from collections import OrderedDict from typing import Tuple, Union from itertools import repeat import collections.abc import math import logging import numpy as np import torch import torch.nn.functional as F from torch import nn from torch.utils.checkpoint import checkpoint import importlib.util if importlib.util.find_spec('flash_attn'): FlashMHA = importlib.import_module('flash_attn.flash_attention').FlashMHA from clip import _tokenizer from clip.configuration_bert import BertConfig from clip.modeling_bert import BertModel try: from transformers import CLIPTextModelWithProjection except: pass class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1): super().__init__() # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = None self.stride = stride if stride > 1 or inplanes != planes * Bottleneck.expansion: # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 self.downsample = nn.Sequential(OrderedDict([ ("-1", nn.AvgPool2d(stride)), ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), ("1", nn.BatchNorm2d(planes * self.expansion)) ])) def forward(self, x: torch.Tensor): identity = x out = self.relu(self.bn1(self.conv1(x))) out = self.relu(self.bn2(self.conv2(out))) out = self.avgpool(out) out = self.bn3(self.conv3(out)) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class AttentionPool2d(nn.Module): def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x): x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC x, _ = F.multi_head_attention_forward( query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False ) return x[0] class ModifiedResNet(nn.Module): """ A ResNet class that is similar to torchvision's but contains the following changes: - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 - The final pooling layer is a QKV attention instead of an average pool """ def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): super().__init__() self.output_dim = output_dim self.input_resolution = input_resolution # the 3-layer stem self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(width // 2) self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(width // 2) self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(width) self.avgpool = nn.AvgPool2d(2) self.relu = nn.ReLU(inplace=True) # residual layers self._inplanes = width # this is a *mutable* variable used during construction self.layer1 = self._make_layer(width, layers[0]) self.layer2 = self._make_layer(width * 2, layers[1], stride=2) self.layer3 = self._make_layer(width * 4, layers[2], stride=2) self.layer4 = self._make_layer(width * 8, layers[3], stride=2) embed_dim = width * 32 # the ResNet feature dimension self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) def _make_layer(self, planes, blocks, stride=1): layers = [Bottleneck(self._inplanes, planes, stride)] self._inplanes = planes * Bottleneck.expansion for _ in range(1, blocks): layers.append(Bottleneck(self._inplanes, planes)) return nn.Sequential(*layers) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): # FIXME support for non-transformer pass def forward(self, x): def stem(x): for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]: x = self.relu(bn(conv(x))) x = self.avgpool(x) return x x = x.type(self.conv1.weight.dtype) x = stem(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.attnpool(x) return x class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, use_flash_attention: bool = False): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) if not use_flash_attention else FlashMHA(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask self.use_flash_attention = use_flash_attention def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None if self.use_flash_attention: # Batch first is needed for FlashAttention. See https://github.com/HazyResearch/flash-attention/issues/84 for more information. return self.attn(x.transpose(1, 0))[0].transpose(1, 0) else: return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, use_flash_attention: bool = False): super().__init__() self.width = width self.layers = layers self.grad_checkpointing = False self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask, use_flash_attention) for _ in range(layers)]) def forward(self, x: torch.Tensor): if self.grad_checkpointing and not torch.jit.is_scripting(): for r in self.resblocks: x = checkpoint(r, x) return x return self.resblocks(x) class VisualTransformer(nn.Module): def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int, use_flash_attention: bool = False): super().__init__() self.input_resolution = input_resolution self.grid_size = (self.input_resolution // patch_size, self.input_resolution // patch_size) self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads, use_flash_attention=use_flash_attention) self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.transformer.grad_checkpointing = enable def random_masking(self, x, mask_ratio): N, L, D = x.shape # batch, length, dim len_keep = int((L - 1) * (1 - mask_ratio)) noise = torch.rand(N, L - 1, device=x.device) ids_shuffle = torch.argsort(noise, dim=1) + torch.ones(N, L - 1, device=x.device, dtype=int) ids_keep = ids_shuffle[:, :len_keep] x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) x0 = x[:, 0, :] x0 = x0.reshape(N, 1, D) x_masked_add = torch.cat([x0, x_masked], axis=1) return x_masked_add def forward(self, x: torch.Tensor, mask_ratio: float = 0.0): x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) if mask_ratio != 0: x = self.random_masking(x, mask_ratio) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_post(x[:, 0, :]) if self.proj is not None: x = x @ self.proj return x class CLIP(nn.Module): def __init__(self, embed_dim: int, # vision image_resolution: int, vision_layers: Union[Tuple[int, int, int, int], int], vision_width: int, vision_patch_size: int, # text vocab_size: int, text_attention_probs_dropout_prob: float, text_hidden_act: str, text_hidden_dropout_prob: float, text_hidden_size: int, text_initializer_range: float, text_intermediate_size: int, text_max_position_embeddings: int, text_num_attention_heads: int, text_num_hidden_layers: int, text_type_vocab_size: int, tokenizer = _tokenizer, # vision head width, added this param for ViT-H vision_head_width: int = 64, use_flash_attention: bool = False, ): super().__init__() if isinstance(vision_layers, (tuple, list)): vision_heads = vision_width * 32 // vision_head_width self.visual = ModifiedResNet( layers=vision_layers, output_dim=embed_dim, heads=vision_heads, input_resolution=image_resolution, width=vision_width ) else: vision_heads = vision_width // vision_head_width self.visual = VisualTransformer( input_resolution=image_resolution, patch_size=vision_patch_size, width=vision_width, layers=vision_layers, heads=vision_heads, output_dim=embed_dim, use_flash_attention=use_flash_attention ) self.bert_config = BertConfig( vocab_size_or_config_json_file=vocab_size, hidden_size=text_hidden_size, num_hidden_layers=text_num_hidden_layers, num_attention_heads=text_num_attention_heads, intermediate_size=text_intermediate_size, hidden_act=text_hidden_act, hidden_dropout_prob=text_hidden_dropout_prob, attention_probs_dropout_prob=text_attention_probs_dropout_prob, max_position_embeddings=text_max_position_embeddings, type_vocab_size=text_type_vocab_size, initializer_range=text_initializer_range, layer_norm_eps=1e-12, use_flash_attention=use_flash_attention ) self.bert = BertModel(self.bert_config) self.text_projection = nn.Parameter(torch.empty(text_hidden_size, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.tokenizer = tokenizer self.initialize_parameters() def initialize_parameters(self): self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) if isinstance(self.visual, ModifiedResNet): if self.visual.attnpool is not None: std = self.visual.attnpool.c_proj.in_features ** -0.5 nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: for name, param in resnet_block.named_parameters(): if name.endswith("bn3.weight"): nn.init.zeros_(param) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.bert_config.hidden_size ** -0.5) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.visual.set_grad_checkpointing(enable) self.bert.set_grad_checkpointing(enable) @property def dtype(self): return self.visual.conv1.weight.dtype def encode_image(self, image, mask_ratio=0): if isinstance(self.visual, ModifiedResNet): # mask_ratio > 0 (FLIP strategy) is currently only implemented for VisualTransformer. return self.visual(image.type(self.dtype)) return self.visual(image.type(self.dtype), mask_ratio) def encode_text(self, text): pad_index = self.tokenizer.vocab['[PAD]'] attn_mask = text.ne(pad_index).type(self.dtype) x = self.bert(text, attention_mask=attn_mask)[0].type(self.dtype) # [batch_size, seq_length, hidden_size] return x[:, 0, :] @ self.text_projection def forward(self, image, text, mask_ratio=0): assert image is not None or text is not None, "text and image cannot both be None!" if image is None: return self.encode_text(text) elif text is None: return self.encode_image(image, mask_ratio) image_features = self.encode_image(image, mask_ratio) text_features = self.encode_text(text) image_features = image_features / image_features.norm(dim=-1, keepdim=True) text_features = text_features / text_features.norm(dim=-1, keepdim=True) return image_features, text_features, self.logit_scale.exp() def get_similarity(self, image, text): image_features = self.encode_image(image) text_features = self.encode_text(text) # normalized features image_features = image_features / image_features.norm(dim=1, keepdim=True) text_features = text_features / text_features.norm(dim=1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_image = logit_scale * image_features @ text_features.t() logits_per_text = logits_per_image.t() # shape = [global_batch_size, global_batch_size] return logits_per_image, logits_per_text class CLIPWithTwoTextEncoder(nn.Module): def __init__(self, embed_dim: int, # vision image_resolution: int, vision_layers: Union[Tuple[int, int, int, int], int], vision_width: int, vision_patch_size: int, # text vocab_size: int, text_attention_probs_dropout_prob: float, text_hidden_act: str, text_hidden_dropout_prob: float, text_hidden_size: int, text_initializer_range: float, text_intermediate_size: int, text_max_position_embeddings: int, text_num_attention_heads: int, text_num_hidden_layers: int, text_type_vocab_size: int, tokenizer = _tokenizer, # vision head width, added this param for ViT-H vision_head_width: int = 64, use_flash_attention: bool = False, openai_clip_path: str = "/group/30042/kunyi/CLIP/clip-vit-large-patch14/", ): super().__init__() if isinstance(vision_layers, (tuple, list)): vision_heads = vision_width * 32 // vision_head_width self.visual = ModifiedResNet( layers=vision_layers, output_dim=embed_dim, heads=vision_heads, input_resolution=image_resolution, width=vision_width ) else: vision_heads = vision_width // vision_head_width self.visual = VisualTransformer( input_resolution=image_resolution, patch_size=vision_patch_size, width=vision_width, layers=vision_layers, heads=vision_heads, output_dim=embed_dim, use_flash_attention=use_flash_attention ) self.bert_config = BertConfig( vocab_size_or_config_json_file=vocab_size, hidden_size=text_hidden_size, num_hidden_layers=text_num_hidden_layers, num_attention_heads=text_num_attention_heads, intermediate_size=text_intermediate_size, hidden_act=text_hidden_act, hidden_dropout_prob=text_hidden_dropout_prob, attention_probs_dropout_prob=text_attention_probs_dropout_prob, max_position_embeddings=text_max_position_embeddings, type_vocab_size=text_type_vocab_size, initializer_range=text_initializer_range, layer_norm_eps=1e-12, use_flash_attention=use_flash_attention ) self.bert = BertModel(self.bert_config) self.text_projection = nn.Parameter(torch.empty(text_hidden_size, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.tokenizer = tokenizer print('loading openai clip text encoder') self.openai_clip_text_encoder = CLIPTextModelWithProjection.from_pretrained(openai_clip_path) self.initialize_parameters() def initialize_parameters(self): self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) if isinstance(self.visual, ModifiedResNet): if self.visual.attnpool is not None: std = self.visual.attnpool.c_proj.in_features ** -0.5 nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: for name, param in resnet_block.named_parameters(): if name.endswith("bn3.weight"): nn.init.zeros_(param) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.bert_config.hidden_size ** -0.5) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.visual.set_grad_checkpointing(enable) self.bert.set_grad_checkpointing(enable) @property def dtype(self): return self.visual.conv1.weight.dtype def encode_image(self, image, mask_ratio=0): if isinstance(self.visual, ModifiedResNet): # mask_ratio > 0 (FLIP strategy) is currently only implemented for VisualTransformer. return self.visual(image.type(self.dtype)) return self.visual(image.type(self.dtype), mask_ratio) def encode_text(self, text): pad_index = self.tokenizer.vocab['[PAD]'] attn_mask = text.ne(pad_index).type(self.dtype) x = self.bert(text, attention_mask=attn_mask)[0].type(self.dtype) # [batch_size, seq_length, hidden_size] return x[:, 0, :] @ self.text_projection def encode_text_ENG(self, text): text_emb = self.openai_clip_text_encoder(text).text_embeds return text_emb def forward(self, image, text, is_ENG=False, mask_ratio=0): assert image is not None or text is not None, "text and image cannot both be None!" if image is None: if not is_ENG: return self.encode_text(text) else: return self.encode_text_ENG(text) elif text is None: return self.encode_image(image, mask_ratio) image_features = self.encode_image(image, mask_ratio) if not is_ENG: text_features = self.encode_text(text) else: text_features = self.encode_text_ENG(text) image_features = image_features / image_features.norm(dim=-1, keepdim=True) text_features = text_features / text_features.norm(dim=-1, keepdim=True) return image_features, text_features, self.logit_scale.exp() def get_similarity(self, image, text): image_features = self.encode_image(image) text_features = self.encode_text(text) # normalized features image_features = image_features / image_features.norm(dim=1, keepdim=True) text_features = text_features / text_features.norm(dim=1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_image = logit_scale * image_features @ text_features.t() logits_per_text = logits_per_image.t() # shape = [global_batch_size, global_batch_size] return logits_per_image, logits_per_text class CLIP4SD(nn.Module): def __init__(self, embed_dim: int, # vision image_resolution: int, vision_layers: Union[Tuple[int, int, int, int], int], vision_width: int, vision_patch_size: int, # text vocab_size: int, text_attention_probs_dropout_prob: float, text_hidden_act: str, text_hidden_dropout_prob: float, text_hidden_size: int, text_initializer_range: float, text_intermediate_size: int, text_max_position_embeddings: int, text_num_attention_heads: int, text_num_hidden_layers: int, text_type_vocab_size: int, tokenizer = _tokenizer, # vision head width, added this param for ViT-H vision_head_width: int = 64, use_flash_attention: bool = False, ): super().__init__() if isinstance(vision_layers, (tuple, list)): vision_heads = vision_width * 32 // vision_head_width self.visual = ModifiedResNet( layers=vision_layers, output_dim=embed_dim, heads=vision_heads, input_resolution=image_resolution, width=vision_width ) else: vision_heads = vision_width // vision_head_width self.visual = VisualTransformer( input_resolution=image_resolution, patch_size=vision_patch_size, width=vision_width, layers=vision_layers, heads=vision_heads, output_dim=embed_dim, use_flash_attention=use_flash_attention ) self.bert_config = BertConfig( vocab_size_or_config_json_file=vocab_size, hidden_size=text_hidden_size, num_hidden_layers=text_num_hidden_layers, num_attention_heads=text_num_attention_heads, intermediate_size=text_intermediate_size, hidden_act=text_hidden_act, hidden_dropout_prob=text_hidden_dropout_prob, attention_probs_dropout_prob=text_attention_probs_dropout_prob, max_position_embeddings=text_max_position_embeddings, type_vocab_size=text_type_vocab_size, initializer_range=text_initializer_range, layer_norm_eps=1e-12, use_flash_attention=use_flash_attention ) self.bert = BertModel(self.bert_config) self.text_projection = nn.Parameter(torch.empty(text_hidden_size, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.tokenizer = tokenizer self.ln_final = LayerNorm(text_hidden_size) self.initialize_parameters() def initialize_parameters(self): self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) if isinstance(self.visual, ModifiedResNet): if self.visual.attnpool is not None: std = self.visual.attnpool.c_proj.in_features ** -0.5 nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: for name, param in resnet_block.named_parameters(): if name.endswith("bn3.weight"): nn.init.zeros_(param) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.bert_config.hidden_size ** -0.5) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.visual.set_grad_checkpointing(enable) self.bert.set_grad_checkpointing(enable) @property def dtype(self): return self.visual.conv1.weight.dtype def encode_image(self, image, mask_ratio=0): if isinstance(self.visual, ModifiedResNet): # mask_ratio > 0 (FLIP strategy) is currently only implemented for VisualTransformer. return self.visual(image.type(self.dtype)) return self.visual(image.type(self.dtype), mask_ratio) # def encode_text(self, text): # pad_index = self.tokenizer.vocab['[PAD]'] # attn_mask = text.ne(pad_index).type(self.dtype) # x = self.bert(text, attention_mask=attn_mask)[0].type(self.dtype) # [batch_size, seq_length, hidden_size] # return x[:, 0, :] @ self.text_projection def encode_text(self, text): pad_index = self.tokenizer.vocab['[PAD]'] attn_mask = text.ne(pad_index).type(self.dtype) x = self.bert(text, attention_mask=attn_mask)[0].type(self.dtype) # [batch_size, seq_length, hidden_size] x = self.ln_final(x).type(self.dtype) x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection return x def forward(self, image, text, mask_ratio=0): assert image is not None or text is not None, "text and image cannot both be None!" if image is None: return self.encode_text(text) elif text is None: return self.encode_image(image) image_features = self.encode_image(image, mask_ratio) text_features = self.encode_text(text) image_features = image_features / image_features.norm(dim=-1, keepdim=True) text_features = text_features / text_features.norm(dim=-1, keepdim=True) return image_features, text_features, self.logit_scale.exp() def get_similarity(self, image, text): image_features = self.encode_image(image) text_features = self.encode_text(text) # normalized features image_features = image_features / image_features.norm(dim=1, keepdim=True) text_features = text_features / text_features.norm(dim=1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_image = logit_scale * image_features @ text_features.t() logits_per_text = logits_per_image.t() # shape = [global_batch_size, global_batch_size] return logits_per_image, logits_per_text def convert_models_to_fp32(model): for p in model.parameters(): p.data = p.data.float() if p.grad: p.grad.data = p.grad.data.float() def convert_weights(model: nn.Module): """Convert applicable model parameters to fp16""" def _convert_weights_to_fp16(l): if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() if isinstance(l, nn.MultiheadAttention): for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: tensor = getattr(l, attr) if tensor is not None: tensor.data = tensor.data.half() if isinstance(l, BertModel): l.to(torch.half) for name in ["text_projection", "proj"]: try: if hasattr(l, name): attr = getattr(l, name) if attr is not None: attr.data = attr.data.half() except: print('name', name) model.apply(_convert_weights_to_fp16) def restore_model(model, clip_state_dict: dict, bert_state_dict: dict, use_flash_attention: bool): merged_state_dict = {} # use clip_state_dict to initialize the image encoder & logit scale if clip_state_dict is not None: for k, v in clip_state_dict.items(): if k.startswith("visual") or k == "logit_scale": merged_state_dict[k] = v # use bert_state_dict to initialize the text encoder if bert_state_dict is not None: for k, v in bert_state_dict.items(): if k.startswith("bert") and "bert.pooler" not in k: merged_state_dict[k] = v # adapt flash attention if use_flash_attention: merged_state_dict = convert_state_dict(merged_state_dict) convert_weights(model) resize_pos_embed(merged_state_dict, model) model.load_state_dict(merged_state_dict, strict=False) return model.eval() def convert_state_dict(state_dict): """Adapt to Flash Attention""" if not state_dict: return state_dict prefix = 'module.' if list(state_dict.keys())[0].startswith('module') else '' if f'{prefix}visual.transformer.resblocks.0.attn.in_proj_weight' in state_dict: for k in list(state_dict.keys()): if 'attn.in_proj_weight' in k: state_dict[k.replace('attn.in_proj_weight', 'attn.Wqkv.weight')] = state_dict.pop(k) elif 'attn.in_proj_bias' in k: state_dict[k.replace('attn.in_proj_bias', 'attn.Wqkv.bias')] = state_dict.pop(k) elif f'{prefix}visual.transformer.resblocks.0.attn.Wqkv.weight' in state_dict: for k in list(state_dict.keys()): if 'attn.Wqkv.weight' in k: state_dict[k.replace('attn.Wqkv.weight', 'attn.in_proj_weight')] = state_dict.pop(k) elif 'attn.Wqkv.bias' in k: state_dict[k.replace('attn.Wqkv.bias', 'attn.in_proj_bias')] = state_dict.pop(k) if f'{prefix}bert.encoder.layer.0.attention.self.query.weight' in state_dict: i = 0 while f'{prefix}bert.encoder.layer.{i}.attention.self.query.weight' in state_dict: state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.Wqkv.weight'] = torch.cat( (state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.query.weight'), state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.key.weight'), state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.value.weight')) ) state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.Wqkv.bias'] = torch.cat( (state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.query.bias'), state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.key.bias'), state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.value.bias')) ) state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.out_proj.weight'] = \ state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.output.dense.weight') state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.out_proj.bias'] = \ state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.output.dense.bias') i += 1 elif f'{prefix}bert.encoder.layer.0.attention.self.Wqkv.weight' in state_dict: i = 0 while f'{prefix}bert.encoder.layer.{i}.attention.self.Wqkv.weight' in state_dict: state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.query.weight'], \ state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.key.weight'], \ state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.value.weight'] = \ torch.chunk(state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.Wqkv.weight'), chunks=3) state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.query.bias'], \ state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.key.bias'], \ state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.value.bias'] = \ torch.chunk(state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.Wqkv.bias'), chunks=3) state_dict[f'{prefix}bert.encoder.layer.{i}.attention.output.dense.weight'] = \ state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.out_proj.weight') state_dict[f'{prefix}bert.encoder.layer.{i}.attention.output.dense.bias'] = \ state_dict.pop(f'module.bert.encoder.layer.{i}.attention.self.out_proj.bias') i += 1 return state_dict def resize_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1, prefix=""): # Rescale the grid of position embeddings when loading from state_dict old_pos_embed = state_dict.get(prefix + 'visual.positional_embedding', None) model = model.module if hasattr(model, 'module') else model if old_pos_embed is None or not hasattr(model.visual, 'grid_size'): return grid_size = to_2tuple(model.visual.grid_size) extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more) new_seq_len = grid_size[0] * grid_size[1] + extra_tokens if new_seq_len == old_pos_embed.shape[0]: return if extra_tokens: pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:] else: pos_emb_tok, pos_emb_img = None, old_pos_embed old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) pos_emb_img = F.interpolate( pos_emb_img, size=grid_size, mode=interpolation, align_corners=True, ) pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0] if pos_emb_tok is not None: new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) else: new_pos_embed = pos_emb_img state_dict[prefix + 'visual.positional_embedding'] = new_pos_embed # From PyTorch internals def _ntuple(n): def parse(x): if isinstance(x, collections.abc.Iterable): return x return tuple(repeat(x, n)) return parse to_1tuple = _ntuple(1) to_2tuple = _ntuple(2) to_3tuple = _ntuple(3) to_4tuple = _ntuple(4) to_ntuple = lambda n, x: _ntuple(n)(x)