import os from typing import Dict, List, Any from PIL import Image import jax from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel, VisionEncoderDecoderModel import torch class PreTrainedPipeline(): def __init__(self, path=""): model_dir = path # self.model = FlaxVisionEncoderDecoderModel.from_pretrained(model_dir) self.model = VisionEncoderDecoderModel.from_pretrained(model_dir) self.feature_extractor = ViTFeatureExtractor.from_pretrained(model_dir) self.tokenizer = AutoTokenizer.from_pretrained(model_dir) max_length = 16 num_beams = 4 # self.gen_kwargs = {"max_length": max_length, "num_beams": num_beams} self.gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "return_dict_in_generate": True, "output_scores": True} self.model.to("cpu") self.model.eval() # @jax.jit def _generate(pixel_values): with torch.no_grad(): outputs = self.model.generate(pixel_values, **self.gen_kwargs) output_ids = outputs.sequences sequences_scores = outputs.sequences_scores return output_ids, sequences_scores self.generate = _generate # compile the model image_path = os.path.join(path, 'val_000000039769.jpg') image = Image.open(image_path) self(image) image.close() def __call__(self, inputs: "Image.Image") -> List[str]: """ Args: Return: """ # pixel_values = self.feature_extractor(images=inputs, return_tensors="np").pixel_values pixel_values = self.feature_extractor(images=inputs, return_tensors="pt").pixel_values output_ids, sequences_scores = self.generate(pixel_values) preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] preds = [{"label": preds[0], "score": float(sequences_scores[0])}] return preds