--- license: mit language: - ru --- # Based on [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) # Использование ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch del_symbs = ["?","!",".",","] classes = ["dialog","trouble","quest","about_user","about_model","instruction"] device = torch.device("cuda") model_name = 'TeraSpace/replica_classification' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels = len(classes)).to(device) while True: text = input("=>").lower() for del_symb in del_symbs: text = text.replace(del_symb,"") inputs = tokenizer(text, truncation=True, max_length=512, padding='max_length', return_tensors='pt').to(device) with torch.no_grad(): logits = model(**inputs).logits probas = list(torch.sigmoid(logits)[0].cpu().detach().numpy()) out = classes[probas.index(max(probas))] print(out) ```