import base64 import json import os from typing import List, Optional, Union, Dict, Any import regex as re import tiktoken from torch import TensorType from transformers import PreTrainedTokenizer from transformers.tokenization_utils_base import EncodedInput, BatchEncoding from transformers.utils import PaddingStrategy class ChatGLM4Tokenizer(PreTrainedTokenizer): vocab_files_names = {"vocab_file": "tokenizer.model"} model_input_names = ["input_ids", "attention_mask", "position_ids"] def __init__( self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, encode_special_tokens=False, **kwargs ): self.name = "GLM4Tokenizer" self.vocab_file = vocab_file pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" self.pat_str = re.compile(pat_str) self.encode_special_tokens = encode_special_tokens mergeable_ranks = {} with open(vocab_file) as f: for line in f: token, rank = line.strip().split() rank = int(rank) token = base64.b64decode(token) mergeable_ranks[token] = rank self.mergeable_ranks = mergeable_ranks self.tokenizer = tiktoken.Encoding( name="my_tokenizer", pat_str=pat_str, mergeable_ranks=mergeable_ranks, special_tokens={v.content: int(k) for k, v in kwargs['added_tokens_decoder'].items()} # special_tokens={} ) self.decoder = {rank: token for token, rank in mergeable_ranks.items()} self.n_words = len(self.decoder) super().__init__( padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs ) @property def vocab_size(self): return self.n_words def get_vocab(self): """ Returns vocab as a dict """ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab @staticmethod def convert_tokens_to_string(tokens: List[Union[bytes, str]]) -> str: """ Converts a sequence of tokens in a single string. """ text = "" temp = b"" for t in tokens: if isinstance(t, str): if temp: text += temp.decode("utf-8", errors="replace") temp = b"" text += t elif isinstance(t, bytes): temp += t else: raise TypeError("token should only be of type types or str") if temp: text += temp.decode("utf-8", errors="replace") return text def _tokenize(self, text, **kwargs): tokens = [] ids = self.tokenizer.encode(text) for t in ids: tokens.append(self.decoder[t]) return tokens def _convert_token_to_id(self, token): """ Converts a token (str) in an id using the vocab. """ return self.mergeable_ranks[token] def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, "") def save_vocabulary(self, save_directory, filename_prefix=None): """ Save the vocabulary and special tokens file to a directory. Args: save_directory (`str`): The directory in which to save the vocabulary. filename_prefix (`str`, *optional*): An optional prefix to add to the named of the saved files. Returns: `Tuple(str)`: Paths to the files saved. """ if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, self.vocab_files_names["vocab_file"] ) else: vocab_file = save_directory with open(self.vocab_file, 'rb') as fin: proto_str = fin.read() with open(vocab_file, "wb") as writer: writer.write(proto_str) return (vocab_file,) def get_prefix_tokens(self): prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("")] return prefix_tokens def apply_chat_template( self, conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]]], add_generation_prompt: bool = False, tokenize: bool = True, padding: bool = False, truncation: bool = False, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_dict: bool = False, tokenizer_kwargs: Optional[Dict[str, Any]] = None, add_special_tokens: bool = True, **kwargs, ) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]: if return_dict and not tokenize: raise ValueError( "`return_dict=True` is incompatible with `tokenize=False`, because there is no dict " "of tokenizer outputs to return." ) def handle_single_conversation(messages): content = "你是一位智能编程助手,你叫CodeGeeX。你会为用户回答关于编程、代码、计算机方面的任何问题,并提供格式规范、可以执行、准确安全的代码,并在必要时提供详细的解释。" input_message = self.build_single_message("system", "", content) for item in messages: role = item.get("role", "") if not role: raise ValueError("Invalid conversation format, 'role' must be given") # function call elif role == "tool": content = self.build_function_sys_prompt(item["content"]) input_message = self.build_single_message("system", "", content) # chat elif role == "system": input_message = self.build_single_message("system", item.get("metadata", ""), item["content"]) else: input_message += self.build_single_message(item["role"], item.get("metadata", ""), item["content"]) if add_generation_prompt: input_message += "<|assistant|>\n" if tokenize: input_ids = self.get_prefix_tokens() if add_special_tokens else [] input_ids += self.tokenizer.encode(input_message, allowed_special='all', disallowed_special=set()) return input_ids else: return input_message # Main logic to handle different conversation formats if isinstance(conversation, list) and all(isinstance(i, dict) for i in conversation): result = handle_single_conversation(conversation) elif isinstance(conversation, list) and all(isinstance(i, list) for i in conversation): result = [handle_single_conversation(c) for c in conversation] elif hasattr(conversation, "messages"): result = handle_single_conversation(conversation.messages) else: raise ValueError("Invalid conversation format") if tokenize: output = self.batch_encode_plus( [result] if isinstance(result[0], int) else result, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, is_split_into_words=True, add_special_tokens=False ) if return_dict: return output else: return output["input_ids"] else: return result def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ prefix_tokens = self.get_prefix_tokens() token_ids_0 = prefix_tokens + token_ids_0 if token_ids_1 is not None: token_ids_0 = token_ids_0 + token_ids_1 + [self.convert_tokens_to_ids("")] return token_ids_0 def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask: (optional) Set to 'False' to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults assert self.padding_side == "left" required_input = encoded_inputs[self.model_input_names[0]] seq_length = len(required_input) if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * seq_length if "position_ids" not in encoded_inputs: encoded_inputs["position_ids"] = list(range(seq_length)) if needs_to_be_padded: difference = max_length - len(required_input) if "attention_mask" in encoded_inputs: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "position_ids" in encoded_inputs: encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input return encoded_inputs @staticmethod def build_single_message(role, metadata, message): assert role in ["system", "user", "assistant", "observation"], role return f"<|{role}|>{metadata}\n{message}" @staticmethod def build_function_sys_prompt(item: dict) -> str: prompt = """ 你将接收到一个用户提出的问题,并请撰写清晰、简洁且准确的答案。 # Note - 我将给你提供一些函数工具的接口信息,包括函数的定义、用途、名字、参数名和参数类型。 - 请根据这些信息,为用户的指令,从中选择最合适的函数,并给出调用时需要使用的参数。 - **返回类型为一个json格式的字符串,包含函数名和参数字典。** - name: 函数名 - arguments: 参数字典,其中key为参数名,value为参数类型。 - **只需要生成答案即可,无需在你的回答之前或之后做出解释,也不要直接回答用户的问题。** - 只用当提供的函数工具不足以完成任务时,请你用正常的语气告知用户并解释原因。 # Functions 以下是可使用的函数工具的接口信息。 """.lstrip() if isinstance(item['function'], dict): func = item['function'] prompt += f"\n## Function 1\n" prompt += f"\n### Name\n{func['name']}\n" prompt += f"\n### Description\n{func['description']}\n" prompt += f"\n### Parameters\n```json\n{json.dumps(func['parameters'], ensure_ascii=False)}\n```\n" return prompt elif isinstance(item['function'], list): for idx, func in enumerate(item['function']): prompt += f"\n## Function {idx + 1}\n" prompt += f"\n### Name\n{func['name']}\n" prompt += f"\n### Description\n{func['description']}\n" prompt += f"\n### Parameters\n```json\n{json.dumps(func['parameters'], ensure_ascii=False)}\n```\n" return prompt def apply_infilling_template( self, message: dict, add_generation_prompt: bool = False, tokenize: bool = True, padding: bool = False, truncation: bool = False, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_dict: bool = False, add_special_tokens: bool = True, ) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]: if return_dict and not tokenize: raise ValueError( "`return_dict=True` is incompatible with `tokenize=False`, because there is no dict " "of tokenizer outputs to return." ) if not isinstance(message, dict): raise ValueError("Invalid conversation format") content = self.build_infilling_prompt(message) input_message = self.build_single_message("user", "", content) if add_generation_prompt: input_message += "<|assistant|>\n" if not tokenize: return input_message input_ids = self.get_prefix_tokens() if add_special_tokens else [] input_ids += self.tokenizer.encode(input_message, allowed_special='all', disallowed_special=set()) output = self.batch_encode_plus( [input_ids] if isinstance(input_ids[0], int) else input_ids, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, is_split_into_words=True, add_special_tokens=False ) if return_dict: return output else: return output["input_ids"] @staticmethod def build_infilling_prompt(item: dict) -> str: prompt = "" if "path" in item: prompt += f"###PATH:{item['path']}\n" if "language" in item: prompt += f"###LANGUAGE:{item['language']}\n" elif "lang" in item: prompt += f"###LANGUAGE:{item['lang']}\n" if "mode" in item and item['mode'].lower() == "line": prompt += "###MODE:LINE\n" else: prompt += "###MODE:BLOCK\n" prompt += f"<|code_suffix|>{item['suffix']}" prompt += f"<|code_prefix|>{item['prefix']}" prompt += "<|code_middle|>" return prompt