774, "research problems": 21851, "study focuses": 24101, "learning ml": 13852, "ml methods": 15651, "methods explore": 15437, "furthermore use": 9572, "use multiple": 26527, "generation methods": 9986, "methods including": 15458, "including finetuned": 11453, "finetuned gpt2": 9095, "gpt2 generate": 10250, "naturally occurring": 17130, "approach generating": 1768, "generating validating": 9917, "used help": 26576, "help address": 10650, "research practice": 21848, "artificially generated": 1995, "data evaluation": 5477, "evaluation generative": 7984, "applications provide": 1684, "aibased systems": 1152, "systems like": 24614, "potential provide": 19215, "provide mental": 20445, "mental health": 15282, "health support": 10633, "appropriate given": 1873, "openai gpt": 17786, "gpt models": 10232, "models allow": 16027, "previous approaches": 19662, "approaches investigate": 1848, "models potential": 16574, "using gpt2": 26765, "problem solving": 19783, "pretrained finetuned": 19530, "finetuned model": 9106, "results showed": 22107, "showed finetuned": 22997, "model created": 15722, "model generated": 15781, "generated outputs": 9868, "compared pretrained": 4198, "model pretrained": 15866, "discuss potential": 6690, "potential reasons": 19216, "autoregressive language": 2340, "models complex": 16098, "complex tasks": 4325, "small number": 23346, "number examples": 17592, "specifically finetune": 23621, "finetune gptneo": 9077, "training examples": 25774, "examples finetuning": 8131, "model achieves": 15674, "80 accuracy": 260, "dataset finetuning": 5682, "learning algorithm": 13767, "algorithm results": 1244, "results suggest": 22119, "suggest finetuning": 24303, "models small": 16692, "training machine": 25796, "models perform": 16565, "complex multistep": 4303, "vital tool": 27260, "understanding language": 26282, "process language": 19855, "euclidean distance": 7859, "successfully used": 24282, "embedding models": 7311, "models understand": 16758, "semantic space": 22734, "measures applied": 15200, "applied embeddings": 1696, "models bert": 16058, "work question": 27547, "contextualized language": 4849, "behavior model": 2623, "contextual language": 4842, "learning ability": 13761, "texttotext transfer": 25423, "transfer model": 25878, "model transformerbased": 15951, "transformerbased pretrained": 25948, "struggle tasks": 24003, "numerical understanding": 17606, "understanding required": 26310, "possible reasons": 19139, "specifically designed": 23616, "investigate ability": 12294, "model t5": 15939, "tasks learn": 24979, "contextual embeddings": 4839, "stateoftheart contextual": 23762, "models available": 16050, "using multilingual": 26813, "ongoing debate": 17734, "specific linguistic": 23597, "annotated datasets": 1504, "datasets evaluate": 5747, "structural information": 23982, "information encoded": 11747, "diverse languages": 6802, "closely related": 3870, "embedding space": 7312, "zeroshot fewshot": 27703, "understanding large": 26284, "progress nlp": 20008, "nlp benchmarks": 17414, "benchmarks evaluating": 2689, "ability complex": 330, "analogical reasoning": 1379, "reasoning remains": 21104, "remains underexplored": 21554, "crowdsourced dataset": 5287, "dataset provides": 5707, "contains minimal": 4754, "models need": 16536, "narrative generation": 17038, "tasks compared": 24887, "syntactic ambiguities": 24510, "makes possible": 15000, "human sentence": 10985, "sentence processing": 22786, "select correct": 22677, "areas improvement": 1928, "propose benchmark": 20278, "benchmark measure": 2669, "answers questions": 1599, "benchmark comprises": 2650, "questions span": 20824, "false belief": 8818, "avoid generating": 2408, "generating false": 9898, "imitating human": 11217, "tested gpt3": 25264, "best model": 2750, "models generated": 16240, "models generally": 16237, "tasks performance": 25011, "performance improves": 18676, "models promising": 16597, "using training": 26874, "training objectives": 25810, "named entity": 17026, "entity recognition": 7707, "recognition ner": 21261, "seen significant": 22667, "significant progress": 23129, "progress recent": 20009, "stateoftheart sota": 23809, "models achieving": 16012, "achieving high": 664, "high performance": 10711, "performance studies": 18764, "studies focused": 24045, "context paper": 4813, "paper introduce": 18234, "task aims": 24743, "aims generate": 1205, "generate relevant": 9811, "relevant context": 21491, "sentence context": 22779, "facilitate research": 8734, "research task": 21870, "task present": 24814, "dataset consists": 5660, "making challenging": 15007, "challenging dataset": 3416, "dataset propose": 5705, "baseline approach": 2553, "approach combines": 1739, "model achieving": 15676, "chatgpt obtains": 3611, "highlighting difficulty": 10774, "dataset evaluate": 5673, "evaluate models": 7894, "models t5": 16729, "t5 bart": 24657, "supervised finetuning": 24384, "achieve sota": 588, "sota results": 23501, "results downstream": 22043, "finance tasks": 9027, "outperforming vanilla": 18032, "model surpasses": 15937, "hope dataset": 10863, "dataset generated": 5683, "encourage research": 7519, "research direction": 21805, "development sophisticated": 6418, "sophisticated language": 23489, "financial text": 9032, "text analysis": 25283, "carbon emissions": 3207, "machine translation": 14924, "field nlp": 8964, "nlp applications": 17411, "utility language": 26895, "models increases": 16294, "performance models": 18705, "models require": 16644, "require large": 21726, "computational power": 4429, "data train": 5615, "leading large": 13711, "environmental impact": 7729, "impact training": 11245, "training models": 25806, "models particular": 16562, "models work": 16782, "assess performance": 2051, "multiple language": 16963, "language pairs": 13212, "train models": 25703, "models language": 16325, "models analyze": 16030, "learning rl": 13898, "rl achieved": 22304, "achieved significant": 612, "significant success": 23141, "application domains": 1643, "domains robotics": 6939, "robotics games": 22340, "training rl": 25830, "rl agents": 22306, "time consuming": 25503, "current implementations": 5341, "exhibit poor": 8223, "poor performance": 19051, "memory accesses": 15258, "work propose": 27538, "propose framework": 20294, "replay buffer": 21635, "key component": 12460, "rl algorithms": 22307, "define new": 5931, "new data": 17311, "data structure": 5604, "updates address": 26460, "address challenge": 790, "propose novel": 20314, "novel data": 17547, "reduces number": 21327, "additionally propose": 781, "framework employs": 9418, "stochastic gradient": 23867, "gradient descent": 10406, "collected data": 4019, "data framework": 5497, "framework supports": 9454, "demonstrate effectiveness": 5988, "effectiveness framework": 7195, "algorithms performing": 1255, "performing experiments": 18814, "platform using": 18953, "using openai": 26824, "introduce new": 12248, "new type": 17362, "generative model": 10080, "platforms twitter": 18956, "generative models": 10083, "work use": 27571, "suite experiments": 24332, "experiments provide": 8403, "generation automatic": 9928, "automatic text": 2308, "attention recent": 2183, "essential step": 7814, "pretraining transformer": 19647, "transformer gpt2": 25912, "base gpt2": 2457, "quite good": 20844, "good generating": 10201, "generation approaches": 9925, "new model": 17337, "built gpt2": 3054, "model additional": 15678, "additional loss": 768, "context entire": 4799, "quantitative evaluation": 20680, "evaluation human": 7987, "human evaluation": 10925, "evaluation automatic": 7956, "automatic human": 2296, "approach generate": 1766, "dataset including": 5690, "million sentences": 15548, "code available": 3897, "large amounts": 13316, "amounts data": 1366, "shown impressive": 23028, "impressive performance": 11338, "performance nlp": 18715, "tasks zeroshot": 25104, "better understand": 2793, "understand extent": 26240, "models learn": 16339, "knowledge critical": 12510, "critical component": 5256, "conduct systematic": 4567, "evaluation large": 7991, "large pretrained": 13576, "ability exploit": 337, "variations performance": 26997, "findings highlight": 9042, "highlight limitations": 10763, "knowledge taskspecific": 12591, "supervision furthermore": 24397, "furthermore using": 9573, "using larger": 26799, "larger models": 13621, "fewshot evaluation": 8919, "achieve humanlevel": 574, "performance generative": 18657, "generation exploration": 9954, "aid data": 1154, "generative design": 10066, "spatial concepts": 23553, "exploration paper": 8484, "uses generative": 26689, "transformers gpt": 25954, "generation experiments": 9952, "gpt2 gpt3": 10252, "design tasks": 6220, "good performance": 10203, "models survey": 16722, "translation models": 25987, "transformer gpt": 25908, "gpt architecture": 10222, "data models": 5547, "models learning": 16342, "past years": 18476, "various pretrained": 27072, "models specialized": 16698, "released public": 21480, "ethical social": 7854, "models paper": 16556, "paper aims": 18186, "largescale language": 13636, "understanding potential": 26302, "potential risks": 19220, "risks posed": 22300, "computer science": 4447, "social sciences": 23400, "humancomputer interaction": 11015, "lower performance": 14879, "performance social": 18760, "social group": 23381, "private data": 19736, "sensitive information": 22768, "risks arising": 22294, "misleading information": 15600, "information including": 11758, "llms used": 14743, "conversational agents": 4981, "agents interact": 1038, "human users": 10995, "users including": 26664, "effect different": 7132, "social groups": 23382, "lastly discuss": 13656, "research particularly": 21847, "script knowledge": 22596, "scientific question": 22566, "knowledge present": 12563, "generative language": 10069, "end introduce": 7527, "introduce task": 12257, "task generating": 24779, "event sequence": 8060, "form natural": 9315, "language prompts": 13248, "prompts zeroshot": 20244, "experiments generative": 8387, "lms produce": 14773, "address propose": 822, "generate good": 9776, "good quality": 10205, "small set": 23352, "second stage": 22632, "automatic manual": 2299, "manual evaluations": 15045, "evaluations demonstrate": 8047, "substantial improvements": 24220, "finetuned lm": 9105, "manual analysis": 15040, "shows great": 23064, "room improvement": 22377, "offering new": 17697, "new research": 17349, "mixtureofexperts moe": 15649, "model quality": 15886, "quality especially": 20647, "increase model": 11548, "model parameters": 15849, "large scale": 13590, "computation cost": 4416, "existing works": 8287, "train model": 25701, "performance paper": 18725, "propose efficient": 20289, "framework called": 9405, "training single": 25840, "joint learning": 12419, "knowledge single": 12582, "training stage": 25842, "evaluations conducted": 8046, "popular models": 19068, "models tasks": 16736, "modeling task": 15989, "gpt language": 10228, "translation task": 25997, "task results": 24822, "baselines including": 2577, "sentiment analysis": 22799, "revolutionized nlp": 22246, "nlp field": 17420, "models capture": 16075, "applications text": 1687, "classification tasks": 3806, "tasks bert": 24874, "extensively explored": 8625, "explored aspects": 8534, "multilingual models": 16921, "conduct extensive": 4557, "experimental study": 8361, "different strategies": 6557, "analysis task": 1453, "task experiments": 24773, "bert models": 2729, "models trained": 16744, "results bert": 22019, "achieved highest": 602, "majority cases": 14970, "predictive performance": 19378, "performance computational": 18613, "computational cost": 4423, "inference dataset": 11689, "dataset creation": 5666, "nlp datasets": 17416, "scale human": 22487, "human writers": 11000, "linguistic diversity": 14192, "introduce novel": 12251, "approach dataset": 1745, "humans starting": 11076, "inference nli": 11697, "approach uses": 1822, "automatically identify": 2324, "challenging reasoning": 3426, "reasoning patterns": 21096, "new examples": 17323, "similar patterns": 23200, "generated examples": 9846, "examples automatically": 8124, "labeled human": 12629, "resulting dataset": 22002, "presents unique": 19501, "nli datasets": 17405, "training model": 25805, "improves performance": 11410, "performance outofdomain": 18723, "test sets": 25257, "including 11": 11443, "compared training": 4211, "datasets results": 5774, "demonstrate promise": 6027, "leveraging natural": 14032, "generation techniques": 10031, "role humans": 22368, "creation process": 5230, "humanai collaborative": 11006, "model capabilities": 15701, "capabilities large": 3122, "generation capabilities": 9931, "exciting opportunities": 8180, "paper argue": 18194, "hci community": 10619, "generative capabilities": 10065, "approach present": 1800, "dataset designed": 5672, "finally discuss": 9005, "models zeroshot": 16785, "zeroshot planners": 27713, "extracting actionable": 8666, "actionable knowledge": 696, "knowledge embodied": 12520, "embodied agents": 7324, "agents world": 1060, "knowledge learned": 12549, "learned large": 13749, "models llms": 16360, "language make": 12740, "focused learning": 9261, "surprisingly pretrained": 24462, "evaluation recent": 8022, "virtualhome environment": 27207, "substantially improves": 24226, "llm baseline": 14258, "conducted human": 4578, "evaluation reveals": 8026, "shows promising": 23071, "knowledge language": 12541, "models website": 16776, "blackbox prompt": 2908, "prompt learning": 20098, "models increasing": 16295, "increasing scale": 11567, "generalpurpose pretrained": 9750, "models plms": 16571, "efficient adaptation": 7231, "different downstream": 6512, "tasks paper": 25006, "finetuning model": 9156, "efficiently optimizes": 7257, "discrete prompts": 6671, "parameters gradients": 18379, "gradients pretrained": 10410, "models outputs": 16555, "outputs given": 18088, "potential attack": 19165, "variancereduced policy": 26984, "policy gradient": 19024, "gradient algorithm": 10404, "estimate gradients": 7827, "api calls": 1614, "demonstrate proposed": 6029, "proposed algorithm": 20344, "achieves significant": 641, "significant improvement": 23120, "conduct indepth": 4563, "case studies": 3238, "data sizes": 5599, "prompts code": 20189, "diverse data": 6790, "data sources": 5601, "language data": 12695, "data resources": 5585, "years largescale": 27662, "largescale data": 13628, "data collected": 5448, "collected order": 4021, "order improve": 17945, "modeling capabilities": 15979, "resulted concerns": 22000, "data subjects": 5606, "particularly considering": 18438, "present methodology": 19444, "diverse set": 6815, "target language": 24729, "english french": 7593, "indic languages": 11601, "programming languages": 19991, "potential data": 19174, "supporting tool": 24425, "development process": 6413, "language transformers": 13268, "universal image": 26377, "facial images": 8726, "age gender": 1014, "gender race": 9684, "people different": 18523, "different attributes": 6495, "novel method": 17556, "images using": 11204, "using pretrained": 26831, "transformer model": 25924, "apply pretrained": 1715, "binary classification": 2865, "trained generate": 25721, "text finetuned": 25315, "finetuning process": 9171, "process images": 19851, "model frozen": 15779, "frozen pretrained": 9500, "image classifier": 11179, "paper shows": 18317, "high accuracy": 10694, "accuracy raw": 530, "large size": 13596, "size trained": 23300, "token time": 25555, "images work": 11206, "work shows": 27561, "bias machine": 2813, "knowledge pretraining": 12567, "error classification": 7778, "classification accuracy": 3779, "learning language": 13835, "measuring language": 15202, "data selection": 5595, "models increasingly": 16297, "rely massive": 21525, "diverse text": 6819, "undesirable content": 26328, "resources like": 21921, "like wikipedia": 14100, "automatically selecting": 2326, "web text": 27343, "using new": 26820, "dataset high": 5685, "high school": 10715, "quality demonstrate": 20645, "training corpora": 25751, "corpora language": 5054, "models better": 16063, "inclusion exclusion": 11487, "offline reinforcement": 17711, "learning finetuning": 13818, "models challenging": 16082, "challenging lack": 3419, "lack large": 12655, "high variance": 10722, "different environments": 6514, "offline rl": 17713, "rl perspective": 22313, "sequence modeling": 22824, "results result": 22101, "model trained": 15945, "trained scratch": 25735, "slow convergence": 23329, "learning sequence": 13906, "sequence models": 22825, "models domains": 16155, "vision language": 27220, "rl tasks": 22314, "end propose": 7531, "propose techniques": 20339, "techniques improve": 25158, "improve transfer": 11375, "domains results": 6938, "results consistent": 22030, "consistent performance": 4680, "performance gains": 18652, "convergence speed": 4967, "accelerating training": 450, "achieving stateoftheart": 669, "performance variety": 18785, "variety tasks": 27019, "tasks using": 25096, "models hope": 16269, "hope work": 10867, "modeling techniques": 15991, "techniques pretrained": 25165, "models rl": 16659, "knowledge generative": 12531, "generative modeling": 10082, "completely different": 4276, "different domains": 6510, "bert language": 2723, "models resources": 16648, "monolingual data": 16841, "data set": 5596, "tokens present": 25565, "analysis text": 1456, "ner tasks": 17223, "tasks release": 25039, "gpt model": 10231, "resources work": 21927, "step forward": 23848, "open resources": 17776, "information retrieval": 11782, "using large": 26783, "models information": 16301, "community recently": 4132, "recently witnessed": 21256, "models key": 16318, "ms marco": 16875, "zeroshot transfer": 27724, "learning various": 13930, "various tasks": 27090, "ir tasks": 12363, "tasks domains": 24908, "domains benefit": 6915, "single dataset": 23269, "extensive research": 8620, "research various": 21878, "various nlp": 27069, "using domainspecific": 26748, "domainspecific training": 6956, "fewshot capabilities": 8916, "models synthetic": 16726, "synthetic data": 24535, "data generators": 5504, "generators ir": 10113, "tasks models": 24996, "models finetuned": 16221, "outperform strong": 18020, "strong baselines": 23961, "baselines bm25": 2572, "bm25 recently": 2930, "recently proposed": 21246, "proposed selfsupervised": 20363, "dense retrieval": 6116, "retrieval methods": 22151, "methods furthermore": 15448, "finetuned supervised": 9112, "data achieve": 5416, "achieve better": 560, "better zeroshot": 2798, "transfer models": 25879, "code models": 3930, "models data": 16121, "available httpsgithubcomzetaalphavectorinpars": 2374, "factual associations": 8763, "autoregressive transformer": 2349, "models finding": 16218, "causal intervention": 3279, "models factual": 16210, "reveals distinct": 22206, "test hypothesis": 25245, "model editing": 15747, "standard zeroshot": 23724, "relation extraction": 21441, "task comparable": 24752, "methods perform": 15471, "results confirm": 22029, "important role": 11310, "approach model": 1787, "editing code": 7099, "code dataset": 3907, "interactive demo": 12147, "demo notebook": 5970, "quantifying memorization": 20675, "models large": 16328, "shown memorize": 23043, "parts training": 18452, "user data": 26624, "low quality": 14867, "quantify degree": 20673, "data memorization": 5542, "number tokens": 17598, "used prompt": 26592, "prompt model": 20104, "results model": 22075, "model families": 15771, "sentence embeddings": 22781, "hundreds billions": 11088, "billions parameters": 2859, "results various": 22131, "various language": 27053, "language tasks": 13263, "tasks prompting": 25023, "prompting finetuning": 20143, "finetuning large": 9144, "large foundation": 13331, "foundation models": 9366, "models remain": 16640, "remain unusable": 21532, "new stateoftheart": 17353, "separate models": 22808, "models end": 16179, "billion parameters": 2855, "175 billion": 73, "benchmark code": 2648, "freely available": 9482, "models human": 16270, "human cognitive": 10913, "biases large": 2829, "models generate": 16238, "generate complex": 9764, "complex openended": 4307, "class label": 3774, "order asses": 17940, "openended generation": 17830, "generation systems": 10026, "systems aim": 24577, "aim identify": 1179, "draw inspiration": 7009, "systematic patterns": 24557, "specifically use": 23633, "use cognitive": 26497, "problems models": 19808, "experiments elicit": 8383, "problems using": 19819, "using code": 26729, "code generation": 3916, "case study": 3240, "openais codex": 17795, "based input": 2498, "input prompt": 11878, "frequent training": 9487, "use framework": 26510, "cognitive science": 3989, "help characterize": 10655, "learning systems": 13915, "systems behave": 24582, "responses questions": 21963, "performance key": 18681, "key limitation": 12473, "limitation existing": 14114, "existing knowledge": 8259, "methods treat": 15496, "student responses": 24016, "correct incorrect": 5083, "important information": 11301, "openended questions": 17834, "questions paper": 20812, "paper conduct": 18202, "task predicting": 24813, "questions work": 20835, "domain computer": 6883, "science education": 22547, "education programming": 7119, "programming questions": 19992, "generation approach": 9923, "program synthesis": 19975, "synthesis methods": 24524, "methods using": 15502, "using language": 26780, "conduct series": 4566, "quantitative qualitative": 20681, "qualitative experiments": 20630, "experiments realworld": 8406, "dataset validate": 5724, "educational applications": 7124, "context large": 4805, "linguistic input": 14195, "input humans": 11867, "representations human": 21681, "human judgments": 10958, "data table": 5610, "attempted address": 2150, "address problem": 818, "building new": 3047, "shedding light": 22959, "light theoretical": 14064, "grounded language": 10476, "models lowrank": 16510, "nlp large": 17421, "large number": 13573, "translation mt": 25988, "models predict": 16579, "models typically": 16754, "feature representation": 8863, "input features": 11865, "small language": 23336, "paper ask": 18195, "public models": 20559, "impact model": 11237, "release code": 21469, "instruction search": 11981, "prompting large": 20152, "models providing": 16611, "providing natural": 20515, "language instructions": 12726, "new paradigm": 17342, "task performance": 24812, "performance large": 18685, "zeroshot setting": 27720, "setting recent": 22906, "work aimed": 27465, "improve prompts": 11370, "manual rewriting": 15048, "large models": 13565, "models feasible": 16212, "work introduce": 27510, "approach improving": 1774, "task instructions": 24789, "instructions large": 12003, "takes instructions": 24710, "improves average": 11404, "tasks natural": 25000, "dataset similar": 5715, "similar improvements": 23195, "opt bloom": 17896, "examples prompts": 8143, "prompts controlling": 20193, "compute data": 4441, "tuning approaches": 26070, "improve accuracy": 11349, "accuracy code": 507, "contextualizing language": 4855, "models vast": 16771, "intrinsic evaluation": 12234, "evaluation task": 8036, "widely used": 27401, "prior research": 19711, "gpt2 perform": 10268, "perform poorly": 18563, "results showing": 22111, "gpt2 results": 10274, "model output": 15843, "related work": 21437, "similarity tasks": 23214, "previous best": 19663, "gpt2 finally": 10248, "biases language": 2827, "training instances": 25782, "processes unclear": 19884, "unclear extent": 26178, "similar training": 23205, "work study": 27564, "decoding methods": 5852, "training sets": 25839, "ethical implications": 7850, "raising concerns": 20871, "models larger": 16335, "data source": 5600, "source code": 23508, "various models": 27062, "models proposed": 16605, "incorporate knowledge": 11522, "knowledge syntactic": 12589, "syntactic structures": 24516, "models previous": 16589, "previous works": 19680, "specific language": 23595, "recurrent neural": 21302, "models transformer": 16752, "gpt2 paper": 10267, "models train": 16743, "models novel": 16539, "modeling objective": 15985, "probability distribution": 19748, "given context": 10144, "probability distributions": 19749, "experiments human": 8389, "human evaluations": 10932, "method easily": 15346, "easily effectively": 7079, "applied different": 1694, "improving neural": 11421, "generation various": 10042, "tasks does": 24907, "learning better": 13777, "better language": 2783, "language representations": 13254, "best knowledge": 2748, "knowledge previous": 12568, "previous work": 19679, "different pretraining": 6547, "linguistically motivated": 14202, "linguistic knowledge": 14196, "resulting models": 22004, "models strong": 16706, "probing performance": 19759, "different types": 6562, "surprising results": 24458, "linguistically informed": 14201, "pretraining knowledge": 19625, "pretraining corpora": 19618, "factually correct": 8773, "knowledge given": 12532, "generation used": 10037, "pretraining task": 19646, "task finetuning": 24776, "require additional": 21717, "training architecture": 25748, "practical applications": 19289, "novel decoding": 17548, "decoding algorithm": 5847, "knowledge memory": 12558, "based current": 2474, "current context": 5334, "continuously update": 4876, "tasks taskagnostic": 25079, "gpt2 bart": 10243, "stateoftheart models": 23787, "models particularly": 16563, "particularly strong": 18446, "strong performance": 23969, "performance fewshot": 18646, "fewshot scenarios": 8933, "ability generate": 341, "language input": 12724, "input context": 11861, "context compared": 4798, "multiple baselines": 16953, "baselines finally": 2575, "exposure bias": 8569, "generation quality": 10008, "quality generating": 20653, "longer sequences": 14824, "african languages": 1010, "generation important": 9964, "nlp task": 17436, "languages enable": 13300, "dialogue agents": 6455, "dialogue datasets": 6459, "multiwoz dataset": 17010, "analyze effectiveness": 1469, "monolingual models": 16843, "models dialogpt": 16143, "compare models": 4169, "models simple": 16687, "perplexity conduct": 18837, "conduct human": 4561, "conversations using": 5003, "majority votes": 14972, "interannotator agreement": 12156, "humanlike conversations": 11038, "different degrees": 6507, "degrees languages": 5948, "languages language": 13306, "public access": 20550, "generating code": 9891, "sql queries": 23685, "queries using": 20699, "gpt3 codex": 10292, "openais gpt3": 17802, "codex model": 3975, "text code": 25293, "decomposes complex": 5860, "processing steps": 19912, "described natural": 6162, "resulting text": 22005, "text query": 25368, "query processing": 20710, "generate correct": 9766, "correct code": 5081, "various ways": 27096, "approach paper": 1798, "aims explore": 1202, "explore generative": 8508, "generative approach": 10060, "models artificial": 16038, "artificial intelligence": 1979, "intelligence ai": 12063, "ai specifically": 1134, "specifically method": 23627, "finetuning generative": 9133, "database proposed": 5634, "understandable language": 26260, "knowledge sources": 12584, "performance generating": 18656, "source knowledge": 23518, "beneficial solving": 2701, "technical problems": 25138, "design method": 6201, "proven beneficial": 20401, "applying method": 1722, "explore recent": 8525, "bridge gap": 2986, "gap paper": 9644, "paper proposes": 18298, "design approach": 6179, "model plm": 15860, "latest generative": 13672, "transformer gpt3": 25914, "gpt3 used": 10313, "domains generated": 6921, "concepts approach": 4475, "approach tested": 1818, "finetuned models": 9108, "models applied": 16035, "applied generate": 1698, "results approach": 22011, "concepts good": 4479, "promptbased approach": 20124, "controlled text": 4947, "generation ctg": 9940, "address concerns": 799, "training prompt": 25824, "prompt task": 20115, "generation tasks": 10028, "tasks demonstrate": 24897, "demonstrate strong": 6034, "training parameters": 25814, "art neural": 1961, "network architecture": 17230, "processing computer": 19890, "computer vision": 4450, "foundation model": 9365, "model paradigm": 15847, "paradigm large": 18338, "vit pretrained": 27256, "tasks word": 25101, "applications including": 1668, "instruction following": 11979, "following question": 9285, "knowledge loss": 12557, "poorly understood": 19057, "range machine": 20897, "low rank": 14868, "prior knowledge": 19708, "computational resources": 4432, "achieves comparable": 625, "continual learning": 4861, "tasks language": 24972, "user goals": 26626, "language use": 13281, "able account": 392, "text prompt": 25365, "approach learning": 1780, "lightweight modules": 14068, "transformerbased architectures": 25937, "architectures using": 1919, "evaluate approach": 7871, "efficiently adapts": 7252, "novel contexts": 17546, "contexts minimal": 4833, "generalizing unseen": 9743, "does introduce": 6865, "discourse entities": 6660, "noun phrases": 17533, "work adapt": 27460, "assessment language": 2072, "linguistic phenomena": 14199, "english evaluation": 7592, "evaluation suite": 8035, "use evaluation": 26505, "entity tracking": 7716, "gpt3 models": 10303, "models certain": 16079, "certain extent": 3312, "suggests models": 24324, "models scale": 16666, "distributional properties": 6776, "emergent incontext": 7359, "incontext learning": 11505, "transformers large": 25959, "able perform": 411, "perform incontext": 18557, "incontext fewshot": 11503, "learning explicitly": 13814, "explicitly trained": 8474, "raises question": 20869, "training regime": 25826, "having large": 10614, "large numbers": 13575, "range domains": 20892, "distributions typically": 6780, "typically used": 26149, "supervised learning": 24386, "initial experiments": 11836, "learning models": 13856, "models unable": 16755, "achieve simultaneously": 587, "single model": 23275, "trained data": 25715, "data including": 5521, "including language": 11461, "language experiments": 12705, "findings indicate": 9044, "particular properties": 18430, "models future": 16231, "inweights learning": 12358, "variational autoencoders": 26995, "variational autoencoder": 26993, "autoencoder vae": 2260, "representation learning": 21669, "generation natural": 9990, "models employ": 16173, "powerful handle": 19269, "handle complex": 10566, "plms downstream": 18989, "resources paper": 21924, "different existing": 6515, "model using": 15963, "latent space": 13667, "models experiments": 16202, "experiments multiple": 8396, "multiple dimensions": 16960, "modeling representation": 15987, "guided text": 10528, "parameters training": 18388, "training code": 25749, "answering openended": 1580, "considerable advancements": 4652, "tasks based": 24870, "llms nlp": 14611, "applications deployed": 1659, "lives work": 14236, "work challenge": 27471, "capability llms": 3165, "llms new": 14610, "generative question": 10107, "questions challenging": 20785, "challenging address": 3411, "conflicting answers": 4609, "explore current": 8503, "llms providing": 14655, "different perspectives": 6544, "propose model": 20307, "ethical principles": 7852, "generates answer": 9884, "promptbased fewshot": 20125, "challenges ethical": 3375, "ethical issues": 7851, "human values": 10997, "coreference resolution": 5047, "crucial task": 5300, "task understanding": 24838, "language large": 12733, "benefits large": 2707, "largely rely": 13609, "expensive difficult": 8317, "prompt engineering": 20088, "engineering paper": 7577, "pretrained llms": 19568, "llms abilities": 14346, "abilities limitations": 314, "gpt2 gptneo": 10255, "inconsistent results": 11498, "project aims": 20021, "aims produce": 1211, "art form": 1958, "art natural": 1959, "generation utilizing": 10041, "forward reverse": 9355, "generation process": 10003, "evaluation metrics": 8004, "lexical diversity": 14038, "finally present": 9020, "human creativity": 10917, "responses potential": 21962, "potential significantly": 19222, "significantly reduce": 23175, "advances automated": 936, "leverage textual": 14005, "representations based": 21677, "models existing": 16196, "existing approaches": 8244, "train separate": 25706, "different approaches": 6492, "fail leverage": 8781, "reading passage": 20999, "parameters paper": 18384, "bert finetuning": 2717, "scoring model": 22585, "contextual information": 4840, "effectiveness approach": 7186, "approach local": 1785, "evaluations using": 8052, "training dataset": 25765, "dataset provided": 5706, "challenge discuss": 3348, "error types": 7787, "relative positional": 21458, "positional embedding": 19111, "length extrapolation": 13969, "positional embeddings": 19112, "received considerable": 21126, "considerable attention": 4653, "framework generalizes": 9427, "achieve goal": 568, "allows derive": 1319, "experiments demonstrate": 8377, "achieves excellent": 629, "pretrained checkpoints": 19525, "short text": 22978, "augmented data": 2229, "data using": 5621, "model developed": 15738, "developed openai": 6385, "perform different": 18551, "different tasks": 6560, "number incontext": 17593, "incontext examples": 11501, "requires training": 21759, "address issue": 804, "issue study": 12378, "data science": 5591, "small training": 23354, "examples generated": 8132, "using genetic": 26763, "genetic algorithm": 10119, "accuracy using": 538, "unseen examples": 26426, "largescale machine": 13641, "additional training": 771, "improved classification": 11378, "classification performance": 3798, "work presents": 27535, "comprehensive benchmark": 4370, "benchmark evaluating": 2661, "evaluating natural": 7948, "conditional text": 4530, "process furthermore": 19847, "models absolute": 16000, "absolute gain": 422, "relative gain": 21454, "new dialogue": 17315, "dialogue dataset": 6458, "model publicly": 15884, "advancing future": 954, "social biases": 23376, "multitask learning": 16998, "texttotext format": 25421, "format using": 9333, "using prompts": 26839, "generalize novel": 9738, "novel tasks": 17567, "tasks large": 24974, "large body": 13320, "body work": 2937, "achieving superior": 672, "superior performance": 24373, "consider alternative": 4646, "outputs paper": 18093, "texttotext language": 25422, "trained using": 25742, "using promptbased": 26838, "promptbased learning": 20127, "consider different": 4647, "semantically equivalent": 22745, "use existing": 26506, "existing bias": 8251, "bias benchmark": 2806, "form results": 9316, "results benchmarks": 22018, "given different": 10146, "seen training": 22668, "training compared": 25750, "unlike training": 26401, "data released": 5582, "question decomposition": 20744, "achieved stateoftheart": 614, "performance natural": 18710, "growing number": 10500, "number new": 17594, "cost time": 5137, "explore alternative": 8495, "models answer": 16031, "simpler questions": 23235, "models solve": 16695, "range datasets": 20891, "various forms": 27046, "possible significantly": 19140, "improve model": 11364, "nlp research": 17431, "potentially provide": 19251, "path building": 18484, "building large": 3044, "large lms": 13561, "understanding contextualized": 26267, "representation space": 21673, "gain insight": 9607, "properties contextualized": 20263, "representations instead": 21682, "infer latent": 11682, "fully unsupervised": 9517, "way using": 27313, "using structured": 26870, "word meanings": 27442, "morphological syntactic": 16852, "encode rich": 7481, "despite lacking": 6268, "lacking explicit": 12666, "bert roberta": 2732, "information training": 11797, "classifiers predict": 3817, "token based": 25548, "models robustly": 16662, "perform better": 18544, "results generalize": 22049, "series experiments": 22849, "knowledge acquired": 12495, "multiple phenomena": 16970, "phenomena including": 18888, "relationship particular": 21449, "emergent abilities": 7352, "abilities large": 311, "models scaling": 16668, "improve performance": 11367, "performance sample": 18750, "sample efficiency": 22439, "range downstream": 20893, "paper instead": 18233, "models consider": 16102, "smaller models": 23360, "models present": 16581, "models emergent": 16170, "performance smaller": 18759, "range capabilities": 20889, "capabilities language": 3119, "models methods": 16521, "models despite": 16140, "outstanding performance": 18100, "llms suffer": 14723, "training domain": 25770, "research directions": 21806, "robustness neural": 22361, "based findings": 2485, "present future": 19439, "directions enhancing": 6626, "enhancing robustness": 7648, "robustness llms": 22359, "ai large": 1112, "model designed": 15735, "predict text": 19334, "problem hand": 19769, "open ais": 17760, "model gpt3": 15790, "assessed gpt3s": 2055, "compared performance": 4197, "human responses": 10983, "automated method": 2280, "method measure": 15378, "based semantic": 2537, "particular task": 18432, "task discuss": 24764, "human ai": 10898, "language learning": 12737, "broad knowledge": 3011, "knowledge text": 12592, "text corpora": 25298, "finetuning models": 9157, "models supervised": 16719, "curated datasets": 5322, "learning work": 13934, "utility maximization": 26897, "maximization framework": 15166, "learning leverage": 13844, "method employs": 15350, "learning value": 13928, "value functions": 26966, "functions used": 9537, "used guide": 26575, "guide language": 10523, "model generations": 15785, "utility functions": 26894, "present detailed": 19432, "detailed empirical": 6292, "empirical analysis": 7395, "useful natural": 26615, "generation settings": 10020, "prior approaches": 19707, "endtoend dialogue": 7544, "dialogue effectively": 6460, "optimize high": 17924, "reward functions": 22256, "functions based": 9536, "answering dataset": 1571, "unique form": 26367, "chinese language": 3731, "language typically": 13270, "challenging task": 3431, "general knowledge": 9700, "dataset named": 5700, "simplified chinese": 23242, "chinese characters": 3728, "model generation": 15784, "generation stage": 10022, "generation model": 9987, "model produces": 15877, "descriptions generated": 6170, "performance language": 18682, "models task": 16735, "task solving": 24826, "test language": 25246, "test results": 25252, "reveal current": 22195, "current language": 5342, "struggle solve": 24002, "decision making": 5824, "advances language": 942, "dataset containing": 5661, "corpus questions": 5073, "forecasting task": 9301, "performance far": 18645, "far human": 8833, "human expert": 10935, "baseline performance": 2566, "increased model": 11554, "relevant information": 21496, "information news": 11769, "challenge large": 3353, "models improved": 16282, "improved performance": 11382, "distant supervision": 6737, "pretraining methods": 19634, "task natural": 24806, "unstructured text": 26433, "text structured": 25381, "relational information": 21445, "entity pairs": 7706, "uses knowledge": 26690, "knowledge graph": 12533, "graph completion": 10428, "text summarization": 25382, "language modelbased": 12804, "survey begins": 24468, "highlighting limitations": 10776, "popular benchmarks": 19061, "metrics used": 15538, "used assess": 26553, "modern methods": 16804, "review recent": 22219, "recent works": 21216, "transformers learn": 25963, "ability model": 364, "prompt sequence": 20112, "inputoutput pairs": 11889, "task new": 24809, "generate corresponding": 9768, "parameter updates": 18362, "model large": 15814, "models gpt3": 16256, "ability perform": 366, "relationship tasks": 21450, "data make": 5540, "understanding incontext": 26279, "problem training": 19785, "model incontext": 15802, "linear functions": 14179, "transformers trained": 25964, "learning linear": 13845, "trained model": 25730, "model able": 15670, "able learn": 409, "performance comparable": 18605, "distribution shift": 6771, "data model": 5546, "input inference": 11869, "transformers incontext": 25956, "learn complex": 13732, "matches exceeds": 15127, "algorithms code": 1249, "phishing detection": 18896, "analysis previous": 1438, "previous research": 19670, "leverage knowledge": 13999, "knowledge training": 12595, "task use": 24839, "use pretrained": 26533, "pretrained bert": 19522, "network model": 17233, "model results": 15899, "performance significantly": 18754, "furthermore mitigate": 9563, "mitigate effect": 15623, "model outperforms": 15842, "outperforms current": 18041, "current stateoftheart": 5360, "analysis individual": 1416, "generation language": 9970, "order identify": 17944, "difficult distinguish": 6582, "distinguish real": 6756, "existing research": 8275, "attackers exploit": 2139, "personally identifiable": 18861, "identifiable information": 11124, "information pii": 11771, "pii paper": 18916, "offtheshelf pretrained": 17720, "require training": 21733, "sample size": 22442, "reveal significant": 22199, "significant difference": 23112, "approach help": 1770, "simple prompting": 23230, "prompting strategy": 20176, "controlling text": 4952, "longstanding challenge": 14834, "challenge existing": 3349, "prompting techniques": 20179, "techniques proposed": 25166, "nonexpert users": 17480, "examples explanations": 8129, "users paper": 26674, "propose simple": 20331, "set relevant": 22889, "relevant questions": 21501, "execute task": 8191, "demonstrate efficacy": 5995, "tasks specifically": 25064, "specifically focus": 23622, "require significant": 21731, "harness power": 10599, "framework zeroshot": 9469, "zeroshot dialogue": 27701, "building dialogue": 3041, "zeroshot scenario": 27718, "huge challenge": 10888, "typical zeroshot": 26140, "zeroshot approaches": 27694, "rely heavily": 21522, "largescale pretrained": 13644, "generation models": 9988, "gpt3 t5": 10310, "models limited": 16355, "corpora paper": 5057, "simple effective": 23220, "effective multilingual": 7156, "learning framework": 13820, "generation dubbed": 9947, "effectively transfer": 7183, "transfer knowledge": 25869, "largescale training": 13650, "zero samples": 27685, "augmentation method": 2223, "method improve": 15368, "resourcerich language": 21915, "randomly selected": 20885, "monolingual english": 16842, "datasets employ": 5744, "unified multilingual": 26352, "dialogue model": 6464, "model based": 15694, "semantic alignment": 22719, "alignment different": 1280, "different languages": 6523, "languages experiments": 13304, "datasets demonstrate": 5740, "achieve competitive": 563, "competitive performance": 4253, "performance zeroshot": 18804, "source language": 23519, "models ability": 15996, "make predictions": 14987, "presented training": 19476, "challenging problem": 3425, "current deep": 5336, "models recent": 16625, "stateoftheart transformerbased": 23815, "solutions problem": 23447, "architectures training": 1917, "training methods": 25804, "methods generalize": 15449, "demonstrate large": 6008, "architecture training": 1911, "training procedure": 25819, "results generating": 22051, "model produce": 15875, "outputting answer": 18096, "task model": 24803, "output tokens": 18082, "limitation current": 14113, "guidance code": 10518, "resources training": 21925, "training large": 25786, "large datasets": 13326, "datasets resource": 5771, "resource timeintensive": 21910, "various techniques": 27092, "train large": 25699, "using resources": 26852, "research lab": 21830, "reasonable time": 21046, "t5 model": 24661, "embedding spaces": 7313, "used variety": 26607, "text processing": 25363, "tasks recently": 25036, "humans understanding": 11078, "space crucial": 23532, "present novel": 19447, "present algorithm": 19422, "used various": 26608, "chainofthought prompts": 3339, "probabilistic models": 19742, "human language": 10962, "use need": 26530, "contrast large": 4887, "llms trained": 14733, "trained text": 25740, "text spans": 25378, "wide array": 27376, "paper use": 18325, "use chainofthought": 26492, "prompts introduce": 20214, "llms explore": 14486, "explore approach": 8496, "prompts lead": 20219, "models infer": 16299, "latent variables": 13668, "understanding cognitive": 26264, "versions gpt3": 27165, "selection task": 22691, "training paradigms": 25813, "paper describes": 18210, "shared task": 22948, "9th workshop": 297, "uses large": 26692, "engineering using": 7584, "gpt3 investigate": 10300, "learning contrastive": 13790, "contrastive learning": 4901, "models prompting": 16599, "prompting gpt3": 20145, "shown remarkable": 23054, "remarkable success": 21594, "especially natural": 7802, "attempts train": 2155, "domains code": 6916, "code summarization": 3948, "summarization natural": 24352, "study multitask": 24127, "works tasks": 27598, "tasks significantly": 25058, "significantly different": 23151, "learning using": 13926, "python code": 20606, "carried extensive": 3228, "experiments using": 8419, "using popular": 26830, "training strategies": 25844, "evaluate model": 7893, "bleu score": 2913, "metrics measure": 15531, "measure performance": 15192, "performance various": 18790, "knowledge transfer": 12596, "considerable challenges": 4655, "challenges models": 3385, "finetuning strategy": 9187, "performs tasks": 18826, "knowledge exploring": 12523, "design prompts": 6212, "applying gpt3": 1717, "gpt3 based": 10289, "based chatbots": 2470, "mechanical turk": 15205, "largelanguage models": 13606, "potential enable": 19175, "researchers create": 21882, "specific applications": 23577, "applications evaluating": 1662, "designing prompts": 6242, "specific task": 23608, "task challenging": 24749, "challenging present": 3424, "present case": 19425, "dimensions prompt": 6615, "prompt design": 20086, "present quantitative": 19455, "qualitative analyses": 20625, "conversations user": 5002, "user perceptions": 26636, "specific tasks": 23609, "methods use": 15497, "design evaluation": 6192, "interpretable models": 12206, "llms training": 14734, "training recent": 25825, "recent large": 21185, "llms demonstrated": 14423, "demonstrated remarkable": 6059, "remarkable prediction": 21585, "prediction performance": 19357, "performance growing": 18667, "growing array": 10493, "array tasks": 1953, "need interpretability": 17182, "address need": 817, "leveraging knowledge": 14025, "llms build": 14386, "efficient interpretable": 7237, "use llms": 26522, "inference compared": 11686, "compared llms": 4192, "embeddings llm": 7318, "decision tree": 5830, "datasets outperform": 5766, "outperform larger": 18014, "6billion parameter": 240, "gptj model": 10378, "model despite": 15736, "fewer parameters": 8912, "parameters fully": 18378, "generate interesting": 9790, "code using": 3953, "reproducing results": 21705, "results available": 22014, "available github": 2373, "social concerns": 23377, "modern nlp": 16805, "nlp models": 17426, "longshort term": 14831, "term memory": 25216, "use information": 26515, "llms gpt3": 14530, "gpt3 shows": 10309, "generation generative": 9960, "novel way": 17573, "creating new": 5223, "scratch using": 22591, "using transformers": 26878, "models given": 16247, "small dataset": 23333, "task training": 24837, "domain adaptation": 6881, "crosslingual transfer": 5281, "learning transfer": 13922, "llms emerged": 14457, "emerged powerful": 7335, "number tasks": 17597, "models different": 16144, "domains languages": 6924, "languages remains": 13311, "remains open": 21546, "open question": 17772, "leading positive": 13714, "positive negative": 19118, "negative transfer": 17208, "paper analyze": 18191, "tasks text": 25083, "using llms": 26803, "llms bert": 14382, "roberta xlnet": 22330, "analyzing performance": 1482, "performance finetuning": 18648, "target datasets": 24725, "training larger": 25791, "larger dataset": 13615, "experiments showed": 8410, "showed finetuning": 22999, "lead better": 13699, "nlp practitioners": 17429, "model introduce": 15809, "english chinese": 7589, "chinese pretrained": 3732, "model good": 15786, "training process": 25821, "including design": 11449, "design choices": 6184, "choices training": 3743, "efficiency stability": 7225, "engineering efforts": 7574, "model offers": 15838, "gpt3 175b": 10284, "range popular": 20907, "english benchmarks": 7588, "consistently significantly": 4689, "largest chinese": 13654, "model related": 15893, "finally leverage": 9017, "training performance": 25815, "model weights": 15967, "publicly accessible": 20571, "accessible code": 475, "training logs": 25795, "generation prompting": 10004, "models case": 16076, "novel application": 17537, "application prompting": 1652, "prompting pretrained": 20171, "study design": 24082, "design effective": 6189, "effective prompts": 7161, "prompts task": 20240, "task settings": 24824, "generating source": 9913, "given target": 10170, "generating explanation": 9896, "similarity given": 23210, "given pair": 10159, "explanation generation": 8449, "instructgpt generate": 11967, "generate meaningful": 9797, "model prompt": 15878, "errors model": 7793, "quality generations": 20654, "varies substantially": 27001, "model achieve": 15672, "humanlevel performance": 11033, "generating meaningful": 9905, "knowledge pretrained": 12564, "measured performance": 15195, "performance improvements": 18675, "answering tasks": 1587, "tasks designed": 24900, "designed require": 6233, "knowledge finetuning": 12527, "does directly": 6862, "evaluate commonsense": 7877, "work present": 27533, "size large": 23294, "order evaluate": 17942, "higher precision": 10738, "wordnet wikidata": 27455, "memory transformer": 15277, "transformer recent": 25933, "work shown": 27557, "models new": 16537, "specialized knowledge": 23571, "line work": 14177, "work predominantly": 27532, "method directly": 15342, "gptneox 20b": 10385, "work orders": 27531, "challenging bigbench": 3414, "bigbench tasks": 2848, "al 2022": 1228, "diverse evaluation": 6799, "capabilities current": 3110, "models good": 16249, "tasks fewshot": 24928, "fewshot prompting": 8930, "fall short": 8808, "work focus": 27499, "23 challenging": 132, "model evaluations": 15758, "chainofthought cot": 3331, "cot prompting": 5153, "tasks enables": 24913, "tasks tasks": 25081, "require multistep": 21728, "multistep reasoning": 16993, "reasoning fewshot": 21073, "prompting cot": 20140, "best performance": 2752, "analysis explore": 1412, "model scale": 15902, "highly predictable": 10799, "address question": 824, "experimental data": 8337, "data gpt3": 5510, "high degree": 10702, "construct prompts": 4719, "results highlight": 22055, "highlight importance": 10761, "benchmark exploring": 2662, "models understanding": 16759, "text important": 25342, "deployment models": 6149, "requires additional": 21743, "create benchmark": 5203, "benchmark dataset": 2654, "empirically study": 7422, "models designed": 16139, "tasks stateoftheart": 25067, "stateoftheart large": 23776, "models susceptible": 16723, "safety assessment": 22419, "humans ai": 11060, "ai study": 1135, "human subjects": 10990, "gpt3 prompted": 10305, "additional information": 766, "50 100": 198, "effect ai": 7131, "ai bot": 1088, "compared human": 4189, "control group": 4934, "small perturbations": 23350, "language specifications": 13259, "domain knowledge": 6898, "knowledge embedded": 12519, "embedded large": 7304, "llms help": 14540, "help users": 10669, "models high": 16267, "high level": 10705, "prompts example": 20202, "user study": 26645, "key findings": 12469, "synthesizes fields": 24531, "quality generated": 20650, "reduce time": 21320, "generate object": 9801, "questions large": 20804, "capabilities natural": 3133, "answering qa": 1582, "narrow scope": 17042, "qa dataset": 20615, "dataset built": 5651, "set topics": 22894, "supporting statements": 24424, "question answer": 20718, "benchmark reasoning": 2671, "capabilities llms": 3130, "significant room": 23137, "future improvements": 9588, "learn language": 13736, "processing models": 19899, "models known": 16323, "acquire rich": 681, "rich linguistic": 22272, "amounts text": 1371, "text paper": 25359, "tasks involving": 24968, "models significantly": 16685, "significantly outperform": 23166, "models remains": 16641, "experiments training": 8417, "models fewer": 16213, "explore effect": 8505, "pretraining models": 19636, "models text": 16740, "text different": 25306, "experiments surprisingly": 8415, "multilingual text": 16925, "computer code": 4445, "code text": 3950, "findings suggest": 9061, "inductive learning": 11663, "learning abilities": 13760, "abilities language": 310, "sequence model": 22823, "trained synthetic": 25739, "task language": 24794, "investigate question": 12308, "variant gpt": 26988, "model task": 15941, "board game": 2933, "network priori": 17234, "priori knowledge": 19719, "evidence emergent": 8068, "internal representation": 12182, "experiments indicate": 8390, "used control": 26559, "control output": 4936, "saliency maps": 22435, "answering task": 1586, "used real": 26594, "real world": 21004, "popularity large": 19075, "llms realworld": 14659, "llms extensive": 14487, "llms improve": 14548, "improve efficiency": 11355, "questionanswering models": 20773, "response time": 21945, "average bleu": 2395, "parameter efficient": 18356, "efficient learning": 7239, "recently gained": 21237, "gained significant": 9616, "significant attention": 23097, "provide efficient": 20421, "efficient way": 7249, "finetuning new": 9158, "new perspectives": 17344, "generalization unseen": 9733, "unseen domains": 26425, "new datasets": 17313, "indomain settings": 11645, "better finetuning": 2779, "finetuning training": 9193, "fewer samples": 8914, "houlsby et": 10875, "outperforms finetuning": 18048, "finetuning task": 9190, "certain size": 3315, "finetuning especially": 9131, "finally apply": 9002, "achieve new": 577, "al 2018": 1224, "rouge scores": 22384, "better intent": 2782, "intent classification": 12112, "classification recent": 3804, "recent surge": 21209, "financial domain": 9030, "virtual agents": 27203, "training method": 25803, "method handling": 15366, "decision boundary": 5821, "model llm": 15821, "higher prior": 10739, "prior stateoftheart": 19714, "additional trainable": 770, "ablation studies": 388, "method yields": 15408, "yields better": 27674, "better results": 2790, "results finetuning": 22047, "finetuning entire": 9130, "entire model": 7692, "optimal method": 17903, "method downstream": 15345, "base models": 2460, "openended text": 17835, "given language": 10153, "model lm": 15825, "decoding approach": 5849, "contrastive objective": 4904, "inspired fact": 11931, "smaller lms": 23358, "requires zero": 21763, "higher quality": 10741, "model scales": 15903, "outperforms strong": 18062, "decoding algorithms": 5848, "wikipedia news": 27421, "gpu hours": 10394, "modeling methods": 15984, "modeling research": 15988, "difficult evaluate": 6583, "emergent capabilities": 7358, "sheer scale": 22963, "process building": 19836, "multilingual language": 16919, "perform ablation": 18541, "ablation study": 390, "comparing different": 4217, "zeroshot generalization": 27708, "study impact": 24109, "study performance": 24133, "performance multilingual": 18707, "finally consider": 9003, "target model": 24730, "models code": 16091, "code opensourced": 3938, "model text": 15943, "despite growing": 6261, "diffusion models": 6598, "images similar": 11202, "domains text": 6942, "match performance": 15123, "iteratively generating": 12404, "decoding time": 5855, "using offtheshelf": 26822, "generation benchmarks": 9930, "gpt2 models": 10265, "models standard": 16704, "quality diversity": 20646, "diversity metrics": 6825, "metrics vastly": 15540, "generation generating": 9959, "explore large": 8511, "large variety": 13603, "ability wide": 384, "retrieval knowledge": 22150, "data provide": 5570, "aspects study": 2030, "study explores": 24097, "ai field": 1098, "generation specifically": 10021, "approach utilizing": 1824, "utilizing generative": 26915, "gpt proposed": 10235, "knowledge reasoning": 12572, "different knowledge": 6521, "humans language": 11069, "models predictions": 16580, "models affected": 16021, "research suggests": 21869, "language humans": 12719, "upcoming words": 26455, "evidence shows": 8074, "preceding context": 19314, "using stimuli": 26869, "psycholinguistic experiments": 20542, "contemporary transformer": 4758, "gptneo gptj": 10383, "understanding human": 26277, "language comprehension": 12691, "compositional generalization": 4351, "pretrained large": 19558, "large generative": 13334, "shown great": 23021, "great performance": 10454, "tasks exhibit": 24919, "exhibit low": 8217, "generalization abilities": 9725, "shown improve": 23031, "solve task": 23465, "finetuning known": 9140, "known incontext": 12610, "work look": 27524, "outofdistribution ood": 18002, "ood performance": 17756, "models semantic": 16673, "semantic parsing": 22727, "parsing tasks": 18409, "tasks incontext": 24958, "models scaled": 16667, "codegen codex": 3961, "different number": 6542, "gap models": 9643, "native language": 17048, "language identification": 12720, "nli task": 17407, "task automatically": 24746, "useful variety": 26618, "multilabel classification": 16908, "classification task": 3805, "combined achieve": 4053, "achieve stateoftheart": 589, "results recently": 22098, "deep generative": 5879, "gpt2 outperformed": 10266, "achieved best": 596, "best results": 2763, "investigate approach": 12295, "practical implications": 19294, "compared traditional": 4210, "tasks particularly": 25009, "affective computing": 1000, "facial expressions": 8725, "truth label": 26054, "sample models": 22440, "perform tasks": 18572, "datasets provide": 5767, "issue propose": 12377, "evaluations indicate": 8049, "attention mechanism": 2170, "consistent human": 4679, "empirical evaluations": 7400, "demonstrates substantial": 6089, "performance downstream": 18633, "compared standard": 4204, "standard deep": 23715, "models current": 16119, "models account": 16004, "classification models": 3794, "models likely": 16353, "prediction models": 19356, "examples provides": 8144, "method generates": 15363, "examples prompting": 8140, "model twice": 15953, "generate examples": 9770, "task format": 24777, "confidence generated": 4591, "examples training": 8148, "improve ability": 11348, "prior methods": 19709, "terms accuracy": 25220, "supervision existing": 24396, "existing techniques": 8282, "techniques training": 25170, "training language": 25784, "imitation learning": 11219, "output errors": 18070, "errors human": 7791, "human evaluators": 10933, "knowledge inside": 12539, "specifically introduce": 23625, "introduce method": 12246, "questions given": 20800, "given unlabeled": 10174, "model activations": 15677, "despite using": 6287, "model outputs": 15844, "diverse knowledge": 6801, "questionanswering datasets": 20772, "outperforms zeroshot": 18067, "generate incorrect": 9789, "incorrect answers": 11534, "answers results": 1604, "results provide": 22093, "provide initial": 20437, "initial step": 11839, "models know": 16319, "studies paper": 24050, "analysis large": 1421, "llms automated": 14374, "introduce language": 12245, "models discuss": 16150, "discuss significance": 6696, "model design": 15734, "stateoftheart natural": 23789, "semistructured interviews": 22756, "probe models": 19754, "models moral": 16527, "design model": 6202, "prompting model": 20164, "model comes": 15714, "human subject": 10989, "aidriven language": 1158, "language systems": 13262, "ai systems": 1136, "systems requires": 24634, "requires use": 21762, "claims relevant": 3767, "work studied": 27562, "automatic assessment": 2290, "improves quality": 11412, "approach task": 1817, "taking account": 24713, "using various": 26879, "quality metrics": 20658, "candidate selection": 3098, "outperforms baselines": 18035, "editing approach": 7098, "texts language": 25407, "context targeted": 4820, "syntactic evaluations": 24513, "ask models": 2011, "evaluation datasets": 7972, "models make": 16512, "just single": 12437, "match language": 15121, "models training": 16750, "raises important": 20864, "important question": 11309, "contexts paper": 4834, "properties input": 20266, "context length": 4808, "length context": 13968, "syntactic phenomena": 24514, "randomly sampled": 20883, "linguistic contexts": 14191, "tested models": 25265, "variants opt": 26990, "improve models": 11366, "significantly worsen": 23183, "lexical overlap": 14039, "specific syntactic": 23606, "explained models": 8444, "models implicit": 16278, "feedback generation": 8887, "english language": 7596, "language learners": 12736, "learners does": 13756, "present strong": 19462, "baselines task": 2579, "comment generation": 4080, "learning given": 13825, "given sentence": 10167, "task generate": 24778, "llms create": 14416, "multiple pseudo": 16973, "datasets task": 5778, "performance present": 18728, "present results": 19456, "results task": 22121, "task extensive": 24774, "extensive analysis": 8596, "future studies": 9598, "model interaction": 15807, "realworld applications": 21032, "applications language": 1669, "writing assistance": 27629, "produces output": 19944, "human involvement": 10954, "develop new": 6377, "new framework": 17325, "metrics compared": 15521, "interactive process": 12150, "final output": 8999, "stateoftheart lms": 23782, "performance does": 18631, "cases results": 3255, "underscore importance": 26223, "reasoning task": 21110, "temporal relations": 25198, "event pairs": 8059, "reasoning models": 21092, "existing datasets": 8253, "limitations work": 14145, "novel task": 17566, "bridges gap": 2993, "analysis suggests": 1452, "evaluates systems": 7932, "correctly understand": 5100, "given event": 10148, "temporal relation": 25197, "facilitate learning": 8733, "human explanations": 10938, "including gpt35": 11458, "heavily rely": 10642, "annotations used": 1519, "models use": 16761, "used train": 26603, "models stateoftheart": 16705, "taskspecific model": 25109, "knowledge form": 12528, "manually created": 15051, "contrast endtoend": 4885, "endtoend models": 7546, "models suffer": 16717, "model prior": 15873, "human supervision": 10991, "generation conditioned": 9936, "address lack": 810, "lack training": 12663, "finetune large": 9078, "corpus english": 5068, "english german": 7594, "outperforms models": 18051, "chatgpt parameter": 3615, "humans addition": 11059, "performance demonstrate": 18622, "make code": 14975, "models datasets": 16123, "datasets publicly": 5768, "investigating effectiveness": 12329, "despite impressive": 6264, "performance diverse": 18629, "diverse tasks": 6818, "lms struggle": 14775, "tasks requiring": 25045, "relying solely": 21529, "parameters encode": 18377, "strengths limitations": 23936, "factual knowledge": 8768, "conducting largescale": 4584, "largescale knowledge": 13635, "knowledge probing": 12570, "augmentation methods": 2224, "opendomain qa": 17824, "questions lms": 20809, "long tail": 14815, "magnitude larger": 14947, "entities based": 7698, "effective method": 7153, "significantly improves": 23161, "improves models": 11409, "reducing inference": 21331, "inference costs": 11688, "scientific abstracts": 22556, "generation problem": 10002, "based models": 2514, "including chatgpt": 11446, "chatgpt finetuned": 3570, "nlp machine": 17424, "problem generating": 19767, "annotated dataset": 1503, "scientific papers": 22565, "domains comprising": 6917, "models using": 16765, "using human": 26771, "human automatic": 10906, "automatic metrics": 2302, "metrics human": 15525, "similarly human": 23217, "human authors": 10905, "automatic systems": 2307, "relative humans": 21455, "humans learn": 11071, "chatgpt finetuning": 3571, "pairwise reranking": 18176, "generation pretrained": 9999, "models successful": 16715, "tasks various": 25097, "methods employed": 15433, "suboptimal results": 24204, "results present": 22087, "present empirical": 19434, "constrained text": 4705, "selecting best": 22682, "output results": 18079, "results multiple": 22077, "tasks proposed": 25025, "uses single": 26699, "loss function": 14850, "source input": 23517, "tasks demonstrated": 24899, "demonstrated effectiveness": 6043, "showing strong": 23009, "strong results": 23972, "results compared": 22027, "compared previous": 4200, "learning task": 13916, "pretraining gpt": 19624, "gpt recently": 10236, "zero fewshot": 27681, "autoregressive models": 2348, "gaps understanding": 9654, "societal impacts": 23408, "alleviate issue": 1297, "400 million": 179, "models ranging": 16618, "ranging size": 20919, "new models": 17338, "amounts diverse": 1367, "domains evaluate": 6920, "settings using": 22926, "learning wide": 13932, "range nlp": 20905, "carefully develop": 3220, "novel benchmark": 17544, "automated human": 2273, "models focused": 16224, "investigating potential": 12330, "models aim": 16024, "release models": 21474, "models interested": 16311, "studied long": 24032, "long time": 14817, "approaches including": 1847, "lot attention": 14857, "attention methods": 2174, "inference based": 11685, "process unclear": 19870, "using method": 26806, "method logical": 15376, "process automatically": 19835, "automatically generates": 2322, "acquire knowledge": 680, "knowledge study": 12588, "study propose": 24140, "generate programs": 9805, "inference proposed": 11703, "method automatically": 15329, "automatically acquire": 2312, "adjusting number": 851, "rate 10": 20961, "method assess": 15327, "method relies": 15389, "score rate": 22577, "using llm": 26802, "prompting leads": 20158, "leads better": 13717, "results zeroshot": 22136, "human judges": 10956, "higher scores": 10744, "methodology applied": 15413, "creative domains": 5234, "standard approach": 23713, "approach compare": 1740, "compare different": 4163, "reduce cost": 21317, "hiring human": 10833, "human participants": 10972, "participants rate": 18418, "bert large": 2725, "models having": 16264, "hundreds millions": 11090, "variety natural": 27011, "widespread use": 27417, "sufficiently large": 24298, "knowledge distillation": 12512, "distillation kd": 6741, "technique building": 25144, "student model": 24015, "aims improve": 1207, "improve time": 11374, "loss accuracy": 14849, "used finetuning": 26572, "learning selfsupervised": 13903, "crucial realworld": 5297, "domains healthcare": 6922, "selfdriving cars": 22705, "labeled data": 12626, "distributional shifts": 6778, "method provide": 15387, "provide robust": 20462, "robust generalization": 22346, "generalization uncertainty": 9732, "uncertainty estimation": 26173, "test dataset": 25240, "approaches focus": 1841, "evaluating models": 7947, "techniques improving": 25159, "critical research": 5262, "geometric transformations": 10129, "tasks train": 25090, "auxiliary learning": 2354, "pretraining language": 19626, "model evaluate": 15756, "accuracy uncertainty": 537, "expected calibration": 8310, "calibration error": 3085, "datasets including": 5758, "outputs experiments": 18087, "starting point": 23736, "learning source": 13910, "reproduce results": 21697, "human ability": 10894, "humanwritten machinegenerated": 11084, "machinegenerated text": 14937, "generated large": 9856, "able detect": 400, "detect text": 6303, "originate human": 17980, "human writer": 10999, "human detection": 10921, "realistic setting": 21012, "setting text": 22907, "generated stateoftheart": 9875, "stateoftheart neural": 23790, "task time": 24835, "furthermore conduct": 9550, "conduct detailed": 4550, "decoding strategy": 5854, "strategy finetuning": 23919, "finetuning prompt": 9172, "affect human": 995, "detection performance": 6340, "error annotations": 7777, "types errors": 26131, "dataset collection": 5655, "human annotations": 10902, "encourage future": 7516, "evaluation generated": 7983, "generation using": 10038, "using generative": 26759, "based generative": 2489, "approach evaluated": 1761, "performance data": 18619, "augmentation using": 2227, "performance learning": 18690, "models heavily": 16265, "heavily relies": 10641, "data address": 5417, "researchers extensively": 21886, "promising approach": 20050, "available data": 2368, "dataset size": 5716, "approach enhanced": 1759, "performance accuracy": 18584, "accuracy particularly": 523, "class imbalance": 3773, "tasks studies": 25068, "studies explored": 24043, "traditional approaches": 25674, "generated sentences": 9874, "evaluated terms": 7926, "tasks evaluate": 24916, "experiments conducted": 8375, "results proposed": 22091, "proposed methodology": 20357, "classification datasets": 3783, "increase f1": 11545, "predict masked": 19331, "tokens sequence": 25569, "shown powerful": 23046, "training masked": 25800, "models provide": 16609, "research work": 21879, "based bidirectional": 2469, "phishing campaigns": 18895, "scale language": 22488, "models research": 16646, "research aim": 21777, "aim explore": 1177, "explore potential": 8520, "framework evaluating": 9423, "evaluating performance": 7950, "text ability": 25282, "success rate": 24271, "capable generating": 3172, "difficult detect": 6581, "high success": 10718, "based specific": 2541, "data used": 5618, "research indicates": 21825, "significant impact": 23118, "emphasizes need": 7390, "security implications": 22648, "implications using": 11277, "language internet": 12731, "technical challenge": 25135, "challenge work": 3364, "text recent": 25369, "model update": 15957, "proposing new": 20375, "new benchmark": 17301, "like zeroshot": 14101, "prompt models": 20105, "provides new": 20494, "new tool": 17360, "tool evaluating": 25586, "avoids common": 2415, "importance questioning": 11292, "toxicity detection": 25648, "generative ai": 10051, "ai models": 1120, "models chatgpt": 16085, "chatgpt stable": 3662, "stable diffusion": 23697, "creating artistic": 5218, "artistic images": 1998, "industry society": 11671, "texts images": 25406, "images text": 11203, "like chatgpt": 14074, "like codex": 14080, "scientific texts": 22568, "like galactica": 14081, "model create": 15721, "algorithms like": 1253, "provide taxonomy": 20466, "llms making": 14599, "learning seen": 13902, "current llms": 5351, "llms generally": 14516, "factors including": 8755, "code work": 3955, "new computational": 17307, "computational linguistics": 4425, "approaches study": 1865, "produce new": 19930, "new wave": 17368, "hybrid methods": 11094, "researchers open": 21889, "open source": 17777, "llm code": 14266, "large multilingual": 13566, "generation chinese": 9934, "human reviewers": 10984, "metrics evaluating": 15523, "evaluating large": 7943, "limitations evaluation": 14129, "evaluation creative": 7968, "creative writing": 5237, "certain types": 3317, "diffusion model": 6597, "produce highquality": 19929, "finally introduce": 9016, "ai alignment": 1079, "research using": 21876, "human feedback": 10941, "field artificial": 8950, "alignment aims": 1278, "aims investigate": 1208, "ai technologies": 1142, "align human": 1259, "llms potential": 14633, "ability learn": 358, "learn adapt": 13730, "paper discuss": 18211, "alignment problem": 1290, "context llms": 4812, "particular focus": 18427, "methods collecting": 15424, "train reward": 25704, "reward model": 22257, "turn improves": 26098, "summarization model": 24349, "improvements experimental": 11395, "experimental design": 8339, "llms summarization": 14725, "image datasets": 11181, "contrastive languageimage": 4898, "languageimage pretraining": 13290, "models developed": 16141, "outstanding results": 18101, "image recognition": 11190, "retrieval tasks": 22158, "strong zeroshot": 23974, "zeroshot performance": 27712, "tasks explicitly": 24924, "inspired success": 11938, "openai clip": 17784, "available dataset": 2369, "dataset called": 5652, "models outperform": 16551, "nearest neighbor": 17146, "evaluate performance": 7895, "recognition tasks": 21266, "clip model": 3850, "model does": 15743, "does necessarily": 6867, "necessarily lead": 17156, "lead improved": 13704, "additionally investigate": 777, "investigate robustness": 12309, "data poisoning": 5558, "poisoned data": 19013, "data analysis": 5420, "aim understand": 1182, "understand potential": 26253, "potential consequences": 19173, "search engines": 22613, "built using": 3058, "using clip": 26728, "models potentially": 16575, "difficult task": 6586, "humans machines": 11073, "big challenge": 2843, "computational models": 4427, "input format": 11866, "questionanswer pair": 20768, "social media": 23387, "recognition task": 21265, "datasets multiple": 5763, "based t5": 2544, "model improves": 15799, "improves results": 11413, "results approaches": 22012, "t5 bert": 24658, "bert gpt3": 2722, "prompting approach": 20134, "study effect": 24084, "analyze effect": 1468, "annotation quality": 1514, "potential harms": 19188, "harms large": 10595, "impact text": 11244, "text quality": 25367, "using efficient": 26749, "access language": 468, "model api": 15686, "analyzing sensitivity": 1483, "parameter model": 18358, "contextually appropriate": 4858, "dialog systems": 6450, "systems existing": 24600, "approaches demonstrate": 1836, "textual style": 25439, "style transfer": 24173, "large volumes": 13604, "data second": 5594, "models humans": 16273, "analysis model": 1430, "based text": 2546, "text generator": 25334, "qualitative assessments": 20627, "infusion approach": 11822, "generic text": 10116, "text prompts": 25366, "data accessible": 5415, "introduce video": 12258, "verbal nonverbal": 27128, "given input": 10152, "listener facial": 14212, "socially appropriate": 23404, "approach allows": 1732, "approach models": 1788, "models visionlanguage": 16773, "visionlanguage models": 27236, "new video": 17367, "covering diverse": 5187, "approach able": 1726, "challenges remain": 3406, "release dataset": 21472, "spur progress": 23678, "ai language": 1110, "models ai": 16022, "article discusses": 1965, "instructgpt large": 11968, "model architectures": 15690, "feedback mechanisms": 8894, "consider ai": 4645, "lowresource languages": 14889, "optimal transport": 17907, "models significant": 16684, "progress recently": 20011, "recently advent": 21228, "multilingual pretrained": 16922, "models provides": 16610, "retrieval models": 22153, "pretraining data": 19621, "data different": 5465, "languages multilingual": 13307, "performance gap": 18653, "models built": 16070, "built pretrained": 3056, "language bias": 12688, "retrieval task": 22157, "task largescale": 24798, "document ranking": 6845, "data lowresource": 5538, "language makes": 12741, "makes challenging": 14996, "challenging training": 3436, "model high": 15796, "high low": 10708, "low resource": 14869, "resource languages": 21908, "monolingual retrieval": 16845, "retrieval model": 22152, "crosslingual knowledge": 5280, "knowledge knowledge": 12540, "query document": 20706, "languages experimental": 13302, "minimal training": 15566, "languages including": 13305, "including neural": 11469, "neural machine": 17260, "red teaming": 21309, "robustness reliability": 22363, "recent breakthroughs": 21164, "coherent text": 3999, "applications large": 1670, "llms significantly": 14703, "report summarization": 21657, "observations indicate": 17648, "indicate llms": 11612, "llms exhibit": 14473, "social prejudice": 23396, "largescale benchmarks": 13626, "empirical investigations": 7407, "advanced llms": 896, "current llm": 5350, "efforts constructing": 7262, "paper chatgpt": 18200, "understand practical": 26254, "recent llms": 21193, "datasets significant": 5777, "ethical risks": 7853, "addressed existing": 828, "existing benchmarks": 8250, "benchmarks illustrate": 2692, "addition examine": 757, "ai ethics": 1096, "behaviors chatgpt": 2629, "design considerations": 6186, "llms believe": 14379, "light future": 14062, "llm applications": 14255, "survey deep": 24470, "past decade": 18472, "remarkable advancements": 21564, "advancements deep": 917, "optimization techniques": 17920, "connections transformer": 4631, "comprehensive survey": 4388, "comprehensive approach": 4368, "multiple patterns": 16969, "closedsource models": 3866, "models openais": 16545, "openais gpt4": 17806, "using incontext": 26774, "data scarcity": 5590, "nlp especially": 17419, "fewshot incontext": 8921, "llms recently": 14669, "recently applied": 21229, "applied successfully": 1703, "study fewshot": 24100, "al 2021": 1227, "representation framework": 21668, "framework provides": 9450, "holistic view": 10852, "expressed text": 8575, "text identifying": 25338, "identifying relevant": 11149, "mentioned text": 15290, "previous studies": 19675, "human annotation": 10901, "text expensive": 25312, "approaches using": 1867, "fewshot exemplars": 8920, "promising results": 20067, "prompt strategies": 20113, "gpt3 carry": 10290, "multiturn conversations": 17005, "improve llm": 11362, "textual prompts": 25434, "prompts instructions": 20213, "instructions examples": 12000, "face challenges": 8713, "prompt strategy": 20114, "challenge introduce": 3352, "based sample": 2536, "errors persist": 7794, "different prompt": 6548, "using graph": 26770, "evaluation demonstrates": 7973, "selecting suitable": 22683, "suitable training": 24330, "codex language": 3974, "match desired": 15118, "desired target": 6249, "target distribution": 24726, "unlabeled target": 26390, "samples large": 22449, "data existing": 5478, "use simple": 26537, "data instead": 5524, "approach used": 1821, "feature space": 8864, "space text": 23535, "data target": 5611, "high correlation": 10698, "accuracy downstream": 510, "present data": 19430, "importance weights": 11293, "weights reduced": 27355, "data importance": 5516, "models target": 16734, "random selection": 20879, "continued pretraining": 4867, "specific domain": 23584, "performs comparably": 18822, "approaches recent": 1859, "learning demonstrated": 13797, "object classification": 17618, "anomaly detection": 1527, "feature extraction": 8860, "human knowledge": 10959, "new ways": 17370, "ways train": 27320, "chatbot chatgpt": 3477, "question posed": 20761, "plagiarism detection": 18935, "ai technology": 1143, "topic growing": 25623, "growing concern": 10496, "new generation": 17326, "capabilities use": 3143, "use chatbots": 26493, "study aims": 24061, "ai chatbots": 1091, "chatbots chatgpt": 3490, "chatgpt end": 3561, "detection tools": 6350, "used evaluate": 26566, "generated chatgpt": 9840, "chatgpt various": 3676, "various topics": 27094, "chatgpt great": 3587, "great potential": 10456, "text outputs": 25357, "chatgpt create": 3541, "create content": 5205, "content topics": 4791, "findings align": 9038, "concerns students": 4502, "students using": 24030, "using chatbots": 26723, "performance compared": 18606, "tools paper": 25611, "paper discusses": 18213, "mitigate potential": 15628, "impact ai": 11227, "technology education": 25179, "discussed paper": 6700, "feedback guide": 8888, "recent research": 21198, "research shown": 21865, "shown language": 23033, "solve tasks": 23466, "creating better": 5219, "approach domain": 1752, "domain model": 6902, "paradigm shift": 18340, "review user": 22222, "increasing performance": 11566, "performance user": 18781, "models leading": 16338, "gpt3 fewshot": 10294, "fewshot performance": 8928, "written natural": 27641, "language nl": 13210, "prone various": 20246, "overlook important": 18134, "important quality": 11308, "quality issues": 20657, "time budget": 25501, "questionanswering qa": 20774, "stakeholders including": 23707, "beneficial various": 2702, "answers given": 1597, "dataset covering": 5664, "questionanswer pairs": 20769, "methods based": 15420, "recent largescale": 21189, "models empirical": 16171, "empirical study": 7416, "posed question": 19094, "nlp natural": 17427, "study chatgpt": 24072, "chatgpt serving": 3649, "domains including": 6923, "including limited": 11465, "widespread adoption": 27412, "pedagogical methods": 18511, "methods paper": 15470, "objective study": 17629, "technological advancements": 25173, "advancements education": 919, "human learning": 10964, "raising question": 20872, "vice versa": 27172, "answering knowledge": 1574, "graphs current": 10445, "current status": 5362, "future directions": 9583, "conversational ai": 4982, "questionanswering systems": 20775, "graphs kgs": 10446, "research areas": 21783, "empower users": 7444, "language interfaces": 12730, "extracting information": 8667, "conversations humans": 5000, "limited data": 14153, "training datasets": 25766, "translating natural": 25976, "language question": 13250, "present comprehensive": 19427, "comprehensive study": 4387, "study characteristics": 24071, "conversational models": 4994, "conduct thorough": 4568, "thorough evaluation": 25469, "evaluation using": 8041, "using real": 26848, "various application": 27026, "systems based": 24581, "findings propose": 9051, "analysis chatgpt": 1401, "processing task": 19913, "task solver": 24825, "scale large": 22490, "demonstrated ability": 6039, "perform variety": 18573, "zeroshot adaptation": 27693, "downstream data": 6974, "great deal": 10452, "attention natural": 2176, "nlp community": 17415, "generate highquality": 9782, "highquality responses": 10816, "responses human": 21958, "known chatgpt": 12607, "chatgpt serve": 3648, "generalist model": 9720, "work empirically": 27486, "empirically analyze": 7418, "zeroshot learning": 27710, "ability chatgpt": 329, "chatgpt evaluating": 3565, "datasets covering": 5739, "extensive empirical": 8599, "empirical studies": 7415, "studies demonstrate": 24039, "limitations current": 14125, "current version": 5366, "version chatgpt": 27161, "chatgpt chatgpt": 3530, "chatgpt performs": 3617, "arithmetic reasoning": 1948, "faces challenges": 8720, "sequence tagging": 22826, "additionally provide": 782, "provide indepth": 20434, "language vision": 13285, "vision model": 27226, "lack ability": 12647, "vision models": 27227, "models investigate": 16315, "empirical evaluation": 7397, "evaluation different": 7974, "different lms": 6531, "chatgpt study": 3665, "understand perceptions": 26252, "research uses": 21875, "content analysis": 4763, "analysis method": 1428, "valuable tool": 26963, "recent advancements": 21138, "advancements large": 924, "llms particularly": 14625, "llms like": 14585, "chatgpt prompted": 3628, "range fields": 20895, "fields including": 8974, "design study": 6219, "capabilities chatgpt": 3107, "design process": 6209, "utilized generate": 26909, "generate personas": 9803, "users create": 26654, "create new": 5209, "new design": 17314, "design ideas": 6194, "evaluate user": 7907, "user experience": 26625, "results chatgpt": 22022, "chatgpt effectively": 3557, "providing appropriate": 20507, "responses study": 21967, "responses lack": 21959, "potential benefits": 19168, "benefits limitations": 2708, "limitations using": 14143, "discusses implications": 6702, "directions future": 6628, "rapidly evolving": 20952, "ai code": 1093, "novice learners": 17581, "introductory programming": 12276, "programming ai": 19982, "openai codex": 17785, "code natural": 3934, "negatively impact": 17211, "impact learning": 11236, "implications ai": 11269, "conducted controlled": 4572, "controlled experiment": 4943, "results using": 22127, "using codex": 26730, "performance manual": 18701, "tasks additionally": 24858, "training phase": 25816, "significantly better": 23148, "prior access": 19706, "recent emergence": 21174, "emergence large": 7344, "advancements field": 920, "field natural": 8959, "models long": 16508, "makes prohibitively": 15001, "prohibitively expensive": 20019, "realtime applications": 21029, "autoregressive generative": 2339, "generative tasks": 10109, "iteratively generate": 12403, "framework improve": 9431, "inference efficiency": 11690, "range text": 20913, "different sizes": 6555, "text small": 25377, "small model": 23344, "inference cost": 11687, "cost large": 5134, "small models": 23345, "small large": 23339, "control large": 4935, "model needs": 15836, "predictions evaluate": 19371, "evaluate framework": 7884, "framework different": 9414, "models apply": 16037, "various text": 27093, "t4 gpu": 24655, "framework achieves": 9394, "quality degradation": 20644, "process model": 19861, "model architecture": 15689, "reasoning conversational": 21066, "survey state": 24474, "like bert": 14070, "gpt t5": 10238, "deep understanding": 5907, "understanding contextual": 26266, "semantics language": 22749, "language syntax": 13261, "significant advances": 23092, "ai including": 1108, "including development": 11450, "systems capable": 24584, "answer questions": 1553, "complete tasks": 4272, "tasks involve": 24965, "higher levels": 10737, "reasoning including": 21079, "reasoning humans": 21077, "survey recent": 24473, "ai research": 1130, "research focused": 21819, "reasoning paper": 21095, "approaches include": 1846, "ai paper": 1125, "benchmarks used": 2697, "used evaluating": 26567, "ai problems": 1129, "finally paper": 9019, "commonsense capabilities": 4110, "capabilities stateoftheart": 3140, "open dialogue": 17763, "dialogue models": 6466, "negative effect": 17203, "motivate research": 16858, "tasks intuitive": 24964, "machine intelligence": 14898, "intelligence recent": 12083, "tasks benchmarks": 24873, "focused particular": 9262, "successes failures": 24275, "model evaluation": 15757, "failure cases": 8787, "average success": 2403, "success rates": 24272, "possible future": 19137, "powerful llms": 19275, "tasks people": 25010, "scaling laws": 22502, "observed large": 17655, "based previously": 2530, "randomly chosen": 20882, "discuss relevance": 6695, "evaluation chatgpt": 7960, "chatgpt dalle": 3544, "making spatial": 15013, "spatial reasoning": 23555, "cognitive abilities": 3986, "recently released": 21250, "input prompts": 11879, "prompts constructed": 20191, "images generated": 11201, "clear understanding": 3831, "prompts chatgpts": 20188, "incorrect reasoning": 11539, "reasoning process": 21101, "decisionmaking problems": 5834, "briefly comment": 3000, "challenges involved": 3381, "closed set": 3858, "models inherently": 16302, "prompts chatgpt": 20187, "openai released": 17790, "chat generative": 3468, "chatgpt revolutionized": 3646, "chatgpt evaluation": 3566, "tasks existing": 24920, "existing studies": 8279, "limited scale": 14165, "chatgpts capabilities": 3694, "emotion recognition": 7377, "sense disambiguation": 22761, "gpt4 model": 10355, "tasks automated": 24868, "automated chatgpt": 2268, "chatgpt gpt4": 3586, "sota solutions": 23502, "quality chatgpt": 20640, "chatgpt model": 3608, "evaluation gpt4": 7986, "significantly lower": 23165, "chatgpt showed": 3650, "sota performance": 23500, "higher chatgpt": 10732, "nlp problems": 17430, "problems like": 19804, "chatgpt responses": 3644, "revealed chatgpt": 22202, "chatgpt bias": 3519, "openai results": 17791, "education research": 7121, "exploratory study": 8491, "study generative": 24102, "generative artificial": 10062, "openais chatgpt": 17794, "chatgpt potential": 3620, "potential revolutionize": 19218, "practice learning": 19304, "learning research": 13894, "early stages": 7070, "stages development": 23705, "specifically explore": 23620, "explore chatgpts": 8501, "chatgpts ability": 3693, "ability provide": 374, "code explain": 3913, "create knowledge": 5207, "research investigating": 21829, "structured prompts": 23994, "prompts highlight": 20208, "results study": 22118, "study indicates": 24111, "tasks translating": 25092, "code language": 3926, "code scratch": 3946, "ai tools": 1146, "tools help": 25606, "productive current": 19955, "use generative": 26511, "ensure accurate": 7670, "accurate results": 545, "improving large": 11416, "knowledge automated": 12496, "automated feedback": 2272, "feedback large": 8890, "llms chatgpt": 14392, "chatgpt able": 3496, "generate humanlike": 9783, "humanlike fluent": 11039, "fluent responses": 9245, "tasks taskoriented": 25080, "taskoriented dialog": 24848, "answering applying": 1567, "applying llms": 1721, "missioncritical applications": 15611, "remains challenging": 21538, "use external": 26508, "blackbox llm": 2903, "llm set": 14308, "plugandplay modules": 18995, "llm generate": 14279, "generate responses": 9812, "knowledge stored": 12587, "llm prompts": 14296, "model responses": 15898, "responses using": 21971, "using feedback": 26754, "empirically validated": 7424, "types scenarios": 26136, "opendomain question": 17825, "significantly reduces": 23177, "models publicly": 16613, "framework interactive": 9436, "behaviors deployment": 2630, "ensuring safety": 7679, "crucial step": 5299, "safe exploration": 22412, "exploration safety": 8485, "propose leverage": 20301, "need attention": 17170, "open challenges": 17762, "challenges related": 3405, "efficiency transparency": 7227, "years large": 27658, "llms gained": 14510, "humanlike text": 11046, "potential applications": 19161, "applications various": 1688, "various fields": 27044, "software engineering": 23426, "engineering llms": 7575, "llms code": 14399, "scraped internet": 22588, "work discuss": 27481, "security privacy": 22650, "llms legal": 14582, "legal ethical": 13958, "finally provide": 9023, "search tool": 22623, "model explicitly": 15765, "search engine": 22612, "search capabilities": 22609, "opensourced available": 17864, "hugging face": 10890, "automatic scoring": 2306, "content large": 4780, "models field": 16216, "research study": 21868, "work suggests": 27565, "nlp tools": 17452, "tools support": 25618, "automatic analysis": 2289, "proposed methods": 20358, "ability reason": 375, "data preprocessing": 5559, "cases methods": 3251, "methods validated": 15504, "approaches work": 1868, "work address": 27461, "address limitations": 814, "limitations adopting": 14120, "llms study": 14719, "manual annotation": 15041, "reports using": 21662, "using mixture": 26808, "method achieves": 15322, "low performance": 14865, "different groups": 6518, "classification method": 3792, "achieves high": 630, "performance robust": 18748, "potential biases": 19169, "biases overall": 2832, "indicate approach": 11603, "approach application": 1734, "results studies": 22117, "study language": 24121, "gpt35 models": 10325, "models demonstrated": 16128, "various natural": 27063, "strong understanding": 23973, "understanding reasoning": 26306, "handle various": 10570, "explored especially": 8535, "trustworthy ai": 26052, "perform comprehensive": 18548, "comprehensive experimental": 4380, "experimental analysis": 8336, "exploring robustness": 8557, "test samples": 25254, "popular natural": 19069, "nlu tasks": 17456, "tasks findings": 24930, "encounters significant": 7514, "average performance": 2399, "performance dropping": 18636, "analysis tasks": 1454, "challenges including": 3379, "instability prompt": 11942, "understanding limitations": 26289, "addressing challenges": 835, "overall performance": 18107, "semeval2023 task": 22753, "finetuning chatgpt": 9122, "chatgpt data": 3545, "data generation": 5502, "task multilingual": 24805, "evaluation measure": 7998, "measure crosslingual": 15189, "learning approach": 13770, "benefits using": 2711, "finetuning method": 9154, "parameters updates": 18389, "transformer encoder": 25907, "learning rate": 13888, "additionally study": 785, "impact using": 11246, "using small": 26861, "automatically generated": 2321, "case chatgpt": 3237, "lowresource settings": 14892, "study shows": 24156, "stabilizes training": 23693, "consistently improves": 4685, "models lack": 16324, "lack domain": 12651, "improve zeroshot": 11376, "baseline results": 2567, "finally examine": 9009, "annotated data": 1502, "combining generative": 4064, "generate realistic": 9808, "realistic images": 21009, "adoption generative": 869, "dalle midjourney": 5407, "chatgpt gained": 3572, "massive data": 15109, "data text": 5613, "text images": 25340, "trained massive": 25728, "data sets": 5597, "tools creating": 25603, "massive amounts": 15106, "future versions": 9600, "trained internet": 25723, "data time": 5614, "original data": 17965, "data data": 5461, "data generated": 5501, "generated different": 9845, "raises intriguing": 20866, "questions future": 20797, "ai generated": 1101, "generated data": 9844, "explore questions": 8524, "simulation results": 23257, "using simple": 26859, "ai tool": 1145, "tool results": 25590, "generated images": 9855, "used training": 26604, "results preliminary": 22086, "potential issues": 19196, "interaction generative": 12131, "textual entailment": 25429, "settings like": 22918, "datasets constructed": 5737, "claims text": 3768, "finegrained annotations": 9071, "negative examples": 17204, "sentences source": 22793, "source document": 23515, "reducing complexity": 21329, "entailment models": 7684, "various domains": 27037, "contribution knowledge": 4923, "learning survey": 13914, "tasks challenges": 24877, "techniques offer": 25163, "current datasets": 5335, "datasets used": 5781, "vl pretraining": 27263, "visual linguistic": 27243, "knowledge significantly": 12581, "generalization capabilities": 9727, "vl models": 27262, "llms able": 14348, "able cover": 399, "filling missing": 8986, "missing knowledge": 15608, "potential impact": 19190, "social impacts": 23383, "learning human": 13826, "like humans": 14087, "feedback rlhf": 8898, "agents learn": 1042, "feedback human": 8889, "reward signal": 22259, "view multiple": 27190, "ai applications": 1081, "including openais": 11470, "anthropics claude": 1607, "highly capable": 10792, "evaluate social": 7904, "recent developments": 21169, "developments paper": 6426, "paper considers": 18206, "negatively affecting": 17210, "human societies": 10987, "systematic study": 24561, "study social": 24157, "social effects": 23378, "identify key": 11138, "social ethical": 23379, "received attention": 21125, "diverse range": 6813, "experiences ai": 8327, "bias ai": 2804, "raises concerns": 20862, "users write": 26684, "prompting propose": 20172, "prompts large": 20215, "write short": 27623, "user interfaces": 26633, "participants provided": 18417, "information work": 11803, "humanai interaction": 11007, "models revealing": 16655, "guide llms": 10524, "multilingual dataset": 16918, "largescale highquality": 13634, "text datasets": 25303, "multilingual settings": 16923, "creation curation": 5228, "multilingual bloom": 16916, "model release": 15894, "subset corpus": 24213, "monolingual multilingual": 16844, "data processing": 5566, "stimulate research": 23863, "research large": 21831, "multilingual corpus": 16917, "design large": 6197, "task involving": 24791, "various human": 27048, "human factors": 10939, "factors example": 8754, "example crucial": 8115, "need consider": 17173, "challenging limited": 3421, "models utilize": 16767, "systems paper": 24621, "design enables": 6191, "easy customization": 7081, "zerofewshot learning": 27687, "generating text": 9915, "text modern": 25355, "significant time": 23142, "manual effort": 15043, "requires extensive": 21748, "extensive human": 8617, "work time": 27568, "api access": 1613, "used text": 26601, "apis including": 1616, "including gpt2": 11455, "demonstrate feasibility": 5997, "online interactions": 17741, "social networks": 23394, "study highlights": 24104, "highlights importance": 10783, "importance considering": 11287, "chatgpt students": 3664, "advanced large": 892, "gained considerable": 9611, "attention recently": 2185, "teachers students": 25125, "students use": 24029, "use perceive": 26532, "perceive chatgpt": 18528, "chatgpt address": 3504, "address gap": 801, "content chatgpt": 4764, "chatgpt available": 3514, "february 2023": 8878, "rapidly growing": 20954, "promoted use": 20076, "use chatgpt": 26494, "chatgpt tasks": 3667, "tasks like": 24983, "ai detectors": 1095, "discussion educators": 6706, "tiktok videos": 25499, "data chatgpt": 5440, "safety research": 22425, "research applications": 21781, "applications chatgpt": 1657, "era artificial": 7766, "revolutionize way": 22236, "way approach": 27303, "brief introduction": 2997, "introduction development": 12273, "development large": 6406, "using chatgpt": 26724, "safety issues": 22423, "surrounding llms": 24466, "open questions": 17773, "improvement believe": 11389, "potentially facilitate": 19249, "framework alignment": 9398, "alignment large": 1284, "used generate": 26573, "generate content": 9765, "range tasks": 20910, "tasks set": 25054, "coming years": 4075, "aligned human": 1264, "human preferences": 10977, "toxic outputs": 25644, "techniques like": 25161, "like reinforcement": 14097, "safety concerns": 22420, "range users": 20915, "users preferences": 26676, "preferences language": 19392, "learning processes": 13883, "processes result": 19882, "result models": 21993, "better aligned": 2771, "aligned user": 1268, "normative challenges": 17511, "ways llms": 27317, "review literature": 22216, "literature current": 14220, "aligning llms": 1274, "llms human": 14542, "identify issues": 11137, "issues including": 12385, "lack clarity": 12649, "second present": 22630, "present taxonomy": 19466, "benefits risks": 2710, "risks associated": 22295, "individuals society": 11641, "society large": 23411, "finally propose": 9022, "framework allows": 9399, "allows users": 1326, "users experience": 26658, "models studies": 16710, "hypothesis large": 11102, "llm used": 14322, "used model": 26588, "study tested": 24161, "participants using": 18420, "online experiment": 17739, "engineered prompts": 7568, "prompts llm": 20221, "results human": 22057, "second study": 22634, "previously demonstrated": 19684, "human study": 10988, "human data": 10918, "present llm": 19440, "models effect": 16165, "architecture design": 1901, "architectural design": 1898, "highly complex": 10794, "design software": 6216, "vast array": 27108, "accessible scalable": 477, "important step": 11312, "assistive tool": 2096, "prompts given": 20205, "models input": 16303, "semantic accuracy": 22718, "specific design": 23583, "generating valid": 9916, "great improvement": 10453, "impressive accuracy": 11330, "accuracy ranging": 527, "synthetic dataset": 24542, "struggle answer": 23999, "multiplechoice questions": 16987, "questions code": 20788, "code analyzed": 3896, "models answering": 16032, "multiplechoice question": 16986, "question mcq": 20759, "programming courses": 19986, "emerging technology": 7369, "discussions potential": 6708, "potential uses": 19236, "generation code": 9935, "code explanation": 3914, "programming education": 19987, "educational settings": 7127, "openais gpt": 17799, "formative summative": 9336, "questions mcqs": 20810, "code snippets": 3947, "language questions": 13251, "questions requiring": 20823, "reasoning code": 21065, "findings leveraged": 9046, "analyze large": 1471, "llms represent": 14677, "investigating reliance": 12331, "capture semantics": 3200, "models extensive": 16207, "experiments reveal": 8408, "realworld scenarios": 21041, "text comparative": 25294, "aims extract": 1204, "image quality": 11189, "sequence labeling": 22820, "task extract": 24775, "directly extract": 6638, "relation extractor": 21443, "experiment results": 8333, "stateoftheart accuracy": 23756, "query generation": 20707, "web search": 27341, "information internet": 11759, "search query": 22618, "based fact": 2483, "search results": 22620, "decision process": 5826, "process carried": 19837, "news media": 17387, "daily basis": 5403, "ask question": 2012, "search queries": 22617, "queries based": 20696, "factual statements": 8769, "human experts": 10937, "textual similarity": 25437, "relevant documents": 21493, "dataset includes": 5689, "results investigate": 22064, "investigate generating": 12301, "generating queries": 9911, "llms methods": 14604, "methods different": 15430, "propose hybrid": 20297, "performance practice": 18727, "method paper": 15384, "presents systematic": 19499, "systematic approach": 24551, "approach using": 1823, "developing prompt": 6395, "prompt templates": 20117, "effectively interact": 7175, "including gpt3": 11457, "gpt3 various": 10314, "various methods": 27059, "counterfactual reasoning": 5161, "inductive deductive": 11660, "deductive abductive": 5873, "abductive reasoning": 304, "reasoning methods": 21091, "methods demonstrated": 15428, "interesting observation": 12163, "user intent": 26630, "intent conveyed": 12113, "gpt3 chatgpt": 10291, "dialogue large": 6462, "connect external": 4626, "external context": 8637, "assessments higher": 2076, "higher education": 10734, "evaluated capability": 7913, "capability generative": 3156, "python programming": 20610, "cheating emerging": 3708, "education intensified": 7114, "intensified date": 12104, "date rigorous": 5785, "rigorous analysis": 22278, "analysis models": 1431, "ranging simple": 20918, "complex programming": 4310, "models leverage": 16345, "models capable": 16073, "straightforward application": 23886, "easily accessible": 7078, "accessible models": 476, "models enable": 16175, "exhibit remarkable": 8224, "remarkable capabilities": 21565, "capabilities including": 3116, "requiring complex": 21765, "reasoning steps": 21108, "leveraged instructors": 14007, "inspired recent": 11936, "pretraining paper": 19641, "image generation": 11185, "representations intermediate": 21683, "learning validate": 13927, "approach achieves": 1728, "suggesting potential": 24318, "language agents": 12683, "llms increasingly": 14556, "increasingly used": 11581, "used interact": 26581, "external environments": 8638, "agents remains": 1056, "challenging language": 3420, "agents quickly": 1051, "efficiently learn": 7256, "require extensive": 21721, "extensive training": 8621, "finetuning propose": 9175, "novel framework": 17553, "episodic memory": 7744, "various types": 27095, "freeform language": 9480, "improvements baseline": 11394, "baseline agent": 2552, "tasks sequential": 25053, "sequential decisionmaking": 22845, "language reasoning": 13252, "reasoning example": 21071, "surpassing previous": 24449, "stateoftheart gpt4": 23770, "gpt4 achieves": 10335, "conduct ablation": 4542, "studies using": 24057, "using different": 26745, "different feedback": 6516, "types provide": 26135, "provide insights": 20439, "affect performance": 996, "model behavior": 15697, "widespread public": 27415, "attention generated": 2163, "nlp researchers": 17432, "finetuning language": 9142, "models possess": 16573, "semantics pragmatics": 22750, "surface features": 24432, "features despite": 8869, "dramatic increases": 7003, "quality models": 20660, "models prone": 16601, "commonsense errors": 4111, "recent results": 21201, "work research": 27550, "complete survey": 4270, "aigc aka": 1162, "aka aigenerated": 1219, "aigenerated content": 1170, "content headlines": 4778, "ability analyze": 325, "media coverage": 15221, "era ai": 7765, "worth noting": 27619, "chatgpt recent": 3637, "recent language": 21183, "model gpt4": 15791, "numerous aigc": 17610, "capability chatgpt": 3155, "gpt variants": 10240, "content creation": 4766, "answering question": 1583, "comprehensive review": 4385, "review existing": 22215, "existing aigc": 8242, "needed work": 17197, "methods like": 15463, "work focuses": 27501, "based output": 2522, "including text": 11482, "images videos": 11205, "3d content": 174, "significant applications": 23096, "content finally": 4772, "discuss challenges": 6682, "present outlook": 19450, "near future": 17143, "augmenting large": 2237, "models conversational": 16115, "accuracy performance": 524, "opendomain conversational": 17819, "conversational large": 4991, "llms open": 14617, "promising direction": 20055, "ground llms": 10471, "llms information": 14560, "sources paper": 23530, "retrieve generate": 22164, "dialogue responses": 6467, "relative improvement": 21456, "encoder decoder": 7485, "decoder models": 5844, "combined gpt35": 4054, "various recent": 27077, "results large": 22066, "models llm": 16359, "exhibit emergent": 8214, "performance greatly": 18666, "generation step": 10023, "step use": 23852, "generation output": 9995, "sequence end": 22816, "comprehensive evaluation": 4374, "evaluation chatgpts": 7961, "chatgpts zeroshot": 3702, "presents comprehensive": 19486, "comprehensive analysis": 4367, "analysis chatgpts": 1402, "given recent": 10164, "emergence largescale": 7348, "conversational language": 4990, "model chatgpt": 15710, "impressive capabilities": 11331, "capabilities conversational": 3109, "abilities code": 306, "performance conducted": 18615, "conducted experiments": 4574, "datasets different": 5742, "scenarios results": 22520, "demonstrate chatgpt": 5984, "gap current": 9639, "sota model": 23498, "experiment conducted": 8331, "chatgpts performance": 3696, "zeroshot chatgpt": 27697, "chatgpt outperforms": 3613, "outperforms sota": 18057, "model requires": 15896, "requires finetuning": 21749, "spider dataset": 23661, "demonstrating potential": 6095, "potential use": 19232, "support research": 24411, "chatgpt publicly": 3632, "paraphrase detection": 18394, "models gpt4": 16259, "gpt4 chatgpt": 10339, "led increased": 13949, "academic integrity": 440, "types content": 26129, "content remains": 4788, "conduct comprehensive": 4547, "analysis various": 1458, "commonly employed": 4104, "detection tasks": 6348, "detection methods": 6337, "methods findings": 15443, "different detection": 6508, "methods terms": 15494, "terms performance": 25228, "performance individual": 18677, "individual datasets": 11630, "lack suitable": 12660, "human expectations": 10934, "performance transformers": 18778, "semantically diverse": 22744, "datasets diverse": 5743, "diverse challenging": 6788, "help large": 10660, "smart home": 23366, "paper leverage": 18256, "contextual knowledge": 4841, "systems lack": 24609, "make powerful": 14986, "powerful tools": 19278, "intent generating": 12115, "generating appropriate": 9890, "explore feasibility": 8507, "action planning": 691, "furthermore demonstrate": 9551, "demonstrate proofofconcept": 6028, "taskspecific training": 25113, "training work": 25853, "research area": 21782, "performance gpt35": 18663, "gpt35 gpt4": 10321, "grammatical error": 10417, "error correction": 7779, "gpt3 gpt4": 10299, "gpt4 models": 10356, "models powerful": 16576, "tasks relative": 25038, "analysis performance": 1436, "performance task": 18768, "correction gec": 5091, "perform experiments": 18552, "capabilities gpt35": 3115, "gpt35 model": 10324, "performance different": 18627, "different prompts": 6551, "fewshot settings": 8935, "prompt formats": 20094, "report performance": 21654, "performance best": 18596, "best prompt": 2762, "high score": 10717, "evaluation experiments": 7978, "experiments compare": 8373, "compare gpt": 4166, "human raters": 10979, "keyphrase extraction": 12479, "extraction generation": 8675, "despite significant": 6279, "significant advancements": 23091, "exact matching": 8095, "human references": 10982, "practical utility": 19299, "understand strengths": 26256, "strengths weaknesses": 23939, "weaknesses different": 27331, "systems propose": 24632, "propose comprehensive": 20283, "evaluation framework": 7980, "metrics align": 15514, "demonstrate evaluation": 5996, "correlates better": 5108, "better human": 2781, "used metrics": 26587, "metrics using": 15539, "using framework": 26757, "different dimensions": 6509, "achieving best": 660, "does correlate": 6861, "metrics large": 15528, "exhibit strong": 8227, "referencefree evaluation": 21347, "models assist": 16043, "capabilities applied": 3104, "applied variety": 1705, "tasks source": 25061, "explores potential": 8543, "potential integrating": 19194, "integrating llms": 12045, "systems process": 24630, "responses support": 21968, "experiment explore": 8332, "increasingly complex": 11572, "using open": 26823, "service quality": 22866, "chatgpts responses": 3701, "llm technology": 14316, "suggest llms": 24307, "human analysts": 10900, "modern machine": 16802, "attention computation": 2159, "fundamental task": 9544, "transformer gpt4": 25915, "mechanism large": 15209, "method solve": 15398, "problem given": 19768, "straightforward method": 23889, "newtons method": 17395, "matrix multiplication": 15157, "accuracy error": 511, "paper make": 18257, "time solve": 25513, "unleashing power": 26392, "content aigc": 4762, "method generating": 15364, "using ai": 26707, "paper focuses": 18229, "provide personalized": 20453, "real time": 21003, "user privacy": 26639, "begin introducing": 2605, "collection training": 4026, "training finetuning": 25777, "finetuning inference": 9138, "enable users": 7456, "furthermore explore": 9555, "creative applications": 5233, "additionally discuss": 775, "finally highlight": 9014, "open issues": 17767, "writing assistants": 27630, "social factors": 23380, "powered large": 19263, "llms popular": 14630, "suboptimal performance": 24203, "position paper": 19108, "information content": 11742, "content language": 4779, "contribute increased": 4909, "increased user": 11555, "understanding world": 26317, "tied search": 25496, "complex topics": 4328, "topics like": 25632, "varying degrees": 27101, "information search": 11786, "presents evidence": 19490, "analysis language": 1419, "complex topic": 4327, "tools like": 25608, "small portion": 23351, "challenging important": 3418, "collaborative efforts": 4010, "problem large": 19772, "leverage commonsense": 13994, "llms remains": 14674, "remains unclear": 21553, "effectively answer": 7169, "effectively leverage": 7176, "answering questions": 1584, "questions evaluate": 20795, "experiments evaluate": 8384, "evaluate chatgpts": 7876, "results gpts": 22054, "types knowledge": 26134, "knowledge chatgpt": 12506, "accurately generate": 551, "knowledge using": 12598, "prompts despite": 20196, "question chatgpt": 20742, "chatgpt does": 3554, "does precisely": 6870, "knowledge required": 12577, "question findings": 20745, "findings raise": 9053, "knowledge llms": 12556, "llms instruction": 14562, "used test": 26600, "capabilities models": 3132, "studies limited": 24049, "larger datasets": 13616, "psycholinguistic studies": 20543, "benchmarks using": 2698, "sentence pairs": 22785, "created using": 5215, "compared original": 4196, "high levels": 10706, "previous findings": 19666, "sets finally": 22898, "gpt3 generated": 10296, "able solve": 414, "human demonstrations": 10919, "tasks openended": 25005, "tackle challenge": 24680, "tasks learning": 24980, "basic skills": 2588, "propose types": 20341, "use large": 26518, "solving task": 23482, "experiments method": 8394, "method outperforms": 15380, "baselines tasks": 2580, "large margin": 13562, "projects website": 20028, "success failure": 24257, "outputs large": 18089, "like gpt": 14082, "gpt4 trained": 10365, "large quantities": 13588, "humangenerated text": 11021, "reflect patterns": 21362, "patterns human": 18495, "model human": 15797, "probabilistic reasoning": 19744, "presented gpt3": 19472, "gpt3 gpt35": 10297, "problems recent": 19814, "human judgment": 10957, "inference patterns": 11698, "llms develop": 14440, "patterns inherent": 18497, "present preliminary": 19453, "agents capable": 1030, "general tasks": 9712, "automating repetitive": 2328, "repetitive tasks": 21623, "solve new": 23461, "tasks presented": 25014, "presented natural": 19474, "approaches problem": 1857, "expert demonstrations": 8424, "new tasks": 17357, "tasks work": 25102, "work pretrained": 27536, "llm agent": 14251, "agent execute": 1022, "tasks guided": 24945, "guided natural": 10526, "language using": 13283, "approach significantly": 1811, "tasks surpasses": 25074, "surpasses supervised": 24446, "rl approaches": 22308, "benchmark compare": 2649, "compare multiple": 4171, "multiple llms": 16966, "llm stateoftheart": 14312, "handful demonstrations": 10563, "demonstrations task": 6108, "tens thousands": 25211, "reward function": 22255, "effectiveness enhancing": 7193, "enhancing llms": 7643, "llms reasoning": 14662, "reasoning abilities": 21051, "thought cot": 25477, "performs better": 18821, "sophisticated large": 23491, "based large": 2504, "field ai": 8948, "human communication": 10915, "inherent limitations": 11830, "regarding reliability": 21376, "increasingly difficult": 11573, "ethical challenges": 7847, "spread misinformation": 23676, "possible inference": 19138, "paper explain": 18221, "llms set": 14687, "traditional dnns": 25677, "llm parameters": 14292, "open problem": 17769, "problem paper": 19780, "llms dialogue": 14441, "dialogue tasks": 6477, "tasks small": 25060, "scores llm": 22583, "similar input": 23196, "prediction errors": 19354, "study conducted": 24079, "human intervention": 10952, "comparative study": 4158, "study methodology": 24125, "prompt augmentation": 20080, "clip embedding": 3846, "evaluation process": 8018, "using quantitative": 26847, "evaluation method": 7999, "results promising": 22089, "promising future": 20058, "future advancements": 9578, "quality incorporating": 20655, "incorporating large": 11529, "models presented": 16582, "era large": 7768, "chatgpt large": 3598, "leading new": 13713, "llms quickly": 14657, "systems make": 24616, "llms answer": 14365, "answer conduct": 1533, "conduct case": 4543, "systems using": 24648, "explore use": 8528, "incorporating chatgpt": 11528, "interaction human": 12132, "comparative results": 4157, "reveal using": 22200, "chatgpt human": 3590, "interactions chatgpt": 12138, "comparison method": 4231, "apply llms": 1714, "analysis paper": 1435, "key challenges": 12459, "concern llms": 4488, "llms need": 14609, "feature engineering": 8859, "engineering approaches": 7571, "automated machine": 2277, "learning automl": 13774, "introduced method": 12260, "method utilizes": 15407, "linear regression": 14182, "evaluated large": 7922, "llms gpt4": 14534, "important task": 11313, "task improve": 24785, "machinelearning models": 14941, "models era": 16183, "chatgpt research": 3642, "study based": 24066, "network analysis": 17228, "analysis main": 1427, "main objective": 14954, "objective paper": 17627, "paper identify": 18231, "areas chatgpt": 1925, "findings study": 9060, "study showed": 24155, "showed chatgpt": 22996, "maximum number": 15172, "intelligence large": 12077, "model gpt": 15787, "study study": 24158, "information technology": 11794, "human life": 10966, "key components": 12462, "inspired previous": 11935, "times square": 25535, "bf 1n": 2800, "provide results": 20460, "lower bound": 14877, "despite potential": 6272, "potential large": 19197, "issues like": 12386, "generated content": 9841, "tasks providing": 25028, "providing example": 20511, "framework tool": 9461, "examples tools": 8147, "intellectual property": 12059, "rely large": 21524, "models recognize": 16633, "predict content": 19329, "llms paper": 14623, "paper asks": 18196, "asks llms": 2020, "used data": 26561, "github copilot": 10140, "study challenging": 24070, "road map": 22319, "making ai": 15004, "models growing": 16260, "carbon footprint": 3208, "models especially": 16184, "especially large": 7801, "equally important": 7752, "example training": 8119, "kept secret": 12451, "models social": 16694, "paper provide": 18302, "models runtime": 16664, "talking large": 24718, "models gained": 16232, "chatgpt developed": 3550, "extremely popular": 8701, "early adopters": 7066, "disruptive technology": 6731, "fields like": 8976, "customer service": 5381, "healthcare finance": 10636, "provide valuable": 20472, "valuable insights": 26954, "insights potential": 11913, "failure technology": 8789, "responses generated": 21954, "chatgpt different": 3553, "conversational qa": 4995, "similarity scores": 23212, "correct answers": 5080, "obtain natural": 17665, "labels evaluation": 12636, "evaluation scores": 8030, "performance gpt3": 18662, "questions providing": 20821, "providing insights": 20514, "insights areas": 11907, "chatgpt good": 3583, "preliminary study": 19406, "study recently": 24147, "recently chatgpt": 21231, "attention research": 2186, "research community": 21793, "end work": 7534, "work provide": 27545, "provide preliminary": 20454, "preliminary evaluation": 19400, "chatgpt understanding": 3672, "text specifically": 25379, "specifically evaluate": 23619, "standard evaluation": 23719, "evaluation opendomain": 8009, "evaluation involves": 7990, "tasks compare": 24886, "compare chatgpt": 4162, "evaluation present": 8016, "analysis capabilities": 1398, "central role": 3308, "human labor": 10961, "llms offer": 14615, "offer novel": 17687, "automatic generation": 2295, "method combining": 15337, "data efficiently": 5473, "chatgpt bard": 3516, "analysis human": 1414, "performance chatgpt": 18601, "bard ai": 2449, "chatbots based": 3486, "different applications": 6490, "education ai": 7109, "assessment ai": 2067, "long used": 14818, "used automated": 26555, "automated item": 2275, "item generation": 12395, "google bard": 10207, "openai chatgpt": 17783, "gold standard": 10198, "human ratings": 10980, "demonstrate potential": 6022, "potential stateoftheart": 19225, "gpt4 large": 10352, "effectively reduces": 7182, "input paper": 11877, "explore models": 8517, "models responses": 16650, "indicate gpt4": 11611, "providing detailed": 20510, "related research": 21435, "research findings": 21817, "results showcase": 22106, "showcase potential": 22988, "promising avenue": 20051, "generation chatbots": 9933, "bibliometric analysis": 2836, "systematic review": 24559, "databases paper": 5636, "scientific literature": 22562, "focusing specifically": 9267, "specifically chatgpt": 23613, "chatgpt chatbots": 3529, "gained increasing": 9613, "increasing attention": 11560, "study explored": 24096, "trends field": 26024, "analyzing data": 1479, "research consists": 21794, "analysis chatbot": 1400, "documents chatgpt": 6852, "analysis conducted": 1403, "literature including": 14222, "conference papers": 4588, "chatgpt latest": 3605, "based methods": 2512, "identified study": 11131, "evaluation conversational": 7967, "digital technologies": 6604, "overall study": 18110, "aims provide": 1212, "provide guidelines": 20431, "research effectively": 21810, "areas future": 1926, "chatgpt semantic": 3647, "study evaluates": 24091, "generation semantic": 10019, "capture aspects": 3198, "human norms": 10970, "explain human": 8438, "semantic similarity": 22733, "llms greatly": 14537, "traditional methods": 25680, "implications understanding": 11276, "generative foundation": 10067, "model alignment": 15680, "responsible effective": 21980, "deployment realworld": 6151, "present substantial": 19464, "necessitating development": 17165, "development robust": 6417, "sufficient number": 24294, "number samples": 17596, "samples approach": 22447, "highquality samples": 10817, "undesired behavior": 26330, "enhancing model": 7644, "effectively improve": 7174, "performance reward": 18747, "automated metrics": 2282, "models diffusion": 16146, "models prompt": 16598, "models excel": 16190, "multiple choice": 16957, "smaller language": 23356, "text simplification": 25375, "simplification ts": 23240, "process generating": 19848, "piece text": 18912, "sentence structure": 22787, "given text": 10173, "english sentences": 7601, "proposed architecture": 20348, "uses word": 26700, "embeddings word2vec": 7322, "transformers bert": 25953, "roberta gpt2": 22325, "using metrics": 26807, "outperform models": 18015, "models terms": 16738, "sari score": 22455, "terms perplexity": 25229, "contributions paper": 4928, "new word": 17372, "novel text": 17569, "perform indepth": 18559, "results stateoftheart": 22115, "code publicly": 3941, "available online": 2381, "political biases": 19034, "openais large": 17808, "politically biased": 19042, "points view": 19010, "questions posed": 20818, "political compass": 19035, "compass test": 4236, "10 10": 18, "significant bias": 23101, "big personality": 2845, "personality traits": 18852, "type indicator": 26123, "indicator mbti": 11622, "chatgpt evaluated": 3564, "highly open": 10798, "generated gpt": 9848, "considerable challenge": 4654, "instructors need": 12027, "need able": 17168, "growing need": 10499, "need understand": 17191, "address challenges": 793, "language teaching": 13266, "models response": 16649, "machinegenerated texts": 14939, "linguistic analyses": 14189, "complex finally": 4290, "aigc detectors": 1167, "detectors using": 6358, "roberta finetuned": 22324, "finetuned training": 9114, "achieves 90": 620, "90 accuracy": 274, "knowledge comprehensive": 12508, "produced generative": 19937, "generative large": 10073, "syntactic complexity": 24511, "simplification text": 23239, "domains natural": 6933, "offers opportunity": 17704, "usually form": 26888, "complex sentences": 4319, "neural networkbased": 17271, "improved readability": 11384, "graph kg": 10432, "text requires": 25372, "factual information": 8767, "information sentence": 11788, "corpus resource": 5074, "intelligent information": 12093, "information processing": 11774, "processing ancient": 19886, "ancient texts": 1488, "digital humanities": 6603, "intelligence technology": 12087, "methods need": 15468, "intelligent processing": 12097, "crucial component": 5292, "adapt new": 720, "propose gpt": 20296, "model called": 15700, "translation text": 25999, "gpttype models": 10391, "ability process": 372, "traditional chinese": 25675, "instruction tuning": 11982, "widely recognized": 27399, "models attracted": 16044, "attracted attention": 2194, "attention researchers": 2187, "public release": 20562, "foundation llms": 9364, "llms perform": 14626, "perform similarly": 18567, "multilingual tasks": 16924, "compared english": 4184, "english tasks": 7602, "remedy gap": 21601, "gap propose": 9646, "attempt create": 2148, "instruction dataset": 11974, "continuously updated": 4877, "zero hero": 27683, "tuning finetuning": 26074, "demonstrated potential": 6056, "unseen tasks": 26427, "straightforward effective": 23888, "method enhancing": 15353, "crowdsourced human": 5288, "human tasks": 10992, "tasks present": 25013, "unique advantage": 26363, "generated vast": 9882, "vast quantities": 27112, "highquality training": 10819, "tasks carry": 24876, "carry extensive": 3231, "study representative": 24148, "various benchmarks": 27033, "leads significant": 13718, "zeroshot scenarios": 27719, "3b model": 172, "175b gpt3": 76, "chatgpt zeroshot": 3678, "benchmarks furthermore": 2690, "tasks reveal": 25049, "models enhanced": 16181, "paper serves": 18314, "incorporate symbolic": 11523, "models generalization": 16234, "capabilities various": 3146, "various downstream": 27040, "tasks diverse": 24905, "diverse datasets": 6793, "datasets large": 5760, "transformer architectures": 25900, "training procedures": 25820, "end present": 7530, "model diverse": 15742, "corpus containing": 5067, "perform simple": 18568, "filter lowquality": 8991, "model pretraining": 15871, "pretraining use": 19648, "performance drop": 18635, "achieving artificial": 658, "artificial general": 1976, "general intelligence": 9698, "intelligence agi": 12062, "pretrained foundation": 19531, "transformers gpts": 25955, "various ai": 27025, "ai services": 1133, "autonomous driving": 2334, "viable solution": 27170, "computing resources": 4464, "resources gpu": 21919, "gpu memory": 10395, "inference methods": 11695, "intelligence propose": 12082, "satisfy users": 22465, "new metric": 17335, "metric evaluate": 15511, "perspectives large": 18870, "current large": 5344, "chatgpt claim": 3532, "relevance judgments": 21486, "ir research": 12362, "perspective paper": 18868, "llms assist": 14369, "assist human": 2088, "concerns issues": 4494, "humanmachine collaboration": 11051, "strategies based": 23898, "based human": 2494, "automated assessment": 2267, "trained human": 25722, "human assessors": 10904, "conclude paper": 4509, "perspectives use": 18873, "llms automatic": 14375, "experimental evidence": 8342, "uses llms": 26696, "llms evaluation": 14470, "learning code": 13785, "basic understanding": 2589, "functioning large": 9532, "models critically": 16118, "built model": 3055, "language art": 12687, "does exist": 6863, "critical code": 5255, "object study": 17620, "demonstrate validity": 6037, "validity code": 26949, "users interact": 26667, "systems evaluating": 24599, "directly generate": 6639, "responses user": 21970, "user queries": 26642, "popular generative": 19062, "bing chat": 2870, "set queries": 22887, "believe results": 2638, "users especially": 26657, "hope results": 10866, "motivate development": 16857, "help researchers": 10667, "researchers users": 21891, "existing commercial": 8252, "commercial systems": 4086, "systems does": 24594, "does chatgpt": 6860, "truthful answers": 26056, "chatgpt demonstrated": 3548, "demonstrated significant": 6073, "significant potential": 23128, "various aspects": 27030, "aspects human": 2026, "providing accurate": 20504, "accurate reliable": 544, "paper seek": 18310, "seek understand": 22659, "understand chatgpt": 26237, "falls short": 8816, "chatgpt complex": 3535, "complex opendomain": 4306, "knowledge recall": 12574, "additionally conduct": 773, "propose potential": 20327, "approaches enhance": 1838, "enhance truthfulness": 7624, "model answer": 15684, "better natural": 2786, "reasoning natural": 21093, "topics artificial": 25628, "deep neural": 5895, "particularly large": 18440, "language module": 13209, "methods chatgpt": 15423, "chatgpt gpt3": 3584, "propose strategies": 20336, "academic writing": 444, "debate use": 5799, "gpt 35": 10221, "release chatgpt": 21467, "raised concerns": 20859, "false information": 8819, "finding ways": 9036, "effective use": 7166, "personal experience": 18848, "openai text": 17792, "model writing": 15969, "using gpt": 26764, "additionally provided": 784, "prompts used": 20242, "used results": 26597, "models important": 16280, "important aspect": 11295, "developing language": 6393, "interact humans": 12124, "users usually": 26683, "tuning model": 26085, "model way": 15966, "alignment paper": 1288, "approach called": 1737, "alignment process": 1291, "behavior does": 2615, "adversarial prompting": 976, "attacks furthermore": 2142, "demonstrated large": 6054, "alignment llms": 1287, "llms bring": 14384, "ensuring ai": 7676, "ai safety": 1132, "memorization large": 15251, "sequences training": 22834, "safely deploying": 22416, "issues model": 12388, "model suite": 15934, "allowing provide": 1316, "predictions additionally": 19367, "provide novel": 20450, "data release": 5581, "necessary reproduce": 17160, "prompting texttosql": 20180, "prompting combined": 20139, "combined large": 4055, "llms achieved": 14352, "complex reasoning": 4315, "tasks texttosql": 25086, "parsing task": 18408, "task converts": 24756, "converts natural": 5013, "work using": 27573, "tasks called": 24875, "task subtasks": 24829, "subtasks approach": 24241, "ability llms": 360, "llms experiments": 14482, "prompts guide": 20207, "llms generate": 14517, "execution accuracy": 8195, "solutions proposed": 23448, "zeroshot text": 27723, "zeroshot classification": 27698, "models tend": 16737, "address difficulties": 800, "limitations propose": 14137, "new approach": 17298, "approach zeroshot": 1826, "strong generative": 23967, "generative power": 10085, "training smaller": 25841, "sentence encoder": 22782, "generates multiple": 9886, "enhance semantic": 7623, "generative process": 10105, "stateoftheart methods": 23785, "methods multiple": 15467, "multiple benchmark": 16954, "datasets limited": 5761, "indomain text": 11646, "available chatgpt": 2366, "bar exam": 2447, "benchmark following": 2663, "chatgpt conversational": 3538, "conversational agent": 4979, "recent development": 21165, "llms demonstrate": 14421, "zeroshot capabilities": 27696, "openais gpt35": 17803, "zeroshot fashion": 27702, "providing examples": 20512, "format results": 9332, "indicate chatgpt": 11604, "chatgpt achieves": 3500, "achieves average": 623, "tasks surpassing": 25075, "baseline guessing": 2557, "model performs": 15856, "datasets achieving": 5726, "datasets respectively": 5772, "respectively code": 21935, "code base": 3898, "base model": 2459, "model predictions": 15864, "illustrative examples": 11173, "impressive ability": 11329, "ability generative": 345, "tasks chatgpt": 24879, "representative model": 21689, "model empirically": 15751, "empirically evaluate": 7420, "retrieval ir": 22148, "developing effective": 6391, "tools based": 25599, "generative llms": 10079, "different combinations": 6500, "types zeroshot": 26138, "evaluation results": 8024, "reveal chatgpts": 22194, "chatgpts promising": 3699, "promising ability": 20048, "ability retrieve": 378, "high recall": 10714, "limited ability": 14147, "specific requirements": 23603, "low precision": 14866, "based llms": 2510, "development advanced": 6398, "chat models": 3471, "chatgpt raised": 3636, "raised questions": 20860, "questions potential": 20819, "general artificial": 9691, "asking chatgpt": 2016, "turing test": 26095, "effective applied": 7140, "understanding generating": 26272, "llms exhibited": 14478, "exhibited remarkable": 8231, "capabilities variety": 3144, "variety domains": 27005, "domains tasks": 6941, "tasks challenging": 24878, "understanding learning": 26288, "recent success": 21208, "success current": 24255, "llms capable": 14388, "propose multimodal": 20308, "models process": 16595, "understanding generation": 26274, "tasks inputoutput": 24962, "spoken dialogue": 23672, "multimodal llms": 16943, "processes test": 19883, "demonstrate capabilities": 5983, "ai tasks": 1139, "tasks speech": 25065, "humans create": 11066, "audio content": 2211, "ability interact": 350, "interact users": 12126, "challenging tasks": 3433, "models conversation": 16114, "allows multiple": 1322, "provide feedback": 20427, "based chatgpt": 2471, "objectively comprehensively": 17632, "experiments datasets": 8376, "evaluation text": 8038, "investigate potential": 12306, "potential chatgpt": 19170, "existing automatic": 8247, "human judgements": 10955, "prompting chatgpt": 20138, "chatgpt specific": 3661, "test performance": 25249, "content preservation": 4786, "correlation analysis": 5113, "different levels": 6529, "metrics chatgpt": 15519, "achieves competitive": 627, "correlations human": 5117, "preliminary results": 19405, "role large": 22369, "models multidimensional": 16529, "technical report": 25139, "transformers language": 25957, "shown stateoftheart": 23059, "tasks named": 24997, "known suffer": 12612, "suffer data": 24286, "data imbalance": 5515, "imbalance issues": 11212, "models position": 16572, "tasks conduct": 24888, "performance lms": 18698, "lms finetuned": 14768, "classification benchmarks": 3782, "study includes": 24110, "propose evaluation": 20292, "evaluation approach": 7954, "encoders like": 7502, "bias average": 2805, "effect propose": 7134, "propose methods": 20306, "methods random": 15479, "results improvement": 22059, "performance model": 18704, "advances generative": 938, "offer unique": 17691, "paper makes": 18259, "examples diverse": 8127, "texttoaudio generation": 25412, "instructiontuned llm": 12018, "latent diffusion": 13663, "allows interesting": 1320, "finetuning significantly": 9179, "significantly improved": 23160, "text encoder": 25311, "generation task": 10027, "goal generate": 10187, "textual description": 25427, "encoder used": 7495, "outperforms stateoftheart": 18059, "times smaller": 25534, "encoder frozen": 7488, "set augmentation": 22875, "llms shown": 14689, "shown exceptional": 23017, "exceptional performance": 8168, "llms internal": 14566, "introduce simple": 12254, "utilizes llms": 26911, "train evaluate": 25695, "evaluate method": 7892, "classifier trained": 3814, "demonstrate method": 6015, "method detecting": 15341, "prompting methods": 20163, "highlighting potential": 10779, "potential enhance": 19176, "enhance reliability": 7622, "llmgenerated content": 14338, "practical applicability": 19285, "applicability realworld": 1632, "using gpt4": 26769, "annotating data": 1507, "data expensive": 5480, "expensive timeconsuming": 8320, "especially complex": 7799, "small labeled": 23335, "labeled datasets": 12628, "simple prompts": 23231, "prompts different": 20197, "tasks varying": 25098, "varying complexity": 27100, "preserves original": 19506, "label distribution": 12623, "training sample": 25832, "test gpt4": 25244, "sets observe": 22902, "yields good": 27675, "downstream performance": 6981, "humanannotated data": 11010, "exhibits strong": 8237, "strong predictive": 23970, "predictive power": 19379, "data tasks": 5612, "highlights need": 10785, "complex prompts": 4311, "prompts synthetic": 20239, "synthetic datasets": 24543, "datasets consistently": 5736, "comparison humanwritten": 4227, "versus chatgptgenerated": 27167, "chatgpt similar": 3659, "millions users": 15551, "public discourse": 20556, "society result": 23413, "significant change": 23105, "largescale study": 13649, "study comparing": 24076, "student essays": 24012, "systematically assess": 24564, "assess quality": 2053, "quality aigenerated": 20637, "methods large": 15460, "large corpus": 13323, "using standard": 26866, "results results": 22102, "chatgpt generates": 3581, "writing style": 27634, "models exhibits": 16195, "characteristics different": 3456, "chatgpt outperform": 3612, "readily available": 20996, "use ai": 26485, "tools free": 25605, "learning objectives": 13866, "virtual assistants": 27204, "powerful large": 19272, "use model": 26525, "explore using": 8531, "output model": 18073, "data gpt4": 5511, "contrastive training": 4905, "conversational data": 4988, "data generate": 5500, "generate set": 9815, "approach produces": 1802, "diverse training": 6821, "classification process": 3801, "prompt gpt4": 20097, "gpt4 generate": 10348, "model learn": 15817, "listeners language": 14214, "lms increasingly": 14769, "handling ambiguous": 10573, "evaluation pretrained": 8017, "extremely challenging": 8698, "including recent": 11479, "recent gpt4": 21178, "gpt4 generated": 10349, "considered correct": 4666, "dataset finally": 5679, "nli model": 17406, "enhanced large": 7626, "agents paper": 1046, "framework combines": 9408, "combines large": 4058, "digital twin": 6605, "intelligent agents": 12092, "agents different": 1032, "given task": 10171, "task instruction": 24788, "accomplish task": 485, "production process": 19952, "research highlights": 21822, "highlights potential": 10787, "limitations future": 14131, "models display": 16152, "model family": 15772, "ways make": 27318, "vision tasks": 27231, "deep networks": 5894, "provide evidence": 20424, "different metrics": 6532, "metrics better": 15517, "models instruction": 16306, "instructiontuned lms": 12020, "datasets contain": 5738, "datasets allowing": 5727, "input example": 11863, "user provides": 26641, "provides input": 20490, "inputs outputs": 11893, "using bagofwords": 26714, "negative polarity": 17206, "model capacity": 15704, "models revolutionized": 16656, "tasks little": 24985, "extraction large": 8676, "achieve performance": 581, "performance par": 18726, "previous prompt": 19669, "learning approaches": 13771, "approaches data": 1835, "generation large": 9972, "previous solutions": 19672, "stateoftheart fewshot": 23766, "extraction datasets": 8672, "inspire future": 11927, "research capabilities": 21788, "mitigating impact": 15634, "retrievalaugmented models": 22161, "existing retrievalaugmented": 8276, "retrieved information": 22174, "retrieved documents": 22173, "documents contain": 6853, "misinformation causing": 15594, "information finetuning": 11756, "finetuning incontext": 9136, "learning settings": 13908, "settings propose": 22923, "results opendomain": 22084, "path leverage": 18485, "best worlds": 2764, "achieved remarkable": 607, "success nlp": 24270, "despite great": 6259, "pretraining finetuning": 19623, "deployment costs": 6144, "costs low": 5151, "training efficiency": 25771, "efficiency finetuning": 7220, "finetuning specific": 9184, "task essential": 24767, "raw data": 20976, "data paper": 5553, "trained language": 25724, "interactive manner": 12148, "model demonstrates": 15732, "demonstrates strong": 6087, "strong generalization": 23966, "range language": 20896, "tasks experiments": 24923, "parameters compared": 18374, "models robust": 16661, "years witnessed": 27666, "original natural": 17969, "language contents": 12692, "media outlets": 15223, "potential misuse": 19208, "security measures": 22649, "framework able": 9393, "work explore": 27494, "systematic analysis": 24550, "analysis possible": 1437, "errors propose": 7795, "model method": 15829, "method improves": 15370, "learning sentence": 13905, "ai feedback": 1097, "popular approach": 19060, "ensure quality": 7672, "quality positive": 20662, "supervised contrastive": 24382, "learning produce": 13884, "produce accurate": 19922, "signals paper": 23082, "propose improve": 20298, "llms construct": 14408, "provide better": 20412, "supervision signals": 24398, "semantic textual": 22736, "similarity sts": 23213, "models alternative": 16028, "alternative human": 1344, "evaluations human": 8048, "assessing quality": 2065, "texts generated": 25404, "written humans": 27638, "different natural": 6537, "recently large": 21240, "demonstrated exceptional": 6044, "performance unseen": 18779, "instructions provided": 12006, "questions used": 20827, "ask llms": 2009, "llm evaluation": 14277, "evaluation use": 8040, "use human": 26514, "evaluate texts": 7906, "story generation": 23883, "adversarial attacks": 971, "attacks result": 2143, "results obtained": 22082, "expert human": 8426, "llms results": 14681, "sampling algorithm": 22451, "algorithm used": 1245, "generate answer": 9756, "potential using": 19237, "llms assess": 14368, "discuss limitations": 6687, "limitations ethical": 14128, "ethical considerations": 7849, "extraction using": 8684, "llms low": 14596, "entity relation": 7713, "demonstrations incontext": 6104, "gap llms": 9642, "incorporating taskspecific": 11531, "entity representations": 7714, "logic evaluate": 14799, "widelyused datasets": 27407, "datasets observe": 5764, "achieves sota": 644, "discourse understanding": 6661, "systematic investigations": 24556, "ability large": 354, "extent language": 8631, "model infer": 15803, "finetuning t5": 9189, "evaluated different": 7919, "entities training": 7704, "testing repairing": 25271, "various applications": 27027, "alignment human": 1282, "particular given": 18428, "given llms": 10155, "llms great": 14535, "ai assistants": 1085, "daily life": 5404, "framework testing": 9460, "llms propose": 14650, "test suite": 25259, "automated test": 2285, "test oracle": 25248, "requiring human": 21766, "human expertise": 10936, "blackbox api": 2898, "seven popular": 22933, "popular llms": 19066, "generates valid": 9888, "paving way": 18501, "llm training": 14318, "opensource large": 17853, "models instructiontuning": 16309, "providing comprehensive": 20509, "comprehensive evaluations": 4378, "explore various": 8532, "influence performance": 11726, "performance instructiontuned": 18678, "instructiontuned models": 12021, "highquality instruction": 10814, "instruction datasets": 11975, "quantitative analyses": 20677, "analyses providing": 1388, "providing valuable": 20522, "models model": 16525, "model data": 15724, "use build": 26489, "recognition using": 21267, "vicuna large": 27175, "chatgpt shown": 3651, "ner models": 17221, "problems paper": 19810, "framework based": 9403, "based newly": 2519, "newly released": 17381, "opensource llm": 17858, "llm vicuna": 14325, "multiturn dialogues": 17006, "10 datasets": 19, "achieves superior": 651, "settings additionally": 22912, "matching methods": 15130, "methods rely": 15481, "rely finetuning": 21521, "finetuning transformer": 9194, "drawbacks using": 7014, "using models": 26811, "matching models": 15132, "significant amounts": 23095, "finetuning data": 9124, "investigate using": 12313, "alternative traditional": 1348, "competitive finetuned": 4251, "roberta model": 22327, "2000 training": 99, "reaching similar": 20984, "similar performance": 23201, "incontext demonstrations": 11500, "prompts improves": 20209, "improves f1": 11405, "example selection": 8118, "selection using": 22692, "using set": 26858, "literature chatgpt": 14219, "literature using": 14227, "model specifically": 15930, "specifically gpt4": 23624, "engineering techniques": 7583, "guiding models": 10534, "models output": 16553, "prompt containing": 20084, "students ability": 24022, "ability distinguish": 335, "distinguish genuine": 6755, "works generated": 27594, "generated model": 9864, "findings demonstrate": 9040, "reliably differentiate": 21511, "capabilities paper": 3137, "paper provides": 18304, "provides comprehensive": 20483, "underlying architecture": 26207, "comparative analysis": 4154, "exploring potential": 8552, "models context": 16110, "context literary": 4811, "study contributes": 24080, "applications limitations": 1675, "limitations models": 14134, "domains large": 6925, "models transform": 16751, "computational social": 4433, "social science": 23398, "chatgpt capable": 3523, "need training": 17189, "political ideology": 19038, "llms effectively": 14454, "work provides": 27546, "provides road": 20498, "best practices": 2761, "extensive evaluation": 8600, "evaluation pipeline": 8014, "24 representative": 135, "labeling tasks": 12633, "tasks classification": 24880, "classification llms": 3791, "llms fail": 14495, "fail outperform": 8782, "outperform best": 18011, "coding tasks": 3982, "generation llms": 9981, "llms produce": 14643, "todays llms": 25546, "reduce costs": 21318, "science analysis": 22546, "todays language": 25545, "lm outputs": 14758, "knowledge trained": 12594, "qa datasets": 20616, "knowledge bases": 12502, "model effectively": 15749, "incorrect statements": 11540, "domains applied": 6914, "substantially outperforms": 24229, "tasks provides": 25027, "useful detecting": 26612, "generated models": 9865, "realworld settings": 21042, "ai ai": 1078, "authors believe": 2254, "age ai": 1013, "image generators": 11187, "dalle2 midjourney": 5409, "text generators": 25335, "chatgpt bloom": 3521, "allow users": 1310, "ai generate": 1100, "generate code": 9760, "new technology": 17359, "ai governance": 1103, "ai approach": 1082, "ai article": 1083, "capacity chatgpt": 3184, "chatgpt empirical": 3558, "critical aspect": 5252, "aspect human": 2022, "human intelligence": 10948, "information paper": 11770, "paper systematically": 18322, "various conditions": 27035, "reveal chatgpt": 22193, "strikingly similar": 23953, "similar humans": 23194, "humans furthermore": 11067, "furthermore investigate": 9560, "investigate impact": 12302, "impact different": 11231, "strategies chatgpts": 23899, "empirical findings": 7404, "capacity large": 3186, "hold potential": 10843, "informing future": 11813, "memory propose": 15270, "enabling efficient": 7470, "attention effect": 2160, "prompted llms": 20130, "opendomain conversation": 17818, "approach creating": 1744, "agents need": 1045, "need finetuning": 17177, "utilizes pretrained": 26912, "prompting chainofthought": 20136, "chatbot models": 3480, "models opendomain": 16546, "opendomain conversations": 17820, "effective solution": 7162, "recommender systems": 21284, "presents innovative": 19491, "innovative approach": 11858, "approach address": 1730, "address problems": 820, "effective way": 7167, "users emotional": 26656, "data privacy": 5564, "computing research": 4463, "personalized recommendations": 18857, "recommendations based": 21277, "based users": 2550, "fail fully": 8779, "paper introduced": 18238, "users build": 26653, "paper advocates": 18184, "service providers": 22865, "memory saving": 15275, "privacy data": 19731, "data providing": 5571, "paper offers": 18262, "privacy concerns": 19730, "metrics benchmarks": 15516, "way future": 27305, "extraction core": 8671, "semantic relationships": 22729, "text standard": 25380, "relations entities": 21447, "entities target": 7703, "conditioned input": 4535, "larger language": 13617, "work evaluating": 27489, "performance standard": 18761, "standard tasks": 23723, "varying levels": 27103, "address issues": 807, "evaluating generative": 7940, "generative approaches": 10061, "gpt3 achieves": 10286, "achieves near": 634, "near sota": 17144, "performance roughly": 18749, "fully supervised": 9515, "supervised models": 24393, "cot style": 5155, "explanations generated": 8457, "release model": 21473, "model new": 15837, "new baseline": 17300, "baseline tasks": 2569, "tasks generating": 24939, "chatgpt generate": 3579, "humanlike responses": 11044, "responses understand": 21969, "understand context": 26239, "context popular": 4814, "analysis research": 1443, "malicious content": 15017, "work identify": 27506, "prompts provided": 20231, "generate functional": 9775, "avoid detection": 2407, "generated using": 9881, "game theory": 9629, "prisoners dilemma": 19728, "prompts enable": 20200, "games results": 9632, "prompts gpt": 20206, "gpt generate": 10226, "human behavior": 10907, "important aspects": 11296, "ultimatum game": 26159, "behavior gpt": 2617, "agents exhibit": 1035, "performance simple": 18756, "shows potential": 23069, "science research": 22552, "detection large": 6333, "capabilities text": 3142, "rapid development": 20941, "produced llm": 19941, "increasingly important": 11575, "works attempted": 27589, "using binary": 26721, "binary classifiers": 2866, "text humanwritten": 25337, "humanwritten llmgenerated": 11083, "decisions based": 5839, "end paper": 7529, "deep learningbased": 5892, "generated llm": 9861, "existing text": 8283, "systems method": 24617, "method does": 15343, "require access": 21716, "generation technique": 10030, "experiments shown": 8411, "shown high": 23025, "detection accuracy": 6320, "reasoning language": 21081, "knowledge base": 12497, "reasoning fundamental": 21075, "achieve humanlike": 576, "tasks lack": 24971, "lack resources": 12658, "model training": 15949, "gap proposing": 9647, "base kb": 2458, "human efforts": 10923, "data quality": 5576, "quality control": 20642, "generation demonstrate": 9943, "results previous": 22088, "automatic evaluation": 2292, "llm development": 14275, "incorporate external": 11521, "support claims": 24406, "verifying generated": 27152, "problem human": 19771, "evaluation common": 7964, "common practice": 4098, "timeconsuming paper": 25526, "evaluation prompting": 8019, "prompting llms": 20161, "llms finetuning": 14504, "finetuning smaller": 9183, "facilitate evaluation": 8730, "evaluation manually": 7997, "set test": 22892, "test examples": 25243, "new bing": 17302, "examples existing": 8128, "existing benchmark": 8249, "highlight promising": 10768, "lay foundation": 13685, "foundation future": 9361, "important problem": 11306, "human detecting": 10920, "detecting chatgpt": 6315, "question large": 20753, "chatgpt recently": 3638, "recently demonstrated": 21233, "generation enabling": 9948, "methods detecting": 15429, "framework named": 9444, "conversational bots": 4986, "manner specifically": 15038, "questions divided": 20793, "difficult humans": 6584, "approach shows": 1810, "providing new": 20518, "new way": 17369, "online service": 17745, "opensourced dataset": 17865, "detection datasets": 6326, "answering models": 1579, "spurious correlations": 23681, "assess model": 2050, "bias training": 2819, "simple method": 23228, "scale models": 22494, "models reliance": 16638, "robustness large": 22356, "large set": 13595, "debiasing methods": 5803, "measuring performance": 15203, "performance ood": 18721, "features comparably": 8868, "reports llms": 21661, "spurious features": 23682, "flexibly adjust": 9234, "results strong": 22116, "performance stateoftheart": 18762, "conducting extensive": 4583, "experiments models": 8395, "humanlike way": 11047, "irrelevant information": 12365, "highly sensitive": 10803, "humanlike answer": 11035, "using contrastive": 26736, "impact models": 11239, "models behaviour": 16056, "introducing model": 12270, "model input": 15805, "decoding strategies": 5853, "text given": 25336, "subtle differences": 24243, "different input": 6519, "models discussion": 16151, "models intelligent": 16310, "intelligence models": 12080, "design new": 6203, "new tools": 17361, "work serves": 27553, "learning techniques": 13918, "data critically": 5457, "language images": 12721, "knowledge representation": 12576, "representation reasoning": 21672, "systems reason": 24633, "complex concepts": 4285, "problem domain": 19765, "domain experts": 6890, "controlled natural": 4945, "requires little": 21751, "reasoning understanding": 21115, "reasoning actions": 21058, "demonstrating effectiveness": 6094, "logical reasoning": 14801, "problems faced": 19800, "ai chatgpt": 1092, "history ai": 10839, "evaluation gpt": 7985, "predictive accuracy": 19376, "fact checking": 8745, "rapid proliferation": 20947, "underscores importance": 26226, "shown promise": 23048, "promise various": 20045, "fields potential": 8979, "evaluates performance": 7931, "llms gpt": 14528, "based given": 2490, "substantial potential": 24222, "potential ai": 19160, "demonstrating superior": 6098, "underscores need": 26227, "need research": 17185, "knowledge gaps": 12530, "evaluation platform": 8015, "evaluation benchmarks": 7958, "play crucial": 18961, "crucial role": 5298, "evaluating capability": 7934, "capability llm": 3164, "text representation": 25370, "based information": 2497, "information user": 11800, "user interface": 26632, "represented text": 21692, "ability llm": 359, "complex structures": 4321, "consequently propose": 4642, "establish benchmark": 7818, "agents based": 1029, "series llms": 22851, "llms tested": 14729, "insight potential": 11903, "contribute new": 4912, "environments new": 7737, "task sets": 24823, "better test": 2792, "facilitate development": 8729, "new nlp": 17340, "urgently needed": 26476, "llms present": 14636, "models chinese": 16089, "difficulty levels": 6592, "science engineering": 22548, "ceval hard": 3321, "advanced reasoning": 904, "models results": 16652, "strengths shortcomings": 23938, "background knowledge": 2427, "new unsupervised": 17365, "unsupervised method": 26440, "relevant knowledge": 21497, "knowledge extraction": 12526, "shows method": 23066, "method effective": 15347, "explanation graphs": 8450, "knowledge selection": 12580, "recall precision": 21120, "outperforming strong": 18030, "generated blackbox": 9839, "blackbox language": 2901, "exhibit humanlike": 8216, "adversarial robustness": 977, "achieve reliable": 584, "method proposed": 15386, "generation method": 9985, "method involves": 15373, "text method": 25349, "scenarios specifically": 22521, "compute random": 4442, "used identify": 26577, "effectiveness method": 7201, "chinese english": 3729, "furthermore results": 9570, "guidelines creating": 10530, "creating synthetic": 5225, "advancements artificial": 914, "poses significant": 19099, "significant challenge": 23102, "highquality datasets": 10812, "realworld data": 21034, "downstream applications": 6972, "aims knowledge": 1209, "knowledge gap": 12529, "dataset study": 5717, "study underscores": 24162, "overall paper": 18105, "offers valuable": 17707, "insights researchers": 11918, "field code": 8953, "data dataset": 5462, "inference token": 11709, "high computational": 10697, "computational memory": 4426, "llms make": 14597, "generative llm": 10078, "llm inference": 14284, "key insight": 12472, "models jointly": 16317, "predict llms": 19330, "llms outputs": 14622, "token sequence": 25553, "token sequences": 25554, "sequences represented": 22833, "using novel": 26821, "decoding mechanism": 5850, "uses llm": 26695, "serving generative": 22869, "quality evaluation": 20648, "evaluation shows": 8033, "user interaction": 26631, "explicit implicit": 8469, "communication humans": 4120, "humans tend": 11077, "current systems": 5364, "systems struggle": 24640, "approach problem": 1801, "generalpurpose large": 9746, "adapted downstream": 730, "flexibility explore": 9229, "study llms": 24124, "llms reason": 14661, "data domains": 5470, "domains wikipedia": 6944, "greatly affect": 10464, "lm performance": 14759, "knowledge downstream": 12517, "train larger": 25700, "model experiments": 15763, "improves perplexity": 11411, "fewshot downstream": 8918, "downstream accuracy": 6971, "baseline model": 2564, "training steps": 25843, "performance using": 18782, "using domain": 26747, "weights tuned": 27356, "diffusion versus": 6599, "models autoregressive": 16049, "networks capture": 17242, "density estimation": 6119, "estimation methods": 7834, "toy models": 25651, "discuss advantages": 6681, "networks excel": 17245, "different training": 6561, "training evaluation": 25772, "autoregressive transformers": 2350, "forecasting benchmarks": 9300, "challenge models": 3358, "paper apply": 18192, "llms benchmarks": 14380, "learning icl": 13829, "investigate extent": 12299, "extent llms": 8633, "temporal information": 25195, "present framework": 19438, "token probabilities": 25552, "surprisingly observe": 24461, "observe llms": 17650, "par stateoftheart": 18333, "carefully designed": 3219, "significantly affect": 23146, "prior semantic": 19712, "semantic knowledge": 22725, "leverage existing": 13997, "performance analysis": 18590, "icl enables": 11109, "enables llms": 7465, "llms learn": 14579, "predictions based": 19368, "information large": 11761, "models fit": 16222, "evaluate ability": 7869, "generate diverse": 9769, "diverse questions": 6812, "terms content": 25221, "questions based": 20784, "based evaluation": 2481, "report large": 21650, "generate high": 9779, "questions high": 20802, "able effectively": 401, "methods extracting": 15438, "play important": 18964, "terms discourse": 25222, "arduous task": 1922, "errors translation": 7796, "tasks process": 25021, "process challenging": 19838, "learning dl": 13800, "discriminative models": 6677, "embodied conversational": 7325, "agent chatgpt": 1020, "core component": 5044, "technical details": 25136, "software design": 23423, "design decisions": 6187, "intent detection": 12114, "users objectives": 26673, "methods assume": 15418, "settings work": 22927, "pretraining dataset": 19622, "dataset combining": 5656, "generation generate": 9958, "dataset using": 5723, "gpt3 train": 10311, "able generalize": 403, "study examines": 24094, "ability gpt35": 347, "using zeroshot": 26883, "prompts use": 20241, "maximum context": 15171, "automated evaluation": 2270, "evaluation findings": 7979, "tokens prompt": 25567, "instructionfollowing datasets": 11992, "performance wide": 18797, "tasks especially": 24915, "instructiontuned llms": 12019, "small lms": 23343, "extraction fundamental": 8674, "extraction task": 8682, "strong capabilities": 23963, "instructiontuning datasets": 12023, "making tasks": 15014, "address limitation": 811, "limitation propose": 14116, "llms llms": 14594, "framework consistently": 9410, "llm performance": 14293, "performance strongly": 18763, "llms outperform": 14621, "zeroshot baselines": 27695, "baselines large": 2578, "margin additionally": 15070, "provide thorough": 20469, "thorough experiments": 25472, "effectiveness strong": 7211, "framework work": 9468, "work illustrates": 27507, "llms challenging": 14391, "like qa": 14096, "collaborative generative": 4011, "ai integrating": 1109, "texttoimage generation": 25414, "texttoimage t2i": 25417, "t2i generation": 24652, "garnered significant": 9658, "despite advancements": 6255, "t2i models": 24653, "common issue": 4095, "users need": 26671, "editing input": 7100, "prompts order": 20226, "timeconsuming laborintensive": 25524, "potential utilizing": 19240, "generation conduct": 9937, "edits humans": 7106, "factors influence": 8756, "models focus": 16223, "subject matter": 24188, "potential support": 19226, "research content": 21795, "research explored": 21814, "opportunities challenges": 17887, "challenges prospects": 3402, "aid understanding": 1155, "understanding complex": 26265, "concepts urban": 4480, "public sentiment": 20563, "social bias": 23375, "humanai collaboration": 11005, "help improve": 10659, "zeroshot cot": 27700, "utilization llms": 26903, "paper work": 18329, "work better": 27470, "achieves remarkable": 639, "remarkable performance": 21574, "performance reasoning": 18741, "llms complex": 14404, "complex information": 4292, "information tasks": 11793, "academic research": 442, "make sense": 14989, "support complex": 24407, "tasks llm": 24986, "enabling users": 7477, "manage complexity": 15023, "study reveals": 24150, "users explore": 26660, "llms based": 14378, "effectiveness diverse": 7190, "advancements gpt": 923, "gpt present": 10234, "challenges associated": 3368, "information density": 11745, "autoregressive generation": 2338, "task proposed": 24816, "models method": 16520, "transformer decoder": 25906, "masking strategy": 15100, "latent representations": 13666, "representations conditioned": 21680, "conditioned preceding": 4536, "scalable approach": 22478, "tasks particular": 25008, "models furthermore": 16230, "furthermore method": 9562, "frozen language": 9499, "models massive": 16514, "llms external": 14488, "external tools": 8650, "emerged promising": 7336, "solving complex": 23474, "complex problems": 4309, "methods finetune": 15445, "finetune llms": 9082, "llms tool": 14732, "tool demonstration": 25585, "data costly": 5456, "tools recent": 25615, "recent incontext": 21180, "issues limited": 12387, "limited context": 14151, "learns embedding": 13940, "way generating": 27306, "llm prompted": 14295, "offers flexibility": 17702, "arbitrary number": 1895, "tool use": 25592, "data learning": 5535, "diverse domains": 6795, "numerical reasoning": 17605, "plan generation": 18940, "approach effectively": 1755, "augments llms": 2243, "answering large": 1575, "llms garnered": 14511, "100 billion": 22, "document retrieval": 6846, "results combining": 22025, "correct answer": 5078, "data finetuning": 5495, "solely relying": 23434, "finegrained feedback": 9072, "feedback used": 8900, "used improve": 26578, "improve quality": 11371, "quality answers": 20639, "models interpretable": 16313, "using automatically": 26712, "usage examples": 26481, "examples target": 8146, "target word": 24734, "label demonstrate": 12622, "make existing": 14981, "social scientists": 23401, "possible applications": 19136, "promising type": 20072, "models correctly": 16116, "assumptions pretraining": 2124, "pretraining large": 19628, "large corpora": 13322, "models acquire": 16013, "achieve remarkable": 585, "tasks typically": 25095, "knowledge learning": 12553, "learning pretraining": 13878, "settings present": 22922, "question paper": 20760, "ability models": 365, "evaluation data": 7970, "evaluations multiple": 8051, "follow common": 9271, "believe work": 2639, "research developing": 21802, "developing robust": 6396, "efficient language": 7238, "wide adoption": 27375, "computational costs": 4424, "change model": 3442, "approaches large": 1850, "bert work": 2735, "provides promising": 20496, "models nlp": 16538, "benchmark large": 2666, "domainspecific tasks": 6955, "tasks remains": 25041, "remains explored": 21541, "explored paper": 8537, "questions chinese": 20787, "chinese gaokao": 3730, "humans possible": 11075, "zeroshot prompts": 27716, "subjective objective": 24193, "evaluated chatgpt": 7916, "findings reveal": 9055, "conclusion research": 4516, "research contributes": 21796, "robust evaluation": 22345, "evaluation benchmark": 7957, "benchmark future": 2664, "text performed": 25360, "large dataset": 13325, "learning uses": 13925, "uses neural": 26697, "style content": 24172, "applications like": 1674, "authorship attribution": 2256, "critical work": 5267, "prompting perform": 20169, "create synthetic": 5210, "dataset train": 5720, "embeddings release": 7321, "simpler subtasks": 23236, "solved using": 23469, "generate reasoning": 9810, "verification process": 27139, "makes model": 14998, "providing clear": 20508, "data evaluate": 5476, "different settings": 6554, "output programs": 18075, "codes data": 3967, "data publicly": 5574, "lightweight language": 14066, "model conditioning": 15719, "space recent": 23534, "remarkable progress": 21590, "tasks pretraining": 25016, "existing model": 8271, "different conditions": 6502, "open challenge": 17761, "work inspired": 27509, "inspired observation": 11934, "certain words": 3318, "context introduce": 4804, "conditions hidden": 4540, "theoretical connection": 25449, "model finding": 15775, "comparable better": 4142, "compared stateoftheart": 4205, "stateoftheart baselines": 23759, "compared baselines": 4178, "compared base": 4176, "lms able": 14763, "lms different": 14766, "performance similar": 18755, "best baseline": 2746, "available research": 2385, "powerful generative": 19268, "qualitative data": 20628, "analysis based": 1397, "systems used": 24647, "research paper": 21843, "analysis proposed": 1440, "paper used": 18326, "datasets open": 5765, "open access": 17759, "analysis researchers": 1444, "llm results": 14307, "prompting language": 20150, "models improves": 16283, "data large": 5530, "hallucinate generate": 10538, "generate fake": 9772, "fake information": 8804, "data inspired": 5523, "novel evaluation": 17551, "evaluation metric": 8003, "endtask performance": 7542, "performance furthermore": 18650, "ask model": 2010, "models increase": 16293, "existing large": 8261, "mainly focus": 14956, "assume access": 2118, "making difficult": 15008, "modular approach": 16818, "single task": 23279, "instruction finetuned": 11976, "finetuned language": 9097, "adapting existing": 735, "existing llms": 8266, "llms different": 14442, "transformers attention": 25952, "attention heads": 2164, "vectors models": 27119, "models dynamically": 16161, "tokens represent": 25568, "identify patterns": 11141, "forward pass": 9354, "flow graph": 9239, "huge amounts": 10887, "demonstrate utility": 6036, "processing model": 19898, "fusion framework": 9576, "framework efficient": 9416, "autoregressive model": 2347, "learning performance": 13871, "model inference": 15804, "diverse applications": 6787, "performance numerous": 18718, "models design": 16138, "poses unique": 19102, "unique challenges": 26365, "industrial contexts": 11667, "existing solutions": 8277, "model instances": 15806, "methods fall": 15441, "short achieving": 22973, "achieving optimal": 666, "address shortcomings": 825, "shortcomings propose": 22981, "efficient inference": 7236, "eliminating need": 7295, "models compared": 16097, "solutions provided": 23449, "leveraging advanced": 14021, "model hallucinations": 15793, "models practical": 16577, "tendency hallucinate": 25206, "hallucinate incorrect": 10539, "previously generated": 19685, "datasets chatgpt": 5730, "respectively refer": 21938, "conversational systems": 4997, "context understanding": 4821, "understanding response": 26311, "response generation": 21944, "generation despite": 9944, "llmbased conversational": 14330, "problems work": 19823, "work conduct": 27473, "analysis llmbased": 1425, "systems specifically": 24638, "specifically focusing": 23623, "chainofthought prompting": 3335, "reasoning chains": 21064, "promote future": 20074, "web apis": 27338, "tokens processed": 25566, "underlying language": 26209, "languages work": 13313, "work analyze": 27467, "languages conduct": 13296, "cost utility": 5140, "multilingual benchmarks": 16915, "supported languages": 24417, "aim increase": 1181, "increase transparency": 11551, "model apis": 15687, "works proposed": 27595, "proposed improve": 20354, "evaluate capabilities": 7872, "fulfill user": 9504, "user instructions": 26629, "user inputs": 26628, "information users": 11801, "problem propose": 19782, "propose challenging": 20280, "challenging benchmark": 3412, "benchmark consisting": 2651, "evaluate llms": 7890, "instructions based": 11996, "encourage llms": 7518, "remarkable improvement": 21572, "instructions zeroshot": 12012, "conversational artificial": 4983, "models led": 16343, "led development": 13948, "development powerful": 6412, "tools chatgpt": 25601, "chatgpt produce": 3625, "produce text": 19931, "text indistinguishable": 25343, "indistinguishable humangenerated": 11627, "school work": 22542, "tools perform": 25612, "courses students": 5179, "regarding use": 21377, "use tools": 26543, "assess degree": 2045, "designed specifically": 6236, "indepth survey": 11595, "comparable superior": 4151, "students courses": 24023, "reliably detect": 21510, "aigenerated text": 1172, "evade detection": 7863, "use tool": 26542, "findings offer": 9049, "integration ai": 12047, "robustness evaluation": 22355, "open information": 17765, "robustness distribution": 22354, "distribution changes": 6769, "models successfully": 16716, "successfully applied": 24280, "extraction tasks": 8683, "tasks prior": 25020, "pairwise matching": 18175, "extraction models": 8679, "performance consistently": 18616, "popular large": 19063, "resources code": 21918, "models introduce": 16314, "native speakers": 17052, "dataset comes": 5657, "linguistic analysis": 14190, "analysis provide": 1441, "provide detailed": 20418, "detailed analysis": 6291, "predictions demonstrate": 19370, "knowledge linguistic": 12555, "distinct languages": 6750, "performance current": 18618, "current supervised": 5363, "supervised ai": 24380, "availability annotated": 2357, "designed specific": 6234, "tasks difficult": 24903, "active learning": 704, "cases address": 3247, "limitations present": 14136, "annotations using": 1520, "models conduct": 16101, "user studies": 26643, "studies evaluate": 24041, "significantly accelerate": 23145, "annotation process": 1513, "finetuned llama": 9101, "arithmetic tasks": 1950, "tasks introduce": 24963, "llama model": 14241, "model significantly": 15916, "tasks finetuned": 24932, "synthetically generated": 24547, "particular zeroshot": 18435, "matches surpasses": 15128, "achieved fewshot": 598, "addition subtraction": 761, "models bloom": 16066, "bloom opt": 2924, "tackle challenging": 24682, "propose approach": 20276, "multidigit multiplication": 16894, "tasks leveraging": 24982, "thoroughly examine": 25474, "examine performance": 8107, "evaluation effectiveness": 7976, "using lora": 26805, "model dataset": 15725, "dataset python": 5710, "python script": 20612, "dataset generation": 5684, "navigation large": 17139, "llms struggle": 14718, "prompting approaches": 20135, "prompt propose": 20110, "broad applicability": 3009, "information approach": 11737, "stateoftheart prompting": 23800, "mechanism llm": 15212, "task success": 24830, "potential interactive": 19195, "seen widespread": 22669, "ability follow": 338, "follow user": 9274, "requiring training": 21767, "major challenges": 14967, "research development": 21803, "learning feedback": 13815, "low cost": 14862, "simulate human": 23249, "propose automatic": 20277, "evaluation validate": 8042, "human instructions": 10945, "realworld interactions": 21039, "methods ppo": 15473, "data demonstration": 5463, "ppo implementation": 19283, "tasks finetuning": 24933, "timeconsuming obtain": 25525, "introduces novel": 12266, "novel unsupervised": 17572, "improves llms": 11407, "models assess": 16041, "building insight": 3043, "dual roles": 7040, "student teacher": 24017, "student llm": 24014, "llm generates": 14281, "using reinforcement": 26849, "learning maximize": 13848, "applied various": 1707, "tasks reasoning": 25032, "reasoning problems": 21100, "generation machine": 9983, "accuracy reasoning": 531, "tasks furthermore": 24935, "learning recent": 13889, "developments large": 6422, "focus prompting": 9257, "perform specific": 18569, "tasks effective": 24909, "effective prompting": 7160, "prompting method": 20162, "task given": 24781, "past work": 18474, "choice examples": 3741, "large impact": 13337, "depending task": 6130, "methods selecting": 15488, "model work": 15968, "frame problem": 9389, "markov decision": 15085, "process design": 19843, "using proximal": 26842, "proximal policy": 20529, "policy optimization": 19028, "optimization ppo": 17916, "math problem": 15140, "baselines achieves": 2571, "use case": 26490, "enabling large": 7473, "text citations": 25286, "information seeking": 11787, "work aim": 27464, "enable llms": 7455, "factual correctness": 8765, "commercial search": 4084, "evaluation making": 7996, "set questions": 22888, "supporting evidence": 24421, "generate answers": 9757, "strong correlation": 23964, "correlation human": 5114, "experiments stateoftheart": 8412, "stateoftheart llms": 23781, "llms novel": 14613, "novel prompting": 17564, "prompting strategies": 20175, "considerable room": 4658, "dataset best": 5650, "analyses highlight": 1386, "directions including": 6630, "llms improving": 14549, "ability synthesize": 381, "synthesize information": 24528, "multiple sources": 16977, "inverse scaling": 12291, "model parameter": 15848, "parameter size": 18360, "models specific": 16699, "general performance": 9706, "performance remains": 18745, "al 2023": 1229, "2023 models": 113, "training tasks": 25846, "models showing": 16680, "positive scaling": 19122, "relevant benchmarks": 21490, "trained additional": 25714, "additional data": 764, "data overall": 5552, "bias large": 2809, "bias widely": 2820, "methods shown": 15489, "blackbox llms": 2904, "llms makes": 14598, "problems propose": 19812, "propose specific": 20335, "causal model": 3284, "propose causal": 20279, "whitebox blackbox": 27372, "blackbox settings": 2909, "neighboring entities": 17219, "intervention significantly": 12221, "score roberta": 22579, "challenging test": 3435, "adapting language": 736, "context window": 4822, "processing long": 19895, "long text": 14816, "text documents": 25307, "documents propose": 6855, "propose adapt": 20274, "adapt pretrained": 721, "compressing long": 4400, "model soft": 15926, "soft prompts": 23419, "long documents": 14811, "used language": 26582, "opt models": 17897, "task demonstrations": 24763, "increasing accuracy": 11559, "cost finally": 5133, "finally explore": 9010, "performance range": 18736, "tasks ability": 24854, "used areas": 26552, "underexplored study": 26198, "llms analysis": 14364, "influence ability": 11723, "ability evaluate": 336, "effective llms": 7152, "models slms": 16691, "tasks sentiment": 25051, "recognition relation": 21263, "extraction llms": 8677, "llms promising": 14645, "various settings": 27083, "struggle complex": 24000, "pivotal role": 18929, "task definitions": 24761, "definitions detailed": 5937, "stepbystep instructions": 23854, "llms generating": 14522, "generate reasonable": 9809, "study provides": 24143, "generation abilities": 9919, "abilities llms": 315, "llms offers": 14616, "offers novel": 17703, "novel perspective": 17562, "utilizing llms": 26922, "llms data": 14417, "knowledge editing": 12518, "multihop questions": 16906, "questions information": 20803, "information stored": 11790, "retraining scratch": 22145, "given rise": 10165, "updating model": 26463, "current evaluation": 5337, "evaluation paradigms": 8012, "extremely limited": 8700, "changes models": 3448, "models related": 16636, "multihop question": 16903, "edited models": 7096, "correctly answer": 5098, "questions answer": 20781, "questions propose": 20820, "model iteratively": 15810, "previous model": 19668, "vast amounts": 27107, "furthermore models": 9564, "models used": 16762, "tasked answering": 24846, "present despite": 19431, "mitigate effects": 15624, "prediction task": 19363, "given fact": 10150, "rapid change": 20939, "help models": 10664, "predictions require": 19374, "knowledgeintensive tasks": 12605, "code released": 3943, "task zeroshot": 24842, "evaluates models": 7929, "specific datasets": 23582, "approaches tackling": 1866, "task leverage": 24801, "pretraining model": 19635, "model synthetic": 15938, "qa pairs": 20618, "randomly sampling": 20884, "tackle limitations": 24685, "leverages power": 14017, "reducing likelihood": 21332, "questions zeroshot": 20836, "including large": 11462, "models gpt35": 16258, "gpt35 chatgpt": 10320, "chatgpt codes": 3533, "model checkpoints": 15711, "llms understand": 14740, "shown perform": 23044, "tasks llms": 24987, "sentiment emotion": 22804, "benchmark demonstrate": 2657, "demonstrate current": 5986, "potential task": 19228, "transfer different": 25868, "social language": 23386, "tasks improve": 24950, "analyze model": 1474, "llms associated": 14370, "predictability large": 19336, "llm capabilities": 14260, "different model": 6534, "evaluation representative": 8023, "tasks research": 25046, "formulate problem": 9344, "model planning": 15859, "world model": 27606, "remarkable reasoning": 21591, "generate intermediate": 9791, "intermediate reasoning": 12176, "tasks given": 24940, "given environment": 10147, "complex math": 4297, "fact llms": 8746, "llms lack": 14572, "model predict": 15863, "outcomes actions": 17989, "exploring alternative": 8548, "future states": 9597, "overcome limitations": 18120, "llm reasoning": 14299, "reasoning framework": 21074, "model reasoning": 15887, "algorithm based": 1236, "carlo tree": 3225, "tree search": 26017, "reasoning llm": 21087, "model taskspecific": 15942, "problems including": 19801, "math reasoning": 15142, "reasoning logical": 21090, "results tasks": 22122, "demonstrate superiority": 6035, "including cot": 11448, "leasttomost prompting": 13942, "potential simplify": 19223, "tasks tackle": 25076, "detection study": 6345, "increase faithfulness": 11547, "generation evaluate": 9949, "strategies using": 23913, "classifiers trained": 3819, "data realworld": 5578, "strategies improve": 23905, "task hand": 24782, "models encode": 16177, "knowledge static": 12586, "documents using": 6856, "low level": 14864, "finetuning does": 9127, "important tokens": 11314, "ability answer": 326, "questions document": 20794, "documents experiments": 6854, "experiments finetuning": 8386, "model used": 15959, "used enhance": 26565, "approach train": 1819, "train stateoftheart": 25707, "stateoftheart sentence": 23807, "studies typically": 24055, "unsupervised manner": 26439, "presents challenges": 19484, "issues present": 12391, "framework trains": 9463, "data specifically": 5603, "utilizing large": 26918, "data samples": 5588, "learning including": 13833, "annotations given": 1518, "unsupervised baselines": 26437, "comparable performance": 4149, "performance supervised": 18766, "models settings": 16677, "summarization electronic": 24344, "electronic health": 7274, "health records": 10632, "documents written": 6858, "medical practitioners": 15234, "summarization models": 24350, "network training": 17237, "techniques generate": 25156, "summary using": 24362, "using stateoftheart": 26867, "models bart": 16051, "target output": 24731, "improve language": 11358, "finetuning baseline": 9121, "finetuned t5": 9113, "achieves higher": 631, "f1 scores": 8709, "achieves highest": 632, "rouge score": 22383, "models previously": 16591, "study concludes": 24077, "produce coherent": 19924, "llms growing": 14538, "despite promising": 6275, "results llmbased": 22070, "fewshot methods": 8926, "prevailing methods": 19651, "methods include": 15457, "structural understanding": 23983, "ner task": 17222, "standard fewshot": 23720, "examples given": 8133, "entity type": 7717, "fewshot ner": 8927, "absolute improvement": 423, "setting new": 22905, "target domains": 24727, "average f1": 2396, "using available": 26713, "generative query": 10106, "query reformulation": 20711, "conversation history": 4976, "conversation context": 4974, "expensive retraining": 8318, "current query": 5356, "queries best": 20697, "ability produce": 373, "produce good": 19926, "produce better": 19923, "retrieval performance": 22155, "propose knowledge": 20300, "search datasets": 22610, "llms emerging": 14459, "weaker language": 27324, "proprietary models": 20378, "opensource model": 17860, "critically analyze": 5269, "analyze approach": 1466, "chatgpt using": 3674, "model sizes": 15923, "output quality": 18077, "following instructions": 9281, "targeted automatic": 24736, "automatic evaluations": 2294, "data performance": 5556, "overall conclude": 18104, "current methods": 5352, "opensource models": 17861, "models tackle": 16731, "challenge developing": 3347, "better base": 2772, "response using": 21947, "models linguistic": 16357, "similar linguistic": 23197, "support vector": 24414, "size limits": 23295, "findings possibility": 9050, "limited scope": 14166, "taken account": 24705, "formal theorem": 9322, "theorem proving": 25445, "language modelsllms": 13208, "particularly terms": 18447, "underexplored area": 26192, "efficacy llms": 7216, "llms introduce": 14568, "drawing insights": 7016, "subgoal learning": 24183, "learning robotics": 13900, "demonstration example": 6100, "simultaneously addressing": 23264, "learning methodologies": 13850, "stateoftheart method": 23784, "method code": 15334, "vector space": 27117, "models word": 16780, "similar meanings": 23198, "models words": 16781, "modern pretrained": 16807, "hold promise": 10844, "promise performing": 20044, "performing better": 18813, "mixed success": 15643, "media data": 15222, "examples investigate": 8136, "knowledge common": 12507, "common words": 4102, "word frequency": 27440, "performance despite": 18625, "short human": 22975, "llmgenerated texts": 14341, "social problems": 23397, "problems resulting": 19817, "methods train": 15495, "test data": 25239, "data zeroshot": 5629, "performance recent": 18743, "shown promising": 23050, "llm paper": 14291, "aims bridge": 1194, "model allows": 15682, "achieves similar": 642, "times fewer": 25532, "fewer queries": 8913, "37 higher": 169, "english large": 7597, "models dominant": 16156, "applications fail": 1663, "higher rate": 10742, "rate speakers": 20963, "work addresses": 27463, "using taskspecific": 26871, "broad adoption": 3008, "neural architecture": 17254, "strong modeling": 23968, "word sequence": 27450, "sequence training": 22828, "different aspect": 6494, "linear projection": 14181, "change models": 3443, "models behavior": 16055, "gpt2 small": 10275, "lexical similarity": 14040, "controllable text": 4940, "gender bias": 9682, "reasoning pretrained": 21098, "reasoning recent": 21103, "achieved using": 616, "models contain": 16106, "contain billions": 4741, "measured using": 15196, "using single": 26860, "datasets result": 5773, "understanding strengths": 26312, "ways improve": 27315, "evaluation set": 8031, "various key": 27050, "evaluation models": 8007, "arbitrarily large": 1893, "large training": 13598, "codes publicly": 3968, "tasks languages": 24973, "training generated": 25779, "makes models": 14999, "descriptive text": 6175, "gpt2 gpt35": 10254, "gpt4 demonstrated": 10341, "models general": 16233, "general public": 9707, "paper consider": 18205, "llms contribute": 14413, "language online": 13211, "online use": 17748, "gaussian mixture": 9671, "mixture models": 15647, "models demonstrate": 16126, "taken seriously": 24706, "human interactions": 10951, "systems increasingly": 24608, "content generated": 4775, "generated llms": 9862, "texts paper": 25409, "single sentence": 23278, "corpus annotated": 5062, "named entities": 17024, "entities sentiments": 7702, "entities related": 7700, "emotional states": 7381, "results achieved": 22009, "set evaluation": 22876, "evaluation zeroshot": 8044, "high zeroshot": 10723, "assessment process": 2073, "faculty members": 8776, "reveals detection": 22205, "detection software": 6344, "needed using": 17196, "academic misconduct": 441, "suggesting need": 24317, "need increased": 17181, "performance gpt4": 18665, "tools using": 25620, "comprehensive training": 4390, "training programs": 25823, "contributes understanding": 4920, "understanding relationship": 26309, "content academic": 4761, "goal paper": 10188, "building previous": 3048, "paper perform": 18263, "perform analysis": 18542, "llm dataset": 14272, "processes paper": 19880, "shows model": 23067, "build basic": 3034, "model serve": 15909, "promptbased methods": 20128, "gpt3 shown": 10308, "tasks applying": 24866, "gec tasks": 9677, "applications particularly": 1683, "significantly enhance": 23152, "enhance learning": 7618, "paper investigates": 18249, "investigates performance": 12325, "minimal edits": 15564, "demonstrate gpt3": 6000, "effectively perform": 7180, "outperforming existing": 18026, "existing supervised": 8281, "evidence present": 8072, "news using": 17392, "evidence scientific": 8073, "scientific articles": 22557, "challenging requires": 3427, "internet text": 12190, "text written": 25390, "indomain data": 11643, "data good": 5508, "models released": 16637, "domain transfer": 6911, "classification based": 3781, "way use": 27311, "models downstream": 16157, "using additional": 26704, "specialized domain": 23569, "domain large": 6899, "corpus paper": 5072, "fine tuning": 9068, "tuning addition": 26069, "domain specific": 6908, "experiments real": 8405, "data method": 5543, "tuning improves": 26077, "tuning domain": 26073, "simple linear": 23227, "linear layers": 14180, "relevant datasets": 21492, "political social": 19040, "search tools": 22624, "data search": 5593, "learn make": 13737, "information data": 11744, "data prior": 5563, "users face": 26663, "graph database": 10430, "database large": 5632, "novel ways": 17574, "ways users": 27321, "search research": 22619, "data reuse": 5587, "models knowledgeintensive": 16321, "promising performance": 20063, "deployment llms": 6148, "computational requirements": 4430, "building taskspecific": 3051, "taskspecific small": 25112, "finetuning labeled": 9141, "tasks limited": 24984, "limited capacity": 14149, "theoretical analysis": 25448, "method finetunes": 15360, "generate rationales": 9807, "knowledge retrieved": 12579, "propose neural": 20309, "rationale generation": 20972, "performance small": 18758, "flant5 models": 9223, "reasoning datasets": 21068, "method makes": 15377, "achieve superior": 593, "performance finetuned": 18647, "times larger": 25533, "larger parameters": 13623, "chatgpt brought": 3522, "generative outputs": 10084, "paper aim": 18185, "covering tasks": 5188, "summarization code": 24341, "mathematical problemsolving": 15148, "evaluate chatgpt": 7875, "tasks analyze": 24863, "weaknesses chatgpt": 27330, "tasks provide": 25026, "insights future": 11910, "report new": 21653, "new emergent": 17319, "emergent ability": 7357, "instructions chatgpt": 11997, "shows chatgpt": 23063, "capable performing": 3175, "performing wide": 18819, "tasks obtain": 25004, "performance benchmark": 18595, "solve challenging": 23456, "thorough assessment": 25468, "diverse nlp": 6807, "responsible ai": 21979, "limited availability": 14148, "studies regarding": 24052, "evaluations llms": 8050, "llms especially": 14467, "fields work": 8980, "work aims": 27466, "gap providing": 9648, "systematic evaluation": 24555, "fairness llms": 8796, "llms using": 14745, "study case": 24068, "focus assessing": 9251, "assessing chatgpts": 2062, "including education": 11452, "individual fairness": 11631, "unbiased prompts": 26169, "prompts work": 20243, "work contributes": 27477, "contributes deeper": 4917, "deeper understanding": 5913, "understanding llms": 26290, "bias mitigation": 2814, "intelligence systems": 12085, "capabilities addressing": 3103, "types information": 26133, "information models": 11765, "available pretraining": 2383, "uptodate information": 26470, "demand significant": 5965, "significant human": 23116, "structured format": 23991, "study conduct": 24078, "comprehensive examination": 4379, "llms requires": 14678, "informative text": 11807, "news articles": 17384, "llms existing": 14481, "finetuning approach": 9119, "information new": 11768, "new information": 17327, "based analysis": 2466, "propose effective": 20287, "relevant facts": 21495, "evaluate information": 7886, "articles published": 1971, "march 2023": 15064, "significantly increases": 23164, "factual consistency": 8764, "having minimal": 10615, "minimal impact": 15565, "impact performance": 11241, "instructions directly": 11999, "contextual embedding": 4838, "automatically derive": 2315, "subject object": 24190, "aann construction": 302, "ai higher": 1104, "education study": 7122, "significant variation": 23143, "teaching learning": 25129, "chatgpt assessments": 3511, "positively correlated": 19126, "public attitudes": 20551, "attitudes chatgpt": 2192, "chatgpt addition": 3503, "positively associated": 19125, "universities country": 26382, "based empirical": 2480, "modeling benchmarks": 15978, "benchmarks work": 2699, "models goal": 16248, "models study": 16711, "study scaling": 24152, "methods scaling": 15486, "large diffusion": 13327, "generates fluent": 9885, "strategic reasoning": 23892, "agents diverse": 1034, "llms ability": 14347, "ability comprehend": 331, "comprehend generate": 4357, "llms fewshot": 14498, "fewshot chainofthought": 8917, "ai agents": 1077, "agents approach": 1027, "systematically generated": 24567, "matrix games": 15156, "strategies derived": 23903, "hidden information": 10686, "information additionally": 11736, "demonstrate approach": 5979, "approach lead": 1779, "realistic scenarios": 21010, "extra training": 8653, "finetuning results": 9177, "highlight ability": 10757, "reasoning demonstrations": 21069, "success large": 24261, "llm representations": 14304, "performance closely": 18602, "human intuition": 10953, "embeddings recently": 7320, "recently shown": 21253, "regularization method": 21400, "method used": 15404, "used increase": 26580, "space training": 23536, "contrast previous": 4891, "performance majority": 18700, "majority tasks": 14971, "teaming language": 25132, "present significant": 19458, "risks malicious": 22299, "malicious users": 15020, "users exploit": 26659, "content generation": 4777, "usage llms": 26482, "llms recent": 14668, "detect machinegenerated": 6301, "test reliability": 25251, "existing detectors": 8255, "attack strategies": 2136, "llms leveraged": 14584, "performance tested": 18772, "text detection": 25305, "abstractive summarization": 432, "discovery task": 6668, "set unlabeled": 22895, "creation new": 5229, "new conversational": 17310, "agents recent": 1053, "competitive methods": 4252, "methods intent": 15459, "utterances based": 26927, "information contribute": 11743, "model starting": 15931, "learning procedure": 13881, "generate labels": 9794, "noisy labels": 17466, "pretrained encoder": 19528, "task labels": 24793, "benchmark using": 2678, "using labeled": 26779, "study question": 24145, "models help": 16266, "gpt4 outperforms": 10358, "outperforms llms": 18050, "dolly openassistant": 6879, "identify errors": 11136, "insights study": 11919, "study use": 24165, "llms specifically": 14715, "gpt4 tasks": 10364, "tasks identifying": 24948, "ask llm": 2008, "check correctness": 3712, "task llm": 24802, "neurips 2022": 17285, "pairs based": 18170, "generation creative": 9939, "complement knowledge": 4264, "domain recent": 6907, "rise large": 22283, "success models": 24269, "creative work": 5236, "leverage llms": 14000, "design problems": 6208, "compare baseline": 4161, "solutions evaluate": 23443, "design solutions": 6217, "higher average": 10731, "findings provide": 9052, "provide insight": 20438, "solutions generated": 23445, "generate higherquality": 9780, "increasingly popular": 11576, "systems analyze": 24578, "remarkable successes": 21596, "methods autoregressive": 15419, "autoregressive large": 2343, "models lead": 16337, "robust methods": 22348, "comprehensive understanding": 4391, "study explore": 24095, "models primarily": 16592, "using statistical": 26868, "statistical learning": 23831, "descriptions action": 6169, "unique challenge": 26364, "scaling work": 22505, "datasets language": 5759, "models researchers": 16647, "annotate large": 1499, "coding process": 3981, "research studies": 21867, "lms provide": 14774, "provide solution": 20464, "solution problem": 23439, "problem work": 19787, "able classify": 397, "classify text": 3822, "terms human": 25225, "human effort": 10922, "alternative methods": 1347, "methods demonstrate": 15427, "demonstrate possibilities": 6021, "use gpt3": 26513, "compare human": 4167, "human coders": 10911, "offers benefits": 17701, "text variety": 25389, "coding procedures": 3980, "evidence language": 8070, "models serve": 16676, "coding openended": 3979, "variety applications": 27004, "tasks traditional": 25089, "traditional natural": 25681, "tasks efficient": 24911, "mechanism transformer": 15215, "particular aspects": 18425, "used domains": 26563, "llms possess": 14632, "advanced language": 889, "abilities enable": 307, "expect llm": 8306, "critical llms": 5261, "bing chatbot": 2871, "factual accuracy": 8762, "evaluation ai": 7953, "investigates use": 12327, "use artificial": 26487, "clinical notes": 3842, "notes using": 17524, "llm based": 14257, "systems chatgpt": 24585, "evaluate accuracy": 7870, "accuracy relevance": 532, "answers generated": 1596, "framework designed": 9413, "leveraging diverse": 14023, "framework consists": 9411, "pairwise comparison": 18174, "candidates using": 3100, "highest correlation": 10750, "improved output": 11381, "capitalizing strengths": 3192, "largescale evaluation": 13633, "evaluation introduce": 7989, "introduce benchmark": 12238, "methods various": 15505, "various metrics": 27060, "substantial performance": 24221, "control tasks": 4937, "frequently employed": 9489, "process dynamics": 19845, "different chemical": 6499, "systems address": 24576, "developed novel": 6384, "learning capabilities": 13778, "capabilities inherent": 3118, "demonstrated using": 6079, "process data": 19841, "data obtained": 5550, "scenarios using": 22522, "extensive dataset": 8598, "dataset trained": 5721, "ml models": 15652, "models additionally": 16019, "reduce variance": 21321, "strategy perform": 23922, "work large": 27519, "corpus human": 5070, "llm responses": 14306, "published result": 20583, "weight averaging": 27351, "training llms": 25794, "simple idea": 23226, "training run": 25831, "cost training": 5139, "training inference": 25780, "parameters demonstrate": 18375, "compute costs": 4440, "models brought": 16069, "nlp software": 17433, "gpt series": 10237, "set new": 22881, "applications models": 1679, "massive corpora": 15108, "heterogeneous data": 10681, "data web": 5625, "learn general": 13733, "language patterns": 13215, "models expensive": 16199, "expensive train": 8322, "train deploy": 25694, "trend large": 26022, "large generalpurpose": 13333, "context size": 4818, "batch size": 2593, "previous sota": 19673, "models consistently": 16104, "consistently outperform": 4687, "outperform baselines": 18010, "results models": 22076, "demonstrate pretraining": 6026, "data yield": 5628, "chatgpt generative": 3582, "models broad": 16068, "pretraining corpus": 19619, "corpus additional": 5061, "generating harmful": 9899, "harmful content": 10590, "content finetuning": 4773, "prompts model": 20223, "behavior using": 2625, "query chatgpt": 20701, "chatgpt variety": 3675, "different kinds": 6520, "dataset used": 5722, "classifier achieves": 3812, "second use": 22635, "predict chatgpt": 19328, "given question": 10163, "chatgpts response": 3700, "datasets code": 5731, "models weights": 16777, "crucial comprehend": 5293, "parameter counts": 18355, "high computation": 10696, "computation memory": 4418, "memory bottleneck": 15259, "increasing model": 11563, "paper comprehensively": 18201, "multiple large": 16964, "pretrained vision": 19612, "emerging phenomenon": 7368, "pretraining bert": 19616, "relatively fewer": 21462, "lastly investigate": 13657, "codes available": 3966, "potent tool": 19156, "biomedical tasks": 2888, "learning current": 13792, "semantic representation": 22730, "learning results": 13897, "results better": 22021, "practical application": 19288, "llms address": 14358, "memory size": 15276, "model handle": 15794, "million parameters": 15547, "parameters trained": 18387, "achieves new": 636, "evaluated downstream": 7920, "type annotation": 26122, "30 absolute": 150, "average f1score": 2397, "work investigated": 27516, "biomedical domain": 2883, "aims evaluate": 1201, "various benchmark": 27031, "extraction document": 8673, "classification question": 3802, "answering summarization": 1585, "evaluation biomedical": 7959, "smaller training": 23361, "stateoftheart finetuned": 23767, "large text": 13597, "domain findings": 6893, "potential valuable": 19241, "chatgpt lack": 3596, "systematic comparisons": 24553, "text methods": 25350, "methods used": 15501, "llms fall": 14496, "work apply": 27468, "methods evaluate": 15434, "generated human": 9854, "chatgpt perform": 3616, "supervised classification": 24381, "analysis using": 1457, "results illustrate": 22058, "contribute model": 4910, "performance use": 18780, "approach results": 1809, "results analysis": 22010, "nlp benchmark": 17413, "benchmark analysis": 2645, "analysis llms": 1426, "shift settings": 22967, "lack adequate": 12648, "accurate evaluation": 541, "issues propose": 12392, "distribution shifts": 6772, "benchmark suite": 2676, "20 datasets": 96, "datasets based": 5729, "experiments pretrained": 8399, "models analysis": 16029, "vanilla finetuning": 26976, "examine relationship": 8109, "performance identify": 18673, "offer significant": 17690, "improvement compared": 11390, "compared vanilla": 4213, "llms various": 14748, "available finetuning": 2370, "finetuning domainspecific": 9128, "domainspecific models": 6952, "llms incontext": 14552, "finetuned small": 9110, "llms face": 14491, "challenges effectively": 3373, "tasks code": 24881, "effective strategy": 7163, "enabling detection": 7469, "llmgenerated text": 14340, "users needs": 26672, "study robustness": 24151, "human machine": 10968, "paraphrasing attacks": 18400, "original text": 17973, "false positive": 8820, "positive rate": 19121, "range new": 20904, "large document": 13328, "text classifiers": 25291, "success deep": 24256, "enhance effectiveness": 7614, "effectiveness existing": 7194, "pairs costly": 18172, "current model": 5353, "model accuracy": 15671, "annotations existing": 1517, "input texts": 11884, "additional human": 765, "new alternative": 17295, "auxiliary data": 2353, "task auxiliary": 24747, "learn additional": 13731, "different ways": 6566, "given existing": 10149, "benchmarks demonstrate": 2688, "effective improving": 7147, "foundation language": 9362, "utilization large": 26900, "achieved great": 599, "success general": 24259, "general domains": 9695, "processing paper": 19911, "paper bring": 18199, "llms realm": 14658, "applications field": 1664, "llm research": 14305, "tuning dataset": 26072, "llms context": 14409, "work experiment": 27493, "domain specifically": 6909, "data finetune": 5492, "finetune model": 9083, "domainspecific data": 6948, "abilities using": 320, "using tools": 26873, "model explanations": 15764, "explanations improve": 8459, "content social": 4789, "european union": 7861, "proven highly": 20402, "automatically detecting": 2316, "aims enable": 1199, "current research": 5357, "research field": 21815, "problem machine": 19775, "developing models": 6394, "achieve high": 570, "performance detecting": 18626, "tasks rely": 25040, "rely human": 21523, "reliability models": 21505, "annotation accuracy": 1509, "explanations experiments": 8455, "experiments approach": 8368, "approach consistently": 1742, "annotation task": 1515, "streamline process": 23927, "process proposed": 19864, "content detection": 4768, "detection detecting": 6327, "llms significant": 14701, "processing artificial": 19888, "intelligence llms": 12079, "chatgpt extensively": 3569, "generation text": 10032, "text synthesis": 25383, "content particularly": 4785, "largely unexplored": 13612, "detection malicious": 6335, "leverage power": 14001, "power llms": 19259, "analyze classify": 1467, "chatgpt detect": 3549, "approach involves": 1777, "involves leveraging": 12350, "gather information": 9664, "generate prompts": 9806, "prompts based": 20186, "data approach": 5425, "approach enables": 1758, "enables detect": 7461, "detect various": 6305, "performance proposed": 18733, "using dataset": 26740, "demonstrated promising": 6057, "highlight potential": 10766, "potential llms": 19205, "llms efficiently": 14455, "efficiently identifying": 7255, "enhancing cybersecurity": 7641, "prompts recent": 20233, "advances large": 944, "highly sophisticated": 10804, "conversation agents": 4973, "hallucinations model": 10551, "model generates": 15782, "various sectors": 27082, "accurate information": 542, "information use": 11798, "use context": 26499, "using generated": 26758, "observed significant": 17659, "significant reduction": 23135, "various industries": 27049, "tasks considering": 24889, "llms showcased": 14688, "promising capabilities": 20054, "semantic understanding": 22740, "llms autonomously": 14377, "transforms raw": 25969, "data visualization": 5624, "results best": 22020, "match users": 15124, "tools data": 25604, "data management": 5541, "step step": 23851, "users request": 26678, "interface design": 12168, "stock fund": 23873, "ai assistant": 1084, "chatgpt vs": 3677, "transfer largescale": 25870, "chatgpt garnered": 3575, "media attention": 15220, "remarkable capacity": 21571, "generating coherent": 9892, "prompts paper": 20227, "inspection chatgpts": 11924, "ability adapt": 324, "different target": 6559, "writing styles": 27635, "additionally evaluate": 776, "faithfulness generated": 8800, "text compare": 25295, "texts findings": 25402, "chatgpt generated": 3580, "factual errors": 8766, "suit specific": 24327, "models support": 16720, "rapid growth": 20945, "need tools": 17188, "evaluate credibility": 7879, "online information": 17740, "strategy involves": 23921, "effective approach": 7141, "approach achieving": 1729, "achieving goal": 663, "models openai": 16544, "bing search": 2872, "tool able": 25580, "generate useful": 9820, "help people": 10665, "better evaluate": 2777, "help reduce": 10666, "information code": 11740, "generation challenging": 9932, "generation typical": 10035, "remains challenge": 21537, "challenge paper": 3359, "use diffusion": 26504, "model generating": 15783, "tackle challenges": 24681, "model built": 15699, "sentence information": 22784, "approach enhances": 1760, "feature diffusion": 8857, "generation constraint": 9938, "denoising process": 6112, "results datasets": 22031, "demonstrate model": 6018, "models automatic": 16047, "performance human": 18671, "chatgpt prompt": 3627, "llms proven": 14652, "proven useful": 20404, "learning training": 13921, "llms potentially": 14634, "propose mechanism": 20304, "uses prompt": 26698, "responses evaluate": 21952, "opensource software": 17862, "responses work": 21975, "increasing concern": 11561, "concern ability": 4487, "detect aigenerated": 6300, "output distribution": 18069, "original model": 17968, "model particular": 15851, "user observe": 26635, "query model": 20709, "unprecedented performance": 26415, "human cognition": 10912, "ensure fair": 7671, "llms continuously": 14412, "evaluate capacity": 7874, "evolving knowledge": 8087, "evaluation criteria": 7969, "automatically evaluating": 2318, "evaluating knowledge": 7942, "opensource commercial": 17850, "commercial llms": 4083, "llms obtain": 14614, "intriguing findings": 12231, "provide references": 20458, "complex multimodal": 4302, "interactions using": 12144, "models multimodal": 16530, "flexible efficient": 9231, "framework uses": 9465, "mobile applications": 15661, "having different": 10613, "different modalities": 6533, "developers using": 6389, "seamlessly integrate": 22607, "multimodal interaction": 16934, "workflow building": 27578, "understanding natural": 26292, "language generating": 12708, "leverages large": 14012, "models evaluated": 16187, "framework using": 9466, "evaluated accuracy": 7911, "language parser": 13214, "participants results": 18419, "multimodal applications": 16928, "applications highly": 1667, "highly accurate": 10791, "cognitive load": 3987, "task completion": 24753, "limited resources": 14164, "resources large": 21920, "llms revolutionized": 14682, "revolutionized natural": 22242, "gpu resources": 10396, "approaches focused": 1842, "parameterefficient finetuning": 18364, "tuning parameters": 26087, "parameters llms": 18381, "llms limited": 14592, "computation parameter": 4419, "reduce memory": 21319, "memory usage": 15278, "model single": 15918, "considerations regarding": 4663, "chatgpt education": 3555, "education artificial": 7110, "scientific domains": 22560, "intelligent tutoring": 12098, "tutoring systems": 26104, "chatgpt artificial": 3509, "chatbot developed": 3478, "november 2022": 17578, "gained attention": 9610, "comprehensive systematic": 4389, "user input": 26627, "input natural": 11873, "challenges opportunities": 3388, "issues concerns": 12381, "concerns raised": 4499, "use various": 26548, "various scientific": 27081, "scientific disciplines": 22559, "implications arising": 11270, "identify potential": 11142, "education data": 7113, "shown highly": 23026, "highly effective": 10796, "instances dataset": 11947, "size model": 23296, "model complexity": 15716, "constraints limit": 4712, "limit ability": 14110, "models address": 16020, "reduces computational": 21325, "values computed": 26973, "entire training": 7693, "transfer method": 25877, "method leverages": 15375, "value information": 26967, "information extracted": 11752, "models benchmark": 16057, "selection methods": 22686, "finetuning dataset": 9125, "nonenglish languages": 17476, "emergence foundation": 7340, "paper utilize": 18327, "models construct": 16105, "predefined relations": 19325, "preliminary analysis": 19399, "knowledge distilled": 12515, "achieves lower": 633, "design simple": 6213, "making largest": 15011, "knowledge models": 12559, "models scientific": 16669, "firstly propose": 9201, "regression model": 21394, "test model": 25247, "model potential": 15861, "ai machine": 1117, "context surrounding": 4819, "train various": 25710, "task models": 24804, "using context": 26734, "achieving 90": 656, "large finetuned": 13329, "t5 large": 24660, "perform best": 18543, "considering various": 4671, "formal specifications": 9321, "shortcomings current": 22980, "ability generalize": 340, "instead humans": 11954, "better generalization": 2780, "complex data": 4286, "relevant objects": 21500, "objects attributes": 17638, "able provide": 413, "test propose": 25250, "propose task": 20338, "attention impressive": 2165, "impressive natural": 11335, "utmost importance": 26924, "latest llms": 13674, "aims address": 1191, "evaluation llms": 7995, "toxicity bias": 25646, "models employing": 16174, "social norms": 23395, "models measuring": 16518, "toxicity values": 25649, "models active": 16014, "research aims": 21778, "aims enhance": 1200, "development language": 6404, "models explore": 16203, "puzzle game": 20602, "dataset comprising": 5658, "comprising 15": 4411, "evaluate large": 7887, "performance chainofthought": 18599, "chainofthought reasoning": 3340, "gpt35 achieves": 10318, "generated rules": 9872, "generation remains": 10015, "biases paper": 2833, "exhibit biases": 8211, "reasoning similar": 21105, "science human": 22549, "analysis introduce": 1418, "introduce dataset": 12241, "originally designed": 17978, "assess human": 2048, "english japanese": 7595, "types biases": 26128, "observed human": 17654, "network approach": 17229, "text embeddings": 25310, "high fidelity": 10704, "languagerelated tasks": 13294, "tasks leading": 24978, "embedding model": 7310, "model openais": 15840, "source available": 23507, "simple neural": 23229, "model achieved": 15673, "heldout test": 10648, "dataset manually": 5697, "assessed quality": 2056, "vector search": 27116, "highly relevant": 10802, "training neural": 25807, "dataset paired": 5703, "achieve greater": 569, "performance ability": 18583, "ability convert": 333, "models protecting": 16607, "prompt gpt3": 20096, "stepbystep thinking": 23855, "generation artificial": 9926, "progress natural": 20005, "modeling human": 15983, "instructions addition": 11995, "addition explore": 758, "explore role": 8526, "answering external": 1572, "tasks suffer": 25071, "overcome challenges": 18117, "enhance llms": 7619, "llms questionanswering": 14656, "evaluation methods": 8002, "questions answered": 20782, "internal knowledge": 12180, "external information": 8639, "issue introduce": 12374, "process dataset": 19842, "dataset curation": 5667, "specialized tools": 23573, "benchmark data": 2653, "data llms": 5537, "llms pretraining": 14639, "data enabling": 5474, "conducted indepth": 4580, "evaluating llms": 7946, "llms suggest": 14724, "new directions": 17316, "scientific community": 22558, "gptbased models": 10376, "received significant": 21128, "concerns paper": 4495, "focus modeling": 9256, "tasks time": 25088, "limitations llms": 14133, "providing guidance": 20513, "retrieving supporting": 22180, "evidence llms": 8071, "llms generated": 14521, "generated answers": 9836, "exhibit nearhuman": 8219, "nearhuman levels": 17148, "levels performance": 13989, "including opendomain": 11471, "answering unfortunately": 1590, "convincingly hallucinate": 5021, "answers responses": 1600, "questions verified": 20831, "verified external": 27141, "external sources": 8646, "sources accepted": 23525, "accepted face": 459, "face value": 8714, "value paper": 26968, "report simple": 21656, "verify generated": 27150, "answers corpus": 1595, "presenting question": 19478, "question llm": 20754, "llm receiving": 14300, "receiving generated": 21132, "generated answer": 9823, "answer query": 1546, "query corpus": 20702, "corpus combination": 5063, "combination question": 4044, "question generated": 20746, "answer present": 1538, "llm combination": 14267, "answer retrieved": 1556, "retrieved answer": 22169, "answer prompting": 1542, "prompting indicate": 20146, "indicate generated": 11607, "answer supported": 1561, "supported retrieved": 24418, "questions passages": 20813, "passages ms": 18459, "marco v1": 15066, "v1 test": 26929, "test collection": 25238, "retrieval approaches": 22147, "based llm": 2509, "questions llm": 20808, "llm capable": 14261, "capable verifying": 3177, "supporting material": 24422, "material provided": 15134, "employing large": 7436, "computer scientists": 4449, "models largescale": 16336, "way implement": 27307, "paper examine": 18219, "development research": 6416, "research achieve": 21775, "experiments chatgpt": 8372, "investigate llms": 12303, "feedback results": 8897, "capable solving": 3176, "potential implications": 19191, "implications llms": 11274, "llms research": 14679, "context fewshot": 4801, "learning currently": 13793, "final layer": 8998, "outperforms standard": 18058, "datasets compare": 5733, "unlike previous": 26397, "effect size": 7135, "previously proposed": 19687, "analysis demonstrate": 1405, "model extensive": 15767, "benchmarks including": 2693, "learning dataset": 13794, "models biological": 16065, "risks large": 22296, "research llms": 21834, "llms particular": 14624, "expand capabilities": 8292, "capabilities sophisticated": 3139, "combination llms": 4043, "agents make": 1044, "broadly accessible": 3019, "capabilities new": 3136, "models risks": 16658, "mitigating risks": 15635, "models adapt": 16015, "information forms": 11757, "easier use": 7076, "complex diverse": 4287, "llms finding": 14503, "results gpt35": 22053, "amazon mechanical": 1355, "demonstrating promising": 6097, "application llms": 1647, "public use": 20564, "integrating large": 12043, "building information": 3042, "potential generative": 19186, "models specifically": 16701, "openais generative": 17796, "design assistant": 6180, "format generative": 9331, "study involving": 24120, "stateoftheart language": 23772, "adversarial perturbations": 975, "tabular data": 24677, "qa models": 20617, "replacing key": 21633, "table columns": 24671, "systematically study": 24569, "models propose": 16602, "benchmark called": 2647, "header table": 10622, "table content": 24672, "indicate stateoftheart": 11614, "generate adversarial": 9755, "adversarial examples": 972, "improves robustness": 11414, "scientific machine": 22563, "objective integrate": 17625, "industrial applications": 11666, "various stages": 27087, "specifically present": 23628, "handle diverse": 10568, "mechanics design": 15207, "design optimization": 6204, "computing tasks": 4465, "tasks involved": 24967, "using research": 26851, "research assistant": 21785, "assistant tool": 2091, "educational tool": 7128, "fluid mechanics": 9247, "materials science": 15136, "systems biology": 24583, "models search": 16672, "relatively low": 21463, "fields natural": 8977, "exhibit exceptional": 8215, "proposing novel": 20376, "causal structure": 3286, "llm query": 14298, "causal mechanisms": 3283, "set prompts": 22886, "prompts designed": 20195, "influence llm": 11724, "demonstrate significant": 6032, "data identifying": 5514, "critical challenges": 5254, "issues potential": 12390, "approaches address": 1829, "pioneering study": 18922, "comparative performance": 4156, "performance evaluation": 18641, "chatgpt 35": 3495, "bing ai": 2869, "study aimed": 24060, "prominent large": 20038, "llms openais": 14620, "presented llms": 19473, "effectiveness llms": 7200, "based accuracy": 2465, "facts provided": 8760, "moderate proficiency": 16790, "proficiency models": 19964, "average score": 2401, "importance human": 11291, "advancements ai": 913, "ai capabilities": 1089, "capabilities finally": 3112, "data produced": 5567, "chatgpt text": 3669, "text annotation": 25284, "task involves": 24790, "involves identifying": 12349, "online platforms": 17742, "customer feedback": 5380, "create classifier": 5204, "overcome challenge": 18116, "language chatgpt": 12689, "chatgpt new": 3610, "emerged popular": 7334, "questions various": 20829, "explores use": 8544, "chatgpt tool": 3671, "data labeling": 5529, "tasks evaluated": 24917, "unsupervised methods": 26441, "overall accuracy": 18103, "increase accuracy": 11544, "tweets dataset": 26108, "dataset findings": 5680, "surpassing existing": 24448, "approaches significant": 1862, "significant margin": 23124, "evidence suggests": 8075, "evaluate existing": 7883, "provide empirical": 20422, "methods fail": 15440, "fail generalize": 8780, "argue llms": 1934, "llms capture": 14390, "complex language": 4295, "parameters prohibitively": 18386, "work proposes": 27544, "proposes approach": 20370, "token embedding": 25549, "matrix product": 15158, "results gpt2": 22052, "performance original": 18722, "work researchers": 27551, "integrate ai": 12036, "ai human": 1106, "recent introduction": 21182, "text response": 25373, "language prompt": 13247, "new opportunities": 17341, "generating prompts": 9910, "prompts llms": 20222, "prompts generated": 20204, "prompts demonstrate": 20194, "demonstrate framework": 5999, "text input": 25345, "perform like": 18561, "types feedback": 26132, "form feedback": 9312, "conclude discussion": 4508, "help developers": 10656, "paper delves": 18208, "explicit reasoning": 8470, "additional context": 763, "like search": 14099, "analysis characterize": 1399, "recommendation domain": 21274, "verify correctness": 27148, "network generate": 17232, "diffusion large": 6594, "empirical evidence": 7402, "release new": 21475, "augmenting existing": 2236, "existing training": 8285, "training pipelines": 25818, "results majority": 22072, "generated ai": 9822, "different llms": 6530, "solid foundation": 23436, "foundation ai": 9359, "property ip": 20268, "ethical concerns": 7848, "concerns position": 4496, "mitigate risks": 15629, "systems identify": 24606, "component llms": 4339, "llms enhance": 14466, "mechanism llms": 15213, "llms account": 14350, "potential pitfalls": 19213, "guide future": 10522, "future explorations": 9587, "intelligence research": 12084, "llms models": 14606, "models range": 16617, "range applications": 20888, "applications domains": 1660, "domains like": 6929, "like medicine": 14093, "medicine finance": 15236, "managing complex": 15029, "using hybrid": 26773, "role llms": 22372, "empirical standpoint": 7414, "understood llms": 26321, "improve effectiveness": 11354, "present vision": 19467, "various stakeholders": 27088, "introduction llms": 12274, "llms play": 14629, "augment existing": 2217, "design patterns": 6206, "softmax regression": 23421, "generation leading": 9977, "leading various": 13715, "consider incontext": 4650, "solve certain": 23454, "shares similarities": 22950, "extensively investigated": 8626, "langle expax": 12678, "expax bf": 8301, "1n rangle1": 93, "rangle1 expax": 20921, "approach expands": 1762, "improve large": 11359, "quality responses": 20663, "modern large": 16797, "llms hard": 14539, "evaluate compare": 7878, "studies suggest": 24054, "openended question": 17832, "ranking score": 20928, "method multiple": 15379, "specifically propose": 23630, "takes account": 24708, "prompt llms": 20103, "llms discuss": 14445, "experiments benchmark": 8370, "approaches achieve": 1828, "achieve higher": 572, "higher accuracy": 10730, "align better": 1258, "space explore": 23533, "explore evaluating": 8506, "models hard": 16263, "llms continue": 14410, "continue advance": 4865, "increasingly challenging": 11571, "challenging human": 3417, "considered gold": 4668, "generation recent": 10012, "humans llms": 11072, "remains uncertain": 21552, "study investigates": 24116, "llms comparing": 14403, "different models": 6536, "bias evaluation": 2807, "grammatical errors": 10421, "errors address": 7790, "text multiple": 25356, "evaluation aspects": 7955, "significantly enhances": 23153, "enhances quality": 7633, "terms factual": 25223, "augmented reality": 2233, "chatgpt automated": 3513, "ai augmented": 1086, "reality ar": 21018, "substantial progress": 24223, "diverse fields": 6800, "involve complex": 12344, "sequences challenging": 22831, "physical world": 18903, "generating humanlike": 9903, "study introduces": 24112, "model optimize": 15841, "performance offering": 18720, "virtual environment": 27205, "unity game": 26374, "game engine": 9627, "facilitating seamless": 8741, "answer research": 1554, "research questions": 21858, "time using": 25518, "using proposed": 26840, "data suggests": 5607, "ai teaching": 1140, "like gpt4": 14086, "gpt4 exhibit": 10345, "tasks basic": 24871, "trained extensive": 25719, "explicitly encoded": 8472, "arithmetic operations": 1947, "data effective": 5471, "phase transitions": 18884, "data scale": 5589, "building prior": 3049, "work train": 27569, "chainofthought style": 3341, "data includes": 5520, "pretraining approach": 19615, "improves accuracy": 11402, "accuracy sample": 534, "sample complexity": 22438, "data training": 5617, "examine effects": 8106, "scale additionally": 22483, "work highlights": 27504, "nextword prediction": 17398, "evaluating effectiveness": 7938, "effectiveness large": 7197, "textual descriptions": 25428, "research focuses": 21820, "assessing ability": 2060, "utilize llms": 26907, "llms including": 14550, "gpt2 bert": 10245, "evaluate effectiveness": 7881, "embeddings preserve": 7319, "73 accuracy": 247, "estimating numeric": 7831, "support various": 24413, "using foundation": 26755, "models assessing": 16042, "assessing efficacy": 2064, "models generating": 16241, "teacher responses": 25123, "use nlp": 26531, "generation teacher": 10029, "educational dialogues": 7125, "generative abilities": 10047, "present extensive": 19436, "including gpt4": 11459, "learning finetuned": 13817, "gpt2 finetuned": 10249, "flant5 model": 9222, "learning experimental": 13810, "using bertscore": 26719, "bertscore dialogrpt": 2742, "characteristics including": 3457, "pose significant": 19090, "significant challenges": 23103, "models finally": 16217, "metric relies": 15512, "distribution models": 6770, "biomedical text": 2889, "requires large": 21750, "learning offers": 13867, "indomain pretraining": 11644, "summarization task": 24354, "task identify": 24784, "finetuning context": 9123, "task leading": 24799, "approach works": 1825, "model domainspecific": 15744, "combining open": 4069, "answering paper": 1581, "demonstrate gpt35": 6001, "text introduce": 25347, "performance evaluated": 18640, "questions covering": 20790, "covering 20": 5185, "relevant articles": 21489, "annotators results": 1523, "united states": 26371, "accuracy time": 535, "public opinion": 20560, "engineering methodology": 7576, "responses chatgpt": 21950, "person described": 18843, "data human": 5513, "chatgpt effective": 3556, "supreme court": 24430, "differences chatgpt": 6486, "chatgpt tends": 3668, "current generation": 5340, "directions llm": 6631, "development applications": 6400, "mathematics physics": 15152, "architecture explore": 1903, "llms work": 14752, "trained predict": 25733, "intelligence assessing": 12070, "systematic reviews": 24560, "field systematic": 8970, "advent generative": 964, "disrupt field": 6726, "assess consistency": 2044, "requires careful": 21744, "integrating chatgpt": 12041, "knowledge propose": 12571, "method extract": 15358, "patent documents": 18481, "form knowledge": 9314, "set predefined": 22884, "method train": 15402, "entities relationships": 7701, "identify specific": 11143, "construct dataset": 4714, "approaches apply": 1830, "method extracting": 15359, "generating efficient": 9895, "efficient training": 7246, "carefully crafted": 3217, "main idea": 14953, "create data": 5206, "approach generates": 1767, "leveraging llms": 14031, "new sentences": 17351, "latent representation": 13665, "results text": 22123, "number training": 17599, "examples analysis": 8123, "chatgpts potential": 3698, "requirements elicitation": 21740, "processes natural": 19878, "tools techniques": 25619, "techniques resources": 25167, "increase quality": 11550, "little research": 14232, "generative aibased": 10058, "llm like": 14286, "tasks explore": 24926, "chatgpt assist": 3512, "academia industry": 437, "comparing quality": 4223, "highly abstract": 10790, "based results": 2534, "issues related": 12393, "llms future": 14508, "research focus": 21818, "leverage emergent": 13996, "natural languagebased": 17120, "llms enabled": 14463, "impressive zeroshot": 11346, "highly challenging": 10793, "llms zeroshot": 14755, "score prediction": 22576, "extensively studied": 8627, "work examines": 27492, "terms number": 25226, "simple general": 23224, "general effective": 9696, "opensource llms": 17859, "llms flant5": 14505, "performance competitive": 18611, "competitive stateoftheart": 4254, "demonstrate llms": 6012, "methods improve": 15456, "exploratory data": 8489, "analysis ability": 1392, "data exploration": 5485, "single document": 23270, "users specific": 26680, "users express": 26661, "specific data": 23581, "data items": 5528, "automatic data": 2291, "effective natural": 7157, "language documentation": 12700, "computation large": 4417, "revolutionized field": 22238, "remarkable results": 21593, "various languagerelated": 27055, "tasks machine": 24989, "translation sentiment": 25994, "answering text": 1588, "classification language": 3787, "capturing complex": 3204, "complex linguistic": 4296, "linguistic patterns": 14198, "context generating": 4802, "plays crucial": 18979, "architecture large": 1904, "model capture": 15705, "information language": 11760, "making attention": 15005, "quantum computing": 20692, "sparse attention": 23547, "efficiently achieve": 7251, "method attention": 15328, "training algorithm": 25746, "llms additionally": 14357, "additionally present": 779, "time complexity": 25502, "questions using": 20828, "student learning": 24013, "methods evaluating": 15435, "questions focus": 20796, "readability metrics": 20991, "study compared": 24075, "rulebased method": 22398, "based method": 2511, "questions different": 20792, "subject areas": 24187, "method correctly": 15338, "identified human": 11130, "human annotators": 10903, "effectiveness methods": 7203, "methods identifying": 15455, "identifying common": 11147, "accurately efficiently": 549, "multiple domains": 16961, "existing metrics": 8270, "using automated": 26711, "automated methods": 2281, "processing managing": 19896, "vision large": 27222, "demonstrated extraordinary": 6046, "extraordinary performance": 8692, "data effectiveness": 5472, "framework integrating": 9435, "potential practical": 19214, "practical use": 19298, "comprehensive overview": 4384, "overview challenges": 18143, "emerging field": 7363, "roadmap future": 22321, "future exploration": 9585, "exploration development": 8481, "evaluating text": 7951, "models considerable": 16103, "research efforts": 21811, "efforts devoted": 7263, "impacting overall": 11249, "completing tasks": 4279, "llms primarily": 14642, "primarily focused": 19695, "llms emphasizing": 14460, "emphasizing need": 7393, "balanced approach": 2435, "prompt dataset": 20085, "instruct model": 11963, "model complete": 15715, "annotation framework": 1510, "present systematic": 19465, "llms regarding": 14673, "word replacements": 27446, "instructions target": 12007, "instructions instruction": 12002, "instructions code": 11998, "transformer large": 25919, "foundation architecture": 9360, "models simultaneously": 16688, "achieving training": 673, "performance theoretically": 18774, "attention propose": 2182, "mechanism sequence": 15214, "memory sacrificing": 15273, "sacrificing performance": 22410, "results language": 22065, "scaling results": 22504, "harnessing power": 10605, "based image": 2495, "settings study": 22925, "investigates potential": 12326, "impact artificial": 11228, "using advanced": 26705, "advanced ai": 883, "model employs": 15752, "generative adversarial": 10048, "adversarial networks": 973, "networks gans": 17246, "visual content": 27238, "datasets include": 5757, "broad spectrum": 3014, "quality accuracy": 20636, "established metrics": 7821, "metrics including": 15527, "signaltonoise ratio": 23084, "significant role": 23136, "model enhancing": 15754, "informed decisionmaking": 11810, "works deeply": 27590, "investigate role": 12310, "role scaling": 22373, "scaling model": 22503, "data size": 5598, "work natural": 27525, "llms investigate": 14569, "learning setting": 13907, "game nethack": 9628, "agents respect": 1057, "respect model": 21929, "size number": 23297, "outperform prior": 18016, "work demonstrates": 27480, "scaling behavior": 22501, "learning challenging": 13782, "current approaches": 5330, "capable agents": 3171, "nethack game": 17226, "hard current": 10581, "current ai": 5329, "systems understanding": 24645, "opendomain chatbots": 17815, "toxic harmful": 25643, "multiturn conversation": 17004, "research question": 21857, "elicit toxic": 7283, "existing tools": 8284, "crafted prompt": 5196, "dataset extensive": 5677, "sequences finetuning": 22832, "finetuning stage": 9185, "suggest research": 24311, "research needed": 21839, "needed address": 17193, "dynamic interactive": 7055, "environment proposed": 7726, "researchers develop": 21883, "detecting mitigating": 6317, "improve robustness": 11373, "end users": 7533, "enhancing conversational": 7640, "learning chatbots": 13783, "asr error": 2033, "learning domain": 13802, "language skills": 13257, "conversation flow": 4975, "propose use": 20342, "use semantic": 26536, "metrics evaluate": 15522, "evaluate impact": 7885, "correction models": 5093, "models quality": 16615, "quality conversation": 20643, "lead higher": 13703, "conversation quality": 4977, "standard error": 23717, "indomain training": 11647, "models accomplish": 16003, "processes achieve": 19875, "various sources": 27085, "sources including": 23529, "unstructured textual": 26434, "extract information": 8655, "information textual": 11795, "using natural": 26814, "processing techniques": 19918, "llms remarkable": 14675, "llms accomplish": 14349, "specific llm": 23598, "process tasks": 19867, "tasks textual": 25087, "better existing": 2778, "implications future": 11271, "practical usage": 19297, "humanlike behavior": 11036, "tasks previously": 25017, "previously thought": 19688, "human abilities": 10893, "explore llms": 8515, "llms replicate": 14676, "modern llms": 16801, "llms simulate": 14707, "abilities human": 309, "specific skills": 23604, "reflect human": 21361, "potential training": 19231, "platform investigate": 18952, "strengths llms": 23937, "tasks leaving": 24981, "learning study": 13913, "study presents": 24136, "presents thorough": 19500, "various generative": 27047, "analysis specifically": 1451, "employed prompt": 7433, "advanced gpt35": 887, "gpt35 turbo": 10327, "potential limitations": 19204, "limitations additionally": 14119, "dataset results": 5712, "paper sheds": 18315, "sheds light": 22961, "effectively handle": 7172, "promising potential": 20065, "potential gpt": 19187, "models sentiment": 16674, "impact large": 11234, "online social": 17747, "llms emerge": 14456, "traditional tasks": 25686, "efficient userfriendly": 7248, "completion tasks": 4282, "currently lack": 5372, "lack systematic": 12661, "systematic research": 24558, "social network": 23393, "bots ability": 2955, "online communities": 17737, "existing detection": 8254, "certain limitations": 3313, "behavior datasets": 2611, "datasets research": 5770, "instructionfollowing evaluation": 11993, "success various": 24273, "follow instructions": 9273, "primarily focus": 19694, "model learned": 15818, "strong ability": 23958, "evaluation protocol": 8021, "label words": 12624, "positive sentiment": 19123, "abilities models": 316, "struggles perform": 24007, "better random": 2789, "long context": 14809, "llms aiming": 14362, "gpt4 claude": 10340, "addressing key": 838, "key aspects": 12457, "construction evaluation": 4728, "build new": 3036, "new evaluation": 17322, "input length": 11871, "investigate effectiveness": 12297, "results popular": 22085, "matching metrics": 15131, "correlate human": 5105, "strongly advocate": 23979, "employing llm": 7439, "conducted comprehensive": 4571, "offer useful": 17692, "useful insights": 26614, "models applications": 16034, "advantage fact": 957, "bandit setting": 2439, "detection incontext": 6330, "texts existing": 25401, "malicious user": 15019, "detectors based": 6355, "detection results": 6343, "framework improves": 9432, "examples incontext": 8134, "experiments domain": 8382, "essays proposed": 7806, "prompts research": 20234, "research investigates": 21828, "potential largescale": 19201, "credit risk": 5244, "designed prompts": 6231, "domainspecific knowledge": 6950, "performance traditional": 18776, "traditional machine": 25678, "data points": 5557, "false positives": 8822, "vital aspects": 27258, "risk analysis": 22291, "analysis results": 1445, "models underscore": 16757, "underscore potential": 26224, "laying groundwork": 13690, "groundwork future": 10483, "harnessing capabilities": 10602, "llms diverse": 14446, "ml tasks": 15653, "detecting fake": 6316, "establishing connections": 7825, "work uses": 27572, "textual information": 25431, "information provided": 11777, "method enhance": 15352, "research release": 21862, "research purposes": 21856, "embeddings addition": 7317, "despite fact": 6258, "achieve accuracy": 557, "accuracy approximately": 504, "added training": 751, "design single": 6215, "various llms": 27058, "decisionmaking processes": 5836, "able capture": 396, "bard bing": 2450, "behavioral patterns": 2627, "bias significant": 2817, "showcasing remarkable": 22994, "remarkable abilities": 21562, "limitations terms": 14142, "constraints external": 4711, "challenges propose": 3400, "leveraging recent": 14035, "learning method": 13849, "method effectively": 15348, "addresses critical": 831, "circumvents need": 3756, "llms specific": 14714, "access model": 469, "mitigating hallucinations": 15633, "potentially damaging": 19246, "profoundly impact": 19972, "impact field": 11232, "llms wide": 14750, "entities making": 7699, "stumbling block": 24170, "gap work": 9650, "qualitatively quantitatively": 20633, "demonstrates large": 6083, "llms software": 14708, "experimental datasets": 8338, "based user": 2549, "user personal": 26637, "human brain": 10909, "specific regions": 23602, "work achieve": 27459, "complex high": 4291, "behavior human": 2618, "light design": 14060, "user level": 26634, "level models": 13982, "models user": 16763, "models run": 16663, "achieve efficient": 565, "applications natural": 1680, "prompting shown": 20174, "accuracy large": 517, "understanding cot": 26268, "prompting effective": 20142, "crucial ensuring": 5294, "work addressed": 27462, "model deployment": 15733, "feature attribution": 8856, "methods produce": 15475, "input tokens": 11886, "tokens model": 25564, "specifically probe": 23629, "prompting does": 20141, "attributed semantically": 2202, "semantically relevant": 22747, "increases robustness": 11557, "reasoning benchmark": 21059, "reasoning knowledge": 21080, "benchmarks benchmarks": 2686, "utility llms": 26896, "expert performance": 8429, "performance domains": 18632, "multiple fields": 16962, "presents challenging": 19485, "physics biology": 18906, "biology chemistry": 2881, "math physics": 15139, "physics problems": 18907, "problems require": 19815, "require advanced": 21718, "symbolic reasoning": 24496, "recent models": 21195, "models score": 16670, "steps conduct": 23858, "improving prompt": 11425, "editing large": 7101, "showcased remarkable": 22991, "remarkable potential": 21583, "potential various": 19243, "prompts quality": 20232, "humanwritten prompts": 11085, "prompts leads": 20220, "llms performance": 14627, "considerable human": 4656, "llms enable": 14462, "enable automatic": 7454, "drawing inspiration": 7017, "actorcritic algorithm": 712, "algorithm reinforcement": 1242, "leverages llms": 14016, "process helps": 19849, "llms better": 14383, "better align": 2770, "induction tasks": 11656, "tasks experimental": 24921, "relative performance": 21457, "exhibits notable": 8236, "models match": 16515, "tasks types": 25094, "performance address": 18587, "using datasets": 26741, "misinformation detection": 15596, "larger llms": 13619, "llms lead": 14578, "finetuning supervised": 9188, "achieve similar": 586, "performance datasets": 18620, "datasets compared": 5734, "closed models": 3857, "hard tasks": 10582, "tasks demand": 24896, "model selection": 15907, "based task": 2545, "detection outofdistribution": 6339, "plays vital": 18983, "vital role": 27259, "role enhancing": 22366, "enhancing reliability": 7647, "models emergence": 16169, "exceptional capabilities": 8167, "diverse natural": 6803, "scales pretraining": 22498, "findings llms": 9047, "empirical investigation": 7406, "llms focusing": 14506, "llama series": 14243, "objective llms": 17626, "llms downstream": 14448, "demonstrates superior": 6090, "detectors provide": 6357, "provide intriguing": 20442, "dynamic environments": 7054, "meaning representation": 15181, "understand process": 26255, "information realworld": 11779, "methods generate": 15450, "meaning representations": 15182, "questions generate": 20798, "current sota": 5358, "sota methods": 23497, "data compared": 5451, "programs paper": 19997, "theoretically prove": 25453, "improve generation": 11357, "accuracy llms": 520, "gsm8k svamp": 10507, "requires significantly": 21757, "operate work": 17872, "reduce computational": 21315, "paper demonstrate": 18209, "framework leverages": 9442, "spiking neural": 23664, "spiking neurons": 23666, "develop novel": 6378, "bert model": 2728, "proposed paper": 20361, "paper motivated": 18260, "extended different": 8588, "work demonstrate": 27478, "demonstrate performance": 6020, "multiple different": 16959, "transformerbased model": 25945, "intelligence using": 12088, "using transformerbased": 26876, "like large": 14088, "potential methods": 19207, "architecture used": 1912, "used llms": 26586, "discriminative generative": 6675, "tasks model": 24995, "trained finetuned": 25720, "finetuned specific": 9111, "task example": 24770, "model setting": 15911, "using data": 26739, "data parameters": 5555, "analysis current": 1404, "current future": 5339, "llmbased agents": 14328, "user prompts": 26640, "selfattention mechanism": 22699, "trained specific": 25737, "specific downstream": 23586, "concerns urgent": 4504, "learning frameworks": 13822, "leverages language": 14010, "expert models": 8428, "library based": 14049, "performance prompts": 18732, "objective function": 17623, "tradeoff task": 25667, "task accuracy": 24740, "text clinical": 25292, "clinical data": 3838, "framework surpasses": 9455, "identifying optimal": 11148, "optimal model": 17904, "control behavior": 4931, "llm systems": 14314, "efficient use": 7247, "large transformers": 13600, "models achieved": 16009, "available labeled": 2375, "text image": 25339, "architecture paper": 1908, "prediction tasks": 19364, "image text": 11192, "finetune pretrained": 9086, "effective finetuning": 7145, "finetuning pretrained": 9162, "tasks example": 24918, "task human": 24783, "human activity": 10895, "activity recognition": 709, "applying proposed": 1723, "tasks indicating": 24961, "indicating potential": 11620, "applied finetuning": 1697, "popular pretrained": 19071, "data multiple": 5549, "enhancing large": 7642, "access knowledge": 467, "bases large": 2583, "recent efforts": 21173, "integration knowledge": 12050, "challenges paper": 3389, "comprehensive framework": 4383, "various knowledge": 27052, "knowledge retrieval": 12578, "prompting generates": 20144, "individual user": 11634, "experiments integrating": 8392, "broader range": 3017, "range questions": 20908, "requiring world": 21768, "vanilla llms": 26977, "llms utilizing": 14747, "using information": 26777, "retrieval recommend": 22156, "good practices": 10204, "software engineers": 23430, "used different": 26562, "medical diagnosis": 15231, "engineering tasks": 7582, "potentially lead": 19250, "results despite": 22041, "qa systems": 20619, "learning practices": 13874, "tool provides": 25589, "model case": 15707, "retrieval tools": 22159, "tasks scaling": 25050, "surge generative": 24437, "models scalable": 16665, "effectively make": 7177, "make strong": 14990, "acquiring knowledge": 686, "pretrained masked": 19570, "finetuning instruction": 9139, "instruction finetuning": 11977, "versatility solving": 27159, "experiments scaling": 8409, "following natural": 9282, "llms generative": 14523, "transformative role": 25896, "built transformer": 3057, "transformer neural": 25931, "paper large": 18252, "method training": 15403, "better large": 2784, "foundational language": 9372, "models foundational": 16229, "advanced natural": 900, "research current": 21798, "classification generation": 3786, "significant advantage": 23093, "recognize potential": 21269, "reality check": 21019, "realworld datasets": 21035, "ensemble techniques": 7665, "large variation": 13602, "times using": 25536, "health large": 10629, "decision maker": 5822, "expert knowledge": 8427, "realworld tasks": 21043, "llms autonomous": 14376, "decision makers": 5823, "llms achieve": 14351, "achieve autonomous": 559, "optimal solution": 17906, "accordingly experimental": 493, "dataset demonstrate": 5669, "achieving 10": 655, "pass rate": 18455, "chatgpt api": 3508, "highlighting effectiveness": 10775, "effectiveness efficiency": 7192, "models decisionmaking": 16124, "applications fields": 1665, "models mathematical": 16517, "making best": 15006, "best decision": 2747, "requirements constraints": 21739, "deploying models": 6142, "practitioners understand": 19309, "satisfies constraints": 22463, "constraints existing": 4710, "models rely": 16639, "optimization paper": 17915, "make model": 14984, "model feasible": 15773, "optimization problem": 17917, "learning expert": 13812, "prompts enhance": 20201, "models enabling": 16176, "decision transformers": 5829, "language grounded": 12718, "stochastic optimization": 23869, "applied problems": 1700, "order construct": 17941, "works suggest": 27597, "target behavior": 24724, "solve problems": 23463, "scene elements": 22524, "leveraging large": 14026, "descriptions method": 6172, "method allows": 15324, "provide model": 20448, "highlevel textual": 10755, "textual prompt": 25433, "propose llmbased": 20302, "agents furthermore": 1036, "robot navigation": 22336, "experimental validation": 8362, "detection crucial": 6325, "usergenerated text": 26649, "despite progress": 6274, "challenges persist": 3394, "generalization paper": 9730, "study exploring": 24099, "exploring use": 8558, "augmentation technique": 2225, "limitations existing": 14130, "problem highlighting": 19770, "highlighting need": 10778, "constructing datasets": 4725, "tasks incorporating": 24960, "rigorous evaluation": 22279, "techniques significantly": 25169, "detection capabilities": 6323, "findings underscore": 9063, "instruction generation": 11980, "despite superior": 6284, "generate natural": 9798, "generate texts": 9819, "according given": 490, "construct logical": 4717, "generate logical": 9795, "effective efficient": 7143, "efficient compared": 7232, "parameters approach": 18373, "blackbox models": 2906, "models mobile": 16523, "mobile devices": 15662, "llms transforming": 14738, "federated learning": 8882, "learning fl": 13819, "employed finetuning": 7432, "finetuning llms": 9152, "tasks approach": 24867, "vast model": 27110, "significant memory": 23125, "memory consumption": 15262, "work introduces": 27514, "designed enhance": 6224, "key idea": 12470, "methods requiring": 15483, "memory efficiency": 15263, "efficiency time": 7226, "parameterefficient training": 18365, "approach llm": 1784, "comprehensive experiments": 4381, "experiments llms": 8393, "significant advantages": 23094, "conventional methods": 4960, "faster convergence": 8840, "paves way": 18499, "llms llama": 14593, "tool learning": 25588, "llms works": 14753, "works employ": 27591, "task trained": 24836, "applied realworld": 1701, "methods usually": 15503, "complexity paper": 4332, "novel tool": 17570, "framework train": 9462, "llm use": 14321, "method teach": 15401, "propose iterative": 20299, "dataset improve": 5688, "settings demonstrate": 22915, "dataset recent": 5711, "research dialogue": 21804, "distinct categories": 6747, "opendomain chitchat": 17816, "chitchat dialogues": 3738, "tod systems": 25542, "engaging conversations": 7564, "conversations recent": 5001, "taskoriented dialogues": 24851, "conversation address": 4971, "aims build": 1196, "proper prompting": 20259, "largescale dataset": 13630, "valuable resource": 26961, "applications furthermore": 1666, "proposed framework": 20353, "framework applied": 9401, "various target": 27089, "recent strides": 21203, "strides large": 23947, "model capable": 15703, "available large": 2376, "llms facilitates": 14494, "facilitates dynamic": 8739, "data flow": 5496, "tasks spanning": 25063, "domains computer": 6918, "vision cv": 27214, "cv natural": 5392, "multimodal inputs": 16933, "taskspecific models": 25110, "models tailored": 16732, "tailored individual": 24699, "field research": 8967, "research recent": 21859, "ambitious goal": 1361, "develop endtoend": 6372, "diversity quality": 6826, "learned embeddings": 13747, "emergence powerful": 7350, "presents promising": 19497, "generation extensively": 9955, "proposes novel": 20373, "novel multimodal": 17561, "vision transformer": 27232, "applications benefit": 1655, "model prompting": 15880, "user preferences": 26638, "findings validate": 9065, "validate efficacy": 26939, "efficacy proposed": 7217, "underscoring potential": 26231, "potential future": 19182, "multitask benchmark": 16996, "demonstrate impressive": 6005, "longer sequence": 14823, "improve llms": 11363, "llms long": 14595, "context windows": 4823, "memory mechanisms": 15265, "comprehensive benchmarks": 4371, "average length": 2398, "application areas": 1638, "areas including": 1929, "code completion": 3901, "outperforms opensourced": 18052, "opensourced models": 17867, "longer contexts": 14822, "lead substantial": 13707, "compression technique": 4405, "improvement model": 11391, "code datasets": 3908, "datasets available": 5728, "chatgpt paper": 3614, "problemsolving capabilities": 19826, "chatgpt case": 3526, "reasoning study": 21109, "draws inspiration": 7021, "results work": 22135, "effectively using": 7184, "using bayesian": 26715, "representation paper": 21671, "present set": 19457, "problems chatgpt": 19792, "remarkably results": 21598, "chatgpt provides": 3631, "benefits various": 2712, "systems traditional": 24644, "traditional deep": 25676, "llms presents": 14637, "numerous advantages": 17609, "comprises components": 4409, "represent information": 21666, "performance based": 18593, "expert feedback": 8425, "used finetune": 26571, "advantages proposed": 962, "framework large": 9439, "human mobility": 10969, "stochastic nature": 23868, "recently developed": 21235, "demonstrated superior": 6076, "tasks applicability": 24864, "studies remains": 24053, "remains unexplored": 21558, "article delves": 1964, "data present": 5560, "prediction using": 19365, "additionally design": 774, "generate accurate": 9754, "accurate predictions": 543, "interpretable predictions": 12207, "untapped potential": 26443, "complex domainspecific": 4288, "generalpurpose llms": 9749, "yield accurate": 27669, "transfer task": 25881, "text preserving": 25361, "numerous ways": 17613, "approaches generally": 1843, "amounts labeled": 1369, "fixed set": 9214, "validate method": 26940, "aligning large": 1270, "feedback presents": 8896, "design choice": 6183, "score response": 22578, "subsequent analysis": 24210, "significant effect": 23114, "effect evaluation": 7133, "aligned llms": 1267, "data alignment": 5419, "findings shed": 9058, "shed light": 22955, "critical gaps": 5258, "used alignment": 26550, "alignment code": 1279, "reasoning large": 21083, "nature human": 17134, "human behaviour": 10908, "ability zeroshot": 386, "broad range": 3012, "zeroshot reasoning": 27717, "humanlike reasoning": 11043, "reasoning important": 21078, "transformerbased large": 25940, "domains llms": 6932, "need follow": 17178, "prompts generate": 20203, "generate longer": 9796, "long sequences": 14813, "training sequences": 25836, "length llms": 13971, "generate fluent": 9774, "problem common": 19763, "time costs": 25505, "require careful": 21720, "empirically investigate": 7421, "inspired diagnosis": 11930, "applicable variety": 1635, "variety llms": 27010, "computationally efficient": 4436, "cheating using": 3710, "popular software": 19072, "correct text": 5086, "need rethink": 17186, "assessment findings": 2069, "study help": 24103, "institutions create": 11960, "chatgpt ai": 3505, "multimodal large": 16936, "model multimodal": 15833, "model mllm": 15830, "multimodal data": 16929, "data current": 5460, "decompose tasks": 5857, "individual pretrained": 11632, "specific subtasks": 23605, "task realworld": 24817, "best possible": 2759, "models optimal": 16549, "enhancing performance": 7645, "specifically study": 23631, "distinct evaluation": 6749, "models parallel": 16560, "process input": 19853, "input data": 11862, "compared using": 4212, "llm best": 14259, "various evaluation": 27042, "python java": 20607, "tools powerful": 25613, "computer programming": 4446, "explore tools": 8527, "produce valid": 19934, "produce correct": 19925, "information limited": 11764, "accuracy chatgpt": 506, "result false": 21991, "process creating": 19840, "selection model": 22687, "learning despite": 13799, "despite numerous": 6271, "metrics model": 15533, "deployed real": 6138, "study uses": 24166, "markov model": 15089, "model example": 15760, "participants large": 18415, "results revealed": 22105, "different criteria": 6504, "importance different": 11290, "size dataset": 23292, "influence model": 11725, "selection results": 22690, "results underscore": 22125, "behavior models": 2624, "introducing information": 12269, "information theory": 11796, "behavior llms": 2622, "capabilities wide": 3151, "preprocessing data": 19415, "data llm": 5536, "tokens llm": 25563, "trained models": 25731, "performance llms": 18697, "tasks generalization": 24937, "capabilities behavior": 3106, "adaptation using": 728, "using wide": 26881, "spur research": 23679, "value pluralism": 26971, "correct values": 5087, "systems model": 24618, "interaction introduce": 12133, "generated gpt4": 9853, "highquality human": 10813, "91 time": 280, "conduct largescale": 4564, "multitask model": 17000, "specific context": 23579, "addition demonstrate": 756, "work serve": 27552, "process text": 19868, "gaining increasing": 9621, "attention potential": 2181, "document generation": 6842, "expected results": 8312, "results propose": 22090, "approach fewshot": 1764, "prompts perform": 20228, "suggest using": 24313, "using technique": 26872, "method achieve": 15321, "correct rate": 5084, "methods proposed": 15477, "method provides": 15388, "provide large": 20443, "log data": 14795, "methods face": 15439, "generalization model": 9729, "study application": 24065, "application chatgpt": 1641, "detection work": 6352, "work proposed": 27543, "detection framework": 6329, "largescale corpora": 13627, "detection conduct": 6324, "good interpretability": 10202, "interpretability study": 12204, "llms known": 14571, "properties generated": 20265, "text embedding": 25308, "empirically demonstrate": 7419, "associated llm": 2106, "automated systems": 2284, "work demonstrated": 27479, "coherence generated": 3994, "limit effectiveness": 14111, "report results": 21655, "experiment comparing": 8330, "comparing effectiveness": 4218, "outperforming previous": 18027, "approaches discuss": 1837, "practical considerations": 19293, "years ago": 27657, "clear path": 3830, "development agi": 6399, "humanlike intelligence": 11041, "necessary achieve": 17159, "analysis highlights": 1413, "english translation": 7604, "quickly generate": 20839, "responses given": 21957, "compared conventional": 4180, "based feedback": 2484, "data analyzed": 5422, "using bleu": 26722, "translation quality": 25993, "findings revealed": 9057, "referential cohesion": 21350, "proved effective": 20399, "incorrect usage": 11541, "passive voice": 18468, "outcomes indicate": 17991, "indicate chatgpts": 11605, "political polarization": 19039, "states using": 23819, "using social": 26863, "data develop": 5464, "develop general": 6374, "general methodology": 9705, "media users": 15226, "biased news": 2822, "follow given": 9272, "data mining": 5544, "approach largely": 1778, "language platform": 13217, "platform agnostic": 18951, "approach applicable": 1733, "media platforms": 15224, "models prevalent": 16588, "drawn attention": 7019, "issue hallucination": 12373, "factually inaccurate": 8774, "information existing": 11751, "hallucination detection": 10547, "detection language": 6332, "cot techniques": 5156, "methods suffer": 15493, "methods identify": 15454, "different large": 6526, "models demonstrating": 16135, "promising improvements": 20060, "reliability applicability": 21504, "tuning large": 26080, "llms interactive": 14565, "languages construct": 13297, "construct japanese": 4716, "dataset japanese": 5692, "pretrained base": 19521, "model performed": 15855, "lowrank adaptation": 14885, "adaptation lora": 726, "using instruction": 26778, "dataset evaluated": 5674, "small llms": 23342, "llms performances": 14628, "tuning instruction": 26078, "model construction": 15720, "speech dataset": 23647, "dataset sentiment": 5713, "task domain": 24766, "domain natural": 6903, "sentiment polarity": 22805, "new avenues": 17299, "model surpassed": 15936, "surpassed performance": 24442, "performance gpt35turbo": 18664, "datasets underscoring": 5780, "llms instructiontuned": 14563, "instructiontuned large": 12014, "remarkable ability": 21563, "responses natural": 21960, "inherent biases": 11829, "used tune": 26606, "specific political": 23599, "political bias": 19033, "users ask": 26652, "question using": 20766, "using model": 26809, "underlying model": 26213, "different biases": 6497, "gender age": 9681, "written members": 27640, "model showcases": 15913, "web application": 27339, "various realworld": 27075, "methods mainly": 15464, "novel deep": 17549, "framework proposed": 9449, "framework llms": 9443, "interaction llms": 12134, "evaluation tasks": 8037, "general evaluation": 9697, "method applied": 15326, "translation code": 25979, "method extensive": 15356, "tasks nlp": 25002, "tasks primarily": 25019, "questions correct": 20789, "answer incorrectly": 1536, "accurately identify": 552, "provide reasonable": 20456, "dataset consisting": 5659, "consisting different": 4692, "different categories": 6498, "definitive answers": 5939, "provide corresponding": 20417, "tasks test": 25082, "systems ability": 24574, "ability identify": 349, "performance baseline": 18594, "develop robust": 6379, "models efficient": 16167, "efficient finetuning": 7235, "gpt4 palm": 10359, "shown achieve": 23011, "tuning bring": 26071, "users instructions": 26666, "producing humanlike": 19946, "high costs": 10700, "costs associated": 5150, "associated training": 2110, "llms pose": 14631, "availability pretrained": 2363, "vietnamese language": 27188, "general domain": 9694, "medical domain": 15232, "parameterefficient tuning": 18367, "assess effectiveness": 2046, "effectiveness methodology": 7202, "relevance accuracy": 21485, "responses evaluation": 21953, "despite utilizing": 6288, "method demonstrates": 15340, "models evaluation": 16188, "research results": 21863, "current best": 5332, "best practice": 2760, "research does": 21808, "emerging large": 7364, "engineering chatgpt": 7572, "chatgpt report": 3641, "report experiments": 21648, "discuss future": 6685, "raises ethical": 20863, "models multiple": 16531, "multiple targets": 16980, "prompting performance": 20170, "performance improved": 18674, "asking users": 2018, "augmenting prompts": 2241, "performance time": 18775, "automatically augmenting": 2313, "tasks covering": 24890, "generalization characteristics": 9728, "loss functions": 14851, "key contribution": 12464, "works focused": 27593, "approach introduces": 1776, "mutual information": 17016, "demonstrate improved": 6006, "observed scaling": 17658, "behavior large": 2619, "takes step": 24711, "llms led": 14581, "different users": 6564, "model risk": 15901, "diverse perspectives": 6809, "llm gpt3": 14282, "model help": 15795, "gpt3 results": 10307, "statistically significant": 23834, "model collaboration": 15713, "recent improvement": 21179, "adapting models": 740, "diverse content": 6789, "analysis demonstrating": 1407, "suffer hallucination": 24287, "hallucination problem": 10549, "llms measure": 14601, "hallucination llms": 10548, "llms previous": 14641, "propose combine": 20282, "model capability": 15702, "provide guidance": 20430, "process llms": 19859, "mitigate hallucination": 15625, "ai performance": 1127, "peer review": 18515, "performance ai": 18588, "specifically investigate": 23626, "facilitate study": 8735, "comprehensive dataset": 4372, "dataset collecting": 5654, "prediction capabilities": 19349, "classification approach": 3780, "experimental evaluation": 8340, "evaluation review": 8027, "outcome prediction": 17987, "approach performs": 1799, "performs significantly": 18824, "better chatgpt": 2776, "accuracy 90": 503, "analyzing experimental": 1480, "potential advantages": 19159, "advantages limitations": 961, "explore areas": 8497, "role human": 22367, "human intellect": 10947, "ai techniques": 1141, "human labeling": 10960, "performance llm": 18696, "time time": 25516, "requires considerable": 21745, "results comparing": 22028, "various languages": 27057, "error mae": 7783, "integrated various": 12038, "llms humans": 14545, "suggesting llms": 24316, "promising technique": 20070, "languages empirical": 13298, "study compare": 24074, "finetuning approaches": 9120, "finetuning strategies": 9186, "methods finetuning": 15446, "uses language": 26691, "previously acquired": 19682, "acquired knowledge": 684, "different language": 6522, "results different": 22042, "classification problems": 3800, "hate speech": 10610, "speech detection": 23648, "product reviews": 19949, "language findings": 12707, "evaluating catastrophic": 7935, "paper conducts": 18204, "framework introduced": 9437, "toxic content": 25642, "safety violation": 22428, "experiments uncover": 8418, "massive knowledge": 15111, "great challenges": 10451, "evaluation paper": 8011, "focuses typical": 9265, "accuracy rate": 528, "publically available": 20567, "evaluation optimization": 8010, "study aim": 24059, "aim enhance": 1175, "zeroshot prompt": 27714, "prompt optimization": 20108, "design prompt": 6210, "absence effective": 419, "method evaluate": 15355, "prompts inference": 20212, "concurrently learning": 4524, "interactions llms": 12141, "address introduce": 803, "inverse reinforcement": 12289, "diverse prompts": 6811, "model model": 15831, "optimal prompt": 17905, "experimental evaluations": 8341, "translation large": 25982, "solve various": 23467, "highresource languages": 10822, "poses challenges": 19097, "different decoding": 6506, "feasibility utilizing": 8853, "finetuning sft": 9178, "model exhibits": 15762, "significant performance": 23126, "demonstrate llm": 6011, "llm achieve": 14250, "problems machine": 19805, "translation especially": 25981, "introduce methods": 12247, "methods mitigate": 15466, "random input": 20877, "methods effectively": 15432, "points average": 19009, "translation directions": 25980, "demonstrating applicability": 6093, "translation llms": 25986, "exploring large": 8549, "work investigates": 27517, "series flant5": 22850, "preliminary findings": 19404, "outperform existing": 18012, "careful framework": 3215, "time large": 25507, "played pivotal": 18972, "input layer": 11870, "text conditioned": 25297, "conditioned prompt": 4537, "investigate use": 12311, "llms augment": 14371, "consistently enhances": 4683, "higher diversity": 10733, "models easier": 16162, "exhibit lower": 8218, "models follow": 16225, "instructions training": 12008, "generate harmful": 9777, "content paper": 4784, "paper raise": 18307, "raise concerns": 20857, "model like": 15819, "like llama": 14092, "make models": 14985, "llms follow": 14507, "auxiliary model": 2355, "model approach": 15688, "twostage process": 26118, "lower quality": 14881, "original llm": 17967, "llm validate": 14324, "output remains": 18078, "method requires": 15390, "costeffective solution": 5142, "data distribution": 5467, "grounding language": 10479, "models knowledge": 16320, "generating natural": 9907, "formal language": 9319, "language despite": 12698, "despite advances": 6256, "realworld environments": 21037, "hallucinated information": 10544, "base question": 2461, "answering kbqa": 1573, "distribution training": 6774, "different datasets": 6505, "proposed data": 20352, "augmentation techniques": 2226, "promising technology": 20071, "complex environments": 4289, "industrial academic": 11665, "models generative": 16243, "wireless communication": 27427, "communication systems": 4124, "quantization error": 20688, "new class": 17306, "stateoftheart generative": 23768, "models showcased": 16678, "notable success": 17518, "compared deep": 4182, "highlight robust": 10769, "llms acquire": 14353, "acquire extensive": 677, "extensive knowledge": 8619, "interactions users": 12143, "question llms": 20758, "question propose": 20763, "framework systematically": 9456, "knowledge specifically": 12585, "reveal different": 22197, "llms tend": 14728, "tend produce": 25203, "contexts llms": 4832, "llms sensitive": 14685, "results publicly": 22095, "including scientific": 11480, "article provides": 1967, "capabilities limitations": 3128, "limitations ai": 14121, "scholarly writing": 22537, "accuracy assessed": 505, "furthermore paper": 9566, "research process": 21852, "highlights challenges": 10782, "emulating human": 7452, "conclusion large": 4513, "generation ability": 9920, "remains limited": 21545, "llmbased ai": 14329, "ai genai": 1099, "domains paper": 6936, "help enhance": 10657, "unlike conventional": 26395, "different approach": 6491, "approach exploiting": 1763, "simulations proposed": 23259, "proposed scheme": 20362, "used large": 26583, "systems particular": 24625, "overview chatbots": 18144, "technologies recent": 25176, "traditional ones": 25685, "used realworld": 26595, "amounts training": 1372, "data extremely": 5491, "extremely large": 8699, "lack interpretability": 12654, "chatbot systems": 3482, "finally future": 9012, "including textual": 11483, "establishes link": 7823, "dataset investigate": 5691, "including classic": 11447, "entailment methods": 7683, "finetuned large": 9098, "answer complex": 1531, "tools provide": 25614, "provide llm": 20444, "llm answers": 14254, "generates relevant": 9887, "llms prompt": 14646, "prompt chatgpt": 20081, "dataset dataset": 5668, "approach conduct": 1741, "conduct evaluation": 4554, "recently introduced": 21239, "datasets experimental": 5750, "existing stateoftheart": 8278, "stateoftheart solutions": 23808, "solutions indicating": 23446, "really help": 21026, "potential field": 19181, "examples different": 8126, "fields computer": 8973, "medical data": 15230, "coding assistance": 3977, "cases code": 3249, "code writing": 3956, "chatgpt perspective": 3618, "challenging requiring": 3428, "comparison responses": 4233, "prompt variations": 20122, "selection prompt": 22689, "prompt template": 20116, "early development": 7068, "online users": 17749, "people use": 18524, "limited evaluation": 14156, "opendomain dialogue": 17822, "work content": 27475, "systems research": 24635, "language especially": 12704, "dialogue context": 6456, "context significantly": 4817, "distillation techniques": 6742, "nsfw content": 17585, "content detectors": 4769, "humanmachine interaction": 11052, "interaction data": 12130, "constructed using": 4723, "text classifier": 25290, "assessed study": 2057, "study emphasizes": 24087, "emphasizes importance": 7389, "challenging work": 3437, "focus finegrained": 9255, "formulate new": 9343, "narratives present": 17040, "heterogeneous sources": 10682, "performance narrative": 18709, "examples model": 8138, "target group": 24728, "propose concept": 20285, "personas target": 18865, "target audience": 24723, "audience explore": 2208, "using gpt35": 26768, "explanations large": 8460, "students generating": 24026, "learning resources": 13895, "generated questions": 9869, "questions crucial": 20791, "task work": 24841, "framework generates": 9429, "explanations evaluation": 8454, "framework iteratively": 9438, "importantly framework": 11317, "grade level": 10399, "compare explanations": 4164, "explanations created": 8453, "finetuned using": 9115, "compared large": 4191, "gpt4 exhibited": 10346, "higher level": 10736, "generating explanations": 9897, "models original": 16550, "studentcreated explanations": 24019, "significant advancement": 23090, "students enhancing": 24025, "enhancing capabilities": 7636, "models educational": 16163, "phishing attack": 18894, "possibility using": 19134, "develop advanced": 6370, "largescale deployment": 13632, "advances ai": 932, "lead increased": 13706, "highlights necessity": 10784, "systems estimating": 24597, "data contamination": 5455, "increasingly prevalent": 11580, "massive training": 15112, "evaluation existing": 7977, "existing method": 8267, "assessment capability": 2068, "access training": 470, "perplexity analysis": 18836, "analysis provides": 1442, "provides evidence": 20487, "ability understand": 382, "screening test": 22594, "communication skills": 4123, "standardized test": 23727, "examine capability": 8102, "capability recent": 3167, "llms understanding": 14741, "communication results": 4122, "increase number": 11549, "learning case": 13779, "analysis ai": 1393, "utilizing chatgpt": 26914, "advances artificial": 933, "chatgpt present": 3624, "potential avenues": 19167, "research delves": 21800, "effectiveness chatgpt": 7188, "analysis process": 1439, "prediction model": 19355, "shown produce": 23047, "unclear models": 26179, "pattern matching": 18492, "models tools": 16742, "experiments suggest": 8414, "suggest used": 24312, "models exploring": 16204, "exploring relationship": 8556, "linguistic nuances": 14197, "llms advanced": 14360, "forth new": 9350, "new challenges": 17305, "mitigation techniques": 15638, "linguistic factors": 14193, "prompts specifically": 20237, "agents autonomous": 1028, "manual intervention": 15047, "studies investigated": 24048, "llms effective": 14453, "diverse environments": 6798, "error propagation": 7785, "mitigate challenges": 15621, "challenges introduce": 3380, "bypassing need": 3070, "apis propose": 1618, "help agent": 10651, "agent decide": 1021, "approach new": 1789, "tasks application": 24865, "type prediction": 26126, "prediction accuracy": 19348, "controlled generation": 4944, "studies present": 24051, "llms provide": 14654, "explanations natural": 8463, "proposed various": 20367, "tasks method": 24994, "input output": 11875, "generate explanations": 9771, "explicit control": 8468, "control generation": 4933, "generation difficult": 9945, "prompts study": 20238, "llms explain": 14483, "llms correct": 14414, "llms explanation": 14484, "output prompts": 18076, "using original": 26828, "original prompts": 17971, "llms increasing": 14555, "biases impact": 2826, "ai model": 1119, "mitigate loss": 15627, "suggestions future": 24321, "semantic ambiguity": 22720, "central challenge": 3307, "challenge field": 3350, "field machine": 8957, "translation performance": 25992, "conventional neural": 4961, "translation nmt": 25989, "nmt systems": 17458, "systems fail": 24602, "fail capture": 8778, "promising alternative": 20049, "traditional nmt": 25684, "target outputs": 24732, "study capabilities": 24067, "llms translate": 14739, "datasets experiments": 5752, "match outperform": 15122, "outperform stateoftheart": 18019, "stateoftheart systems": 23813, "language directions": 12699, "research provides": 21854, "provides valuable": 20500, "longterm memory": 14838, "llms gpt35": 14532, "remarkable proficiency": 21589, "based knowledge": 2500, "resource consumption": 21907, "knowledge enhance": 12521, "enhance generation": 7616, "memory module": 15267, "comprehend users": 4358, "users preference": 26675, "training llm": 25793, "superiority proposed": 24376, "sequence events": 22817, "models brazilian": 16067, "way interact": 27308, "interact computers": 12122, "construction complex": 4727, "complex questions": 4313, "study evaluate": 24088, "13 billion": 48, "llama models": 14242, "vicuna evaluate": 27174, "effectiveness models": 7204, "achieved accuracy": 595, "original texts": 17974, "average 13": 2393, "took approximately": 25578, "approximately 20": 1880, "models highquality": 16268, "conversational datasets": 4989, "successful development": 24278, "systems employ": 24595, "employ large": 7426, "finetune llm": 9081, "enhance quality": 7621, "quality interactions": 20656, "interactions students": 12142, "involves generating": 12348, "generating synthetic": 9914, "advanced gpt4": 888, "models challenges": 16081, "challenges arise": 3367, "advanced capabilities": 884, "gpt4s performance": 10373, "marking significant": 15083, "introduces innovative": 12264, "simulated gpt4": 23251, "quality synthetic": 20665, "datasets especially": 5746, "model llama": 15820, "finetuning datasets": 9126, "datasets enriched": 5745, "robustness prompt": 22362, "prompt tuning": 20119, "tuning prompt": 26088, "feedforward networks": 8904, "using roberta": 26853, "roberta t5": 22329, "tuned specific": 26066, "tasks type": 25093, "robust adversarial": 22343, "higher robustness": 10743, "data case": 5437, "surprising failure": 24457, "llms model": 14605, "trained sentence": 25736, "instance model": 11944, "able answer": 395, "likely occur": 14105, "chatgpt gpt35": 3585, "questions like": 20807, "solving problems": 23481, "insights unfortunately": 11920, "difficult scale": 6585, "powerful way": 19280, "way allowing": 27302, "groups using": 10490, "using prototype": 26841, "active vs": 705, "enabling largescale": 7475, "multiple social": 16975, "platforms like": 18955, "twitter users": 26114, "associated challenges": 2100, "twitter research": 26113, "second leverage": 22629, "insights dataset": 11909, "lms longer": 14771, "lms led": 14770, "understanding capabilities": 26262, "development cycle": 6402, "model cards": 15706, "detailed information": 6295, "generation introduce": 9969, "aspects model": 2029, "training resources": 25828, "explore capabilities": 8500, "llama galactica": 14240, "significant gap": 23115, "research papers": 21846, "textual responses": 25436, "models automate": 16045, "curation process": 5326, "process complete": 19839, "dataset available": 5648, "answering answering": 1566, "task recently": 24818, "models incontext": 16290, "learning chainofthought": 13780, "research topics": 21873, "field paper": 8965, "new prompting": 17346, "strategy called": 23916, "develop ability": 6369, "compared fullysupervised": 4187, "dataset fewshot": 5678, "setting incontext": 22904, "chatbased large": 3474, "impact society": 11243, "vast knowledge": 27109, "tools created": 25602, "interact models": 12125, "model current": 15723, "learning significant": 13909, "studied paper": 24034, "previously learned": 19686, "learned knowledge": 13748, "performance showing": 18753, "sts tasks": 24010, "tasks crucial": 24891, "models face": 16209, "core idea": 5045, "effectively mitigates": 7178, "newly collected": 17378, "github issues": 10141, "furthermore examine": 9553, "domainspecific sts": 6953, "scenarios limited": 22517, "limited labeled": 14159, "data explore": 5486, "data extensive": 5487, "tasks results": 25048, "sts models": 24009, "demonstrate ability": 5978, "llms large": 14574, "society minds": 23412, "multiagent framework": 16886, "llm agents": 14252, "diverse thoughts": 6820, "multiple rounds": 16974, "agents improve": 1037, "voting mechanism": 27277, "prompt consists": 20083, "final answer": 8996, "reasoning performance": 21097, "datasets experiment": 5749, "gpt4 agents": 10336, "achieves better": 624, "agents compared": 1031, "multiagent debate": 16885, "baseline code": 2555, "intelligence despite": 12071, "chatgpt based": 3518, "based deep": 2476, "interdisciplinary research": 12160, "integrating knowledge": 12042, "simulate complex": 23248, "complex systems": 4322, "systems large": 24610, "networks symbolic": 17250, "models contextual": 16111, "image captions": 11177, "images challenging": 11200, "using computer": 26732, "llms support": 14726, "captioning images": 3195, "understand llms": 26247, "human emotions": 10924, "information relevant": 11781, "goal propose": 10189, "set natural": 22879, "generate captions": 9759, "emotion annotations": 7374, "interpretable representation": 12208, "capability large": 3159, "textdavinci003 model": 25398, "model provides": 15883, "predictions consistent": 19369, "image captioning": 11176, "llm approach": 14256, "approach effective": 1754, "research revealed": 21864, "studies explore": 24042, "potential leveraging": 19203, "reasoning skills": 21107, "specifically tailored": 23632, "task experimental": 24771, "results shown": 22112, "billion parameter": 2854, "distilled data": 6744, "generation dataset": 9942, "models adaptive": 16017, "adapting pretrained": 741, "llm finetuning": 14278, "result significantly": 21996, "high energy": 10703, "limitation paper": 14115, "finetuning technique": 9191, "evaluates different": 7928, "selecting appropriate": 22681, "llm models": 14289, "models abstractive": 16001, "summarization datasets": 24343, "compared finetuning": 4186, "finetuning llm": 9151, "llm model": 14288, "accuracy loss": 521, "finetuning techniques": 9192, "techniques lora": 25162, "framework case": 9406, "optimisation process": 17910, "efficient costeffective": 7233, "problem formulations": 19766, "expertise needed": 8434, "minimized using": 15573, "using artificial": 26708, "data requirements": 5583, "metrics llms": 15530, "tasks training": 25091, "paper adopt": 18183, "approach propose": 1804, "pretrained llm": 19567, "limits llms": 14173, "llms addition": 14356, "assessing accuracy": 2061, "accuracy quality": 526, "existing evaluation": 8256, "multiple studies": 16978, "llms comprehensively": 14406, "comprehensively evaluate": 4393, "text understanding": 25386, "modeling code": 15980, "capacities various": 3182, "key research": 12475, "point future": 19004, "release data": 21471, "data prompts": 5568, "written spoken": 27643, "work argue": 27469, "llm text": 14317, "error rates": 7786, "systems error": 24596, "key limitations": 12474, "design text": 6222, "identify strengths": 11144, "opening opportunities": 17840, "opportunities future": 17889, "significant changes": 23106, "functionality llms": 9529, "related machine": 21433, "image classification": 11178, "object detection": 17619, "semantic segmentation": 22732, "works studied": 27596, "provide theoretical": 20467, "enables efficient": 7462, "provides novel": 20495, "loss landscape": 14852, "llmgenerated misinformation": 14339, "advent large": 966, "llms transformative": 14736, "transformative impact": 25894, "impact potential": 11242, "online safety": 17744, "tackle question": 24688, "detection difficulty": 6328, "methods generating": 15451, "voice assistants": 27270, "interaction patterns": 12135, "challenges design": 3372, "models discern": 16149, "contextual understanding": 4843, "llms excel": 14471, "textbased interactions": 25392, "study participants": 24132, "tasks showing": 25056, "intent recognition": 12116, "potential harnessing": 19189, "harnessing llms": 10603, "humanities social": 11026, "scale data": 22485, "data analytics": 5421, "analytic tasks": 1462, "tasks include": 24951, "discourse analysis": 6659, "text mining": 25351, "cultural analytics": 5313, "focus english": 9253, "scenarios involving": 22516, "difficult tasks": 6587, "serve viable": 22858, "studies illustrate": 24046, "importantly approach": 11316, "intended replace": 12101, "knowledge skills": 12583, "insightful questions": 11905, "associated large": 2102, "significant concern": 23109, "essential aspect": 7811, "accurately estimating": 550, "prior physical": 19710, "llms compared": 14402, "design challenges": 6182, "challenges llm": 3383, "llm interfaces": 14285, "cognitive processes": 3988, "prompts obtain": 20225, "llm task": 14315, "task evaluate": 24768, "success llms": 24268, "finally make": 9018, "make recommendations": 14988, "models content": 16109, "perform wide": 18577, "perform content": 18549, "work evaluate": 27488, "suite modern": 24333, "commercially available": 4088, "toxicity classifiers": 25647, "classifiers recent": 3818, "potential performance": 19212, "avenues future": 2390, "progress large": 20001, "concerns potential": 4498, "values survey": 26974, "extensive exploration": 8616, "research domain": 21809, "adopting lens": 865, "potential vulnerabilities": 19244, "assess llm": 2049, "llm alignment": 14253, "present wide": 19468, "evaluation methodologies": 8000, "llms finally": 14500, "vision future": 27219, "promising avenues": 20052, "avenues research": 2391, "bridging gap": 2995, "community researchers": 4134, "exploration llms": 8482, "introduced potential": 12262, "generate highly": 9781, "extent current": 8630, "traditional techniques": 25687, "approaches proposed": 1858, "holistic exploration": 10851, "line research": 14176, "main challenges": 14951, "models maintaining": 16511, "models change": 16083, "better suited": 2791, "systems compared": 24587, "compared baseline": 4177, "facto standard": 8751, "training objective": 25809, "generated output": 9867, "undesirable biases": 26327, "range crucial": 20890, "leverage instructiontuned": 13998, "generate outputs": 9802, "reliable evaluation": 21507, "augmenting llms": 2240, "llms knowledge": 14570, "parameters achieving": 18372, "achieving remarkable": 667, "results finetuned": 22046, "finetuned downstream": 9092, "downstream natural": 6976, "tasks nonetheless": 25003, "compared taskspecific": 4209, "taskspecific architectures": 25106, "challenges providing": 3403, "model decisions": 15727, "promising solution": 20069, "predicting missing": 19345, "holds potential": 10849, "potential address": 19158, "benchmarking large": 2682, "rapid advancement": 20934, "advancement large": 908, "need comprehensive": 17172, "assess capabilities": 2042, "systematically evaluate": 24565, "evaluate 10": 7868, "leading llms": 13712, "models 20": 15995, "earlier models": 7061, "adding code": 754, "data improves": 5518, "reasoning capability": 21063, "capability improved": 3158, "rlhf alignment": 22316, "alignment tax": 1292, "aiming improve": 1189, "critical domains": 5257, "blackbox machine": 2905, "explainable ai": 8441, "ai xai": 1149, "feature importance": 8862, "explanations furthermore": 8456, "explanations present": 8465, "gap introduce": 9641, "likely use": 14106, "purpose image": 20590, "explaining understanding": 8446, "demonstrated strong": 6075, "learning largescale": 13842, "answering user": 1591, "structured query": 23995, "query languages": 20708, "spatial data": 23554, "data offer": 5551, "business government": 3065, "policy makers": 19026, "dungeons dragons": 7046, "specific domains": 23585, "dragons dd": 7001, "using opensource": 26826, "models precision": 16578, "efficiency large": 7221, "impressive reasoning": 11344, "complete given": 4269, "reasoning end": 21070, "specifically design": 23615, "future trajectory": 9599, "feedback memory": 8895, "reasoning llms": 21088, "planning bayesian": 18945, "decision processes": 5827, "processes mdps": 19877, "learning generate": 13824, "value function": 26965, "knowledge obtained": 12561, "obtained pretraining": 17669, "various existing": 27043, "internal memory": 12181, "given prompt": 10161, "quantitative benchmarking": 20679, "benchmarking framework": 2681, "framework conduct": 9409, "playing intervention": 18977, "identify correct": 11135, "based cognitive": 2473, "closedsource llms": 3865, "detailed instructions": 6296, "invalid responses": 12283, "sized llms": 23303, "upper bound": 26466, "networks large": 17248, "multimodal learning": 16942, "data curation": 5458, "candidate pool": 3097, "study problem": 24138, "second step": 22633, "key finding": 12468, "distinct performance": 6751, "sets model": 22899, "model low": 15826, "accuracy trained": 536, "small highquality": 23334, "highquality data": 10809, "data based": 5436, "based insights": 2499, "construct new": 4718, "stateoftheart imagetext": 23771, "imagetext datasets": 11208, "trained dataset": 25716, "dataset achieves": 5644, "transfer accuracy": 25867, "accuracy imagenet": 516, "trained datasets": 25717, "research dataset": 21799, "dataset design": 5671, "using publicly": 26845, "writing process": 27633, "llms simplify": 14706, "generation current": 9941, "new versions": 17366, "provides insights": 20492, "generation facilitated": 9956, "growing research": 10502, "studies focus": 24044, "focus designing": 9252, "specialized models": 23572, "generation proposed": 10007, "method takes": 15400, "context prompt": 4816, "employs training": 7442, "training paradigm": 25812, "search space": 22621, "endtoend training": 7547, "learning reinforcement": 13890, "shows human": 23065, "human readable": 10981, "able guide": 408, "garnered widespread": 9660, "currently significant": 5373, "laborious task": 12644, "timeconsuming expensive": 25523, "automatically constructing": 2314, "existing factchecking": 8258, "furthermore propose": 9568, "zeroresource blackbox": 27689, "blackbox hallucination": 2899, "detection method": 6336, "experiments prevalent": 8402, "types different": 26130, "chain thoughts": 3328, "understand language": 26245, "encounter challenges": 7509, "solving math": 23476, "math word": 15143, "word problems": 27444, "critical thinking": 5265, "thinking skills": 25463, "skills using": 23316, "research provide": 21853, "following contributions": 9280, "contributions introduce": 4927, "models evaluate": 16186, "particular tasks": 18433, "suggest models": 24308, "important note": 11305, "allowing users": 1317, "fact verification": 8747, "method large": 15374, "domain paper": 6906, "demonstration examples": 6101, "performance prompting": 18731, "previous supervised": 19678, "boost performance": 2945, "performance introduce": 18679, "directs llms": 6644, "prompting outperforms": 20167, "approach strong": 1815, "strong fewshot": 23965, "candidate answers": 3096, "answers multiple": 1598, "similar content": 23191, "single prompt": 23277, "llms conducted": 14407, "conducted extensive": 4577, "experiments diverse": 8381, "llms evaluate": 14468, "consistency rates": 4676, "average relative": 2400, "advanced gpt": 885, "model just": 15811, "ability correct": 334, "bias improve": 2808, "valuable step": 26962, "automated evaluations": 2271, "framework enhancing": 9421, "extraction structured": 8680, "structured information": 23992, "planning solutions": 18948, "according plan": 491, "significantly augments": 23147, "accuracy llm": 519, "work offers": 27530, "techniques allowing": 25150, "challenging subset": 3430, "pretrained transformer language": 19605, "transformer language model": 25917, "language model finetuning": 12761, "improve downstream nlp": 11353, "largescale unlabeled data": 13652, "tasks target task": 25078, "including natural language": 11467, "natural language inference": 17069, "task conduct experiments": 24755, "outperforms previous stateoftheart": 18055, "contextualized word representations": 4853, "static word embeddings": 23824, "improvements nlp tasks": 11399, "power large language": 19255, "large language models": 13360, "language models based": 12833, "based transformer architecture": 2548, "best performing model": 2755, "pretrained language models": 19544, "nlp tasks including": 17443, "tasks including question": 24956, "including question answering": 11478, "gpt bert xlnet": 10224, "deep reinforcement learning": 5902, "reinforcement learning methods": 21423, "highdimensional observation action": 10727, "observation action spaces": 17643, "reinforcement learning algorithms": 21413, "pretrained language model": 19540, "language model downstream": 12757, "model downstream task": 15746, "task text generation": 24834, "generation paper propose": 9997, "preliminary experimental results": 19403, "et al 2019": 7841, "paper introduces new": 18241, "facial expression recognition": 8724, "openais gpt2 model": 17801, "neural language models": 17257, "language models lms": 13093, "lms bert gpt2": 14765, "language understanding tasks": 13280, "tasks recent work": 25035, "recent work focused": 21211, "lead catastrophic forgetting": 13702, "models substantially outperform": 16714, "language modeling tasks": 12811, "language models lm": 13092, "using neural text": 26819, "neural text generation": 17280, "text generation based": 25325, "general text corpus": 9714, "propose new method": 20311, "language models fewshot": 12900, "taskoriented dialogue systems": 24850, "dialogue systems taskoriented": 6473, "systems taskoriented dialogue": 24642, "dialogue systems use": 6476, "modules natural language": 16826, "natural language understanding": 17112, "language understanding nlu": 13275, "dialogue state tracking": 6469, "state tracking dst": 23748, "natural language generation": 17065, "language generation nlg": 12713, "transfer learning large": 25872, "learning large language": 13839, "language models pretrained": 13130, "language models gpt2": 12918, "gpt2 radford et": 10271, "radford et al": 20852, "brown et al": 3023, "et al 2020": 7842, "ability language models": 353, "highlight current limitations": 10760, "language models report": 13154, "report experimental results": 21647, "language models recently": 13150, "paper propose method": 18289, "achieved impressive results": 605, "range natural language": 20900, "understanding nlu generation": 26297, "nlu generation nlg": 17455, "generation nlg tasks": 9993, "extensive experimental results": 8604, "experimental results method": 8351, "language models really": 13143, "advances natural language": 949, "natural language processing": 17079, "language processing tasks": 13241, "question answering commonsense": 20723, "answering commonsense reasoning": 1570, "language models generalize": 12908, "gain deeper insight": 9605, "paper presents novel": 18282, "presents novel approach": 19495, "proposed approach outperforms": 20346, "training fewshot learning": 25776, "powerful language models": 19271, "language models able": 12815, "gpt2 language model": 10258, "transfer learning pretrained": 25875, "nlp tasks common": 17439, "tasks common approach": 24885, "language model paper": 12782, "paper present alternative": 18265, "language model solve": 12797, "outperforms existing methods": 18045, "32 training samples": 159, "masked language models": 15097, "language models proposing": 13139, "native nonnative english": 17050, "nonnative english writers": 17491, "neural language model": 17256, "model user behaviour": 15961, "language model gpt2": 12764, "models gpt bert": 16253, "transformerbased language models": 25939, "language models achieve": 12819, "extensive experiments various": 8615, "chain thought prompting": 3327, "task large language": 24796, "large neural models": 13571, "natural language explanations": 17063, "language model perform": 12783, "modern language models": 16796, "language models driven": 12881, "general language understanding": 9703, "human performance results": 10975, "based language models": 2503, "language models like": 12957, "models like gpt3": 16351, "language models does": 12878, "language models derive": 12870, "transformer language models": 25918, "language models identify": 12929, "contextual word representations": 4845, "generation results indicate": 10018, "pretrained neural language": 19588, "text training data": 25385, "data code data": 5443, "code data available": 3903, "underexplored paper present": 26197, "empirical results demonstrate": 7411, "best performing models": 2756, "future research modeling": 9594, "dataset publicly available": 5709, "generative pretrained models": 10090, "pretrained model downstream": 19576, "leverage pretrained models": 14003, "achieves stateoftheart results": 649, "fewshot zeroshot settings": 8942, "settings achieve f1": 22910, "achieve f1 score": 567, "natural language descriptions": 17061, "compression large language": 4403, "models natural language": 16533, "language processing nlp": 13228, "inference time memory": 11708, "language modeling pretraining": 12809, "method significantly outperforms": 15395, "outperforms commonly used": 18040, "language model perplexity": 12784, "evaluate proposed approach": 7901, "tasks glue benchmark": 24942, "machine learning ml": 14911, "learning ml methods": 13853, "text generation methods": 25329, "provide mental health": 20446, "mental health support": 15286, "using gpt2 model": 26766, "results showed finetuned": 22109, "showed finetuned model": 22998, "compared pretrained model": 4199, "autoregressive language models": 2342, "language models complex": 12855, "models complex tasks": 16099, "autoregressive language model": 2341, "small number examples": 23347, "language models small": 13165, "training machine learning": 25797, "understanding language models": 26283, "language models represent": 13155, "models bert gpt2": 16060, "contextualized language models": 4850, "models small number": 16693, "transformerbased pretrained language": 25949, "understanding large language": 26285, "language models shown": 13162, "language models struggle": 13174, "models struggle tasks": 16709, "human sentence processing": 10986, "named entity recognition": 17027, "entity recognition ner": 7708, "significant progress recent": 23133, "progress recent years": 20010, "stateoftheart sota models": 23810, "task aims generate": 24744, "models t5 bart": 16730, "encourage research direction": 7520, "sophisticated language models": 23490, "language models increases": 12936, "language models work": 13204, "reinforcement learning rl": 21425, "learning rl achieved": 13899, "achieved significant success": 613, "domains robotics games": 6940, "work propose framework": 27539, "propose novel data": 20317, "demonstrate effectiveness framework": 5991, "algorithms performing experiments": 1256, "automatic text generation": 2309, "attention recent years": 2184, "evaluation human evaluation": 7988, "human evaluation automatic": 10926, "automatic human evaluation": 2297, "knowledge large language": 12543, "language models language": 12950, "models language models": 16326, "trained large amounts": 25726, "shown impressive performance": 23030, "performance nlp tasks": 18716, "nlp tasks zeroshot": 17450, "large pretrained lms": 13583, "using larger models": 26800, "performance generative pretrained": 18658, "generative pretrained transformer": 10091, "generative pretrained transformers": 10100, "pretrained transformers gpt": 19610, "language models survey": 13181, "language models specialized": 13168, "language models paper": 13115, "largescale language models": 13638, "human users including": 10996, "language models learn": 12955, "generative language models": 10071, "natural language prompts": 17104, "automatic manual evaluations": 2300, "manual evaluations demonstrate": 15046, "new research direction": 17350, "train model scratch": 25702, "masked language modeling": 15095, "language modeling task": 12810, "machine translation task": 14933, "revolutionized nlp field": 22247, "language models capture": 12843, "text classification tasks": 25289, "conduct extensive experimental": 4559, "sentiment analysis task": 22801, "performance computational cost": 18614, "introduce novel approach": 12252, "language inference nli": 12723, "datasets results demonstrate": 5775, "leveraging natural language": 14033, "language model capabilities": 12748, "capabilities large language": 3123, "language generation capabilities": 12710, "language models zeroshot": 13206, "models zeroshot planners": 16787, "knowledge learned large": 12550, "learned large language": 13750, "language models llms": 12965, "models llms used": 16501, "surprisingly pretrained lms": 24463, "conducted human evaluation": 4579, "human evaluation reveals": 10929, "language models increasing": 12937, "models increasing scale": 16296, "generalpurpose pretrained language": 9751, "language models plms": 13124, "different downstream tasks": 6513, "downstream tasks paper": 6993, "variancereduced policy gradient": 26985, "policy gradient algorithm": 19025, "diverse data sources": 6791, "recent years largescale": 21221, "largescale data collection": 13629, "age gender race": 1015, "pretrained transformer model": 19607, "pretrained transformer gpt2": 19601, "language models increasingly": 12939, "training corpora language": 25752, "corpora language models": 5055, "language models better": 12839, "offline reinforcement learning": 17712, "lack large scale": 12656, "model trained scratch": 15947, "propose techniques improve": 20340, "consistent performance gains": 4681, "achieving stateoftheart performance": 670, "performance variety tasks": 18789, "gpt2 language models": 10260, "language models hope": 12926, "bert language models": 2724, "data models available": 5548, "using large language": 26784, "community recently witnessed": 4133, "pretrained transformer models": 19608, "zeroshot transfer learning": 27725, "transfer learning various": 25876, "various nlp tasks": 27070, "domainspecific training data": 6957, "large pretrained language": 13577, "language models synthetic": 13185, "models synthetic data": 16727, "synthetic data generators": 24539, "data generators ir": 5505, "generators ir tasks": 10114, "outperform strong baselines": 18021, "baselines bm25 recently": 2573, "bm25 recently proposed": 2931, "recently proposed selfsupervised": 21247, "data available httpsgithubcomzetaalphavectorinpars": 5435, "language models finding": 12903, "language models large": 12952, "models large language": 16330, "used prompt model": 26593, "hundreds billions parameters": 11089, "stateoftheart results various": 23806, "various language tasks": 27054, "large foundation models": 13332, "new stateoftheart results": 17355, "models end propose": 16180, "175 billion parameters": 74, "language models human": 12927, "biases large language": 2830, "language models generate": 12909, "machine learning systems": 14919, "computer science education": 4448, "using language models": 26782, "context large language": 4806, "language models trained": 13190, "attempted address problem": 2151, "grounded language models": 10477, "language models lowrank": 13096, "processing nlp large": 19906, "machine translation mt": 14929, "small language models": 23337, "prompting large language": 20153, "providing natural language": 20516, "natural language instructions": 17072, "performance large language": 18686, "instructions large language": 12004, "contextualizing language models": 4856, "language models vast": 13200, "contextualized word embeddings": 4852, "biases language models": 2828, "source code available": 23509, "language models various": 13199, "language models previous": 13133, "specific language model": 23596, "recurrent neural network": 21303, "language models transformer": 13193, "language models novel": 13110, "text generation various": 25332, "language models bert": 12835, "knowledge previous work": 12569, "conduct human evaluation": 4562, "described natural language": 6163, "generate correct code": 9767, "paper aims explore": 18188, "aims explore generative": 1203, "language models artificial": 12826, "models artificial intelligence": 16039, "artificial intelligence ai": 1980, "intelligence ai specifically": 12068, "bridge gap paper": 2988, "gap paper proposes": 9645, "based pretrained language": 2524, "language model plm": 12785, "pretrained transformer gpt3": 19603, "models applied generate": 16036, "controlled text generation": 4948, "text generation ctg": 25327, "state art neural": 23742, "neural network architecture": 17268, "language processing computer": 13222, "processing computer vision": 19891, "range machine learning": 20898, "input text prompt": 11883, "novel approach learning": 17543, "gpt2 gpt3 models": 10253, "models certain extent": 16080, "emergent incontext learning": 7360, "wide range domains": 27381, "variational autoencoder vae": 26994, "generation natural language": 9991, "nlp tasks based": 17438, "models llms nlp": 16452, "generative question answering": 10108, "promptbased fewshot learning": 20126, "prompt engineering paper": 20091, "state art natural": 23740, "art natural language": 1960, "natural language model": 17076, "model gpt2 generate": 15789, "models bert gpt": 16059, "large number parameters": 13574, "demonstrate effectiveness approach": 5989, "relative positional embedding": 21459, "relative positional embeddings": 21460, "received considerable attention": 21127, "large language modeling": 13359, "language model developed": 12754, "model developed openai": 15739, "requires training examples": 21760, "largescale machine learning": 13642, "machine learning models": 14915, "learning models like": 13857, "evaluating natural language": 7949, "conditional text generation": 4531, "text generation tasks": 25331, "achieves stateoftheart performance": 647, "stateoftheart performance tasks": 23795, "model publicly available": 15885, "advancing future research": 955, "language model trained": 12800, "code data released": 3906, "achieved stateoftheart performance": 615, "stateoftheart performance natural": 23793, "performance natural language": 18711, "processing nlp benchmarks": 19903, "possible significantly improve": 19141, "improve model performance": 11365, "variety language tasks": 27009, "despite lacking explicit": 6269, "models perform better": 16566, "emergent abilities large": 7353, "abilities large language": 312, "language models scaling": 13160, "performance sample efficiency": 18751, "wide range downstream": 27382, "range downstream tasks": 20894, "language models consider": 12858, "capabilities language models": 3120, "language models methods": 13100, "language models despite": 12872, "future research directions": 9592, "enhancing robustness llms": 7649, "ai large language": 1113, "large language model": 13339, "language model gpt3": 12766, "knowledge text corpora": 12593, "work propose novel": 27541, "use language models": 26517, "utility maximization framework": 26898, "learning value functions": 13929, "detailed empirical analysis": 6293, "useful natural language": 26616, "question answering dataset": 20725, "language model generation": 12762, "performance language models": 18684, "language models task": 13186, "results reveal current": 22104, "current language models": 5343, "models struggle solve": 16708, "advances language modeling": 943, "challenge large language": 3354, "task natural language": 24807, "knowledge graph completion": 12534, "large language modelbased": 13358, "model large language": 15815, "language models gpt3": 12919, "ability perform incontext": 367, "perform incontext learning": 18558, "understanding incontext learning": 26280, "transformers trained scratch": 25965, "learning linear functions": 13846, "training data model": 25760, "code models available": 3931, "neural network model": 17269, "gpt2 model generate": 10262, "outperforms current stateoftheart": 18042, "generation language models": 9971, "personally identifiable information": 18862, "identifiable information pii": 11125, "offtheshelf pretrained language": 17721, "paper propose simple": 18297, "variety tasks specifically": 27021, "largescale pretrained language": 13645, "language generation models": 12712, "language models limited": 12963, "propose simple effective": 20332, "data augmentation method": 5429, "method improve performance": 15369, "dialogue model based": 6465, "alignment different languages": 1281, "achieve competitive performance": 564, "language models ability": 12814, "deep learning models": 5890, "recent work shows": 21215, "stateoftheart transformerbased models": 23816, "demonstrate large language": 6009, "language model produce": 12793, "training large neural": 25790, "large neural language": 13569, "models large datasets": 16329, "models paper presents": 16559, "language model using": 12803, "text processing tasks": 25364, "training large language": 25787, "paper present novel": 18270, "models language understanding": 16327, "language use need": 13282, "contrast large language": 4888, "models llms trained": 16497, "models llms explore": 16414, "language models infer": 12940, "uses large language": 26693, "prompt engineering using": 20093, "learning contrastive learning": 13791, "trained using training": 25743, "shown remarkable success": 23058, "summarization natural language": 24353, "experiments using popular": 8420, "metrics measure performance": 15532, "performance various tasks": 18796, "present case study": 19426, "recent large language": 21186, "models llms demonstrated": 16386, "llms demonstrated remarkable": 14432, "demonstrated remarkable prediction": 6069, "remarkable prediction performance": 21586, "prediction performance growing": 19358, "performance growing array": 18668, "growing array tasks": 10494, "reproducing results available": 21706, "results available github": 22015, "recurrent neural networks": 21304, "longshort term memory": 14832, "transformer models large": 25927, "models llms gpt3": 16425, "modern nlp systems": 16806, "generation generative pretrained": 9961, "propose novel way": 20326, "language models given": 12914, "learning transfer learning": 13923, "models llms emerged": 16402, "llms emerged powerful": 14458, "different domains languages": 6511, "remains open question": 21549, "processing nlp tasks": 19909, "tasks text classification": 25084, "training larger dataset": 25792, "lead better performance": 13700, "chinese pretrained language": 3733, "design choices training": 6185, "language models case": 12844, "models case study": 16077, "design effective prompts": 6190, "model prompt design": 15879, "achieve humanlevel performance": 575, "knowledge pretrained language": 12565, "question answering tasks": 20737, "finetuning large language": 9145, "knowledge pretrained lms": 12566, "transformer recent work": 25934, "recent work shown": 21212, "language models new": 13109, "et al 2022": 7844, "tasks fewshot prompting": 24929, "chainofthought cot prompting": 3332, "require multistep reasoning": 21729, "language models understanding": 13194, "commonsense reasoning tasks": 4115, "stateoftheart large language": 23777, "language models susceptible": 13182, "natural language specifications": 17109, "embedded large language": 7305, "models llms help": 16431, "llms help users": 14541, "questions large language": 20805, "capabilities natural language": 3134, "question answering qa": 20734, "reasoning capabilities llms": 21062, "models learn language": 16340, "language large language": 12734, "language processing models": 13227, "acquire rich linguistic": 682, "large amounts text": 13319, "pretrained models significantly": 19580, "models fewer parameters": 16214, "language models emergent": 12885, "network priori knowledge": 17235, "question answering task": 20736, "popularity large language": 19076, "parameter efficient learning": 18357, "recently gained significant": 21238, "gained significant attention": 9617, "generalization unseen domains": 9734, "houlsby et al": 10876, "achieve new stateoftheart": 578, "et al 2018": 7840, "language model llm": 12773, "openended text generation": 17836, "given language model": 10154, "language model lm": 12777, "significantly outperforms strong": 23173, "automatic human evaluations": 2298, "language model text": 12799, "model text generation": 15944, "models work present": 16783, "ability wide range": 385, "utilizing generative pretrained": 26916, "pretrained transformer gpt": 19597, "transformer gpt proposed": 25910, "humans language models": 11070, "language models predictions": 13128, "language models affected": 12823, "gpt2 gptneo gptj": 10256, "large generative language": 13335, "shown great performance": 23022, "great performance tasks": 10455, "shown improve performance": 23032, "performance various nlp": 18794, "known incontext learning": 12611, "outofdistribution ood performance": 18003, "semantic parsing tasks": 22728, "tasks incontext learning": 24959, "multilabel classification task": 16909, "achieve stateoftheart results": 591, "machine learning tasks": 14920, "ground truth label": 10473, "address issue propose": 806, "standard deep learning": 23716, "examples prompting large": 8141, "language model twice": 12802, "training language models": 25785, "language models models": 13102, "incorrect answers results": 11538, "language models know": 12944, "analysis large language": 1422, "models llms automated": 16367, "language models discuss": 12876, "humans ai systems": 11061, "language models training": 13191, "raises important question": 20865, "language models performance": 13122, "incontext learning abilities": 11506, "evaluation metrics compared": 8006, "work introduce novel": 27512, "language models stateoftheart": 13172, "model prior knowledge": 15874, "lack training data": 12664, "make code models": 14976, "datasets publicly available": 5769, "despite impressive performance": 6266, "performance diverse tasks": 18630, "tasks large language": 24975, "models lms struggle": 16507, "orders magnitude larger": 17952, "simple effective method": 23221, "models including chatgpt": 16286, "nlp machine learning": 17425, "models using human": 16766, "automatic metrics human": 2303, "metrics human evaluation": 15526, "generation pretrained language": 10000, "language models successful": 13178, "constrained text generation": 4706, "significantly improve performance": 23159, "generative pretraining gpt": 10104, "zero fewshot learning": 27682, "language models ranging": 13141, "large amounts diverse": 13317, "amounts diverse data": 1368, "fewshot learning wide": 8924, "learning wide range": 13933, "wide range nlp": 27387, "range nlp tasks": 20906, "automated human evaluation": 2274, "studied long time": 24033, "using neural networks": 26818, "human participants rate": 10973, "bert large language": 2726, "language models having": 12924, "variety natural language": 27012, "knowledge distillation kd": 12513, "selfsupervised learning selfsupervised": 22713, "learning selfsupervised learning": 13904, "existing approaches focus": 8245, "pretraining language model": 19627, "language model evaluate": 12758, "expected calibration error": 8311, "learning source code": 13911, "reproduce results available": 21698, "text generated large": 25320, "generated large language": 9857, "realistic setting text": 21013, "different types errors": 6563, "encourage future work": 7517, "generation using generative": 10039, "generative pretrained language": 10087, "researchers extensively explored": 21887, "paper propose new": 18291, "increase f1 score": 11546, "training masked language": 25801, "language models provide": 13140, "large scale language": 13591, "scale language models": 22489, "language models research": 13156, "natural language models": 17077, "quality generated text": 20652, "training data used": 25762, "generative ai models": 10054, "chatgpt stable diffusion": 3663, "machine learning community": 14904, "large multilingual language": 13567, "evaluating large language": 7944, "using human feedback": 26772, "field artificial intelligence": 8951, "ai alignment aims": 1080, "models llms potential": 16460, "train reward model": 25705, "contrastive languageimage pretraining": 4899, "strong zeroshot performance": 23975, "tasks explicitly trained": 24925, "publicly available dataset": 20575, "paper evaluate performance": 18217, "does necessarily lead": 6868, "necessarily lead improved": 17157, "language models potential": 13126, "harms large language": 10596, "language model api": 12744, "textual style transfer": 25440, "paper propose novel": 18292, "propose novel task": 20324, "language models visionlanguage": 13201, "models visionlanguage models": 16774, "ai language models": 1111, "instructgpt large language": 11969, "data different languages": 5466, "different languages multilingual": 6524, "multilingual language models": 16920, "language makes challenging": 12742, "models work propose": 16784, "high low resource": 10709, "low resource languages": 14870, "lowresource languages experimental": 14890, "languages experimental results": 13303, "minimal training data": 15567, "outperforms strong baselines": 18063, "neural machine translation": 17261, "practical applications large": 19290, "applications large language": 1671, "models llms significantly": 16488, "advancements deep learning": 918, "using incontext learning": 26775, "fewshot incontext learning": 8922, "incontext learning using": 11519, "using pretrained large": 26834, "pretrained large language": 19560, "models llms recently": 16466, "llms recently applied": 14670, "et al 2021": 7843, "compare models performance": 4170, "address challenge introduce": 791, "different prompt strategies": 6549, "match desired target": 15119, "data existing methods": 5479, "existing methods use": 8269, "new ways train": 17371, "topic growing concern": 25624, "study aims explore": 24064, "chatgpt great potential": 3588, "superior performance compared": 24374, "recent research shown": 21200, "shown language models": 23034, "natural language nl": 17078, "recent largescale language": 21190, "language models empirical": 12886, "models empirical study": 16172, "language models natural": 13106, "nlp natural language": 17428, "case study chatgpt": 3243, "pedagogical methods paper": 18512, "question answering knowledge": 20728, "knowledge graphs kgs": 12537, "natural language interfaces": 17075, "translating natural language": 25977, "natural language question": 17105, "paper present comprehensive": 18266, "based findings propose": 2486, "language processing task": 13240, "scale large language": 22491, "llms demonstrated ability": 14424, "demonstrated ability perform": 6040, "ability perform variety": 369, "perform variety natural": 18574, "attention natural language": 2177, "processing nlp community": 19904, "work empirically analyze": 27487, "limitations current version": 14126, "current version chatgpt": 5367, "provide indepth analysis": 20435, "empirical evaluation different": 7398, "evaluation different lms": 7975, "recent advancements large": 21141, "advancements large language": 925, "llms like chatgpt": 14586, "directions future research": 6629, "code natural language": 3935, "conducted controlled experiment": 4573, "recent emergence large": 21175, "emergence large language": 7345, "advancements field natural": 921, "field natural language": 8960, "makes prohibitively expensive": 15002, "models different sizes": 16145, "framework different tasks": 9415, "survey state art": 24475, "models like bert": 16348, "like bert gpt": 14071, "bert gpt t5": 2719, "language models fail": 12899, "observed large language": 17656, "language models exhibit": 12892, "paper propose model": 18290, "chat generative pretrained": 3469, "nlp tasks existing": 17442, "word sense disambiguation": 27449, "tasks automated chatgpt": 24869, "generative artificial intelligence": 10063, "intelligence ai models": 12064, "chatgpt potential revolutionize": 3621, "generative ai specifically": 10055, "explore chatgpts ability": 8502, "use generative ai": 26512, "improving large language": 11417, "feedback large language": 8891, "models llms chatgpt": 16375, "llms chatgpt able": 14393, "chatgpt able generate": 3497, "able generate humanlike": 405, "generate humanlike fluent": 9784, "humanlike fluent responses": 11040, "downstream tasks taskoriented": 6994, "question answering applying": 20721, "answering applying llms": 1568, "opendomain question answering": 17826, "code models publicly": 3932, "models publicly available": 16614, "open source code": 17779, "language models recent": 13145, "models recent years": 16630, "recent years large": 21218, "years large language": 27659, "models llms gained": 16418, "ability generate humanlike": 343, "generate humanlike text": 9788, "potential applications various": 19163, "applications various fields": 1690, "software engineering llms": 23427, "language model explicitly": 12760, "content large language": 4781, "language models field": 12901, "models llms study": 16492, "models demonstrated impressive": 16129, "demonstrated impressive performance": 6050, "impressive performance various": 11339, "performance various natural": 18791, "various natural language": 27064, "understanding reasoning capabilities": 26307, "popular natural language": 19070, "understanding nlu tasks": 26299, "tasks findings indicate": 24931, "sentiment analysis tasks": 22802, "pretrained transformer encoder": 19596, "text generation systems": 25330, "intelligence ai tools": 12069, "adoption generative ai": 870, "generative ai tools": 10056, "quality generated images": 20651, "data used training": 5619, "models llms able": 16362, "reinforcement learning human": 21417, "learning human feedback": 13827, "human feedback rlhf": 10942, "language models using": 13197, "prompts large language": 20216, "design large language": 6198, "human factors example": 10940, "systems paper propose": 24623, "extensive human evaluation": 8618, "used text generation": 26602, "language models investigate": 12942, "study highlights importance": 24105, "advanced large language": 893, "models like chatgpt": 16349, "gained considerable attention": 9612, "era artificial intelligence": 7767, "brief introduction development": 2998, "development large language": 6407, "alignment large language": 1285, "llms used generate": 14744, "wide range tasks": 27389, "range tasks set": 20912, "like reinforcement learning": 14098, "aligning llms human": 1275, "framework allows users": 9400, "language models studies": 13175, "hypothesis large language": 11103, "downstream task performance": 6983, "research large language": 21832, "language models gpt": 12917, "discussions potential uses": 6709, "natural language questions": 17106, "analyze large language": 1472, "models llms represent": 16471, "models extensive experiments": 16208, "model based gpt2": 15695, "achieves stateoftheart accuracy": 646, "web search engines": 27342, "based pretrained large": 2527, "paper presents systematic": 18284, "language models including": 12932, "models including gpt3": 16287, "inductive deductive abductive": 11661, "deductive abductive reasoning": 5874, "dialogue large language": 6463, "assessments higher education": 2077, "evaluated capability generative": 7914, "capability generative pretrained": 3157, "cheating emerging technology": 3709, "education intensified date": 7115, "intensified date rigorous": 12105, "date rigorous analysis": 5786, "inspired recent advances": 11937, "models code available": 16092, "reinforcement learning large": 21420, "models llms increasingly": 16436, "llms increasingly used": 14558, "surpassing previous stateoftheart": 24450, "performance language model": 18683, "language model behavior": 12747, "finetuning language models": 9143, "language models possess": 13125, "syntax semantics pragmatics": 24522, "aigc aka aigenerated": 1163, "aka aigenerated content": 1220, "recent language model": 21184, "language model gpt4": 12767, "text images videos": 25341, "augmenting large language": 2238, "conversational large language": 4992, "encoder decoder models": 7486, "results large language": 22067, "language models llm": 12964, "comprehensive evaluation chatgpts": 4376, "paper presents comprehensive": 18277, "language model chatgpt": 12750, "demonstrating potential use": 6096, "chatgpt publicly available": 3633, "language models gpt4": 12922, "remains underexplored paper": 21556, "underexplored paper conduct": 26195, "paper conduct comprehensive": 18203, "conduct comprehensive analysis": 4548, "help large language": 10661, "models llms like": 16443, "llms like gpt3": 14590, "future research area": 9590, "grammatical error correction": 10418, "performance variety natural": 18786, "error correction gec": 7780, "compare performance different": 4174, "zeroshot fewshot settings": 27707, "performance best prompt": 18597, "human evaluation experiments": 10927, "better understand strengths": 2794, "strengths weaknesses different": 23941, "propose comprehensive evaluation": 20284, "comprehensive evaluation framework": 4377, "correlates better human": 5109, "evaluation large language": 7992, "applied variety tasks": 1706, "tasks source code": 25062, "source code generation": 23511, "code generation paper": 3919, "paper explores potential": 18226, "modern machine learning": 16803, "mechanism large language": 15210, "language models standard": 13171, "powered large language": 19264, "position paper argue": 19109, "tools like chatgpt": 25609, "problem large language": 19773, "llms chatgpt gpt4": 14396, "leverage commonsense knowledge": 13995, "answer question findings": 1551, "incontext learning language": 11513, "learning language model": 13836, "work introduce new": 27511, "high success rates": 10719, "use large language": 26519, "method outperforms baselines": 15381, "outperforms baselines tasks": 18036, "outputs large language": 18090, "llms like gpt": 14589, "generative model human": 10081, "gpt3 gpt35 gpt4": 10298, "language models solve": 13167, "presented natural language": 19475, "require large amounts": 21727, "new tasks work": 17358, "model llm agent": 15822, "guided natural language": 10527, "significantly outperforms existing": 23170, "llms reasoning abilities": 14663, "natural language reasoning": 17107, "chain thought cot": 3326, "sophisticated large language": 23492, "based large language": 2505, "models llms set": 16475, "open problem paper": 17770, "problem paper propose": 19781, "machine learning algorithms": 14900, "era large language": 7769, "chatgpt large language": 3599, "make use llms": 14992, "conduct case study": 4544, "explore use chatgpt": 8529, "chatgpt human experts": 3591, "future research direction": 9591, "deep learning algorithms": 5882, "automated machine learning": 2278, "machine learning automl": 14903, "evaluated large language": 7923, "models llms gpt4": 16428, "task improve performance": 24786, "intelligence large language": 12078, "language model gpt": 12763, "potential large language": 19198, "language models recognize": 13151, "paper asks llms": 18197, "talking large language": 24719, "various tasks models": 27091, "chatgpt developed openai": 3551, "provide valuable insights": 20473, "valuable insights potential": 26956, "success failure technology": 24258, "obtain natural language": 17666, "preliminary evaluation chatgpt": 19401, "require extensive human": 21722, "models llms offer": 16454, "chatbots based large": 3487, "automated item generation": 2276, "gpt4 large language": 10353, "focusing specifically chatgpt": 9268, "gained increasing attention": 9614, "generative foundation model": 10068, "end introduce new": 7528, "language models diffusion": 12873, "models diffusion models": 16147, "language models excel": 12891, "reasoning tasks including": 21112, "smaller language models": 23357, "text simplification ts": 25376, "uses word embeddings": 26701, "models outperform models": 16552, "make code publicly": 14977, "code publicly available": 3942, "openais large language": 17809, "political compass test": 19036, "big personality traits": 2846, "type indicator mbti": 26124, "ai generated content": 1102, "generated content aigc": 9842, "detect text generated": 6304, "existing aigc detectors": 8243, "achieves 90 accuracy": 621, "generative large language": 10074, "domains natural language": 6934, "knowledge graph kg": 12535, "generative pretrained model": 10089, "intelligent information processing": 12094, "information processing ancient": 11775, "processing ancient texts": 19887, "artificial intelligence technology": 1993, "tuning finetuning language": 26075, "language models tasks": 13187, "generalization unseen tasks": 9735, "leads significant improvements": 13719, "models generalization capabilities": 16235, "various downstream tasks": 27041, "architectures training procedures": 1918, "language model pretraining": 12791, "achieving artificial general": 659, "artificial general intelligence": 1977, "general intelligence agi": 9699, "pretrained foundation models": 19532, "pretrained transformers gpts": 19611, "aigenerated content aigc": 1171, "propose novel framework": 20319, "incontext learning ability": 11507, "propose new metric": 20312, "perspectives large language": 18871, "current large language": 5345, "paper discuss possible": 18212, "deep learning code": 5883, "functioning large language": 9533, "diverse set queries": 6816, "help researchers users": 10668, "language models chatgpt": 12847, "models chatgpt demonstrated": 16088, "demonstrated significant potential": 6074, "providing accurate reliable": 20505, "paper seek understand": 18311, "seek understand chatgpt": 22660, "language understanding reasoning": 13279, "reasoning natural language": 21094, "topics artificial intelligence": 25629, "deep neural network": 5896, "particularly large language": 18441, "language models important": 12931, "alignment paper propose": 1289, "memorization large language": 15252, "language models particular": 13120, "release code data": 21470, "necessary reproduce results": 17161, "combined large language": 4056, "models llms achieved": 16363, "complex reasoning tasks": 4316, "task converts natural": 24757, "converts natural language": 5014, "llms reasoning capabilities": 14664, "tasks work propose": 25103, "work propose new": 27540, "propose new paradigm": 20313, "ability llms experiments": 361, "limitations propose new": 14138, "multiple benchmark datasets": 16955, "text data available": 25301, "chatgpt conversational agent": 3539, "recent development large": 21166, "models llms demonstrate": 16384, "results indicate chatgpt": 22061, "models llms perform": 16459, "information retrieval ir": 11783, "retrieval ir tasks": 22149, "general artificial intelligence": 9692, "models llms exhibited": 16410, "llms exhibited remarkable": 14480, "capabilities variety domains": 3145, "despite recent success": 6278, "understanding generation tasks": 26276, "experimental results demonstrate": 8346, "language models conversation": 12863, "chatgpt achieves competitive": 3501, "role large language": 22370, "language models multidimensional": 13103, "transformers language models": 25958, "downstream tasks named": 6990, "tasks named entity": 24998, "positive negative examples": 19119, "advances generative ai": 939, "latent diffusion model": 13664, "training set augmentation": 25838, "models llms shown": 16477, "llms shown exceptional": 14693, "shown exceptional performance": 23018, "exceptional performance various": 8169, "introduce simple effective": 12255, "experiments demonstrate method": 8380, "practical applicability realworld": 19286, "applicability realworld scenarios": 1633, "data expensive timeconsuming": 5481, "tasks varying complexity": 25099, "test sets observe": 25258, "strong predictive power": 23971, "use ai tools": 26486, "increasingly powerful large": 11578, "powerful large language": 19273, "using training data": 26875, "models lms increasingly": 16506, "enhanced large language": 7627, "agents paper present": 1047, "present novel framework": 19449, "combines large language": 4059, "agents different levels": 1033, "language models display": 12877, "models instruction tuning": 16307, "language models revolutionized": 13159, "achieve performance par": 583, "generation large language": 9973, "new stateoftheart fewshot": 17354, "relation extraction datasets": 21442, "research capabilities large": 21789, "language model pretrained": 12788, "model pretrained language": 15867, "achieved remarkable success": 611, "nlp tasks despite": 17440, "despite great success": 6260, "demonstrates strong generalization": 6088, "recent years witnessed": 21225, "original natural language": 17970, "natural language contents": 17057, "data augmentation methods": 5430, "supervised contrastive learning": 24383, "models llms construct": 16383, "semantic textual similarity": 22737, "textual similarity sts": 25438, "methods large language": 15461, "different natural language": 6538, "processing nlp models": 19907, "recently large language": 21241, "llms demonstrated exceptional": 14427, "demonstrated exceptional performance": 6045, "alternative human evaluation": 1345, "llms generate responses": 14519, "potential using llms": 19239, "demonstrations incontext learning": 6105, "ability large language": 355, "extent language model": 8632, "models pretrained large": 16584, "pretrained large amounts": 19559, "finetuned model perform": 9107, "llms great potential": 14536, "popular llms chatgpt": 19067, "llm training data": 14319, "training data evaluation": 25757, "opensource large language": 17854, "providing valuable insights": 20523, "data code publicly": 5445, "entity recognition using": 7712, "vicuna large language": 27176, "llms chatgpt shown": 14397, "chatgpt shown impressive": 3654, "recognition ner models": 21262, "achieves superior performance": 652, "models bert roberta": 16061, "paper investigate using": 18247, "investigate using chatgpt": 12314, "present novel approach": 19448, "prompt engineering techniques": 20092, "paper provides comprehensive": 18305, "exploring potential large": 8553, "language models context": 12862, "domains large language": 6926, "language models transform": 13192, "computational social science": 4434, "like chatgpt capable": 14075, "processing tasks zeroshot": 19917, "need training data": 17190, "provides road map": 20499, "finetuned models achieve": 9109, "outperforms existing models": 18046, "chatgpt empirical study": 3559, "aspect human intelligence": 2023, "strategies chatgpts performance": 23900, "empirical findings propose": 7405, "capacity large language": 3187, "fewshot prompting chainofthought": 8931, "prompting chainofthought cot": 20137, "human evaluation results": 10928, "systems paper presents": 24622, "paper presents innovative": 18280, "presents innovative approach": 19492, "personalized recommendations based": 18858, "recommendations based users": 21278, "data privacy concerns": 5565, "evaluation metrics benchmarks": 8005, "paving way future": 18502, "larger language models": 13618, "tasks varying levels": 25100, "gpt3 achieves near": 10287, "achieves near sota": 635, "chainofthought cot style": 3334, "generate humanlike responses": 9786, "humanlike responses understand": 11045, "potential using generative": 19238, "social science research": 23399, "detection large language": 6334, "rapid development large": 20942, "text generated llm": 25323, "method does require": 15344, "does require access": 6873, "reasoning language models": 21082, "knowledge base kb": 12498, "existing knowledge graphs": 8260, "achieve better results": 562, "remains open problem": 21548, "like chatgpt recently": 14078, "recently demonstrated impressive": 21234, "demonstrated impressive capabilities": 6049, "language understanding generation": 13272, "various applications including": 27028, "paper propose framework": 18288, "providing new way": 20519, "online service providers": 17746, "question answering models": 20732, "artificial intelligence models": 1991, "controlled natural language": 4946, "address limitations propose": 816, "shown promise various": 23049, "study evaluates performance": 24092, "models llms gpt": 16424, "llms gpt 35": 14529, "play crucial role": 18962, "models llms present": 16461, "knowledge reasoning abilities": 12573, "conduct comprehensive evaluation": 4549, "results indicate gpt4": 22062, "significant room improvement": 23138, "outperforming strong baselines": 18031, "text generated blackbox": 25318, "models llms exhibit": 16407, "blackbox language model": 2902, "experiments demonstrate effectiveness": 8379, "demonstrate effectiveness method": 5992, "creating synthetic datasets": 5226, "recent advancements artificial": 21139, "advancements artificial intelligence": 915, "poses significant challenge": 19100, "aims knowledge gap": 1210, "study underscores importance": 24163, "overall paper offers": 18106, "offers valuable insights": 17708, "language models jointly": 12943, "serving generative llms": 22870, "generalpurpose large language": 9747, "adapted downstream tasks": 731, "explore use llms": 8530, "density estimation methods": 6120, "incontext learning icl": 11511, "extent llms used": 8634, "prior semantic knowledge": 19713, "information large language": 11762, "report large language": 21651, "models able generate": 15999, "deep learning methods": 5888, "play important role": 18965, "processing nlp applications": 19902, "deep learning dl": 5884, "embodied conversational agent": 7326, "conversational agent chatgpt": 4980, "using language model": 26781, "language model create": 12752, "improve performance model": 11368, "prompt models generate": 20106, "substantially improves performance": 24227, "performance wide range": 18798, "nlp tasks especially": 17441, "address limitation propose": 813, "large margin additionally": 13563, "additionally provide thorough": 783, "generative ai integrating": 10053, "texttoimage t2i generation": 25418, "garnered significant attention": 9659, "significant attention research": 23099, "opportunities challenges prospects": 17888, "arithmetic reasoning tasks": 1949, "performance reasoning tasks": 18742, "models llms complex": 16381, "complex information tasks": 4293, "models llms based": 16368, "stateoftheart performance various": 23796, "models llms external": 16415, "llms external tools": 14489, "emerged promising approach": 7338, "approach solving complex": 1814, "recent incontext learning": 21181, "incontext learning paradigm": 11518, "limited context length": 14152, "diverse domains including": 6796, "question answering large": 20729, "answering large language": 1576, "models llms garnered": 16419, "llms garnered significant": 14512, "training data finetuning": 25759, "pretraining large corpora": 19629, "language models acquire": 12820, "remarkable performance variety": 21575, "paper investigate ability": 18244, "approaches large language": 1851, "provides promising approach": 20497, "benchmark large language": 2667, "language models demonstrated": 12868, "models demonstrated remarkable": 16131, "demonstrated remarkable performance": 6064, "remarkable performance various": 21578, "remains explored paper": 21542, "findings reveal chatgpt": 9056, "conclusion research contributes": 4517, "downstream applications like": 6973, "complex multistep reasoning": 4304, "multistep reasoning paper": 16994, "learning ability large": 13762, "data publicly available": 5575, "lightweight language model": 14067, "word embedding space": 27438, "achieved remarkable progress": 609, "impact model performance": 11238, "remains open challenge": 21547, "generative language model": 10070, "comparable better performance": 4143, "performance compared stateoftheart": 18608, "lms different sizes": 14767, "available research community": 2386, "research paper presents": 21845, "prompting language models": 20151, "data large language": 5531, "existing large language": 8262, "models output results": 16554, "poses unique challenges": 19103, "methods fall short": 15442, "fall short achieving": 8809, "address shortcomings propose": 826, "despite impressive capabilities": 6265, "systems specifically focusing": 24639, "underlying language models": 26210, "different languages work": 6525, "language model apis": 12745, "address problem propose": 819, "propose challenging benchmark": 20281, "reveal current llms": 22196, "conversational artificial intelligence": 4984, "language models led": 12956, "produce text indistinguishable": 19932, "text indistinguishable humangenerated": 25344, "compare performance chatgpt": 4173, "open information extraction": 17766, "information extraction tasks": 11755, "popular large language": 19064, "language models introduce": 12941, "provide detailed analysis": 20419, "designed specific tasks": 6235, "cases address limitations": 3248, "address limitations present": 815, "language models conduct": 12857, "user studies evaluate": 26644, "finetuned llama model": 9102, "model significantly outperforms": 15917, "challenging tasks like": 3434, "navigation large language": 17140, "models llms struggle": 16491, "approach outperforms previous": 1796, "task success rate": 24831, "decision making tasks": 5825, "seen widespread adoption": 22670, "follow user instructions": 9275, "train evaluate models": 25696, "models trained human": 16746, "tasks finetuning models": 24934, "expensive timeconsuming obtain": 8321, "paper introduces novel": 18242, "language models assess": 12829, "using reinforcement learning": 26850, "generation machine translation": 9984, "reinforcement learning recent": 21424, "recent developments large": 21170, "developments large language": 6423, "language models focus": 12904, "markov decision process": 15086, "using proximal policy": 26843, "proximal policy optimization": 20530, "policy optimization ppo": 19029, "enabling large language": 7474, "models generate text": 16239, "llms generate text": 14520, "commercial search engines": 4085, "novel prompting strategies": 17565, "promising future directions": 20059, "language models specific": 13169, "models specific tasks": 16700, "et al 2023": 7845, "bias large language": 2810, "shown great potential": 23024, "address problems propose": 821, "whitebox blackbox settings": 27373, "intervention significantly improves": 12222, "improves f1 score": 11406, "f1 score roberta": 8708, "adapting language models": 737, "performance range natural": 18737, "remains underexplored study": 21557, "factors influence ability": 8757, "language models slms": 13164, "tasks sentiment analysis": 25052, "entity recognition relation": 7710, "recognition relation extraction": 21264, "task definitions detailed": 24762, "llms generate reasonable": 14518, "llms data augmentation": 14418, "current evaluation paradigms": 5338, "multihop question answering": 16904, "data code released": 5447, "commonsense knowledge bases": 4113, "tackle limitations propose": 24686, "extensive experiments demonstrate": 8613, "including large language": 11463, "language models gpt35": 12921, "chatgpt codes data": 3534, "demonstrate current models": 5987, "predictability large language": 19337, "different model families": 6535, "llms shown remarkable": 14699, "remarkable reasoning capabilities": 21592, "generate intermediate reasoning": 9792, "intermediate reasoning steps": 12177, "carlo tree search": 3226, "strong baselines including": 23962, "synthetic data generation": 24538, "nlp tasks tackle": 17449, "strategies improve performance": 23906, "language models encode": 12888, "ability answer questions": 327, "previous studies typically": 19677, "address issues present": 808, "contrastive learning framework": 4903, "utilizing large language": 26919, "achieves comparable performance": 626, "summarization electronic health": 24345, "electronic health records": 7275, "using neural network": 26817, "neural network training": 17270, "models bart t5": 16052, "language models previously": 13134, "model produce coherent": 15876, "models ability produce": 15997, "answer question paper": 1552, "search datasets demonstrate": 22611, "datasets demonstrate effectiveness": 5741, "formal theorem proving": 9323, "large language modelsllms": 13560, "remains underexplored area": 21555, "reinforcement learning robotics": 21427, "method code available": 15335, "bert roberta gpt3": 2733, "social media data": 23389, "short human performance": 22976, "paper aims bridge": 18187, "aims bridge gap": 1195, "results demonstrate method": 22034, "demonstrate method significantly": 6016, "outperforms existing approaches": 18044, "method achieves similar": 15323, "achieves similar performance": 643, "english large language": 7598, "nlp applications fail": 17412, "synthetic data augmentation": 24536, "language models present": 13129, "change models behavior": 3444, "finally present simple": 9021, "controllable text generation": 4941, "struggle tasks require": 24004, "language models contain": 12859, "models contain billions": 16107, "contain billions parameters": 4742, "codes publicly available": 3969, "named entities sentiments": 17025, "pretrained transformer gpt4": 19604, "research contributes understanding": 21797, "models gpt3 shown": 16257, "shown remarkable performance": 23056, "correction gec tasks": 5092, "realworld applications particularly": 21033, "using zeroshot fewshot": 26884, "way use large": 27312, "language models downstream": 12879, "models downstream tasks": 16158, "domain large language": 6900, "database large language": 5633, "language model provide": 12795, "language models knowledgeintensive": 12946, "models knowledgeintensive tasks": 16322, "shown promising performance": 23051, "reasoning tasks require": 21114, "llms realworld applications": 14660, "previous studies focused": 19676, "external knowledge base": 8641, "significantly improves performance": 23162, "comprehensive evaluation chatgpt": 4375, "thorough evaluation chatgpts": 25470, "evaluation chatgpts performance": 7962, "chatgpts performance diverse": 3697, "summarization code generation": 24342, "strengths weaknesses chatgpt": 23940, "provide insights future": 20440, "insights future research": 11911, "research using llms": 21877, "wide variety tasks": 27394, "solve challenging tasks": 23457, "diverse nlp tasks": 6808, "using chatgpt study": 26726, "assessing chatgpts performance": 2063, "fields including education": 8975, "contributes deeper understanding": 4918, "artificial intelligence systems": 1992, "demonstrated remarkable capabilities": 6061, "remarkable capabilities addressing": 21566, "propose effective method": 20288, "results demonstrate proposed": 22038, "demonstrate proposed approach": 6030, "proposed approach significantly": 20347, "having minimal impact": 10616, "ai higher education": 1105, "ai tools chatgpt": 1147, "regarding use ai": 21378, "public attitudes chatgpt": 20552, "language models existing": 12894, "models existing work": 16197, "language modeling benchmarks": 12806, "language models study": 13176, "models llms ability": 16361, "results highlight ability": 22056, "success large language": 24262, "contrast previous works": 4893, "red teaming language": 21310, "detect machinegenerated text": 6302, "machinegenerated text detection": 14938, "language models help": 12925, "llms specifically gpt4": 14716, "recent advances natural": 21161, "rise large language": 22284, "models llms capable": 16372, "llms capable generating": 14389, "models increasingly popular": 16298, "autoregressive large language": 2344, "language models strong": 13173, "language models researchers": 13157, "solution problem work": 23440, "machine learning methods": 14910, "language models serve": 13161, "traditional natural language": 25682, "attention mechanism transformer": 2171, "mechanism transformer architecture": 15216, "paper investigates use": 18251, "use artificial intelligence": 26488, "clinical notes using": 3843, "model llm based": 15823, "introduce benchmark dataset": 12239, "work large language": 27520, "models large pretrained": 16334, "large pretrained neural": 13585, "language models brought": 12841, "nlp software engineering": 17434, "models trained massive": 16748, "code text data": 3951, "pretraining large language": 19630, "models previous sota": 16590, "avoid generating harmful": 2409, "generating harmful content": 9900, "datasets code available": 5732, "large pretrained models": 13584, "increasing model size": 11564, "large pretrained vision": 13586, "pretrained vision language": 19613, "representation learning methods": 21670, "limitation propose novel": 14117, "contrastive learning approach": 4902, "achieves new stateoftheart": 637, "stateoftheart sota results": 23811, "evaluated downstream tasks": 7921, "30 absolute improvement": 151, "evaluate performance chatgpt": 7896, "classification question answering": 3803, "question answering summarization": 20735, "best knowledge work": 2749, "outperforms stateoftheart finetuned": 18060, "domain findings demonstrate": 6894, "findings demonstrate chatgpt": 9041, "chatgpt potential valuable": 3622, "potential valuable tool": 19242, "llms fall short": 14497, "contribute model performance": 4911, "address issues propose": 809, "experiments pretrained language": 8400, "significant improvement compared": 23121, "llms incontext learning": 14553, "models llms face": 16417, "llms face challenges": 14492, "downstream tasks code": 6986, "simple effective strategy": 23223, "false positive rate": 8821, "deep neural networks": 5898, "end propose novel": 7532, "multitask learning framework": 16999, "utilization large language": 26901, "achieved great success": 601, "success general domains": 24260, "language processing paper": 13239, "instruction tuning dataset": 11984, "data finetune model": 5493, "content social media": 4790, "approach consistently improves": 1743, "models llms significant": 16486, "various domains including": 27038, "language processing artificial": 13220, "processing artificial intelligence": 19889, "tasks code generation": 24883, "propose novel method": 20321, "evaluate performance proposed": 7898, "performance proposed method": 18734, "conducted experiments using": 4575, "dataset experimental results": 5676, "experimental results using": 8357, "findings highlight potential": 9043, "potential llms efficiently": 19206, "recent advances large": 21158, "advances large language": 945, "models llms showcased": 16476, "semantic understanding reasoning": 22741, "massive amounts data": 15107, "style transfer largescale": 24174, "chatgpt garnered significant": 3576, "language prompts paper": 13249, "faithfulness generated text": 8801, "texts findings indicate": 25403, "language models support": 13179, "tool able generate": 25581, "text generation challenging": 25326, "experimental results datasets": 8345, "demonstrate model outperforms": 6019, "performance human evaluation": 18672, "models llms proven": 16463, "llms proven useful": 14653, "machine learning training": 14921, "models recent advances": 16629, "increasing concern ability": 11562, "world knowledge large": 27603, "opensource commercial llms": 17851, "language models multimodal": 13104, "understanding natural language": 26293, "natural language generating": 17064, "leverages large language": 14013, "models limited resources": 16356, "models llms revolutionized": 16473, "revolutionized natural language": 22243, "small number parameters": 23348, "legal ethical considerations": 13959, "use chatgpt education": 26495, "education artificial intelligence": 7111, "chatbot developed openai": 3479, "input natural language": 11874, "issues concerns raised": 12382, "potential use cases": 19233, "shown highly effective": 23027, "finetuning large pretrained": 9149, "language models address": 12822, "entire training set": 7694, "classifier trained using": 3815, "language models benchmark": 12834, "model performance compared": 15854, "emergence foundation models": 7341, "like chatgpt gpt4": 14077, "design simple effective": 6214, "ai machine learning": 1118, "large finetuned models": 13330, "chatgpt gained significant": 3573, "significant attention impressive": 23098, "impressive natural language": 11336, "provides comprehensive evaluation": 20484, "research aims enhance": 21779, "development language models": 6405, "language models explore": 12896, "evaluate large language": 7888, "remains challenging task": 21540, "models exhibit biases": 16192, "reasoning similar humans": 21106, "introduce dataset called": 12242, "neural network approach": 17267, "open source available": 17778, "training neural network": 25808, "generation artificial intelligence": 9927, "significant progress natural": 23130, "progress natural language": 20006, "complex tasks require": 4326, "generation using gpt3": 10040, "question answering external": 20726, "llms demonstrated impressive": 14430, "address issue introduce": 805, "introduce new dataset": 12249, "evaluate llms ability": 7891, "use external tools": 26509, "llms pretraining data": 14640, "new directions future": 17317, "received significant attention": 21129, "retrieving supporting evidence": 22181, "llms exhibit nearhuman": 14474, "exhibit nearhuman levels": 8220, "nearhuman levels performance": 17149, "levels performance natural": 13990, "natural language tasks": 17110, "language tasks including": 13264, "tasks including opendomain": 24953, "including opendomain question": 11472, "question answering unfortunately": 20740, "convincingly hallucinate incorrect": 5022, "hallucinate incorrect answers": 10540, "incorrect answers responses": 11535, "answers responses questions": 1601, "responses questions verified": 21964, "questions verified external": 20832, "verified external sources": 27142, "external sources accepted": 8647, "sources accepted face": 23526, "accepted face value": 460, "face value paper": 8715, "value paper report": 26969, "paper report simple": 18309, "generated answers corpus": 9837, "presenting question llm": 19479, "question llm receiving": 20755, "llm receiving generated": 14301, "receiving generated answer": 21133, "generated answer query": 9827, "answer query corpus": 1547, "query corpus combination": 20703, "corpus combination question": 5064, "combination question generated": 4045, "question generated answer": 20747, "generated answer present": 9824, "answer present llm": 1539, "present llm combination": 19441, "llm combination question": 14268, "generated answer retrieved": 9830, "answer retrieved answer": 1557, "retrieved answer prompting": 22170, "answer prompting indicate": 1543, "prompting indicate generated": 20147, "indicate generated answer": 11608, "generated answer supported": 9833, "answer supported retrieved": 1562, "supported retrieved answer": 24419, "questions passages ms": 20814, "passages ms marco": 18460, "ms marco v1": 16876, "marco v1 test": 15067, "v1 test collection": 26930, "llm capable verifying": 14262, "capable verifying generated": 3178, "verifying generated answer": 27153, "supporting material provided": 24423, "employing large language": 7437, "discuss potential implications": 6691, "model extensive experiments": 15768, "pretrained model does": 19575, "language models biological": 12840, "risks large language": 22297, "amazon mechanical turk": 1356, "study explores potential": 24098, "ai models specifically": 1121, "openais generative pretrained": 17797, "transformer gpt series": 25911, "using pretrained language": 26832, "case study involving": 3244, "stateoftheart language models": 23774, "results indicate stateoftheart": 22063, "scientific machine learning": 22564, "fields natural language": 8978, "prominent large language": 20039, "models llms openais": 16457, "highlight potential ai": 10767, "chatgpt text annotation": 3670, "questions various topics": 20830, "explores use chatgpt": 8545, "use chatgpt tool": 26496, "dataset findings highlight": 5681, "approaches significant margin": 1863, "models llms capture": 16374, "model parameters prohibitively": 15850, "models llms generate": 16422, "natural language prompt": 17103, "diffusion large language": 6595, "models llms bring": 16370, "unique challenges including": 26366, "intellectual property ip": 12060, "concerns position paper": 4497, "models llms models": 16450, "domains like medicine": 6930, "like medicine finance": 14094, "remarkable capabilities natural": 21567, "langle expax bf": 12679, "expax bf 1n": 8302, "bf 1n rangle1": 2801, "1n rangle1 expax": 94, "contrast previous approaches": 4892, "improve large language": 11360, "language model based": 12746, "responses generated different": 21955, "modern large language": 16798, "models llms hard": 16430, "recent studies suggest": 21207, "openended question answering": 17833, "experiments benchmark datasets": 8371, "achieve higher accuracy": 573, "llms continue advance": 14411, "considered gold standard": 4669, "language generation recent": 12715, "generation recent advancements": 10013, "approach significantly enhances": 1812, "terms factual accuracy": 25224, "ai augmented reality": 1087, "augmented reality ar": 2234, "tasks involve complex": 24966, "language model optimize": 12781, "unity game engine": 26375, "answer research questions": 1555, "transformers large language": 25960, "models like gpt4": 16352, "improves accuracy sample": 11403, "text data training": 25302, "effectiveness large language": 7198, "including gpt2 bert": 11456, "using foundation models": 26756, "language models generating": 12910, "present extensive evaluation": 19437, "models including gpt4": 16288, "using bertscore dialogrpt": 26720, "pose significant challenges": 19091, "biomedical text summarization": 2890, "language model domainspecific": 12756, "question answering paper": 20733, "number training examples": 17601, "processes natural language": 19879, "llm like chatgpt": 14287, "tasks explore potential": 24927, "based results present": 2535, "llms future research": 14509, "future research focus": 9593, "language models current": 12864, "models llms enabled": 16404, "capabilities various natural": 3147, "emergent abilities llms": 7356, "simple general effective": 23225, "llms exhibit strong": 14477, "exploratory data analysis": 8490, "effective natural language": 7158, "natural language documentation": 17062, "range tasks models": 20911, "deep learning techniques": 5891, "revolutionized field natural": 22239, "achieved remarkable results": 610, "various languagerelated tasks": 27056, "tasks machine translation": 24990, "translation sentiment analysis": 25995, "question answering text": 20738, "answering text generation": 1589, "text classification language": 25288, "plays crucial role": 18980, "architecture large language": 1905, "additionally present detailed": 780, "finally discuss potential": 9007, "vision large language": 27223, "llms demonstrated extraordinary": 14429, "provides comprehensive overview": 20485, "future exploration development": 9586, "robustness large language": 22357, "research efforts devoted": 21812, "llms emphasizing need": 14461, "transformer large language": 25920, "memory sacrificing performance": 15274, "language models code": 12853, "image generation model": 11186, "study investigates potential": 24119, "impact artificial intelligence": 11229, "generative adversarial networks": 10049, "adversarial networks gans": 974, "work natural language": 27526, "respect model size": 21930, "model size number": 15922, "remains open research": 21550, "open research question": 17775, "language learning chatbots": 12738, "asr error correction": 2034, "shown promising results": 23052, "language learning domain": 12739, "paper explores use": 18227, "error correction models": 7782, "standard error correction": 23718, "indomain training data": 11648, "language models accomplish": 12817, "various sources including": 27086, "using natural language": 26815, "language processing techniques": 13245, "models llms remarkable": 16470, "prompt engineering llms": 20090, "llms shown promise": 14698, "tasks previously thought": 25018, "llms different tasks": 14443, "employed prompt engineering": 7434, "paper sheds light": 18316, "gpt models effectively": 10233, "models sentiment analysis": 16675, "impact large language": 11235, "models llms emerge": 16401, "lack systematic research": 12662, "remarkable success various": 21595, "ability follow instructions": 339, "bridge gap propose": 2989, "language models applications": 12825, "detection incontext learning": 6331, "examples incontext learning": 8135, "incontext learning learn": 11517, "models llms specifically": 16489, "findings suggest llms": 9062, "traditional machine learning": 25679, "learning ml models": 13854, "laying groundwork future": 13691, "achieve accuracy approximately": 558, "added training set": 752, "address challenges propose": 796, "challenges propose novel": 3401, "novel framework called": 17554, "llms wide range": 14751, "bridge gap work": 2990, "publicly available research": 20578, "applications natural language": 1681, "computer vision tasks": 4457, "chainofthought prompting large": 3336, "accuracy large language": 518, "models llms various": 16502, "understanding cot prompting": 26269, "standard fewshot prompting": 23721, "editing large language": 7102, "language model large": 12770, "remarkable potential various": 21584, "considerable human effort": 4657, "algorithm reinforcement learning": 1243, "conduct extensive experiments": 4560, "tasks experimental results": 24922, "experimental results indicate": 8350, "language models text": 13189, "models text classification": 16741, "remarkable capabilities various": 21569, "capabilities various nlp": 3149, "lead improved performance": 13705, "plays vital role": 18984, "diverse natural language": 6804, "llms downstream tasks": 14450, "downstream tasks findings": 6989, "method improves performance": 15371, "compared previous stateoftheart": 4201, "reduce computational cost": 21316, "spiking neural network": 23665, "pretrained bert model": 19523, "intelligence using transformerbased": 12089, "using transformerbased models": 26877, "transformerbased models like": 25947, "like large language": 14089, "discriminative generative tasks": 6676, "models trained large": 16747, "trained specific downstream": 25738, "specific downstream tasks": 23587, "leverages language model": 14011, "model size model": 15921, "models achieved remarkable": 16011, "achieved remarkable performance": 608, "human activity recognition": 10896, "achieve better performance": 561, "knowledge bases large": 12503, "bases large language": 2584, "requiring world knowledge": 21769, "information retrieval recommend": 11785, "software engineering tasks": 23429, "language model case": 12749, "publicly available github": 20576, "language models perform": 13121, "pretrained masked language": 19571, "consistently improves performance": 4686, "zeroshot fewshot incontext": 27704, "following natural language": 9283, "models llms generative": 16423, "llms generative ai": 14524, "transformer neural network": 25932, "paper large language": 18253, "language model training": 12801, "foundational language models": 9373, "language models foundational": 12907, "advanced natural language": 901, "processing nlp research": 19908, "reinforcement learning approach": 21414, "mental health large": 15283, "health large language": 10630, "problems using large": 19820, "leveraging large language": 14027, "chatgpt data augmentation": 3546, "exploring use chatgpt": 8559, "data augmentation technique": 5431, "synthetic data generated": 24537, "demonstrate approach effectively": 5980, "method outperforms existing": 15383, "outperforms existing techniques": 18047, "findings underscore potential": 9064, "despite superior performance": 6285, "generate natural language": 9799, "language models finally": 12902, "effective efficient compared": 7144, "models mobile devices": 16524, "federated learning fl": 8883, "parameterefficient training methods": 18366, "llms nlp tasks": 14612, "llms works employ": 14754, "complexity paper propose": 4333, "extensive experiments conducted": 8612, "recent research dialogue": 21199, "opendomain chitchat dialogues": 17817, "conversation address issue": 4972, "recent strides large": 21204, "available large language": 2377, "domains computer vision": 6919, "computer vision cv": 4451, "vision cv natural": 27215, "cv natural language": 5393, "models tailored individual": 16733, "field research recent": 8968, "research recent years": 21860, "vision language models": 27221, "paper proposes novel": 18301, "t5 model generate": 24662, "integrating large language": 12044, "language model prompting": 12794, "potential future advancements": 19183, "long context understanding": 14810, "llms demonstrate impressive": 14422, "proposed methods improve": 20359, "tasks code completion": 24882, "outperforms opensourced models": 18053, "code datasets available": 3909, "achieve high performance": 571, "learning expert feedback": 13813, "framework large language": 9440, "llms demonstrated superior": 14439, "demonstrated superior performance": 6077, "introduce novel method": 12253, "yield accurate predictions": 27670, "language instructions code": 12727, "style transfer task": 24175, "amounts labeled data": 1370, "text preserving semantic": 25362, "aligning large language": 1271, "models llms human": 16433, "llms human values": 14544, "findings shed light": 9059, "reasoning large language": 21084, "transformerbased large language": 25941, "training process design": 25822, "simple effective solution": 23222, "multimodal large language": 16937, "language model multimodal": 12779, "language model mllm": 12778, "individual pretrained models": 11633, "demonstrate effectiveness proposed": 5993, "machine learning model": 14914, "model selection model": 15908, "deployed real world": 6139, "remains largely unexplored": 21544, "participants large language": 18416, "capabilities wide range": 3152, "domain adaptation using": 6882, "using wide range": 26882, "gaining increasing attention": 9622, "promising results various": 20068, "knowledge largescale corpora": 12548, "shows promising results": 23072, "models llms known": 16440, "text embedding space": 25309, "coherence generated text": 3995, "outperforming previous approaches": 18028, "using social media": 26864, "social media users": 23392, "biased news media": 2823, "machine learning large": 14907, "language platform agnostic": 13218, "social media platforms": 23390, "paper introduce novel": 18237, "different large language": 6527, "performance compared existing": 18607, "tuning large language": 26081, "lowrank adaptation lora": 14886, "relatively small llms": 21465, "instruction tuning instruction": 11985, "sentiment analysis model": 22800, "dataset sentiment analysis": 5714, "domain natural language": 6904, "challenges models understand": 3386, "instructiontuned large language": 12015, "responses natural language": 21961, "data used tune": 5620, "using model finetuned": 26810, "llms address issues": 14359, "propose novel deep": 20318, "code generation demonstrate": 3917, "effectiveness proposed method": 7208, "method extensive experiments": 15357, "conduct thorough analysis": 4569, "instruction tuning bring": 11983, "producing humanlike responses": 19947, "high costs associated": 10701, "results using large": 22128, "emerging large language": 7365, "models llms particular": 16458, "prompt engineering chatgpt": 20089, "language models multiple": 13105, "promising performance various": 20064, "novel method called": 17558, "extensive experiments indicate": 8614, "number training data": 17600, "behavior large language": 2620, "models llms led": 16442, "models human feedback": 16271, "nlp tasks large": 17446, "suffer hallucination problem": 24288, "comprehensive dataset collecting": 4373, "performs significantly better": 18825, "analyzing experimental results": 1481, "nlp large language": 17422, "llms demonstrated significant": 14438, "models zeroshot fewshot": 16786, "gpt35 gpt4 palm": 10323, "languages empirical study": 13299, "learning approaches large": 13772, "previously acquired knowledge": 19683, "hate speech detection": 10611, "evaluating catastrophic forgetting": 7936, "reasoning ability large": 21054, "models llms zeroshot": 16503, "inverse reinforcement learning": 12290, "machine translation large": 14925, "translation large language": 25983, "machine translation tasks": 14934, "supervised finetuning sft": 24385, "significant performance improvements": 23127, "dataset demonstrate llm": 5670, "machine translation llms": 14928, "exploring large language": 8550, "time large language": 25508, "played pivotal role": 18973, "shown remarkable capabilities": 23055, "investigate use llms": 12312, "use llms augment": 26523, "language models follow": 12905, "models follow instructions": 16226, "instructions training large": 12009, "generate harmful content": 9778, "models llms need": 16451, "proposed method requires": 20356, "language models knowledge": 12945, "demonstrated remarkable abilities": 6060, "knowledge base question": 12499, "base question answering": 2462, "question answering kbqa": 20727, "comprehensive experiments reveal": 4382, "data augmentation techniques": 5432, "small large language": 23340, "models exhibit poor": 16193, "deep generative models": 5880, "models generative pretrained": 16245, "wireless communication systems": 27428, "stateoftheart generative models": 23769, "data generation process": 5503, "models llms acquire": 16364, "llms acquire extensive": 14354, "results publicly available": 22096, "publicly available chatgpt": 20573, "chatgpt bard bing": 3517, "recent advances generative": 21152, "article provides comprehensive": 1968, "conclusion large language": 4514, "models generative ai": 16244, "generative ai genai": 10052, "used large language": 26584, "used realworld applications": 26596, "amounts training data": 1373, "training data extremely": 25758, "finally future research": 9013, "textual entailment methods": 25430, "language models results": 13158, "fall short human": 8810, "finetuned large language": 9099, "models llms answer": 16366, "reasoning ability llms": 21057, "effectiveness approach conduct": 7187, "datasets experimental analysis": 5751, "chatgpt recently developed": 3639, "text generation llms": 25328, "opendomain dialogue systems": 17823, "dialogue systems research": 6472, "knowledge distillation techniques": 12514, "using chatgpt gpt4": 26725, "challenging work focus": 3438, "used improve performance": 26579, "explanations large language": 8461, "enhancing capabilities large": 7637, "language models educational": 12882, "models educational applications": 16164, "language model evaluation": 12759, "massive training corpora": 15113, "recent advances artificial": 21148, "advances artificial intelligence": 934, "models recently shown": 16632, "model training data": 15950, "models exploring relationship": 16206, "experimental results suggest": 8356, "methods use large": 15498, "models llms provide": 16465, "explanations natural language": 8464, "input output tokens": 11876, "challenge field machine": 3351, "field machine translation": 8958, "machine translation nmt": 14930, "translation nmt systems": 25990, "nmt systems fail": 17459, "emerged promising alternative": 7337, "paper study capabilities": 18320, "provides valuable insights": 20501, "models llms gpt35": 16427, "generating natural language": 9908, "study propose novel": 24141, "results demonstrate effectiveness": 22033, "language models demonstrate": 12867, "way interact computers": 27309, "study evaluate performance": 24089, "performing models achieved": 18817, "models achieved accuracy": 16010, "employ large language": 7427, "address challenges paper": 795, "challenges paper introduces": 3390, "paper introduces innovative": 18240, "prompt design approach": 20087, "prompt tuning prompt": 20120, "tuning prompt tuning": 26089, "using roberta t5": 26854, "model trained sentence": 15948, "question answering answering": 20720, "language models incontext": 12934, "models incontext learning": 16291, "incontext learning chainofthought": 11510, "paper introduce new": 18236, "new prompting strategy": 17347, "prompting strategy called": 20177, "chatbased large language": 3475, "limited labeled data": 14160, "data extensive experiments": 5488, "domainspecific sts tasks": 6954, "llms large language": 14575, "experimental results various": 8358, "various benchmarks demonstrate": 27034, "ai systems like": 1137, "systems like chatgpt": 24615, "based deep neural": 2477, "systems large language": 24611, "neural networks symbolic": 17275, "using computer vision": 26733, "explore large language": 8512, "set natural language": 22880, "capability large language": 3160, "overall results suggest": 18109, "remarkable performance wide": 21581, "wide range natural": 27384, "explore potential leveraging": 8521, "tasks paper propose": 25007, "models specifically designed": 16702, "task experimental results": 24772, "language models adaptive": 12821, "models llms downstream": 16399, "llms downstream applications": 14449, "address limitation paper": 812, "models abstractive summarization": 16002, "using artificial intelligence": 26709, "training data requirements": 25761, "large training data": 13599, "finetuning pretrained llms": 9168, "existing evaluation metrics": 8257, "experiment results demonstrate": 8334, "ability llms propose": 362, "language modeling code": 12807, "related machine learning": 21434, "provide theoretical analysis": 20468, "advent large language": 967, "models llms transformative": 16498, "language models discern": 12875, "models llms excel": 16405, "humanities social sciences": 11027, "case studies illustrate": 3239, "associated large language": 2103, "human cognitive processes": 10914, "perform wide array": 18578, "llms significantly outperform": 14704, "significantly outperform existing": 23167, "progress large language": 20002, "baseline methods including": 2563, "achieving remarkable results": 668, "downstream natural language": 6977, "external knowledge bases": 8642, "benchmarking large language": 2683, "rapid advancement large": 20936, "advancement large language": 909, "data improves llms": 5519, "improves llms reasoning": 11408, "explainable ai xai": 8442, "bridge gap introduce": 2987, "models demonstrated strong": 16133, "answering user queries": 1592, "dungeons dragons dd": 7047, "efficiency large language": 7222, "markov decision processes": 15087, "decision processes mdps": 5828, "recent advances language": 21156, "performance downstream tasks": 18634, "train stateoftheart models": 25708, "models trained datasets": 16745, "using publicly available": 26846, "publicly available data": 20574, "language models exploring": 12897, "models exploring alternative": 16205, "creating new versions": 5224, "rapidly growing research": 20955, "existing studies focus": 8280, "novel method automatically": 17557, "supervised learning reinforcement": 24387, "learning reinforcement learning": 13891, "applications various domains": 1689, "understanding generation capabilities": 26275, "generated llms remains": 9863, "zeroresource blackbox hallucination": 27690, "blackbox hallucination detection": 2900, "language models generative": 12911, "reasoning tasks like": 21113, "solving math word": 23477, "math word problems": 15145, "critical thinking skills": 5266, "results suggest models": 22120, "llms shown impressive": 14696, "shown impressive capabilities": 23029, "impressive capabilities various": 11332, "prompting outperforms stateoftheart": 20168, "advanced gpt models": 886, "pretrained transformer language model": 19606, "power large language models": 19256, "large language models based": 13368, "nlp tasks including question": 17444, "tasks including question answering": 24957, "highdimensional observation action spaces": 10728, "pretrained language model downstream": 19541, "neural language models lms": 17258, "dialogue systems taskoriented dialogue": 6474, "systems taskoriented dialogue systems": 24643, "modules natural language understanding": 16827, "natural language understanding nlu": 17115, "dialogue state tracking dst": 6470, "natural language generation nlg": 17066, "transfer learning large language": 25873, "learning large language models": 13840, "large language models pretrained": 13532, "gpt2 radford et al": 10272, "radford et al 2019": 20853, "brown et al 2020": 3024, "range natural language understanding": 20903, "language understanding nlu generation": 13276, "understanding nlu generation nlg": 26298, "advances natural language processing": 950, "natural language processing tasks": 17099, "question answering commonsense reasoning": 20724, "paper presents novel approach": 18283, "pretrained language models recently": 19556, "native nonnative english writers": 17051, "models gpt bert xlnet": 16254, "task large language models": 24797, "language models like gpt3": 12961, "pretrained neural language models": 19589, "data code data available": 5444, "pretrained language models lms": 19553, "settings achieve f1 score": 22911, "compression large language models": 4404, "models natural language processing": 16534, "natural language processing nlp": 17087, "machine learning ml methods": 14912, "provide mental health support": 20447, "results showed finetuned model": 22110, "language models small number": 13166, "transformerbased pretrained language models": 25950, "understanding large language models": 26286, "large language models shown": 13544, "named entity recognition ner": 17028, "significant progress recent years": 23134, "large language models work": 13557, "reinforcement learning rl achieved": 21426, "knowledge large language models": 12545, "large language models language": 13420, "language models language models": 12951, "performance generative pretrained transformer": 18659, "generative pretrained transformers gpt": 10101, "large language models learn": 13424, "automatic manual evaluations demonstrate": 2301, "masked language modeling task": 15096, "natural language inference nli": 17070, "capabilities large language models": 3124, "large language models lms": 13516, "knowledge learned large language": 12551, "learned large language models": 13751, "large language models llms": 13431, "language models llms used": 13089, "language models increasing scale": 12938, "generalpurpose pretrained language models": 9752, "pretrained language models plms": 19554, "training corpora language models": 25753, "using large language models": 26787, "large pretrained language models": 13579, "synthetic data generators ir": 24540, "data generators ir tasks": 5506, "baselines bm25 recently proposed": 2574, "language models large language": 12953, "models large language models": 16331, "large language models human": 13411, "biases large language models": 2831, "large language models generate": 13401, "context large language models": 4807, "large language models trained": 13551, "language processing nlp large": 13234, "prompting large language models": 20156, "providing natural language instructions": 20517, "performance large language models": 18687, "large language models zeroshot": 13559, "instructions large language models": 12005, "language generation nlg tasks": 12714, "paper aims explore generative": 18189, "language models artificial intelligence": 12827, "models artificial intelligence ai": 16040, "artificial intelligence ai specifically": 1984, "based pretrained language model": 2525, "pretrained language model plm": 19542, "generative pretrained transformer gpt3": 10098, "natural language processing computer": 17082, "language processing computer vision": 13223, "language models llms nlp": 13043, "state art natural language": 23741, "language model gpt2 generate": 12765, "based pretrained language models": 2526, "pretrained language models bert": 19545, "language model developed openai": 12755, "machine learning models like": 14916, "achieves stateoftheart performance tasks": 648, "stateoftheart performance natural language": 23794, "performance natural language processing": 18712, "language processing nlp benchmarks": 13231, "emergent abilities large language": 7354, "abilities large language models": 313, "wide range downstream tasks": 27383, "large language models consider": 13376, "ai large language models": 1114, "challenge large language models": 3355, "task natural language processing": 24808, "model large language models": 15816, "large language models gpt3": 13406, "ability perform incontext learning": 368, "personally identifiable information pii": 18863, "demonstrate large language models": 6010, "large neural language models": 13570, "large language model using": 13357, "training large language models": 25788, "contrast large language models": 4889, "language models llms trained": 13085, "uses large language models": 26694, "recent large language models": 21187, "language models llms demonstrated": 12989, "models llms demonstrated remarkable": 16394, "llms demonstrated remarkable prediction": 14436, "demonstrated remarkable prediction performance": 6070, "remarkable prediction performance growing": 21587, "prediction performance growing array": 19359, "performance growing array tasks": 18669, "reproducing results available github": 21707, "transformer models large language": 25928, "language models llms gpt3": 13020, "generation generative pretrained transformers": 9962, "language models llms emerged": 13000, "models llms emerged powerful": 16403, "language processing nlp tasks": 13237, "chinese pretrained language model": 3734, "large language models case": 13370, "language models case study": 12845, "finetuning large language models": 9146, "transformer recent work shown": 25935, "large language models new": 13524, "large language model gpt3": 13348, "stateoftheart large language models": 23778, "large language models susceptible": 13550, "embedded large language models": 7306, "language models llms help": 13026, "models llms help users": 16432, "questions large language models": 20806, "language large language models": 12735, "natural language processing models": 17086, "popularity large language models": 19077, "houlsby et al 2019": 10877, "achieve new stateoftheart results": 579, "large language model llm": 13349, "large language models increasingly": 13416, "utilizing generative pretrained transformer": 26917, "generative pretrained transformer gpt": 10092, "pretrained transformer gpt proposed": 19599, "large generative language models": 13336, "generative language models shown": 10072, "shown great performance tasks": 23023, "performance various nlp tasks": 18795, "examples prompting large language": 8142, "prompting large language model": 20154, "analysis large language models": 1423, "language models llms automated": 12972, "using large language model": 26785, "tasks large language models": 24976, "language models lms struggle": 13095, "automatic metrics human evaluation": 2304, "generation pretrained language models": 10001, "large amounts diverse data": 13318, "fewshot learning wide range": 8925, "wide range nlp tasks": 27388, "bert large language models": 2727, "large language models having": 13409, "variety natural language processing": 27013, "selfsupervised learning selfsupervised learning": 22714, "text generated large language": 25321, "generated large language models": 9859, "training masked language models": 25802, "large scale language models": 13592, "language models llms potential": 13051, "does necessarily lead improved": 6869, "large language models potential": 13530, "harms large language models": 10597, "paper propose novel task": 18296, "large language models visionlanguage": 13555, "language models visionlanguage models": 13202, "instructgpt large language model": 11970, "high low resource languages": 10710, "lowresource languages experimental results": 14891, "practical applications large language": 19291, "applications large language models": 1672, "language models llms significantly": 13076, "using pretrained large language": 26835, "pretrained large language models": 19563, "language models llms recently": 13057, "models llms recently applied": 16467, "pretrained language models llms": 19551, "recent largescale language models": 21191, "language models empirical study": 12887, "language models natural language": 13107, "natural language processing task": 17098, "scale large language models": 22492, "models llms demonstrated ability": 16387, "llms demonstrated ability perform": 14425, "demonstrated ability perform variety": 6041, "ability perform variety natural": 370, "perform variety natural language": 18575, "attention natural language processing": 2178, "language processing nlp community": 13232, "limitations current version chatgpt": 14127, "largescale pretrained language models": 13646, "empirical evaluation different lms": 7399, "recent advancements large language": 21142, "advancements large language models": 926, "code natural language descriptions": 3936, "recent emergence large language": 21176, "emergence large language models": 7346, "advancements field natural language": 922, "field natural language processing": 8962, "language models like bert": 12958, "like bert gpt t5": 14072, "large language models fail": 13396, "observed large language models": 17657, "large language models exhibit": 13393, "chat generative pretrained transformer": 3470, "generative artificial intelligence ai": 10064, "artificial intelligence ai models": 1981, "improving large language models": 11418, "feedback large language models": 8892, "language models llms chatgpt": 12980, "models llms chatgpt able": 16376, "llms chatgpt able generate": 14394, "chatgpt able generate humanlike": 3498, "able generate humanlike fluent": 406, "generate humanlike fluent responses": 9785, "question answering applying llms": 20722, "code models publicly available": 3933, "large language models recent": 13539, "language models recent years": 13149, "recent years large language": 21219, "years large language models": 27660, "language models llms gained": 13014, "potential applications various fields": 19164, "content large language models": 4782, "large language models field": 13398, "language models llms study": 13080, "models demonstrated impressive performance": 16130, "demonstrated impressive performance various": 6051, "impressive performance various natural": 11340, "performance various natural language": 18792, "various natural language processing": 27065, "language understanding nlu tasks": 13278, "artificial intelligence ai tools": 1985, "language models llms able": 12967, "reinforcement learning human feedback": 21418, "learning human feedback rlhf": 13828, "large language models using": 13554, "prompts large language models": 20217, "design large language models": 6199, "large language models investigate": 13418, "advanced large language models": 894, "large language models like": 13426, "language models like chatgpt": 12959, "development large language models": 6408, "alignment large language models": 1286, "wide range tasks set": 27391, "large language models studies": 13547, "research large language models": 21833, "large language models gpt": 13405, "analyze large language models": 1473, "language models llms represent": 13062, "based pretrained large language": 2528, "large language models including": 13413, "language models including gpt3": 12933, "inductive deductive abductive reasoning": 11662, "evaluated capability generative pretrained": 7915, "intensified date rigorous analysis": 12106, "reinforcement learning large language": 21421, "language models llms increasingly": 13031, "models llms increasingly used": 16438, "large language model capabilities": 13341, "aigc aka aigenerated content": 1164, "augmenting large language models": 2239, "conversational large language models": 4993, "results large language models": 22068, "large language models llm": 13430, "large language models gpt4": 13408, "underexplored paper conduct comprehensive": 26196, "help large language models": 10662, "language models llms like": 13036, "models llms like gpt3": 16448, "performance variety natural language": 18787, "grammatical error correction gec": 10419, "evaluation large language models": 7993, "mechanism large language models": 15211, "large language models standard": 13546, "powered large language models": 19265, "problem large language models": 19774, "large language models large": 13422, "models llms chatgpt gpt4": 16378, "use large language models": 26520, "method outperforms baselines tasks": 15382, "outputs large language models": 18091, "models llms like gpt": 16447, "pretrained large language model": 19561, "language model llm agent": 12774, "sophisticated large language models": 23493, "large language models natural": 13522, "based large language models": 2506, "language models llms set": 13066, "era large language models": 7770, "chatgpt large language models": 3603, "automated machine learning automl": 2279, "evaluated large language models": 7924, "language models llms gpt4": 13023, "large language model gpt": 13347, "potential large language models": 19199, "talking large language models": 24720, "provide valuable insights potential": 20474, "language models llms offer": 13045, "chatbots based large language": 3488, "gpt4 large language model": 10354, "large language models diffusion": 13384, "language models diffusion models": 12874, "large language models excel": 13392, "make code publicly available": 14978, "openais large language model": 17810, "large language model chatgpt": 13343, "generative large language models": 10076, "domains natural language processing": 6935, "intelligent information processing ancient": 12095, "information processing ancient texts": 11776, "largescale language models llms": 13639, "tuning finetuning language models": 26076, "artificial general intelligence agi": 1978, "generative pretrained transformers gpts": 10102, "perspectives large language models": 18872, "current large language models": 5346, "models llms like chatgpt": 16444, "functioning large language models": 9534, "large language models chatgpt": 13372, "language models chatgpt demonstrated": 12850, "paper seek understand chatgpt": 18312, "natural language understanding reasoning": 17118, "large language models important": 13412, "memorization large language models": 15253, "language models llms achieved": 12968, "task converts natural language": 24758, "recent development large language": 21167, "language models llms demonstrate": 12987, "language models llms perform": 13050, "information retrieval ir tasks": 11784, "language models llms exhibited": 13007, "models llms exhibited remarkable": 16412, "role large language models": 22371, "downstream tasks named entity": 6991, "tasks named entity recognition": 24999, "language models llms shown": 13068, "models llms shown exceptional": 16480, "llms shown exceptional performance": 14694, "shown exceptional performance various": 23019, "exceptional performance various tasks": 8170, "introduce simple effective method": 12256, "practical applicability realworld scenarios": 19287, "increasingly powerful large language": 11579, "powerful large language models": 19274, "language models lms increasingly": 13094, "agents paper present novel": 1048, "paper present novel framework": 18272, "combines large language models": 4060, "large language models display": 13386, "large language models fewshot": 13397, "large language models paper": 13527, "research capabilities large language": 21790, "language model pretrained language": 12789, "model pretrained language models": 15868, "language models llms construct": 12986, "semantic textual similarity sts": 22738, "methods large language models": 15462, "different natural language processing": 6539, "language processing nlp models": 13235, "recently large language models": 21242, "models llms demonstrated exceptional": 16389, "llms demonstrated exceptional performance": 14428, "ability large language models": 356, "opensource large language models": 17856, "data code publicly available": 5446, "named entity recognition using": 17032, "models llms chatgpt shown": 16379, "llms chatgpt shown impressive": 14398, "entity recognition ner models": 7709, "paper investigate using chatgpt": 18248, "chatgpt large language model": 3600, "large language model paper": 13354, "paper present novel approach": 18271, "exploring potential large language": 8554, "domains large language models": 6927, "language processing tasks zeroshot": 13244, "large language model developed": 13344, "capacity large language models": 3188, "paper presents innovative approach": 18281, "gpt3 achieves near sota": 10288, "generate humanlike responses understand": 9787, "rapid development large language": 20943, "models like chatgpt recently": 16350, "capabilities natural language understanding": 3135, "natural language understanding generation": 17113, "language models llms gpt": 13019, "language models llms present": 13052, "language models llms exhibit": 13005, "recent advancements artificial intelligence": 21140, "generative large language model": 10075, "generalpurpose large language models": 9748, "using incontext learning icl": 26776, "information large language models": 11763, "report large language models": 21652, "large language models able": 13361, "language models able generate": 12816, "language processing nlp applications": 13230, "performance wide range nlp": 18799, "language models pretrained large": 13131, "models pretrained large language": 16585, "language models llms complex": 12984, "language models llms based": 12973, "achieving stateoftheart performance various": 671, "language models llms external": 13012, "models llms external tools": 16416, "question answering large language": 20730, "answering large language models": 1577, "language models llms garnered": 13015, "models llms garnered significant": 16420, "llms garnered significant attention": 14513, "approaches large language models": 1852, "benchmark large language models": 2668, "large language models demonstrated": 13381, "language models demonstrated remarkable": 12869, "demonstrated remarkable performance various": 6067, "remarkable performance various natural": 21579, "complex multistep reasoning paper": 4305, "incontext learning ability large": 11508, "learning ability large language": 13763, "data large language models": 5532, "existing large language models": 8263, "evaluating large language models": 7945, "large language models led": 13425, "produce text indistinguishable humangenerated": 19933, "large language models introduce": 13417, "navigation large language models": 17141, "language models llms struggle": 13079, "recent developments large language": 21171, "developments large language models": 6424, "proximal policy optimization ppo": 20531, "bias large language models": 2811, "llms demonstrated remarkable performance": 14434, "performance range natural language": 18738, "language understanding generation tasks": 13274, "small language models slms": 23338, "named entity recognition relation": 17030, "entity recognition relation extraction": 7711, "multihop question answering knowledge": 16905, "including large language models": 11464, "large language models gpt35": 13407, "models llms shown remarkable": 16484, "generate intermediate reasoning steps": 9793, "utilizing large language models": 26920, "summarization electronic health records": 24346, "generative pretrained language models": 10088, "language models bert roberta": 12837, "models bert roberta gpt3": 16062, "empirical results demonstrate method": 7412, "results demonstrate method significantly": 22035, "method significantly outperforms existing": 15396, "significantly outperforms existing approaches": 23171, "english large language models": 7599, "impressive performance various nlp": 11342, "large language models contain": 13377, "language models contain billions": 12860, "models contain billions parameters": 16108, "generative pretrained transformer gpt4": 10099, "pretrained language models gpt3": 19549, "language models gpt3 shown": 12920, "shown remarkable performance various": 23057, "error correction gec tasks": 7781, "language models downstream tasks": 12880, "large language model provide": 13356, "language models knowledgeintensive tasks": 12947, "thorough evaluation chatgpts performance": 25471, "provide insights future research": 20441, "llms demonstrated remarkable capabilities": 14433, "demonstrated remarkable capabilities addressing": 6062, "experimental results demonstrate proposed": 8348, "results demonstrate proposed approach": 22039, "generative ai tools chatgpt": 10057, "language models llms ability": 12966, "success large language models": 24263, "large language models help": 13410, "recent advances natural language": 21162, "rise large language models": 22285, "language models llms capable": 12977, "models llms capable generating": 16373, "autoregressive large language models": 2345, "traditional natural language processing": 25683, "attention mechanism transformer architecture": 2172, "language model llm based": 12775, "work large language models": 27521, "large language models training": 13552, "pretraining large language models": 19631, "avoid generating harmful content": 2410, "large pretrained vision language": 13587, "domain findings demonstrate chatgpt": 6895, "chatgpt potential valuable tool": 3623, "experiments pretrained language models": 8401, "utilization large language models": 26902, "language models llms significant": 13074, "including natural language processing": 11468, "natural language processing artificial": 17080, "language processing artificial intelligence": 13221, "paper propose novel method": 18295, "recent advances large language": 21159, "advances large language models": 946, "language models llms showcased": 13067, "large language models support": 13549, "field natural language generation": 8961, "language models llms proven": 13054, "models llms proven useful": 16464, "language models recent advances": 13148, "world knowledge large language": 27604, "large language models multimodal": 13520, "understanding natural language generating": 26294, "leverages large language models": 14014, "language models llms revolutionized": 13064, "revolutionized natural language processing": 22244, "chatgpt gained significant attention": 3574, "impressive natural language processing": 11337, "large language models explore": 13395, "evaluate large language models": 7889, "language models exhibit biases": 12893, "significant progress natural language": 23131, "progress natural language processing": 20007, "models llms demonstrated impressive": 16392, "llms demonstrated impressive performance": 14431, "models llms exhibit nearhuman": 16408, "llms exhibit nearhuman levels": 14475, "exhibit nearhuman levels performance": 8221, "nearhuman levels performance natural": 17150, "performance natural language tasks": 18714, "tasks including opendomain question": 24954, "including opendomain question answering": 11473, "opendomain question answering unfortunately": 17827, "convincingly hallucinate incorrect answers": 5023, "hallucinate incorrect answers responses": 10541, "incorrect answers responses questions": 11536, "answers responses questions verified": 1602, "responses questions verified external": 21965, "questions verified external sources": 20833, "verified external sources accepted": 27143, "external sources accepted face": 8648, "sources accepted face value": 23527, "accepted face value paper": 461, "face value paper report": 8716, "value paper report simple": 26970, "presenting question llm receiving": 19480, "question llm receiving generated": 20756, "llm receiving generated answer": 14302, "receiving generated answer query": 21134, "generated answer query corpus": 9828, "answer query corpus combination": 1548, "query corpus combination question": 20704, "corpus combination question generated": 5065, "combination question generated answer": 4046, "question generated answer present": 20748, "generated answer present llm": 9825, "answer present llm combination": 1540, "present llm combination question": 19442, "llm combination question generated": 14269, "question generated answer retrieved": 20750, "generated answer retrieved answer": 9831, "answer retrieved answer prompting": 1558, "retrieved answer prompting indicate": 22171, "answer prompting indicate generated": 1544, "prompting indicate generated answer": 20148, "indicate generated answer supported": 11609, "generated answer supported retrieved": 9834, "answer supported retrieved answer": 1563, "questions passages ms marco": 20815, "passages ms marco v1": 18461, "ms marco v1 test": 16877, "marco v1 test collection": 15068, "llm capable verifying generated": 14263, "capable verifying generated answer": 3179, "employing large language models": 7438, "advancements artificial intelligence ai": 916, "risks large language models": 22298, "large pretrained language model": 13578, "openais generative pretrained transformer": 17798, "pretrained transformer gpt series": 19600, "using pretrained language models": 26833, "prominent large language models": 20040, "language models llms openais": 13048, "language models llms capture": 12979, "language models llms generate": 13017, "diffusion large language models": 6596, "language models llms bring": 12975, "particularly large language models": 18442, "language models llms models": 13041, "domains like medicine finance": 6931, "models demonstrated remarkable capabilities": 16132, "remarkable capabilities natural language": 21568, "langle expax bf 1n": 12680, "expax bf 1n rangle1": 8303, "bf 1n rangle1 expax": 2802, "large language model based": 13340, "modern large language models": 16799, "language models llms hard": 13025, "transformers large language models": 25961, "language models like gpt4": 12962, "effectiveness large language models": 7199, "large language models generating": 13402, "large language model domainspecific": 13346, "large language models artificial": 13364, "large language models current": 13378, "language models llms enabled": 13002, "capabilities various natural language": 3148, "various natural language tasks": 27068, "performance wide range tasks": 18801, "wide range tasks models": 27390, "revolutionized field natural language": 22240, "question answering text generation": 20739, "architecture large language models": 1906, "vision large language models": 27224, "models llms demonstrated extraordinary": 16391, "paper provides comprehensive overview": 18306, "robustness large language models": 22358, "transformer large language models": 25922, "language models work propose": 13205, "large language models code": 13374, "language models code available": 12854, "generative adversarial networks gans": 10050, "work natural language processing": 27527, "remains open research question": 21551, "large language models accomplish": 13362, "natural language processing techniques": 17102, "language models llms remarkable": 13061, "language models llms emerge": 12999, "language models llms specifically": 13077, "machine learning ml models": 14913, "propose novel framework called": 20320, "chainofthought prompting large language": 3337, "language models llms various": 13090, "language model large language": 12771, "demonstrated remarkable capabilities various": 6063, "capabilities various nlp tasks": 3150, "diverse natural language processing": 6805, "intelligence using transformerbased models": 12090, "like large language models": 14090, "knowledge bases large language": 12504, "bases large language models": 2585, "large language model case": 13342, "large language models despite": 13383, "pretrained masked language models": 19572, "zeroshot fewshot incontext learning": 27705, "following natural language instructions": 9284, "language models llms generative": 13018, "advanced natural language processing": 902, "language processing nlp research": 13236, "mental health large language": 15284, "health large language model": 10631, "problems using large language": 19821, "leveraging large language model": 14028, "natural language understanding tasks": 17119, "available large language models": 2378, "computer vision cv natural": 4452, "vision cv natural language": 27216, "cv natural language processing": 5394, "field research recent years": 8969, "large language model prompting": 13355, "models llms demonstrate impressive": 16385, "framework large language models": 9441, "models llms demonstrated superior": 16398, "understanding reasoning capabilities llms": 26308, "aligning large language models": 1272, "language models llms human": 13028, "models llms human values": 16434, "reasoning large language models": 21085, "transformerbased large language models": 25943, "multimodal large language model": 16938, "large language model mllm": 13353, "capabilities wide range tasks": 3153, "shown promising results various": 23053, "language models llms known": 13034, "using social media data": 26865, "machine learning large language": 14908, "different large language models": 6528, "tuning large language models": 26082, "domain natural language processing": 6905, "instructiontuned large language models": 12016, "demonstrate effectiveness proposed method": 5994, "remarkable performance variety natural": 21576, "results using large language": 22129, "emerging large language models": 7366, "language models llms particular": 13049, "large language models multiple": 13521, "behavior large language models": 2621, "language models llms led": 13035, "nlp tasks large language": 17447, "models llms demonstrated significant": 16397, "language models zeroshot fewshot": 13207, "learning approaches large language": 13773, "reasoning ability large language": 21055, "language models llms zeroshot": 13091, "machine translation large language": 14926, "translation large language models": 25984, "exploring large language models": 8551, "time large language models": 25509, "llms shown remarkable capabilities": 14700, "large language models follow": 13399, "language models follow instructions": 12906, "instructions training large language": 12010, "language models llms need": 13042, "knowledge base question answering": 12500, "base question answering kbqa": 2463, "small large language models": 23341, "language models llms acquire": 12969, "models llms acquire extensive": 16365, "recent advances generative ai": 21153, "conclusion large language models": 4515, "large language models results": 13543, "fall short human performance": 8811, "finetuned large language models": 9100, "language models llms answer": 12971, "explanations large language models": 8462, "opensource large language model": 17855, "enhancing capabilities large language": 7638, "large language models educational": 13387, "recent advances artificial intelligence": 21149, "advances artificial intelligence ai": 935, "methods use large language": 15499, "language models llms provide": 13056, "neural machine translation nmt": 17262, "machine translation nmt systems": 14931, "translation nmt systems fail": 25991, "language models llms gpt35": 13022, "extensive experimental results demonstrate": 8605, "experimental results demonstrate effectiveness": 8347, "large language models demonstrate": 13380, "best performing models achieved": 2757, "performing models achieved accuracy": 18818, "employ large language model": 7428, "challenges paper introduces innovative": 3391, "prompt tuning prompt tuning": 20121, "large language models incontext": 13414, "language models incontext learning": 12935, "achieves superior performance compared": 653, "llms large language models": 14576, "ai systems like chatgpt": 1138, "based deep neural networks": 2478, "systems large language models": 24612, "explore large language models": 8513, "remarkable performance wide range": 21582, "wide range natural language": 27385, "range natural language processing": 20901, "large language models adaptive": 13363, "language models llms downstream": 12997, "using artificial intelligence ai": 26710, "advent large language models": 968, "language models llms transformative": 13086, "language models llms excel": 13003, "associated large language models": 2104, "llms significantly outperform existing": 14705, "progress large language models": 20003, "language models human feedback": 12928, "downstream natural language processing": 6978, "large language models knowledge": 13419, "benchmarking large language models": 2684, "rapid advancement large language": 20937, "advancement large language models": 910, "leveraging large language models": 14029, "paper large language models": 18254, "efficiency large language models": 7223, "markov decision processes mdps": 15088, "recent advances language modeling": 21157, "language models exploring alternative": 12898, "propose novel method automatically": 20322, "supervised learning reinforcement learning": 24388, "generation large language models": 9974, "language understanding generation capabilities": 13273, "zeroresource blackbox hallucination detection": 27691, "large language models generative": 13403, "language models generative pretrained": 12912, "models generative pretrained transformer": 16246, "solving math word problems": 23479, "models llms shown impressive": 16482, "impressive capabilities various nlp": 11333, "llms incontext learning icl": 14554, "models llms shown promise": 16483, "nlp tasks including question answering": 17445, "dialogue systems taskoriented dialogue systems": 6475, "modules natural language understanding nlu": 16828, "transfer learning large language models": 25874, "gpt2 radford et al 2019": 10273, "natural language understanding nlu generation": 17116, "language understanding nlu generation nlg": 13277, "models natural language processing nlp": 16535, "large language models language models": 13421, "knowledge learned large language models": 12552, "large language models llms used": 13513, "synthetic data generators ir tasks": 24541, "language models large language models": 12954, "natural language processing nlp large": 17093, "natural language generation nlg tasks": 17067, "language models artificial intelligence ai": 12828, "natural language processing computer vision": 17083, "power large language models llms": 19258, "large language models llms nlp": 13481, "natural language processing nlp benchmarks": 17090, "emergent abilities large language models": 7355, "performance large language models llms": 18688, "contrast large language models llms": 4890, "large language models llms trained": 13509, "recent large language models llms": 21188, "large language models llms demonstrated": 13447, "language models llms demonstrated remarkable": 12994, "models llms demonstrated remarkable prediction": 16396, "llms demonstrated remarkable prediction performance": 14437, "demonstrated remarkable prediction performance growing": 6071, "remarkable prediction performance growing array": 21588, "prediction performance growing array tasks": 19360, "transformer models large language models": 25929, "models large language models llms": 16333, "large language models llms gpt3": 13465, "learning large language models llms": 13841, "large language models llms emerged": 13451, "language models llms emerged powerful": 13001, "natural language processing nlp tasks": 17096, "large language models case study": 13371, "finetuning large language models lms": 9148, "large language models llms help": 13470, "language models llms help users": 13027, "popularity large language models llms": 19078, "generative pretrained transformer gpt proposed": 10094, "analysis large language models llms": 1424, "large language models llms automated": 13437, "using large language models llms": 26792, "variety natural language processing nlp": 27014, "text generated large language models": 25322, "large language models llms potential": 13488, "large language models visionlanguage models": 13556, "practical applications large language models": 19292, "applications large language models llms": 1673, "large language models llms significantly": 13503, "using pretrained large language models": 26836, "pretrained large language models llms": 19564, "large language models llms recently": 13493, "language models llms recently applied": 13058, "language models natural language processing": 13108, "scale large language models llms": 22493, "language models llms demonstrated ability": 12990, "models llms demonstrated ability perform": 16388, "llms demonstrated ability perform variety": 14426, "demonstrated ability perform variety natural": 6042, "ability perform variety natural language": 371, "perform variety natural language processing": 18576, "attention natural language processing nlp": 2179, "natural language processing nlp community": 17091, "recent advancements large language models": 21143, "advancements large language models llms": 927, "recent emergence large language models": 21177, "feedback large language models llms": 8893, "large language models llms chatgpt": 13443, "language models llms chatgpt able": 12981, "models llms chatgpt able generate": 16377, "llms chatgpt able generate humanlike": 14395, "chatgpt able generate humanlike fluent": 3499, "able generate humanlike fluent responses": 407, "recent years large language models": 21220, "years large language models llms": 27661, "large language models llms gained": 13460, "large language models llms study": 13506, "demonstrated impressive performance various natural": 6052, "impressive performance various natural language": 11341, "performance various natural language processing": 18793, "various natural language processing nlp": 27066, "natural language understanding nlu tasks": 17117, "large language models llms able": 13433, "reinforcement learning human feedback rlhf": 21419, "prompts large language models llms": 20218, "advanced large language models like": 895, "large language models like chatgpt": 13427, "development large language models llms": 6409, "large language models llms represent": 13495, "based pretrained large language models": 2529, "reinforcement learning large language models": 21422, "large language models llms increasingly": 13473, "language models llms increasingly used": 13032, "large language models llms like": 13477, "language models llms like gpt3": 13039, "performance variety natural language processing": 18788, "variety natural language processing tasks": 27015, "large language models large language": 13423, "language models llms chatgpt gpt4": 12982, "outputs large language models llms": 18092, "language models llms like gpt": 13038, "pretrained large language model llm": 19562, "large language model llm agent": 13350, "large language models natural language": 13523, "based large language models llms": 2507, "large language models llms set": 13499, "chatgpt large language models llms": 3604, "large language models llms gpt4": 13467, "potential large language models llms": 19200, "large language models llms offer": 13483, "chatbots based large language models": 3489, "large language models diffusion models": 13385, "intelligent information processing ancient texts": 12096, "current large language models llms": 5347, "language models llms like chatgpt": 13037, "large language models chatgpt demonstrated": 13373, "large language models llms achieved": 13434, "recent development large language models": 21168, "large language models llms demonstrate": 13446, "generative large language models llms": 10077, "large language models llms perform": 13487, "large language models llms exhibited": 13456, "language models llms exhibited remarkable": 13009, "downstream tasks named entity recognition": 6992, "large language models llms shown": 13501, "language models llms shown exceptional": 13070, "models llms shown exceptional performance": 16481, "llms shown exceptional performance various": 14695, "shown exceptional performance various tasks": 23020, "agents paper present novel framework": 1049, "power large language models fewshot": 19257, "research capabilities large language models": 21791, "capabilities large language models fewshot": 3125, "language model pretrained language models": 12790, "model pretrained language models plms": 15869, "large pretrained language models llms": 13581, "different natural language processing nlp": 6540, "natural language processing nlp models": 17094, "recently large language models llms": 21243, "language models llms demonstrated exceptional": 12991, "models llms demonstrated exceptional performance": 16390, "ability large language models llms": 357, "language models llms chatgpt shown": 12983, "models llms chatgpt shown impressive": 16380, "named entity recognition ner models": 17029, "exploring potential large language models": 8555, "chatgpt large language model developed": 3601, "large language model developed openai": 13345, "rapid development large language models": 20944, "language models like chatgpt recently": 12960, "large language models llms gpt": 13464, "large language models llms present": 13489, "natural language processing nlp applications": 17089, "finetuning large language models llms": 9147, "performance wide range nlp tasks": 18800, "large language models pretrained large": 13533, "language models pretrained large language": 13132, "models pretrained large language models": 16586, "large language models llms complex": 13444, "large language models llms based": 13438, "large language models llms external": 13459, "language models llms external tools": 13013, "question answering large language models": 20731, "answering large language models llms": 1578, "large language models llms garnered": 13461, "language models llms garnered significant": 13016, "models llms garnered significant attention": 16421, "various natural language processing tasks": 27067, "large language models demonstrated remarkable": 13382, "demonstrated remarkable performance various natural": 6068, "remarkable performance various natural language": 21580, "incontext learning ability large language": 11509, "data large language models llms": 5533, "capabilities large language models llms": 3126, "large language models llms struggle": 13505, "recent developments large language models": 21172, "models llms demonstrated remarkable performance": 16395, "natural language understanding generation tasks": 17114, "named entity recognition relation extraction": 17031, "language models llms shown remarkable": 13073, "pretrained language models bert roberta": 19546, "language models bert roberta gpt3": 12838, "empirical results demonstrate method significantly": 7413, "method significantly outperforms existing approaches": 15397, "language models contain billions parameters": 12861, "pretrained language models gpt3 shown": 19550, "grammatical error correction gec tasks": 10420, "tasks large language models llms": 24977, "experimental results demonstrate proposed approach": 8349, "large language models llms ability": 13432, "success large language models llms": 24264, "capacity large language models llms": 3189, "using large language models paper": 26795, "recent advances natural language processing": 21163, "advances natural language processing nlp": 951, "rise large language models llms": 22286, "large language models llms capable": 13441, "language models llms capable generating": 12978, "using large language model llm": 26786, "large language model llm based": 13351, "opensource large language models llms": 17857, "large language models llms significant": 13502, "natural language processing artificial intelligence": 17081, "recent advances large language models": 21160, "advances large language models llms": 947, "large language models llms showcased": 13500, "autoregressive large language models llms": 2346, "large language models llms proven": 13491, "language models llms proven useful": 13055, "world knowledge large language models": 27605, "using large language models multimodal": 26794, "large language models llms revolutionized": 13497, "revolutionized natural language processing nlp": 22245, "significant progress natural language processing": 23132, "language models llms demonstrated impressive": 12993, "models llms demonstrated impressive performance": 16393, "impressive performance various nlp tasks": 11343, "large language models llms exhibit": 13455, "language models llms exhibit nearhuman": 13006, "models llms exhibit nearhuman levels": 16409, "llms exhibit nearhuman levels performance": 14476, "exhibit nearhuman levels performance natural": 8222, "tasks including opendomain question answering": 24955, "including opendomain question answering unfortunately": 11474, "convincingly hallucinate incorrect answers responses": 5024, "hallucinate incorrect answers responses questions": 10542, "incorrect answers responses questions verified": 11537, "answers responses questions verified external": 1603, "responses questions verified external sources": 21966, "questions verified external sources accepted": 20834, "verified external sources accepted face": 27144, "external sources accepted face value": 8649, "sources accepted face value paper": 23528, "accepted face value paper report": 462, "face value paper report simple": 8717, "presenting question llm receiving generated": 19481, "question llm receiving generated answer": 20757, "llm receiving generated answer query": 14303, "receiving generated answer query corpus": 21135, "generated answer query corpus combination": 9829, "answer query corpus combination question": 1549, "query corpus combination question generated": 20705, "corpus combination question generated answer": 5066, "combination question generated answer present": 4047, "question generated answer present llm": 20749, "generated answer present llm combination": 9826, "answer present llm combination question": 1541, "present llm combination question generated": 19443, "llm combination question generated answer": 14270, "combination question generated answer retrieved": 4048, "question generated answer retrieved answer": 20751, "generated answer retrieved answer prompting": 9832, "answer retrieved answer prompting indicate": 1559, "retrieved answer prompting indicate generated": 22172, "answer prompting indicate generated answer": 1545, "prompting indicate generated answer supported": 20149, "indicate generated answer supported retrieved": 11610, "generated answer supported retrieved answer": 9835, "questions passages ms marco v1": 20816, "passages ms marco v1 test": 18462, "ms marco v1 test collection": 16878, "llm capable verifying generated answer": 14264, "generative pretrained transformer gpt series": 10095, "using large language models generate": 26789, "prominent large language models llms": 20041, "large language models llms openais": 13485, "large language models llms capture": 13442, "large language models llms generate": 13462, "large language models llms bring": 13439, "particularly large language models llms": 18443, "large language models llms models": 13479, "langle expax bf 1n rangle1": 12681, "expax bf 1n rangle1 expax": 8304, "modern large language models llms": 16800, "large language models llms hard": 13469, "transformers large language models like": 25962, "large language models like gpt4": 13429, "large language models artificial intelligence": 13365, "developments large language models llms": 6425, "large language models llms enabled": 13452, "using large language models gpt35": 26790, "revolutionized field natural language processing": 22241, "field natural language processing nlp": 8963, "vision large language models llms": 27225, "language models llms demonstrated extraordinary": 12992, "large language models work propose": 13558, "large language models code available": 13375, "emergence large language models llms": 7347, "large language models llms remarkable": 13494, "large language models llms emerge": 13450, "chainofthought prompting large language models": 3338, "large language models llms various": 13514, "llms demonstrated remarkable performance various": 14435, "diverse natural language processing tasks": 6806, "like large language models llms": 14091, "knowledge bases large language models": 12505, "bases large language models llms": 2586, "large language models llms generative": 13463, "advanced natural language processing nlp": 903, "natural language processing nlp research": 17095, "mental health large language model": 15285, "problems using large language models": 19822, "knowledge large language models llms": 12546, "available large language models llms": 2379, "computer vision cv natural language": 4453, "vision cv natural language processing": 27217, "cv natural language processing nlp": 5395, "understanding large language models llms": 26287, "language models llms demonstrate impressive": 12988, "language models llms demonstrated superior": 12996, "aligning large language models llms": 1273, "large language models llms human": 13471, "language models llms human values": 13029, "transformerbased large language models llms": 25944, "multimodal large language model mllm": 16939, "large language models llms known": 13475, "machine learning large language models": 14909, "use large language models llms": 26521, "instructiontuned large language models llms": 12017, "evaluation large language models llms": 7994, "remarkable performance variety natural language": 21577, "results using large language models": 22130, "emerging large language models llms": 7367, "large language models llms particular": 13486, "large language models llms led": 13476, "nlp tasks large language models": 17448, "language models llms demonstrated significant": 12995, "reasoning ability large language models": 21056, "large language models llms zeroshot": 13515, "machine translation large language models": 14927, "translation large language models large": 25985, "models large language models llm": 16332, "models llms shown remarkable capabilities": 16485, "large language models follow instructions": 13400, "instructions training large language models": 12011, "large language models llms need": 13480, "knowledge base question answering kbqa": 12501, "large language models llms acquire": 13435, "language models llms acquire extensive": 12970, "large language models llms answer": 13436, "enhancing capabilities large language models": 7639, "recent advances artificial intelligence ai": 21150, "largescale language models llms chatgpt": 13640, "methods use large language models": 15500, "large language models llms provide": 13492, "neural machine translation nmt systems": 17263, "machine translation nmt systems fail": 14932, "large language models llms gpt35": 13466, "extensive experimental results demonstrate effectiveness": 8606, "best performing models achieved accuracy": 2758, "employ large language model llm": 7429, "large language models incontext learning": 13415, "llms large language models llms": 14577, "systems large language models llms": 24613, "explore large language models llms": 8514, "wide range natural language processing": 27386, "range natural language processing tasks": 20902, "large language models llms downstream": 13448, "advent large language models llms": 969, "large language models llms transformative": 13510, "large language models llms excel": 13453, "associated large language models llms": 2105, "progress large language models llms": 20004, "rapid advancement large language models": 20938, "advancement large language models llms": 911, "paper large language models llms": 18255, "stateoftheart large language models llms": 23779, "generation large language models large": 9975, "large language models generative pretrained": 13404, "language models generative pretrained transformer": 12913, "pretrained language models llms shown": 19552, "language models llms shown impressive": 13071, "impressive capabilities various nlp tasks": 11334, "language models llms shown promise": 13072, "attained": 2145, "merged": 15295, "anecdotal": 1491, "ordering": 17949, "unusual": 26447, "unannotated": 26164, "racial": 20847, "minority": 15581, "stacked": 23700, "964": 291, "transformerxl": 25966, "crossmodal": 5282, "coco": 3892, "injects": 11851, "read": 20989, "probabilistically": 19745, "117m": 36, "31": 154, "42": 182, "grammar": 10415, "node": 17461, "sheet": 22964, "musical": 17012, "player": 18974, "fills": 8988, "locally": 14785, "replies": 21644, "backbone": 2422, "manager": 15026, "lengthy": 13973, "sim": 23186, "location": 14788, "lowdata": 14873, "replacement": 21629, "precondition": 19320, "induces": 11653, "unsuitable": 26435, "07": 10, "distractions": 6762, "distractor": 6763, "missed": 15605, "calculating": 3078, "preserved": 19504, "progression": 20013, "mention": 15288, "911": 281, "caveats": 3294, "opens": 17844, "relu": 21516, "convenient": 4957, "drew": 7023, "leap": 13727, "lagging": 12670, "1950s": 85, "artworks": 2002, "100k": 26, "unidirectional": 26348, "sessionlevel": 22872, "dutch": 7051, "borrow": 2952, "viewing": 27192, "incomplete": 11491, "pointer": 19006, "relating": 21439, "money": 16837, "psychologists": 20545, "supportive": 24426, "partner": 18449, "mined": 15560, "recorded": 21293, "associate": 2098, "langauge": 12676, "unifying": 26356, "referring": 21352, "singletask": 23282, "54": 208, "signature": 23085, "179": 79, "operates": 17873, "salience": 22433, "cent": 3300, "ids": 11154, "gptlike": 10380, "debiased": 5801, "workloads": 27586, "convolutional": 5026, "rural": 22405, "practitioner": 19307, "phenomenal": 18889, "languageagnostic": 13286, "record": 21292, "leaps": 13728, "198": 86, "isolate": 12367, "count": 5158, "measurable": 15187, "authored": 2249, "episode": 7741, "pernicious": 18832, "subgroups": 24185, "underspecified": 26233, "caution": 3292, "mathematically": 15150, "meteor": 15318, "clearer": 3832, "ranker": 20925, "degeneration": 5941, "cube": 5307, "solvers": 23471, "solves": 23472, "hyperlinks": 11096, "storytelling": 23884, "colors": 4035, "comprised": 4407, "xlm": 27649, "entered": 7688, "trillion": 26038, "opaque": 17757, "parsed": 18404, "regulators": 21405, "quadratically": 20623, "breakthrough": 2980, "players": 18975, "propagate": 20254, "quick": 20837, "imagetotext": 11209, "tokenizer": 25559, "strands": 23890, "publishing": 20585, "idioms": 11152, "085": 14, "f1scores": 8711, "928": 282, "sst2": 23690, "membership": 15245, "anisotropy": 1497, "intralayer": 12228, "spearmans": 23561, "cocreation": 3893, "mutated": 17013, "mutations": 17014, "perpetuate": 18833, "modelagnostic": 15970, "disparity": 6719, "female": 8909, "86": 267, "motion": 16855, "acoustic": 675, "hubert": 10885, "192": 84, "appearance": 1625, "everchanging": 8063, "crisis": 5247, "upstream": 26467, "106": 29, "forums": 9352, "wideranging": 27410, "cycles": 5399, "divergent": 6784, "adherence": 844, "handengineered": 10561, "unreliability": 26420, "textdavinci002": 25396, "tried": 26032, "emotionally": 7382, "structuring": 23997, "trainingfree": 25854, "encountering": 7512, "masks": 15101, "specifying": 23641, "105": 28, "felt": 8908, "postulate": 19154, "stating": 23825, "theorems": 25446, "summarizers": 24357, "everevolving": 8064, "older": 17723, "moderately": 16791, "coefficients": 3983, "nonlinearity": 17487, "supercomputers": 24366, "processors": 19920, "neurosymbolic": 17291, "localization": 14782, "communicative": 4126, "specialization": 23566, "left": 13952, "tells": 25187, "pushed": 20599, "subpar": 24205, "godel": 10194, "motivates": 16861, "sat": 22456, "89": 271, "retained": 22138, "overfitting": 18126, "neglected": 17213, "84": 265, "meetings": 15240, "phone": 18897, "oral": 17936, "color": 4034, "logistic": 14803, "stemming": 23843, "enact": 7478, "documented": 6849, "amplifying": 1377, "justice": 12438, "lots": 14858, "instantaneous": 11948, "reactions": 20987, "walk": 27288, "autonomy": 2336, "approximates": 1882, "speak": 23557, "initiation": 11844, "initiate": 11843, "preregistered": 19416, "weakest": 27325, "individualized": 11637, "higherorder": 10747, "ontologydriven": 17754, "childhood": 3723, "traumatic": 26009, "abnormal": 415, "behaviours": 2632, "protocols": 20390, "associative": 2115, "158": 61, "ranks": 20930, "indoor": 11650, "sustainability": 24484, "termed": 25217, "gpt335": 10315, "mimics": 15557, "moment": 16834, "delegated": 5950, "bug": 3029, "testers": 25267, "bugs": 3032, "buggy": 3031, "optima": 17901, "sampleefficiency": 22444, "hinges": 10829, "costefficient": 5144, "162": 67, "vlms": 27265, "affords": 1006, "expressiveness": 8582, "convolution": 5025, "deeplearningbased": 5915, "optimizations": 17922, "binding": 2867, "underestimated": 26189, "inherits": 11833, "t5base": 24665, "fillintheblank": 8987, "circuit": 3750, "narrowly": 17043, "attached": 2134, "winning": 27425, "sampleefficient": 22445, "unknowns": 26387, "foreign": 9305, "momentum": 16836, "sentient": 22797, "blueprint": 2928, "develops": 6427, "displayed": 6722, "obstacle": 17662, "replaces": 21631, "equality": 7750, "implements": 11267, "diagrams": 6443, "intersection": 12218, "sphere": 23659, "barely": 2451, "door": 6965, "verb": 27126, "autogenerated": 2262, "narrations": 17036, "absolutely": 425, "23x": 133, "backward": 2430, "infers": 11717, "1k": 90, "started": 23734, "expressivity": 8583, "avoided": 2412, "competitionlevel": 4246, "alphacode": 1333, "tremendous": 26020, "aside": 2006, "spend": 23657, "imposing": 11322, "crossmodality": 5283, "enjoys": 7652, "routinely": 22393, "speculation": 23644, "neuroscience": 17290, "achievable": 554, "financially": 9034, "linearly": 14183, "ranges": 20916, "rankers": 20926, "requested": 21713, "metadataset": 15308, "succinctly": 24284, "gnn": 10185, "enforce": 7555, "sensory": 22774, "giant": 10138, "paying": 18505, "price": 19690, "lift": 14057, "terminology": 25218, "mwp": 17017, "214": 125, "synergy": 24505, "multiarmed": 16888, "quantizing": 20690, "conceived": 4469, "equivalently": 7763, "fits": 9209, "ad": 717, "periods": 18828, "package": 18159, "administered": 855, "january": 12409, "chatgpt35turbo": 3681, "mirroring": 15585, "june": 12434, "vehicle": 27120, "easytouse": 7084, "13b": 52, "license": 14050, "excess": 8173, "intense": 12102, "excitement": 8178, "incredibly": 11584, "super": 24364, "mario": 15074, "safer": 22417, "recovery": 21298, "relabeling": 21428, "crafter": 5198, "suspicious": 24483, "manipulations": 15036, "invariances": 12285, "vietnam": 27186, "humandesigned": 11017, "clinicians": 3844, "molecular": 16831, "creates": 5216, "democratize": 5973, "locate": 14786, "shorter": 22984, "lattice": 13679, "propagated": 20255, "internetscale": 12193, "retrospectively": 22182, "exams": 8152, "monte": 16846, "costing": 5145, "offpolicy": 17716, "rooted": 22379, "vlm": 27264, "disruptions": 6729, "unchanged": 26174, "taught": 25116, "greybox": 10468, "realistically": 21015, "assortment": 2116, "pronoun": 20248, "levenshtein": 13991, "marginally": 15073, "pseudorandom": 20538, "signatures": 23086, "honest": 10858, "99": 294, "presumed": 19514, "digitized": 6607, "mass": 15102, "gesture": 10135, "pinpointing": 18920, "userwritten": 26686, "gptzero": 10392, "couple": 5173, "photorealistic": 18898, "assets": 2080, "graphics": 10441, "inform": 11731, "heavy": 10643, "concluding": 4511, "interactivity": 12154, "server": 22859, "memoryefficient": 15279, "boosted": 2946, "impracticality": 11325, "birds": 2891, "ingame": 11823, "asset": 2079, "128": 44, "auditors": 2215, "policymakers": 19031, "scientist": 22570, "masses": 15104, "disrupted": 6727, "economy": 7088, "confidentiality": 4595, "732": 248, "lake": 12672, "indexed": 11597, "distribute": 6765, "nonuniform": 17501, "checker": 3713, "remember": 21602, "exposures": 8570, "decline": 5841, "1984": 87, "164": 69, "nearing": 17151, "nonexistent": 17478, "year": 27655, "practicing": 19306, "prohibited": 20016, "strictly": 23944, "tricks": 26031, "recipients": 21259, "accomplishment": 487, "heart": 10638, "penalize": 18518, "exclude": 8181, "parameterfree": 18368, "recommenders": 21285, "350": 165, "translators": 26002, "commit": 4089, "787": 254, "instructed": 11964, "street": 23931, "elections": 7269, "boom": 2942, "instructor": 12025, "repurposing": 21709, "legality": 13964, "meets": 15241, "living": 14237, "streaming": 23925, "scenes": 22525, "graders": 10401, "imdb": 11214, "approximating": 1883, "replicates": 21641, "catalysts": 3260, "molecule": 16832, "gathered": 9665, "forest": 9308, "segmenting": 22673, "adjustments": 853, "treats": 26015, "neglecting": 17214, "encoderonly": 7499, "reused": 22190, "wall": 27290, "llava": 14248, "interpolating": 12198, "unwanted": 26452, "ingest": 11824, "stateofthe": 23753, "cheap": 3703, "genomics": 10120, "surgery": 24438, "subtype": 24246, "substitute": 24234, "wellaligned": 27358, "undisclosed": 26332, "drafts": 6999, "reaction": 20986, "holdout": 10847, "pooling": 19048, "calculation": 3079, "protein": 20388, "molecules": 16833, "languageguided": 13288, "camera": 3092, "475": 191, "lately": 13660, "evidenced": 8077, "cheat": 3706, "empowering": 7446, "evolinstruct": 8079, "humancreated": 11016, "httpsgithubcomnlpxucanwizardlm": 10882, "122": 40, "essence": 7807, "founded": 9380, "expansion": 8296, "privacysensitive": 19734, "phrasing": 18901, "operator": 17881, "interactively": 12153, "robertalarge": 22332, "perceptron": 18535, "origins": 17981, "humanhuman": 11022, "unlimited": 26403, "compositions": 4353, "disadvantage": 6645, "corrects": 5103, "pe": 18507, "ros": 22380, "warning": 27293, "091": 16, "excluded": 8182, "dealt": 5796, "investment": 12335, "advantageous": 958, "identifiers": 11132, "seeds": 22656, "stabilizing": 23694, "hyperparameter": 11097, "lowdimensional": 14874, "inappropriate": 11433, "instrctgpt": 11961, "a100": 298, "clients": 3836, "exchanges": 8177, "prescribed": 19419, "proceed": 19831, "headers": 10623, "fees": 8907, "57000": 213, "keywordbased": 12483, "destructive": 6289, "massachusetts": 15103, "multilanguage": 16910, "equipment": 7757, "iot": 12359, "superlarge": 24377, "ct": 5305, "sending": 22759, "interpreter": 12213, "upgrading": 26464, "ap": 1610, "endowed": 7538, "exorbitant": 8290, "bruteforce": 3026, "boolean": 2941, "builtin": 3059, "programmatic": 19979, "programaided": 19976, "collaborating": 4005, "slew": 23319, "maybe": 15173, "condensed": 4526, "obviously": 17673, "139": 51, "prosody": 20380, "undergone": 26203, "smartphone": 23367, "imagery": 11197, "differentially": 6570, "digits": 6608, "alzheimers": 1351, "impairment": 11255, "aesthetics": 992, "comics": 4073, "588": 216, "risky": 22301, "reversing": 22212, "posttraining": 19153, "50k": 203, "transduction": 25865, "oracles": 17935, "guaranteed": 10510, "corrective": 5095, "phd": 18886, "career": 3212, "wonder": 27435, "compilation": 4256, "heterogeneity": 10679, "los": 14846, "176": 77, "pointing": 19007, "culminates": 5310, "68": 236, "workings": 27583, "fix": 9211, "scikitlearn": 22572, "diminished": 6618, "legally": 13965, "streamlining": 23929, "categorization": 3267, "2278": 130, "fingerprinting": 9195, "old": 17722, "misrepresentation": 15603, "encapsulate": 7479, "disjoint": 6715, "classrooms": 3825, "entanglement": 7687, "slm": 23324, "arts": 2000, "mature": 15162, "178": 78, "mathqa": 15153, "influencing": 11729, "30b": 153, "symmetry": 24501, "elaboration": 7267, "topperforming": 25637, "illustrators": 11174, "deepen": 5908, "reasoners": 21049, "superficial": 24367, "mediated": 15228, "shines": 22970, "15x": 64, "understands": 26319, "hierarchies": 10691, "resourceefficient": 21911, "singleshot": 23281, "runnable": 22401, "lays": 13694, "graded": 10400, "competitor": 4255, "sociopolitical": 23416, "timely": 25530, "textbooks": 25395, "reputable": 21710, "opensourcing": 17868, "meticulously": 15506, "consultation": 4733, "controllers": 4950, "invoke": 12340, "quadratic": 20622, "dropped": 7034, "2times": 146, "longitudinal": 14827, "slices": 23320, "highresolution": 10820, "earliest": 7064, "20th": 121, "congruence": 4619, "horizons": 10869, "closedloop": 3861, "600x": 223, "pre": 19312, "insert": 11897, "exceptions": 8172, "manages": 15027, "4bit": 195, "20x": 122, "entailmentbased": 7685, "textonly": 25399, "unspecified": 26430, "patch": 18477, "palm2": 18178, "621": 226, "defaults": 5921, "nonwhite": 17504, "estimators": 7836, "visible": 27211, "glm": 10176, "criterion": 5249, "ostensibly": 17984, "characterization": 3459, "restricts": 21988, "gauging": 9669, "assignment": 2084, "buried": 3063, "td": 25120, "drugs": 7037, "defend": 5924, "organisms": 17956, "vocabularies": 27266, "whisper": 27370, "likelihoodfree": 14103, "closeness": 3871, "delays": 5949, "corner": 5050, "humansounding": 11079, "browsing": 3025, "forbidden": 9293, "moments": 16835, "friendly": 9493, "tweaks": 26105, "accumulation": 499, "certified": 3319, "unsound": 26429, "allocation": 1307, "embodies": 7327, "satisfaction": 22457, "imagebased": 11195, "spotlight": 23674, "cs": 5302, "parameterized": 18370, "rigid": 22276, "governments": 10219, "rot": 22381, "competitions": 4248, "underperforms": 26219, "100m": 27, "sophistication": 23494, "setfit": 22896, "desk": 6252, "disassemble": 6650, "surfaces": 24434, "libraries": 14047, "publishers": 20584, "satisfied": 22461, "inaccuracies": 11429, "svd": 24487, "adsorption": 877, "file": 8983, "appeal": 1622, "physicsinformed": 18908, "mapper": 15058, "03": 7, "constitute": 4698, "075": 11, "client": 3835, "leaked": 13723, "closedbook": 3859, "refiner": 21357, "summarizes": 24358, "restrict": 21984, "enrichment": 7659, "prisma": 19726, "metaanalyses": 15305, "enabler": 7458, "superset": 24378, "obfuscation": 17616, "heed": 10644, "16k": 70, "gpt4based": 10370, "pixels": 18931, "manuallywritten": 15053, "digitalization": 6606, "interconnected": 12157, "hampering": 10553, "310": 155, "coderelated": 3963, "wavlm": 27300, "190": 83, "10x": 32, "interpersonal": 12196, "computes": 4460, "channel": 3451, "rephrasing": 21625, "sale": 22432, "illicit": 11165, "viewpoint": 27193, "folds": 9269, "tpus": 25652, "clarifying": 3770, "cr": 5193, "codewriting": 3971, "illustration": 11171, "lmms": 14761, "usual": 26886, "deployments": 6152, "llmsbased": 14756, "eu": 7857, "adults": 879, "profession": 19959, "collaborations": 4007, "exacerbating": 8091, "contentious": 4793, "civil": 3761, "pathway": 18487, "qlora": 20621, "decided": 5816, "exhaustively": 8207, "heightened": 10645, "frontend": 9494, "stride": 23945, "preclude": 19319, "rendered": 21610, "assignments": 2085, "howto": 10880, "adjusted": 849, "unprocessed": 26416, "usable": 26479, "sensors": 22773, "energyefficient": 7554, "deviates": 6429, "agentbased": 1025, "firm": 9198, "prices": 19691, "interrogates": 12217, "automates": 2287, "drivers": 7028, "drone": 7031, "authorities": 2251, "elucidated": 7298, "scrutinizes": 22600, "deployable": 6135, "builders": 3037, "instrumental": 12030, "engaged": 7560, "passed": 18463, "strengthening": 23934, "schedules": 22528, "circuits": 3751, "arena": 1930, "7bparameter": 258, "predators": 19321, "lucene": 14895, "investments": 12338, "configured": 4600, "react": 20985, "llmempowered": 14335, "bit": 2892, "gptassisted": 10374, "25x": 139, "64k": 230, "depicting": 6133, "closest": 3874, "packages": 18160, "blocking": 2921, "deduplication": 5876, "textbook": 25394, "scheduled": 22527, "vulnerability": 27282, "penalty": 18520, "poised": 19011, "trading": 25670, "prominently": 20042, "wellsuited": 27366, "came": 3090, "317": 156, "unaware": 26166, "https": 10881, "reweighted": 22262, "accumulated": 498, "regards": 21380, "optimised": 17911, "twoplayer": 26116, "defect": 5922, "casual": 3257, "nominal": 17467, "highfrequency": 10751, "223": 128, "drl": 7030, "projections": 20026, "languagelevel": 13292, "variances": 26986, "occupations": 17677, "copying": 5040, "duplication": 7049, "204": 116, "applicant": 1636, "substantiate": 24232, "contrasted": 4895, "theres": 25458, "universally": 26379, "lmbased": 14760, "critic": 5250, "equity": 7760, "zealand": 27679, "undermining": 26216, "catalyze": 3261, "gave": 9674, "dnn": 6837, "validates": 26944, "presentations": 19470, "latex": 13677, "bertbase": 2737, "adeptly": 841, "948": 287, "576": 214, "occupation": 17676, "5m": 218, "york": 27676, "chip": 3736, "gpt4generated": 10371, "bills": 2861, "metalorganic": 15310, "mofs": 16830, "161": 66, "advisor": 987, "inquiring": 11895, "dominating": 6962, "navigating": 17137, "interlocutor": 12173, "lecture": 13945, "escalating": 7797, "topological": 25635, "site": 23287, "literacy": 14216, "fresh": 9490, "understandability": 26258, "nontechnical": 17497, "multiscene": 16990, "sotas": 23503, "kinematics": 12490, "consulting": 4734, "hour": 10878, "noninvasive": 17484, "permits": 18831, "clms": 3853, "clm": 3852, "accompany": 482, "genuinely": 10124, "bottlenecked": 2958, "underserved": 26232, "organic": 17954, "embodying": 7329, "gaze": 9675, "movements": 16868, "locomotion": 14790, "terrains": 25232, "transformer networks": 25930, "ability handle": 348, "results attained": 22013, "anecdotal evidence": 1492, "abilities work": 322, "model openai": 15839, "examine effectiveness": 8105, "domain data": 6885, "improved quality": 11383, "correctness generated": 5102, "tasks pretrained": 25015, "coding learning": 3978, "challenging paper": 3422, "speech recognition": 23649, "mitigate bias": 15620, "extent stateoftheart": 8635, "racial bias": 20848, "models observe": 16540, "need novel": 17184, "al 2017": 1223, "approaching human": 1870, "showed possible": 23002, "structure model": 23988, "model improve": 15798, "performance complex": 18612, "outperforms largest": 18049, "analysis different": 1409, "different variants": 6565, "similar techniques": 23204, "gpt2 transformerxl": 10279, "models image": 16276, "results benchmark": 22016, "generate new": 9800, "stateoftheart pretrained": 23797, "language corpus": 12693, "visual question": 27247, "questions answers": 20783, "sequence tokens": 22827, "paper addresses": 18182, "utilize abstract": 26905, "generated responses": 9870, "distribution terms": 6773, "generation aims": 9922, "pretraining strategies": 19645, "bleu scores": 2914, "analysis identify": 1415, "paper studies": 18318, "classifier performance": 3813, "performance training": 18777, "model set": 15910, "cnn lstm": 3887, "used feature": 26569, "feature extractor": 8861, "fills gap": 8989, "dialogue contexts": 6457, "semantic meaning": 22726, "generate coherent": 9763, "models little": 16358, "model uses": 15962, "generation synthetic": 10025, "synthetic text": 24545, "limited success": 14168, "recently new": 21245, "sequential data": 22841, "translation summarization": 25996, "popular topics": 19073, "method analogous": 15325, "approaches improve": 1845, "paper focus": 18228, "problem challenging": 19762, "augmentation framework": 2221, "framework new": 9445, "pretrained gpt2": 19534, "data result": 5586, "baseline models": 2565, "models contributions": 16112, "realistic text": 21014, "model use": 15958, "inputs paper": 11894, "model suggests": 15933, "visual input": 27240, "provide strong": 20465, "evaluate various": 7908, "finetuning gpt2": 9134, "prior text": 19715, "involves training": 12351, "specific generation": 23590, "does rely": 6871, "model effective": 15748, "computational overhead": 4428, "approach does": 1750, "model demonstrate": 15729, "generated conversational": 9843, "objective improve": 17624, "field education": 8954, "generate semantically": 9814, "semantically correct": 22743, "question generation": 20752, "generating distractors": 9894, "question text": 20764, "evaluate work": 7909, "evaluation study": 8034, "easier understand": 7075, "automated approaches": 2266, "used assist": 26554, "application pretrained": 1649, "outperforms best": 18037, "trained evaluated": 25718, "models automatically": 16048, "writing code": 27631, "single forward": 23271, "topic modeling": 25626, "english text": 7603, "produce high": 19927, "maintaining high": 14962, "evaluation sets": 8032, "datasets findings": 5753, "compare model": 4168, "finetuned generate": 9094, "study novel": 24128, "generation propose": 10005, "rl agent": 22305, "openai gpt2": 17787, "using contextual": 26735, "output text": 18081, "abilities recent": 319, "modeling gpt2": 15982, "neural model": 17264, "networks dnns": 17244, "complex patterns": 4308, "applications paper": 1682, "pretrained deep": 19527, "relu network": 21517, "language modelling": 12812, "memory constraints": 15261, "computational complexity": 4422, "provide context": 20416, "training cost": 25755, "achieves strong": 650, "tasks settings": 25055, "research natural": 21837, "ai work": 1148, "conditional generative": 4529, "cases paper": 3253, "point view": 19005, "data challenge": 5439, "containing 100k": 4747, "dataset suffers": 5718, "data work": 5626, "data applying": 5424, "use dataset": 26500, "training using": 25852, "using bert": 26718, "unidirectional language": 26349, "training sequence": 25835, "real life": 21002, "realistic sentences": 21011, "generated gpt2": 9849, "programming interfaces": 19988, "generation learning": 9978, "application programming": 1650, "desired outputs": 6248, "model allowing": 15681, "stateoftheart approaches": 23757, "using openais": 26825, "aspects language": 2027, "computational resource": 4431, "resource constraints": 21906, "methods achieved": 15416, "learning objective": 13865, "information biological": 11739, "gpt3 model": 10301, "inspired findings": 11932, "annotated examples": 1505, "regression experiments": 21389, "demonstrate methods": 6017, "outperform standard": 18018, "domain expertise": 6889, "model make": 15828, "completion models": 4281, "models observed": 16541, "ways including": 27316, "approach online": 1791, "requires deep": 21747, "understanding empathy": 26271, "learning agent": 13764, "agent learns": 1024, "policy network": 19027, "network based": 17231, "training reward": 25829, "generation work": 10043, "particular propose": 18431, "evaluated classification": 7917, "applied classification": 1693, "scientific research": 22567, "gpt3 trained": 10312, "performance limited": 18695, "learned representations": 13752, "framework generate": 9428, "based clip": 2472, "image input": 11188, "typically require": 26146, "unified framework": 26351, "textual inputs": 25432, "comprehension visual": 4365, "shows better": 23062, "generalization ability": 9726, "allows multitask": 1323, "architecture single": 1909, "learning applications": 13769, "designed novel": 6230, "proposed model": 20360, "data conditions": 5453, "stateoftheart result": 23801, "address challenging": 797, "knowledge target": 12590, "given test": 10172, "prompt token": 20118, "summarization methods": 24348, "timeconsuming task": 25527, "industrial settings": 11668, "novel algorithm": 17536, "perplexity scores": 18838, "baselines furthermore": 2576, "furthermore identified": 9558, "limited gpu": 14157, "demonstrate pretrained": 6025, "gpt3 generate": 10295, "zero oneshot": 27684, "oneshot learning": 17730, "models accuracy": 16005, "sparse training": 23549, "showing proposed": 23007, "improve predictions": 11369, "language domain": 12701, "fewshot prompt": 8929, "video generation": 27180, "current largescale": 5348, "data trained": 5616, "settings paper": 22920, "rl framework": 22312, "biases generated": 2825, "empirical experiments": 7403, "contribution paper": 4924, "graph convolutional": 10429, "solutions using": 23452, "major issue": 14968, "paper suggest": 18321, "suggest large": 24305, "access internet": 466, "paper approach": 18193, "language translation": 13269, "matter experts": 15160, "pretrain finetune": 19517, "models surprisingly": 16721, "develop evaluation": 6373, "methods results": 15484, "techniques use": 25171, "pretraining process": 19643, "models scratch": 16671, "scratch explore": 22590, "explore best": 8498, "limited computational": 14150, "largescale models": 13643, "single gpu": 23273, "code model": 3928, "human text": 10994, "text fact": 25314, "poses new": 19098, "new challenge": 17304, "evaluation propose": 8020, "predefined ontology": 19324, "news text": 17391, "parameter count": 18354, "data various": 5623, "gaps human": 9653, "models sizes": 16690, "new insights": 17328, "models math": 16516, "parallel corpus": 18347, "using parallel": 26829, "ones paper": 17728, "dataset contains": 5663, "used pretraining": 26591, "framework including": 9433, "significant differences": 23113, "ensure safety": 7673, "causal language": 3280, "approaches rely": 1860, "user base": 26621, "objective finetuning": 17622, "benchmarks method": 2694, "obtained using": 17670, "log analysis": 14794, "task does": 24765, "undergoing paradigm": 26201, "models foundation": 16227, "human interaction": 10950, "healthcare education": 10635, "societal impact": 23407, "gpt gpt2": 10227, "models speech": 16703, "pretrained massive": 19573, "encoder representations": 7490, "representations transformers": 21685, "technology natural": 25181, "bert bidirectional": 2716, "output probabilities": 18074, "architectures trained": 1916, "addresses problem": 833, "retrieving relevant": 22179, "relevant sentences": 21502, "discussion challenges": 6705, "retrieve relevant": 22165, "users input": 26665, "automatically processed": 2325, "given dialogue": 10145, "problematic responses": 19790, "grand challenge": 10424, "discuss strengths": 6697, "suggest future": 24304, "scarcity labeled": 22510, "approach improves": 1773, "generating relevant": 9912, "able extract": 402, "essential information": 7812, "data internet": 5526, "shown effective": 23013, "significantly surpasses": 23182, "stateoftheart model": 23786, "expertise large": 8433, "large search": 13593, "automatically generating": 2323, "works achieved": 27588, "great results": 10459, "proposes new": 20372, "temporal difference": 25194, "bias study": 2818, "question conduct": 20743, "exact match": 8093, "models experimental": 16200, "visual data": 27239, "multimodal knowledge": 16935, "benchmark tasks": 2677, "models tested": 16739, "detection models": 6338, "stateoftheart deep": 23763, "images based": 11199, "50 participants": 199, "probing language": 19757, "trillion parameter": 26039, "concerns surrounding": 4503, "problematic content": 19789, "text pairs": 25358, "scale datasets": 22486, "work showed": 27556, "effectiveness using": 7212, "based model": 2513, "model challenging": 15708, "using examples": 26751, "datasets training": 5779, "expensive terms": 8319, "conversational skills": 4996, "learning paper": 13869, "tasks benchmark": 24872, "appropriate prompt": 1874, "requires lot": 21752, "models incorporate": 16292, "implement approach": 11261, "lower perplexity": 14880, "version gpt2": 27162, "performance terms": 18771, "used pretrain": 26590, "training test": 25847, "human players": 10976, "natural question": 17123, "challenges current": 3370, "human level": 10965, "drawbacks current": 7013, "finally hope": 9015, "review provide": 22218, "aims answer": 1192, "questions help": 20801, "effective model": 7155, "model language": 15813, "unlike traditional": 26400, "fewshot text": 8937, "data sparsity": 5602, "performance aim": 18589, "selection process": 22688, "domain expert": 6887, "research avenues": 21786, "contains rich": 4755, "approach requires": 1808, "network trained": 17236, "comparable results": 4150, "systems work": 24649, "encoded pretrained": 7483, "gpt2 experiments": 10247, "longer context": 14821, "time training": 25517, "output sentence": 18080, "tests code": 25277, "despite success": 6280, "method uses": 15405, "conduct empirical": 4551, "approach use": 1820, "model study": 15932, "fewer attempts": 8911, "tasks propose": 25024, "shows proposed": 23073, "building block": 3040, "models requires": 16645, "efficiently effectively": 7253, "transfer pretrained": 25880, "source model": 23520, "tokens utilizing": 25571, "powerful tool": 19277, "design benchmark": 6181, "model compression": 15717, "compression techniques": 4406, "examine effect": 8104, "compressed models": 4398, "used endtoend": 26564, "study effectiveness": 24085, "improvements language": 11396, "generation understanding": 10036, "large data": 13324, "result achieved": 21990, "larger model": 13620, "model argue": 15691, "adversarial settings": 979, "use different": 26503, "measure effect": 15190, "centered kernel": 3303, "kernel alignment": 12453, "based neural": 2518, "performance levels": 18693, "model short": 15912, "evaluate quality": 7902, "metrics bleu": 15518, "better benchmark": 2773, "benchmark evaluate": 2659, "detection using": 6351, "expressions using": 8580, "classification use": 3807, "training testing": 25848, "using modified": 26812, "users led": 26668, "data quite": 5577, "tackle issue": 24683, "approach demonstrates": 1748, "zeroshot prompting": 27715, "achieving comparable": 661, "performance pretrained": 18729, "fashion using": 8837, "learning propose": 13886, "fit context": 9207, "multiple agents": 16952, "negative sentiment": 17207, "leverages pretrained": 14018, "adapts gpt2": 747, "tasks achieve": 24855, "visual representations": 27249, "language cultural": 12694, "impacts large": 11251, "internet access": 12189, "provide recommendations": 20457, "work contribute": 27476, "current work": 5368, "inductive bias": 11658, "pretrained natural": 19584, "languages question": 13308, "xlm models": 27650, "stateoftheart capabilities": 23760, "use models": 26526, "texts given": 25405, "paper examines": 18220, "twitter data": 26112, "using existing": 26752, "capable mimicking": 3174, "world applications": 27601, "attributes gender": 2204, "perpetuate harmful": 18834, "learning used": 13924, "requires data": 21746, "nlp domains": 17418, "models developing": 16142, "framework addresses": 9395, "quality results": 20664, "novel pretraining": 17563, "network using": 17238, "significantly stateoftheart": 23180, "models encounter": 16178, "challenges present": 3398, "languages english": 13301, "way people": 27310, "evaluation scheme": 8029, "statistical testing": 23832, "testing allows": 25269, "results wide": 22132, "generation question": 10009, "outputs work": 18094, "complexity input": 4331, "important challenge": 11298, "aim improve": 1180, "small subset": 23353, "method combines": 15336, "reranking results": 21773, "predicted output": 19341, "potential improvement": 19193, "data improve": 5517, "multiple prompts": 16972, "english learners": 7600, "topics including": 25631, "domain study": 6910, "capacity generate": 3185, "considered creative": 4667, "issues identified": 12384, "algorithm combines": 1238, "creative process": 5235, "process output": 19862, "use recent": 26534, "iterative process": 12401, "evolutionary algorithm": 8082, "explore different": 8504, "different notions": 6541, "process product": 19863, "opens new": 17846, "applying large": 1718, "labeled training": 12630, "benchmark approach": 2646, "superior accuracy": 24372, "datasets using": 5782, "simple tasks": 23232, "recently studies": 21254, "model include": 15801, "observe significant": 17651, "15 respectively": 58, "substantial computational": 24217, "offers alternative": 17700, "perform new": 18562, "compare fewshot": 4165, "better accuracy": 2769, "performance introducing": 18680, "validate effectiveness": 26937, "outperforming stateoftheart": 18029, "code used": 3952, "used experiments": 26568, "flexible robust": 9232, "model shows": 15915, "significant computational": 23107, "generated samples": 9873, "context information": 4803, "convolutional neural": 5027, "work consider": 27474, "combat challenges": 4039, "general method": 9704, "better capture": 2775, "information using": 11802, "model respect": 15897, "particular introduce": 18429, "researchers practitioners": 21890, "problems large": 19803, "information contained": 11741, "multimodal machine": 16944, "including t5": 11481, "zeroshot setup": 27722, "predictive models": 19377, "planning exploration": 18946, "followup questions": 9289, "questions natural": 20811, "experiences generating": 8328, "nontrivial task": 17500, "task agent": 24742, "needs understand": 17200, "generation framework": 9957, "framework framework": 9425, "topics participants": 25633, "responses generative": 21956, "model guided": 15792, "new set": 17352, "availability generative": 2358, "work leverage": 27522, "experimental studies": 8360, "interpretation results": 12210, "provide example": 20425, "improve finetuning": 11356, "comprehensive set": 4386, "regular finetuning": 21398, "formal verification": 9324, "provide new": 20449, "benchmark performance": 2670, "performance varies": 18783, "models instead": 16304, "metrics results": 15535, "work explores": 27497, "compared prior": 4202, "confidence levels": 4592, "extracted model": 8664, "study legal": 24123, "legal case": 13955, "models legal": 16344, "performance single": 18757, "challenges posed": 3395, "legal documents": 13956, "largescale pretraining": 13647, "challenges potential": 3397, "model understanding": 15956, "available models": 2380, "need access": 17169, "dl based": 6834, "evaluation furthermore": 7982, "level personal": 13984, "personal computers": 18846, "models widely": 16778, "growing complexity": 10495, "data machine": 5539, "demand computing": 5964, "processing units": 19919, "skill set": 23313, "lack deep": 12650, "previous methods": 19667, "use symbolic": 26540, "symbolic program": 24495, "training manual": 25799, "ones highly": 17727, "highly desirable": 10795, "systems hope": 24605, "domains work": 6945, "textual representation": 25435, "humanai interactions": 11008, "correctly identify": 5099, "data experiments": 5482, "research challenges": 21792, "complex multiagent": 4301, "llms transformed": 14737, "benchmarks results": 2696, "limited set": 14167, "llmbased systems": 14332, "assessment framework": 2071, "framework test": 9459, "test case": 25236, "evaluation methodology": 8001, "features intrinsic": 8872, "evaluation offers": 8008, "metrics code": 15520, "shows significant": 23074, "module used": 16823, "increased data": 11553, "suggest proposed": 24310, "highly realistic": 10800, "synthetic media": 24544, "neural approach": 17253, "finetuning prompting": 9173, "finetuning requires": 9176, "expressed terms": 8574, "performance direct": 18628, "model present": 15865, "learning new": 13862, "finetune paradigm": 9085, "key information": 12471, "corpora used": 5058, "experiments performed": 8398, "models offer": 16542, "study understand": 24164, "deeper insights": 5912, "baseline machine": 2559, "logistic regression": 14804, "developing efficient": 6392, "algorithm complex": 1239, "complex task": 4323, "context lengths": 4810, "robotic manipulation": 22338, "science technology": 22553, "potential new": 19210, "use deep": 26501, "learning computer": 13787, "lots data": 14859, "work effectively": 27485, "common tasks": 4100, "metrics finally": 15524, "finally evaluate": 9008, "retrieval module": 22154, "gpt3 recently": 10306, "transform way": 25890, "seven major": 22932, "widespread success": 27416, "realtime feedback": 21030, "vastly outperforms": 27114, "preregistered experiments": 19417, "names associated": 17034, "significant increase": 23123, "text inputs": 25346, "language inputs": 12725, "resources available": 21917, "training transformer": 25850, "applications ability": 1654, "reviewing existing": 22226, "par human": 18332, "combining llms": 4068, "quite challenging": 20842, "challenging research": 3429, "sequential decision": 22842, "symbolic methods": 24494, "systematically analyze": 24563, "public benchmark": 20553, "behavior despite": 2613, "exposed language": 8566, "short story": 22977, "environments based": 7731, "environment code": 7724, "task learning": 24800, "task knowledge": 24792, "present approach": 19424, "scholarly articles": 22536, "knowledge discovery": 12511, "increasingly utilized": 11582, "research highlighted": 21821, "studies investigate": 24047, "corpus includes": 5071, "collected dataset": 4020, "models substantial": 16712, "data research": 5584, "language education": 12703, "investigates llms": 12324, "shown llms": 23042, "model understand": 15955, "complete task": 4271, "task requires": 24821, "requires model": 21754, "word given": 27441, "changes time": 3449, "graph structure": 10438, "models opensourced": 16547, "present paper": 19451, "demo video": 5971, "llms substantial": 14720, "llm queried": 14297, "prediction demonstrate": 19352, "tasks achieving": 24856, "data recent": 5579, "shown large": 23035, "typically requires": 26147, "approach efficiently": 1756, "realworld robotic": 21040, "data previous": 5562, "code videos": 3954, "llms solve": 14709, "approach struggles": 1816, "tasks address": 24859, "solve complex": 23459, "structure allows": 23986, "models symbolic": 16724, "task task": 24832, "tasks datasets": 24895, "video game": 27179, "testing requires": 25272, "human testers": 10993, "play game": 18963, "fully automate": 9510, "explore possibility": 8519, "bug detection": 3030, "questionanswering task": 20776, "models opt": 16548, "prompting technique": 20178, "technique achieve": 25142, "code evaluation": 3911, "tasks prompt": 25022, "proposed transfer": 20366, "pretrained source": 19592, "source target": 23522, "perform complex": 18546, "demonstrations manual": 6106, "manual efforts": 15044, "demonstrations propose": 6107, "requires manual": 21753, "method human": 15367, "set templates": 22891, "sensitive choice": 22767, "used benchmarking": 26557, "current practice": 5355, "proposes framework": 20371, "perform zeroshot": 18581, "framework demonstrated": 9412, "models utilized": 16768, "generate source": 9816, "source documents": 23516, "develop efficient": 6371, "scenarios finally": 22514, "finally framework": 9011, "performance previous": 18730, "models vlms": 16775, "features model": 8875, "framework addressing": 9397, "model backbone": 15693, "questions representing": 20822, "quality allowing": 20638, "generation recently": 10014, "proven perform": 20403, "feature vectors": 8865, "improving quality": 11426, "pretrained encoderdecoder": 19529, "pretrained t5": 19593, "application large": 1644, "technique outperforms": 25147, "outperforms prior": 18056, "classification methods": 3793, "models unlike": 16760, "dataset minimal": 5698, "larger ones": 13622, "pretraining masked": 19632, "gpt3 achieved": 10285, "answer selection": 1560, "traditional approach": 25673, "sufficient training": 24295, "limited training": 14169, "samples fewshot": 22448, "based different": 2479, "motivated observation": 16860, "ensemble approaches": 7663, "given query": 10162, "process large": 19856, "models systematically": 16728, "studies demonstrated": 24040, "new largescale": 17330, "stateoftheart supervised": 23812, "generalization pretrained": 9731, "llms general": 14514, "general purpose": 9708, "demonstrate finetuning": 5998, "finetuning single": 9181, "model tuning": 15952, "tasks standard": 25066, "training transformers": 25851, "pretrained multilingual": 19581, "conjecture models": 4622, "networks paper": 17249, "learning examples": 13809, "strong abilities": 23957, "improvement average": 11387, "examples selected": 8145, "limiting ability": 14171, "representation using": 21674, "offer promising": 17689, "new unseen": 17364, "domain generalization": 6897, "specifically develop": 23617, "constrained decoding": 4704, "released openai": 21479, "encoder pretrained": 7489, "tasks suggesting": 25072, "multilingual understanding": 16926, "effective large": 7148, "news article": 17383, "generate summaries": 9817, "manually annotated": 15050, "parameters different": 18376, "benchmark including": 2665, "method source": 15399, "summaries code": 24337, "challenge propose": 3362, "generalizes unseen": 9741, "improving llms": 11419, "various scenarios": 27080, "model failing": 15770, "similar accuracy": 23188, "similar better": 23189, "largescale datasets": 13631, "field generative": 8955, "multimodal tasks": 16946, "text descriptions": 25304, "generation experimental": 9950, "edit distance": 7093, "llmpowered chatbots": 14344, "consider ethical": 4648, "world paper": 27607, "models problems": 16594, "goal provide": 10190, "designing better": 6241, "gpt35 summarize": 10326, "new metrics": 17336, "incontext learners": 11504, "learn reasoning": 13740, "instead learning": 11955, "underlying concept": 26208, "measure models": 15191, "evaluation scenarios": 8028, "containing number": 4750, "confront challenge": 4615, "improving performance": 11422, "dataset task": 5719, "increasing number": 11565, "increasingly adopted": 11570, "statistical correlation": 23830, "approach improve": 1772, "train finetune": 25697, "initial evaluation": 11835, "rapid progress": 20946, "progress artificial": 19999, "mimicking human": 15555, "work hope": 27505, "agents large": 1039, "poor sample": 19052, "baselines trained": 2581, "opens door": 17845, "earlier results": 7062, "showing lower": 23004, "dataset outperforms": 5702, "building natural": 3045, "languages tasks": 13312, "advancement ai": 906, "generation tools": 10033, "identification detecting": 11127, "detecting type": 6318, "providing specific": 20521, "customized models": 5387, "llms strong": 14717, "surpasses previous": 24444, "knowledge extracted": 12525, "extracted large": 8661, "produces coherent": 19943, "perform task": 18571, "suggest current": 24302, "main bottleneck": 14950, "recently emerged": 21236, "making unsuitable": 15015, "used create": 26560, "test tasks": 25260, "outperform random": 18017, "deep reasoning": 5900, "better understanding": 2795, "classification natural": 3795, "novel methods": 17560, "models identifying": 16275, "models exhibited": 16194, "tools identifying": 25607, "performance changes": 18600, "training example": 25773, "llm outputs": 14290, "fundamental aspect": 9540, "overview current": 18145, "input model": 11872, "unlike prior": 26398, "propose solution": 20334, "token generation": 25551, "document document": 6841, "visual language": 27241, "limited especially": 14155, "offtheshelf llms": 17719, "prompting achieves": 20133, "given natural": 10156, "specify desired": 23640, "desired behavior": 6247, "prompts effective": 20198, "tuning method": 26084, "70 accuracy": 242, "train supervised": 25709, "stateoftheart machine": 23783, "tasks different": 24902, "algorithmic reasoning": 1247, "design implement": 6195, "code llms": 3927, "function descriptions": 9522, "solve competitionlevel": 23458, "competitionlevel problems": 4247, "apps dataset": 1888, "using smaller": 26862, "generated tests": 9878, "human programmers": 10978, "opportunities offered": 17890, "learning technology": 13919, "prompt llm": 20102, "detection techniques": 6349, "launch chatgpt": 13681, "texts research": 25410, "models solving": 16696, "problems current": 19794, "information social": 11789, "media posts": 15225, "30 2022": 149, "performance commonly": 18603, "chatgpt provide": 3630, "cases provide": 3254, "possibility building": 19133, "adoption large": 871, "novel explanation": 17552, "predictions model": 19372, "context allowing": 4796, "allowing assign": 1313, "longrange dependencies": 14829, "method available": 15330, "issue present": 12376, "deep models": 5893, "technical knowledge": 25137, "wide margin": 27378, "work code": 27472, "experiments available": 8369, "writing performance": 27632, "remarkable capacities": 21570, "visual perception": 27245, "key concepts": 12463, "enjoys benefits": 7653, "learning baselines": 13776, "process providing": 19865, "understanding use": 26316, "processing mechanisms": 19897, "ways prompting": 27319, "shown excellent": 23014, "excellent performance": 8160, "underexplored literature": 26193, "using pseudo": 26844, "provide analysis": 20411, "discuss problems": 6693, "hundreds thousands": 11091, "enables llm": 7464, "linearly number": 14184, "shows number": 23068, "science problems": 22550, "finetuning prompts": 9174, "approach automatically": 1735, "approach employs": 1757, "study suggests": 24159, "significantly reducing": 23178, "reducing cost": 21330, "llms drawn": 14451, "pretrained largescale": 19565, "compared supervised": 4207, "neural ranker": 17276, "answer effective": 1534, "strategy improve": 23920, "neural rankers": 17277, "pretrained code": 19526, "causal relations": 3285, "advancements natural": 928, "framework tailored": 9457, "quantitative analysis": 20678, "efficiently extracting": 7254, "contributions include": 4926, "collection curation": 4025, "outperforms unsupervised": 18065, "evaluate efficacy": 7882, "gpt4 recently": 10362, "framework embedding": 9417, "graph neural": 10434, "nature text": 17135, "inference approach": 11684, "text model": 25353, "using diverse": 26746, "sensory inputs": 22775, "synthesis using": 24525, "study prompt": 24139, "similar human": 23193, "models commonly": 16095, "ability comprehensive": 332, "important design": 11299, "hope practice": 10865, "serve important": 22855, "important attempt": 11297, "learning improve": 13831, "llms adapt": 14355, "encoderdecoder models": 7498, "chain problem": 3324, "empirical performance": 7409, "accuracy gain": 514, "problems mwp": 19809, "furthermore gpt4": 9557, "sets new": 22900, "performance better": 18598, "perform human": 18555, "highquality summaries": 10818, "human written": 11002, "model overfitting": 15845, "multiarmed bandit": 16889, "methods propose": 15476, "extensive experimentation": 8607, "overall work": 18113, "tasks key": 24970, "learns align": 13939, "image sequences": 11191, "classification large": 3788, "based bert": 2468, "leveraging power": 14034, "power pretrained": 19261, "explore language": 8509, "model suited": 15935, "subjects results": 24198, "neural topic": 17281, "topic model": 25625, "model exploring": 15766, "distinct datasets": 6748, "python package": 20609, "june 2023": 12435, "scientific knowledge": 22561, "available sources": 2387, "detection algorithms": 6321, "algorithms large": 1252, "create largescale": 5208, "little attention": 14230, "models learned": 16341, "years widely": 27665, "widely employed": 27398, "corpus text": 5075, "improved way": 11385, "feedforward layers": 8903, "multiple natural": 16967, "provide framework": 20428, "methods discover": 15431, "task generation": 24780, "accuracy explanations": 512, "framework evaluate": 9422, "mathematical reasoning": 15149, "domains unfortunately": 6943, "able leverage": 410, "missing details": 15607, "underspecified goals": 26234, "used models": 26589, "tools capable": 25600, "llm typically": 14320, "datahungry models": 5641, "performance scales": 18752, "discuss promising": 6694, "generating content": 9893, "incredibly effective": 11585, "allows openended": 1325, "small organizations": 23349, "specific use": 23610, "perform data": 18550, "models reinforcement": 16634, "methods offer": 15469, "offer limited": 17686, "exploration method": 8483, "human loop": 10967, "commonsense behaviors": 4109, "pretraining usually": 19649, "set investigate": 22878, "aim evaluate": 1176, "llms source": 14712, "results llms": 22071, "evaluation tools": 8039, "tools available": 25598, "gpt used": 10239, "limitations chatgpt": 14124, "work examine": 27490, "examine chatgpt": 8103, "chatgpt used": 3673, "chatgpt context": 3537, "research need": 21838, "clinical language": 3840, "llms resulted": 14680, "domainspecific language": 6951, "need specialized": 17187, "data pretraining": 5561, "text generative": 25333, "text significantly": 25374, "based sentiment": 2538, "surpasses sota": 24445, "inference model": 11696, "efficiency effectiveness": 7219, "experiments validate": 8421, "validate proposed": 26941, "tasks discuss": 24904, "discuss opportunities": 6688, "challenges utilizing": 3409, "study investigated": 24114, "showed performance": 23001, "semantic equivalence": 22722, "models comprehensive": 16100, "known highly": 12609, "tasks analysis": 24862, "question present": 20762, "gain insights": 9608, "different pretrained": 6545, "models addition": 16018, "used benchmark": 26556, "present details": 19433, "researchers explore": 21884, "llms brings": 14385, "abilities various": 321, "known effective": 12608, "design taskspecific": 6221, "example prompts": 8117, "language specification": 13258, "approach promise": 1803, "extract raw": 8657, "predictive tasks": 19380, "extracted features": 8660, "performant models": 18807, "addresses challenge": 830, "learning predicting": 13875, "research improve": 21824, "early detection": 7067, "chains prompt": 3344, "challenges realworld": 3404, "based labels": 2501, "desired task": 6250, "provided demonstrate": 20476, "sequence generation": 22818, "models past": 16564, "tools work": 25621, "python library": 20608, "highlevel task": 10754, "approaches llms": 1855, "iii test": 11163, "comparing stateoftheart": 4224, "used allows": 26551, "safety constraints": 22421, "policies limited": 19022, "high probability": 10712, "chatgpt assess": 3510, "various areas": 27029, "framework enables": 9419, "use transformerbased": 26545, "study evaluated": 24090, "remaining text": 21535, "domain using": 6912, "monte carlo": 16847, "opensource framework": 17852, "finetuning methods": 9155, "research introduce": 21827, "different components": 6501, "needs provides": 17199, "provides various": 20502, "robust tool": 22351, "shown potential": 23045, "performance hand": 18670, "chatgpt shows": 3657, "noisy data": 17465, "worse results": 27613, "tool building": 25583, "furthermore suggest": 9571, "set instructions": 22877, "experiments results": 8407, "chatgpt average": 3515, "testing experiments": 25270, "continuous refinement": 4873, "result poor": 21994, "discuss existing": 6684, "solutions used": 23451, "efficient querying": 7241, "tasks generate": 24938, "simultaneously learn": 23265, "learning experimentally": 13811, "paper tackle": 18324, "visionlanguage model": 27234, "model vlm": 15965, "lastly use": 13659, "promising directions": 20056, "various kinds": 27051, "new lightweight": 17332, "research models": 21836, "highquality questions": 10815, "presents new": 19493, "image descriptions": 11182, "rely data": 21519, "study potential": 24134, "examples used": 8151, "performance realworld": 18739, "detection approaches": 6322, "proposed comprehensive": 20351, "provide overview": 20451, "overview existing": 18147, "techniques enhance": 25153, "considerations future": 4662, "future researchers": 9596, "systems code": 24586, "aipowered chatbot": 1215, "tasks related": 25037, "new application": 17296, "common mistakes": 4096, "level understanding": 13985, "privacy protection": 19732, "promising new": 20061, "impact human": 11233, "english dataset": 7590, "memory model": 15266, "precision recall": 19318, "data availability": 5433, "based framework": 2487, "pretraining phase": 19642, "tasks efficiently": 24912, "learning result": 13896, "facilitate future": 8731, "furthermore observe": 9565, "inference python": 11704, "learning programs": 13885, "strides various": 23948, "tasks surpass": 25073, "solve hard": 23460, "propose adaptive": 20275, "achieves promising": 638, "meaningful conversations": 15184, "probabilistic nature": 19743, "operations lead": 17879, "make data": 14979, "llms capabilities": 14387, "help better": 10653, "algorithms llms": 1254, "generating highly": 9901, "responses wide": 21973, "approaches require": 1861, "impact academic": 11226, "pain points": 18165, "public dataset": 20555, "demonstrate conversational": 5985, "specifically employ": 23618, "studies comparing": 24038, "technology enables": 25180, "understand natural": 26250, "based generated": 2488, "llm including": 14283, "advancement field": 907, "field llms": 8956, "new possibilities": 17345, "interact environment": 12123, "software development": 23424, "address bias": 789, "understand study": 26257, "systematically translated": 24570, "associations different": 2114, "development tasks": 6419, "important implications": 11300, "addressing issue": 836, "finetuned corpus": 9091, "presents detailed": 19487, "paper empirically": 18215, "detectors including": 6356, "zeroshot classifiers": 27699, "result general": 21992, "include case": 11439, "developers believe": 6387, "participants language": 18414, "unprecedented capabilities": 26414, "question arises": 20741, "setup alongside": 22929, "driven recent": 7027, "strongly correlates": 23980, "llms synthesize": 14727, "complex social": 4320, "achieve 13": 556, "effective training": 7165, "training approaches": 25747, "evaluating chatgpts": 7937, "diverse problem": 6810, "domains remains": 6937, "issue data": 12372, "ensuring fair": 7677, "continuously trained": 4875, "generation leverages": 9979, "llms text": 14730, "analysis design": 1408, "effectively generates": 7171, "outcomes ensuring": 17990, "performance effectively": 18637, "model takes": 15940, "deployment large": 6145, "malicious use": 15018, "identifying aigenerated": 11146, "data future": 5499, "proliferation large": 20031, "systems generating": 24604, "chatgpt exhibits": 3568, "varies depending": 27000, "fluent natural": 9244, "project page": 20022, "source codes": 23514, "versatility llms": 27158, "capabilities increasingly": 3117, "designed test": 6237, "purpose paper": 20593, "especially focusing": 7800, "detected traditional": 6308, "traditional tools": 25689, "codex chatgpt": 3973, "stage work": 23703, "demonstrated unique": 6078, "systems continue": 24588, "paradigm called": 18337, "effective learning": 7151, "process interactive": 19854, "framework users": 9464, "digital content": 6602, "led widespread": 13951, "content production": 4787, "employs novel": 7441, "difficult accurately": 6578, "aigc model": 1168, "based images": 2496, "verify effectiveness": 27149, "models accurate": 16006, "generation digital": 9946, "weight matrix": 27352, "significant decrease": 23111, "accuracy glue": 515, "instruction data": 11973, "recently attracted": 21230, "attracted numerous": 2195, "performance especially": 18639, "evaluation dataset": 7971, "continuous improvement": 4872, "chatgpt prompts": 3629, "translation tools": 26000, "semantic role": 22731, "enhance accuracy": 7612, "chatgpt currently": 3542, "improve average": 11351, "graphics processing": 10442, "tokens used": 25570, "particular downstream": 18426, "public github": 20557, "performance text": 18773, "generated summaries": 9876, "based natural": 2515, "chatgpt generally": 3578, "previous evaluation": 19665, "finetuning paper": 9159, "specific focus": 23589, "skills chatgpt": 23315, "text models": 25354, "guidance researchers": 10520, "simple technique": 23233, "language interactions": 12728, "new domain": 17318, "bottleneck scaling": 2957, "learning tools": 13920, "aigenerated writing": 1173, "human writing": 11001, "writing ai": 27628, "investigated potential": 12317, "study demonstrates": 24081, "demonstrates great": 6081, "interpret results": 12201, "millions parameters": 15550, "potentially dangerous": 19247, "attention weights": 2189, "extract key": 8656, "task better": 24748, "results generated": 22050, "provide comprehensive": 20415, "demonstrates potential": 6086, "essential advancing": 7810, "benefits llms": 2709, "improvement performance": 11392, "approach provide": 1805, "underlying principles": 26215, "users query": 26677, "leverage chatgpt": 13993, "finetuning small": 9182, "containing multiple": 4749, "study recent": 24146, "cultural societal": 5315, "context chatgpt": 4797, "contexts furthermore": 4831, "language technologies": 13267, "model distinguish": 15741, "perfect accuracy": 18538, "need automated": 17171, "results natural": 22078, "gpt4 achieved": 10334, "effectively detect": 7170, "diagnosis treatment": 6441, "training study": 25845, "questions 2022": 20780, "medicine models": 15237, "models showed": 16679, "showed high": 23000, "questions struggled": 20825, "lower accuracy": 14876, "positive correlation": 19116, "research ai": 21776, "models create": 16117, "models interpret": 16312, "assess potential": 2052, "experiments gpt4": 8388, "outperforms chatgpt": 18038, "highlighting llms": 10777, "apis llms": 1617, "applications llms": 1677, "assess chatgpt": 2043, "chatgpt prominent": 3626, "information accuracy": 11735, "sequencetosequence model": 22836, "model era": 15755, "vision natural": 27228, "tasks addition": 24857, "model code": 15712, "code new": 3937, "important source": 11311, "models implement": 16277, "unlike humans": 26396, "humans models": 11074, "range topics": 20914, "systems modern": 24620, "paper primary": 18285, "chatgpt question": 3634, "news plagiarism": 17388, "increasingly essential": 11574, "study provide": 24142, "tools specifically": 25616, "chatgptgenerated content": 3689, "chatgpt humans": 3592, "including diverse": 11451, "tasks currently": 24893, "learning chatgpt": 13784, "correct errors": 5082, "shown chatgpt": 23012, "abilities natural": 317, "able comprehend": 398, "fewshot prompts": 8932, "different base": 6496, "enhancing quality": 7646, "approach code": 1738, "summarization evaluation": 24347, "far satisfactory": 8834, "analyzed generated": 1476, "rapid adoption": 20933, "simultaneously raising": 23266, "concerns regarding": 4500, "regarding potential": 21375, "demonstrate simple": 6033, "strategies mitigate": 23911, "inference training": 11710, "propose prompting": 20329, "involves using": 12352, "generate candidate": 9758, "asking provide": 2017, "research evaluation": 21813, "potential risk": 19219, "critical role": 5263, "understanding public": 26305, "particularly context": 18439, "political elections": 19037, "conclude discussing": 4507, "tasks report": 25042, "benchmarks requiring": 2695, "performance comparison": 18610, "comparison chatgpt": 4226, "gpt4 yields": 10369, "gpt4 especially": 10344, "users diverse": 26655, "information needs": 11767, "specific information": 23591, "chatgpt significantly": 3658, "objectives generating": 17635, "output generation": 18072, "lastly study": 13658, "showing promising": 23005, "learning scenarios": 13901, "scenarios paper": 22518, "open problems": 17771, "networks deep": 17243, "helps people": 10674, "models expected": 16198, "news data": 17385, "introduction chatgpt": 12272, "attracted significant": 2196, "unexpected behaviors": 26335, "tasks hoping": 24947, "individualized learning": 11638, "learning platforms": 13872, "production highquality": 19951, "process using": 19871, "step process": 23849, "development time": 6420, "potential improve": 19192, "paper utilizes": 18328, "openais latest": 17811, "carefully engineered": 3221, "critical issue": 5260, "numerous applications": 17611, "detecting aigenerated": 6311, "multiple datasets": 16958, "sequence length": 22821, "available general": 2371, "public users": 20565, "social interactions": 23384, "pose considerable": 19089, "ability capture": 328, "settings address": 22913, "different prompting": 6550, "prompts contain": 20192, "rapidly advancing": 20949, "advancing field": 953, "applications spanning": 1686, "enabling models": 7476, "safety implications": 22422, "features architecture": 8867, "optimization using": 17921, "allowing model": 1315, "satisfactory performance": 22460, "gaussian process": 9673, "investigate chatgpts": 12296, "supervised methods": 24392, "methods heavily": 15452, "generated gpt35": 9851, "function words": 9523, "human gpt4": 10943, "random forest": 20876, "study revealed": 24149, "fake generated": 8803, "integration artificial": 12048, "expressed concerns": 8573, "methods combined": 15425, "intelligence generated": 12072, "chatgpt4 outperforms": 3685, "accuracy reliability": 533, "task classifying": 24750, "suggest llm": 24306, "substantial impact": 24219, "engineering solving": 7581, "potential ethical": 19179, "interactive model": 12149, "tasks aiming": 24860, "learn joint": 13735, "model demonstrated": 15731, "medical expertise": 15233, "development recent": 6415, "reducing training": 21335, "newly developed": 17380, "technique leverages": 25145, "studies use": 24056, "use single": 26538, "longterm context": 14837, "models underexplored": 16756, "multitask capabilities": 16997, "require retraining": 21730, "finetuning simply": 9180, "transformer attention": 25901, "prompts resulting": 20235, "data instruction": 5525, "data introduce": 5527, "demonstrates impressive": 6082, "compared gpt4": 4188, "patterns improving": 18496, "aims generating": 1206, "single multiple": 23276, "nlp techniques": 17451, "challenges future": 3376, "approaches evaluation": 1839, "era llms": 7772, "llms facilitate": 14493, "guidelines future": 10531, "dataset approach": 5646, "accuracy rates": 529, "respectively additionally": 21934, "construction industry": 4729, "significantly enhancing": 23155, "crafting prompts": 5200, "suggests potential": 24325, "enables users": 7467, "tool widely": 25595, "given sheer": 10169, "variety potential": 27018, "stateofthe art": 23754, "llms pretrained": 14638, "diverse downstream": 6797, "llms identify": 14546, "synthesize code": 24527, "code synthesis": 3949, "document llm": 6844, "reduction number": 21338, "presents study": 19498, "models domain": 16154, "llms successfully": 14721, "llms domainspecific": 14447, "llms use": 14742, "prompt codex": 20082, "largely surpassing": 13610, "lack standardization": 12659, "llms revolutionizing": 14683, "revolutionizing natural": 22250, "increasing use": 11568, "techniques employed": 25152, "token type": 25556, "subtype analysis": 24247, "extensively study": 8628, "study present": 24135, "labels study": 12638, "substitute human": 24235, "intelligence paper": 12081, "chatgpt correctly": 3540, "adversarial samples": 978, "make evaluation": 14980, "experiments comparing": 8374, "llm chatgpt": 14265, "directly generating": 6640, "models generation": 16242, "code pretrained": 3939, "attention exceptional": 2161, "specific contexts": 23580, "build models": 3035, "time cost": 25504, "potential used": 19235, "used chatgpt": 26558, "approximately 80": 1881, "suggest chatgpt": 24301, "chatgpt impacts": 3593, "particularly regarding": 18444, "performance overall": 18724, "evaluated llms": 7925, "particularly cases": 18437, "structured data": 23990, "llms predict": 14635, "performance experiments": 18643, "llms approach": 14367, "given appropriate": 10143, "based realworld": 2533, "caution using": 3293, "develop large": 6375, "data comes": 5450, "graph learning": 10433, "latest chatgpt": 13671, "llms prompts": 14649, "great strides": 10460, "data propose": 5569, "improvement baseline": 11388, "responsible ethical": 21981, "aigc artificial": 1165, "written human": 27637, "chatgpt results": 3645, "results medical": 22073, "useful information": 26613, "pay attention": 18504, "extraction capabilities": 8669, "exhibits excellent": 8234, "indicates chatgpt": 11617, "need develop": 17174, "negative impact": 17205, "impact chatgpt": 11230, "support development": 24408, "analysis existing": 1411, "powerful ubiquitous": 19279, "systems perform": 24626, "chatgpt devise": 3552, "control data": 4932, "promising research": 20066, "dataset covers": 5665, "complex instructions": 4294, "manually creating": 15052, "creating large": 5222, "resulting model": 22003, "data public": 5572, "public httpsgithubcomnlpxucanwizardlm": 20558, "predicting human": 19344, "diverse reasoning": 6814, "limited number": 14161, "potentially effective": 19248, "processing large": 19892, "contributions research": 4929, "results experiments": 22044, "prompts present": 20229, "models essential": 16185, "methods allowing": 15417, "techniques shown": 25168, "model visual": 15964, "unexplored paper": 26337, "examine potential": 8108, "chatgpt cuttingedge": 3543, "architecture tackle": 1910, "domain current": 6884, "offer valuable": 17693, "highlighting challenges": 10773, "expansion models": 8297, "effective methods": 7154, "document collections": 6840, "methods specifically": 15491, "sparse dense": 23548, "llms solving": 14711, "predict specific": 19332, "specific instances": 23593, "new capabilities": 17303, "retrieve similar": 22167, "based structural": 2542, "valuable information": 26953, "models demonstrates": 16134, "interacting environment": 12128, "specifically construct": 23614, "information exchange": 11750, "addition highlight": 759, "paper address": 18181, "multilayer perceptron": 16912, "users using": 26682, "selfconsistency sc": 22702, "capabilities model": 3131, "difficulty level": 6591, "future ai": 9579, "interactions humans": 12140, "produced large": 19938, "task release": 24820, "time propose": 25511, "simulation real": 23255, "policies large": 19020, "long instructions": 14812, "broad set": 3013, "analysis instruction": 1417, "varying sizes": 27104, "challenge previous": 3360, "solve challenges": 23455, "quantitatively evaluate": 20683, "extensive evaluations": 8602, "engineering pe": 7578, "performs poorly": 18823, "significant concerns": 23110, "gpt4 using": 10368, "membership inference": 15246, "models memorize": 16519, "written language": 27639, "problems introduce": 19802, "newly created": 17379, "workflow using": 27579, "title abstract": 25539, "results accuracy": 22007, "asked explain": 2014, "review process": 22217, "time effort": 25506, "enhance efficiency": 7615, "systematically investigate": 24568, "pretraining natural": 19637, "parameters model": 18383, "classification financial": 3785, "legal field": 13961, "research presents": 21849, "llms financial": 14501, "detailed exploration": 6294, "range subjects": 20909, "subjects including": 24197, "methods evaluation": 15436, "diverse dataset": 6792, "contribute understanding": 4914, "investment decisionmaking": 12336, "state information": 23743, "information recent": 11780, "developed aid": 6381, "tasks potential": 25012, "humans completing": 11064, "allowing llms": 1314, "generation leveraging": 9980, "fair evaluation": 8793, "effective baseline": 7142, "apply approach": 1712, "interpretability models": 12203, "enhance downstream": 7613, "random seeds": 20878, "based observation": 2520, "observation introduce": 17644, "new algorithm": 17294, "algorithm called": 1237, "stabilizing training": 23695, "algorithms improve": 1251, "optimization algorithm": 17913, "chatgpt remarkable": 3640, "prompts automatically": 20185, "llms automate": 14373, "training pipeline": 25817, "hyperparameter tuning": 11098, "capabilities available": 3105, "gpt35turbo gpt4": 10330, "data extracted": 5489, "models combined": 16093, "introduce automated": 12237, "uses chatgpt": 26688, "descriptions used": 6173, "growing field": 10498, "improved generation": 11379, "models automated": 16046, "automated data": 2269, "contextaware automated": 4826, "field automated": 8952, "systems present": 24629, "chatgpt knowledge": 3595, "limitations hinder": 14132, "decisionmaking process": 5835, "process tackle": 19866, "result shows": 21995, "compared directly": 4183, "methods blackbox": 15422, "performance regardless": 18744, "present perspective": 19452, "results reported": 22100, "knowledge limited": 12554, "reveal performance": 22198, "dataset code": 5653, "compared chatgpt": 4179, "models motivated": 16528, "a100 gpu": 299, "inference pipelines": 11700, "clinical domain": 3839, "revolutionized research": 22248, "posed limited": 19093, "developed models": 6383, "study offers": 24129, "potential opportunities": 19211, "associated use": 2111, "perform large": 18560, "large range": 13589, "development llms": 6410, "risk generating": 22292, "harmful output": 10592, "needed fully": 17194, "fully understand": 9516, "need manual": 17183, "eliminate manual": 7289, "problems experimental": 19798, "reasoning problem": 21099, "approach finetuning": 1765, "cases models": 3252, "investigates feasibility": 12319, "fundamental principles": 9541, "chatgpt sophisticated": 3660, "foundation llm": 9363, "models resulted": 16651, "outperforms traditional": 18064, "review cost": 22214, "particular using": 18434, "strategies users": 23912, "ideas findings": 11119, "models emerged": 16168, "limitations semantic": 14139, "reach goal": 20979, "collect annotate": 4017, "prompts complex": 20190, "better user": 2796, "paper define": 18207, "chatgpt language": 3597, "intelligence language": 12075, "ability solve": 379, "methods study": 15492, "language ai": 12685, "gpt4 gpt35": 10350, "multiple trials": 16984, "similar results": 23202, "remain limited": 21531, "focus evaluating": 9254, "performance larger": 18689, "standard methods": 23722, "rely encoderonly": 21520, "legal domain": 13957, "large code": 13321, "llms natural": 14607, "plain text": 18938, "utilize generative": 26906, "chatgpt computer": 3536, "gpt4 revolutionized": 10363, "work discusses": 27482, "different subgroups": 6558, "accuracy predicting": 525, "users use": 26681, "qualitative results": 20631, "generation translation": 10034, "reducing production": 21334, "big data": 2844, "elucidate future": 7297, "future development": 9580, "enables generative": 7463, "study systematically": 24160, "systematically examine": 24566, "methods performance": 15472, "proposed solutions": 20364, "solutions research": 23450, "research demonstrates": 21801, "work tackle": 27566, "tackle problem": 24687, "widely available": 27397, "models instructgpt": 16305, "demonstrate automated": 5981, "models reasonable": 16623, "enhances performance": 7632, "unclear chatgpt": 26176, "openended prompts": 17831, "unlocking potential": 26408, "expertise experience": 8432, "exhibited promising": 8230, "predicting quality": 19346, "systems parallel": 24624, "estimation approach": 7833, "systems including": 24607, "indicating approach": 11619, "examples demonstrating": 8125, "context present": 4815, "weather conditions": 27336, "research tasks": 21871, "establish baseline": 7817, "terms use": 25231, "40 license": 177, "contain social": 4743, "directly use": 6641, "userfriendly intuitive": 26647, "syntax semantic": 24520, "correct responses": 5085, "levels accuracy": 13988, "research shows": 21866, "performance constrained": 18617, "human chatgpt": 10910, "designed implemented": 6227, "classification using": 3808, "bert pretraining": 2730, "study showcase": 24154, "key features": 12467, "provide important": 20433, "tuning models": 26086, "problem optimizing": 19779, "hidden representations": 10687, "techniques enhancing": 25154, "blackbox optimization": 2907, "framework novel": 9446, "aimed improving": 1184, "improving problemsolving": 11423, "trial error": 26026, "process human": 19850, "process allows": 19834, "proposed technique": 20365, "framework significantly": 9451, "significantly increase": 23163, "task instead": 24787, "features lack": 8873, "process timeconsuming": 19869, "timeconsuming errorprone": 25522, "chatgpt bing": 3520, "suggest ai": 24300, "process efficient": 19846, "study large": 24122, "varying difficulty": 27102, "paradigm allows": 18335, "methods reveals": 15485, "suggests chatgpt": 24323, "difficulties understanding": 6589, "hope findings": 10864, "research refine": 21861, "using benchmark": 26716, "findings conclude": 9039, "potential research": 19217, "method grounded": 15365, "structure large": 23987, "model interpretable": 15808, "overcome limitation": 18119, "nearly 90": 17153, "performance existing": 18642, "using declarative": 26742, "llms programmatic": 14644, "straightforward arithmetic": 23887, "problem description": 19764, "guarantee correctness": 10509, "llms exploit": 14485, "learning demonstrations": 13798, "groundtruth labels": 10481, "step building": 23846, "containing different": 4748, "important models": 11304, "opt125m model": 17899, "designed natural": 6228, "problems covering": 19793, "complexity simple": 4334, "problems maximum": 19807, "various prompting": 27074, "evaluation code": 7963, "investigate performance": 12305, "set novel": 22882, "llms good": 14527, "easy use": 7083, "compared cot": 4181, "performance gain": 18651, "models inference": 16300, "used solve": 26598, "provided prompt": 20479, "information pretrained": 11773, "questionanswering dataset": 20771, "various modalities": 27061, "best models": 2751, "learning content": 13789, "learning strategy": 13912, "prompt selection": 20111, "response times": 21946, "pretrained image": 19535, "image encoders": 11184, "alzheimers disease": 1352, "overcoming limitations": 18124, "project website": 20023, "framework offers": 9448, "texttoimage models": 25415, "conversational capabilities": 4987, "pieces information": 18914, "textbased responses": 25393, "responses constructs": 21951, "demonstrate improvements": 6007, "gained popularity": 9615, "specific knowledge": 23594, "widespread attention": 27413, "problems encountered": 19797, "capabilities llm": 3129, "agents performance": 1050, "learning agents": 13765, "past experiences": 18473, "performance approach": 18591, "challenges deployment": 3371, "size training": 23301, "original training": 17975, "understanding multiple": 26291, "latest versions": 13675, "versions chatgpt": 27164, "corpora languages": 5056, "llms medical": 14602, "plain language": 18937, "steps enhance": 23859, "enhance performance": 7620, "strategies constructing": 23902, "comprehensively investigate": 4394, "attention llms": 2169, "sequence transduction": 22829, "prediction error": 19353, "tuning llms": 26083, "trained neural": 25732, "algorithm learning": 1241, "applicability approach": 1631, "models instructions": 16308, "reasoning gpt4": 21076, "general reasoning": 9711, "existing automated": 8246, "automatically determine": 2317, "symbolic solvers": 24498, "symbolic solver": 24497, "error messages": 7784, "results significant": 22113, "offers promising": 17705, "collecting data": 4023, "highlight versatility": 10770, "pretraining stage": 19644, "gender identity": 9683, "detection presents": 6341, "based approach": 2467, "model multiple": 15834, "multiple source": 16976, "adaptively learn": 744, "perform extensive": 18553, "gpt large": 10229, "demonstrate higher": 6004, "slightly different": 23323, "suggest potential": 24309, "understand capabilities": 26236, "underlying mechanisms": 26212, "regression large": 21390, "bayesian inference": 2598, "llms match": 14600, "representative samples": 21690, "data synthesis": 5608, "guidance propose": 10519, "make attempt": 14974, "variety downstream": 27006, "demonstrate powerful": 6024, "potential synthetic": 19227, "data systematic": 5609, "work studies": 27563, "dataset image": 5687, "language description": 12696, "propose finegrained": 20293, "provide useful": 20471, "performance multiple": 18708, "bestperforming model": 2767, "seven years": 22934, "settings discuss": 22916, "opportunities paper": 17891, "qualitative evaluation": 20629, "parameters making": 18382, "model datasets": 15726, "techniques perform": 25164, "performance quality": 18735, "great promise": 10458, "gap study": 9649, "aggregate metrics": 1062, "metrics like": 15529, "f1 accuracy": 8706, "model analysis": 15683, "detecting certain": 6313, "models mllms": 16522, "study different": 24083, "different finetuning": 6517, "icl important": 11110, "adapting large": 738, "given set": 10168, "features like": 8874, "provide broader": 20413, "zeroshot llms": 27711, "personal data": 18847, "natural conversations": 17054, "effectively paper": 7179, "chatgptbased conversational": 3687, "openly released": 17843, "legal experts": 13960, "dimensions study": 6616, "model types": 15954, "tasks make": 24991, "comparable model": 4148, "stateoftheart evaluation": 23765, "robust solution": 22350, "reasoning propose": 21102, "light data": 14059, "need expensive": 17176, "assess ability": 2041, "accurately recall": 553, "information need": 11766, "communication challenging": 4119, "inherent ambiguity": 11828, "knowledge help": 12538, "possible solutions": 19142, "policy search": 19030, "highlight advantages": 10758, "requires significant": 21755, "lack guidance": 12653, "examples llm": 8137, "compared zeroshot": 4214, "users expressed": 26662, "open door": 17764, "measured compared": 15194, "available code": 2367, "comparison large": 4228, "models utilizing": 16769, "costly obtain": 5147, "news social": 17389, "aspect remains": 2024, "task presents": 24815, "aims detect": 1198, "information study": 11791, "analysis demonstrates": 1406, "performance additionally": 18586, "conducted exploratory": 4576, "sentences likely": 22792, "effective practice": 7159, "contains 15": 4753, "covers wide": 5190, "multimodal foundation": 16930, "fewshot tasks": 8936, "tasks success": 25070, "employ llms": 7430, "performance effectiveness": 18638, "reveals llms": 22207, "african american": 1009, "comparison performance": 4232, "documentation model": 6848, "performance gaps": 18654, "prominent ai": 20037, "finetuning lightweight": 9150, "work explored": 27496, "validity generated": 26950, "directly applied": 6637, "models uses": 16764, "outputs based": 18085, "issues help": 12383, "strategy code": 23917, "training requires": 25827, "curation pipeline": 5325, "llmbased translation": 14333, "approaches largely": 1853, "models reasoning": 16624, "programaided language": 19977, "analysis discover": 1410, "literature paper": 14223, "existing literature": 8264, "augmentation improve": 2222, "important language": 11302, "suffer significant": 24290, "exhibit bias": 8210, "results training": 22124, "models vicuna": 16772, "similarities differences": 23207, "learning embedding": 13806, "highquality dataset": 10810, "models reason": 16622, "models problem": 16593, "stateoftheart techniques": 23814, "respectively furthermore": 21937, "challenge llms": 3357, "typically rely": 26145, "work relies": 27549, "design paper": 6205, "approach leverages": 1781, "encoderdecoder architecture": 7497, "propose endtoend": 20290, "highquality code": 10808, "process developers": 19844, "establish strong": 7819, "models lower": 16509, "dont know": 6964, "sizes ranging": 23305, "tests correct": 25278, "visual metaphors": 27244, "humans interact": 11068, "using visual": 26880, "ability reconstruct": 376, "opening new": 17838, "promising candidate": 20053, "conversations chatgpt": 4999, "evaluating improving": 7941, "exhibited impressive": 8229, "deepen understanding": 5909, "underlying mechanism": 26211, "play vital": 18969, "perform significantly": 18566, "new knowledge": 17329, "systems significant": 24637, "generated summary": 9877, "framework enhance": 9420, "incomplete information": 11492, "key events": 12465, "able achieve": 394, "prompts multiple": 20224, "tens hundreds": 25210, "performance measured": 18702, "effectively reduce": 7181, "belong category": 2643, "chatgpt answers": 3507, "solving wide": 23483, "resourceefficient manner": 21912, "work released": 27548, "examine ability": 8101, "written python": 27642, "lines code": 14186, "metrics assessing": 15515, "task specifications": 24827, "action space": 693, "train language": 25698, "questions generating": 20799, "key technical": 12477, "novel dynamic": 17550, "effectiveness robustness": 7210, "context work": 4824, "models cases": 16078, "llms directly": 14444, "corrective feedback": 5096, "model framework": 15778, "reduces human": 21326, "models beginning": 16054, "demonstrate gpt4": 6002, "solution propose": 23441, "gpt4 language": 10351, "failure modes": 8788, "lays groundwork": 13695, "predictions recent": 19373, "languages remain": 13310, "understand chatgpts": 26238, "consistently outperformed": 4688, "endtoend large": 7545, "previous efforts": 19664, "draw line": 7010, "problem models": 19776, "evaluate stateoftheart": 7905, "llms covering": 14415, "correlation model": 5115, "size performance": 23298, "datasets human": 5756, "human aigenerated": 10899, "model pipeline": 15858, "poorly task": 19056, "challenges new": 3387, "method using": 15406, "multimodal techniques": 16947, "reliable sources": 21508, "encoder results": 7493, "meticulously curated": 15509, "extensive collection": 8597, "leverage strengths": 14004, "align language": 1261, "bring following": 3002, "including automatic": 11445, "enabling language": 7471, "classification order": 3797, "llms allows": 14363, "visual programming": 27246, "mitigation strategies": 15637, "careful consideration": 3214, "pairs benchmark": 18171, "cost llms": 5136, "attention layers": 2168, "inference method": 11694, "enhances interpretability": 7631, "performance degradation": 18621, "poses challenge": 19096, "generation reasoning": 10011, "provide generative": 20429, "incorporating llms": 11530, "model propose": 15881, "algorithms generate": 1250, "programming code": 19985, "seeks shed": 22663, "problems provide": 19813, "review systems": 22221, "tracing historical": 25657, "historical development": 10835, "advanced machine": 897, "short discussion": 22974, "autonomous agents": 2333, "decisionmaking tasks": 5837, "llm prompt": 14294, "capabilities furthermore": 3113, "propose skill": 20333, "skill discovery": 23312, "demonstrations experiments": 6103, "operations propose": 17880, "clip encoder": 3847, "synthesizing code": 24533, "task code": 24751, "evaluation various": 8043, "little known": 14231, "data advancing": 5418, "perform highlevel": 18554, "furthermore llms": 9561, "models suggest": 16718, "inputs llms": 11892, "learningbased models": 13936, "finetuned llm": 9103, "memory resources": 15272, "high throughput": 10720, "attention scores": 2188, "higher probability": 10740, "gpt3s performance": 10332, "work sheds": 27554, "design prompting": 6211, "image encoder": 11183, "inputs generate": 11891, "outputs approach": 18084, "tasks longer": 24988, "tasks measure": 24993, "learning remains": 13892, "limited paper": 14162, "learners solve": 13757, "play role": 18968, "new applications": 17297, "comparable gpt4": 4145, "community focus": 4130, "various resources": 27079, "joint prediction": 12420, "computation resources": 4420, "prompting llm": 20159, "outside field": 18098, "finetuning allows": 9118, "low confidence": 14861, "proposed code": 20350, "systems explanations": 24601, "explanations compare": 8452, "baseline approaches": 2554, "finetuning lowrank": 9153, "impose significant": 11319, "memory overhead": 15268, "propose structured": 20337, "series models": 22852, "reducing memory": 21333, "formal definition": 9318, "state llms": 23744, "regions state": 21386, "state space": 23746, "method builds": 15332, "objective subjective": 17630, "quality code": 20641, "steps help": 23860, "performance limitations": 18694, "extensive ablation": 8594, "compared natural": 4194, "affect code": 994, "results use": 22126, "decoding method": 5851, "bias model": 2815, "understanding task": 26313, "task studies": 24828, "discuss design": 6683, "icl text": 11111, "leverages recent": 14019, "previously unknown": 19689, "challenge limited": 3356, "limited research": 14163, "insights practitioners": 11916, "adopting llms": 866, "understand models": 26249, "tool automatically": 25582, "automatically extracts": 2319, "better predicting": 2788, "graph representations": 10437, "facilitate automation": 8728, "settings ai": 22914, "highlight number": 10765, "reverse engineering": 22211, "limitations suggest": 14141, "representations believe": 21678, "fundamental question": 9543, "explored use": 8538, "graph generation": 10431, "generation explanation": 9953, "model small": 15924, "average scores": 2402, "evaluate different": 7880, "power models": 19260, "eliminates need": 7293, "efficient accessible": 7229, "require improvement": 21725, "difficult defend": 6580, "living organisms": 14238, "comparing language": 4220, "challenging current": 3415, "method enables": 15351, "topics demonstrate": 25630, "variety nlp": 27016, "systematic errors": 24554, "systems available": 24580, "available apis": 2365, "direct access": 6620, "different architecture": 6493, "furthermore agents": 9549, "exhibit robustness": 8226, "environment designed": 7725, "struggle scale": 24001, "purpose language": 20591, "gpt4 outperform": 10357, "outperform traditional": 18022, "various professional": 27073, "gpt4 directly": 10343, "specialized domains": 23570, "datasets llms": 5762, "evaluated comparison": 7918, "responses based": 21949, "effect users": 7137, "text chatgpt": 25285, "machine learningbased": 14922, "learningbased solution": 13937, "written text": 27644, "learning deep": 13795, "tested proposed": 25266, "survey data": 24469, "internetscale data": 12194, "model deep": 15728, "models directly": 16148, "takes input": 24709, "combination language": 4042, "combine approach": 4051, "enhance graph": 7617, "properties experiments": 20264, "despite large": 6270, "gpt2 specifically": 10276, "challenges particular": 3393, "resource requirements": 21909, "leverages chatgpt": 14009, "evaluation conducted": 7965, "ensuring quality": 7678, "models prompts": 16600, "wealth information": 27333, "demonstrated notable": 6055, "gains parameter": 9624, "framework code": 9407, "generation research": 10016, "web data": 27340, "humansounding text": 11080, "prompting models": 20165, "user behavior": 26622, "problem automatically": 19761, "behavior difficult": 2614, "different agents": 6489, "contains 1000": 4752, "consistent better": 4678, "experiments public": 8404, "data essential": 5475, "humans analyze": 11062, "sentence structures": 22788, "performed better": 18810, "instruction followers": 11978, "evaluation performance": 8013, "description source": 6167, "models examine": 16189, "addresses limitations": 832, "limitations challenges": 14123, "security risks": 22651, "approaches like": 1854, "directions using": 6633, "ability understanding": 383, "gpt4 prompt": 10361, "involving large": 12354, "test scenarios": 25255, "llms memory": 14603, "taking advantage": 24714, "augment llms": 2218, "improve limitation": 11361, "tackle issues": 24684, "constrain generation": 4702, "problem natural": 19777, "development chinese": 6401, "alleviate limitation": 1298, "despite existing": 6257, "tasks significant": 25057, "annotation method": 1511, "paradigm leverages": 18339, "capabilities generative": 3114, "set prompt": 22885, "annotation performance": 1512, "data construction": 5454, "chatgpt exhibited": 3567, "llm using": 14323, "new questions": 17348, "questions popular": 20817, "model majority": 15827, "significantly reduced": 23176, "examples fewshot": 8130, "65b parameters": 233, "performance suggesting": 18765, "research article": 21784, "gaussian noise": 9672, "extraordinary capabilities": 8691, "systems develop": 24591, "compelling results": 4240, "prompt paper": 20109, "consistently improve": 4684, "early stage": 7069, "existing opensource": 8273, "articles model": 1970, "achieves 98": 622, "approaches lack": 1849, "users make": 26670, "relative frequency": 21453, "image understanding": 11194, "using scalable": 26856, "understand manipulate": 26248, "generation incontext": 9965, "human guidance": 10944, "tool generate": 25587, "demonstrates using": 6091, "intermediate representation": 12178, "incontext exemplars": 11502, "method estimate": 15354, "elicit human": 7282, "benchmarks future": 2691, "vary different": 27098, "types tasks": 26137, "exhibit different": 8213, "chatgpt llms": 3606, "transformative potential": 25895, "llms openai": 14618, "public data": 20554, "inference framework": 11693, "problems solution": 19818, "thousands tokens": 25483, "key factors": 12466, "augmentation based": 2220, "underlying models": 26214, "gap exists": 9640, "tasks raises": 25030, "regression tasks": 21395, "complex mathematical": 4298, "mathematical problems": 15147, "cost conduct": 5131, "efficient accurate": 7230, "analysis applied": 1394, "accurate efficient": 540, "versatile approach": 27156, "based real": 2532, "breakthroughs large": 2982, "massive datasets": 15110, "answer openended": 1537, "approach opens": 1792, "provide rich": 20461, "applications software": 1685, "nlp domain": 17417, "numerous tasks": 17612, "associated model": 2108, "database comprising": 5631, "gpt4 developed": 10342, "querying llms": 20716, "advanced model": 899, "harnessing potential": 10604, "specialized training": 23574, "various opportunities": 27071, "program code": 19974, "code generate": 3915, "architectures based": 1914, "framework solves": 9452, "ability interpret": 351, "finetuning plms": 9161, "dataset identify": 5686, "furthermore introduce": 9559, "introduce comprehensive": 12240, "global context": 10179, "information article": 11738, "generated based": 9838, "including understanding": 11484, "understanding neural": 26295, "based gpt4": 2493, "tool called": 25584, "insights public": 11917, "content emergence": 4770, "emerged leveraging": 7333, "growing popularity": 10501, "social issues": 23385, "specific prompt": 23600, "require attention": 21719, "original language": 17966, "approach limitations": 1783, "models handcrafted": 16262, "networks including": 17247, "summarization automatic": 24340, "instructions generated": 12001, "10 different": 20, "gpt data": 10225, "realize potential": 21022, "provided human": 20477, "content compared": 4765, "model exhibit": 15761, "videos potential": 27184, "video prediction": 27181, "multiple possible": 16971, "input extensive": 11864, "ai pretrained": 1128, "dataset average": 5649, "acquire general": 678, "bias llm": 2812, "using sensor": 26857, "specific examples": 23588, "application paper": 1648, "order produce": 17946, "building systems": 3050, "seamless integration": 22605, "rl finetuning": 22311, "logic engine": 14798, "instance used": 11945, "new concept": 17308, "provide usage": 20470, "domainspecific finetuned": 6949, "insights paper": 11912, "combines power": 4061, "finetuned llms": 9104, "data computation": 5452, "benchmark specifically": 2673, "members community": 15244, "llm designed": 14274, "states current": 23818, "datasets focus": 5754, "models align": 16025, "academic setting": 443, "tools study": 25617, "second presents": 22631, "broad coverage": 3010, "using llama": 26801, "literature review": 14224, "wide coverage": 27377, "challenge 2023": 3346, "actions based": 698, "prediction code": 19351, "2023 shared": 114, "models capability": 16072, "achieving accuracy": 657, "reasoning writing": 21116, "adversarial training": 980, "reproduce training": 21699, "overcome data": 18118, "combining large": 4065, "capture semantic": 3199, "surpassing stateoftheart": 24451, "models aibased": 16023, "chatgpt answering": 3506, "analysis showed": 1448, "deductive reasoning": 5875, "google search": 10208, "powerful models": 19276, "performance medical": 18703, "domain explore": 6891, "models spanning": 16697, "significantly impact": 23157, "assessment techniques": 2074, "opensourced llms": 17866, "llms varying": 14749, "using curated": 26737, "learn user": 13742, "enhance ability": 7611, "underscores potential": 26228, "foundational framework": 9371, "framework future": 9426, "updates work": 26461, "reduced human": 21323, "significant benefits": 23100, "extract relevant": 8658, "scalable solution": 22479, "adoption llms": 874, "alignment information": 1283, "integration large": 12051, "significant strides": 23140, "tasks effectiveness": 24910, "incorporated prompt": 11525, "extraction systems": 8681, "contrast propose": 4894, "directly using": 6642, "method generate": 15362, "recently release": 21249, "llms utilize": 14746, "problemsolving skills": 19827, "undergone finetuning": 26204, "achieve objective": 580, "problemsolving abilities": 19825, "methods frequently": 15447, "effective heuristics": 7146, "analysis methods": 1429, "potential solutions": 19224, "education compared": 7112, "respectively results": 21939, "content gaps": 4774, "provides insight": 20491, "unlock new": 26405, "typically designed": 26142, "involving text": 12356, "parameters using": 18390, "match em": 15120, "largely operate": 13608, "online conversations": 17738, "utility function": 26893, "validation set": 26947, "importance data": 11288, "corpus using": 5076, "tasks allows": 24861, "additional parameters": 769, "unveiling potential": 26450, "chatgpt enhancing": 3562, "effectively identify": 7173, "emphasizing importance": 7392, "llms evaluated": 14469, "component modern": 4340, "attention multiple": 2175, "applied wide": 1708, "solution approach": 23438, "openai api": 17782, "tasks makes": 24992, "fully realize": 9513, "resources need": 21923, "applications code": 1658, "addition model": 760, "role various": 22374, "labels input": 12637, "llms applications": 14366, "understand input": 26244, "approach incorporates": 1775, "original questions": 17972, "design dynamic": 6188, "automatic translation": 2310, "scale corpus": 22484, "approximate given": 1878, "firstorder logic": 9204, "ai agent": 1076, "improved model": 11380, "ability release": 377, "alternative manual": 1346, "interactions environment": 12139, "closedloop robot": 3862, "learning dynamics": 13804, "model llmbased": 15824, "challenges enabling": 3374, "approach implement": 1771, "aim help": 1178, "systems accurately": 24575, "support reasoning": 24410, "private information": 19737, "data increases": 5522, "feedback correct": 8886, "pretraining current": 19620, "successful application": 24277, "languages recent": 13309, "work extend": 27498, "lack necessary": 12657, "way dialogue": 27304, "order generate": 17943, "understanding implicit": 26278, "llms inference": 14559, "llm compression": 14271, "models dense": 16136, "recently researchers": 21252, "evaluate potential": 7899, "differences observed": 6487, "higher sensitivity": 10745, "help humans": 10658, "humans build": 11063, "mental models": 15287, "model answers": 15685, "reward modeling": 22258, "rapidly improving": 20956, "perform systematic": 18570, "designed extensible": 6226, "efficient tool": 7245, "settings findings": 22917, "literature survey": 14226, "collaborative dialogue": 4009, "selected set": 22679, "prevailing trends": 19652, "assessment focusing": 2070, "scores gpt4": 22582, "summary study": 24361, "humanlike characteristics": 11037, "ai natural": 1122, "understand implications": 26243, "gaps current": 9652, "data gpt2": 5509, "analysis techniques": 1455, "explores ethical": 8541, "additionally paper": 778, "interdisciplinary collaborations": 12159, "addressing issues": 837, "positive impact": 19117, "combines strengths": 4062, "replicate human": 21639, "editing tasks": 7103, "safety security": 22426, "scenarios potentially": 22519, "paper initiate": 18232, "llms lens": 14583, "techniques help": 25157, "programs generated": 19996, "llms insights": 14561, "posts twitter": 19151, "interactions work": 12145, "wider array": 27409, "analysis offers": 1432, "llms field": 14499, "development future": 6403, "contribute ongoing": 4913, "widely adopted": 27396, "poor accuracy": 19050, "capabilities perform": 3138, "models deep": 16125, "systems deliver": 24590, "performed best": 18809, "initial prompt": 11837, "prompt modifications": 20107, "similar feature": 23192, "generate final": 9773, "classification evaluate": 3784, "settings medical": 22919, "text llms": 25348, "boost llms": 2944, "learning providing": 13887, "gpt4 used": 10366, "extend capabilities": 8586, "opening possibility": 17841, "descriptions learning": 6171, "input size": 11881, "significantly recent": 23174, "provide immediate": 20432, "generation interaction": 9968, "llms augmented": 14372, "paper emphasizes": 18214, "education recent": 7120, "students leverage": 24028, "rarely explored": 20959, "twostep approach": 26120, "encoder training": 7494, "significantly boost": 23149, "learning predictions": 13876, "currently consensus": 5371, "study probabilistic": 24137, "years software": 27663, "software systems": 23431, "techniques especially": 25155, "natural programming": 17122, "studies ai": 24036, "experience paper": 8324, "particularly scenarios": 18445, "baseline evaluate": 2556, "performance demonstrating": 18623, "agents realworld": 1052, "understanding program": 26303, "recently achieved": 21227, "achieved better": 597, "automation performance": 2330, "python programs": 20611, "llms transform": 14735, "researchers limited": 21888, "analyzing text": 1484, "example use": 8120, "architecture different": 1902, "robust learning": 22347, "llms extract": 14490, "tasks requires": 25044, "observation llm": 17645, "larger complex": 13614, "llms decisionmaking": 14420, "extensive world": 8622, "growing demand": 10497, "make informed": 14982, "informed decisions": 11811, "model models": 15832, "data domain": 5469, "overcome problem": 18121, "framework finetuning": 9424, "scalable training": 22480, "lora qlora": 14845, "significantly outperformed": 23168, "respectively compared": 21936, "represents significant": 21695, "internet things": 12191, "things iot": 25460, "current benchmarks": 5331, "evaluate robustness": 7903, "serves additional": 22861, "additional input": 767, "demonstrates llms": 6085, "approach developing": 1749, "significantly higher": 23156, "language semantics": 13256, "agents supported": 1058, "human conversation": 10916, "demonstrate measures": 6014, "probability failure": 19750, "garnered considerable": 9656, "academic industrial": 439, "coherent results": 3998, "tasks raising": 25031, "prompts prompt": 20230, "address complex": 798, "complex realworld": 4314, "making informed": 15009, "humanlevel intelligence": 11032, "applications llmbased": 1676, "natural science": 17125, "directions field": 6627, "2023 competition": 112, "strategy based": 23915, "mitigate data": 15622, "investigate feasibility": 12300, "feasibility using": 8852, "language variety": 13284, "introduce innovative": 12244, "examining impact": 8113, "research implementations": 21823, "llms comprehending": 14405, "internal workings": 12184, "latest llm": 13673, "contributes ongoing": 4919, "models enhancing": 16182, "networks transformers": 17251, "inference pipeline": 11699, "consistency llms": 4675, "longstanding issue": 14835, "inference existing": 11691, "methods primarily": 15474, "plan solve": 18941, "providing solutions": 20520, "science question": 22551, "instructionfollowing capabilities": 11991, "results limited": 22069, "tasks enhancing": 24914, "models application": 16033, "thoroughly investigated": 25475, "llmbased recommender": 14331, "conduct qualitative": 4565, "provided information": 20478, "prompting need": 20166, "provide examples": 20426, "deployment multistep": 6150, "model developers": 15740, "available opensource": 2382, "powerful capabilities": 19267, "llms agents": 14361, "emulate human": 7450, "closely mirror": 3869, "comprehensive assessment": 4369, "parameter models": 18359, "models biased": 16064, "gender racial": 9685, "step removing": 23850, "llm generated": 14280, "depends availability": 6132, "alternative approaches": 1343, "approaches generate": 1844, "effectiveness generated": 7196, "bayesian approach": 2597, "clip image": 3848, "feature embedding": 8858, "benchmarks code": 2687, "llms interpret": 14567, "finegrained alignment": 9070, "strategies construct": 23901, "features generated": 8871, "generated finetuned": 9847, "human instructors": 10946, "planning phase": 18947, "stateoftheart llmbased": 23780, "generation inspired": 9967, "tracing tool": 25658, "models adapting": 16016, "language agnostic": 12684, "prevalent natural": 19655, "reaching performance": 20983, "including alpaca": 11444, "studies carried": 24037, "approach offers": 1790, "past year": 18475, "cognitive tasks": 3990, "realworld experiments": 21038, "experiments finally": 8385, "finally speculate": 9024, "provide accurate": 20410, "construct highquality": 4715, "biomedical natural": 2884, "using current": 26738, "semantic connection": 22721, "researchers exploring": 21885, "identify mitigate": 11139, "model recently": 15888, "approach generic": 1769, "main goal": 14952, "advances deep": 937, "paper evaluates": 18218, "compared methods": 4193, "model knowledge": 15812, "argue existing": 1933, "detecting bad": 6312, "output generated": 18071, "users llm": 26669, "substantially exceeding": 24225, "input improves": 11868, "construct unified": 4721, "position embeddings": 19107, "applied tasks": 1704, "exam questions": 8097, "closer reality": 3873, "rapidly changing": 20951, "article introduces": 1966, "billions dollars": 2858, "despite importance": 6263, "literature studies": 14225, "memorability study": 15248, "lower number": 14878, "vast number": 27111, "sentences used": 22794, "gpts capabilities": 10387, "methods deep": 15426, "efficient model": 7240, "aims democratize": 1197, "task address": 24741, "fully exploit": 9512, "sequence lengths": 22822, "semantic structural": 22735, "various software": 27084, "gpt3 diverse": 10293, "systematic comparison": 24552, "approach easily": 1753, "potential enhancements": 19177, "future direction": 9582, "arise models": 1941, "models rapid": 16619, "various disciplines": 27036, "highlighting strengths": 10780, "responses various": 21972, "proficiency specialized": 19965, "augmented large": 2230, "future developments": 9581, "provide details": 20420, "problems requires": 19816, "gpt4 based": 10338, "tend generate": 25202, "factually accurate": 8772, "strategies like": 23910, "llms proposed": 14651, "method demonstrated": 15339, "property prediction": 20269, "trained predominantly": 25734, "used study": 26599, "text general": 25316, "ai text": 1144, "capability produce": 3166, "gender results": 9686, "furthermore experiments": 9554, "showing significant": 23008, "contexts research": 4835, "challenges using": 3408, "training deep": 25767, "notable examples": 17515, "pretrained imagenet": 19538, "used wide": 26609, "trading performance": 25671, "financial data": 9029, "llms serve": 14686, "investment decisions": 12337, "learn perform": 13739, "variety use": 27022, "given potential": 10160, "development new": 6411, "new llms": 17333, "adaptation task": 727, "similar names": 23199, "assess extent": 2047, "notable improvement": 17516, "unexplored work": 26338, "llms enabling": 14464, "interactive scenarios": 12151, "enhancing accuracy": 7635, "design framework": 6193, "framework automatically": 9402, "analysis social": 1450, "paper novel": 18261, "released https": 21478, "techniques largely": 25160, "roberta models": 22328, "obtain stateoftheart": 17667, "following tasks": 9286, "supervised machine": 24389, "similarity metrics": 23211, "created comprehensive": 5212, "traditional text": 25688, "effectiveness comparing": 7189, "notable performance": 17517, "correlates strongly": 5110, "maps using": 15062, "hand large": 10555, "queries demonstrate": 20698, "present considerable": 19429, "field particularly": 8966, "common patterns": 4097, "experiments study": 8413, "intelligence tasks": 12086, "evaluates new": 7930, "architectures range": 1915, "foreign language": 9306, "proficiency level": 19963, "parameter sizes": 18361, "including finetuning": 11454, "size increases": 23293, "adaptability various": 723, "properly assess": 20261, "educational materials": 7126, "study select": 24153, "information diverse": 11746, "diverse sources": 6817, "key attention": 12458, "attention layer": 2167, "decisionmaking capabilities": 5832, "media analysis": 15219, "domain datasets": 6886, "llm specific": 14311, "specific public": 23601, "present protocol": 19454, "work progress": 27537, "learning weight": 13931, "comparing performance": 4222, "knowledge domains": 12516, "strategies achieve": 23895, "relevant literature": 21499, "learning drl": 13803, "achieved notable": 606, "requires substantial": 21758, "work novel": 27529, "function assessed": 9521, "systems results": 24636, "foundational step": 9378, "step development": 23847, "currently available": 5370, "tasks highlight": 24946, "highlight need": 10764, "using chinese": 26727, "models size": 16689, "applied improve": 1699, "require human": 21724, "demonstrate remarkable": 6031, "raises privacy": 20867, "approach mitigate": 1786, "recent rise": 21202, "implicitly learn": 11280, "capabilities exist": 3111, "chatgpt especially": 3563, "extraction challenging": 8670, "investigates large": 12320, "llms prompted": 14648, "labels using": 12639, "support large": 24409, "models investigated": 16316, "datasets exhibit": 5748, "comprehending complex": 4360, "achieving higher": 665, "explores chatgpt": 8540, "chatgpt chatbot": 3528, "importance addressing": 11286, "emerged crucial": 7332, "crucial problem": 5296, "domains law": 6928, "survey provides": 24472, "llms given": 14525, "tailored llms": 24700, "associated llms": 2107, "strategies large": 23907, "approaches paper": 1856, "introduced new": 12261, "new types": 17363, "gpt35 bard": 10319, "focused performance": 9263, "largely unaffected": 13611, "using deep": 26743, "processes present": 19881, "chatgpt models": 3609, "rely solely": 21527, "data furthermore": 5498, "names propose": 17035, "pretraining clip": 19617, "improve agents": 11350, "study human": 24108, "behavior example": 2616, "tests paper": 25279, "robust order": 22349, "tests chatgpt": 25276, "finetuned annotated": 9088, "settings particular": 22921, "models trend": 16753, "work highlight": 27503, "feedback using": 8901, "dataset leads": 5696, "finetuning phase": 9160, "need human": 17179, "context experiments": 4800, "does mean": 6866, "construct release": 4720, "new zealand": 17375, "recommendations future": 21279, "furthermore findings": 9556, "critical challenge": 5253, "text explanations": 25313, "components text": 4342, "contrast existing": 4886, "movie reviews": 16871, "did significantly": 6482, "llms second": 14684, "length llm": 13970, "works focus": 27592, "question types": 20765, "negative attributes": 17202, "groups similar": 10488, "typically focus": 26144, "language editing": 12702, "covering different": 5186, "specific challenges": 23578, "foundational large": 9374, "llms english": 14465, "language support": 13260, "despite power": 6273, "representative llms": 21688, "model aligned": 15679, "human intents": 10949, "penalty term": 18521, "harm performance": 10587, "potential tool": 19230, "evolving landscape": 8088, "size poses": 23299, "manual design": 15042, "certain number": 3314, "search optimal": 22615, "model automatically": 15692, "datasets conduct": 5735, "indicate clear": 11606, "exhibit better": 8209, "capacities llms": 3181, "consistently surpasses": 4690, "result work": 21997, "research industrial": 21826, "paradigm based": 18336, "overall task": 18111, "furthermore provide": 9569, "process method": 19860, "parameters llm": 18380, "high training": 10721, "rapid convergence": 20940, "understand limitations": 26246, "new york": 17373, "york times": 27677, "news headlines": 17386, "llm demonstrates": 14273, "finetuning generate": 9132, "gpt2 decoder": 10246, "enforcing constraints": 7558, "based linear": 2508, "reasoning explaining": 21072, "capabilities completing": 3108, "understanding effects": 26270, "comes expense": 4072, "models implicitly": 16279, "chatbots like": 3491, "neurons represent": 17289, "apply framework": 1713, "vision encoders": 27218, "finetuning procedure": 9170, "llm endtoend": 14276, "contribute improving": 4908, "conduct endtoend": 4553, "provide evaluation": 20423, "does guarantee": 6864, "performance surprisingly": 18767, "pretrained scratch": 19590, "different stages": 6556, "design principles": 6207, "developers use": 6388, "data usually": 5622, "speech synthesis": 23650, "rate improvement": 20962, "document information": 6843, "predefined target": 19326, "enables creation": 7460, "messages interpreted": 15301, "prompts incontext": 20210, "encoderonly decoderonly": 7500, "leveraging historical": 14024, "compared results": 4203, "language interface": 12729, "metalorganic frameworks": 15311, "frameworks mofs": 9472, "discovery novel": 6667, "sample questions": 22441, "hallucination argue": 10546, "limitations study": 14140, "discussed findings": 6699, "detection remains": 6342, "llm solve": 14310, "access effective": 465, "scenarios identify": 22515, "strategies help": 23904, "analysis apply": 1395, "settings results": 22924, "paper highlights": 18230, "financial texts": 9033, "domain financial": 6892, "financial news": 9031, "plays pivotal": 18981, "based study": 2543, "carefully selected": 3223, "performed various": 18811, "automate tasks": 2264, "ability stateoftheart": 380, "domain finetuning": 6896, "memory complexity": 15260, "universal knowledge": 26378, "propose logical": 20303, "causal inference": 3278, "problem trained": 19784, "cases experiments": 3250, "challenges model": 3384, "interactive storytelling": 12152, "memory paper": 15269, "ai chatbot": 1090, "systems deep": 24589, "deep rl": 5906, "job scheduling": 12416, "decisionmaking deep": 5833, "rl challenging": 22309, "relevant legal": 21498, "legal frameworks": 13962, "chatbot technology": 3483, "generate semantic": 9813, "propose series": 20330, "date work": 5787, "model effectiveness": 15750, "methods seen": 15487, "videos recent": 27185, "models raises": 16616, "modeling framework": 15981, "engineering achieves": 7570, "designed provide": 6232, "meticulously crafted": 15507, "crafted prompts": 5197, "performance level": 18691, "level chatgpt": 13981, "efficient effective": 7234, "natural languages": 17121, "language semantic": 13255, "learning aiming": 13766, "strategy extract": 23918, "work underscores": 27570, "offering practical": 17698, "demonstrate high": 6003, "models clms": 16090, "efficiency paper": 7224, "time steps": 25514, "availability large": 2359, "important provide": 11307, "generated nl": 9866, "systems evaluate": 24598, "research benchmark": 21787, "data leakage": 5534, "evidence indicating": 8069, "explores using": 8546, "embedded systems": 7307, "potential enhancing": 19178, "quickly ubiquitous": 20840, "help analyse": 10652, "errors llms": 7792, "static nature": 23822, "based proposed": 2531, "perform worse": 18580, "general applicability": 9690, "handle simple": 10569, "different scenarios": 6553, "generating multiple": 9906, "current task": 5365, "accurate solutions": 546, "solutions existing": 23444, "different roles": 6552, "prediction results": 19362, "alleviating issue": 1302, "multiple times": 16982, "ensemble llms": 7664, "propose ensemble": 20291, "ensemble approach": 7662, "lowrank adapters": 14887, "related knowledge": 21432, "models roberta": 16660, "finegrained way": 9073, "model seen": 15905, "despite trained": 6286, "outperforms strategies": 18061, "materials study": 15137, "sentence comprehension": 22778, "limited input": 14158, "hold true": 10845, "propose dynamic": 20286, "robot locomotion": 22335, "locomotion challenging": 14791, "locomotion policy": 14792, "information environments": 11749, "language models make": 13097, "success large pretrained": 24265, "downstream nlp tasks": 6980, "capable generating humanlike": 3173, "remains challenging paper": 21539, "challenging paper propose": 3423, "et al 2017": 7839, "results benchmark datasets": 22017, "stateoftheart pretrained models": 23799, "improve quality generated": 11372, "visual question answering": 27248, "despite recent advances": 6277, "stateoftheart language model": 23773, "language model set": 12796, "used feature extractor": 26570, "using generative language": 26761, "performance tasks text": 18770, "approach does require": 1751, "human evaluation study": 10931, "language models automatically": 12832, "single forward pass": 23272, "produce high quality": 19928, "methods findings demonstrate": 15444, "language models openais": 13114, "generation propose novel": 10006, "language modeling gpt2": 12808, "neural networks dnns": 17273, "fewshot zeroshot learning": 8941, "dataset containing 100k": 5662, "generated gpt2 model": 9850, "application programming interfaces": 1651, "human evaluation shows": 10930, "language models observed": 13111, "tasks text generation": 25085, "allows multitask learning": 1324, "machine learning applications": 14901, "methods based deep": 15421, "language models used": 13196, "finetuning pretrained language": 9163, "subject matter experts": 24189, "language models surprisingly": 13180, "explore best practice": 8499, "downstream tasks experimental": 6987, "source code model": 23512, "code model parameters": 3929, "causal language models": 3281, "undergoing paradigm shift": 26202, "models foundation models": 16228, "language models speech": 13170, "bidirectional encoder representations": 2839, "encoder representations transformers": 7491, "representations transformers bert": 21686, "technology natural language": 25182, "retrieve relevant sentences": 22166, "paper present simple": 18273, "present simple effective": 19460, "large search space": 13594, "achieved great results": 600, "largescale language model": 13637, "models experimental results": 16201, "experimental results proposed": 8353, "results proposed method": 22092, "language models known": 12948, "language models tested": 13188, "stateoftheart deep learning": 23764, "probing language models": 19758, "learning models trained": 13859, "model challenging dataset": 15709, "achieves competitive performance": 628, "models propose novel": 16603, "language models data": 12865, "models data augmentation": 16122, "fewshot text classification": 8938, "model achieves comparable": 15675, "information encoded pretrained": 11748, "model improves performance": 15800, "conduct empirical study": 4552, "like bert gpt2": 14073, "gpt2 language modeling": 10259, "model compression techniques": 15718, "models shown promising": 16682, "improvements language model": 11397, "achieve stateoftheart performance": 590, "language generation understanding": 12717, "centered kernel alignment": 3304, "better benchmark evaluate": 2774, "finetune large language": 9079, "used training data": 26605, "fit context window": 9208, "pretrained language modeling": 19543, "impacts large language": 11252, "pretrained natural language": 19585, "natural language data": 17059, "models trained scratch": 16749, "stateoftheart capabilities variety": 23761, "real world applications": 21005, "finetuning pretrained large": 9165, "generation question answering": 10010, "language model help": 12769, "approach outperforms stateoftheart": 1797, "use recent advances": 26535, "labeled training data": 12631, "explanations generated llms": 8458, "language models capable": 12842, "models capable generating": 16074, "significant computational resources": 23108, "convolutional neural networks": 5028, "multimodal machine learning": 16945, "models including t5": 16289, "summarization models perform": 24351, "language model predictions": 12786, "data case study": 5438, "case study legal": 3245, "zeroshot fewshot scenarios": 27706, "best performance single": 2753, "publicly available models": 20577, "learning dl based": 13801, "models widely used": 16779, "llms lack deep": 14573, "data experiments demonstrate": 5483, "models llms transformed": 16499, "models llms bert": 16369, "natural language corpus": 17058, "highly realistic images": 10801, "language models efficient": 12883, "language model study": 12798, "study aims answer": 24062, "aims answer question": 1193, "language model present": 12787, "pretrain finetune paradigm": 19518, "gain deeper insights": 9606, "baseline machine learning": 2560, "use deep learning": 26502, "learning computer vision": 13788, "transformer based large": 25903, "sequential decision making": 22843, "learning new task": 13863, "language models substantial": 13177, "study investigates llms": 24118, "data recent works": 5580, "shown large language": 23036, "propose novel approach": 20315, "perform complex reasoning": 18547, "paper proposes framework": 18299, "using large pretrained": 26796, "language models utilized": 13198, "application large language": 1645, "model pretraining masked": 15872, "like gpt3 achieved": 14085, "knowledge transfer method": 12597, "sufficient training data": 24296, "process large language": 19857, "recent studies demonstrated": 21206, "paper investigate effectiveness": 18245, "investigate effectiveness using": 12298, "reinforcement learning algorithm": 21412, "answer complex questions": 1532, "address challenge propose": 792, "improving llms performance": 11420, "language model guided": 12768, "similar better performance": 23190, "generation experimental results": 9951, "consider ethical implications": 4649, "performance wide variety": 18802, "variety tasks including": 27020, "introduce new metrics": 12250, "real world paper": 21006, "language models predict": 13127, "progress artificial intelligence": 20000, "mimicking human language": 15556, "agents large language": 1040, "poor sample efficiency": 19053, "case study case": 3241, "study case study": 24069, "building natural language": 3046, "rapid advancement ai": 20935, "language models propose": 13136, "extracted large language": 8662, "approach address issues": 1731, "paper introduce benchmark": 18235, "reasoning abilities llms": 21052, "highlights need research": 10786, "classification natural language": 3796, "examples training set": 8150, "llms reasoning large": 14665, "overview current state": 18146, "unlike prior work": 26399, "empirical evaluations demonstrate": 7401, "language reasoning steps": 13253, "given natural language": 10157, "llms solve competitionlevel": 14710, "use symbolic methods": 26541, "report experiments using": 21649, "social media posts": 23391, "adoption large language": 872, "language models offer": 13112, "typically requires large": 26148, "models pretrained massive": 16587, "aspects language use": 2028, "shown excellent performance": 23015, "applied different llms": 1695, "significantly reducing cost": 23179, "models recent advancements": 16626, "models llms drawn": 16400, "pretrained largescale datasets": 19566, "approach able generate": 1727, "performance compared supervised": 18609, "answer effective strategy": 1535, "use llms gpt35": 26524, "advancements natural language": 929, "models contributions include": 16113, "demonstrated impressive results": 6053, "results wide range": 22133, "learning framework embedding": 13821, "graph neural networks": 10436, "graph neural network": 10435, "data experiments using": 5484, "serve important attempt": 22856, "llms recently shown": 14672, "word problems mwp": 27445, "sets new stateoftheart": 22901, "classification large language": 3789, "explore language models": 8510, "neural topic model": 17282, "documents using advanced": 6857, "recent years widely": 21224, "multiple natural language": 16968, "language generation tasks": 12716, "method effectively improve": 15349, "various domains unfortunately": 27039, "shown large pretrained": 23039, "areas future work": 1927, "finetuned gpt2 model": 9096, "gpt2 model trained": 10264, "model trained generate": 15946, "specific use cases": 23611, "language models reinforcement": 13152, "models reinforcement learning": 16635, "benchmark evaluate llms": 2660, "discuss potential limitations": 6692, "clinical language models": 3841, "models llms resulted": 16472, "based sentiment analysis": 2539, "novel approach called": 17542, "validate proposed method": 26942, "language models comprehensive": 12856, "different pretrained models": 6546, "model based transformer": 15696, "models llms brings": 16371, "paper proposes new": 18300, "natural language specification": 17108, "paper investigates potential": 18250, "results demonstrate significant": 22040, "sequence generation models": 22819, "llms including chatgpt": 14551, "use transformerbased language": 26546, "processing tasks work": 19916, "experiments indicate chatgpt": 8391, "visionlanguage model vlm": 27235, "aims provide overview": 1213, "provide overview existing": 20452, "research paper explores": 21844, "study chatgpt used": 24073, "incontext learning large": 11514, "complex task requires": 4324, "paper aims provide": 18190, "help better understand": 10654, "responses wide variety": 21974, "understand natural language": 26251, "opens new possibilities": 17847, "software development tasks": 23425, "paper presents detailed": 18278, "advanced language model": 890, "natural question arises": 17124, "models results suggest": 16654, "deployment large language": 6146, "proliferation large language": 20032, "performance varies depending": 18784, "llms gpt3 codex": 14531, "potential future research": 19184, "widely used large": 27402, "graphics processing units": 10443, "based natural language": 2516, "natural language interactions": 17073, "text generated chatgpt": 25319, "study investigated potential": 24115, "potential chatgpt large": 19171, "paper explore potential": 18223, "release chatgpt garnered": 21468, "chatgpt garnered widespread": 3577, "exceptional ability generate": 8166, "results natural language": 22079, "computer vision natural": 4454, "vision natural language": 27229, "language model code": 12751, "wide range topics": 27392, "fake news plagiarism": 8806, "evaluation results demonstrate": 8025, "abilities natural language": 318, "results chatgpt able": 22023, "automatic evaluation metrics": 2293, "simultaneously raising concerns": 23267, "concerns regarding potential": 4501, "showing promising results": 23006, "demonstrates large language": 6084, "problems machine learning": 19806, "language models expected": 12895, "various benchmark datasets": 27032, "learning chainofthought reasoning": 13781, "carefully engineered prompts": 3222, "available general public": 2372, "evaluation framework based": 7981, "rapidly advancing field": 20950, "machine learning research": 14918, "gpt35 gpt4 models": 10322, "methods heavily rely": 15453, "integration artificial intelligence": 12049, "gpt3 model generate": 10302, "artificial intelligence generated": 1986, "potential ethical concerns": 19180, "reducing training time": 21336, "demonstrated promising results": 6058, "tuning instruction tuning": 26079, "processing nlp techniques": 19910, "models llms greatly": 16429, "review recent advancements": 22220, "finally discuss existing": 9006, "poses significant challenges": 19101, "models llms llms": 16449, "models llms successfully": 16493, "llms successfully applied": 14722, "valuable insights future": 26955, "models llms revolutionizing": 16474, "revolutionizing natural language": 22251, "extensive experiments comparing": 8611, "attracted significant attention": 2197, "attention exceptional performance": 2162, "using generative ai": 26760, "develop large language": 6376, "achieved impressive performance": 604, "models chatgpt capable": 16086, "chatgpt capable generating": 3524, "content generated chatgpt": 4776, "aigc artificial intelligence": 1166, "intelligence generated content": 12073, "exhibits excellent performance": 8235, "perform human level": 18556, "using pretrained models": 26837, "code data public": 3905, "data public httpsgithubcomnlpxucanwizardlm": 5573, "code generation tasks": 3922, "models llms use": 16500, "recent advancements natural": 21144, "remains unexplored paper": 21559, "offer valuable insights": 17694, "address gap introduce": 802, "limitations using llms": 14144, "predict specific instances": 19333, "field ai alignment": 8949, "produced large language": 19939, "simulation real world": 23256, "policies large language": 19021, "performance models using": 18706, "challenge previous work": 3361, "quantitatively evaluate performance": 20684, "pretraining natural language": 19638, "ability llms solve": 363, "research presents comprehensive": 21850, "llms financial domain": 14502, "work shown large": 27558, "humans completing tasks": 11065, "training data work": 25763, "data work propose": 5627, "novel method leverages": 17559, "achieves remarkable results": 640, "language models automated": 12830, "novel framework leverages": 17555, "challenges posed limited": 3396, "study offers valuable": 24130, "large neural networks": 13572, "potential risks associated": 19221, "models human preferences": 16272, "research needed fully": 21840, "needed fully understand": 17195, "eliminate manual effort": 7290, "problems experimental results": 19799, "study investigates feasibility": 24117, "finetuning incontext learning": 9137, "better user experience": 2797, "method significantly improves": 15394, "artificial intelligence language": 1989, "intelligence language models": 12076, "language ai models": 12686, "code generation models": 3918, "models llms pretrained": 16462, "llms natural language": 14608, "various fields including": 27045, "code generation translation": 3923, "widely used various": 27405, "challenges future development": 3377, "source code data": 23510, "unclear chatgpt performs": 26177, "deep learning model": 5889, "released public use": 21481, "high levels accuracy": 10707, "language models end": 12889, "framework novel approach": 9447, "improving problemsolving capabilities": 11424, "using benchmark dataset": 26717, "experimental results reveal": 8355, "models llms exploit": 16413, "designed natural language": 6229, "llms shown excellent": 14690, "excellent performance various": 8161, "information provided prompt": 11778, "pretrained image encoders": 19537, "language models design": 12871, "language models evaluate": 12890, "code pretrained models": 3940, "pretrained models available": 19578, "models paper introduces": 16557, "contain social biases": 4744, "experiments demonstrate approach": 8378, "significant challenges deployment": 23104, "latest versions chatgpt": 13676, "achieve performance comparable": 582, "language models symbolic": 13183, "models symbolic solvers": 16725, "problems paper introduces": 19811, "gpt large language": 10230, "regression large language": 21391, "limited data availability": 14154, "variety downstream tasks": 27007, "metrics results demonstrate": 15536, "natural language description": 17060, "paper make attempt": 18258, "experimental results multiple": 8352, "visual language models": 27242, "detecting certain types": 6314, "language models mllms": 13101, "learning icl important": 13830, "adapting large language": 739, "exhibit remarkable performance": 8225, "requires significant human": 21756, "significant human effort": 23117, "data paper present": 5554, "comparison large language": 4229, "paper systematically study": 18323, "news social media": 17390, "covers wide range": 5191, "multimodal foundation models": 16932, "language generation evaluate": 12711, "foundation models large": 9367, "language models emerged": 12884, "multimodal foundation model": 16931, "tasks demonstrate approach": 24898, "data curation pipeline": 5459, "language models reasoning": 13144, "shows significant improvements": 23075, "data augmentation improve": 5428, "important language models": 11303, "findings raise concerns": 9054, "address propose novel": 823, "despite success large": 6281, "cost large language": 5135, "llms exhibited impressive": 14479, "play vital role": 18970, "reasoning llms perform": 21089, "solving wide range": 23484, "code datasets used": 3910, "work examine ability": 27491, "outperform existing methods": 18013, "perform poorly task": 18564, "align language model": 1262, "code data models": 3904, "enabling language models": 7472, "pretrained multilingual language": 19582, "demonstrate potential benefits": 6023, "explore llms used": 8516, "seeks shed light": 22664, "advanced machine learning": 898, "llms recently demonstrated": 14671, "observe significant improvements": 17652, "effective large language": 7149, "tasks recent progress": 25034, "conduct extensive evaluation": 4558, "extensive evaluation various": 8601, "results provide evidence": 22094, "work sheds light": 27555, "downstream tasks achieve": 6985, "pretrained image encoder": 19536, "approach outperforms baseline": 1795, "learning remains limited": 13893, "evaluate performance generative": 7897, "prompting llm generate": 20160, "generated gpt35 gpt4": 9852, "learning models provide": 13858, "extensive ablation studies": 8595, "compared natural language": 4195, "used generate answers": 26574, "icl text classification": 11112, "valuable insights practitioners": 26959, "adopting llms code": 867, "transformer model using": 25925, "novel application large": 17538, "language models lack": 12949, "comparing language models": 4221, "language models challenging": 12846, "variety nlp tasks": 27017, "recently released openai": 21251, "general purpose language": 9709, "purpose language models": 20592, "llms like gpt4": 14591, "explore potential llms": 8522, "machine learningbased solution": 14923, "human written text": 11003, "machine learning deep": 14905, "learning deep learning": 13796, "analysis language models": 1420, "models llms large": 16441, "approach leverages chatgpt": 1782, "potential use chatgpt": 19234, "language models prompts": 13135, "explore potential using": 8523, "using opensource llm": 26827, "models providing detailed": 16612, "handle complex tasks": 10567, "framework addresses limitations": 9396, "showcase potential applications": 22989, "language models making": 13098, "language tasks paper": 13265, "involving large language": 12355, "models achieve higher": 16008, "problem natural language": 19778, "like chatgpt exhibited": 14076, "finetuning pretrained model": 9169, "facilitate future research": 8732, "support research area": 24412, "understanding generating humanlike": 26273, "models llms text": 16495, "llms text generation": 14731, "model results demonstrate": 15900, "results demonstrate model": 22036, "llms significant advancements": 14702, "generation incontext learning": 9966, "content creation process": 4767, "models llms openai": 16455, "llms openai chatgpt": 14619, "wide range applications": 27380, "pretrained bert models": 19524, "data augmentation based": 5427, "complex mathematical problems": 4299, "trained massive datasets": 25729, "approach opens new": 1793, "processing nlp domain": 19905, "performance numerous tasks": 18719, "generation models applied": 9989, "generate code natural": 9761, "language models use": 13195, "generated responses chatgpt": 9871, "llms human preferences": 14543, "challenges paper presents": 3392, "image text pairs": 11193, "language models handcrafted": 12923, "neural networks including": 17274, "advances generative artificial": 940, "video prediction model": 27182, "effectiveness proposed model": 7209, "acquire general knowledge": 679, "framework based llms": 9404, "results chatgpt achieves": 22024, "benchmark specifically designed": 2674, "benchmark datasets focus": 2656, "models align human": 16026, "2023 shared task": 115, "reproduce training data": 21700, "combining large language": 4066, "language models aibased": 12824, "people use chatgpt": 18525, "future research needed": 9595, "language models vlms": 13203, "extensive experiments benchmark": 8609, "significantly enhances performance": 23154, "generation approach leverages": 9924, "integration large language": 12052, "processing tasks effectiveness": 19915, "capabilities large models": 3127, "information extraction systems": 11754, "using llms generate": 26804, "results showed chatgpt": 22108, "compared supervised methods": 4208, "exact match em": 8094, "domain expert knowledge": 6888, "language models chinese": 12851, "key component modern": 12461, "applied wide range": 1709, "fully realize potential": 9514, "allows users create": 1327, "prompt learning large": 20099, "models revolutionized field": 16657, "language model llmbased": 12776, "introduces novel task": 12267, "models perform zeroshot": 16568, "outperforms unsupervised baselines": 18066, "shed light future": 22956, "intelligence ai natural": 12065, "ai natural language": 1123, "llms code generation": 14401, "analysis offers valuable": 1433, "insights potential applications": 11914, "potential applications limitations": 19162, "chatgpt shown remarkable": 3656, "language model like": 12772, "substantial computational resources": 24218, "gpt4 used generate": 10367, "ablation studies investigate": 389, "llms source code": 14713, "recent years software": 21222, "years software systems": 27664, "deep neural networkbased": 5897, "performance demonstrating effectiveness": 18624, "applying large language": 1719, "extensive world knowledge": 8623, "make informed decisions": 14983, "paper provide comprehensive": 18303, "internet things iot": 12192, "serves additional input": 22862, "evaluate capabilities llms": 7873, "making informed decisions": 15010, "present comprehensive survey": 19428, "work present comprehensive": 27534, "natural science engineering": 17126, "future directions field": 9584, "models llms introduce": 16439, "models llms comprehending": 16382, "inference existing methods": 11692, "models results llms": 16653, "llms shown potential": 14697, "model demonstrate effectiveness": 15730, "clip image encoder": 3849, "prevalent natural language": 19656, "models llms novel": 16453, "models including alpaca": 16285, "general language models": 9702, "biomedical natural language": 2885, "identify mitigate risks": 11140, "model recently released": 15889, "recent advances deep": 21151, "performance realworld applications": 18740, "validate effectiveness approach": 26938, "results demonstrate potential": 22037, "deep learning frameworks": 5887, "present new benchmark": 19446, "language models rapid": 13142, "augmented large language": 2231, "research provides insights": 21855, "provides insights potential": 20493, "training deep learning": 25768, "used wide variety": 26610, "variety use cases": 27023, "demonstrated remarkable success": 6072, "remains unexplored work": 21560, "stateoftheart results natural": 23803, "paper propose combine": 18287, "supervised machine learning": 24390, "created comprehensive dataset": 5213, "hand large language": 10556, "like chatgpt shown": 14079, "chatgpt shown great": 3652, "training inference time": 25781, "model size increases": 15920, "llms gpt35 gpt4": 14533, "social media analysis": 23388, "strategies achieve stateoftheart": 23896, "reinforcement learning drl": 21416, "challenging task requires": 3432, "natural language inputs": 17071, "conduct experiments using": 4556, "raises privacy concerns": 20868, "investigates large language": 12321, "comprehending complex instructions": 4361, "models offer significant": 16543, "llms given potential": 14526, "framework tailored llms": 9458, "strategies large language": 23908, "language processing large": 13224, "processing large language": 19893, "llms prompt engineering": 14647, "using deep learning": 26744, "languageimage pretraining clip": 13291, "correct answer questions": 5079, "finetuned annotated data": 9089, "work explore use": 27495, "highquality dataset leads": 10811, "recommendations future research": 21280, "context length llm": 4809, "existing works focus": 8288, "llms increasingly powerful": 14557, "positive negative sentiment": 19120, "foundational large language": 9375, "promising directions future": 20057, "rapidly evolving landscape": 20953, "realworld datasets demonstrate": 21036, "overall task performance": 18112, "compared stateoftheart methods": 4206, "new york times": 17374, "paper present empirical": 18268, "present empirical study": 19435, "language models implicitly": 12930, "harmful content generation": 10591, "chatbots like chatgpt": 3492, "perform wide range": 18579, "model pretrained scratch": 15870, "language models automatic": 12831, "prompts incontext learning": 20211, "current stateoftheart model": 5361, "natural language interface": 17074, "metalorganic frameworks mofs": 15312, "analysis apply approach": 1396, "plays pivotal role": 18982, "light future research": 14063, "tasks diverse domains": 24906, "reinforcement learning deep": 21415, "inspire future work": 11928, "meticulously crafted prompts": 15508, "existing opensource models": 8274, "performance level chatgpt": 18692, "semantic information code": 22724, "models demonstrate high": 16127, "language models clms": 12852, "availability large language": 2360, "llms learn reasoning": 14580, "multiple times using": 16983, "model seen training": 15906, "significantly outperforms strategies": 23172, "success large pretrained language": 24266, "language models bert gpt2": 12836, "using generative language models": 26762, "generative pretrained transformer gpt2": 10096, "deep reinforcement learning approach": 5904, "deep neural networks dnns": 5899, "large language models observed": 13525, "model extensive experiments demonstrate": 15769, "large language models used": 13553, "pretrained language models demonstrate": 19548, "pretrained language models recent": 19555, "downstream tasks experimental results": 6988, "source code model parameters": 23513, "bidirectional encoder representations transformers": 2840, "encoder representations transformers bert": 7492, "technology natural language processing": 25183, "paper present simple effective": 18274, "present simple effective method": 19461, "experimental results proposed method": 8354, "machine learning models trained": 14917, "language models data augmentation": 12866, "large language models present": 13531, "models shown promising results": 16683, "natural language generation understanding": 17068, "finetune large language models": 9080, "impacts large language models": 11253, "language models llms explore": 13011, "pretrained natural language models": 19586, "finetuning pretrained large language": 9166, "pretrained language models shown": 19557, "large language models provide": 13536, "deep learning dl based": 5885, "pretrained language models capable": 19547, "language models llms transformed": 13087, "language models paper presents": 13118, "language models llms bert": 12974, "large language models efficient": 13388, "study aims answer question": 24063, "baseline machine learning models": 2561, "transformer based large language": 25904, "shown large language models": 23037, "using large pretrained language": 26797, "large language models study": 13548, "application large language models": 1646, "language model pretraining masked": 12792, "large language models recently": 13540, "process large language models": 19858, "paper investigate effectiveness using": 18246, "performance wide variety tasks": 18803, "agents large language models": 1041, "case study case study": 3242, "extracted large language models": 8663, "llms reasoning large language": 14666, "stateoftheart language models like": 23775, "large language models perform": 13529, "adoption large language models": 873, "causal language models based": 3282, "language models recent advancements": 13146, "language models llms drawn": 12998, "advancements natural language processing": 930, "results wide range tasks": 22134, "models llms recently shown": 16469, "classification large language models": 3790, "demonstrated remarkable performance variety": 6065, "shown large pretrained language": 23040, "large language models reinforcement": 13541, "language models reinforcement learning": 13153, "language models llms resulted": 13063, "paper propose novel approach": 18293, "propose novel approach called": 20316, "language models llms brings": 12976, "large language models propose": 13534, "use transformerbased language models": 26547, "language processing tasks work": 13243, "generating natural language descriptions": 9909, "large language models emergent": 13390, "incontext learning large language": 11515, "deployment large language models": 6147, "proliferation large language models": 20033, "models llms gpt3 codex": 16426, "potential future research directions": 19185, "widely used large language": 27403, "used large language model": 26585, "potential chatgpt large language": 19172, "ability generate humanlike responses": 344, "results natural language processing": 22080, "computer vision natural language": 4455, "vision natural language processing": 27230, "large language models expected": 13394, "large language models better": 13369, "capabilities language models lms": 3121, "instruction tuning instruction tuning": 11986, "language processing nlp techniques": 13238, "language models llms greatly": 13024, "language models llms llms": 13040, "language models llms successfully": 13081, "models llms successfully applied": 16494, "language models llms revolutionizing": 13065, "revolutionizing natural language processing": 22252, "language models chatgpt capable": 12848, "models chatgpt capable generating": 16087, "artificial intelligence generated content": 1987, "capability large language models": 3161, "language models llms use": 13088, "recent advancements natural language": 21145, "transformerbased large language model": 25942, "generated large language model": 9858, "paper propose novel framework": 18294, "recent work shown large": 21213, "work shown large language": 27559, "training data work propose": 25764, "large language models automated": 13366, "study offers valuable insights": 24131, "domain large language models": 6901, "research needed fully understand": 21841, "artificial intelligence language models": 1990, "language models llms pretrained": 13053, "language models llms exploit": 13010, "models llms shown excellent": 16478, "llms shown excellent performance": 14691, "shown excellent performance various": 23016, "large language models automatically": 13367, "language models paper introduces": 13116, "models paper introduces novel": 16558, "large language models evaluate": 13391, "language models symbolic solvers": 13184, "based natural language instructions": 2517, "regression large language models": 21392, "given natural language description": 10158, "large language models mllms": 13519, "incontext learning icl important": 11512, "code generation paper propose": 3920, "comparison large language models": 4230, "emergence foundation models large": 7342, "foundation models large language": 9368, "large language models emerged": 13389, "large language models reasoning": 13538, "despite success large pretrained": 6282, "models llms exhibited impressive": 16411, "knowledge large language model": 12544, "multimodal large language models": 16940, "pretrained multilingual language models": 19583, "models llms recently demonstrated": 16468, "effective large language models": 7150, "novel application large language": 17539, "general purpose language models": 9710, "models llms specifically gpt4": 16490, "paper explore potential llms": 18224, "transformer large language model": 25921, "machine learning deep learning": 14906, "intelligence generated content aigc": 12074, "large language models making": 13517, "natural language tasks paper": 17111, "llms like chatgpt exhibited": 14587, "language models llms text": 13083, "models llms text generation": 16496, "models llms significant advancements": 16487, "language models llms openai": 13046, "models llms openai chatgpt": 16456, "language processing nlp domain": 13233, "large language models data": 13379, "generate code natural language": 9762, "aligning llms human preferences": 1276, "recent advances generative artificial": 21154, "advances generative artificial intelligence": 941, "combining large language models": 4067, "extensive experiments benchmark datasets": 8610, "integration large language models": 12053, "language processing tasks effectiveness": 13242, "language models propose novel": 13137, "models propose novel approach": 16604, "prompt learning large language": 20100, "large language model llmbased": 13352, "artificial intelligence ai natural": 1982, "intelligence ai natural language": 12066, "ai natural language processing": 1124, "analysis offers valuable insights": 1434, "valuable insights potential applications": 26957, "insights potential applications limitations": 11915, "large language models speech": 13545, "sequential decision making tasks": 22844, "recent years software systems": 21223, "models recent advancements natural": 16627, "applying large language models": 1720, "paper present comprehensive survey": 18267, "language models llms introduce": 13033, "language models llms comprehending": 12985, "language models llms novel": 13044, "biomedical natural language processing": 2886, "propose novel method leverages": 20323, "large language models rapid": 13537, "chatgpt capable generating humanlike": 3525, "augmented large language models": 2232, "training deep learning models": 25769, "stateoftheart results natural language": 23804, "hand large language models": 10557, "llms like chatgpt shown": 14588, "chatgpt shown great potential": 3653, "strategies achieve stateoftheart performance": 23897, "deep reinforcement learning drl": 5905, "investigates large language models": 12322, "large language models offer": 13526, "language models offer significant": 13113, "strategies large language models": 23909, "natural language processing large": 17084, "language processing large language": 13225, "processing large language models": 19894, "contrastive languageimage pretraining clip": 4900, "models llms increasingly powerful": 16437, "foundational large language models": 9376, "produced large language models": 19940, "paper present empirical study": 18269, "conversational artificial intelligence ai": 4985, "shed light future research": 22957, "external knowledge bases large": 8643, "availability large language models": 2361, "success large pretrained language models": 24267, "bidirectional encoder representations transformers bert": 2841, "paper present simple effective method": 18275, "large pretrained language models lms": 13582, "impacts large language models llms": 11254, "large language models llms explore": 13458, "prompting large language model llm": 20155, "large pretrained language models capable": 13580, "large language models llms transformed": 13511, "large language models paper presents": 13528, "transformer based large language models": 25905, "prompting large language models llms": 20157, "using large language models large": 26791, "shown large language models llms": 23038, "leveraging large language models llms": 14030, "llms reasoning large language models": 14667, "large language models llms drawn": 13449, "language models llms recently shown": 13060, "demonstrated remarkable performance variety natural": 6066, "shown large pretrained language models": 23041, "large language models reinforcement learning": 13542, "large language models llms resulted": 13496, "large language models llms brings": 13440, "training large language models llms": 25789, "performance natural language processing tasks": 18713, "natural language processing tasks work": 17101, "incontext learning large language models": 11516, "leverages large language models llms": 14015, "chatgpt large language model llm": 3602, "proliferation large language models llms": 20034, "language models llms gpt3 codex": 13021, "widely used large language model": 27404, "results natural language processing nlp": 22081, "computer vision natural language processing": 4456, "using large pretrained language models": 26798, "generated large language models llms": 9860, "large language models llms specifically": 13504, "natural language processing nlp techniques": 17097, "large language models llms greatly": 13468, "large language models llms llms": 13478, "large language models llms successfully": 13507, "language models llms successfully applied": 13082, "large language models llms revolutionizing": 13498, "language models chatgpt capable generating": 12849, "capability large language models llms": 3162, "large language models llms use": 13512, "recent advancements natural language processing": 21146, "recent work shown large language": 21214, "work shown large language models": 27560, "large language models llms pretrained": 13490, "large language models llms exploit": 13457, "language models llms shown excellent": 13069, "models llms shown excellent performance": 16479, "llms shown excellent performance various": 14692, "language models paper introduces novel": 13117, "using large language models evaluate": 26788, "reasoning large language models llms": 21086, "regression large language models llms": 21393, "emergence foundation models large language": 7343, "foundation models large language models": 9369, "despite success large pretrained language": 6283, "language models llms exhibited impressive": 13008, "multimodal large language models mllms": 16941, "language models llms recently demonstrated": 13059, "novel application large language models": 17540, "language models llms specifically gpt4": 13078, "artificial intelligence generated content aigc": 1988, "using large language models making": 26793, "models llms like chatgpt exhibited": 16445, "utilizing large language models llms": 26921, "large language models llms text": 13508, "language models llms text generation": 13084, "language models llms significant advancements": 13075, "large language models llms openai": 13484, "language models llms openai chatgpt": 13047, "natural language processing nlp domain": 17092, "large language models like gpt3": 13428, "recent advances generative artificial intelligence": 21155, "integration large language models llms": 12054, "natural language processing tasks effectiveness": 17100, "large language models propose novel": 13535, "language models propose novel approach": 13138, "prompt learning large language models": 20101, "performance generative pretrained transformer gpt": 18660, "artificial intelligence ai natural language": 1983, "intelligence ai natural language processing": 12067, "valuable insights potential applications limitations": 26958, "language models recent advancements natural": 13147, "models recent advancements natural language": 16628, "large language models llms introduce": 13474, "large language models llms comprehending": 13445, "large language models llms novel": 13482, "biomedical natural language processing tasks": 2887, "stateoftheart results natural language processing": 23805, "hand large language models llms": 10558, "models llms like chatgpt shown": 16446, "investigates large language models llms": 12323, "natural language processing large language": 17085, "language processing large language models": 13226, "era large language models large": 7771, "foundational large language models llms": 9377, "finetuning pretrained large language model": 9167, "external knowledge bases large language": 8644, "availability large language models llms": 2362, "generation large language models llms": 9976, "coupling": 5175, "bimodal": 2863, "harvards": 10606, "pop": 19058, "quiz": 20845, "flourishing": 9237, "complacency": 4262, "warrants": 27294, "flight": 9235, "pedagogy": 18513, "patched": 18478, "workinprogress": 27584, "testcases": 25262, "schedule": 22526, "javascript": 12412, "starcoder": 23731, "conversing": 5007, "mwps": 17018, "listed": 14210, "mitres": 15640, "arrays": 1954, "compiler": 4259, "pytorch": 20613, "disadvantages": 6646, "signed": 23087, "relieve": 21515, "constrains": 4707, "350m": 166, "accelerators": 453, "asic": 2005, "se": 22603, "programmability": 19978, "8x": 272, "electrical": 7271, "searchbased": 22625, "dlbased": 6836, "conductivity": 4585, "incident": 11435, "admits": 858, "malware": 15021, "semester": 22751, "moderating": 16792, "mismatched": 15602, "pick": 18909, "mit": 15618, "graduation": 10414, "permissive": 18830, "licenses": 14051, "nocode": 17460, "contract": 4879, "contracts": 4880, "compromised": 4413, "corrupted": 5124, "forcing": 9297, "handson": 10575, "engineer": 7566, "spark": 23543, "ide": 11114, "792": 256, "gemm": 9678, "collegelevel": 4032, "overflow": 18127, "securityoriented": 22654, "acknowledge": 674, "anonymized": 1528, "derivative": 6155, "leakages": 13722, "unpatched": 26412, "overcomes": 18122, "untrusted": 26444, "parties": 18448, "2540": 138, "proactively": 19740, "assembly": 2037, "grid": 10469, "existed": 8239, "blockchain": 2920, "941": 285, "streamlines": 23928, "xt": 27654, "leaking": 13724, "writes": 27626, "work language": 27518, "work introduced": 27513, "creating complex": 5220, "substantially smaller": 24231, "modern society": 16808, "surprisingly little": 24460, "accurately assess": 548, "adopted transformer": 862, "gptstyle models": 10389, "solving linear": 23475, "programming tasks": 19994, "given sample": 10166, "content work": 4792, "significant step": 23139, "math problems": 15141, "work needed": 27528, "challenges generating": 3378, "robust approach": 22344, "model named": 15835, "specific syntax": 23607, "functional requirements": 9526, "requirements paper": 21741, "fix patterns": 9212, "code complete": 3900, "effort develop": 7259, "diverse ways": 6822, "efficient solutions": 7243, "performance functionality": 18649, "data structures": 5605, "fewshot training": 8939, "tasks great": 24944, "model evidence": 15759, "significantly surpass": 23181, "surpass stateoftheart": 24440, "strong base": 23960, "adopted chatgpt": 861, "features different": 8870, "llms date": 14419, "popular llmbased": 19065, "implications large": 11272, "especially recent": 7803, "critical security": 5264, "use combination": 26498, "eye tracking": 8704, "tracking data": 25661, "update size": 26457, "work test": 27567, "code satisfies": 3945, "state representation": 23745, "students engage": 24024, "furthermore participants": 9567, "security vulnerabilities": 22652, "inform design": 11732, "objective studies": 17628, "effectiveness downstream": 7191, "passing rate": 18466, "learning materials": 13847, "programming assignments": 19983, "students interact": 24027, "llms integrated": 14564, "llms impact": 14547, "learning efficient": 13805, "vulnerability detection": 27283, "aiming achieve": 1187, "unclear paper": 26180, "current chatbot": 5333, "chatbot tools": 3484, "complex queries": 4312, "tasks researchers": 25047, "generating incorrect": 9904, "critical information": 5259, "help model": 10663, "test evaluate": 25242, "design space": 6218, "quality output": 20661, "play key": 18966, "key role": 12476, "motivating need": 16863, "converse effectively": 5005, "processes ensure": 19876, "applied solve": 1702, "provides following": 20489, "attention ability": 2158, "long shortterm": 14814, "require substantial": 21732, "overhead makes": 18129, "novel transformerbased": 17571, "chatgpt mathematical": 3607, "support work": 24415, "programming challenges": 19984, "engineering require": 7579, "resources used": 21926, "type information": 26125, "proposed work": 20368, "parameter budget": 18353, "learning languages": 13837, "predicting common": 19343, "results fewer": 22045, "focus specific": 9258, "bestperforming baseline": 2766, "study examine": 24093, "commonly referred": 4105, "challenges chatgpt": 3369, "chatgpt successfully": 3666, "example generation": 8116, "identified common": 11129, "work hard": 27502, "algorithm dubbed": 1240, "objectives finetuning": 17634, "framework utilizes": 9467, "pseudo data": 20537, "results framework": 22048, "dl applications": 6833, "created students": 5214, "computing education": 4462, "pedagogical approaches": 18510, "misuse chatgpt": 15616, "safetycritical domains": 22430, "evaluating existing": 7939, "produced chatgpt": 19936, "chatgpt encompassing": 3560, "dataset additionally": 5645, "understand human": 26242, "demonstrate lower": 6013, "tool utilizes": 25594, "successfully complete": 24281, "method fully": 15361, "chatgpt deep": 3547, "chatgpts capability": 3695, "questions chatgpt": 20786, "advantages disadvantages": 960, "chatgpts abilities": 3692, "applications education": 1661, "comparable accuracy": 4141, "time respectively": 25512, "language programming": 13246, "contrary expectations": 4882, "effect sizes": 7136, "annotated answers": 1501, "answers using": 1605, "associated code": 2101, "based gpt35": 2492, "available public": 2384, "encounter difficulties": 7510, "chatgpt add": 3502, "tool usage": 25591, "suffer poor": 24289, "methods method": 15465, "motivation work": 16865, "time study": 25515, "encoder downstream": 7487, "chatgpt resemble": 3643, "novel chatgptbased": 17545, "chatgpt improve": 3594, "largescale realistic": 13648, "curriculum learning": 5376, "feedback students": 8899, "learning outcomes": 13868, "deployed existing": 6137, "code runs": 3944, "returns computed": 22187, "generation low": 9982, "capability stateoftheart": 3169, "solving problem": 23480, "comparable human": 4146, "engineering se": 7580, "application artificial": 1639, "issues areas": 12380, "software testing": 23432, "primary focus": 19697, "energy efficiency": 7552, "attention paper": 2180, "investigated paper": 12316, "designed evaluate": 6225, "models 15": 15994, "retraining finetuning": 22144, "human verification": 10998, "search strategy": 22622, "code interpreter": 3924, "work initial": 27508, "tool using": 25593, "tasks gpt4": 24943, "prediction challenges": 19350, "security vulnerability": 22653, "dl models": 6835, "chatgpt35 chatgpt4": 3680, "chatgpt4 google": 3683, "chatbot provide": 3481, "answers based": 1594, "contrast chatgpt": 4884, "query results": 20712, "providing additional": 20506, "systems potential": 24628, "line code": 14175, "benchmark containing": 2652, "completed semester": 4274, "prompts significant": 20236, "llms beneficial": 14381, "benefits challenges": 2706, "opensource code": 17849, "googles bard": 10210, "electrical engineering": 7272, "finetune opensource": 9084, "gpt4 automatically": 10337, "questions topics": 20826, "potential learning": 19202, "learning improving": 13832, "closely match": 3868, "research fields": 21816, "allow precise": 1309, "building ai": 3039, "models dalle": 16120, "use natural": 26528, "models chatbots": 16084, "chatgpt chat": 3527, "programming knowledge": 19989, "benchmark study": 2675, "nonexperts using": 17482, "feasibility employing": 8851, "smart contracts": 23365, "timeconsuming costly": 25521, "costly process": 5148, "optimization prompt": 17918, "integrity study": 12056, "instructgpt chatgpt": 11966, "capability solving": 3168, "write code": 27622, "rl environment": 22310, "development processes": 6414, "selection mechanism": 22685, "method prompt": 15385, "benchmark establish": 2658, "tools llms": 25610, "formal languages": 9320, "use traditional": 26544, "information systems": 11792, "presents overview": 19496, "empowering developers": 7447, "analyses performed": 1387, "education pedagogy": 7117, "education paper": 7116, "llms education": 14452, "paper seeks": 18313, "light emerging": 14061, "testing research": 25273, "results report": 22099, "serves cornerstone": 22863, "need effective": 17175, "testing techniques": 25274, "various research": 27078, "investigating role": 12332, "using fast": 26753, "fourier transform": 9382, "required solve": 21736, "llms generalization": 14515, "language communication": 12690, "code challenging": 3899, "process writing": 19872, "ensure accuracy": 7669, "inference problem": 11702, "cot prompts": 5154, "2022 chatgpt": 110, "practical solution": 19296, "presents empirical": 19488, "ai results": 1131, "issues paper": 12389, "complex scientific": 4318, "stack overflow": 23699, "search methods": 22614, "results offer": 22083, "valuable guidance": 26952, "essential acknowledge": 7809, "executable code": 8189, "optimization llms": 17914, "research application": 21780, "aiming answer": 1188, "research trends": 21874, "evaluation content": 7966, "novel technique": 17568, "word problem": 27443, "propose problem": 20328, "chatgpt quickly": 3635, "exploratory user": 8492, "groups students": 10489, "chatgpt group": 3589, "survey participants": 24471, "leveraging capabilities": 14022, "automated validation": 2286, "functional code": 9525, "untrusted parties": 26445, "using sample": 26855, "method able": 15320, "serve useful": 22857, "useful tool": 26617, "indicate model": 11613, "work domain": 27484, "llm study": 14313, "effectiveness predicting": 7206, "finetuning improves": 9135, "model source": 15928, "proposed architectures": 20349, "accuracy data": 509, "prompts elicit": 20199, "safety training": 22427, "vulnerabilities llms": 27281, "efficient testing": 7244, "thought processes": 25478, "applications challenges": 1656, "compiler optimization": 4260, "explore novel": 8518, "level work": 13986, "school physics": 22541, "openai gpt35": 17788, "level performance": 13983, "performance addition": 18585, "provide relevant": 20459, "relevant explanations": 21494, "input work": 11887, "potential automate": 19166, "approach reduce": 1807, "models google": 16250, "making robust": 15012, "diverse devices": 6794, "models play": 16570, "pressing issue": 19511, "framework specifically": 9453, "models findings": 16219, "analyze existing": 1470, "chatgpt plugins": 3619, "leaking private": 13725, "associated risks": 2109, "provide quantitative": 20455, "data help": 5512, "developed applied": 6382, "literature examine": 14221, "highly efficient": 10797, "practical issues": 19295, "write better": 27621, "ai particularly": 1126, "findings observations": 9048, "interpreter able": 12214, "models similar": 16686, "finetuned downstream tasks": 9093, "stateoftheart pretrained language": 23798, "stateoftheart performance downstream": 23792, "implications large language": 11273, "method significantly enhances": 15393, "breakthroughs large language": 2983, "deep learning efficient": 5886, "examples training data": 8149, "study highlights potential": 24106, "highlights potential using": 10788, "play key role": 18967, "language models simple": 13163, "language models math": 13099, "introductory programming education": 12277, "garnered considerable attention": 9657, "attention impressive performance": 2166, "potential misuse chatgpt": 19209, "trained large data": 25727, "ability generate code": 342, "quality metrics results": 20659, "research directions using": 21807, "ai code generation": 1094, "demonstrated impressive ability": 6048, "pretrained models code": 19579, "language models accurate": 12818, "software engineering se": 23428, "application artificial intelligence": 1640, "chatgpt4 google bard": 3684, "demonstrate effectiveness efficiency": 5990, "texttoimage models dalle": 25416, "use natural language": 26529, "optimization prompt engineering": 17919, "provides comprehensive review": 20486, "roadmap future research": 22322, "natural language communication": 17056, "openais gpt35 gpt4": 17804, "chainofthought cot prompts": 3333, "november 2022 chatgpt": 17579, "paper presents empirical": 18279, "opening new avenues": 17839, "code generation systems": 3921, "propose novel technique": 20325, "math word problem": 15144, "exploratory user study": 8493, "model source code": 15929, "using advanced language": 26706, "advanced language models": 891, "high school physics": 10716, "underscores potential llms": 26229, "study provides insights": 24144, "language model openai": 12780, "language models google": 12915, "models google bard": 16251, "pivotal role enhancing": 18930, "models findings reveal": 16220, "address challenges introduce": 794, "existing literature examine": 8265, "code interpreter able": 3925, "breakthroughs large language models": 2984, "study highlights potential using": 24107, "large language models math": 13518, "chatgpt shown impressive performance": 3655, "openais gpt35 gpt4 models": 17805, "work propose novel technique": 27542, "solving math word problem": 23478, "language models google bard": 12916, "design large language models llms": 6200, "slows": 23330, "accelerator": 452, "governing": 10217, "authority": 2252, "returning": 22185, "undergo": 26199, "capital": 3190, "nascent": 17044, "consumer": 4737, "commodities": 4091, "secrets": 22641, "disclosure": 6657, "gas": 9661, "emission": 7370, "managed": 15024, "payment": 18506, "205": 118, "corporate": 5059, "typing": 26150, "surveying": 24477, "adult": 878, "laboratory": 12641, "hong": 10859, "kong": 12614, "shapes": 22944, "parrots": 18402, "grades": 10402, "compliant": 4336, "dashboard": 5413, "advisors": 988, "multitasking": 17001, "accelerated": 447, "energyefficiency": 7553, "oversight": 18141, "distilgpt2": 6738, "litigation": 14228, "416": 181, "crossdisciplinary": 5275, "manuscript": 15055, "disclosed": 6656, "burdens": 3061, "formalizes": 9327, "citizens": 3759, "fulfil": 9502, "dishonest": 6713, "curricula": 5374, "constitutive": 4700, "selfpaced": 22709, "212": 124, "configure": 4599, "following concept": 9279, "technologies like": 25175, "like gpt2": 14083, "gpt3 paper": 10304, "potential threat": 19229, "openais textdavinci003": 17812, "scale training": 22495, "scientific understanding": 22569, "nature gpt": 17133, "social security": 23402, "directions llms": 6632, "allocate resources": 1304, "offline settings": 17714, "programming skills": 19993, "learning needs": 13861, "gained widespread": 9618, "widespread popularity": 27414, "highlight important": 10762, "modified version": 16814, "performance notably": 18717, "analysis abilities": 1391, "legal services": 13963, "ai humans": 1107, "creating image": 5221, "great progress": 10457, "safety llms": 22424, "applications misuse": 1678, "multiple levels": 16965, "outputs demonstrate": 18086, "chatgpt chinese": 3531, "including use": 11485, "engineering community": 7573, "witnessed emergence": 27433, "easy hard": 7082, "generate plausible": 9804, "including privacy": 11475, "environment using": 7727, "human agency": 10897, "criminal activities": 5246, "hong kong": 10860, "ai led": 1116, "stochastic parrots": 23870, "new legal": 17331, "text completion": 25296, "approach demonstrate": 1747, "learning environments": 13807, "environments integration": 7732, "arise use": 1942, "challenges users": 3407, "theoretical framework": 25450, "recently surge": 21255, "public perception": 20561, "valuable lessons": 26960, "emergence new": 7349, "concerns associated": 4493, "ideas written": 11120, "results accurate": 22008, "dataset large": 5693, "new emerging": 17320, "limitations potential": 14135, "human oversight": 10971, "creation scale": 5231, "implementing robust": 11266, "modelbased approaches": 15972, "challenges presented": 3399, "using ensemble": 26750, "similar systems": 23203, "systems promoting": 24631, "education potential": 7118, "despite inherent": 6267, "approach providing": 1806, "gpt4 findings": 10347, "able accurately": 393, "study models": 24126, "capabilities supporting": 3141, "search performance": 22616, "higher information": 10735, "change way": 3445, "technologies transform": 25177, "chat search": 3472, "users search": 26679, "technology provides": 25184, "methodology enabling": 15414, "systems different": 24593, "despite high": 6262, "provide information": 20436, "conduct comparative": 4545, "order protect": 17947, "continues grow": 4869, "nlp algorithms": 17410, "immense potential": 11223, "systems developed": 24592, "including input": 11460, "empirical assessment": 7396, "scheme results": 22532, "terms speed": 25230, "provide complementary": 20414, "insights chatgpts": 11908, "accuracy compared": 508, "experts using": 8436, "generative ais": 10059, "agents learning": 1043, "language model created": 12753, "findings indicate chatgpt": 9045, "gained widespread popularity": 9619, "human language processing": 10963, "including privacy concerns": 11476, "language models play": 13123, "models llms including": 16435, "dataset large language": 5694, "advent generative ai": 965, "presents empirical evaluation": 19489, "transformer gpt model": 25909, "stateoftheart models including": 23788, "promising new tool": 20062, "conduct comparative analysis": 4546, "processing nlp algorithms": 19901, "finetuning pretrained language model": 9164, "language models llms including": 13030, "dataset large language models": 5695, "pretrained transformer gpt model": 19598, "language processing nlp algorithms": 13229, "ai large language models llms": 1115, "large language models llms including": 13472, "generative pretrained transformer gpt model": 10093, "natural language processing nlp algorithms": 17088, "atari": 2130, "strike": 23949, "maximise": 15164, "uncommon": 26181, "finish": 9196, "letters": 13979, "episodes": 7742, "revolves": 22253, "incur": 11588, "suspect": 24482, "gametheoretic": 9633, "study effects": 24086, "large unlabeled": 13601, "inference pretrained": 11701, "learning policies": 13873, "training paper": 25811, "distributional shift": 6777, "experiments openai": 8397, "atari environments": 2131, "low frequency": 14863, "approach deep": 1746, "methods realworld": 15480, "strike balance": 23950, "multiple target": 16979, "pretrained google": 19533, "complex models": 4300, "related distinct": 21431, "deployed specific": 6140, "data extraction": 5490, "ongoing research": 17735, "model reinforcement": 15891, "metrics performance": 15534, "common transformer": 4101, "accuracy model": 522, "choice classification": 3740, "challenges limitations": 3382, "cost evaluate": 5132, "improvements various": 11400, "direct use": 6622, "llms excellent": 14472, "greatly reduce": 10465, "communication overhead": 4121, "open market": 17768, "harmful behavior": 10589, "consists steps": 4694, "behavior desired": 2612, "gpt4 paper": 10360, "general data": 9693, "process information": 19852, "information used": 11799, "learning problem": 13879, "approaches specifically": 1864, "environments large": 7733, "agents reinforcement": 1054, "trained thousands": 25741, "new network": 17339, "use explore": 26507, "90 success": 275, "aligned language": 1265, "practically useful": 19302, "techniques analyze": 25151, "text modalities": 25352, "mitigate issues": 15626, "frameworks like": 9471, "bert gpt2 xlnet": 2721, "reinforcement learning agents": 21411, "transformer gpt2 model": 25913, "offers promising new": 17706, "model reinforcement learning": 15892, "align human preferences": 1260, "models perform poorly": 16567, "models llms excellent": 16406, "importance data quality": 11289, "llms code available": 14400, "environments large language": 7734, "agents reinforcement learning": 1055, "90 success rate": 276, "machine learning approach": 14902, "aligned language model": 1266, "deep reinforcement learning agents": 5903, "pretrained transformer gpt2 model": 19602, "language models llms excellent": 13004, "environments large language models": 7735, "generative pretrained transformer gpt2 model": 10097, "large language models llms excellent": 13454, "environments large language models llms": 7736, "consecutive": 4637, "saturated": 22467, "stateofart": 23752, "fulldata": 9505, "statespace": 23820, "learning field": 13816, "approaches artificial": 1831, "simple baseline": 23219, "paper attempts": 18198, "querying large": 20714, "facilitate training": 8736, "frontier research": 9496, "openai model": 17789, "domainspecific benchmarks": 6947, "direct application": 6621, "comprehension capabilities": 4364, "performance extracting": 18644, "evaluated benchmark": 7912, "application domain": 1642, "community given": 4131, "offer practical": 17688, "considerations use": 4664, "dataset augmented": 5647, "single line": 23274, "gpt2 model pretrained": 10263, "approaches artificial intelligence": 1832, "querying large language": 20715, "approaches artificial intelligence ai": 1833, "onestep": 17731, "double": 6968, "jetson": 12413, "kinetic": 12491, "converges": 4968, "desktop": 6253, "symmetries": 24500, "seq": 22812, "tokenwise": 25572, "exploration strategies": 8486, "free energy": 9477, "biologically plausible": 2879, "draw conclusion": 7008, "cost train": 5138, "empirically validate": 7423, "architecture optimizes": 1907, "gradient computations": 10405, "pretrained single": 19591, "convergence guarantee": 4966, "accelerate convergence": 446, "rely primarily": 21526, "learning problems": 13880, "14 tasks": 54, "baseline heuristics": 2558, "instead present": 11956, "performance gpt": 18661, "stationary point": 23827, "framework incorporating": 9434, "effect using": 7138, "empirical observation": 7408, "issue mainly": 12375, "gpt2 training": 10277, "learning evaluate": 13808, "llm size": 14309, "approximation algorithm": 1885, "work leverage llms": 27523, "dissect": 6732, "125m": 43, "models parameters": 16561, "training makes": 25798, "specific input": 23592, "input token": 11885, "selfattention mechanisms": 22700, "speedup compared": 23655, "theoretical maximum": 25451, "language models parameters": 13119 } } }