{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dbf7fb1f200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691262801699599205, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAODPDL5p70w/eK7ZvZZEAr/sR+W9NnmBPQAAAAAAAAAAZlLvPPZML7pAsKA5N+w7tm8Cu7rlLL64AACAPwAAgD9Nxg6+A+IZvJfZIrzA6cW6R9+FPSM6oTsAAAAAAAAAAN0bUr5vK2k+QKLPPgJPt74S1ec98B7ZPQAAAAAAAAAAM5EBvHvWkLrSDUG55h1Lsx/gxrrSFF04AACAPwAAgD9NHBu9SGmHulkTPTtQFKQ2hikxuxYuXLoAAIA/AACAP000XL1IO466NTThNraDATLwEzQ6avMCtgAAgD8AAIA/mvpLPY9eS7qeDSy5Ilibsg/aYTl+kEY4AACAPwAAgD/z5tO9j/4RuggtKzgvt1Ez8sVWugwLS7cAAIA/AACAP6Zi+j24JIE9haGdvvPIK75jzzW9HRwvvQAAAAAAAAAAGsEOvQ9FwT94Qyu+G0SSPJ/rujsqMM69AAAAAAAAAAAtNw4+Uru1uyLETjzFnY+6MJ0VvTtUc7sAAIA/AACAPzPSWj04U9m7Q5pPuwAMlzxEgyu9UwV+PQAAgD8AAIA/TWGivVwHILodvtu4JEXis7U0Bjuyr/83AACAPwAAgD+AS2e99sR6ugJA27YrfrowSGriumpl/DUAAIA/AACAP57Wgr7EWiq9UnOdOrCGWjkqrpI+Q6nUuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBscZpBX0aMAWyUTRgBjAF0lEdAscBdiZv1lHV9lChoBkdAcIqyHVPN3WgHTbQBaAhHQLHAgPwuuih1fZQoaAZHQHK0nYQJ5VxoB03GAWgIR0CxwLMdYGMXdX2UKGgGR0BwlOxlg+hXaAdNXwFoCEdAscGoQbuMM3V9lChoBkdAcdCPhhpg1GgHTVQBaAhHQLHEWw8nuzB1fZQoaAZHQG4HwFkhA4ZoB02QA2gIR0CxxQAEQoTgdX2UKGgGR0Bse/974SHuaAdNAQJoCEdAscXmLVFx43V9lChoBkdAce9SGahHsmgHTb0BaAhHQLHF+Wwu/UR1fZQoaAZHQGWc0Mw1zhhoB03oA2gIR0CxxkHT/hl2dX2UKGgGR0BwOHJIUahpaAdN2wNoCEdAscbV6u4gBHV9lChoBkdAcFRvGIbfg2gHTbcCaAhHQLHIBtuk1uR1fZQoaAZHQHFv0js2NvRoB00ZA2gIR0CxyERZEDyOdX2UKGgGR0BhBbtPYWcjaAdN6ANoCEdAscjmY5T6znV9lChoBkdAYuWwBYFJQWgHTegDaAhHQLHKHG+bmU51fZQoaAZHQHN2Wb9ZRsNoB02HA2gIR0CxyktxEORUdX2UKGgGR0Bwbk5IYm9haAdNqQFoCEdAscqmSgXdkHV9lChoBkdAc1lFKkEcKmgHTaYDaAhHQLHKuPCl7+l1fZQoaAZHQHGbbn1WbPRoB00UAWgIR0CxysC5d4VzdX2UKGgGR0BkT5wKjSG8aAdN6ANoCEdAscseQU5+6XV9lChoBkdAZojBomG/OGgHTegDaAhHQLHMAxTbWVh1fZQoaAZHQHHMg176YVtoB01HAWgIR0CxzCkDU3GXdX2UKGgGR0BQOqtDD0lJaAdLqWgIR0CxzFnpKSPmdX2UKGgGR0BiruZw4sEraAdN6ANoCEdAscxf7tReknV9lChoBkdAcPI18b70nWgHTR0CaAhHQLHM2ZRbbDd1fZQoaAZHQHCMksBhhH9oB00ZAWgIR0CxzP/1UVBVdX2UKGgGR0Bwl2ebutwKaAdNAANoCEdAsc2aZa3ZwnV9lChoBkdAcP9umrKeTWgHTdUBaAhHQLHNvns9jgB1fZQoaAZHQGiNHEETxoZoB03oA2gIR0CxzceejEehdX2UKGgGR0BxHZiay8jBaAdNrgFoCEdAsc8Xm1YyPHV9lChoBkdAcMlrnkkrw2gHTSkDaAhHQLHdIZfD1oR1fZQoaAZHQHGgLU1AJLNoB01EAWgIR0Cx3Vd5IH1OdX2UKGgGR0BwL4mx+rlvaAdL+mgIR0Cx3XQI6bONdX2UKGgGR0BwgFgc94eLaAdNMgJoCEdAsd33QnhKlHV9lChoBkdAcSg/GEPDpGgHTX0DaAhHQLHeHa/yoXN1fZQoaAZHQHHP+psGgSRoB02qAWgIR0Cx3kZnxri3dX2UKGgGR0BydLVCojwAaAdNFAFoCEdAsd58rrgO0HV9lChoBkdAcqV10DEFXGgHTaYBaAhHQLHekC79Q411fZQoaAZHQG75EOI68xtoB00zAmgIR0Cx3rlCw8nvdX2UKGgGR0BxlTFglWwNaAdN0wFoCEdAsd76v3ai9XV9lChoBkdAcZ9zGgi/wmgHTQcDaAhHQLHfGu76Hj91fZQoaAZHQG04tZFG5MFoB02wAmgIR0Cx33lyBCladX2UKGgGR0Bw4709QoCuaAdNCAFoCEdAsd+AA0bcXXV9lChoBkdAcuGk4FRpDmgHTSEBaAhHQLHgGx/ustF1fZQoaAZHQHFf6sIVuaZoB00EAWgIR0Cx4OWb1AZ9dX2UKGgGR0ByyQxYaHbiaAdNhQFoCEdAseDqOT7l73V9lChoBkdAcdX0L+glGGgHTbUBaAhHQLHh4U21lXl1fZQoaAZHQG5c1QyhzvJoB02dAWgIR0Cx4uDqB3A3dX2UKGgGR0Bx1c384xUOaAdNdQFoCEdAseMAN4JNTXV9lChoBkdAcfblzEJjUmgHTSABaAhHQLHjDyzolld1fZQoaAZHQHBOP0dzXBhoB029AWgIR0Cx4x+ZgG8mdX2UKGgGR0BwqyuuA7PqaAdNgQFoCEdAseN3IsAeaXV9lChoBkdAcumCDmKZUmgHTbkBaAhHQLHjijdYW+J1fZQoaAZHQHAhd3OfNA1oB003AWgIR0Cx5AVYlpoLdX2UKGgGR0ByjUQEpy6uaAdNuAFoCEdAseQZb2USqXV9lChoBkdAcOL+KCQLeGgHTS8BaAhHQLHki127nPp1fZQoaAZHQHAzjk2gnMNoB02DAmgIR0Cx5MkUwi7kdX2UKGgGR0BpjCbrkbPyaAdN6ANoCEdAseUsmu1WsHV9lChoBkdAcR6rp7kXDWgHS/BoCEdAseWTafzz3HV9lChoBkdAYfgQ6IWP92gHTegDaAhHQLHl4blzU7V1fZQoaAZHQG7ZSeqaPS5oB004AWgIR0Cx5fh3Roh7dX2UKGgGR0Bohi7oSteVaAdN6ANoCEdAseYNWluWKXV9lChoBkdAcwiOmixmkGgHTWYBaAhHQLHmQqj8DSx1fZQoaAZHQG6lX1J17ppoB00IAmgIR0Cx5o6Kcd5qdX2UKGgGR0BwGMRQJokBaAdNkgFoCEdAsea9lBhQWXV9lChoBkdAcurkyDZlF2gHS9hoCEdAsebNLcsUZnV9lChoBkdAcecDYywfQ2gHTQsDaAhHQLHnpe1a4c51fZQoaAZHQG0E1cD8tPJoB00oAWgIR0Cx6Ajebd8BdX2UKGgGR0BwbiRjjJdTaAdNugFoCEdAseglsN2C/XV9lChoBkdAbcA53C9AX2gHTaUBaAhHQLHohSBK+SN1fZQoaAZHQHGwTsD4gzRoB01qAmgIR0Cx6N109yLidX2UKGgGR0ByQKEi+tbLaAdNRwFoCEdAsekde6ZpjHV9lChoBkdAcONeii7Ci2gHTVcCaAhHQLHpIG+sYEZ1fZQoaAZHQHLo8Kb8WKxoB01pAWgIR0Cx6Vha9sabdX2UKGgGR0BxEgiaAnUlaAdNRAFoCEdAselcwL3K0XV9lChoBkdAcYRbTtsvZmgHS/RoCEdAsepHgBLf13V9lChoBkdAbwZLGrCFbmgHTSIBaAhHQLHqXpPRArx1fZQoaAZHQHATEPhAGB5oB02QAWgIR0Cx6n221D0EdX2UKGgGR0Byu9BWxQizaAdN6AFoCEdAsesagi/wiXV9lChoBkdAcjISA6Mir2gHTU8CaAhHQLHrIAggX/J1fZQoaAZHQGmd1RUFSsNoB03oA2gIR0Cx66v9UCJXdX2UKGgGR0BzAk86mwaBaAdNNAFoCEdAseuuJGe+VXV9lChoBkdAclSJo0ygw2gHTSABaAhHQLHrvERJ2+x1fZQoaAZHQHJwr6guh9NoB023AWgIR0Cx7Ci1JDmbdX2UKGgGR0ByJEGr0aqCaAdNUgFoCEdAsewxFiKBNHV9lChoBkdAcT/PX05EMWgHTXoBaAhHQLHsxUOd5IJ1fZQoaAZHQHKnouf29L9oB00SAWgIR0Cx7PqlgtvodX2UKGgGR0BxaaaMJhOQaAdNrQJoCEdAse0jiQ1aXHV9lChoBkdAY5kPbO/tY2gHTegDaAhHQLHtTs5XEIh1fZQoaAZHQHIHlM/QjUxoB01PA2gIR0Cx7hgYxcmjdX2UKGgGR0Byp/kmx+rmaAdNIwFoCEdAse6rduYQa3V9lChoBkdAclc+X7cfvGgHS/doCEdAse7aK+BYm3V9lChoBkdAcqWanaWX1WgHTZACaAhHQLHu9cD8tPJ1fZQoaAZHQHBkesgdOqNoB00EAWgIR0Cx7v4Z2pyZdX2UKGgGR0BxEYXTEzfraAdN1AFoCEdAse8F67dzn3V9lChoBkdAc1LAaef7JmgHTVsBaAhHQLHvdn8Kohp1fZQoaAZHQHBaPNqxkd5oB00EAmgIR0Cx77vNJOFhdX2UKGgGR0Bw4QTPBzmwaAdN3QFoCEdAsfBAO7QLNXV9lChoBkdAcE2kEcKgI2gHTR8BaAhHQLHwiUO/cnF1fZQoaAZHQHD1nBciW3VoB0vZaAhHQLHxRuFpPAR1fZQoaAZHQHFShJZntfJoB010AmgIR0Cx8apGKAJ+dWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 186, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.97, "ent_coef": 0.009, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}