--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9493548387096774 --- # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.3171 - Accuracy: 0.9494 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.9637 | 1.0 | 318 | 2.9527 | 0.7529 | | 2.2541 | 2.0 | 636 | 1.4652 | 0.8632 | | 1.1032 | 3.0 | 954 | 0.7510 | 0.9097 | | 0.5665 | 4.0 | 1272 | 0.4749 | 0.9342 | | 0.3331 | 5.0 | 1590 | 0.3736 | 0.9426 | | 0.2338 | 6.0 | 1908 | 0.3400 | 0.9458 | | 0.1874 | 7.0 | 2226 | 0.3289 | 0.9481 | | 0.1658 | 8.0 | 2544 | 0.3179 | 0.9474 | | 0.1553 | 9.0 | 2862 | 0.3183 | 0.9490 | | 0.1503 | 10.0 | 3180 | 0.3171 | 0.9494 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.1.0+cu121 - Datasets 1.16.1 - Tokenizers 0.15.0