Update README.md
Browse files
README.md
CHANGED
|
@@ -1,201 +1,191 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
-
|
| 4 |
---
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
#
|
| 7 |
|
| 8 |
-
|
| 9 |
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
| 19 |
|
| 20 |
-
-
|
| 21 |
-
-
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
-
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
-
|
| 54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
| 200 |
|
|
|
|
| 201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: cc-by-nc-4.0
|
| 3 |
+
base_model: google/gemma-2b-it
|
| 4 |
+
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
- axolotl
|
| 7 |
+
- gemma
|
| 8 |
+
- instruct
|
| 9 |
+
- finetune
|
| 10 |
+
- chatml
|
| 11 |
+
- gpt4
|
| 12 |
+
- synthetic data
|
| 13 |
+
- distillation
|
| 14 |
+
model-index:
|
| 15 |
+
- name: openhermes-gemma-2b-it
|
| 16 |
+
results: []
|
| 17 |
+
datasets:
|
| 18 |
+
- mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
|
| 19 |
+
language:
|
| 20 |
+
- en
|
| 21 |
library_name: transformers
|
| 22 |
+
pipeline_tag: text-generation
|
| 23 |
---
|
| 24 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 25 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 26 |
|
| 27 |
+
# openhermes-gemma-2b-it
|
| 28 |
|
| 29 |
+

|
| 30 |
|
| 31 |
+
openhermes-gemma-2b-it is a variant of the Gemma 2B language model, which has been further fine-tuned on the OpenHermes-2.5 preference dataset
|
| 32 |
+
using QLoRA. This fine-tuning process enhances the model's ability to understand and generate responses that align
|
| 33 |
+
with user preferences in conversational settings.
|
| 34 |
|
| 35 |
|
| 36 |
+
* [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it)
|
| 37 |
+
* [mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha)
|
| 38 |
|
| 39 |
+
</details><br>
|
| 40 |
|
| 41 |
+
## Usage
|
| 42 |
|
| 43 |
+
### Chat Template
|
| 44 |
|
| 45 |
+
The instruction-tuned models use a chat template that must be adhered to for conversational use.
|
| 46 |
+
The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
|
| 49 |
|
| 50 |
+
```py
|
| 51 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 52 |
+
import transformers
|
| 53 |
+
import torch
|
| 54 |
|
| 55 |
+
model_id = "Syed-Hasan-8503/openhermes-gemma-2b-it"
|
| 56 |
+
dtype = torch.bfloat16
|
|
|
|
| 57 |
|
| 58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 59 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 60 |
+
model_id,
|
| 61 |
+
device_map="cuda",
|
| 62 |
+
torch_dtype=dtype,
|
| 63 |
+
)
|
| 64 |
|
| 65 |
+
chat = [{ "role": "user", "content": "What is Machine Learning?" }]
|
| 66 |
+
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
| 67 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
After the prompt is ready, generation can be performed like this:
|
| 70 |
|
| 71 |
+
```py
|
| 72 |
+
inputs = tokenizer.encode(prompt, add_special_tokens=True, return_tensors="pt")
|
| 73 |
+
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=250)
|
| 74 |
+
print(tokenizer.decode(outputs[0]))
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
### Inputs and outputs
|
| 78 |
+
|
| 79 |
+
* **Input:** Text string, such as a question, a prompt, or a document to be
|
| 80 |
+
summarized.
|
| 81 |
+
* **Output:** Generated English-language text in response to the input, such
|
| 82 |
+
as an answer to a question, or a summary of a document.
|
| 83 |
+
|
| 84 |
+
## Evaluation data
|
| 85 |
+
|
| 86 |
+
🏆 Evaluation
|
| 87 |
+
|
| 88 |
+
### COMING SOON. STAY TUNED.
|
| 89 |
+
|
| 90 |
+
### Training hyperparameters
|
| 91 |
+
|
| 92 |
+
The following hyperparameters were used during training:
|
| 93 |
+
- learning_rate: 5e-07
|
| 94 |
+
- train_batch_size: 1
|
| 95 |
+
- eval_batch_size: 8
|
| 96 |
+
- seed: 42
|
| 97 |
+
- gradient_accumulation_steps: 8
|
| 98 |
+
- total_train_batch_size: 8
|
| 99 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 100 |
+
- lr_scheduler_type: cosine
|
| 101 |
+
- lr_scheduler_warmup_steps: 100
|
| 102 |
+
- training_steps: 1000
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
### 📝 Axolotl Configuration
|
| 106 |
+
|
| 107 |
+
```yaml
|
| 108 |
+
base_model: google/gemma-2b-it
|
| 109 |
+
model_type: GemmaForCausalLM
|
| 110 |
+
tokenizer_type: GemmaTokenizer
|
| 111 |
+
trust_remote_code: true
|
| 112 |
+
|
| 113 |
+
load_in_8bit: false
|
| 114 |
+
load_in_4bit: true
|
| 115 |
+
strict: false
|
| 116 |
+
|
| 117 |
+
rl: dpo
|
| 118 |
+
chat_template: chatml
|
| 119 |
+
datasets:
|
| 120 |
+
- path: mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
|
| 121 |
+
split: train
|
| 122 |
+
type: chatml.intel
|
| 123 |
+
dataset_prepared_path:
|
| 124 |
+
val_set_size: 0.01
|
| 125 |
+
output_dir: ./out
|
| 126 |
+
|
| 127 |
+
adapter: qlora
|
| 128 |
+
lora_model_dir:
|
| 129 |
+
|
| 130 |
+
sequence_len: 1800
|
| 131 |
+
sample_packing: false
|
| 132 |
+
pad_to_sequence_len: false
|
| 133 |
+
|
| 134 |
+
lora_r: 16
|
| 135 |
+
lora_alpha: 16
|
| 136 |
+
lora_dropout: 0.05
|
| 137 |
+
lora_target_linear: true
|
| 138 |
+
lora_fan_in_fan_out:
|
| 139 |
+
lora_target_modules:
|
| 140 |
+
|
| 141 |
+
wandb_project: axolotl-gemma-dpo
|
| 142 |
+
wandb_entity:
|
| 143 |
+
wandb_watch:
|
| 144 |
+
wandb_name:
|
| 145 |
+
wandb_log_model:
|
| 146 |
+
|
| 147 |
+
gradient_accumulation_steps: 8
|
| 148 |
+
micro_batch_size: 1
|
| 149 |
+
num_epochs: 1
|
| 150 |
+
optimizer: paged_adamw_32bit
|
| 151 |
+
lr_scheduler: cosine
|
| 152 |
+
learning_rate: 5e-7
|
| 153 |
+
|
| 154 |
+
train_on_inputs: false
|
| 155 |
+
group_by_length: false
|
| 156 |
+
bf16: true
|
| 157 |
+
fp16: false
|
| 158 |
+
tf32: true
|
| 159 |
+
|
| 160 |
+
gradient_checkpointing: true
|
| 161 |
+
early_stopping_patience:
|
| 162 |
+
resume_from_checkpoint:
|
| 163 |
+
local_rank:
|
| 164 |
+
logging_steps: 1
|
| 165 |
+
xformers_attention:
|
| 166 |
+
flash_attention: false
|
| 167 |
+
|
| 168 |
+
warmup_steps: 100
|
| 169 |
+
evals_per_epoch: 1
|
| 170 |
+
eval_table_size:
|
| 171 |
+
eval_table_max_new_tokens: 128
|
| 172 |
+
save_steps: 1000
|
| 173 |
+
max_steps: 1000
|
| 174 |
+
debug:
|
| 175 |
+
deepspeed:
|
| 176 |
+
weight_decay: 0.0
|
| 177 |
+
fsdp:
|
| 178 |
+
fsdp_config:
|
| 179 |
+
special_tokens:
|
| 180 |
+
```
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
### Framework versions
|
| 184 |
+
|
| 185 |
+
- Transformers 4.39.0.dev0
|
| 186 |
+
- Pytorch 2.1.2+cu118
|
| 187 |
+
- Datasets 2.17.0
|
| 188 |
+
- Tokenizers 0.15.0
|
| 189 |
+
- axolotl: 0.4.0
|
| 190 |
+
|
| 191 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|