File size: 2,544 Bytes
1cf77cd a2898dc 1cf77cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
---
license: apache-2.0
base_model: openlm-research/open_llama_3b_v2
tags:
- generated_from_trainer
model-index:
- name: working
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# working
This model is a fine-tuned version of [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) on the None dataset.
## Model description
training_arguments = TrainingArguments(
per_device_train_batch_size=8,
num_train_epochs=10,
learning_rate=3e-5,
gradient_accumulation_steps=2,
optim="adamw_hf",
fp16=True,
logging_steps=1,
# debug=True,
output_dir="/kaggle/Tatvajsh/Lllama_AHS_V_7.0/"
# warmup_steps=100,
)
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
dataset_text_field="text",
peft_config=lora_config,
max_seq_length=512,
args=training_arguments,
# packing=True,#change
)
trainer.train()
EPOCHS=[30-50]
from peft import LoraConfig, get_peft_model
lora_config = LoraConfig(
r=16,
lora_alpha=64,
target_modules=['base_layer','gate_proj', 'v_proj','up_proj','down_proj','q_proj','k_proj','o_proj'],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
def generate_prompt(row) -> str:
prompt=f"""
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{row['Instruction']}
### Response:
{row['Answer']}
### End
"""
return prompt
WHEN THE TRAINING LOSS IN NOT REDUCING THEN TRY SETTING FOR LESSER VALUE OF LEARNING RATE I.E. 2E-5 TO 3E-5,ETC.
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.14.1
|