diff --git a/config.json b/config.json deleted file mode 100644 index b4a8f0d278960843c5b09435d38aefeaceb8bdbb..0000000000000000000000000000000000000000 --- a/config.json +++ /dev/null @@ -1,40 +0,0 @@ -{ - "apply_residual_connection_post_layernorm": false, - "architectures": [ - "TelechatForCausalLM" - ], - "auto_map": { - "AutoConfig": "configuration_telechat.TelechatConfig", - "AutoModelForCausalLM": "modeling_telechat.TelechatForCausalLM" - }, - "attention_dropout": 0.0, - "attention_softmax_in_fp32": true, - "bias_dropout_fusion": true, - "bos_token_id": 1, - "eos_token_id": 2, - "hidden_dropout": 0.0, - "hidden_size": 8192, - "initializer_range": 0.02, - "layer_norm_epsilon": 1e-05, - "masked_softmax_fusion": true, - "model_type": "telechat", - "n_head": 64, - "n_inner": null, - "num_key_value_heads": 8, - "n_layer": 96, - "pad_token_id": 3, - "pretraining_tp": 2, - "skip_bias_add": false, - "skip_bias_add_qkv": false, - "slow_but_exact": false, - "unk_token_id": 0, - "use_cache": true, - "vocab_size": 131072, - "ffn_hidden_size": 40960, - "flash_attn":true, - "tie_word_embeddings":false, - "training_seqlen":8192, - "base_seqlen":8192, - "seq_length": 8192 -} - diff --git a/configuration.json b/configuration.json deleted file mode 100644 index 9fbcf957f0338085ab0d7245f17f9fd1a1b64a65..0000000000000000000000000000000000000000 --- a/configuration.json +++ /dev/null @@ -1 +0,0 @@ -{"task":"text-generation"} \ No newline at end of file diff --git a/configuration_telechat.py b/configuration_telechat.py deleted file mode 100644 index 6c6169db242f100ed18215302d25dc375e7e5033..0000000000000000000000000000000000000000 --- a/configuration_telechat.py +++ /dev/null @@ -1,94 +0,0 @@ -# coding=utf-8 -# Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -""" Telechat configuration""" - -from packaging import version -from collections import OrderedDict -from transformers.utils import is_torch_available, logging -from transformers.configuration_utils import PretrainedConfig -from typing import TYPE_CHECKING, Any, List, Mapping, Optional - -logger = logging.get_logger(__name__) - -class TelechatConfig(PretrainedConfig): - """ - Args: - vocab_size (`int`, *optional*, defaults to 160256): Vocabulary size of the Telechat model. - hidden_size (`int`, *optional*, defaults to 4096): Dimensionality of the embeddings and hidden states. - ffn_hidden_size (`int`, *optional*, defaults to 12288): Dimensionality of the feed-forward hidden states. - n_layer (`int`, *optional*, defaults to 30): Number of hidden layers in the Transformer - n_head (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer. - layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers. - initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. - apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`): If enabled, use the layer norm of the hidden states as the residual in the transformer blocks - hidden_dropout (`float`, *optional*, defaults to 0.0): Dropout rate of the dropout function on the bias dropout. - attention_dropout (`float`, *optional*, defaults to 0.0): Dropout rate applied to the attention probs - use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions. - training_seqlen (`int`, *optional*, defaults to 8192): Sequence length during last finetuning. - logn (`bool`, *optional*, defaults to `True`): Whether or not to use logN during extrapolation. - embed_layernorm (`bool`, *optional*, defaults to `True`): Whether or not to use embedding layernorm. - - """ - - model_type = "telechat" - keys_to_ignore_at_inference = ["past_key_values"] - attribute_map = { - "num_hidden_layers": "n_layer", - "num_attention_heads": "n_head", - } - - def __init__( - self, - vocab_size=160256, - hidden_size=4096, - n_layer=30, - n_head=32, - layer_norm_epsilon=1e-5, - initializer_range=0.02, - use_cache=True, - bos_token_id=1, - eos_token_id=2, - apply_residual_connection_post_layernorm=False, - hidden_dropout=0.0, - attention_dropout=0.0, - ffn_hidden_size=12288, - training_seqlen = 8192, - logn = True, - embed_layernorm = False, - **kwargs, - ): - self.vocab_size = vocab_size - n_embed = kwargs.pop("n_embed", None) - self.hidden_size = hidden_size if n_embed is None else n_embed - self.n_layer = n_layer - self.n_head = n_head - self.layer_norm_epsilon = layer_norm_epsilon - self.initializer_range = initializer_range - self.use_cache = use_cache - self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm - self.hidden_dropout = hidden_dropout - self.attention_dropout = attention_dropout - self.bos_token_id = bos_token_id - self.eos_token_id = eos_token_id - self.logn = logn - self.ffn_hidden_size = ffn_hidden_size - self.training_seqlen = training_seqlen - self.embed_layernorm = embed_layernorm - self.num_key_value_heads= kwargs.pop("num_key_value_heads", None) - - - super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) - diff --git a/generation_config.json b/generation_config.json deleted file mode 100644 index 67fd08a69f94fd250bd5c50c8905f64e9297ecb8..0000000000000000000000000000000000000000 --- a/generation_config.json +++ /dev/null @@ -1,14 +0,0 @@ -{ - "max_length": 8192, - "do_sample": false, - "use_cache": true, - "temperature": 0.3, - "top_k": 5, - "top_p": 0.85, - "repetition_penalty": 1.03, - "pad_token_id": 3, - "bos_token_id": 1, - "eos_token_id": 2, - "user_token_id": 4, - "bot_token_id": 5 -} diff --git a/generation_utils.py b/generation_utils.py deleted file mode 100644 index 82410f2eeb3e8ef64f995d7786f2da4419c0f0e7..0000000000000000000000000000000000000000 --- a/generation_utils.py +++ /dev/null @@ -1,162 +0,0 @@ -from typing import Optional -from collections import deque -from queue import Queue -import copy - - -class History: - - def __init__(self, tokenizer, history): - ''' - init from a list of dict - ''' - # use deque to meet some special situation - self.input_history = deque() - self.tokenizer = tokenizer - if history: - self._transfer_from_list(history) - - def _transfer_from_list(self, history): - for message in history: - content = message.get("content") - # the token result may not be equal to the result model gen - message.update(self.tokenizer(content)) - self.input_history.append(message) - - def append(self, message): - content = message.get("content") - if "input_ids" not in message or "attention_mask" not in message: - message.update(self.tokenizer(content)) - self.input_history.append(message) - - def append_left(self, message): - content = message.get("content") - if "input_ids" not in message or "attention_mask" not in message: - message.update(self.tokenizer(content)) - self.input_history.appendleft(message) - - def pop(self): - x = self.input_history.pop() - return x - - def pop_left(self): - x = self.input_history.pop_left() - return x - - def update(self, message): - self.input_history.pop() - self.append(message) - - def __len__(self): - return self.input_history.__len__() - - def __str__(self): - return self.input_history.__str__() - - def __copy__(self): - new_instance = type(self)(self.tokenizer, []) - new_instance.input_history = copy.copy(self.input_history) - return new_instance - - def __deepcopy__(self, memodict={}): - new_instance = type(self)(self.tokenizer, []) - new_instance.input_history = copy.deepcopy(self.input_history) - return new_instance - - -class TelechatIterTextStreamer: - """ - With reference to the TextIterStreamers in transformers, we have rewritten this class - """ - - def __init__( - self, tokenizer, history: History = None, skip_prompt: bool = False, timeout: Optional[float] = None, - **decode_kwargs - ): - - self.tokenizer = tokenizer - self.history = history - self.skip_prompt = skip_prompt - self.timeout = timeout - self.decode_kwargs = decode_kwargs - - self.text_queue = Queue() - self.cache_time = 0 - self.text_until = "" - self.token_until = [] - self.stop_signal = None - self.next_tokens_are_prompt = True - - self.history.append({"role": "bot", "content": self.text_until}) - - def put(self, value): - """ - put printable text into queue - """ - if len(value.shape) > 1 and value.shape[0] > 1: - raise ValueError("TextStreamer only supports batch size 1") - elif len(value.shape) > 1: - value = value[0] - - if self.skip_prompt and self.next_tokens_are_prompt: - self.next_tokens_are_prompt = False - return - - if value[-1] == self.tokenizer.eos_token_id: - return - - # there may be some smart way to decode. - self.token_until.extend(value.tolist()) - text = self.tokenizer.decode(self.token_until, **self.decode_kwargs) - - - if self._is_printable(text) or self.cache_time >= 6: - output_text = text[len(self.text_until):] - self.text_until = text - - else: - self.cache_time+=1 - return - - self.on_finalized_text(output_text) - - def end(self): - """Flushes any remaining cache and prints a newline to stdout.""" - # Flush the cache, if it exists - text = self.tokenizer.decode(self.token_until, **self.decode_kwargs) - output_text = text[len(self.text_until):] - self.text_until = text - self.on_finalized_text(output_text, stream_end=True) - self.clear_cache() - - def clear_cache(self): - self.cache_time = 0 - self.token_until = [] - self.text_until = "" - self.history = None - self.next_tokens_are_prompt = True - - def on_finalized_text(self, text: str, stream_end: bool = False): - """Put the text tuple in the queue.""" - self.history.update({"role": "bot", "content": self.text_until, "input_ids": self.token_until, - "attention_mask": [1] * len(self.token_until)}) - self.text_queue.put((text, self.history), timeout=self.timeout) - if stream_end: - self.text_queue.put((self.stop_signal, self.history), timeout=self.timeout) - - @staticmethod - def _is_printable(cp): - """Checks whether tokens can be decoded or not""" - if "�" in cp: - return False - return True - - def __iter__(self): - return self - - def __next__(self): - value_now, history_until = self.text_queue.get(timeout=self.timeout) - if value_now == self.stop_signal: - raise StopIteration() - else: - return value_now, history_until \ No newline at end of file diff --git a/model-00001-of-00050.safetensors b/model-00001-of-00050.safetensors deleted file mode 100644 index 426d53ab14b3b78d70fd6986e3708f0b9b51388d..0000000000000000000000000000000000000000 --- a/model-00001-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:50a4549e91bf98dcb213f6455f92440454fdd012cd0369e0fdb2f019c83fe4c7 -size 8925611272 diff --git a/model-00002-of-00050.safetensors b/model-00002-of-00050.safetensors deleted file mode 100644 index a7eda89723d05ca4657a914a798299392cf46f20..0000000000000000000000000000000000000000 --- a/model-00002-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:548f67873b1f538bf325590f30dbe267600356ccd1bef73c1f1cc7a2902c2aa7 -size 9261287712 diff --git a/model-00003-of-00050.safetensors b/model-00003-of-00050.safetensors deleted file mode 100644 index 9da07177d5e2d3d3bf9862fb05de0e0d78370ad3..0000000000000000000000000000000000000000 --- a/model-00003-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e855d3528914e522dcad5348c2229dc2e88fa55e87416f7d5106437d3679a8d3 -size 9261287712 diff --git a/model-00004-of-00050.safetensors b/model-00004-of-00050.safetensors deleted file mode 100644 index 0464ad79419900ee9bcf6af5db3290d2a546feba..0000000000000000000000000000000000000000 --- a/model-00004-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:509b7084b8dcb308c7c7d22fa988e805b6f6947e356526f60cccdd40ceb2a11d -size 9261287712 diff --git a/model-00005-of-00050.safetensors b/model-00005-of-00050.safetensors deleted file mode 100644 index 8b7c32a147d32e433942d3f2a714b791b44459ea..0000000000000000000000000000000000000000 --- a/model-00005-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bb044a2e88e6e7a0817459f7f409eeb5abd00836346f69f8ebfd9d0c47028ebf -size 9261287712 diff --git a/model-00006-of-00050.safetensors b/model-00006-of-00050.safetensors deleted file mode 100644 index 011d2601c9ed9767d5723c0213147e7fa9499a08..0000000000000000000000000000000000000000 --- a/model-00006-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a3e410d45493b53ba09cdb8d368ecad07df8c1db96a58d928cd7045c8ed7a48f -size 9261287728 diff --git a/model-00007-of-00050.safetensors b/model-00007-of-00050.safetensors deleted file mode 100644 index 5a5b58baa52f37d9c9be321568bc79faeacce13a..0000000000000000000000000000000000000000 --- a/model-00007-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b9cdcab0486ef69e5eedbb99b08f0b55c918a83f227194cb8b8937f010c950a7 -size 9261287736 diff --git a/model-00008-of-00050.safetensors b/model-00008-of-00050.safetensors deleted file mode 100644 index e4982fc575729421b355442381ea2880be3bc04d..0000000000000000000000000000000000000000 --- a/model-00008-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f2a7cf122475960568ea086f9b98b2283dbf9344dda2720726a52bff7f31edbc -size 9261287736 diff --git a/model-00009-of-00050.safetensors b/model-00009-of-00050.safetensors deleted file mode 100644 index e9517e6ccc3ca3e12848e779f565fc39a4f920be..0000000000000000000000000000000000000000 --- a/model-00009-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cc5d19f0add344ac71fb3855ca8f04e588fd4d5263e05709ec4dd668ebcf8ee4 -size 9261287736 diff --git a/model-00010-of-00050.safetensors b/model-00010-of-00050.safetensors deleted file mode 100644 index f04889e5eb226789f9e74c0df9161d4251a1b6b2..0000000000000000000000000000000000000000 --- a/model-00010-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5d9763dc2004ea25ca751d271f92a1cce636f92c6991077ea391788428cfc6c1 -size 9261287736 diff --git a/model-00011-of-00050.safetensors b/model-00011-of-00050.safetensors deleted file mode 100644 index 1e1e2df0ad9ffaec520448de27d3ad7376eb5044..0000000000000000000000000000000000000000 --- a/model-00011-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ca7e26c5ed4c0fedec09a4cceef1ac7e03d037c921c18d1df0b782ca4fe7b71b -size 9261287736 diff --git a/model-00012-of-00050.safetensors b/model-00012-of-00050.safetensors deleted file mode 100644 index d51d04ce2d8564fada56337ec00df57e6953487d..0000000000000000000000000000000000000000 --- a/model-00012-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e0390b0e55acc47cebac2bc81e57e1e7d3f02f72a0cad2b01b5165caf976ab0b -size 9261287736 diff --git a/model-00013-of-00050.safetensors b/model-00013-of-00050.safetensors deleted file mode 100644 index 3ae3f60416daf48143e336694ea18a9fed769c22..0000000000000000000000000000000000000000 --- a/model-00013-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bbb3ccd22fc048c59e67dab8df54264acf53d7d62fc98fb49ffeafe7ea181739 -size 9261287736 diff --git a/model-00014-of-00050.safetensors b/model-00014-of-00050.safetensors deleted file mode 100644 index 9892baad14cfb948ec60e2f3b547ad273de6dac5..0000000000000000000000000000000000000000 --- a/model-00014-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1e2c53dae773a55d42d3265d0d85ae02c8f6f70543a90d923823cab68d44d5ce -size 9261287736 diff --git a/model-00015-of-00050.safetensors b/model-00015-of-00050.safetensors deleted file mode 100644 index 28f47ab7f8e76554e4295337e8b372e7be705908..0000000000000000000000000000000000000000 --- a/model-00015-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b813a2adab5ff776a06986e60d22e917c596122c417a7d6ae1930b8ed5d61a4f -size 9261287736 diff --git a/model-00016-of-00050.safetensors b/model-00016-of-00050.safetensors deleted file mode 100644 index 1533631fbb8cfb1c1bf074a2af340150acc69a97..0000000000000000000000000000000000000000 --- a/model-00016-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:33976aac9f40e0ff430435fe0295ba1f4443dc4b78233c077de95453eff51d01 -size 9261287736 diff --git a/model-00017-of-00050.safetensors b/model-00017-of-00050.safetensors deleted file mode 100644 index 4d003d91f97e4c6b1703c4b015ca9c8665e159d8..0000000000000000000000000000000000000000 --- a/model-00017-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:096850a1c187e804c370956830ef94d20731f79ee1078fa0613604c93015d305 -size 9261287736 diff --git a/model-00018-of-00050.safetensors b/model-00018-of-00050.safetensors deleted file mode 100644 index 87b81a764935743e9e0fb9fb2d34a543af72ef87..0000000000000000000000000000000000000000 --- a/model-00018-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b7ed47b73f1171ee30de651924ab58aaa7088037b9f96203be23b4b2514dfb27 -size 9261287736 diff --git a/model-00019-of-00050.safetensors b/model-00019-of-00050.safetensors deleted file mode 100644 index d4db36b8ff81c6314f40c883e0059f70864c1065..0000000000000000000000000000000000000000 --- a/model-00019-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:fe1e87f96e41804e06c966605e6b00e0a9c6b51c504ee5e22dfdb28e90d1308f -size 9261287736 diff --git a/model-00020-of-00050.safetensors b/model-00020-of-00050.safetensors deleted file mode 100644 index 18711a652f15f28872d05e599c10bc6e53fe0b6b..0000000000000000000000000000000000000000 --- a/model-00020-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:93bc200e651f67d4910170de85235af15b3228b23192afb5c32d5126daaaf996 -size 9261287736 diff --git a/model-00021-of-00050.safetensors b/model-00021-of-00050.safetensors deleted file mode 100644 index 5a1112a2baba2f36f507b60ede9c8a05ddd5fd37..0000000000000000000000000000000000000000 --- a/model-00021-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:645df22333bb21b8cef574bdadcaecaf0efcf43d3e747a0b0c0d462740d0b7c4 -size 9261287736 diff --git a/model-00022-of-00050.safetensors b/model-00022-of-00050.safetensors deleted file mode 100644 index 5ff162d27c9d68bbbe2399757e925e52907a3582..0000000000000000000000000000000000000000 --- a/model-00022-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3a288d0dafad8ca11e21c869a31d62057f6bc13036934e306cb68cd7fdd5861f -size 9261287736 diff --git a/model-00023-of-00050.safetensors b/model-00023-of-00050.safetensors deleted file mode 100644 index 0c367f7dbe88ec4f307e559496cca9d517825059..0000000000000000000000000000000000000000 --- a/model-00023-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94e110e13a08711bfd02cbb3d20e32baecd675f2593a8ae66ba1fcf039e34073 -size 9261287736 diff --git a/model-00024-of-00050.safetensors b/model-00024-of-00050.safetensors deleted file mode 100644 index 72909e4735f5e9b59848cec7d4bfa2920275e8c1..0000000000000000000000000000000000000000 --- a/model-00024-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:56894143f2c2a3ff2af49e7f3ec2af9929ff8d95fe7e8e63b709280ba4babe52 -size 9261287736 diff --git a/model-00025-of-00050.safetensors b/model-00025-of-00050.safetensors deleted file mode 100644 index 75fb1501f0c277e5b899d9d90a32c5f23a98c881..0000000000000000000000000000000000000000 --- a/model-00025-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:72d4aee125d0a41ceb2afc164c78d25b9edc89cf845da5f91e9c60b743b2f3a7 -size 9261287736 diff --git a/model-00026-of-00050.safetensors b/model-00026-of-00050.safetensors deleted file mode 100644 index 51d9835113b524c45ee2fafa75800b4f8627551f..0000000000000000000000000000000000000000 --- a/model-00026-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:72fdd61ca5c065b386092a0701f6fe8ed7ae8d99b0eaba87e50e60acff058876 -size 9261287736 diff --git a/model-00027-of-00050.safetensors b/model-00027-of-00050.safetensors deleted file mode 100644 index 4392013dc21137991c5a8a5deab5000abadf7db4..0000000000000000000000000000000000000000 --- a/model-00027-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:764f995de7385ab9c14e7393ee6adc73b557c1a182efdcbbf143c3fe22f353c3 -size 9261287736 diff --git a/model-00028-of-00050.safetensors b/model-00028-of-00050.safetensors deleted file mode 100644 index 19149dc27dc0cc7bb6e261e9684389015aed22ac..0000000000000000000000000000000000000000 --- a/model-00028-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:ba9bd63f6e97a17e03b467629d9a4bafd581da1b9445b134423c75d5aa409c08 -size 9261287736 diff --git a/model-00029-of-00050.safetensors b/model-00029-of-00050.safetensors deleted file mode 100644 index 59260a818ad863f170b8ca7e7742f71b46a1fc52..0000000000000000000000000000000000000000 --- a/model-00029-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:21c3f8b212fef1678419b95693121290430930dd2930bd531aa7a3faa40fac41 -size 9261287736 diff --git a/model-00030-of-00050.safetensors b/model-00030-of-00050.safetensors deleted file mode 100644 index a2e8070dff10c5e27fa805247542da801756b9c9..0000000000000000000000000000000000000000 --- a/model-00030-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b861e871ac1d1ae14b6fcadaefe876c45d694f715eb91d68bacf114c2c426adf -size 9261287736 diff --git a/model-00031-of-00050.safetensors b/model-00031-of-00050.safetensors deleted file mode 100644 index 8e8ee1d2cd088bf29429505bc34949f8c1751be0..0000000000000000000000000000000000000000 --- a/model-00031-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:495ecf892bce401191ce699032b3d95b957d935987ee462df76de2b5928c1127 -size 9261287736 diff --git a/model-00032-of-00050.safetensors b/model-00032-of-00050.safetensors deleted file mode 100644 index f6c1ed3f2979c4d960f167af198cded2596d9020..0000000000000000000000000000000000000000 --- a/model-00032-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:2613dc2c31320d4c300e260aac5a313dc183b8fdd140f6b3aea338667126ffae -size 9261287736 diff --git a/model-00033-of-00050.safetensors b/model-00033-of-00050.safetensors deleted file mode 100644 index db920738a5a9dcdb89c0b025e89363aa48f96ecf..0000000000000000000000000000000000000000 --- a/model-00033-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:67348068c452d63d6ea33f468f810157993b1431c823fc4fc68d1e4c7cf1b653 -size 9261287736 diff --git a/model-00034-of-00050.safetensors b/model-00034-of-00050.safetensors deleted file mode 100644 index f5dd0b2830c789a0af78e05c7b0bff71d3b963ed..0000000000000000000000000000000000000000 --- a/model-00034-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e28056f9391f029ddea9743445dbf763c265feb31a184ba73a7e8de91280d981 -size 9261287736 diff --git a/model-00035-of-00050.safetensors b/model-00035-of-00050.safetensors deleted file mode 100644 index 76839e63506bc6c1209ebc20111182ca8944174f..0000000000000000000000000000000000000000 --- a/model-00035-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7c966308e58af945da780ddf143e6f436f21a8019ddb1824200822ac8ecf72c8 -size 9261287736 diff --git a/model-00036-of-00050.safetensors b/model-00036-of-00050.safetensors deleted file mode 100644 index bc7027d7c1398ca59cf58c9724c8dc0a43536196..0000000000000000000000000000000000000000 --- a/model-00036-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:998076e5d150bea2630b24af7bf1da793a951f5c5b9ddfeb7b9400eb1188eea6 -size 9261287736 diff --git a/model-00037-of-00050.safetensors b/model-00037-of-00050.safetensors deleted file mode 100644 index 5ee15196b1d3982741e117b6c8a57bebfca0fb6f..0000000000000000000000000000000000000000 --- a/model-00037-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:1facd7663e7db14ec43876cc727f3d8e75b40bb025cb7a25fb7d2f9a60de68f9 -size 9261287736 diff --git a/model-00038-of-00050.safetensors b/model-00038-of-00050.safetensors deleted file mode 100644 index 3582e0a48dc68a40fd9b79163495df571f7031fa..0000000000000000000000000000000000000000 --- a/model-00038-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c06aafaf597e562ebce7672650df8ae3fcabf22977c4d47004f817ca4f8fe536 -size 9261287736 diff --git a/model-00039-of-00050.safetensors b/model-00039-of-00050.safetensors deleted file mode 100644 index 1d299b60693e3ee1cc1745162624fcef38d8981a..0000000000000000000000000000000000000000 --- a/model-00039-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d3bda7f14ffa81266bd9ec07e05e9c3bc16726f8fcd75281d4af4002508bfceb -size 9261287736 diff --git a/model-00040-of-00050.safetensors b/model-00040-of-00050.safetensors deleted file mode 100644 index 4aa7642b76fcea370ed65104c83e33d6ac03aedd..0000000000000000000000000000000000000000 --- a/model-00040-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bf19d0fbf517593390ccc10b1c00c1410b54286ca5c651c1fe3ee8de7b02c4d1 -size 9261287736 diff --git a/model-00041-of-00050.safetensors b/model-00041-of-00050.safetensors deleted file mode 100644 index 701adb43db72cc034547664107939802c16c7e7d..0000000000000000000000000000000000000000 --- a/model-00041-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:f98f5ea063046592be25906b7dc84f0096e67f104f1bcd847858ee778ba4e1eb -size 9261287736 diff --git a/model-00042-of-00050.safetensors b/model-00042-of-00050.safetensors deleted file mode 100644 index dc00db6eb6f59f07a92b232674153abaf18d4f29..0000000000000000000000000000000000000000 --- a/model-00042-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:033ba66aecb88ed950b1c49bd2c6f6d5e5173ed4882b22ff189f4caef542ec9f -size 9261287736 diff --git a/model-00043-of-00050.safetensors b/model-00043-of-00050.safetensors deleted file mode 100644 index 621342bbdd38b2a3c23bf85c703e3654994aac63..0000000000000000000000000000000000000000 --- a/model-00043-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:5a46195067f9f791eee221c2195d30136f0f8eb723dd0c1674d68c6c2409fa68 -size 9261287736 diff --git a/model-00044-of-00050.safetensors b/model-00044-of-00050.safetensors deleted file mode 100644 index a7601a75167bc353c3914ef3f277d135995ab62e..0000000000000000000000000000000000000000 --- a/model-00044-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d5becd94d0a4e65b2b0496f21ca679ba4b171ffb32851eabd15af17004bda901 -size 9261287736 diff --git a/model-00045-of-00050.safetensors b/model-00045-of-00050.safetensors deleted file mode 100644 index 2e27e51423a18e1ce3a30dee2b8fe446255e1056..0000000000000000000000000000000000000000 --- a/model-00045-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:460bd2d228da729c1ef006c65582a8f8d709c748a731f56ff6129ec8beb7cd57 -size 9261287736 diff --git a/model-00046-of-00050.safetensors b/model-00046-of-00050.safetensors deleted file mode 100644 index aa2e89240ef87d36b2e42111b0d2bb517462fd95..0000000000000000000000000000000000000000 --- a/model-00046-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:008d1a031198ab127c27761d605accc0fd48f1d872afb3e0711613b1722cc14f -size 9261287736 diff --git a/model-00047-of-00050.safetensors b/model-00047-of-00050.safetensors deleted file mode 100644 index 77897c6cebb6b7dae751ee810dbeb1058f67da96..0000000000000000000000000000000000000000 --- a/model-00047-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d7f43eceff211a0f79ac9315091a2afc585a10b0aaee46c1b2caa0ca57aaffc4 -size 9261287736 diff --git a/model-00048-of-00050.safetensors b/model-00048-of-00050.safetensors deleted file mode 100644 index adcf5beed7177079df6f99c86dc8b2b294337f39..0000000000000000000000000000000000000000 --- a/model-00048-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c15f954ccbe5a57682184600a4f55fd6c5eb0fe98d18d0ad96ae48c48a2f4e3c -size 9261287736 diff --git a/model-00049-of-00050.safetensors b/model-00049-of-00050.safetensors deleted file mode 100644 index 313d23061828e08fe3682020e1063fd46df66d0c..0000000000000000000000000000000000000000 --- a/model-00049-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ec2e464fb26c94e5862f52d3b5bcf239e01e8903e587fb1bd416ef2051a225f -size 4630643872 diff --git a/model-00050-of-00050.safetensors b/model-00050-of-00050.safetensors deleted file mode 100644 index cf4495d91a3fc94f49e8a4091294b5728f15e1ab..0000000000000000000000000000000000000000 --- a/model-00050-of-00050.safetensors +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:0dcbfe5b08c5190c2a12bd635d9a23e53aca6d1f1dabc42bae7566d1b121db78 -size 4295000288 diff --git a/model.safetensors.index.json b/model.safetensors.index.json deleted file mode 100644 index 6bc2a4c59294fc86fac4dccaab02b0f4d50196f3..0000000000000000000000000000000000000000 --- a/model.safetensors.index.json +++ /dev/null @@ -1 +0,0 @@ -{"metadata": {"total_size": 453131665408}, "weight_map": {"transformer.word_embeddings.weight": "model-00001-of-00050.safetensors", "transformer.h.0.input_layernorm.weight": "model-00001-of-00050.safetensors", "transformer.h.0.post_attention_layernorm.weight": "model-00001-of-00050.safetensors", "transformer.h.0.self_attention.dense.weight": "model-00001-of-00050.safetensors", "transformer.h.0.self_attention.dense.bias": "model-00001-of-00050.safetensors", "transformer.h.0.self_attention.query.weight": "model-00001-of-00050.safetensors", "transformer.h.0.self_attention.key_value.weight": "model-00001-of-00050.safetensors", "transformer.h.0.mlp.gate_proj.weight": "model-00001-of-00050.safetensors", "transformer.h.0.mlp.down_proj.weight": "model-00001-of-00050.safetensors", "transformer.h.0.mlp.down_proj.bias": "model-00001-of-00050.safetensors", "transformer.h.0.mlp.up_proj.weight": "model-00001-of-00050.safetensors", "transformer.h.1.input_layernorm.weight": "model-00002-of-00050.safetensors", "transformer.h.1.post_attention_layernorm.weight": "model-00002-of-00050.safetensors", "transformer.h.1.self_attention.dense.weight": "model-00002-of-00050.safetensors", "transformer.h.1.self_attention.dense.bias": "model-00002-of-00050.safetensors", "transformer.h.1.self_attention.query.weight": "model-00002-of-00050.safetensors", "transformer.h.1.self_attention.key_value.weight": "model-00002-of-00050.safetensors", "transformer.h.1.mlp.gate_proj.weight": "model-00002-of-00050.safetensors", "transformer.h.1.mlp.down_proj.weight": "model-00002-of-00050.safetensors", "transformer.h.1.mlp.down_proj.bias": "model-00002-of-00050.safetensors", "transformer.h.1.mlp.up_proj.weight": "model-00002-of-00050.safetensors", "transformer.h.2.input_layernorm.weight": "model-00002-of-00050.safetensors", "transformer.h.2.post_attention_layernorm.weight": "model-00002-of-00050.safetensors", "transformer.h.2.self_attention.dense.weight": "model-00002-of-00050.safetensors", "transformer.h.2.self_attention.dense.bias": "model-00002-of-00050.safetensors", "transformer.h.2.self_attention.query.weight": "model-00002-of-00050.safetensors", "transformer.h.2.self_attention.key_value.weight": "model-00002-of-00050.safetensors", "transformer.h.2.mlp.gate_proj.weight": "model-00002-of-00050.safetensors", "transformer.h.2.mlp.down_proj.weight": "model-00002-of-00050.safetensors", "transformer.h.2.mlp.down_proj.bias": "model-00002-of-00050.safetensors", "transformer.h.2.mlp.up_proj.weight": "model-00002-of-00050.safetensors", "transformer.h.3.input_layernorm.weight": "model-00003-of-00050.safetensors", "transformer.h.3.post_attention_layernorm.weight": "model-00003-of-00050.safetensors", "transformer.h.3.self_attention.dense.weight": "model-00003-of-00050.safetensors", "transformer.h.3.self_attention.dense.bias": "model-00003-of-00050.safetensors", "transformer.h.3.self_attention.query.weight": "model-00003-of-00050.safetensors", "transformer.h.3.self_attention.key_value.weight": "model-00003-of-00050.safetensors", "transformer.h.3.mlp.gate_proj.weight": "model-00003-of-00050.safetensors", "transformer.h.3.mlp.down_proj.weight": "model-00003-of-00050.safetensors", "transformer.h.3.mlp.down_proj.bias": "model-00003-of-00050.safetensors", "transformer.h.3.mlp.up_proj.weight": "model-00003-of-00050.safetensors", "transformer.h.4.input_layernorm.weight": "model-00003-of-00050.safetensors", "transformer.h.4.post_attention_layernorm.weight": "model-00003-of-00050.safetensors", "transformer.h.4.self_attention.dense.weight": "model-00003-of-00050.safetensors", "transformer.h.4.self_attention.dense.bias": "model-00003-of-00050.safetensors", "transformer.h.4.self_attention.query.weight": "model-00003-of-00050.safetensors", "transformer.h.4.self_attention.key_value.weight": "model-00003-of-00050.safetensors", "transformer.h.4.mlp.gate_proj.weight": "model-00003-of-00050.safetensors", "transformer.h.4.mlp.down_proj.weight": "model-00003-of-00050.safetensors", "transformer.h.4.mlp.down_proj.bias": "model-00003-of-00050.safetensors", "transformer.h.4.mlp.up_proj.weight": "model-00003-of-00050.safetensors", "transformer.h.5.input_layernorm.weight": "model-00004-of-00050.safetensors", "transformer.h.5.post_attention_layernorm.weight": "model-00004-of-00050.safetensors", "transformer.h.5.self_attention.dense.weight": "model-00004-of-00050.safetensors", "transformer.h.5.self_attention.dense.bias": "model-00004-of-00050.safetensors", "transformer.h.5.self_attention.query.weight": "model-00004-of-00050.safetensors", "transformer.h.5.self_attention.key_value.weight": "model-00004-of-00050.safetensors", "transformer.h.5.mlp.gate_proj.weight": "model-00004-of-00050.safetensors", "transformer.h.5.mlp.down_proj.weight": "model-00004-of-00050.safetensors", "transformer.h.5.mlp.down_proj.bias": "model-00004-of-00050.safetensors", "transformer.h.5.mlp.up_proj.weight": "model-00004-of-00050.safetensors", "transformer.h.6.input_layernorm.weight": "model-00004-of-00050.safetensors", "transformer.h.6.post_attention_layernorm.weight": "model-00004-of-00050.safetensors", "transformer.h.6.self_attention.dense.weight": "model-00004-of-00050.safetensors", "transformer.h.6.self_attention.dense.bias": "model-00004-of-00050.safetensors", "transformer.h.6.self_attention.query.weight": "model-00004-of-00050.safetensors", "transformer.h.6.self_attention.key_value.weight": "model-00004-of-00050.safetensors", "transformer.h.6.mlp.gate_proj.weight": "model-00004-of-00050.safetensors", "transformer.h.6.mlp.down_proj.weight": "model-00004-of-00050.safetensors", "transformer.h.6.mlp.down_proj.bias": "model-00004-of-00050.safetensors", "transformer.h.6.mlp.up_proj.weight": "model-00004-of-00050.safetensors", "transformer.h.7.input_layernorm.weight": "model-00005-of-00050.safetensors", "transformer.h.7.post_attention_layernorm.weight": "model-00005-of-00050.safetensors", "transformer.h.7.self_attention.dense.weight": "model-00005-of-00050.safetensors", "transformer.h.7.self_attention.dense.bias": "model-00005-of-00050.safetensors", "transformer.h.7.self_attention.query.weight": "model-00005-of-00050.safetensors", "transformer.h.7.self_attention.key_value.weight": "model-00005-of-00050.safetensors", "transformer.h.7.mlp.gate_proj.weight": "model-00005-of-00050.safetensors", "transformer.h.7.mlp.down_proj.weight": "model-00005-of-00050.safetensors", "transformer.h.7.mlp.down_proj.bias": "model-00005-of-00050.safetensors", "transformer.h.7.mlp.up_proj.weight": "model-00005-of-00050.safetensors", "transformer.h.8.input_layernorm.weight": "model-00005-of-00050.safetensors", "transformer.h.8.post_attention_layernorm.weight": "model-00005-of-00050.safetensors", "transformer.h.8.self_attention.dense.weight": "model-00005-of-00050.safetensors", "transformer.h.8.self_attention.dense.bias": "model-00005-of-00050.safetensors", "transformer.h.8.self_attention.query.weight": "model-00005-of-00050.safetensors", "transformer.h.8.self_attention.key_value.weight": "model-00005-of-00050.safetensors", "transformer.h.8.mlp.gate_proj.weight": "model-00005-of-00050.safetensors", "transformer.h.8.mlp.down_proj.weight": "model-00005-of-00050.safetensors", "transformer.h.8.mlp.down_proj.bias": "model-00005-of-00050.safetensors", "transformer.h.8.mlp.up_proj.weight": "model-00005-of-00050.safetensors", "transformer.h.9.input_layernorm.weight": "model-00006-of-00050.safetensors", "transformer.h.9.post_attention_layernorm.weight": "model-00006-of-00050.safetensors", "transformer.h.9.self_attention.dense.weight": "model-00006-of-00050.safetensors", "transformer.h.9.self_attention.dense.bias": "model-00006-of-00050.safetensors", "transformer.h.9.self_attention.query.weight": "model-00006-of-00050.safetensors", "transformer.h.9.self_attention.key_value.weight": "model-00006-of-00050.safetensors", "transformer.h.9.mlp.gate_proj.weight": "model-00006-of-00050.safetensors", "transformer.h.9.mlp.down_proj.weight": "model-00006-of-00050.safetensors", "transformer.h.9.mlp.down_proj.bias": "model-00006-of-00050.safetensors", "transformer.h.9.mlp.up_proj.weight": "model-00006-of-00050.safetensors", "transformer.h.10.input_layernorm.weight": "model-00006-of-00050.safetensors", "transformer.h.10.post_attention_layernorm.weight": "model-00006-of-00050.safetensors", "transformer.h.10.self_attention.dense.weight": "model-00006-of-00050.safetensors", "transformer.h.10.self_attention.dense.bias": "model-00006-of-00050.safetensors", "transformer.h.10.self_attention.query.weight": "model-00006-of-00050.safetensors", "transformer.h.10.self_attention.key_value.weight": "model-00006-of-00050.safetensors", "transformer.h.10.mlp.gate_proj.weight": "model-00006-of-00050.safetensors", "transformer.h.10.mlp.down_proj.weight": "model-00006-of-00050.safetensors", "transformer.h.10.mlp.down_proj.bias": "model-00006-of-00050.safetensors", "transformer.h.10.mlp.up_proj.weight": "model-00006-of-00050.safetensors", "transformer.h.11.input_layernorm.weight": "model-00007-of-00050.safetensors", "transformer.h.11.post_attention_layernorm.weight": "model-00007-of-00050.safetensors", "transformer.h.11.self_attention.dense.weight": "model-00007-of-00050.safetensors", "transformer.h.11.self_attention.dense.bias": "model-00007-of-00050.safetensors", "transformer.h.11.self_attention.query.weight": "model-00007-of-00050.safetensors", "transformer.h.11.self_attention.key_value.weight": "model-00007-of-00050.safetensors", "transformer.h.11.mlp.gate_proj.weight": "model-00007-of-00050.safetensors", "transformer.h.11.mlp.down_proj.weight": "model-00007-of-00050.safetensors", "transformer.h.11.mlp.down_proj.bias": "model-00007-of-00050.safetensors", "transformer.h.11.mlp.up_proj.weight": "model-00007-of-00050.safetensors", "transformer.h.12.input_layernorm.weight": "model-00007-of-00050.safetensors", "transformer.h.12.post_attention_layernorm.weight": "model-00007-of-00050.safetensors", "transformer.h.12.self_attention.dense.weight": "model-00007-of-00050.safetensors", "transformer.h.12.self_attention.dense.bias": "model-00007-of-00050.safetensors", "transformer.h.12.self_attention.query.weight": "model-00007-of-00050.safetensors", "transformer.h.12.self_attention.key_value.weight": "model-00007-of-00050.safetensors", "transformer.h.12.mlp.gate_proj.weight": "model-00007-of-00050.safetensors", "transformer.h.12.mlp.down_proj.weight": "model-00007-of-00050.safetensors", "transformer.h.12.mlp.down_proj.bias": "model-00007-of-00050.safetensors", "transformer.h.12.mlp.up_proj.weight": "model-00007-of-00050.safetensors", "transformer.h.13.input_layernorm.weight": "model-00008-of-00050.safetensors", "transformer.h.13.post_attention_layernorm.weight": "model-00008-of-00050.safetensors", "transformer.h.13.self_attention.dense.weight": "model-00008-of-00050.safetensors", "transformer.h.13.self_attention.dense.bias": "model-00008-of-00050.safetensors", "transformer.h.13.self_attention.query.weight": "model-00008-of-00050.safetensors", "transformer.h.13.self_attention.key_value.weight": "model-00008-of-00050.safetensors", "transformer.h.13.mlp.gate_proj.weight": "model-00008-of-00050.safetensors", "transformer.h.13.mlp.down_proj.weight": "model-00008-of-00050.safetensors", "transformer.h.13.mlp.down_proj.bias": "model-00008-of-00050.safetensors", "transformer.h.13.mlp.up_proj.weight": "model-00008-of-00050.safetensors", "transformer.h.14.input_layernorm.weight": "model-00008-of-00050.safetensors", "transformer.h.14.post_attention_layernorm.weight": "model-00008-of-00050.safetensors", "transformer.h.14.self_attention.dense.weight": "model-00008-of-00050.safetensors", "transformer.h.14.self_attention.dense.bias": "model-00008-of-00050.safetensors", "transformer.h.14.self_attention.query.weight": "model-00008-of-00050.safetensors", "transformer.h.14.self_attention.key_value.weight": "model-00008-of-00050.safetensors", "transformer.h.14.mlp.gate_proj.weight": "model-00008-of-00050.safetensors", "transformer.h.14.mlp.down_proj.weight": "model-00008-of-00050.safetensors", "transformer.h.14.mlp.down_proj.bias": "model-00008-of-00050.safetensors", "transformer.h.14.mlp.up_proj.weight": "model-00008-of-00050.safetensors", "transformer.h.15.input_layernorm.weight": "model-00009-of-00050.safetensors", "transformer.h.15.post_attention_layernorm.weight": "model-00009-of-00050.safetensors", "transformer.h.15.self_attention.dense.weight": "model-00009-of-00050.safetensors", "transformer.h.15.self_attention.dense.bias": "model-00009-of-00050.safetensors", "transformer.h.15.self_attention.query.weight": "model-00009-of-00050.safetensors", "transformer.h.15.self_attention.key_value.weight": "model-00009-of-00050.safetensors", "transformer.h.15.mlp.gate_proj.weight": "model-00009-of-00050.safetensors", "transformer.h.15.mlp.down_proj.weight": "model-00009-of-00050.safetensors", "transformer.h.15.mlp.down_proj.bias": "model-00009-of-00050.safetensors", "transformer.h.15.mlp.up_proj.weight": "model-00009-of-00050.safetensors", "transformer.h.16.input_layernorm.weight": "model-00009-of-00050.safetensors", "transformer.h.16.post_attention_layernorm.weight": "model-00009-of-00050.safetensors", "transformer.h.16.self_attention.dense.weight": "model-00009-of-00050.safetensors", "transformer.h.16.self_attention.dense.bias": "model-00009-of-00050.safetensors", "transformer.h.16.self_attention.query.weight": "model-00009-of-00050.safetensors", "transformer.h.16.self_attention.key_value.weight": "model-00009-of-00050.safetensors", "transformer.h.16.mlp.gate_proj.weight": "model-00009-of-00050.safetensors", "transformer.h.16.mlp.down_proj.weight": "model-00009-of-00050.safetensors", "transformer.h.16.mlp.down_proj.bias": "model-00009-of-00050.safetensors", "transformer.h.16.mlp.up_proj.weight": "model-00009-of-00050.safetensors", "transformer.h.17.input_layernorm.weight": "model-00010-of-00050.safetensors", "transformer.h.17.post_attention_layernorm.weight": "model-00010-of-00050.safetensors", "transformer.h.17.self_attention.dense.weight": "model-00010-of-00050.safetensors", "transformer.h.17.self_attention.dense.bias": "model-00010-of-00050.safetensors", "transformer.h.17.self_attention.query.weight": "model-00010-of-00050.safetensors", "transformer.h.17.self_attention.key_value.weight": "model-00010-of-00050.safetensors", "transformer.h.17.mlp.gate_proj.weight": "model-00010-of-00050.safetensors", "transformer.h.17.mlp.down_proj.weight": "model-00010-of-00050.safetensors", "transformer.h.17.mlp.down_proj.bias": "model-00010-of-00050.safetensors", "transformer.h.17.mlp.up_proj.weight": "model-00010-of-00050.safetensors", "transformer.h.18.input_layernorm.weight": "model-00010-of-00050.safetensors", "transformer.h.18.post_attention_layernorm.weight": "model-00010-of-00050.safetensors", "transformer.h.18.self_attention.dense.weight": "model-00010-of-00050.safetensors", "transformer.h.18.self_attention.dense.bias": "model-00010-of-00050.safetensors", "transformer.h.18.self_attention.query.weight": "model-00010-of-00050.safetensors", "transformer.h.18.self_attention.key_value.weight": "model-00010-of-00050.safetensors", "transformer.h.18.mlp.gate_proj.weight": "model-00010-of-00050.safetensors", "transformer.h.18.mlp.down_proj.weight": "model-00010-of-00050.safetensors", "transformer.h.18.mlp.down_proj.bias": "model-00010-of-00050.safetensors", "transformer.h.18.mlp.up_proj.weight": "model-00010-of-00050.safetensors", "transformer.h.19.input_layernorm.weight": "model-00011-of-00050.safetensors", "transformer.h.19.post_attention_layernorm.weight": "model-00011-of-00050.safetensors", "transformer.h.19.self_attention.dense.weight": "model-00011-of-00050.safetensors", "transformer.h.19.self_attention.dense.bias": "model-00011-of-00050.safetensors", "transformer.h.19.self_attention.query.weight": "model-00011-of-00050.safetensors", "transformer.h.19.self_attention.key_value.weight": "model-00011-of-00050.safetensors", "transformer.h.19.mlp.gate_proj.weight": "model-00011-of-00050.safetensors", "transformer.h.19.mlp.down_proj.weight": "model-00011-of-00050.safetensors", "transformer.h.19.mlp.down_proj.bias": "model-00011-of-00050.safetensors", "transformer.h.19.mlp.up_proj.weight": "model-00011-of-00050.safetensors", "transformer.h.20.input_layernorm.weight": "model-00011-of-00050.safetensors", "transformer.h.20.post_attention_layernorm.weight": "model-00011-of-00050.safetensors", "transformer.h.20.self_attention.dense.weight": "model-00011-of-00050.safetensors", "transformer.h.20.self_attention.dense.bias": "model-00011-of-00050.safetensors", "transformer.h.20.self_attention.query.weight": "model-00011-of-00050.safetensors", "transformer.h.20.self_attention.key_value.weight": "model-00011-of-00050.safetensors", "transformer.h.20.mlp.gate_proj.weight": "model-00011-of-00050.safetensors", "transformer.h.20.mlp.down_proj.weight": "model-00011-of-00050.safetensors", "transformer.h.20.mlp.down_proj.bias": "model-00011-of-00050.safetensors", "transformer.h.20.mlp.up_proj.weight": "model-00011-of-00050.safetensors", "transformer.h.21.input_layernorm.weight": "model-00012-of-00050.safetensors", "transformer.h.21.post_attention_layernorm.weight": "model-00012-of-00050.safetensors", "transformer.h.21.self_attention.dense.weight": "model-00012-of-00050.safetensors", "transformer.h.21.self_attention.dense.bias": "model-00012-of-00050.safetensors", "transformer.h.21.self_attention.query.weight": "model-00012-of-00050.safetensors", "transformer.h.21.self_attention.key_value.weight": "model-00012-of-00050.safetensors", "transformer.h.21.mlp.gate_proj.weight": "model-00012-of-00050.safetensors", "transformer.h.21.mlp.down_proj.weight": "model-00012-of-00050.safetensors", "transformer.h.21.mlp.down_proj.bias": "model-00012-of-00050.safetensors", "transformer.h.21.mlp.up_proj.weight": "model-00012-of-00050.safetensors", "transformer.h.22.input_layernorm.weight": "model-00012-of-00050.safetensors", "transformer.h.22.post_attention_layernorm.weight": "model-00012-of-00050.safetensors", "transformer.h.22.self_attention.dense.weight": "model-00012-of-00050.safetensors", "transformer.h.22.self_attention.dense.bias": "model-00012-of-00050.safetensors", "transformer.h.22.self_attention.query.weight": "model-00012-of-00050.safetensors", "transformer.h.22.self_attention.key_value.weight": "model-00012-of-00050.safetensors", "transformer.h.22.mlp.gate_proj.weight": "model-00012-of-00050.safetensors", "transformer.h.22.mlp.down_proj.weight": "model-00012-of-00050.safetensors", "transformer.h.22.mlp.down_proj.bias": "model-00012-of-00050.safetensors", "transformer.h.22.mlp.up_proj.weight": "model-00012-of-00050.safetensors", "transformer.h.23.input_layernorm.weight": "model-00013-of-00050.safetensors", "transformer.h.23.post_attention_layernorm.weight": "model-00013-of-00050.safetensors", "transformer.h.23.self_attention.dense.weight": "model-00013-of-00050.safetensors", "transformer.h.23.self_attention.dense.bias": "model-00013-of-00050.safetensors", "transformer.h.23.self_attention.query.weight": "model-00013-of-00050.safetensors", "transformer.h.23.self_attention.key_value.weight": "model-00013-of-00050.safetensors", "transformer.h.23.mlp.gate_proj.weight": "model-00013-of-00050.safetensors", "transformer.h.23.mlp.down_proj.weight": "model-00013-of-00050.safetensors", "transformer.h.23.mlp.down_proj.bias": "model-00013-of-00050.safetensors", "transformer.h.23.mlp.up_proj.weight": "model-00013-of-00050.safetensors", "transformer.h.24.input_layernorm.weight": "model-00013-of-00050.safetensors", "transformer.h.24.post_attention_layernorm.weight": "model-00013-of-00050.safetensors", "transformer.h.24.self_attention.dense.weight": "model-00013-of-00050.safetensors", "transformer.h.24.self_attention.dense.bias": "model-00013-of-00050.safetensors", "transformer.h.24.self_attention.query.weight": "model-00013-of-00050.safetensors", "transformer.h.24.self_attention.key_value.weight": "model-00013-of-00050.safetensors", "transformer.h.24.mlp.gate_proj.weight": "model-00013-of-00050.safetensors", "transformer.h.24.mlp.down_proj.weight": "model-00013-of-00050.safetensors", "transformer.h.24.mlp.down_proj.bias": "model-00013-of-00050.safetensors", "transformer.h.24.mlp.up_proj.weight": "model-00013-of-00050.safetensors", "transformer.h.25.input_layernorm.weight": "model-00014-of-00050.safetensors", "transformer.h.25.post_attention_layernorm.weight": "model-00014-of-00050.safetensors", "transformer.h.25.self_attention.dense.weight": "model-00014-of-00050.safetensors", "transformer.h.25.self_attention.dense.bias": "model-00014-of-00050.safetensors", "transformer.h.25.self_attention.query.weight": "model-00014-of-00050.safetensors", "transformer.h.25.self_attention.key_value.weight": "model-00014-of-00050.safetensors", "transformer.h.25.mlp.gate_proj.weight": "model-00014-of-00050.safetensors", "transformer.h.25.mlp.down_proj.weight": "model-00014-of-00050.safetensors", "transformer.h.25.mlp.down_proj.bias": "model-00014-of-00050.safetensors", "transformer.h.25.mlp.up_proj.weight": "model-00014-of-00050.safetensors", "transformer.h.26.input_layernorm.weight": "model-00014-of-00050.safetensors", "transformer.h.26.post_attention_layernorm.weight": "model-00014-of-00050.safetensors", "transformer.h.26.self_attention.dense.weight": "model-00014-of-00050.safetensors", "transformer.h.26.self_attention.dense.bias": "model-00014-of-00050.safetensors", "transformer.h.26.self_attention.query.weight": "model-00014-of-00050.safetensors", "transformer.h.26.self_attention.key_value.weight": "model-00014-of-00050.safetensors", "transformer.h.26.mlp.gate_proj.weight": "model-00014-of-00050.safetensors", "transformer.h.26.mlp.down_proj.weight": "model-00014-of-00050.safetensors", "transformer.h.26.mlp.down_proj.bias": "model-00014-of-00050.safetensors", "transformer.h.26.mlp.up_proj.weight": "model-00014-of-00050.safetensors", "transformer.h.27.input_layernorm.weight": "model-00015-of-00050.safetensors", "transformer.h.27.post_attention_layernorm.weight": "model-00015-of-00050.safetensors", "transformer.h.27.self_attention.dense.weight": "model-00015-of-00050.safetensors", "transformer.h.27.self_attention.dense.bias": "model-00015-of-00050.safetensors", "transformer.h.27.self_attention.query.weight": "model-00015-of-00050.safetensors", "transformer.h.27.self_attention.key_value.weight": "model-00015-of-00050.safetensors", "transformer.h.27.mlp.gate_proj.weight": "model-00015-of-00050.safetensors", "transformer.h.27.mlp.down_proj.weight": "model-00015-of-00050.safetensors", "transformer.h.27.mlp.down_proj.bias": "model-00015-of-00050.safetensors", "transformer.h.27.mlp.up_proj.weight": "model-00015-of-00050.safetensors", "transformer.h.28.input_layernorm.weight": "model-00015-of-00050.safetensors", "transformer.h.28.post_attention_layernorm.weight": "model-00015-of-00050.safetensors", "transformer.h.28.self_attention.dense.weight": "model-00015-of-00050.safetensors", "transformer.h.28.self_attention.dense.bias": "model-00015-of-00050.safetensors", "transformer.h.28.self_attention.query.weight": "model-00015-of-00050.safetensors", "transformer.h.28.self_attention.key_value.weight": "model-00015-of-00050.safetensors", "transformer.h.28.mlp.gate_proj.weight": "model-00015-of-00050.safetensors", "transformer.h.28.mlp.down_proj.weight": "model-00015-of-00050.safetensors", "transformer.h.28.mlp.down_proj.bias": "model-00015-of-00050.safetensors", "transformer.h.28.mlp.up_proj.weight": "model-00015-of-00050.safetensors", "transformer.h.29.input_layernorm.weight": "model-00016-of-00050.safetensors", "transformer.h.29.post_attention_layernorm.weight": "model-00016-of-00050.safetensors", "transformer.h.29.self_attention.dense.weight": "model-00016-of-00050.safetensors", "transformer.h.29.self_attention.dense.bias": "model-00016-of-00050.safetensors", "transformer.h.29.self_attention.query.weight": "model-00016-of-00050.safetensors", "transformer.h.29.self_attention.key_value.weight": "model-00016-of-00050.safetensors", "transformer.h.29.mlp.gate_proj.weight": "model-00016-of-00050.safetensors", "transformer.h.29.mlp.down_proj.weight": "model-00016-of-00050.safetensors", "transformer.h.29.mlp.down_proj.bias": "model-00016-of-00050.safetensors", "transformer.h.29.mlp.up_proj.weight": "model-00016-of-00050.safetensors", "transformer.h.30.input_layernorm.weight": "model-00016-of-00050.safetensors", "transformer.h.30.post_attention_layernorm.weight": "model-00016-of-00050.safetensors", "transformer.h.30.self_attention.dense.weight": "model-00016-of-00050.safetensors", "transformer.h.30.self_attention.dense.bias": "model-00016-of-00050.safetensors", "transformer.h.30.self_attention.query.weight": "model-00016-of-00050.safetensors", "transformer.h.30.self_attention.key_value.weight": "model-00016-of-00050.safetensors", "transformer.h.30.mlp.gate_proj.weight": "model-00016-of-00050.safetensors", "transformer.h.30.mlp.down_proj.weight": "model-00016-of-00050.safetensors", "transformer.h.30.mlp.down_proj.bias": "model-00016-of-00050.safetensors", "transformer.h.30.mlp.up_proj.weight": "model-00016-of-00050.safetensors", "transformer.h.31.input_layernorm.weight": "model-00017-of-00050.safetensors", "transformer.h.31.post_attention_layernorm.weight": "model-00017-of-00050.safetensors", "transformer.h.31.self_attention.dense.weight": "model-00017-of-00050.safetensors", "transformer.h.31.self_attention.dense.bias": "model-00017-of-00050.safetensors", "transformer.h.31.self_attention.query.weight": "model-00017-of-00050.safetensors", "transformer.h.31.self_attention.key_value.weight": "model-00017-of-00050.safetensors", "transformer.h.31.mlp.gate_proj.weight": "model-00017-of-00050.safetensors", "transformer.h.31.mlp.down_proj.weight": "model-00017-of-00050.safetensors", "transformer.h.31.mlp.down_proj.bias": "model-00017-of-00050.safetensors", "transformer.h.31.mlp.up_proj.weight": "model-00017-of-00050.safetensors", "transformer.h.32.input_layernorm.weight": "model-00017-of-00050.safetensors", "transformer.h.32.post_attention_layernorm.weight": "model-00017-of-00050.safetensors", "transformer.h.32.self_attention.dense.weight": "model-00017-of-00050.safetensors", "transformer.h.32.self_attention.dense.bias": "model-00017-of-00050.safetensors", "transformer.h.32.self_attention.query.weight": "model-00017-of-00050.safetensors", "transformer.h.32.self_attention.key_value.weight": "model-00017-of-00050.safetensors", "transformer.h.32.mlp.gate_proj.weight": "model-00017-of-00050.safetensors", "transformer.h.32.mlp.down_proj.weight": "model-00017-of-00050.safetensors", "transformer.h.32.mlp.down_proj.bias": "model-00017-of-00050.safetensors", "transformer.h.32.mlp.up_proj.weight": "model-00017-of-00050.safetensors", "transformer.h.33.input_layernorm.weight": "model-00018-of-00050.safetensors", "transformer.h.33.post_attention_layernorm.weight": "model-00018-of-00050.safetensors", "transformer.h.33.self_attention.dense.weight": "model-00018-of-00050.safetensors", "transformer.h.33.self_attention.dense.bias": "model-00018-of-00050.safetensors", "transformer.h.33.self_attention.query.weight": "model-00018-of-00050.safetensors", "transformer.h.33.self_attention.key_value.weight": "model-00018-of-00050.safetensors", "transformer.h.33.mlp.gate_proj.weight": "model-00018-of-00050.safetensors", "transformer.h.33.mlp.down_proj.weight": "model-00018-of-00050.safetensors", "transformer.h.33.mlp.down_proj.bias": "model-00018-of-00050.safetensors", "transformer.h.33.mlp.up_proj.weight": "model-00018-of-00050.safetensors", "transformer.h.34.input_layernorm.weight": "model-00018-of-00050.safetensors", "transformer.h.34.post_attention_layernorm.weight": "model-00018-of-00050.safetensors", "transformer.h.34.self_attention.dense.weight": "model-00018-of-00050.safetensors", "transformer.h.34.self_attention.dense.bias": "model-00018-of-00050.safetensors", "transformer.h.34.self_attention.query.weight": "model-00018-of-00050.safetensors", "transformer.h.34.self_attention.key_value.weight": "model-00018-of-00050.safetensors", "transformer.h.34.mlp.gate_proj.weight": "model-00018-of-00050.safetensors", "transformer.h.34.mlp.down_proj.weight": "model-00018-of-00050.safetensors", "transformer.h.34.mlp.down_proj.bias": "model-00018-of-00050.safetensors", "transformer.h.34.mlp.up_proj.weight": "model-00018-of-00050.safetensors", "transformer.h.35.input_layernorm.weight": "model-00019-of-00050.safetensors", "transformer.h.35.post_attention_layernorm.weight": "model-00019-of-00050.safetensors", "transformer.h.35.self_attention.dense.weight": "model-00019-of-00050.safetensors", "transformer.h.35.self_attention.dense.bias": "model-00019-of-00050.safetensors", "transformer.h.35.self_attention.query.weight": "model-00019-of-00050.safetensors", "transformer.h.35.self_attention.key_value.weight": "model-00019-of-00050.safetensors", "transformer.h.35.mlp.gate_proj.weight": "model-00019-of-00050.safetensors", "transformer.h.35.mlp.down_proj.weight": "model-00019-of-00050.safetensors", "transformer.h.35.mlp.down_proj.bias": "model-00019-of-00050.safetensors", "transformer.h.35.mlp.up_proj.weight": "model-00019-of-00050.safetensors", "transformer.h.36.input_layernorm.weight": "model-00019-of-00050.safetensors", "transformer.h.36.post_attention_layernorm.weight": "model-00019-of-00050.safetensors", "transformer.h.36.self_attention.dense.weight": "model-00019-of-00050.safetensors", "transformer.h.36.self_attention.dense.bias": "model-00019-of-00050.safetensors", "transformer.h.36.self_attention.query.weight": "model-00019-of-00050.safetensors", "transformer.h.36.self_attention.key_value.weight": "model-00019-of-00050.safetensors", "transformer.h.36.mlp.gate_proj.weight": "model-00019-of-00050.safetensors", "transformer.h.36.mlp.down_proj.weight": "model-00019-of-00050.safetensors", "transformer.h.36.mlp.down_proj.bias": "model-00019-of-00050.safetensors", "transformer.h.36.mlp.up_proj.weight": "model-00019-of-00050.safetensors", "transformer.h.37.input_layernorm.weight": "model-00020-of-00050.safetensors", "transformer.h.37.post_attention_layernorm.weight": "model-00020-of-00050.safetensors", "transformer.h.37.self_attention.dense.weight": "model-00020-of-00050.safetensors", "transformer.h.37.self_attention.dense.bias": "model-00020-of-00050.safetensors", "transformer.h.37.self_attention.query.weight": "model-00020-of-00050.safetensors", "transformer.h.37.self_attention.key_value.weight": "model-00020-of-00050.safetensors", "transformer.h.37.mlp.gate_proj.weight": "model-00020-of-00050.safetensors", "transformer.h.37.mlp.down_proj.weight": "model-00020-of-00050.safetensors", "transformer.h.37.mlp.down_proj.bias": "model-00020-of-00050.safetensors", "transformer.h.37.mlp.up_proj.weight": "model-00020-of-00050.safetensors", "transformer.h.38.input_layernorm.weight": "model-00020-of-00050.safetensors", "transformer.h.38.post_attention_layernorm.weight": "model-00020-of-00050.safetensors", "transformer.h.38.self_attention.dense.weight": "model-00020-of-00050.safetensors", "transformer.h.38.self_attention.dense.bias": "model-00020-of-00050.safetensors", "transformer.h.38.self_attention.query.weight": "model-00020-of-00050.safetensors", "transformer.h.38.self_attention.key_value.weight": "model-00020-of-00050.safetensors", "transformer.h.38.mlp.gate_proj.weight": "model-00020-of-00050.safetensors", "transformer.h.38.mlp.down_proj.weight": "model-00020-of-00050.safetensors", "transformer.h.38.mlp.down_proj.bias": "model-00020-of-00050.safetensors", "transformer.h.38.mlp.up_proj.weight": "model-00020-of-00050.safetensors", "transformer.h.39.input_layernorm.weight": "model-00021-of-00050.safetensors", "transformer.h.39.post_attention_layernorm.weight": "model-00021-of-00050.safetensors", "transformer.h.39.self_attention.dense.weight": "model-00021-of-00050.safetensors", "transformer.h.39.self_attention.dense.bias": "model-00021-of-00050.safetensors", "transformer.h.39.self_attention.query.weight": "model-00021-of-00050.safetensors", "transformer.h.39.self_attention.key_value.weight": "model-00021-of-00050.safetensors", "transformer.h.39.mlp.gate_proj.weight": "model-00021-of-00050.safetensors", "transformer.h.39.mlp.down_proj.weight": "model-00021-of-00050.safetensors", "transformer.h.39.mlp.down_proj.bias": "model-00021-of-00050.safetensors", "transformer.h.39.mlp.up_proj.weight": "model-00021-of-00050.safetensors", "transformer.h.40.input_layernorm.weight": "model-00021-of-00050.safetensors", "transformer.h.40.post_attention_layernorm.weight": "model-00021-of-00050.safetensors", "transformer.h.40.self_attention.dense.weight": "model-00021-of-00050.safetensors", "transformer.h.40.self_attention.dense.bias": "model-00021-of-00050.safetensors", "transformer.h.40.self_attention.query.weight": "model-00021-of-00050.safetensors", "transformer.h.40.self_attention.key_value.weight": "model-00021-of-00050.safetensors", "transformer.h.40.mlp.gate_proj.weight": "model-00021-of-00050.safetensors", "transformer.h.40.mlp.down_proj.weight": "model-00021-of-00050.safetensors", "transformer.h.40.mlp.down_proj.bias": "model-00021-of-00050.safetensors", "transformer.h.40.mlp.up_proj.weight": "model-00021-of-00050.safetensors", "transformer.h.41.input_layernorm.weight": "model-00022-of-00050.safetensors", "transformer.h.41.post_attention_layernorm.weight": "model-00022-of-00050.safetensors", "transformer.h.41.self_attention.dense.weight": "model-00022-of-00050.safetensors", "transformer.h.41.self_attention.dense.bias": "model-00022-of-00050.safetensors", "transformer.h.41.self_attention.query.weight": "model-00022-of-00050.safetensors", "transformer.h.41.self_attention.key_value.weight": "model-00022-of-00050.safetensors", "transformer.h.41.mlp.gate_proj.weight": "model-00022-of-00050.safetensors", "transformer.h.41.mlp.down_proj.weight": "model-00022-of-00050.safetensors", "transformer.h.41.mlp.down_proj.bias": "model-00022-of-00050.safetensors", "transformer.h.41.mlp.up_proj.weight": "model-00022-of-00050.safetensors", "transformer.h.42.input_layernorm.weight": "model-00022-of-00050.safetensors", "transformer.h.42.post_attention_layernorm.weight": "model-00022-of-00050.safetensors", "transformer.h.42.self_attention.dense.weight": "model-00022-of-00050.safetensors", "transformer.h.42.self_attention.dense.bias": "model-00022-of-00050.safetensors", "transformer.h.42.self_attention.query.weight": "model-00022-of-00050.safetensors", "transformer.h.42.self_attention.key_value.weight": "model-00022-of-00050.safetensors", "transformer.h.42.mlp.gate_proj.weight": "model-00022-of-00050.safetensors", "transformer.h.42.mlp.down_proj.weight": "model-00022-of-00050.safetensors", "transformer.h.42.mlp.down_proj.bias": "model-00022-of-00050.safetensors", "transformer.h.42.mlp.up_proj.weight": "model-00022-of-00050.safetensors", "transformer.h.43.input_layernorm.weight": "model-00023-of-00050.safetensors", "transformer.h.43.post_attention_layernorm.weight": "model-00023-of-00050.safetensors", "transformer.h.43.self_attention.dense.weight": "model-00023-of-00050.safetensors", "transformer.h.43.self_attention.dense.bias": "model-00023-of-00050.safetensors", "transformer.h.43.self_attention.query.weight": "model-00023-of-00050.safetensors", "transformer.h.43.self_attention.key_value.weight": "model-00023-of-00050.safetensors", "transformer.h.43.mlp.gate_proj.weight": "model-00023-of-00050.safetensors", "transformer.h.43.mlp.down_proj.weight": "model-00023-of-00050.safetensors", "transformer.h.43.mlp.down_proj.bias": "model-00023-of-00050.safetensors", "transformer.h.43.mlp.up_proj.weight": "model-00023-of-00050.safetensors", "transformer.h.44.input_layernorm.weight": "model-00023-of-00050.safetensors", "transformer.h.44.post_attention_layernorm.weight": "model-00023-of-00050.safetensors", "transformer.h.44.self_attention.dense.weight": "model-00023-of-00050.safetensors", "transformer.h.44.self_attention.dense.bias": "model-00023-of-00050.safetensors", "transformer.h.44.self_attention.query.weight": "model-00023-of-00050.safetensors", "transformer.h.44.self_attention.key_value.weight": "model-00023-of-00050.safetensors", "transformer.h.44.mlp.gate_proj.weight": "model-00023-of-00050.safetensors", "transformer.h.44.mlp.down_proj.weight": "model-00023-of-00050.safetensors", "transformer.h.44.mlp.down_proj.bias": "model-00023-of-00050.safetensors", "transformer.h.44.mlp.up_proj.weight": "model-00023-of-00050.safetensors", "transformer.h.45.input_layernorm.weight": "model-00024-of-00050.safetensors", "transformer.h.45.post_attention_layernorm.weight": "model-00024-of-00050.safetensors", "transformer.h.45.self_attention.dense.weight": "model-00024-of-00050.safetensors", "transformer.h.45.self_attention.dense.bias": "model-00024-of-00050.safetensors", "transformer.h.45.self_attention.query.weight": "model-00024-of-00050.safetensors", "transformer.h.45.self_attention.key_value.weight": "model-00024-of-00050.safetensors", "transformer.h.45.mlp.gate_proj.weight": "model-00024-of-00050.safetensors", "transformer.h.45.mlp.down_proj.weight": "model-00024-of-00050.safetensors", "transformer.h.45.mlp.down_proj.bias": "model-00024-of-00050.safetensors", "transformer.h.45.mlp.up_proj.weight": "model-00024-of-00050.safetensors", "transformer.h.46.input_layernorm.weight": "model-00024-of-00050.safetensors", "transformer.h.46.post_attention_layernorm.weight": "model-00024-of-00050.safetensors", "transformer.h.46.self_attention.dense.weight": "model-00024-of-00050.safetensors", "transformer.h.46.self_attention.dense.bias": "model-00024-of-00050.safetensors", "transformer.h.46.self_attention.query.weight": "model-00024-of-00050.safetensors", "transformer.h.46.self_attention.key_value.weight": "model-00024-of-00050.safetensors", "transformer.h.46.mlp.gate_proj.weight": "model-00024-of-00050.safetensors", "transformer.h.46.mlp.down_proj.weight": "model-00024-of-00050.safetensors", "transformer.h.46.mlp.down_proj.bias": "model-00024-of-00050.safetensors", "transformer.h.46.mlp.up_proj.weight": "model-00024-of-00050.safetensors", "transformer.h.47.input_layernorm.weight": "model-00025-of-00050.safetensors", "transformer.h.47.post_attention_layernorm.weight": "model-00025-of-00050.safetensors", "transformer.h.47.self_attention.dense.weight": "model-00025-of-00050.safetensors", "transformer.h.47.self_attention.dense.bias": "model-00025-of-00050.safetensors", "transformer.h.47.self_attention.query.weight": "model-00025-of-00050.safetensors", "transformer.h.47.self_attention.key_value.weight": "model-00025-of-00050.safetensors", "transformer.h.47.mlp.gate_proj.weight": "model-00025-of-00050.safetensors", "transformer.h.47.mlp.down_proj.weight": "model-00025-of-00050.safetensors", "transformer.h.47.mlp.down_proj.bias": "model-00025-of-00050.safetensors", "transformer.h.47.mlp.up_proj.weight": "model-00025-of-00050.safetensors", "transformer.h.48.input_layernorm.weight": "model-00025-of-00050.safetensors", "transformer.h.48.post_attention_layernorm.weight": "model-00025-of-00050.safetensors", "transformer.h.48.self_attention.dense.weight": "model-00025-of-00050.safetensors", "transformer.h.48.self_attention.dense.bias": "model-00025-of-00050.safetensors", "transformer.h.48.self_attention.query.weight": "model-00025-of-00050.safetensors", "transformer.h.48.self_attention.key_value.weight": "model-00025-of-00050.safetensors", "transformer.h.48.mlp.gate_proj.weight": "model-00025-of-00050.safetensors", "transformer.h.48.mlp.down_proj.weight": "model-00025-of-00050.safetensors", "transformer.h.48.mlp.down_proj.bias": "model-00025-of-00050.safetensors", "transformer.h.48.mlp.up_proj.weight": "model-00025-of-00050.safetensors", "transformer.h.49.input_layernorm.weight": "model-00026-of-00050.safetensors", "transformer.h.49.post_attention_layernorm.weight": "model-00026-of-00050.safetensors", "transformer.h.49.self_attention.dense.weight": "model-00026-of-00050.safetensors", "transformer.h.49.self_attention.dense.bias": "model-00026-of-00050.safetensors", "transformer.h.49.self_attention.query.weight": "model-00026-of-00050.safetensors", "transformer.h.49.self_attention.key_value.weight": "model-00026-of-00050.safetensors", "transformer.h.49.mlp.gate_proj.weight": "model-00026-of-00050.safetensors", "transformer.h.49.mlp.down_proj.weight": "model-00026-of-00050.safetensors", "transformer.h.49.mlp.down_proj.bias": "model-00026-of-00050.safetensors", "transformer.h.49.mlp.up_proj.weight": "model-00026-of-00050.safetensors", "transformer.h.50.input_layernorm.weight": "model-00026-of-00050.safetensors", "transformer.h.50.post_attention_layernorm.weight": "model-00026-of-00050.safetensors", "transformer.h.50.self_attention.dense.weight": "model-00026-of-00050.safetensors", "transformer.h.50.self_attention.dense.bias": "model-00026-of-00050.safetensors", "transformer.h.50.self_attention.query.weight": "model-00026-of-00050.safetensors", "transformer.h.50.self_attention.key_value.weight": "model-00026-of-00050.safetensors", "transformer.h.50.mlp.gate_proj.weight": "model-00026-of-00050.safetensors", "transformer.h.50.mlp.down_proj.weight": "model-00026-of-00050.safetensors", "transformer.h.50.mlp.down_proj.bias": "model-00026-of-00050.safetensors", "transformer.h.50.mlp.up_proj.weight": "model-00026-of-00050.safetensors", "transformer.h.51.input_layernorm.weight": "model-00027-of-00050.safetensors", "transformer.h.51.post_attention_layernorm.weight": "model-00027-of-00050.safetensors", "transformer.h.51.self_attention.dense.weight": "model-00027-of-00050.safetensors", "transformer.h.51.self_attention.dense.bias": "model-00027-of-00050.safetensors", "transformer.h.51.self_attention.query.weight": "model-00027-of-00050.safetensors", "transformer.h.51.self_attention.key_value.weight": "model-00027-of-00050.safetensors", "transformer.h.51.mlp.gate_proj.weight": "model-00027-of-00050.safetensors", "transformer.h.51.mlp.down_proj.weight": "model-00027-of-00050.safetensors", "transformer.h.51.mlp.down_proj.bias": "model-00027-of-00050.safetensors", "transformer.h.51.mlp.up_proj.weight": "model-00027-of-00050.safetensors", "transformer.h.52.input_layernorm.weight": "model-00027-of-00050.safetensors", "transformer.h.52.post_attention_layernorm.weight": "model-00027-of-00050.safetensors", "transformer.h.52.self_attention.dense.weight": "model-00027-of-00050.safetensors", "transformer.h.52.self_attention.dense.bias": "model-00027-of-00050.safetensors", "transformer.h.52.self_attention.query.weight": "model-00027-of-00050.safetensors", "transformer.h.52.self_attention.key_value.weight": "model-00027-of-00050.safetensors", "transformer.h.52.mlp.gate_proj.weight": "model-00027-of-00050.safetensors", "transformer.h.52.mlp.down_proj.weight": "model-00027-of-00050.safetensors", "transformer.h.52.mlp.down_proj.bias": "model-00027-of-00050.safetensors", "transformer.h.52.mlp.up_proj.weight": "model-00027-of-00050.safetensors", "transformer.h.53.input_layernorm.weight": "model-00028-of-00050.safetensors", "transformer.h.53.post_attention_layernorm.weight": "model-00028-of-00050.safetensors", "transformer.h.53.self_attention.dense.weight": "model-00028-of-00050.safetensors", "transformer.h.53.self_attention.dense.bias": "model-00028-of-00050.safetensors", "transformer.h.53.self_attention.query.weight": "model-00028-of-00050.safetensors", "transformer.h.53.self_attention.key_value.weight": "model-00028-of-00050.safetensors", "transformer.h.53.mlp.gate_proj.weight": "model-00028-of-00050.safetensors", "transformer.h.53.mlp.down_proj.weight": "model-00028-of-00050.safetensors", "transformer.h.53.mlp.down_proj.bias": "model-00028-of-00050.safetensors", "transformer.h.53.mlp.up_proj.weight": "model-00028-of-00050.safetensors", "transformer.h.54.input_layernorm.weight": "model-00028-of-00050.safetensors", "transformer.h.54.post_attention_layernorm.weight": "model-00028-of-00050.safetensors", "transformer.h.54.self_attention.dense.weight": "model-00028-of-00050.safetensors", "transformer.h.54.self_attention.dense.bias": "model-00028-of-00050.safetensors", "transformer.h.54.self_attention.query.weight": "model-00028-of-00050.safetensors", "transformer.h.54.self_attention.key_value.weight": "model-00028-of-00050.safetensors", "transformer.h.54.mlp.gate_proj.weight": "model-00028-of-00050.safetensors", "transformer.h.54.mlp.down_proj.weight": "model-00028-of-00050.safetensors", "transformer.h.54.mlp.down_proj.bias": "model-00028-of-00050.safetensors", "transformer.h.54.mlp.up_proj.weight": "model-00028-of-00050.safetensors", "transformer.h.55.input_layernorm.weight": "model-00029-of-00050.safetensors", "transformer.h.55.post_attention_layernorm.weight": "model-00029-of-00050.safetensors", "transformer.h.55.self_attention.dense.weight": "model-00029-of-00050.safetensors", "transformer.h.55.self_attention.dense.bias": "model-00029-of-00050.safetensors", "transformer.h.55.self_attention.query.weight": "model-00029-of-00050.safetensors", "transformer.h.55.self_attention.key_value.weight": "model-00029-of-00050.safetensors", "transformer.h.55.mlp.gate_proj.weight": "model-00029-of-00050.safetensors", "transformer.h.55.mlp.down_proj.weight": "model-00029-of-00050.safetensors", "transformer.h.55.mlp.down_proj.bias": "model-00029-of-00050.safetensors", "transformer.h.55.mlp.up_proj.weight": "model-00029-of-00050.safetensors", "transformer.h.56.input_layernorm.weight": "model-00029-of-00050.safetensors", "transformer.h.56.post_attention_layernorm.weight": "model-00029-of-00050.safetensors", "transformer.h.56.self_attention.dense.weight": "model-00029-of-00050.safetensors", "transformer.h.56.self_attention.dense.bias": "model-00029-of-00050.safetensors", "transformer.h.56.self_attention.query.weight": "model-00029-of-00050.safetensors", "transformer.h.56.self_attention.key_value.weight": "model-00029-of-00050.safetensors", "transformer.h.56.mlp.gate_proj.weight": "model-00029-of-00050.safetensors", "transformer.h.56.mlp.down_proj.weight": "model-00029-of-00050.safetensors", "transformer.h.56.mlp.down_proj.bias": "model-00029-of-00050.safetensors", "transformer.h.56.mlp.up_proj.weight": "model-00029-of-00050.safetensors", "transformer.h.57.input_layernorm.weight": "model-00030-of-00050.safetensors", "transformer.h.57.post_attention_layernorm.weight": "model-00030-of-00050.safetensors", "transformer.h.57.self_attention.dense.weight": "model-00030-of-00050.safetensors", "transformer.h.57.self_attention.dense.bias": "model-00030-of-00050.safetensors", "transformer.h.57.self_attention.query.weight": "model-00030-of-00050.safetensors", "transformer.h.57.self_attention.key_value.weight": "model-00030-of-00050.safetensors", "transformer.h.57.mlp.gate_proj.weight": "model-00030-of-00050.safetensors", "transformer.h.57.mlp.down_proj.weight": "model-00030-of-00050.safetensors", "transformer.h.57.mlp.down_proj.bias": "model-00030-of-00050.safetensors", "transformer.h.57.mlp.up_proj.weight": "model-00030-of-00050.safetensors", "transformer.h.58.input_layernorm.weight": "model-00030-of-00050.safetensors", "transformer.h.58.post_attention_layernorm.weight": "model-00030-of-00050.safetensors", "transformer.h.58.self_attention.dense.weight": "model-00030-of-00050.safetensors", "transformer.h.58.self_attention.dense.bias": "model-00030-of-00050.safetensors", "transformer.h.58.self_attention.query.weight": "model-00030-of-00050.safetensors", "transformer.h.58.self_attention.key_value.weight": "model-00030-of-00050.safetensors", "transformer.h.58.mlp.gate_proj.weight": "model-00030-of-00050.safetensors", "transformer.h.58.mlp.down_proj.weight": "model-00030-of-00050.safetensors", "transformer.h.58.mlp.down_proj.bias": "model-00030-of-00050.safetensors", "transformer.h.58.mlp.up_proj.weight": "model-00030-of-00050.safetensors", "transformer.h.59.input_layernorm.weight": "model-00031-of-00050.safetensors", "transformer.h.59.post_attention_layernorm.weight": "model-00031-of-00050.safetensors", "transformer.h.59.self_attention.dense.weight": "model-00031-of-00050.safetensors", "transformer.h.59.self_attention.dense.bias": "model-00031-of-00050.safetensors", "transformer.h.59.self_attention.query.weight": "model-00031-of-00050.safetensors", "transformer.h.59.self_attention.key_value.weight": "model-00031-of-00050.safetensors", "transformer.h.59.mlp.gate_proj.weight": "model-00031-of-00050.safetensors", "transformer.h.59.mlp.down_proj.weight": "model-00031-of-00050.safetensors", "transformer.h.59.mlp.down_proj.bias": "model-00031-of-00050.safetensors", "transformer.h.59.mlp.up_proj.weight": "model-00031-of-00050.safetensors", "transformer.h.60.input_layernorm.weight": "model-00031-of-00050.safetensors", "transformer.h.60.post_attention_layernorm.weight": "model-00031-of-00050.safetensors", "transformer.h.60.self_attention.dense.weight": "model-00031-of-00050.safetensors", "transformer.h.60.self_attention.dense.bias": "model-00031-of-00050.safetensors", "transformer.h.60.self_attention.query.weight": "model-00031-of-00050.safetensors", "transformer.h.60.self_attention.key_value.weight": "model-00031-of-00050.safetensors", "transformer.h.60.mlp.gate_proj.weight": "model-00031-of-00050.safetensors", "transformer.h.60.mlp.down_proj.weight": "model-00031-of-00050.safetensors", "transformer.h.60.mlp.down_proj.bias": "model-00031-of-00050.safetensors", "transformer.h.60.mlp.up_proj.weight": "model-00031-of-00050.safetensors", "transformer.h.61.input_layernorm.weight": "model-00032-of-00050.safetensors", "transformer.h.61.post_attention_layernorm.weight": "model-00032-of-00050.safetensors", "transformer.h.61.self_attention.dense.weight": "model-00032-of-00050.safetensors", "transformer.h.61.self_attention.dense.bias": "model-00032-of-00050.safetensors", "transformer.h.61.self_attention.query.weight": "model-00032-of-00050.safetensors", "transformer.h.61.self_attention.key_value.weight": "model-00032-of-00050.safetensors", "transformer.h.61.mlp.gate_proj.weight": "model-00032-of-00050.safetensors", "transformer.h.61.mlp.down_proj.weight": "model-00032-of-00050.safetensors", "transformer.h.61.mlp.down_proj.bias": "model-00032-of-00050.safetensors", "transformer.h.61.mlp.up_proj.weight": "model-00032-of-00050.safetensors", "transformer.h.62.input_layernorm.weight": "model-00032-of-00050.safetensors", "transformer.h.62.post_attention_layernorm.weight": "model-00032-of-00050.safetensors", "transformer.h.62.self_attention.dense.weight": "model-00032-of-00050.safetensors", "transformer.h.62.self_attention.dense.bias": "model-00032-of-00050.safetensors", "transformer.h.62.self_attention.query.weight": "model-00032-of-00050.safetensors", "transformer.h.62.self_attention.key_value.weight": "model-00032-of-00050.safetensors", "transformer.h.62.mlp.gate_proj.weight": "model-00032-of-00050.safetensors", "transformer.h.62.mlp.down_proj.weight": "model-00032-of-00050.safetensors", "transformer.h.62.mlp.down_proj.bias": "model-00032-of-00050.safetensors", "transformer.h.62.mlp.up_proj.weight": "model-00032-of-00050.safetensors", "transformer.h.63.input_layernorm.weight": "model-00033-of-00050.safetensors", "transformer.h.63.post_attention_layernorm.weight": "model-00033-of-00050.safetensors", "transformer.h.63.self_attention.dense.weight": "model-00033-of-00050.safetensors", "transformer.h.63.self_attention.dense.bias": "model-00033-of-00050.safetensors", "transformer.h.63.self_attention.query.weight": "model-00033-of-00050.safetensors", "transformer.h.63.self_attention.key_value.weight": "model-00033-of-00050.safetensors", "transformer.h.63.mlp.gate_proj.weight": "model-00033-of-00050.safetensors", "transformer.h.63.mlp.down_proj.weight": "model-00033-of-00050.safetensors", "transformer.h.63.mlp.down_proj.bias": "model-00033-of-00050.safetensors", "transformer.h.63.mlp.up_proj.weight": "model-00033-of-00050.safetensors", "transformer.h.64.input_layernorm.weight": "model-00033-of-00050.safetensors", "transformer.h.64.post_attention_layernorm.weight": "model-00033-of-00050.safetensors", "transformer.h.64.self_attention.dense.weight": "model-00033-of-00050.safetensors", "transformer.h.64.self_attention.dense.bias": "model-00033-of-00050.safetensors", "transformer.h.64.self_attention.query.weight": "model-00033-of-00050.safetensors", "transformer.h.64.self_attention.key_value.weight": "model-00033-of-00050.safetensors", "transformer.h.64.mlp.gate_proj.weight": "model-00033-of-00050.safetensors", "transformer.h.64.mlp.down_proj.weight": "model-00033-of-00050.safetensors", "transformer.h.64.mlp.down_proj.bias": "model-00033-of-00050.safetensors", "transformer.h.64.mlp.up_proj.weight": "model-00033-of-00050.safetensors", "transformer.h.65.input_layernorm.weight": "model-00034-of-00050.safetensors", "transformer.h.65.post_attention_layernorm.weight": "model-00034-of-00050.safetensors", "transformer.h.65.self_attention.dense.weight": "model-00034-of-00050.safetensors", "transformer.h.65.self_attention.dense.bias": "model-00034-of-00050.safetensors", "transformer.h.65.self_attention.query.weight": "model-00034-of-00050.safetensors", "transformer.h.65.self_attention.key_value.weight": "model-00034-of-00050.safetensors", "transformer.h.65.mlp.gate_proj.weight": "model-00034-of-00050.safetensors", "transformer.h.65.mlp.down_proj.weight": "model-00034-of-00050.safetensors", "transformer.h.65.mlp.down_proj.bias": "model-00034-of-00050.safetensors", "transformer.h.65.mlp.up_proj.weight": "model-00034-of-00050.safetensors", "transformer.h.66.input_layernorm.weight": "model-00034-of-00050.safetensors", "transformer.h.66.post_attention_layernorm.weight": "model-00034-of-00050.safetensors", "transformer.h.66.self_attention.dense.weight": "model-00034-of-00050.safetensors", "transformer.h.66.self_attention.dense.bias": "model-00034-of-00050.safetensors", "transformer.h.66.self_attention.query.weight": "model-00034-of-00050.safetensors", "transformer.h.66.self_attention.key_value.weight": "model-00034-of-00050.safetensors", "transformer.h.66.mlp.gate_proj.weight": "model-00034-of-00050.safetensors", "transformer.h.66.mlp.down_proj.weight": "model-00034-of-00050.safetensors", "transformer.h.66.mlp.down_proj.bias": "model-00034-of-00050.safetensors", "transformer.h.66.mlp.up_proj.weight": "model-00034-of-00050.safetensors", "transformer.h.67.input_layernorm.weight": "model-00035-of-00050.safetensors", "transformer.h.67.post_attention_layernorm.weight": "model-00035-of-00050.safetensors", "transformer.h.67.self_attention.dense.weight": "model-00035-of-00050.safetensors", "transformer.h.67.self_attention.dense.bias": "model-00035-of-00050.safetensors", "transformer.h.67.self_attention.query.weight": "model-00035-of-00050.safetensors", "transformer.h.67.self_attention.key_value.weight": "model-00035-of-00050.safetensors", "transformer.h.67.mlp.gate_proj.weight": "model-00035-of-00050.safetensors", "transformer.h.67.mlp.down_proj.weight": "model-00035-of-00050.safetensors", "transformer.h.67.mlp.down_proj.bias": "model-00035-of-00050.safetensors", "transformer.h.67.mlp.up_proj.weight": "model-00035-of-00050.safetensors", "transformer.h.68.input_layernorm.weight": "model-00035-of-00050.safetensors", "transformer.h.68.post_attention_layernorm.weight": "model-00035-of-00050.safetensors", "transformer.h.68.self_attention.dense.weight": "model-00035-of-00050.safetensors", "transformer.h.68.self_attention.dense.bias": "model-00035-of-00050.safetensors", "transformer.h.68.self_attention.query.weight": "model-00035-of-00050.safetensors", "transformer.h.68.self_attention.key_value.weight": "model-00035-of-00050.safetensors", "transformer.h.68.mlp.gate_proj.weight": "model-00035-of-00050.safetensors", "transformer.h.68.mlp.down_proj.weight": "model-00035-of-00050.safetensors", "transformer.h.68.mlp.down_proj.bias": "model-00035-of-00050.safetensors", "transformer.h.68.mlp.up_proj.weight": "model-00035-of-00050.safetensors", "transformer.h.69.input_layernorm.weight": "model-00036-of-00050.safetensors", "transformer.h.69.post_attention_layernorm.weight": "model-00036-of-00050.safetensors", "transformer.h.69.self_attention.dense.weight": "model-00036-of-00050.safetensors", "transformer.h.69.self_attention.dense.bias": "model-00036-of-00050.safetensors", "transformer.h.69.self_attention.query.weight": "model-00036-of-00050.safetensors", "transformer.h.69.self_attention.key_value.weight": "model-00036-of-00050.safetensors", "transformer.h.69.mlp.gate_proj.weight": "model-00036-of-00050.safetensors", "transformer.h.69.mlp.down_proj.weight": "model-00036-of-00050.safetensors", "transformer.h.69.mlp.down_proj.bias": "model-00036-of-00050.safetensors", "transformer.h.69.mlp.up_proj.weight": "model-00036-of-00050.safetensors", "transformer.h.70.input_layernorm.weight": "model-00036-of-00050.safetensors", "transformer.h.70.post_attention_layernorm.weight": "model-00036-of-00050.safetensors", "transformer.h.70.self_attention.dense.weight": "model-00036-of-00050.safetensors", "transformer.h.70.self_attention.dense.bias": "model-00036-of-00050.safetensors", "transformer.h.70.self_attention.query.weight": "model-00036-of-00050.safetensors", "transformer.h.70.self_attention.key_value.weight": "model-00036-of-00050.safetensors", "transformer.h.70.mlp.gate_proj.weight": "model-00036-of-00050.safetensors", "transformer.h.70.mlp.down_proj.weight": "model-00036-of-00050.safetensors", "transformer.h.70.mlp.down_proj.bias": "model-00036-of-00050.safetensors", "transformer.h.70.mlp.up_proj.weight": "model-00036-of-00050.safetensors", "transformer.h.71.input_layernorm.weight": "model-00037-of-00050.safetensors", "transformer.h.71.post_attention_layernorm.weight": "model-00037-of-00050.safetensors", "transformer.h.71.self_attention.dense.weight": "model-00037-of-00050.safetensors", "transformer.h.71.self_attention.dense.bias": "model-00037-of-00050.safetensors", "transformer.h.71.self_attention.query.weight": "model-00037-of-00050.safetensors", "transformer.h.71.self_attention.key_value.weight": "model-00037-of-00050.safetensors", "transformer.h.71.mlp.gate_proj.weight": "model-00037-of-00050.safetensors", "transformer.h.71.mlp.down_proj.weight": "model-00037-of-00050.safetensors", "transformer.h.71.mlp.down_proj.bias": "model-00037-of-00050.safetensors", "transformer.h.71.mlp.up_proj.weight": "model-00037-of-00050.safetensors", "transformer.h.72.input_layernorm.weight": "model-00037-of-00050.safetensors", "transformer.h.72.post_attention_layernorm.weight": "model-00037-of-00050.safetensors", "transformer.h.72.self_attention.dense.weight": "model-00037-of-00050.safetensors", "transformer.h.72.self_attention.dense.bias": "model-00037-of-00050.safetensors", "transformer.h.72.self_attention.query.weight": "model-00037-of-00050.safetensors", "transformer.h.72.self_attention.key_value.weight": "model-00037-of-00050.safetensors", "transformer.h.72.mlp.gate_proj.weight": "model-00037-of-00050.safetensors", "transformer.h.72.mlp.down_proj.weight": "model-00037-of-00050.safetensors", "transformer.h.72.mlp.down_proj.bias": "model-00037-of-00050.safetensors", "transformer.h.72.mlp.up_proj.weight": "model-00037-of-00050.safetensors", "transformer.h.73.input_layernorm.weight": "model-00038-of-00050.safetensors", "transformer.h.73.post_attention_layernorm.weight": "model-00038-of-00050.safetensors", "transformer.h.73.self_attention.dense.weight": "model-00038-of-00050.safetensors", "transformer.h.73.self_attention.dense.bias": "model-00038-of-00050.safetensors", "transformer.h.73.self_attention.query.weight": "model-00038-of-00050.safetensors", "transformer.h.73.self_attention.key_value.weight": "model-00038-of-00050.safetensors", "transformer.h.73.mlp.gate_proj.weight": "model-00038-of-00050.safetensors", "transformer.h.73.mlp.down_proj.weight": "model-00038-of-00050.safetensors", "transformer.h.73.mlp.down_proj.bias": "model-00038-of-00050.safetensors", "transformer.h.73.mlp.up_proj.weight": "model-00038-of-00050.safetensors", "transformer.h.74.input_layernorm.weight": "model-00038-of-00050.safetensors", "transformer.h.74.post_attention_layernorm.weight": "model-00038-of-00050.safetensors", "transformer.h.74.self_attention.dense.weight": "model-00038-of-00050.safetensors", "transformer.h.74.self_attention.dense.bias": "model-00038-of-00050.safetensors", "transformer.h.74.self_attention.query.weight": "model-00038-of-00050.safetensors", "transformer.h.74.self_attention.key_value.weight": "model-00038-of-00050.safetensors", "transformer.h.74.mlp.gate_proj.weight": "model-00038-of-00050.safetensors", "transformer.h.74.mlp.down_proj.weight": "model-00038-of-00050.safetensors", "transformer.h.74.mlp.down_proj.bias": "model-00038-of-00050.safetensors", "transformer.h.74.mlp.up_proj.weight": "model-00038-of-00050.safetensors", "transformer.h.75.input_layernorm.weight": "model-00039-of-00050.safetensors", "transformer.h.75.post_attention_layernorm.weight": "model-00039-of-00050.safetensors", "transformer.h.75.self_attention.dense.weight": "model-00039-of-00050.safetensors", "transformer.h.75.self_attention.dense.bias": "model-00039-of-00050.safetensors", "transformer.h.75.self_attention.query.weight": "model-00039-of-00050.safetensors", "transformer.h.75.self_attention.key_value.weight": "model-00039-of-00050.safetensors", "transformer.h.75.mlp.gate_proj.weight": "model-00039-of-00050.safetensors", "transformer.h.75.mlp.down_proj.weight": "model-00039-of-00050.safetensors", "transformer.h.75.mlp.down_proj.bias": "model-00039-of-00050.safetensors", "transformer.h.75.mlp.up_proj.weight": "model-00039-of-00050.safetensors", "transformer.h.76.input_layernorm.weight": "model-00039-of-00050.safetensors", "transformer.h.76.post_attention_layernorm.weight": "model-00039-of-00050.safetensors", "transformer.h.76.self_attention.dense.weight": "model-00039-of-00050.safetensors", "transformer.h.76.self_attention.dense.bias": "model-00039-of-00050.safetensors", "transformer.h.76.self_attention.query.weight": "model-00039-of-00050.safetensors", "transformer.h.76.self_attention.key_value.weight": "model-00039-of-00050.safetensors", "transformer.h.76.mlp.gate_proj.weight": "model-00039-of-00050.safetensors", "transformer.h.76.mlp.down_proj.weight": "model-00039-of-00050.safetensors", "transformer.h.76.mlp.down_proj.bias": "model-00039-of-00050.safetensors", "transformer.h.76.mlp.up_proj.weight": "model-00039-of-00050.safetensors", "transformer.h.77.input_layernorm.weight": "model-00040-of-00050.safetensors", "transformer.h.77.post_attention_layernorm.weight": "model-00040-of-00050.safetensors", "transformer.h.77.self_attention.dense.weight": "model-00040-of-00050.safetensors", "transformer.h.77.self_attention.dense.bias": "model-00040-of-00050.safetensors", "transformer.h.77.self_attention.query.weight": "model-00040-of-00050.safetensors", "transformer.h.77.self_attention.key_value.weight": "model-00040-of-00050.safetensors", "transformer.h.77.mlp.gate_proj.weight": "model-00040-of-00050.safetensors", "transformer.h.77.mlp.down_proj.weight": "model-00040-of-00050.safetensors", "transformer.h.77.mlp.down_proj.bias": "model-00040-of-00050.safetensors", "transformer.h.77.mlp.up_proj.weight": "model-00040-of-00050.safetensors", "transformer.h.78.input_layernorm.weight": "model-00040-of-00050.safetensors", "transformer.h.78.post_attention_layernorm.weight": "model-00040-of-00050.safetensors", "transformer.h.78.self_attention.dense.weight": "model-00040-of-00050.safetensors", "transformer.h.78.self_attention.dense.bias": "model-00040-of-00050.safetensors", "transformer.h.78.self_attention.query.weight": "model-00040-of-00050.safetensors", "transformer.h.78.self_attention.key_value.weight": "model-00040-of-00050.safetensors", "transformer.h.78.mlp.gate_proj.weight": "model-00040-of-00050.safetensors", "transformer.h.78.mlp.down_proj.weight": "model-00040-of-00050.safetensors", "transformer.h.78.mlp.down_proj.bias": "model-00040-of-00050.safetensors", "transformer.h.78.mlp.up_proj.weight": "model-00040-of-00050.safetensors", "transformer.h.79.input_layernorm.weight": "model-00041-of-00050.safetensors", "transformer.h.79.post_attention_layernorm.weight": "model-00041-of-00050.safetensors", "transformer.h.79.self_attention.dense.weight": "model-00041-of-00050.safetensors", "transformer.h.79.self_attention.dense.bias": "model-00041-of-00050.safetensors", "transformer.h.79.self_attention.query.weight": "model-00041-of-00050.safetensors", "transformer.h.79.self_attention.key_value.weight": "model-00041-of-00050.safetensors", "transformer.h.79.mlp.gate_proj.weight": "model-00041-of-00050.safetensors", "transformer.h.79.mlp.down_proj.weight": "model-00041-of-00050.safetensors", "transformer.h.79.mlp.down_proj.bias": "model-00041-of-00050.safetensors", "transformer.h.79.mlp.up_proj.weight": "model-00041-of-00050.safetensors", "transformer.h.80.input_layernorm.weight": "model-00041-of-00050.safetensors", "transformer.h.80.post_attention_layernorm.weight": "model-00041-of-00050.safetensors", "transformer.h.80.self_attention.dense.weight": "model-00041-of-00050.safetensors", "transformer.h.80.self_attention.dense.bias": "model-00041-of-00050.safetensors", "transformer.h.80.self_attention.query.weight": "model-00041-of-00050.safetensors", "transformer.h.80.self_attention.key_value.weight": "model-00041-of-00050.safetensors", "transformer.h.80.mlp.gate_proj.weight": "model-00041-of-00050.safetensors", "transformer.h.80.mlp.down_proj.weight": "model-00041-of-00050.safetensors", "transformer.h.80.mlp.down_proj.bias": "model-00041-of-00050.safetensors", "transformer.h.80.mlp.up_proj.weight": "model-00041-of-00050.safetensors", "transformer.h.81.input_layernorm.weight": "model-00042-of-00050.safetensors", "transformer.h.81.post_attention_layernorm.weight": "model-00042-of-00050.safetensors", "transformer.h.81.self_attention.dense.weight": "model-00042-of-00050.safetensors", "transformer.h.81.self_attention.dense.bias": "model-00042-of-00050.safetensors", "transformer.h.81.self_attention.query.weight": "model-00042-of-00050.safetensors", "transformer.h.81.self_attention.key_value.weight": "model-00042-of-00050.safetensors", "transformer.h.81.mlp.gate_proj.weight": "model-00042-of-00050.safetensors", "transformer.h.81.mlp.down_proj.weight": "model-00042-of-00050.safetensors", "transformer.h.81.mlp.down_proj.bias": "model-00042-of-00050.safetensors", "transformer.h.81.mlp.up_proj.weight": "model-00042-of-00050.safetensors", "transformer.h.82.input_layernorm.weight": "model-00042-of-00050.safetensors", "transformer.h.82.post_attention_layernorm.weight": "model-00042-of-00050.safetensors", "transformer.h.82.self_attention.dense.weight": "model-00042-of-00050.safetensors", "transformer.h.82.self_attention.dense.bias": "model-00042-of-00050.safetensors", "transformer.h.82.self_attention.query.weight": "model-00042-of-00050.safetensors", "transformer.h.82.self_attention.key_value.weight": "model-00042-of-00050.safetensors", "transformer.h.82.mlp.gate_proj.weight": "model-00042-of-00050.safetensors", "transformer.h.82.mlp.down_proj.weight": "model-00042-of-00050.safetensors", "transformer.h.82.mlp.down_proj.bias": "model-00042-of-00050.safetensors", "transformer.h.82.mlp.up_proj.weight": "model-00042-of-00050.safetensors", "transformer.h.83.input_layernorm.weight": "model-00043-of-00050.safetensors", "transformer.h.83.post_attention_layernorm.weight": "model-00043-of-00050.safetensors", "transformer.h.83.self_attention.dense.weight": "model-00043-of-00050.safetensors", "transformer.h.83.self_attention.dense.bias": "model-00043-of-00050.safetensors", "transformer.h.83.self_attention.query.weight": "model-00043-of-00050.safetensors", "transformer.h.83.self_attention.key_value.weight": "model-00043-of-00050.safetensors", "transformer.h.83.mlp.gate_proj.weight": "model-00043-of-00050.safetensors", "transformer.h.83.mlp.down_proj.weight": "model-00043-of-00050.safetensors", "transformer.h.83.mlp.down_proj.bias": "model-00043-of-00050.safetensors", "transformer.h.83.mlp.up_proj.weight": "model-00043-of-00050.safetensors", "transformer.h.84.input_layernorm.weight": "model-00043-of-00050.safetensors", "transformer.h.84.post_attention_layernorm.weight": "model-00043-of-00050.safetensors", "transformer.h.84.self_attention.dense.weight": "model-00043-of-00050.safetensors", "transformer.h.84.self_attention.dense.bias": "model-00043-of-00050.safetensors", "transformer.h.84.self_attention.query.weight": "model-00043-of-00050.safetensors", "transformer.h.84.self_attention.key_value.weight": "model-00043-of-00050.safetensors", "transformer.h.84.mlp.gate_proj.weight": "model-00043-of-00050.safetensors", "transformer.h.84.mlp.down_proj.weight": "model-00043-of-00050.safetensors", "transformer.h.84.mlp.down_proj.bias": "model-00043-of-00050.safetensors", "transformer.h.84.mlp.up_proj.weight": "model-00043-of-00050.safetensors", "transformer.h.85.input_layernorm.weight": "model-00044-of-00050.safetensors", "transformer.h.85.post_attention_layernorm.weight": "model-00044-of-00050.safetensors", "transformer.h.85.self_attention.dense.weight": "model-00044-of-00050.safetensors", "transformer.h.85.self_attention.dense.bias": "model-00044-of-00050.safetensors", "transformer.h.85.self_attention.query.weight": "model-00044-of-00050.safetensors", "transformer.h.85.self_attention.key_value.weight": "model-00044-of-00050.safetensors", "transformer.h.85.mlp.gate_proj.weight": "model-00044-of-00050.safetensors", "transformer.h.85.mlp.down_proj.weight": "model-00044-of-00050.safetensors", "transformer.h.85.mlp.down_proj.bias": "model-00044-of-00050.safetensors", "transformer.h.85.mlp.up_proj.weight": "model-00044-of-00050.safetensors", "transformer.h.86.input_layernorm.weight": "model-00044-of-00050.safetensors", "transformer.h.86.post_attention_layernorm.weight": "model-00044-of-00050.safetensors", "transformer.h.86.self_attention.dense.weight": "model-00044-of-00050.safetensors", "transformer.h.86.self_attention.dense.bias": "model-00044-of-00050.safetensors", "transformer.h.86.self_attention.query.weight": "model-00044-of-00050.safetensors", "transformer.h.86.self_attention.key_value.weight": "model-00044-of-00050.safetensors", "transformer.h.86.mlp.gate_proj.weight": "model-00044-of-00050.safetensors", "transformer.h.86.mlp.down_proj.weight": "model-00044-of-00050.safetensors", "transformer.h.86.mlp.down_proj.bias": "model-00044-of-00050.safetensors", "transformer.h.86.mlp.up_proj.weight": "model-00044-of-00050.safetensors", "transformer.h.87.input_layernorm.weight": "model-00045-of-00050.safetensors", "transformer.h.87.post_attention_layernorm.weight": "model-00045-of-00050.safetensors", "transformer.h.87.self_attention.dense.weight": "model-00045-of-00050.safetensors", "transformer.h.87.self_attention.dense.bias": "model-00045-of-00050.safetensors", "transformer.h.87.self_attention.query.weight": "model-00045-of-00050.safetensors", "transformer.h.87.self_attention.key_value.weight": "model-00045-of-00050.safetensors", "transformer.h.87.mlp.gate_proj.weight": "model-00045-of-00050.safetensors", "transformer.h.87.mlp.down_proj.weight": "model-00045-of-00050.safetensors", "transformer.h.87.mlp.down_proj.bias": "model-00045-of-00050.safetensors", "transformer.h.87.mlp.up_proj.weight": "model-00045-of-00050.safetensors", "transformer.h.88.input_layernorm.weight": "model-00045-of-00050.safetensors", "transformer.h.88.post_attention_layernorm.weight": "model-00045-of-00050.safetensors", "transformer.h.88.self_attention.dense.weight": "model-00045-of-00050.safetensors", "transformer.h.88.self_attention.dense.bias": "model-00045-of-00050.safetensors", "transformer.h.88.self_attention.query.weight": "model-00045-of-00050.safetensors", "transformer.h.88.self_attention.key_value.weight": "model-00045-of-00050.safetensors", "transformer.h.88.mlp.gate_proj.weight": "model-00045-of-00050.safetensors", "transformer.h.88.mlp.down_proj.weight": "model-00045-of-00050.safetensors", "transformer.h.88.mlp.down_proj.bias": "model-00045-of-00050.safetensors", "transformer.h.88.mlp.up_proj.weight": "model-00045-of-00050.safetensors", "transformer.h.89.input_layernorm.weight": "model-00046-of-00050.safetensors", "transformer.h.89.post_attention_layernorm.weight": "model-00046-of-00050.safetensors", "transformer.h.89.self_attention.dense.weight": "model-00046-of-00050.safetensors", "transformer.h.89.self_attention.dense.bias": "model-00046-of-00050.safetensors", "transformer.h.89.self_attention.query.weight": "model-00046-of-00050.safetensors", "transformer.h.89.self_attention.key_value.weight": "model-00046-of-00050.safetensors", "transformer.h.89.mlp.gate_proj.weight": "model-00046-of-00050.safetensors", "transformer.h.89.mlp.down_proj.weight": "model-00046-of-00050.safetensors", "transformer.h.89.mlp.down_proj.bias": "model-00046-of-00050.safetensors", "transformer.h.89.mlp.up_proj.weight": "model-00046-of-00050.safetensors", "transformer.h.90.input_layernorm.weight": "model-00046-of-00050.safetensors", "transformer.h.90.post_attention_layernorm.weight": "model-00046-of-00050.safetensors", "transformer.h.90.self_attention.dense.weight": "model-00046-of-00050.safetensors", "transformer.h.90.self_attention.dense.bias": "model-00046-of-00050.safetensors", "transformer.h.90.self_attention.query.weight": "model-00046-of-00050.safetensors", "transformer.h.90.self_attention.key_value.weight": "model-00046-of-00050.safetensors", "transformer.h.90.mlp.gate_proj.weight": "model-00046-of-00050.safetensors", "transformer.h.90.mlp.down_proj.weight": "model-00046-of-00050.safetensors", "transformer.h.90.mlp.down_proj.bias": "model-00046-of-00050.safetensors", "transformer.h.90.mlp.up_proj.weight": "model-00046-of-00050.safetensors", "transformer.h.91.input_layernorm.weight": "model-00047-of-00050.safetensors", "transformer.h.91.post_attention_layernorm.weight": "model-00047-of-00050.safetensors", "transformer.h.91.self_attention.dense.weight": "model-00047-of-00050.safetensors", "transformer.h.91.self_attention.dense.bias": "model-00047-of-00050.safetensors", "transformer.h.91.self_attention.query.weight": "model-00047-of-00050.safetensors", "transformer.h.91.self_attention.key_value.weight": "model-00047-of-00050.safetensors", "transformer.h.91.mlp.gate_proj.weight": "model-00047-of-00050.safetensors", "transformer.h.91.mlp.down_proj.weight": "model-00047-of-00050.safetensors", "transformer.h.91.mlp.down_proj.bias": "model-00047-of-00050.safetensors", "transformer.h.91.mlp.up_proj.weight": "model-00047-of-00050.safetensors", "transformer.h.92.input_layernorm.weight": "model-00047-of-00050.safetensors", "transformer.h.92.post_attention_layernorm.weight": "model-00047-of-00050.safetensors", "transformer.h.92.self_attention.dense.weight": "model-00047-of-00050.safetensors", "transformer.h.92.self_attention.dense.bias": "model-00047-of-00050.safetensors", "transformer.h.92.self_attention.query.weight": "model-00047-of-00050.safetensors", "transformer.h.92.self_attention.key_value.weight": "model-00047-of-00050.safetensors", "transformer.h.92.mlp.gate_proj.weight": "model-00047-of-00050.safetensors", "transformer.h.92.mlp.down_proj.weight": "model-00047-of-00050.safetensors", "transformer.h.92.mlp.down_proj.bias": "model-00047-of-00050.safetensors", "transformer.h.92.mlp.up_proj.weight": "model-00047-of-00050.safetensors", "transformer.h.93.input_layernorm.weight": "model-00048-of-00050.safetensors", "transformer.h.93.post_attention_layernorm.weight": "model-00048-of-00050.safetensors", "transformer.h.93.self_attention.dense.weight": "model-00048-of-00050.safetensors", "transformer.h.93.self_attention.dense.bias": "model-00048-of-00050.safetensors", "transformer.h.93.self_attention.query.weight": "model-00048-of-00050.safetensors", "transformer.h.93.self_attention.key_value.weight": "model-00048-of-00050.safetensors", "transformer.h.93.mlp.gate_proj.weight": "model-00048-of-00050.safetensors", "transformer.h.93.mlp.down_proj.weight": "model-00048-of-00050.safetensors", "transformer.h.93.mlp.down_proj.bias": "model-00048-of-00050.safetensors", "transformer.h.93.mlp.up_proj.weight": "model-00048-of-00050.safetensors", "transformer.h.94.input_layernorm.weight": "model-00048-of-00050.safetensors", "transformer.h.94.post_attention_layernorm.weight": "model-00048-of-00050.safetensors", "transformer.h.94.self_attention.dense.weight": "model-00048-of-00050.safetensors", "transformer.h.94.self_attention.dense.bias": "model-00048-of-00050.safetensors", "transformer.h.94.self_attention.query.weight": "model-00048-of-00050.safetensors", "transformer.h.94.self_attention.key_value.weight": "model-00048-of-00050.safetensors", "transformer.h.94.mlp.gate_proj.weight": "model-00048-of-00050.safetensors", "transformer.h.94.mlp.down_proj.weight": "model-00048-of-00050.safetensors", "transformer.h.94.mlp.down_proj.bias": "model-00048-of-00050.safetensors", "transformer.h.94.mlp.up_proj.weight": "model-00048-of-00050.safetensors", "transformer.h.95.input_layernorm.weight": "model-00049-of-00050.safetensors", "transformer.h.95.post_attention_layernorm.weight": "model-00049-of-00050.safetensors", "transformer.h.95.self_attention.dense.weight": "model-00049-of-00050.safetensors", "transformer.h.95.self_attention.dense.bias": "model-00049-of-00050.safetensors", "transformer.h.95.self_attention.query.weight": "model-00049-of-00050.safetensors", "transformer.h.95.self_attention.key_value.weight": "model-00049-of-00050.safetensors", "transformer.h.95.mlp.gate_proj.weight": "model-00049-of-00050.safetensors", "transformer.h.95.mlp.down_proj.weight": "model-00049-of-00050.safetensors", "transformer.h.95.mlp.down_proj.bias": "model-00049-of-00050.safetensors", "transformer.h.95.mlp.up_proj.weight": "model-00049-of-00050.safetensors", "transformer.ln_f.weight": "model-00050-of-00050.safetensors", "lm_head.weight": "model-00050-of-00050.safetensors"}} \ No newline at end of file diff --git a/modeling_telechat.py b/modeling_telechat.py deleted file mode 100644 index a7e1c8890288de2ea68b5fb6d3f32248d34a39aa..0000000000000000000000000000000000000000 --- a/modeling_telechat.py +++ /dev/null @@ -1,939 +0,0 @@ -# coding=utf-8 -# Copyright 2022 HuggingFace Inc. team and BigScience workshop. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. - -# Copyright (c) 2021 EleutherAI -# This file is based on code by the authors denoted below and has been modified from its original version. -# -# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -"""PyTorch TELECHAT model.""" - -import warnings -from typing import Optional, Tuple, Union, List, Dict -from threading import Thread - -import torch -import math -import copy -from torch import nn -import torch.utils.checkpoint -from torch.nn import functional as F -from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss -from transformers.modeling_outputs import ( - BaseModelOutputWithPastAndCrossAttentions, - CausalLMOutputWithCrossAttentions -) -from transformers.modeling_utils import PreTrainedModel -from transformers.utils import logging -from transformers import GenerationConfig - -from .configuration_telechat import TelechatConfig -from .generation_utils import History, TelechatIterTextStreamer - -logger = logging.get_logger(__name__) - -_CHECKPOINT_FOR_DOC = "telechat" -_CONFIG_FOR_DOC = "TelechatConfig" - -TELECHAT_PRETRAINED_MODEL_ARCHIVE_LIST = [] - -try: - from einops import rearrange -except ImportError: - rearrange = None - -use_flash_attn = True -try: - from flash_attn.flash_attn_interface import flash_attn_unpadded_func -except ImportError: - try: - from flash_attn.flash_attn_interface import flash_attn_varlen_func as flash_attn_unpadded_func - except ImportError: - flash_attn_unpadded_func = None - - -class RotaryEmbedding(torch.nn.Module): - # Extracted from: https://github.com/EleutherAI/gpt-neox - def __init__(self, dim, config, base=10000, precision=torch.half): - super().__init__() - self.config = config - self.dim = dim - self.base = base - self.inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float().half() / dim)).cuda() - self.max_seq_len_cached = None - self.cos_cached = None - self.sin_cached = None - self.precision = precision - - def get_mscale(self, scale=1): - if scale <= 1: - return 1.0 - return 0.1 * math.log(scale) + 1.0 - - def get_ntk_alpha(self, true_seq_len): - context_value = math.log(true_seq_len / self.config.base_seqlen, 2) + 1 - # ntk_alpha = 2 ** context_value - 1 - ntk_alpha = 2 ** math.ceil(context_value) - 1 - ntk_alpha = max(ntk_alpha, 1) - return ntk_alpha - - def forward(self, x, seq_dim=0, seq_len=None): - if seq_len is None: - seq_len = x.shape[seq_dim] - seq_len = max(seq_len, self.config.training_seqlen) - ntk_alpha = self.get_ntk_alpha(seq_len) - self.mscale = float(self.get_mscale(seq_len / self.config.training_seqlen)) - if True: - base = self.base * ntk_alpha ** (self.dim / (self.dim - 2)) - self.inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, device=x.device).float() / self.dim)) - self.max_seq_len_cached = seq_len - t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype) - freqs = torch.einsum('i,j->ij', t, self.inv_freq) - # Different from paper, but it uses a different permutation in order to obtain the same calculation - emb = torch.cat((freqs, freqs), dim=-1).to(x.device) - if self.precision == torch.bfloat16: - emb = emb.float() - # [sx, 1 (b * np), hn] - self.cos_cached = self.mscale * emb.cos()[:, None, :].half() - self.sin_cached = self.mscale * emb.sin()[:, None, :].half() - if self.precision == torch.bfloat16: - self.cos_cached = self.cos_cached.bfloat16() - self.sin_cached = self.sin_cached.bfloat16() - return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...] - - -# rotary pos emb helpers: -def rotate_half(x): - x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:] - return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions - - -def apply_rotary_pos_emb_torch(q, k, cos, sin, offset: int = 0): # jitting fails with bf16 - cos, sin = cos[offset:q.shape[0] + offset, ...], sin[offset:q.shape[0] + offset, ...] - return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin) - - -class MixedFusedRMSNorm(nn.Module): - # Extracted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py - def __init__(self, hidden_size, eps=1e-6): - super().__init__() - self.weight = nn.Parameter(torch.ones(hidden_size)) - self.variance_epsilon = eps - - def forward(self, hidden_states): - input_dtype = hidden_states.dtype - hidden_states = hidden_states.to(torch.float32) - variance = hidden_states.pow(2).mean(-1, keepdim=True) - hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) - return self.weight * hidden_states.to(input_dtype) - - -class FlashSelfAttention(torch.nn.Module): - # Extracted from https://github.com/microsoft/Megatron-DeepSpeed/blob/main/megatron/model/transformer.py - """Implement the scaled dot product attention with softmax. - Arguments - --------- - softmax_scale: The temperature to use for the softmax attention. - (default: 1/sqrt(d_keys) where d_keys is computed at - runtime) - attention_dropout: The dropout rate to apply to the attention - (default: 0.0) - """ - - def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0, - device=None, dtype=None): - super().__init__() - assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, ' - 'e.g., with pip install flash-attn') - assert rearrange is not None, 'Please install einops first, e.g., with pip install einops' - self.causal = causal - self.softmax_scale = softmax_scale - self.dropout_p = attention_dropout - - def forward(self, q, k, v): - """Implements the multihead softmax attention. - Arguments - --------- - q, k, v: The tensor containing the query, key, and value. (B, S, H, D) - """ - assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v))) - assert all((i.is_cuda for i in (q, k, v))) - - batch_size, seqlen_q = q.shape[0], q.shape[1] - seqlen_k = k.shape[1] - - q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]] - cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, - device=q.device) - # self.training = False - if self.training: - # during training q,k,v always have same seqlen - assert seqlen_k == seqlen_q - - is_causal = self.causal - cu_seqlens_k = cu_seqlens_q - dropout_p = self.dropout_p - else: - # turn off FA causal mask after first inference autoregressive iteration - # only on first autoregressive step q,k,v have same seqlen - is_causal = seqlen_q == seqlen_k - cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, - device=q.device) - dropout_p = 0 - - output = flash_attn_unpadded_func( - q, k, v, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k, - dropout_p=dropout_p, - softmax_scale=self.softmax_scale, causal=is_causal - ) - - output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) - return output - - -def _make_causal_mask( - input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int -) -> torch.BoolTensor: - """ - Make causal mask used for self-attention. - """ - batch_size, target_length = input_ids_shape - mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device) - # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround - seq_ids = torch.arange(target_length, device=device) - mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :] - - if past_key_values_length > 0: - mask[:, :past_key_values_length] = False - - expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length) - return expanded_mask - - -def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: - """ - Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`. - """ - batch_size, src_length = mask.shape - tgt_length = tgt_length if tgt_length is not None else src_length - - expanded_mask = ~(mask[:, None, None, :].to(torch.bool)) - return expanded_mask.expand(batch_size, 1, tgt_length, src_length) - - -def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor: - """ - Dropout add function - - Args: - x (`torch.tensor`, *required*): - input tensor - residual (`torch.tensor`, *required*): - residual tensor - prob (`float`, *required*): - dropout probability - training (`bool`, *required*): - training mode - """ - out = F.dropout(x, p=prob, training=training) - out = residual + out - return out - - -def telechat_gelu_forward(x: torch.Tensor) -> torch.Tensor: - """ - Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to - make the model jitable. - - Args: - x (`torch.tensor`, *required*): - input hidden states - """ - return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))) - - -def telechat_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor: - """ - gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) + - 0.3989423 * x * torch.exp(-0.5 * x * x) - - Args: - g (`torch.tensor`, *required*): - gradient output tensor - x (`torch.tensor`, *required*): - input tensor - """ - x = x[0] # x is a tuple of 1 element, needs to unpack it first - tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) - # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 - ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) - return ff * g - - -class GeLUFunction(torch.autograd.Function): - @staticmethod - def forward(ctx, input: torch.Tensor) -> torch.Tensor: - ctx.save_for_backward(input) - return telechat_gelu_forward(input) - - @staticmethod - def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor: - input = ctx.saved_tensors - tmp = telechat_gelu_back(grad_output, input) - return tmp - - -class TelechatGelu(nn.Module): - """ - TelechatBiasGelu wrapper function that make use of the simple function on inference mode to make the model - torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly - copied from Megatron-DeepSpeed code and adapted for our needs - - See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329 - """ - - def __init__(self): - super().__init__() - - def forward(self, x: torch.Tensor) -> torch.Tensor: - if self.training: - return GeLUFunction.apply(x) - else: - return telechat_gelu_forward(x) - - -class TelechatAttention(nn.Module): - def __init__(self, config: TelechatConfig, layer_idx): - super().__init__() - self.kv_cache = None - self.layer_idx = layer_idx - - self.hidden_size = config.hidden_size - self.num_heads = config.n_head - self.head_dim = self.hidden_size // self.num_heads - self.split_size = self.hidden_size - self.hidden_dropout = config.hidden_dropout - self.config = config - - if self.head_dim * self.num_heads != self.hidden_size: - raise ValueError( - f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" - f" {self.num_heads})." - ) - - # Layer-wise attention scaling - self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) - self.beta = 1.0 - - self.num_key_value_heads = config.num_key_value_heads if config.num_key_value_heads else self.num_heads - self.kv_projection_size = self.head_dim * self.num_key_value_heads - self.num_key_value_groups = self.num_heads // self.num_key_value_heads - self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False) - self.key_value = nn.Linear(self.hidden_size, self.kv_projection_size * 2, bias=False) - self.dense = nn.Linear(self.hidden_size, self.hidden_size) - self.attention_dropout = nn.Dropout(config.attention_dropout) - self.rotary_emb = RotaryEmbedding(self.head_dim, config=config) - - self.core_attention_flash = FlashSelfAttention( - causal=True, attention_dropout=config.attention_dropout - ) - - self.last_key_layer = None - # logn_list = [math.log(i, 4096) if i > 4096 else 1 for i in range(1, 32768)] - # self.logn_tensor = torch.tensor(logn_list)[None, :, None, None].half().cuda() - - def repeat_kv(self, hidden_states, n_rep): - slen, batch, num_key_value_heads_per_partition, head_dim = hidden_states.shape - if n_rep == 1: - return hidden_states - hidden_states = hidden_states[:, :, :, None, :].expand(slen, batch, num_key_value_heads_per_partition, n_rep, - head_dim) - return hidden_states.reshape(slen, batch, num_key_value_heads_per_partition * n_rep, head_dim) - - def split_tensor_along_last_dim(self, - tensor: torch.Tensor, - num_partitions: int, - contiguous_split_chunks: bool = False, - ): - - # Get the size and dimension. - last_dim = tensor.dim() - 1 - last_dim_size = tensor.size()[last_dim] // num_partitions - # Split. - tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) - # Note: torch.split does not create contiguous tensors by default. - if contiguous_split_chunks: - return tuple(chunk.contiguous() for chunk in tensor_list) - - return tensor_list - - def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: - batch_size_and_num_heads, seq_length, _ = x.shape - batch_size = batch_size_and_num_heads // self.num_heads - x = x.view(batch_size, self.num_heads, seq_length, self.head_dim) - x = x.permute(0, 2, 1, 3) - return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim) - - def forward( - self, - hidden_states: torch.Tensor, - residual: torch.Tensor, - attention_mask: torch.Tensor, - layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, - use_cache: bool = False, - output_attentions: bool = False, - ): - hidden_states = hidden_states.transpose(1, 0) - query_layer = self.query(hidden_states) - new_tensor_shape = query_layer.size()[:-1] + \ - (self.num_heads, - self.head_dim) - query_layer = query_layer.view(*new_tensor_shape) - - mixed_kv_layer = self.key_value(hidden_states) - new_tensor_shape = mixed_kv_layer.size()[:-1] + \ - (self.num_key_value_heads, - 2 * self.head_dim) - mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape) - (key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_kv_layer, 2) - - output_size = (query_layer.size(1), - query_layer.size(2), - query_layer.size(0), - key_layer.size(0), - key_layer.size(2) - ) - - query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1) - key_layer = key_layer.view(output_size[3], output_size[0] * output_size[4], -1) - - apply_rotary_fn = apply_rotary_pos_emb_torch - - seq_len = key_layer.shape[0] - offset = 0 - - if use_cache and layer_past != None: - past_key, past_value = layer_past - offset = past_key.shape[0] - seq_len += offset - - cos, sin = self.rotary_emb(value_layer, seq_len=seq_len) - - query_layer, key_layer = apply_rotary_fn(query_layer, key_layer, cos, sin, offset=offset) - if use_cache: - if layer_past != None: - past_key, past_value = layer_past - key_layer = torch.cat((past_key, key_layer[-1, ...].unsqueeze(0)), dim=0) - value_layer = torch.cat((past_value, value_layer[-1, ...].unsqueeze(0)), dim=0) - layer_past = key_layer, value_layer - - s_value, bz, kv_head, dim = value_layer.shape - s_key = key_layer.shape[0] - s_query = query_layer.shape[0] - q_head = output_size[1] - - query_layer = query_layer.reshape((s_query, bz, q_head, dim)) - key_layer = key_layer.reshape((s_key, bz, kv_head, dim)) - - key_layer = self.repeat_kv(key_layer, self.num_key_value_groups) - value_layer = self.repeat_kv(value_layer, self.num_key_value_groups) - - if self.config.flash_attn: - q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous() for x in - (query_layer, key_layer, value_layer)] - context_layer = self.core_attention_flash(q, k, v) - context_layer = rearrange(context_layer, 'b s h d -> b s (h d)').contiguous() - else: - ##[sq, b, np, hn] -> [sq, b * np, hn] - query_layer = query_layer.reshape(s_query, bz * self.num_heads, dim) - # [sk, b, np, hn] -> [sk, b * np, hn] - key_layer = key_layer.reshape(s_key, bz * self.num_heads, dim) - matmul_result = self.inv_norm_factor * torch.einsum('bik,bkj->bij', query_layer.transpose(0, 1), - key_layer.transpose(0, 1).transpose(1, 2)) - - attention_scores = matmul_result.view(bz, self.num_heads, s_query, s_key) - - input_dtype = attention_scores.dtype - if input_dtype == torch.float16: - attention_scores = attention_scores.to(torch.float) - attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min) - attention_probs = F.softmax(attn_weights, dim=-1).to(input_dtype) ##dtype = torch.float32 - attention_probs = self.attention_dropout(attention_probs) - attention_probs_reshaped = attention_probs.view(bz * self.num_heads, s_query, s_key) - - value_layer = value_layer.reshape(s_key, bz * self.num_heads, dim) - context_layer = torch.bmm(attention_probs_reshaped, value_layer.transpose(0, 1)) - context_layer = self._merge_heads(context_layer) - output_tensor = self.dense(context_layer) - - output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training) - present = None - outputs = (output_tensor, present) - if output_attentions: - outputs += (attention_probs,) - - return output_tensor, layer_past - - -class TelechatMLP(nn.Module): - def __init__(self, config: TelechatConfig): - super().__init__() - hidden_size = config.hidden_size - self.gate_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False) - self.up_proj = nn.Linear(hidden_size, config.ffn_hidden_size, bias=False) - self.down_proj = nn.Linear(config.ffn_hidden_size, hidden_size, bias=True) - self.hidden_dropout = config.hidden_dropout - - def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: - intermediate_output = self.down_proj(F.silu(self.gate_proj(hidden_states)) * self.up_proj(hidden_states)) - output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training) - return output - - -class TelechatBlock(nn.Module): - def __init__(self, config: TelechatConfig, layer_idx): - super().__init__() - hidden_size = config.hidden_size - - self.input_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon) - self.num_heads = config.n_head - self.layer_idx = layer_idx - self.self_attention = TelechatAttention(config, layer_idx) - self.post_attention_layernorm = MixedFusedRMSNorm(hidden_size, eps=config.layer_norm_epsilon) - - self.mlp = TelechatMLP(config) - - self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm - self.hidden_dropout = config.hidden_dropout - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: torch.Tensor, - layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, - use_cache: bool = False, - output_attentions: bool = False, - ): - layernorm_output = self.input_layernorm(hidden_states) - if self.apply_residual_connection_post_layernorm: - residual = layernorm_output - else: - residual = hidden_states - - attn_outputs = self.self_attention( - layernorm_output, - residual, - layer_past=layer_past, - attention_mask=attention_mask, - use_cache=use_cache, - output_attentions=output_attentions, - ) - - attention_output = attn_outputs[0] - outputs = attn_outputs[1:] - layernorm_output = self.post_attention_layernorm(attention_output) - - if self.apply_residual_connection_post_layernorm: - residual = layernorm_output - else: - residual = attention_output - output = self.mlp(layernorm_output, residual) - - if use_cache: - outputs = (output,) + outputs - else: - outputs = (output,) + outputs[1:] - - return outputs - - -class TelechatPreTrainedModel(PreTrainedModel): - config_class = TelechatConfig - base_model_prefix = "transformer" - supports_gradient_checkpointing = True - _no_split_modules = ["TelechatBlock"] - _skip_keys_device_placement = "past_key_values" - - def __init__(self, *inputs, **kwargs): - super().__init__(*inputs, **kwargs) - - def _init_weights(self, module: nn.Module): - """Initialize the weights.""" - if isinstance(module, nn.Linear): - module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) - if module.bias is not None: - module.bias.data.zero_() - - elif isinstance(module, nn.Embedding): - module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) - if module.padding_idx is not None: - module.weight.data[module.padding_idx].zero_() - - elif isinstance(module, LayerNorm): - module.bias.data.zero_() - module.weight.data.fill_(1.0) - - def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False): - if isinstance(module, TelechatModel): - module.gradient_checkpointing = value - - -class TelechatModel(TelechatPreTrainedModel): - def __init__(self, config: TelechatConfig): - super().__init__(config) - - self.embed_dim = config.hidden_size - self.num_heads = config.n_head - self.config = config - self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim) - if self.config.embed_layernorm: - self.word_embeddings_layernorm = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon) - - self.h = nn.ModuleList([TelechatBlock(config, _) for _ in range(config.num_hidden_layers)]) - self.ln_f = MixedFusedRMSNorm(self.embed_dim, eps=config.layer_norm_epsilon) - self.gradient_checkpointing = False - self.post_init() - - def get_input_embeddings(self): - return self.word_embeddings - - def _prepare_attn_mask( - self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int - ) -> torch.BoolTensor: - combined_attention_mask = None - device = attention_mask.device - _, src_length = input_shape - - if src_length > 1: - combined_attention_mask = _make_causal_mask( - input_shape, device=device, past_key_values_length=past_key_values_length - ) - expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length) - combined_attention_mask = ( - expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask - ) - - return combined_attention_mask - - def set_input_embeddings(self, new_embeddings: torch.Tensor): - self.word_embeddings = new_embeddings - - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, - attention_mask: Optional[torch.Tensor] = None, - inputs_embeds: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - **deprecated_arguments, - ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: - - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - use_cache = use_cache if use_cache is not None else self.config.use_cache - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - if input_ids is not None: - batch_size, seq_length = input_ids.shape - elif inputs_embeds is not None: - batch_size, seq_length, _ = inputs_embeds.shape - - if past_key_values is None: - past_key_values = tuple([None] * len(self.h)) - # input_ids = torch.load("Megatron-LM-0624-3B/tensors/input_ids.pt").to(input_ids.device) - if inputs_embeds is None: - inputs_embeds = self.word_embeddings(input_ids) - hidden_states = inputs_embeds - # print(f"[INFO_Telechat]: inputs_embeds={inputs_embeds}") - if self.config.embed_layernorm: - hidden_states = self.word_embeddings_layernorm(inputs_embeds) - - presents = () if use_cache else None - all_self_attentions = () if output_attentions else None - all_hidden_states = () if output_hidden_states else None - - if self.gradient_checkpointing and self.training: - if use_cache: - use_cache = False - - seq_length_with_past = seq_length - past_key_values_length = 0 - if past_key_values[0] is not None: - past_key_values_length = past_key_values[0][0].shape[2] - seq_length_with_past = seq_length_with_past + past_key_values_length - if attention_mask is None: - attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) - else: - attention_mask = attention_mask.to(hidden_states.device) - causal_mask = self._prepare_attn_mask( - attention_mask, - input_shape=(batch_size, seq_length), - past_key_values_length=past_key_values_length, - ) - - # print(f"[INFO_Telechat]: word_embeddings_layernorm={hidden_states}") - for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): - if output_hidden_states: - all_hidden_states = all_hidden_states + (hidden_states,) - - if self.gradient_checkpointing and self.training: - - def create_custom_forward(module): - def custom_forward(*inputs): - # None for past_key_value - return module(*inputs, use_cache=use_cache, output_attentions=output_attentions) - - return custom_forward - - outputs = torch.utils.checkpoint.checkpoint( - create_custom_forward(block), - hidden_states, - causal_mask, - layer_past, - ) - else: - outputs = block( - hidden_states, - layer_past=layer_past, - attention_mask=causal_mask, - use_cache=use_cache, - output_attentions=output_attentions, - ) - - # print(f"[INFO_Telechat]: outputs{i}={outputs}") - hidden_states = outputs[0] - if use_cache is True: - presents = presents + (outputs[1],) - - if output_attentions: - all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) - hidden_states = self.ln_f(hidden_states) - # print(f"[INFO_Telechat]: hidden_states={hidden_states}") - # ref = torch.load("Megatron-LM-0624-3B/tensors/final_layernorm.pt") - # print(hidden_states.squeeze()[2048:]) - # print(ref.squeeze()) - # print(torch.max(hidden_states.squeeze()[2048:] - ref.squeeze().to(hidden_states.device))) - # exit() - # print(ref.shape,hidden_states.shape) - # print(hidden_states) - # exit() - if output_hidden_states: - all_hidden_states = all_hidden_states + (hidden_states,) - if not return_dict: - return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) - return BaseModelOutputWithPastAndCrossAttentions( - last_hidden_state=hidden_states, - past_key_values=presents, - hidden_states=all_hidden_states, - attentions=all_self_attentions, - ) - - -class TelechatForCausalLM(TelechatPreTrainedModel): - # _tied_weights_keys = ["lm_head.weight"] - _keys_to_ignore_on_load_missing = [r"lm_head.weight"] - - def __init__(self, config: TelechatConfig): - super().__init__(config) - self.transformer = TelechatModel(config) - self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) - self.post_init() - - def get_output_embeddings(self): - return self.lm_head - - def set_output_embeddings(self, new_embeddings: torch.Tensor): - self.lm_head = new_embeddings - - def prepare_inputs_for_generation( - self, - input_ids: torch.LongTensor, - past_key_values: Optional[torch.Tensor] = None, - attention_mask: Optional[torch.Tensor] = None, - inputs_embeds: Optional[torch.Tensor] = None, - **kwargs, - ) -> dict: - if past_key_values: - input_ids = input_ids[:, -1].unsqueeze(-1) - if inputs_embeds is not None and past_key_values is None: - model_inputs = {"inputs_embeds": inputs_embeds} - else: - model_inputs = {"input_ids": input_ids} - - model_inputs.update( - { - "past_key_values": past_key_values, - "use_cache": kwargs.get("use_cache"), - "attention_mask": attention_mask, - } - ) - return model_inputs - - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, - attention_mask: Optional[torch.Tensor] = None, - inputs_embeds: Optional[torch.Tensor] = None, - labels: Optional[torch.Tensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - **deprecated_arguments, - ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: - - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - transformer_outputs = self.transformer( - input_ids, - past_key_values=past_key_values, - attention_mask=attention_mask, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - hidden_states = transformer_outputs[0] - lm_logits = self.lm_head(hidden_states) - - loss = None - if labels is not None: - labels = labels.to(lm_logits.device) - shift_logits = lm_logits[..., :-1, :].contiguous() - shift_labels = labels[..., 1:].contiguous() - batch_size, seq_length, vocab_size = shift_logits.shape - loss_fct = CrossEntropyLoss() - loss = loss_fct( - shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) - ) - - if not return_dict: - output = (lm_logits,) + transformer_outputs[1:] - return ((loss,) + output) if loss is not None else output - - return CausalLMOutputWithCrossAttentions( - loss=loss, - logits=lm_logits, - past_key_values=transformer_outputs.past_key_values, - hidden_states=transformer_outputs.hidden_states, - attentions=transformer_outputs.attentions, - ) - - def chat(self, tokenizer, question: str = '', history: Union[List[Dict], History] = None, stream: bool = False, - generation_config: Optional[GenerationConfig] = None, **kwargs): - """ - Args: - tokenizer: the tokenizer of telechat - question: question which the model reply in this turn - history: history which will format the input for telechat - stream: if return the full text at last or yield the text in token - generation_config: configuration for generation - **kwargs: args which will update the generation config or pass to model forward - """ - generation_config = generation_config or self.generation_config - if not generation_config: - logger.error("generation_config is None") - raise ValueError("generation_config must not be None") - if not question: - logger.error("question is empty") - raise ValueError("question must not be empty") - if history is None: - history = [] - - # we update and check generate_config here for building inputs. - - generation_config = copy.deepcopy(generation_config) - user_id = generation_config.user_token_id - bot_id = generation_config.bot_token_id - model_kwargs = generation_config.update(**kwargs) - generation_config.validate() - - # transfer to History - if not isinstance(history, History): - history = History(tokenizer, history) - - inputs = self.build_inputs_for_chat(tokenizer, question, history, generation_config, user_id, bot_id) - history.append({"role": "user", "content": question}) - if stream: - streamer = TelechatIterTextStreamer(tokenizer, history, skip_prompt=True) - Thread(target=self.generate, kwargs=dict( - inputs=inputs.to(self.device), streamer=streamer, - generation_config=generation_config, **model_kwargs - )).start() - return streamer - else: - outputs = self.generate(inputs.to(self.device), generation_config=generation_config, **model_kwargs) - response = tokenizer.decode(outputs[0][len(inputs[0]):-1]) - history.append({"role": "bot", "content": response}) - return response, history - - def build_inputs_for_chat(self, tokenizer, question, history, generation_config, usr_id, bot_id): - """ - check history and build inputs here - """ - # first tokenize question - q_token = tokenizer(question) - qa_history = copy.deepcopy(history) - - # get the max length we should build our inputs in - model_max_length = self.config.seq_length - build_max_length = max(0, model_max_length - generation_config.max_new_tokens - 1) \ - if generation_config.max_new_tokens else max(0, generation_config.max_length) - if build_max_length < 3: - logger.warning("the model can not meet the requirements of input length,Please check config") - raise ValueError("") - - # trunc left - input_tokens = [usr_id] + q_token["input_ids"][-build_max_length + 1:] + [bot_id] - length = len(input_tokens) - - while len(qa_history) != 0: - message = qa_history.pop() - if message["role"] == "user": - tokens = [usr_id] + message["input_ids"] - elif message["role"] == "bot": - tokens = [bot_id] + message["input_ids"] + [generation_config.eos_token_id] - else: - tokens = [] - if len(tokens) + length >= build_max_length: - break - else: - input_tokens = tokens + input_tokens - - input_tokens = [generation_config.bos_token_id] + input_tokens - - return torch.tensor([input_tokens], dtype=torch.int64) diff --git a/tokenization_telechat.py b/tokenization_telechat.py deleted file mode 100644 index 6ac4fb87adaa33ad7850e7964157b9f5b335b435..0000000000000000000000000000000000000000 --- a/tokenization_telechat.py +++ /dev/null @@ -1,220 +0,0 @@ -import os -from shutil import copyfile -from typing import Any, Dict, List, Optional, Tuple -import sentencepiece as spm -from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer -from transformers.utils import logging - -logger = logging.get_logger(__name__) - -VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"} - -# TODO: when we get download url from huggingface, refresh the map -PRETRAINED_VOCAB_FILES_MAP = { - "vocab_file": {}, - "tokenizer_file": {}, -} - - -class TelechatTokenizer(PreTrainedTokenizer): - - vocab_files_names = VOCAB_FILES_NAMES - pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP - model_input_names = ["input_ids", "attention_mask"] - - def __init__( - self, - vocab_file, - unk_token="", - bos_token="<_start>", - eos_token="<_end>", - pad_token="<_pad>", - sp_model_kwargs: Optional[Dict[str, Any]] = None, - add_bos_token=True, - add_eos_token=False, - clean_up_tokenization_spaces=False, - **kwargs, - ): - self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs - bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token - eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token - unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token - pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token - self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) - self.sp_model.Load(vocab_file) - super().__init__( - bos_token=bos_token, - eos_token=eos_token, - unk_token=unk_token, - pad_token=pad_token, - add_bos_token=add_bos_token, - add_eos_token=add_eos_token, - sp_model_kwargs=self.sp_model_kwargs, - clean_up_tokenization_spaces=clean_up_tokenization_spaces, - **kwargs, - ) - self.vocab_file = vocab_file - self.add_bos_token = add_bos_token - self.add_eos_token = add_eos_token - - - def __getstate__(self): - state = self.__dict__.copy() - state["sp_model"] = None - return state - - def __setstate__(self, d): - self.__dict__ = d - self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) - self.sp_model.Load(self.vocab_file) - - @property - def vocab_size(self): - """Returns vocab size""" - return self.sp_model.get_piece_size() - - def get_vocab(self): - """Returns vocab as a dict""" - vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} - vocab.update(self.added_tokens_encoder) - return vocab - - def _tokenize(self, text): - """Returns a tokenized string.""" - return self.sp_model.encode(text, out_type=str) - - def _convert_token_to_id(self, token): - """Converts a token (str) in an id using the vocab.""" - return self.sp_model.piece_to_id(token) - - def _convert_id_to_token(self, index): - """Converts an index (integer) in a token (str) using the vocab.""" - token = self.sp_model.IdToPiece(index) - return token - - def convert_tokens_to_string(self, tokens): - """Converts a sequence of tokens (string) in a single string.""" - current_sub_tokens = [] - out_string = "" - prev_is_special = False - for i, token in enumerate(tokens): - # make sure that special tokens are not decoded using sentencepiece model - if token in self.all_special_tokens: - if not prev_is_special and i != 0: - out_string += " " - out_string += self.sp_model.decode(current_sub_tokens) + token - prev_is_special = True - current_sub_tokens = [] - else: - current_sub_tokens.append(token) - prev_is_special = False - out_string += self.sp_model.decode(current_sub_tokens) - return out_string - - def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]: - """ - Save the vocabulary and special tokens file to a directory. - - Args: - save_directory (`str`): - The directory in which to save the vocabulary. - - Returns: - `Tuple(str)`: Paths to the files saved. - """ - if not os.path.isdir(save_directory): - logger.error(f"Vocabulary path ({save_directory}) should be a directory") - return - out_vocab_file = os.path.join( - save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] - ) - - if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): - copyfile(self.vocab_file, out_vocab_file) - elif not os.path.isfile(self.vocab_file): - with open(out_vocab_file, "wb") as fi: - content_spiece_model = self.sp_model.serialized_model_proto() - fi.write(content_spiece_model) - - return (out_vocab_file,) - - def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): - bos_token_id = [self.bos_token_id] if self.add_bos_token else [] - eos_token_id = [self.eos_token_id] if self.add_eos_token else [] - - output = bos_token_id + token_ids_0 + eos_token_id - - if token_ids_1 is not None: - output = output + bos_token_id + token_ids_1 + eos_token_id - - return output - - def get_special_tokens_mask( - self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False - ) -> List[int]: - """ - Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding - special tokens using the tokenizer `prepare_for_model` method. - - Args: - token_ids_0 (`List[int]`): - List of IDs. - token_ids_1 (`List[int]`, *optional*): - Optional second list of IDs for sequence pairs. - already_has_special_tokens (`bool`, *optional*, defaults to `False`): - Whether or not the token list is already formatted with special tokens for the model. - - Returns: - `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. - """ - if already_has_special_tokens: - return super().get_special_tokens_mask( - token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True - ) - - bos_token_id = [1] if self.add_bos_token else [] - eos_token_id = [1] if self.add_eos_token else [] - - if token_ids_1 is None: - return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id - return ( - bos_token_id - + ([0] * len(token_ids_0)) - + eos_token_id - + bos_token_id - + ([0] * len(token_ids_1)) - + eos_token_id - ) - - def create_token_type_ids_from_sequences( - self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None - ) -> List[int]: - """ - Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT - sequence pair mask has the following format: - - ``` - 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 - | first sequence | second sequence | - ``` - - if token_ids_1 is None, only returns the first portion of the mask (0s). - - Args: - token_ids_0 (`List[int]`): - List of ids. - token_ids_1 (`List[int]`, *optional*): - Optional second list of IDs for sequence pairs. - - Returns: - `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). - """ - bos_token_id = [self.bos_token_id] if self.add_bos_token else [] - eos_token_id = [self.eos_token_id] if self.add_eos_token else [] - - output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) - - if token_ids_1 is not None: - output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) - - return output diff --git a/tokenizer.model b/tokenizer.model deleted file mode 100644 index cd47d1356749ba43803322ca2ca295c2c776b036..0000000000000000000000000000000000000000 --- a/tokenizer.model +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db947024849f75ec4bd9af5d4c84fa71e96a26971eb353a70acd66194fc7a69b -size 2197489 diff --git a/tokenizer_config.json b/tokenizer_config.json deleted file mode 100644 index 8e8c261678ad76df6865abca3d3250e2ba3c04a7..0000000000000000000000000000000000000000 --- a/tokenizer_config.json +++ /dev/null @@ -1,39 +0,0 @@ -{ - "tokenizer_class": "TelechatTokenizer", - "auto_map": { - "AutoTokenizer": [ - "tokenization_telechat.TelechatTokenizer", - null - ] - }, - "add_bos_token": false, - "add_eos_token": false, - "use_fast": false, - "clean_up_tokenization_spaces": false, - "eos_token": { - "__type": "AddedToken", - "content": "<_end>", - "lstrip": false, - "normalized": true, - "rstrip": false, - "single_word": true - }, - "model_max_length": 100000000, - "sp_model_kwargs": {}, - "pad_token": { - "__type": "AddedToken", - "content": "<_pad>", - "lstrip": false, - "normalized": true, - "rstrip": false, - "single_word": true - }, - "unk_token": { - "__type": "AddedToken", - "content": "<_end>", - "lstrip": false, - "normalized": true, - "rstrip": false, - "single_word": true - } -}