--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper_lv2_v1 results: [] --- # whisper_lv2_v1 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2485 - Wer: 18.7231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1687 | 1.0 | 48 | 1.0313 | 19.8231 | | 0.042 | 2.0 | 96 | 1.0421 | 18.3166 | | 0.0189 | 3.0 | 144 | 1.0886 | 18.4840 | | 0.0125 | 4.0 | 192 | 1.1275 | 18.0057 | | 0.0108 | 5.0 | 240 | 1.1485 | 17.7905 | | 0.0106 | 6.0 | 288 | 1.1270 | 17.1927 | | 0.0072 | 7.0 | 336 | 1.1054 | 16.0928 | | 0.0076 | 8.0 | 384 | 1.1554 | 17.6471 | | 0.0083 | 9.0 | 432 | 1.2121 | 18.1731 | | 0.0093 | 10.0 | 480 | 1.2485 | 18.7231 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0