import os from typing import Optional, Tuple, List from shutil import copyfile import torch from transformers import PreTrainedTokenizer from transformers.utils import logging from transformers.tokenization_utils_base import BatchEncoding import sentencepiece as spm logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "cog-pretrain.model"} class GLMChineseTokenizer(PreTrainedTokenizer): vocab_files_names = VOCAB_FILES_NAMES def __init__(self, vocab_file, **kwargs): super().__init__(**kwargs) self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(vocab_file) @property def vocab_size(self): return len(self.sp_model) def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text, **kwargs): return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.PieceToId(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.sp_model.IdToPiece(index) def convert_tokens_to_string(self, tokens): return self.sp_model.decode(tokens) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) @property def sop_token(self) -> Optional[str]: return "<|startofpiece|>" @property def sop_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the start token in the vocabulary, used when training a model with autoregressive blank filling. Returns `None` if the token has not been set. """ return self.convert_tokens_to_ids(self.sop_token) @property def eop_token(self) -> Optional[str]: return "<|endofpiece|>" @property def eop_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the end token in the vocabulary, used when training a model with autoregressive blank filling. Returns `None` if the token has not been set. """ return self.convert_tokens_to_ids(self.eop_token) @property def gmask_token_id(self) -> int: return self.convert_tokens_to_ids("[gMASK]") @property def smask_token_id(self) -> int: return self.convert_tokens_to_ids("[sMASK]") def build_inputs_for_generation(self, model_input: BatchEncoding, max_gen_length=512): mask_ids = [self.mask_token_id, self.smask_token_id, self.gmask_token_id] input_ids = model_input.input_ids batch_size, seq_length = input_ids.shape[:2] position_id, block_position_id = list(range(seq_length)), [0 for _ in range(seq_length)] position_ids, block_position_ids = [], [] for i in range(batch_size): mask_positions = [] for mask_id in mask_ids: mask_positions += (input_ids[i] == mask_id).nonzero(as_tuple=True)[0].tolist() if not mask_positions: raise ValueError("Cannot find mask token in the input") mask_positions.sort() mask_pos = mask_positions[0] position_ids.append(position_id + [mask_pos] * max_gen_length) block_position_ids.append(block_position_id + list(range(1, max_gen_length + 1))) position_ids = torch.tensor(position_ids, dtype=input_ids.dtype, device=input_ids.device) block_position_ids = torch.tensor(block_position_ids, dtype=input_ids.dtype, device=input_ids.device) position_ids = torch.stack((position_ids, block_position_ids), dim=1) attention_mask = model_input.attention_mask attention_mask = attention_mask.unsqueeze(1).expand(-1, seq_length + max_gen_length, -1) generation_attention_mask = torch.cat([attention_mask.new_zeros((seq_length, max_gen_length)), torch.tril(attention_mask.new_ones((max_gen_length, max_gen_length)))], dim=0).unsqueeze(0).expand(batch_size, -1, -1) attention_mask = torch.cat((attention_mask, generation_attention_mask), dim=2) attention_mask = attention_mask.unsqueeze(1) input_ids = torch.cat((input_ids, input_ids.new_full((batch_size, 1), self.sop_token_id)), dim=-1) return BatchEncoding( {"input_ids": input_ids, "position_ids": position_ids, "generation_attention_mask": attention_mask} ) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: ``[CLS] X [SEP]`` - pair of sequences: ``[CLS] A [SEP] B [SEP]`` Args: token_ids_0 (:obj:`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. """ assert token_ids_1 is None cls = [self.cls_token_id] eos = [self.eos_token_id] return cls + token_ids_0 + eos