# GFPGAN (CVPR 2021)
[**Paper**](https://arxiv.org/abs/2101.04061) **|** [**Project Page**](https://xinntao.github.io/projects/gfpgan) [English](README.md) **|** [简体中文](README_CN.md)
GFPGAN is a blind face restoration algorithm towards real-world face images.
[Colab Demo](https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo)
### :book: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior
> [[Paper](https://arxiv.org/abs/2101.04061)] [[Project Page](https://xinntao.github.io/projects/gfpgan)] [Demo]
> [Xintao Wang](https://xinntao.github.io/), [Yu Li](https://yu-li.github.io/), [Honglun Zhang](https://scholar.google.com/citations?hl=en&user=KjQLROoAAAAJ), [Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en)
> Applied Research Center (ARC), Tencent PCG
#### Abstract
Blind face restoration usually relies on facial priors, such as facial geometry prior or reference prior, to restore realistic and faithful details. However, very low-quality inputs cannot offer accurate geometric prior while high-quality references are inaccessible, limiting the applicability in real-world scenarios. In this work, we propose GFP-GAN that leverages **rich and diverse priors encapsulated in a pretrained face GAN** for blind face restoration. This Generative Facial Prior (GFP) is incorporated into the face restoration process via novel channel-split spatial feature transform layers, which allow our method to achieve a good balance of realness and fidelity. Thanks to the powerful generative facial prior and delicate designs, our GFP-GAN could jointly restore facial details and enhance colors with just a single forward pass, while GAN inversion methods require expensive image-specific optimization at inference. Extensive experiments show that our method achieves superior performance to prior art on both synthetic and real-world datasets.
#### BibTeX
@InProceedings{wang2021gfpgan,
author = {Xintao Wang and Yu Li and Honglun Zhang and Ying Shan},
title = {Towards Real-World Blind Face Restoration with Generative Facial Prior},
booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2021}
}
--- ## :wrench: Dependencies and Installation - Python >= 3.7 (Recommend to use [Anaconda](https://www.anaconda.com/download/#linux) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html)) - [PyTorch >= 1.7](https://pytorch.org/) - NVIDIA GPU + [CUDA](https://developer.nvidia.com/cuda-downloads) ### Installation 1. Clone repo ```bash git clone https://github.com/xinntao/GFPGAN.git cd GFPGAN ``` 1. Install dependent packages ```bash # Install basicsr - https://github.com/xinntao/BasicSR # We use BasicSR for both training and inference # Set BASICSR_EXT=True to compile the cuda extensions in the BasicSR - It may take several minutes to compile, please be patient BASICSR_EXT=True pip install basicsr # Install facexlib - https://github.com/xinntao/facexlib # We use face detection and face restoration helper in the facexlib package pip install facexlib pip install -r requirements.txt ``` ## :zap: Quick Inference Download pre-trained models: [GFPGANv1.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth) ```bash wget https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth -P experiments/pretrained_models ``` ```bash python inference_gfpgan_full.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/whole_imgs # for aligned images python inference_gfpgan_full.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/cropped_faces --aligned ``` ## :computer: Training We provide complete training codes for GFPGAN.