Thalesian commited on
Commit
5b0313b
·
verified ·
1 Parent(s): 3015542

akk-en-UBC-NLP/AraT5v2-base-1024

Browse files
README.md ADDED
@@ -0,0 +1,337 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: UBC-NLP/AraT5v2-base-1024
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: AraT5v2-base-1024-p-l-akk-en-20240712-212743
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # AraT5v2-base-1024-p-l-akk-en-20240712-212743
14
+
15
+ This model is a fine-tuned version of [UBC-NLP/AraT5v2-base-1024](https://huggingface.co/UBC-NLP/AraT5v2-base-1024) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.1234
18
+
19
+ ## Model description
20
+
21
+ More information needed
22
+
23
+ ## Intended uses & limitations
24
+
25
+ More information needed
26
+
27
+ ## Training and evaluation data
28
+
29
+ More information needed
30
+
31
+ ## Training procedure
32
+
33
+ ### Training hyperparameters
34
+
35
+ The following hyperparameters were used during training:
36
+ - learning_rate: 4e-05
37
+ - train_batch_size: 8
38
+ - eval_batch_size: 8
39
+ - seed: 42
40
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
41
+ - lr_scheduler_type: linear
42
+ - num_epochs: 25
43
+
44
+ ### Training results
45
+
46
+ | Training Loss | Epoch | Step | Validation Loss |
47
+ |:-------------:|:-------:|:------:|:---------------:|
48
+ | 7.7733 | 0.0884 | 500 | 0.7064 |
49
+ | 0.5896 | 0.1767 | 1000 | 0.4223 |
50
+ | 0.3694 | 0.2651 | 1500 | 0.3706 |
51
+ | 0.2998 | 0.3535 | 2000 | 0.3643 |
52
+ | 0.2951 | 0.4419 | 2500 | 0.2568 |
53
+ | 0.275 | 0.5302 | 3000 | 0.2534 |
54
+ | 0.2594 | 0.6186 | 3500 | 0.2449 |
55
+ | 0.2538 | 0.7070 | 4000 | 0.2313 |
56
+ | 0.2505 | 0.7953 | 4500 | 0.2303 |
57
+ | 0.2559 | 0.8837 | 5000 | 0.2237 |
58
+ | 0.2449 | 0.9721 | 5500 | 0.2190 |
59
+ | 0.2443 | 1.0604 | 6000 | 0.2165 |
60
+ | 0.2334 | 1.1488 | 6500 | 0.2142 |
61
+ | 0.2373 | 1.2372 | 7000 | 0.2116 |
62
+ | 0.2239 | 1.3256 | 7500 | 0.2103 |
63
+ | 0.2261 | 1.4139 | 8000 | 0.2079 |
64
+ | 0.2249 | 1.5023 | 8500 | 0.2057 |
65
+ | 0.2232 | 1.5907 | 9000 | 0.2055 |
66
+ | 0.214 | 1.6790 | 9500 | 0.2023 |
67
+ | 0.2176 | 1.7674 | 10000 | 0.2008 |
68
+ | 0.2062 | 1.8558 | 10500 | 0.1991 |
69
+ | 0.2132 | 1.9441 | 11000 | 0.1980 |
70
+ | 0.2016 | 2.0325 | 11500 | 0.2008 |
71
+ | 0.2103 | 2.1209 | 12000 | 0.2001 |
72
+ | 0.2611 | 2.2093 | 12500 | 0.1967 |
73
+ | 0.2045 | 2.2976 | 13000 | 0.1945 |
74
+ | 0.2027 | 2.3860 | 13500 | 0.1924 |
75
+ | 0.1992 | 2.4744 | 14000 | 0.1913 |
76
+ | 0.2019 | 2.5627 | 14500 | 0.1903 |
77
+ | 0.1985 | 2.6511 | 15000 | 0.1890 |
78
+ | 0.1936 | 2.7395 | 15500 | 0.1888 |
79
+ | 0.1981 | 2.8279 | 16000 | 0.1870 |
80
+ | 0.1986 | 2.9162 | 16500 | 0.1866 |
81
+ | 0.1919 | 3.0046 | 17000 | 0.1847 |
82
+ | 0.1888 | 3.0930 | 17500 | 0.1839 |
83
+ | 0.1957 | 3.1813 | 18000 | 0.1834 |
84
+ | 0.1919 | 3.2697 | 18500 | 0.1820 |
85
+ | 0.1845 | 3.3581 | 19000 | 0.1811 |
86
+ | 0.1924 | 3.4464 | 19500 | 0.1804 |
87
+ | 0.1861 | 3.5348 | 20000 | 0.1793 |
88
+ | 0.1773 | 3.6232 | 20500 | 0.1777 |
89
+ | 0.1826 | 3.7116 | 21000 | 0.1782 |
90
+ | 0.19 | 3.7999 | 21500 | 0.1765 |
91
+ | 0.1827 | 3.8883 | 22000 | 0.1752 |
92
+ | 0.1848 | 3.9767 | 22500 | 0.1751 |
93
+ | 0.1828 | 4.0650 | 23000 | 0.1736 |
94
+ | 0.1759 | 4.1534 | 23500 | 0.1741 |
95
+ | 0.179 | 4.2418 | 24000 | 0.1723 |
96
+ | 0.1812 | 4.3302 | 24500 | 0.1722 |
97
+ | 0.1788 | 4.4185 | 25000 | 0.1711 |
98
+ | 0.1808 | 4.5069 | 25500 | 0.1705 |
99
+ | 0.1757 | 4.5953 | 26000 | 0.1693 |
100
+ | 0.1694 | 4.6836 | 26500 | 0.1687 |
101
+ | 0.1701 | 4.7720 | 27000 | 0.1681 |
102
+ | 0.179 | 4.8604 | 27500 | 0.1676 |
103
+ | 0.1771 | 4.9487 | 28000 | 0.1664 |
104
+ | 0.1753 | 5.0371 | 28500 | 0.1665 |
105
+ | 0.1726 | 5.1255 | 29000 | 0.1653 |
106
+ | 0.1683 | 5.2139 | 29500 | 0.1644 |
107
+ | 0.1639 | 5.3022 | 30000 | 0.1641 |
108
+ | 0.1688 | 5.3906 | 30500 | 0.1637 |
109
+ | 0.1675 | 5.4790 | 31000 | 0.1631 |
110
+ | 0.1679 | 5.5673 | 31500 | 0.1622 |
111
+ | 0.1701 | 5.6557 | 32000 | 0.1619 |
112
+ | 0.1672 | 5.7441 | 32500 | 0.1613 |
113
+ | 0.1661 | 5.8324 | 33000 | 0.1604 |
114
+ | 0.1677 | 5.9208 | 33500 | 0.1595 |
115
+ | 0.1689 | 6.0092 | 34000 | 0.1595 |
116
+ | 0.1678 | 6.0976 | 34500 | 0.1590 |
117
+ | 0.165 | 6.1859 | 35000 | 0.1587 |
118
+ | 0.1636 | 6.2743 | 35500 | 0.1585 |
119
+ | 0.1641 | 6.3627 | 36000 | 0.1575 |
120
+ | 0.1598 | 6.4510 | 36500 | 0.1573 |
121
+ | 0.1563 | 6.5394 | 37000 | 0.1566 |
122
+ | 0.1612 | 6.6278 | 37500 | 0.1572 |
123
+ | 0.1668 | 6.7162 | 38000 | 0.1556 |
124
+ | 0.1625 | 6.8045 | 38500 | 0.1552 |
125
+ | 0.1561 | 6.8929 | 39000 | 0.1540 |
126
+ | 0.1571 | 6.9813 | 39500 | 0.1544 |
127
+ | 0.1628 | 7.0696 | 40000 | 0.1540 |
128
+ | 0.1582 | 7.1580 | 40500 | 0.1535 |
129
+ | 0.1481 | 7.2464 | 41000 | 0.1535 |
130
+ | 0.1537 | 7.3347 | 41500 | 0.1525 |
131
+ | 0.159 | 7.4231 | 42000 | 0.1519 |
132
+ | 0.1579 | 7.5115 | 42500 | 0.1512 |
133
+ | 0.1595 | 7.5999 | 43000 | 0.1518 |
134
+ | 0.1578 | 7.6882 | 43500 | 0.1504 |
135
+ | 0.1514 | 7.7766 | 44000 | 0.1505 |
136
+ | 0.1534 | 7.8650 | 44500 | 0.1501 |
137
+ | 0.157 | 7.9533 | 45000 | 0.1500 |
138
+ | 0.1558 | 8.0417 | 45500 | 0.1495 |
139
+ | 0.1545 | 8.1301 | 46000 | 0.1496 |
140
+ | 0.1506 | 8.2185 | 46500 | 0.1490 |
141
+ | 0.1525 | 8.3068 | 47000 | 0.1482 |
142
+ | 0.1546 | 8.3952 | 47500 | 0.1476 |
143
+ | 0.1544 | 8.4836 | 48000 | 0.1475 |
144
+ | 0.1482 | 8.5719 | 48500 | 0.1472 |
145
+ | 0.1483 | 8.6603 | 49000 | 0.1472 |
146
+ | 0.1455 | 8.7487 | 49500 | 0.1467 |
147
+ | 0.1514 | 8.8370 | 50000 | 0.1458 |
148
+ | 0.1537 | 8.9254 | 50500 | 0.1464 |
149
+ | 0.1508 | 9.0138 | 51000 | 0.1458 |
150
+ | 0.1428 | 9.1022 | 51500 | 0.1450 |
151
+ | 0.1478 | 9.1905 | 52000 | 0.1461 |
152
+ | 0.1472 | 9.2789 | 52500 | 0.1449 |
153
+ | 0.1498 | 9.3673 | 53000 | 0.1443 |
154
+ | 0.1502 | 9.4556 | 53500 | 0.1443 |
155
+ | 0.1458 | 9.5440 | 54000 | 0.1441 |
156
+ | 0.1441 | 9.6324 | 54500 | 0.1433 |
157
+ | 0.1525 | 9.7207 | 55000 | 0.1434 |
158
+ | 0.148 | 9.8091 | 55500 | 0.1426 |
159
+ | 0.1458 | 9.8975 | 56000 | 0.1429 |
160
+ | 0.1476 | 9.9859 | 56500 | 0.1425 |
161
+ | 0.1413 | 10.0742 | 57000 | 0.1426 |
162
+ | 0.1488 | 10.1626 | 57500 | 0.1421 |
163
+ | 0.1457 | 10.2510 | 58000 | 0.1415 |
164
+ | 0.1429 | 10.3393 | 58500 | 0.1417 |
165
+ | 0.1382 | 10.4277 | 59000 | 0.1416 |
166
+ | 0.1466 | 10.5161 | 59500 | 0.1413 |
167
+ | 0.1412 | 10.6045 | 60000 | 0.1410 |
168
+ | 0.1447 | 10.6928 | 60500 | 0.1408 |
169
+ | 0.1426 | 10.7812 | 61000 | 0.1406 |
170
+ | 0.1488 | 10.8696 | 61500 | 0.1402 |
171
+ | 0.1402 | 10.9579 | 62000 | 0.1396 |
172
+ | 0.1385 | 11.0463 | 62500 | 0.1393 |
173
+ | 0.1415 | 11.1347 | 63000 | 0.1390 |
174
+ | 0.1429 | 11.2230 | 63500 | 0.1397 |
175
+ | 0.1415 | 11.3114 | 64000 | 0.1389 |
176
+ | 0.1407 | 11.3998 | 64500 | 0.1387 |
177
+ | 0.1349 | 11.4882 | 65000 | 0.1384 |
178
+ | 0.1418 | 11.5765 | 65500 | 0.1388 |
179
+ | 0.1394 | 11.6649 | 66000 | 0.1378 |
180
+ | 0.1415 | 11.7533 | 66500 | 0.1376 |
181
+ | 0.134 | 11.8416 | 67000 | 0.1373 |
182
+ | 0.1435 | 11.9300 | 67500 | 0.1370 |
183
+ | 0.1386 | 12.0184 | 68000 | 0.1373 |
184
+ | 0.1295 | 12.1068 | 68500 | 0.1368 |
185
+ | 0.1379 | 12.1951 | 69000 | 0.1365 |
186
+ | 0.1436 | 12.2835 | 69500 | 0.1368 |
187
+ | 0.1312 | 12.3719 | 70000 | 0.1361 |
188
+ | 0.139 | 12.4602 | 70500 | 0.1358 |
189
+ | 0.1395 | 12.5486 | 71000 | 0.1358 |
190
+ | 0.1317 | 12.6370 | 71500 | 0.1356 |
191
+ | 0.1445 | 12.7253 | 72000 | 0.1352 |
192
+ | 0.1394 | 12.8137 | 72500 | 0.1355 |
193
+ | 0.1351 | 12.9021 | 73000 | 0.1346 |
194
+ | 0.1369 | 12.9905 | 73500 | 0.1347 |
195
+ | 0.1328 | 13.0788 | 74000 | 0.1352 |
196
+ | 0.132 | 13.1672 | 74500 | 0.1347 |
197
+ | 0.137 | 13.2556 | 75000 | 0.1344 |
198
+ | 0.1382 | 13.3439 | 75500 | 0.1342 |
199
+ | 0.1346 | 13.4323 | 76000 | 0.1334 |
200
+ | 0.1322 | 13.5207 | 76500 | 0.1334 |
201
+ | 0.1354 | 13.6090 | 77000 | 0.1333 |
202
+ | 0.1322 | 13.6974 | 77500 | 0.1335 |
203
+ | 0.1304 | 13.7858 | 78000 | 0.1331 |
204
+ | 0.1332 | 13.8742 | 78500 | 0.1332 |
205
+ | 0.136 | 13.9625 | 79000 | 0.1326 |
206
+ | 0.1361 | 14.0509 | 79500 | 0.1329 |
207
+ | 0.1324 | 14.1393 | 80000 | 0.1328 |
208
+ | 0.1321 | 14.2276 | 80500 | 0.1321 |
209
+ | 0.1349 | 14.3160 | 81000 | 0.1320 |
210
+ | 0.1336 | 14.4044 | 81500 | 0.1323 |
211
+ | 0.1272 | 14.4928 | 82000 | 0.1318 |
212
+ | 0.1317 | 14.5811 | 82500 | 0.1316 |
213
+ | 0.1274 | 14.6695 | 83000 | 0.1317 |
214
+ | 0.1331 | 14.7579 | 83500 | 0.1312 |
215
+ | 0.132 | 14.8462 | 84000 | 0.1312 |
216
+ | 0.1318 | 14.9346 | 84500 | 0.1307 |
217
+ | 0.128 | 15.0230 | 85000 | 0.1305 |
218
+ | 0.1282 | 15.1113 | 85500 | 0.1307 |
219
+ | 0.128 | 15.1997 | 86000 | 0.1305 |
220
+ | 0.1359 | 15.2881 | 86500 | 0.1304 |
221
+ | 0.1269 | 15.3765 | 87000 | 0.1304 |
222
+ | 0.1237 | 15.4648 | 87500 | 0.1303 |
223
+ | 0.1372 | 15.5532 | 88000 | 0.1302 |
224
+ | 0.1343 | 15.6416 | 88500 | 0.1300 |
225
+ | 0.1336 | 15.7299 | 89000 | 0.1297 |
226
+ | 0.1258 | 15.8183 | 89500 | 0.1295 |
227
+ | 0.1225 | 15.9067 | 90000 | 0.1298 |
228
+ | 0.1285 | 15.9951 | 90500 | 0.1291 |
229
+ | 0.1254 | 16.0834 | 91000 | 0.1295 |
230
+ | 0.1283 | 16.1718 | 91500 | 0.1294 |
231
+ | 0.1257 | 16.2602 | 92000 | 0.1297 |
232
+ | 0.1279 | 16.3485 | 92500 | 0.1292 |
233
+ | 0.1304 | 16.4369 | 93000 | 0.1291 |
234
+ | 0.1253 | 16.5253 | 93500 | 0.1290 |
235
+ | 0.1181 | 16.6136 | 94000 | 0.1285 |
236
+ | 0.1293 | 16.7020 | 94500 | 0.1287 |
237
+ | 0.1271 | 16.7904 | 95000 | 0.1293 |
238
+ | 0.1274 | 16.8788 | 95500 | 0.1287 |
239
+ | 0.1331 | 16.9671 | 96000 | 0.1284 |
240
+ | 0.1338 | 17.0555 | 96500 | 0.1286 |
241
+ | 0.1297 | 17.1439 | 97000 | 0.1283 |
242
+ | 0.1227 | 17.2322 | 97500 | 0.1280 |
243
+ | 0.1226 | 17.3206 | 98000 | 0.1280 |
244
+ | 0.1255 | 17.4090 | 98500 | 0.1280 |
245
+ | 0.1266 | 17.4973 | 99000 | 0.1277 |
246
+ | 0.1247 | 17.5857 | 99500 | 0.1274 |
247
+ | 0.1254 | 17.6741 | 100000 | 0.1275 |
248
+ | 0.1193 | 17.7625 | 100500 | 0.1277 |
249
+ | 0.1279 | 17.8508 | 101000 | 0.1276 |
250
+ | 0.1251 | 17.9392 | 101500 | 0.1270 |
251
+ | 0.1264 | 18.0276 | 102000 | 0.1271 |
252
+ | 0.1249 | 18.1159 | 102500 | 0.1270 |
253
+ | 0.1279 | 18.2043 | 103000 | 0.1267 |
254
+ | 0.1254 | 18.2927 | 103500 | 0.1266 |
255
+ | 0.1276 | 18.3811 | 104000 | 0.1269 |
256
+ | 0.1165 | 18.4694 | 104500 | 0.1263 |
257
+ | 0.122 | 18.5578 | 105000 | 0.1265 |
258
+ | 0.1281 | 18.6462 | 105500 | 0.1261 |
259
+ | 0.1224 | 18.7345 | 106000 | 0.1265 |
260
+ | 0.1209 | 18.8229 | 106500 | 0.1264 |
261
+ | 0.1233 | 18.9113 | 107000 | 0.1264 |
262
+ | 0.1218 | 18.9996 | 107500 | 0.1256 |
263
+ | 0.1217 | 19.0880 | 108000 | 0.1261 |
264
+ | 0.1227 | 19.1764 | 108500 | 0.1265 |
265
+ | 0.1303 | 19.2648 | 109000 | 0.1263 |
266
+ | 0.1188 | 19.3531 | 109500 | 0.1258 |
267
+ | 0.1221 | 19.4415 | 110000 | 0.1260 |
268
+ | 0.1249 | 19.5299 | 110500 | 0.1261 |
269
+ | 0.1295 | 19.6182 | 111000 | 0.1257 |
270
+ | 0.1226 | 19.7066 | 111500 | 0.1252 |
271
+ | 0.1199 | 19.7950 | 112000 | 0.1253 |
272
+ | 0.1177 | 19.8834 | 112500 | 0.1253 |
273
+ | 0.1193 | 19.9717 | 113000 | 0.1255 |
274
+ | 0.1181 | 20.0601 | 113500 | 0.1256 |
275
+ | 0.1207 | 20.1485 | 114000 | 0.1256 |
276
+ | 0.1235 | 20.2368 | 114500 | 0.1257 |
277
+ | 0.1209 | 20.3252 | 115000 | 0.1253 |
278
+ | 0.115 | 20.4136 | 115500 | 0.1251 |
279
+ | 0.1176 | 20.5019 | 116000 | 0.1252 |
280
+ | 0.1215 | 20.5903 | 116500 | 0.1249 |
281
+ | 0.124 | 20.6787 | 117000 | 0.1247 |
282
+ | 0.1211 | 20.7671 | 117500 | 0.1245 |
283
+ | 0.1222 | 20.8554 | 118000 | 0.1246 |
284
+ | 0.1205 | 20.9438 | 118500 | 0.1248 |
285
+ | 0.1251 | 21.0322 | 119000 | 0.1248 |
286
+ | 0.1212 | 21.1205 | 119500 | 0.1243 |
287
+ | 0.1151 | 21.2089 | 120000 | 0.1247 |
288
+ | 0.1197 | 21.2973 | 120500 | 0.1246 |
289
+ | 0.122 | 21.3856 | 121000 | 0.1248 |
290
+ | 0.1226 | 21.4740 | 121500 | 0.1248 |
291
+ | 0.1214 | 21.5624 | 122000 | 0.1247 |
292
+ | 0.1232 | 21.6508 | 122500 | 0.1242 |
293
+ | 0.118 | 21.7391 | 123000 | 0.1245 |
294
+ | 0.1179 | 21.8275 | 123500 | 0.1242 |
295
+ | 0.1201 | 21.9159 | 124000 | 0.1243 |
296
+ | 0.1205 | 22.0042 | 124500 | 0.1245 |
297
+ | 0.1182 | 22.0926 | 125000 | 0.1242 |
298
+ | 0.115 | 22.1810 | 125500 | 0.1243 |
299
+ | 0.1203 | 22.2694 | 126000 | 0.1239 |
300
+ | 0.1184 | 22.3577 | 126500 | 0.1240 |
301
+ | 0.1221 | 22.4461 | 127000 | 0.1239 |
302
+ | 0.1214 | 22.5345 | 127500 | 0.1238 |
303
+ | 0.1183 | 22.6228 | 128000 | 0.1239 |
304
+ | 0.1188 | 22.7112 | 128500 | 0.1242 |
305
+ | 0.1181 | 22.7996 | 129000 | 0.1237 |
306
+ | 0.1172 | 22.8879 | 129500 | 0.1237 |
307
+ | 0.122 | 22.9763 | 130000 | 0.1236 |
308
+ | 0.1194 | 23.0647 | 130500 | 0.1239 |
309
+ | 0.1171 | 23.1531 | 131000 | 0.1238 |
310
+ | 0.1178 | 23.2414 | 131500 | 0.1238 |
311
+ | 0.1192 | 23.3298 | 132000 | 0.1239 |
312
+ | 0.1193 | 23.4182 | 132500 | 0.1238 |
313
+ | 0.1201 | 23.5065 | 133000 | 0.1235 |
314
+ | 0.1208 | 23.5949 | 133500 | 0.1234 |
315
+ | 0.1194 | 23.6833 | 134000 | 0.1235 |
316
+ | 0.1155 | 23.7717 | 134500 | 0.1235 |
317
+ | 0.1177 | 23.8600 | 135000 | 0.1233 |
318
+ | 0.1187 | 23.9484 | 135500 | 0.1235 |
319
+ | 0.1167 | 24.0368 | 136000 | 0.1236 |
320
+ | 0.116 | 24.1251 | 136500 | 0.1235 |
321
+ | 0.1151 | 24.2135 | 137000 | 0.1235 |
322
+ | 0.1204 | 24.3019 | 137500 | 0.1235 |
323
+ | 0.1105 | 24.3902 | 138000 | 0.1235 |
324
+ | 0.1211 | 24.4786 | 138500 | 0.1234 |
325
+ | 0.1192 | 24.5670 | 139000 | 0.1235 |
326
+ | 0.1188 | 24.6554 | 139500 | 0.1234 |
327
+ | 0.1245 | 24.7437 | 140000 | 0.1234 |
328
+ | 0.1177 | 24.8321 | 140500 | 0.1234 |
329
+ | 0.1209 | 24.9205 | 141000 | 0.1234 |
330
+
331
+
332
+ ### Framework versions
333
+
334
+ - Transformers 4.41.2
335
+ - Pytorch 2.5.0.dev20240625
336
+ - Datasets 2.20.0
337
+ - Tokenizers 0.19.1
added_tokens.json ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "UBC-NLP/AraT5v2-base-1024",
3
+ "architectures": [
4
+ "T5ForConditionalGeneration"
5
+ ],
6
+ "classifier_dropout": 0.0,
7
+ "d_ff": 2048,
8
+ "d_kv": 64,
9
+ "d_model": 768,
10
+ "decoder_start_token_id": 0,
11
+ "dense_act_fn": "gelu_new",
12
+ "dropout_rate": 0.1,
13
+ "eos_token_id": 1,
14
+ "feed_forward_proj": "gated-gelu",
15
+ "initializer_factor": 1.0,
16
+ "is_encoder_decoder": true,
17
+ "is_gated_act": true,
18
+ "layer_norm_epsilon": 1e-06,
19
+ "model_type": "t5",
20
+ "num_decoder_layers": 12,
21
+ "num_heads": 12,
22
+ "num_layers": 12,
23
+ "output_past": true,
24
+ "pad_token_id": 0,
25
+ "relative_attention_max_distance": 128,
26
+ "relative_attention_num_buckets": 32,
27
+ "tie_word_embeddings": false,
28
+ "tokenizer_class": "T5Tokenizer",
29
+ "torch_dtype": "float32",
30
+ "transformers_version": "4.41.2",
31
+ "use_cache": true,
32
+ "vocab_size": 126982
33
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "decoder_start_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.41.2"
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:676f8cc36ab739ddb87096a61b350903c526d9d8cce2d5dbc75880c14cc10ff4
3
+ size 1573128048
special_tokens_map.json ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<extra_id_0>",
4
+ "<extra_id_1>",
5
+ "<extra_id_2>",
6
+ "<extra_id_3>",
7
+ "<extra_id_4>",
8
+ "<extra_id_5>",
9
+ "<extra_id_6>",
10
+ "<extra_id_7>",
11
+ "<extra_id_8>",
12
+ "<extra_id_9>",
13
+ "<extra_id_10>",
14
+ "<extra_id_11>",
15
+ "<extra_id_12>",
16
+ "<extra_id_13>",
17
+ "<extra_id_14>",
18
+ "<extra_id_15>",
19
+ "<extra_id_16>",
20
+ "<extra_id_17>",
21
+ "<extra_id_18>",
22
+ "<extra_id_19>",
23
+ "<extra_id_20>",
24
+ "<extra_id_21>",
25
+ "<extra_id_22>",
26
+ "<extra_id_23>",
27
+ "<extra_id_24>",
28
+ "<extra_id_25>",
29
+ "<extra_id_26>",
30
+ "<extra_id_27>",
31
+ "<extra_id_28>",
32
+ "<extra_id_29>",
33
+ "<extra_id_30>",
34
+ "<extra_id_31>",
35
+ "<extra_id_32>",
36
+ "<extra_id_33>",
37
+ "<extra_id_34>",
38
+ "<extra_id_35>",
39
+ "<extra_id_36>",
40
+ "<extra_id_37>",
41
+ "<extra_id_38>",
42
+ "<extra_id_39>",
43
+ "<extra_id_40>",
44
+ "<extra_id_41>",
45
+ "<extra_id_42>",
46
+ "<extra_id_43>",
47
+ "<extra_id_44>",
48
+ "<extra_id_45>",
49
+ "<extra_id_46>",
50
+ "<extra_id_47>",
51
+ "<extra_id_48>",
52
+ "<extra_id_49>",
53
+ "<extra_id_50>",
54
+ "<extra_id_51>",
55
+ "<extra_id_52>",
56
+ "<extra_id_53>",
57
+ "<extra_id_54>",
58
+ "<extra_id_55>",
59
+ "<extra_id_56>",
60
+ "<extra_id_57>",
61
+ "<extra_id_58>",
62
+ "<extra_id_59>",
63
+ "<extra_id_60>",
64
+ "<extra_id_61>",
65
+ "<extra_id_62>",
66
+ "<extra_id_63>",
67
+ "<extra_id_64>",
68
+ "<extra_id_65>",
69
+ "<extra_id_66>",
70
+ "<extra_id_67>",
71
+ "<extra_id_68>",
72
+ "<extra_id_69>",
73
+ "<extra_id_70>",
74
+ "<extra_id_71>",
75
+ "<extra_id_72>",
76
+ "<extra_id_73>",
77
+ "<extra_id_74>",
78
+ "<extra_id_75>",
79
+ "<extra_id_76>",
80
+ "<extra_id_77>",
81
+ "<extra_id_78>",
82
+ "<extra_id_79>",
83
+ "<extra_id_80>",
84
+ "<extra_id_81>",
85
+ "<extra_id_82>",
86
+ "<extra_id_83>",
87
+ "<extra_id_84>",
88
+ "<extra_id_85>",
89
+ "<extra_id_86>",
90
+ "<extra_id_87>",
91
+ "<extra_id_88>",
92
+ "<extra_id_89>",
93
+ "<extra_id_90>",
94
+ "<extra_id_91>",
95
+ "<extra_id_92>",
96
+ "<extra_id_93>",
97
+ "<extra_id_94>",
98
+ "<extra_id_95>",
99
+ "<extra_id_96>",
100
+ "<extra_id_97>",
101
+ "<extra_id_98>",
102
+ "<extra_id_99>"
103
+ ],
104
+ "eos_token": {
105
+ "content": "</s>",
106
+ "lstrip": false,
107
+ "normalized": false,
108
+ "rstrip": false,
109
+ "single_word": false
110
+ },
111
+ "pad_token": {
112
+ "content": "<pad>",
113
+ "lstrip": false,
114
+ "normalized": false,
115
+ "rstrip": false,
116
+ "single_word": false
117
+ },
118
+ "unk_token": {
119
+ "content": "<unk>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false
124
+ }
125
+ }
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:180428eb8e88be6c7d259fb04c9eb3a1c552d799a76741bcd6ee34fa0bf64386
3
+ size 2353338
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be8e901c7e456a3b0056cac8451761f57aee2095aae9ef809017cef32bf15f04
3
+ size 5304