# Copyright (c) Alibaba, Inc. and its affiliates. import gc import hashlib import os import pickle import re import time import uuid from bisect import bisect_right from contextlib import contextmanager, nullcontext from typing import Callable, Dict, List, Optional, Tuple, Union import numpy as np import torch import torch.distributed as dist import torch.nn as nn from datasets.utils.filelock import FileLock from modelscope.hub.utils.utils import get_cache_dir from transformers.integrations import is_deepspeed_zero3_enabled from transformers.utils import is_torch_cuda_available, is_torch_mps_available, is_torch_npu_available from .env import get_dist_setting, is_dist, is_dist_ta, is_local_master, is_master from .logger import get_logger from .utils import deep_getattr logger = get_logger() def _find_local_mac() -> str: mac = uuid.getnode() mac_address = ':'.join(('%012x' % mac)[i:i + 2] for i in range(0, 12, 2)) return mac_address def get_n_params_grads(model) -> Tuple[List[int], List[int]]: n_params, n_grads = [], [] for p in model.parameters(): if is_deepspeed_zero3_enabled(): import deepspeed context = deepspeed.zero.GatheredParameters(p) else: context = nullcontext() with context: n_params.append(p.numel()) n_grads.append(p.numel() if p.requires_grad else 0) return n_params, n_grads def get_model_parameter_info(model: nn.Module, name: Optional[str] = None) -> str: n_params, n_grads = get_n_params_grads(model) n_params = sum(n_params) n_grads = sum(n_grads) n_buffers = sum(p.numel() for p in model.buffers()) if name is None: name = model.__class__.__name__ n_params /= 1e6 n_grads /= 1e6 n_buffers /= 1e6 s = (f'{name}: ' f'{n_params:.4f}M Params ({n_grads:.4f}M Trainable ' f'[{100 * n_grads / n_params:.4f}%]), ' f'{n_buffers:.4f}M Buffers.') return s def find_sub_module(module: torch.nn.Module, module_name: str) -> List[torch.nn.Module]: _modules = list() for name, sub_module in module.named_modules(): if not name: continue if name.endswith(module_name): _modules.append(sub_module) return _modules def show_layers(model: nn.Module, max_lines: Optional[int] = 20) -> None: named_p = list(model.named_parameters()) for i, (n, p) in enumerate(named_p): if max_lines is not None and i >= max_lines: logger.info('...') break logger.info(f'[{n}]: requires_grad={p.requires_grad}, dtype={p.dtype}, device={p.device}') def freeze_parameters(model: nn.Module, freeze_parameters_ratio: float, freeze_parameters: List[str], freeze_parameters_regex: Optional[str] = None) -> None: if freeze_parameters_ratio > 0: n_parameters = get_n_params_grads(model)[0] n_parameters = np.array(n_parameters, dtype=np.int64) n_freeze_parameters = int(np.sum(n_parameters) * freeze_parameters_ratio) n_parameters_cs = np.cumsum(n_parameters) idx = bisect_right(n_parameters_cs, n_freeze_parameters) for _, p in zip(range(idx), model.parameters()): p.requires_grad = False if len(freeze_parameters) > 0: for n, p in model.named_parameters(): for freeze_p in freeze_parameters: if n.startswith(freeze_p): p.requires_grad = False if freeze_parameters_regex is not None: try: pattern = re.compile(freeze_parameters_regex) except re.error as e: logger.warning(f"Invalid freeze_parameters_regex '{freeze_parameters_regex}': {e}") return for n, p in model.named_parameters(): if pattern.search(n): p.requires_grad = False def activate_parameters(model: nn.Module, additional_trainable_parameters: List[str], trainable_parameters_regex: Optional[str] = None) -> None: has_activate = False if len(additional_trainable_parameters) > 0: for n, p in model.named_parameters(): for additional_tp in additional_trainable_parameters: if n.startswith(additional_tp): p.requires_grad = True has_activate = True if not has_activate: logger.warning('len(additional_trainable_parameters) > 0 but no parameters are activated. ' f'additional_trainable_parameters: {additional_trainable_parameters}') has_activate = False if trainable_parameters_regex is not None: try: pattern = re.compile(trainable_parameters_regex) except re.error as e: logger.warning(f"Invalid trainable_parameters_regex '{trainable_parameters_regex}': {e}") return for n, p in model.named_parameters(): if pattern.search(n): p.requires_grad = True has_activate = True if not has_activate: logger.warning('trainable_parameters_regex is provided but no parameters are activated. ' f'trainable_parameters_regex: {trainable_parameters_regex}') def time_synchronize() -> float: torch.cuda.synchronize() return time.perf_counter() # second def _get_max_memory(device_ids: List[int]) -> Dict[Union[int, str], int]: """add feat in accelerate to support MP + DDP""" import psutil # Make sure CUDA is initialized on each GPU to have the right memory info. for i in device_ids: _ = torch.tensor([0], device=i) device_ids_set = set(device_ids) max_memory = {} for i in range(get_device_count()): max_memory[i] = 0 if i in device_ids_set: max_memory[i] = torch.cuda.mem_get_info(i)[0] max_memory['cpu'] = psutil.virtual_memory().available return max_memory def _sync_max_memory(max_memory: Dict[Union[int, str], int]) -> Dict[Union[int, str], int]: """Make sure that the model structure of MP(device_map) is the same, when using DDP.""" max_memory_list = [v for k, v in max_memory.items() if (v > 0 and k != 'cpu')] _, local_rank, world_size, _ = get_dist_setting() src_tensor = torch.tensor(max_memory_list).to(local_rank) tgt_tensor_list = [torch.zeros_like(src_tensor) for _ in range(world_size)] dist.all_gather(tgt_tensor_list, src_tensor) tgt_tensor = torch.stack(tgt_tensor_list, dim=0) new_max_memory_iter = iter(tgt_tensor.min(dim=0)[0].tolist()) new_max_memory = {} for k, v in max_memory.items(): new_max_memory[k] = v if v > 0 and k != 'cpu': new_max_memory[k] = next(new_max_memory_iter) return new_max_memory def find_layers( model: nn.Module, cond: Callable[[str, nn.Module], bool], sub_module: Optional[str] = None, min_name_len: Optional[int] = None, ) -> List[str]: # The content of target_module_names cannot exist in inner_nodes. sub_module_str = sub_module if sub_module is None: sub_module = model else: sub_module = deep_getattr(model, sub_module) inner_nodes = set() for name, module in model.named_modules(): name = re.sub(r'\d+\.', '{}.', name) if not cond(name, module): inner_nodes.add(name) target_module_names = set() for name, module in sub_module.named_modules(): if sub_module_str: name = f'{sub_module_str}.{name}' if name else sub_module_str if cond(name, module): module_name_list = name.split('.') module_name = module_name_list.pop() i = 1 for inner_node in inner_nodes: while module_name_list and inner_node.endswith(re.sub( r'\d+\.', '{}.', module_name)) or min_name_len and i < min_name_len: module_name = f'{module_name_list.pop()}.{module_name}' i += 1 target_module_names.add(module_name) return list(target_module_names) def find_norm(model: nn.Module) -> List[str]: # find_layer_norm return find_layers( model, lambda name, module: isinstance(module, torch.nn.LayerNorm) or 'rmsnorm' in module.__class__.__name__.lower()) def find_embedding(model: nn.Module) -> List[str]: return find_layers(model, lambda name, module: isinstance(module, torch.nn.Embedding)) def find_all_linears(model, model_arch=None, extra_layers=None, sub_module=None): if model_arch is None: from swift.llm import get_model_arch model_arch = get_model_arch(model.model_meta.model_arch) # lm_head if model_arch and model_arch.lm_head: output = model_arch.lm_head idx = output.rfind('.') lm_head_name = output[idx + 1:] else: lm_head_name = 'lm_head' # 'score', 'classifier': classification model # 'v_head': reward model ignore_layers = [lm_head_name, 'score', 'v_head', 'classifier'] + ['lora_A', 'lora_B', 'base_layer'] ignore_linear_cls = [ 'glulinear' # phi4-mm ] def _cond(name, module): module_name = module.__class__.__name__.lower() if (extra_layers and isinstance(module, tuple(extra_layers)) or ('linear' in module_name and all(linear_cls not in module_name for linear_cls in ignore_linear_cls))) and all(layer not in name for layer in ignore_layers): return True return False return find_layers(model, _cond, sub_module=sub_module) @contextmanager def safe_ddp_context(hash_id: Optional[str], use_barrier: bool = False): if use_barrier and dist.is_initialized(): if is_dist() or is_dist_ta(): if not is_master(): dist.barrier() if not is_local_master(): # Compatible with multi-machine scenarios, # where each machine uses different storage hardware. dist.barrier() yield if is_dist() or is_dist_ta(): if is_master(): dist.barrier() if is_local_master(): dist.barrier() elif hash_id is not None: lock_dir = os.path.join(get_cache_dir(), 'lockers') os.makedirs(lock_dir, exist_ok=True) file_path = hashlib.sha256(hash_id.encode('utf-8')).hexdigest() + '.lock' file_path = os.path.join(lock_dir, file_path) with FileLock(file_path): yield else: yield def get_device(local_rank: Optional[Union[str, int]] = None) -> str: if local_rank is None: local_rank = max(0, get_dist_setting()[1]) local_rank = str(local_rank) if is_torch_npu_available(): device = 'npu:{}'.format(local_rank) elif is_torch_mps_available(): device = 'mps:{}'.format(local_rank) elif is_torch_cuda_available(): device = 'cuda:{}'.format(local_rank) else: device = 'cpu' return device def get_current_device(): if is_torch_npu_available(): current_device = torch.npu.current_device() elif is_torch_cuda_available(): current_device = torch.cuda.current_device() elif is_torch_mps_available(): current_device = 'mps' else: current_device = 'cpu' return current_device def set_device(local_rank: Optional[Union[str, int]] = None): if local_rank is None: local_rank = max(0, get_dist_setting()[1]) if is_torch_npu_available(): torch.npu.set_device(local_rank) elif is_torch_cuda_available(): torch.cuda.set_device(local_rank) def get_device_count() -> int: if is_torch_npu_available(): return torch.npu.device_count() elif is_torch_cuda_available(): return torch.cuda.device_count() else: return 0 def gc_collect() -> None: gc.collect() if is_torch_npu_available(): torch.npu.empty_cache() elif is_torch_mps_available(): torch.mps.empty_cache() elif is_torch_cuda_available(): torch.cuda.empty_cache() class Serializer: @staticmethod def to_tensor(obj): res = pickle.dumps(obj) res = np.array([len(res)], dtype=np.int64).tobytes() + res res = np.frombuffer(res, dtype=np.uint8).copy() res = torch.from_numpy(res) return res @staticmethod def from_tensor(obj): if isinstance(obj, torch.Tensor): obj = obj.cpu().numpy() res = obj.tobytes() buffer_size = np.frombuffer(res[:8], dtype=np.int64)[0] res = res[8:] return pickle.loads(res[:buffer_size]) def set_default_ddp_config(): # It runs normally with Python as well. rank = int(os.getenv('RANK', -1)) if rank == -1: os.environ['NPROC_PER_NODE'] = '1' os.environ['RANK'] = '0' os.environ['LOCAL_RANK'] = '0' os.environ['WORLD_SIZE'] = '1' os.environ['LOCAL_WORLD_SIZE'] = '1' os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = os.environ.get('MASTER_PORT', '29500') def init_process_group(ddp_backend: Optional[str] = None): if dist.is_initialized(): return set_device() if ddp_backend is None: if is_torch_npu_available(): ddp_backend = 'hccl' elif torch.cuda.is_available(): ddp_backend = 'nccl' else: ddp_backend = 'gloo' dist.init_process_group(backend=ddp_backend)