--- tags: - object-detection --- ## Model description detr-doc-table-detection is a model trained to detect both **Bordered** and **Borderless** tables in documents, based on [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) ## Training data The model was trained on ICDAR2019 Table Dataset ### How to use ```python from transformers import DetrFeatureExtractor, DetrForObjectDetection from PIL import Image image = Image.open("Image path") feature_extractor = DetrFeatureExtractor.from_pretrained('TahaDouaji/detr-doc-table-detection') model = DetrForObjectDetection.from_pretrained('TahaDouaji/detr-doc-table-detection') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) # convert outputs (bounding boxes and class logits) to COCO API target_sizes = torch.tensor([image.size[::-1]]) results = feature_extractor.post_process(outputs, target_sizes=target_sizes)[0] ```