{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79537c021c80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718300111203782056, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGZkbDwP3aQ/kAr0PUnmkr4BJnI8Hpe6OwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDF4SQHRkWMAWyUTUQBjAF0lEdAnCPjej2zwHV9lChoBkdAb5SENe+mFmgHTWIBaAhHQJwmoKgIyCZ1fZQoaAZHQHENUTL4etFoB03aAWgIR0CcKxLZi/fwdX2UKGgGR0Bvl4XQ+lj3aAdNlQFoCEdAnC1QLE1l5HV9lChoBkdAb87IIWxhUmgHTV8BaAhHQJwwb2WY4Q11fZQoaAZHQBsw/HHWBjFoB00MAWgIR0CcMeTRIBikdX2UKGgGR0But2nIhhYvaAdNWAFoCEdAnDPQAp8WsXV9lChoBkdAcSVDziCJ42gHTYEBaAhHQJw3JZwGW2R1fZQoaAZHQGQwGJvYODtoB03oA2gIR0CcPeZBLPD6dX2UKGgGR0BwxU4ACGN8aAdNOAFoCEdAnD+mg3974XV9lChoBkdAcGnWJrLyMGgHTX0BaAhHQJxBwNXo1UF1fZQoaAZHQHJbMiB5HExoB02TAWgIR0CcRSMvAXVLdX2UKGgGR0A7t39rGipOaAdNDAFoCEdAnEaY9LYf4nV9lChoBkdAcEfll9SdfGgHTcEBaAhHQJxJDoRqXWx1fZQoaAZHQHBEQiJO32FoB03MAWgIR0CcTOt8uzyCdX2UKGgGR0ByGjw2ETQFaAdNmgFoCEdAnE8yxNZeRnV9lChoBkdAbjH+irT6SGgHTfQBaAhHQJxUB04iosJ1fZQoaAZHQHCDDzI3irFoB01zAWgIR0CcVrCdz4lAdX2UKGgGR0BweFfICEHuaAdNbAFoCEdAnFmEDhcZ+HV9lChoBkdAchbwQUYbbWgHTUsBaAhHQJxdMxk/bCd1fZQoaAZHQECETot+TeRoB00kAWgIR0CcXsf5ULlWdX2UKGgGR0AxC5nUUfxMaAdNDgFoCEdAnGBPluFYdXV9lChoBkdALi274BV+7WgHTQgBaAhHQJxhv2xptaZ1fZQoaAZHQHC26tLcsUZoB03MAWgIR0CcZYG21D0EdX2UKGgGR0BwG4CPp6hQaAdNXAFoCEdAnGdpqubI93V9lChoBkdAcJFRYzSCv2gHTWkBaAhHQJxqklXzUZx1fZQoaAZHQHHDT1XeWOZoB02KAmgIR0Ccbjkadc0MdX2UKGgGR0BwGfhl18suaAdNdAFoCEdAnHFyYPXkHXV9lChoBkdAcYECgbp/w2gHTZ4BaAhHQJxzumALApN1fZQoaAZHQF/yxtpEhJRoB03oA2gIR0CcenyRjjJddX2UKGgGR0BuKBQaaTfSaAdNKgFoCEdAnHwXj+717XV9lChoBkdAcluRc/t6X2gHTW4BaAhHQJx/UwfyPMl1fZQoaAZHQGoBtRekYXRoB01LAWgIR0CcgTJp35erdX2UKGgGR0BqPPCGetjkaAdNSgFoCEdAnIMBuTA31nV9lChoBkdAa1YvIwM6R2gHTUoBaAhHQJyG0L6UJOZ1fZQoaAZHQGv20YbbUPRoB002AWgIR0CciQ5zHS4OdX2UKGgGR0BxjwJ2MbWFaAdNUAFoCEdAnIunyy2QXHV9lChoBkdANZFmSQo1DWgHS91oCEdAnI2CONo8IXV9lChoBkdAcP0p2U0N0GgHTTQBaAhHQJyQa8UVSGd1fZQoaAZHQHGsTCYTkABoB01ZAWgIR0CcklZeAuqWdX2UKGgGR0BtbR5qubI+aAdNMQFoCEdAnJQBTOxB3XV9lChoBkdAU5d6JIlMRGgHTegDaAhHQJya0uUUwi91fZQoaAZHQGzUuzQeFL5oB01AAWgIR0CcncTo+wC9dX2UKGgGR0BwsJCrtE5RaAdN4wJoCEdAnKHljRUm2XV9lChoBkdAJpaxX4j8k2gHTQEBaAhHQJykdjoZAIJ1fZQoaAZHQHG0hD9fkWBoB013AWgIR0CcpozzVc2SdX2UKGgGR0BwQzVmSQo1aAdNXgFoCEdAnKh4pDu0C3V9lChoBkdAQsAWnCO3lWgHTRABaAhHQJyrJJGvwE11fZQoaAZHQG3Z+pOvdM1oB01xAWgIR0CcrS24uscRdX2UKGgGR0BuKWk1uR9xaAdNRwFoCEdAnK7+QlruY3V9lChoBkdARBQhpxm03WgHTRABaAhHQJyxppxm03R1fZQoaAZHQHGFtEb5uZVoB01VAWgIR0Ccs5DRtxdZdX2UKGgGR0BuUh5LRKHxaAdNYwFoCEdAnLWR4IKMN3V9lChoBkdAKC6CUX531WgHTQEBaAhHQJy3hrO7g891fZQoaAZHQHBHaWC2+f1oB01SAWgIR0Ccu2mvGIbgdX2UKGgGR0BUC9xAB1cMaAdN6ANoCEdAnMQXHWBjF3V9lChoBkdAb2gDlHSWq2gHTUMBaAhHQJzF2isXBP91fZQoaAZHQDpU0waisXBoB0v2aAhHQJzHN+so2GZ1fZQoaAZHQGylme18b71oB02ZAWgIR0CcyqmCiAUddX2UKGgGR0BHZLwe/5+IaAdL42gIR0Ccy+yLyc0+dX2UKGgGR0Bw4MXfqHGkaAdN1wFoCEdAnM6Fd5Y5k3V9lChoBkdAbInHHWBjF2gHTU8BaAhHQJzRi+6Ae7t1fZQoaAZHQGygaBiCrcVoB01KAWgIR0Cc011x82JjdX2UKGgGR0AnP0Rvm5lOaAdL/GgIR0Cc1MEaESM+dX2UKGgGR0AJUy31BdD6aAdNCgFoCEdAnNdmwRoRI3V9lChoBkdAce/eVs1sL2gHTUIBaAhHQJzZPfO2RaJ1fZQoaAZHQGtlB1Tzd1xoB01HAWgIR0Cc26hZQpF1dX2UKGgGR0BxDrz+WGATaAdNawFoCEdAnN/Dl1bJOnV9lChoBkdAPTpHAh0QsmgHTQUBaAhHQJzhzHWBjF11fZQoaAZHQGykvwNLDhtoB00RAmgIR0Cc5YTqB3A3dX2UKGgGR0BwHhIJ7b+MaAdNMQFoCEdAnOhjlPrOaHV9lChoBkdAbgeaR6nivWgHTVoBaAhHQJzqoZtNzsB1fZQoaAZHQHCHItpVS4xoB011AWgIR0Cc7Uv0h/y5dX2UKGgGR8AvLSKFZgXuaAdL92gIR0Cc8LWMju8cdX2UKGgGR0BQlz5ftx+8aAdNCwFoCEdAnPKsQZn+Q3V9lChoBkdAa7+Lux8lX2gHTVABaAhHQJz1J99c8kl1fZQoaAZHQG46FSS/0uloB01EAWgIR0Cc9ujLjghsdX2UKGgGR0BvOwQrc0tRaAdNLQFoCEdAnPnB7Z39rHV9lChoBkdAbs2wco6S1WgHTX0BaAhHQJz72A9V3ll1fZQoaAZHQG0yBDG96C1oB01BAWgIR0Cc/aXnhbW3dX2UKGgGR8Ap+DvmYBvKaAdL4WgIR0CdAAngpBomdX2UKGgGR0BwGKG9HtngaAdNZgFoCEdAnQIM9GI9DHV9lChoBkdAL2lR51Ng0GgHS/1oCEdAnQNqvRqoInV9lChoBkdAa/BvR7Z392gHTSUBaAhHQJ0GNxNqQBB1fZQoaAZHwAyinHeaa1FoB0vmaAhHQJ0HeYsunMt1fZQoaAZHQHFo7tAs055oB01VAWgIR0CdCWTJQtSRdX2UKGgGR0Bs7A4p+c6OaAdNUQFoCEdAnQs3eN1hcHV9lChoBkdANa+OwPiDNGgHTQABaAhHQJ0N55+pfhN1fZQoaAZHQHECOObRWtFoB01/AWgIR0CdEAuwosqbdX2UKGgGR0Ao/a24NI9UaAdL6GgIR0CdEV5KODJ2dX2UKGgGR0BxKUlAu7HyaAdNcgFoCEdAnRSTeTFERnV9lChoBkdAcM8HP/rB02gHTdUBaAhHQJ0XMJOWSlp1fZQoaAZHQCZVhRZU1htoB0voaAhHQJ0Ye5vtMPB1fZQoaAZHQG/nt+kP+XJoB01VAWgIR0CdG4rCFbmmdX2UKGgGR0Bxfvl3hXKbaAdNTAFoCEdAnR2y8WbgCXV9lChoBkfAA886FM7EHmgHS+poCEdAnR9RwAEMb3V9lChoBkdAOrEzGgi/wmgHTQwBaAhHQJ0iu4z7/GV1fZQoaAZHQHG5nKKYRd1oB01dAWgIR0CdJW4ACGN8dX2UKGgGR0Bx//uKGcnWaAdNUgFoCEdAnSgC+xnnMnV9lChoBkdAcTUkkrwvx2gHTT4BaAhHQJ0p+O3lS0l1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}